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1. Introduction. This paper is dedicated to the study of the optimal control
problem

. 1
(1) () min J00) =5l vl + allulie

where y is the unique solution to the Dirichlet problem

(1.2) {—Ay +a(e,y) =u inQ,

y=0 onl.

The control domain w is a relatively closed subset of 2. We assume that a > 0,
ya € L2(2), and Q is a bounded domain in R, n = 2 or 3, with Lipschitz boundary
I'. The controls are taken in the space of regular Borel measures M(w). As usual,
M (w) is identified by the Riesz theorem with the dual space of Cp(w)—consisting of
the continuous functions in @ vanishing on I' N w—endowed with the norm

(13) lulme = sup (w2 = sup / 2 du,

1zl e (w) <1 1zl ¢ (w) <1

which is equivalent to the total variation of u; see Rudin [19].

We recall that the use of measure-valued controls is motivated by their sparsity
promoting properties. If u € L'(w), then [Juf sy and [, [u|dz coincide. However,
the consideration of (P) in L!(w) does not allow us to argue existence of a minimizer,
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whereas the larger space M(w) does. The choice of M(w) in the cost functional is
also useful for the optimal actuator placement. Moreover the cost of the control enters
(P) in a manner that is linearly proportional rather than the frequently investigated
quadratic costs.

Sparsity promoting controls were investigated in several earlier works. Some of
them consider the case of measure-valued controls as done here (see [7, 8, 12, 14]);
others use additionally pointwise control constraints. In this case the M(w) norm
can be equivalently replaced by the L!(w) norm; see [16, 18, 20, 23]. In the previous
papers, the state equation is linear. The case of semilinear elliptic equations with
L>(Q) controls controls is studied in [9, 10, 11].

The paper is organized as follows. In section 2 we provide the necessary analysis
of the state equation, including differentiability of the state with respect to the con-
trol. Necessary first and second order optimality conditions are derived in section 3.
A second order sufficient optimality condition is achieved in section 4. This condi-
tion allows a stability analysis of the solutions to perturbations in y4 and possible
perturbations on the right-hand side of the equation. In the case that w = Q extra
regularity of controls and states which satisfy the first order necessary condition can
be obtained. This is carried out in section 5. The L*>°(£2) bound of these states can
be used to allow for highly nonlinear terms in a(z,y). This is exploited in section 6.

2. Analysis of the state equation. In this section, we will establish the exis-
tence and uniqueness of the solution of the state equation (1.2) as well as the continuity
and differentiability properties of the control-to-state mapping. For the well-posedness
we will use the following assumption.

(Al) The mapping a : @ x R — R is a Carathéodory function, nondecreasing
monotone with respect to the second variable for almost every x € ), and satisfying
for almost all z € 2 and all s € R

3C, >0 and J¢o € L' () such that

21) la(z, s)| < |po(x)| + Cqls|” with r < {

400 if n =2,
3 ifn=3.

We say that y € L1(€) is a solution to (1.2) if a(-,y) € L'(Q) and

(2.2) /Q(—yAz—Fa(a:,y)z) da:z/zdu Vz € Z,

w

where
Z={z€ H}(Q): Az € C(Q)}.

Observe that Z C Cp(€2). Thus, all the integrals in (2.2) are well defined.
THEOREM 2.1. Under assumption (A1), there exists a unique solution y of (1.2).
Moreover, it satisfies that y € Wol’p(Q) for every p <n/(n—1) and

(2.3) 1yllwrr ) < Colllal, 0)llr @) + llull pmw)
for some constant C,, independent of u € M(w). Finally, if ur, — u in M(w), then
y(ur) — y(u) strongly in Wy (Q) for every 1 < p <n/(n—1).

This result was first proved by Brezis and Strauss [6] for functions u € L*(Q)
without the growth assumption given in (2.1). Later, Benilan and Brezis [2] observed
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that the situation for measures is different. Specifically, they showed that (1.2) has
no solution for a(z,s) = s*, n = 3, and u = ,,, where x¢ is a point in . A way to
ensure the existence of a solution for problem (1.2) consists of assuming the growth
condition on a expressed in (2.1); see Boccardo and Gallouét [3]. For the sake of
completeness, let us give an independent proof of the existence of a solution that
illustrates the difficulty of passing from L' functions to measures and the role played
by the growth condition (2.1).
Proof. We first consider

(2.4) {—AQ =wu in Q,

(=0 onl.

It is well known (see, e.g., [21]) that (2.4) admits a unique solution ¢ € W, *(Q) for
every 1 <p < %5 and

(2.5) |KHW01’P(Q) < Cp”u”M(w)

for a constant ¢, independent of u. Note that ¢ € Wy(€) implies that ¢ € L?" ()
forany 1 <p* < 4+ocifn=2and any 1 <p* < 3ifn=3.
Let us further consider

—Aw+ g(z,w) = f(z) in Q,
(2.6) { w =20 on I,

where
9(z,s) = a(z,((z) + ) —alz, ((z),  f(x) =—alz,((r)).
From the growth condition assumed in (A1), we have that f € L'(Q) and
sup{|g(z,s)| : |s| <t} < do(x) + Cult|” € L'(Q) Vi > 0.

Moreover, the monotonicity of a with respect to the second variable implies
g(z,s)s > 0 for all s € R. With these properties the existence of a solution w €
Wy (€2) of (2.6) follows; see [3, Theorem 2]. Setting y = w 4 ¢ € Wy () gives a
solution to (1.2). By [5, Corollary B1] this solution is unique.

To verify the a priori estimate, we express (1.2) in the form

—Ay + h(z,y) = u—a(z,0) in
y=20 on I,

where h(z, s) = a(z, s) — a(z,0). From the proof of [3, Theorem 3] it follows that
1G9y < llu = al 0)llm@) < lullmew) + llat; 0)llLio)-

Using again [21], as in (2.5), we deduce that y € W, *(Q) for every 1 <p < n/(n—1)
and

[Wllwer ) < epllu—aly)lla@) < cplllullaew +2llal-0)llzr ),

which implies the estimate (2.3).
Finally, let us prove the claimed continuity. From (2.3) we get the existence
of a subsequence, denoted in the same way, yr = y(ur) — y in Wol’p(Q) for all
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1 <p<n/(n—1). Hence, y, — y strongly in L? (Q). By the Lebesgue dominated
convergence theorem and (A1) we obtain that a(-,yx) — a(-,y) strongly in L'(f).
Now, we can pass to the limit in the equations satisfied by uy and y; and deduce that
y is the state associated to u. By uniqueness of the solution of the state equations
we conclude that the whole sequence {yx}32, converges weakly to y in WO1 P(Q).
Now, from the compact embeddings of M(w) and L'(Q) in W=1P(Q) for all 1 <
p < n/(n—1), we get that up — a(-,yx) — u — a(-,y) strongly in W=1P(Q) for the
mentioned range of p. Applying the result by Jerison and Kenig [17, Theorem 0.5],
we conclude the strong convergence of {y}7°, to y in the space WO1 P(Q). 0
Now, we define the space

V(Q) = {y e Wy () : Ay € M(Q)},
which is a Banach space when endowed with the norm
9llve = Il @y + 129l -

At this point we remark that M(w) is identified with a subspace of M (). We also
observe that by (2.5) the space V() is continuously included in W, *(£2) for every
1<p<n/(n—-1).

In the remainder of this section we study the differentiability of the mapping
G : M(w) — V() given by G(u) = y(u) with y(u) the solution of (1.2). To this end
we make the following assumptions.

(A2) The mapping a : Q x R — R is a Carathéodory function of class C! with
respect to the second variable for almost all x € 2, and it satisfies for almost all z € €
and all s e R

3C, > 0 and 3¢ € L (Q) with ¢; > § such that

(2.7) 0 < 9ya(z,s) < |¢1(x)| + Cols|” with r < {+OO ifn=2,

2 if n = 3.

(A3) The mapping a is a Carathéodory function of class C? with respect to the
second variable for almost all x € 2, and it satisfies for almost all z € Q and all s € R

3C, > 0 and 3¢y € L% (Q) with g5 > {; i ;‘ B ; such that
(2.8) .
2 ” . oo if n =2,
|0, a(z, s)| < [p2(x)| + Culs|” with r < { 1 ifn=—3

We observe that if (A2) holds and a(-,0) € L*(£2), then (A1) is satisfied. Similarly,
if (A3) holds, dya(-,0) € L% (S2) for some ¢ > %, and dya(z,s) > 0, then (A2) also
holds.

THEOREM 2.2. Under assumptions (Al) and (A2), G : M(w) — V() is of class
Ct and the derivative z, = G'(u)v is the solution to

{—Az+ g—;(gc,y)z =v inQ,

2.
(2.9) z=0 onl,

where y = G(u). Furthermore, if (A3) holds, then G is of class C* and w =
G" (u)(v1,v2) is the solution to

a 2a .
(210) {—AU} + g_y(ivay)w + 2_1/2(‘%7 y)zv1ZU2 = 0 m Qa

w=0 onl,

where z,, = G'(u)v;, 1 = 1,2.
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Proof. Let us introduce the operator F : V() x M(w) — M(Q) by
Fly,u) = Ay +a(,y) —u.

From (A2) and recalling that V() € W,**(€) continuously, it follows that the map-
ping y — a(-,y) is C* from V(Q) to L1(Q) € M(£); see, for instance, [22, section 4.3].
Hence, F is a C'! operator and 9, F (y,u) : V() — M(Q) is defined by

88—]y:(y,u)z =—Az+ g—;l(a:, Y)z.

Assumption (A2) implies that dya(-,y) € LP(2) for some p > n/2. Therefore, we can
use [21, Theorem 9.1] to deduce that 9,F (y,u) : V() — M(Q) is an isomorphism.
As an immediate consequence of the implicit function theorem we deduce that G is a
C! mapping and G’ (u)v is given by (2.9).

Finally, if (A3) holds, then the mapping y — a(-,y) is C2, and consequently F
is also C2. Let us observe that (A3) and the fact that y, z,,, z,, € V(Q) imply that
giy‘;(x, Y) 2, 20, € L1(Q). Once again the implicit function theorem implies that G is
of class C? and (2.10) is satisfied. o

Remark 2.3. Due to the W, ?(Q) regularity of the solution y to (1.2), we can

integrate by parts in (2.2) and use density of C§°(2) in Wol’p/(ﬂ) (p' < +00) to obtain
(2.11) /(Vsz +a(x,y)z)de = / zdu Vze€ Wol’p/ () vp' > n.

Q w
The same variational formulation is valid for (2.9) and (2.10).

3. Necessary optimality conditions for (P). From Theorem 2.1 the exis-
tence of a global minimum for problem (P) is immediate. Since this problem is not
convex, we are going to deal with local minimizers. Hereafter o will denote a local
minimum of (P) with associated state . Before stating the optimality conditions sat-
isfied by (7, 1), we analyze the differentiability of the cost functional. Let us express
the cost in the form J(u) = F(u) + aj(u), where

1 .
F(u) = $1Gw) = yalliz0)  and  j(u) = [[ul me)-

PROPOSITION 3.1. Under assumptions (Al) and (A2), F : M(w) — R is of class
Ct and for all u,v € M(w) we have

(3.1) FWMU=K¥y—wVNM:iAwdw

where y = G(u), z, = G'(u)v, and ¢ € Wol’p/ (Q), for some p' > n, is the solution to

_ a o ,
(3.2) Ap+ ge(z,y)p =y —ya n9Q,
=0 onT.

If in addition (A3) holds, then F is of class C?, and for every u,vi,vs € M(w) we
have

33) F@one) = [ (b=t zzlde = [

0%a }
1—o—(x, 2y 2oy AT,
A [ wayg( Y)

where w = G"(u)(v1,v2) € V(Q), and z,, = G'(u)v; fori=1,2.
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Proof. By using the chain rule and Theorem 2.1 the differentiability properties
of F and the first identities in (3.1) and (3.3) are obvious. Let us prove the Wol’p/(Q)
regularity of ¢ and the second identities of (3.1) and (3.3). We argue in dimension
n = 3 because in dimension n = 2 the arguments are the same, but the fact that
V() c L) for all ¢ < 400 makes the computations easier. First, we observe that
y € V() c LI(Q) for all 1 < ¢ < 3. Then, (A2) implies that dya(-,y) € L1(Q)
for some ¢ > 3/2. Hence, applying Stampacchia estimates [21, Theorem 4.2] to (3.2)
we deduce that ¢ € L>(Q). Therefore, we have that Ay € LI(Q) ¢ W—14(Q) for
some ¢ > 3/2 and ¢ > 3. Using again [17] we deduce that ¢ € Wol’p/ (Q) for some
3<p <4

To prove the second identity of (3.1) it is enough to take into account Remark
2.3 and the regularity of ¢, along with (2.9) and (3.2). The same argument is used to
deduce the second identity of (3.3). O

Concerning the functional j : M(w) — R, j(u) = ||ul|s(w), we note that it
is Lipschitz continuous and convex. Hence, it has a subdifferential and a directional
derivative, which are denoted by dj(u) and j'(u;v), respectively. The following propo-
sitions give some properties of 9j(u) and provide an expression for j/(u;v).

PROPOSITION 3.2. Let us assume that A € 0j(u) and A\ € Co(w); then we have
Ml coc) < 1. Moreover, if u # 0, the following properties hold:

L Moy =1 and [ Xdu = [Ju]| pme)-
2. Taking the Jordan decomposition u =u" —u~, we have

supp(u™) C {z € w : A(z) = +1},
supp(u~) C {z € w: A(z) = —1}.

The inequality |[Al|c, o) < 1 follows easily from the definition of subdifferential.
The reader is referred to [7] for the proof of 1 and to [7, Lemma 3.4] for 2.

Before considering the directional derivative j'(u;v), let us introduce some no-
tation. Given two measures u,v € M(w), we consider the Lebesgue decomposition
of v = v, + vs with respect to |u|, where v, is the absolutely continuous part of v
with respect to |ul, and v, is the singular part. Now, we take the Radon—Nikodym
derivative of v, with respect to |u|, dv, = gyd|u|. Then we have

[ollme) = lvallm) + [1sllm) =/ 90| dlul + [[vs ]| pm(w)-

In particular, it is obvious that u is absolutely continuous with respect to |u|. Moreover
we can express du = hd|u|, where h is measurable with respect to |u| and |h(x)| =1
for all z € w, du™ = h*d|u|, and du™ = h~dJu|, where v = u™ — u~ is the Jordan
decomposition of u. See, for instance, [19, Chapter 6] for details.

PROPOSITION 3.3. Let u,v € M(w); then

(3.4) §(u;v) = / go du+ [[vsl] po)-

Proof. As above, let us write du = hd|u|. Then we have

supp(u™) Cwy ={z € w: h(z) = +1},
supp(u”) Cw_ ={z €w: h(z) = —1}.
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Hence,

1w+ pvl| pmw) — el M)

§'(u;v) = lim

PO P
_ im w4+ pvall )y + 1Pvsl M) = el me)
PO P
1
-ty 2 ( [t ot~ [ |h|d|u|) T llesllan)
1 ol — 1 . -1 ol — 1 _
= lim/ [L+pgo —1 du™ + lim %du + lvs || M)
PO wi P PNO S, P

- / go du + 04l pco).

Since the quotients are dominated by |g,|, we could use Lebesgue’s dominated con-
vergence theorem in the last identity. a

Using the previous propositions we derive the first order optimality conditions for
problem (P).

THEOREM 3.4. Suppose that (A1) and (A2) hold and let @ be a local solution to
(P). Then there exists ¢ € Wol’p,(Q) for some p' > n such that

_AG L 92y & T ;
(35) { ASD—’— ay(xay) g Yd ana

on T,

AR

(3.6) ot pm(w) +

T
l
QU
IS
I
o

_ =« f
Moreover, if u # 0, then

supp(a™) C {z € w: p(x) = —a},

®
(3.8) supp(a”) C {z € w: p(z) = +a}.

Proof. Using Proposition 3.1 and the convexity of j we obtain for every u € M(w)

0 < lim J(@+ p(u—1u)) — J(a)
PO P

_ / pd(u— 1)+ a(j(u) — j(a)).

< F'(a)(u —a) + a(j(u) — j(a@))

Hence,
| edu )+ 5@ < i) Yu e M),

which implies that %1@ € 9j(u). Now, it is enough to apply Proposition 3.2 to deduce
(3.6)—(3.8). d
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To prepare for the second order necessary conditions we introduce the critical
cone as follows:

(3.9) Cy={veMw): F'(a)v+ aj’(u;v) = 0}.

It seems natural that the second order optimality conditions must be imposed only
on those directions where the directional derivatives vanish. Let us point out some
properties of this critical cone.

PRropPOSITION 3.5. Cf is a closed convexr cone that can equivalently be expressed
in the form

(3.10) Co = {ve Mw) : / B dvs + o|vs]| sy = 0.
w

Proof. The cone property and closedness of C are a straightforward consequence
of the continuity and positive homogeneity of the mapping v — F'(@)v + «j’ (u;v).
To prove the convexity we first observe that F’(u)v + aj’(u;v) > 0 for all v € M(w)
since 4 is a local minimum of J. Therefore v belongs to Cy if and only if F'(u)v +
aj’(w;v) < 0. It is therefore enough to use the convexity of the function v — F'(a)v+
aj'(@;v) to conclude that Cy is convex. Though the convexity, continuity, and positive
homogeneity of v — j'(u;v) can be easily checked by using the representation given
in (3.4), they are also true for any convex and Lipschitz continuous functional j; see
[4, section 2.4] or [13, Chapter 2.

To prove (3.10), we compute with the aid of (3.1) and (3.4)

(3.11) F'(a)v + aj’ (u;v) = /

w

:/¢gvd|a|+a/gvda—F/gEdvs—l—aHvsHM(w)

— / B v, + vl mce).

pdv+ Oé/ gy du + OéHUSHM(w)

The last identity is a consequence of the fact that @d|i| = —a du, which follows by
(3.8). O

Remark 3.6. If 4 # 0, then ||@¢||oc = . Consequently, the identity [ @duvs +
a|vs]| pm(w) = 0 implies

supp(vi) C Qo ={z €w: ¢(z) = —a},
supp(v; ) C Qpq = {z € w: ¢(x) = +a};
see [8, Lemma 3.4]. Therefore, the cone Cy can be expressed in the following way:
Cu = {veE M(w) :suppv; C Q_, and suppv; C Qi,}.

Since the support of the absolutely continuous part of v with respect to |@| is obviously
contained in supp @, we deduce with (3.8) that every measure v € Cy is supported on
the set {x € Q : |g(x)] = a}.

THEOREM 3.7. Suppose that (A1)~(A3). If @ is a local minimum of (P), then
F"(u)v? >0 for all v € Cy.

Proof. Let v be an element in Cz and consider the Lebesgue decomposition
dv = g, d|u| + dvs. For every integer k > 1 we set

9o, (¥) = proji_j 141 (gu(x)) and  dvy, = gy, dlu] + dvs.
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Then, we have ||[v — k|| pm(w) = |90 — Guillz1(jap) — 0 by Lebesgue’s dominated conver-
gence theorem. Moreover, since the singular parts of vy and v coincide and v € Cg,
then (3.10) implies that vy € Cy for every k.

For any 0 < p < %, following the proof of Proposition 3.3, we find

| (u — j(u 1 | — 1 -1 ool — 1 .
j(u+pvk) j(u) :/ | + pg k| du+ _|_/ | + pg k| du~ + ||Us||M(w)
p oy p . p

= / Gy du + HUS”M(w) :jl(ﬂ;vk)~

Now, using that @ is a local minimum of J and making a Taylor expansion we
get for every k and 0 < p < 1 the existence of § = 0(k, p), with 0 < # < 1, such that

J(@+ pvg) — J(a)
p

0<

= F’(a)vk—F%)F”(Q—I—Opvk)v,%—l—ocj’(a;vk) = gF”(ﬂ—FGpvk)vz,

since vy € Cy. Finally, dividing the last term by p/2 and taking the limit when
k — oo, we get that F”(u)v? > 0. 0

Remark 3.8. Before finishing this section let us observe that we have not made
precise the meaning for the local optimality of @ in Theorems 3.4 and 3.7. In fact,
any norm on M (w) leads to the same result, which is not the case for second order
sufficient conditions, which will be considered next.

4. Second order sufficient conditions and stability. In this section, u will
denote an element of M(w), with associated state y and adjoint state @, such that the
first order optimality conditions (3.5)—(3.7) hold. Our first goal is to give a second
order sufficient condition for the local optimality of @. To this end we strengthen
assumption (A3).

(A3") There exist a constant C, and a function ¢o € L%(Q2) with ¢o > 2 such
that for a.a. x € Q and for all s € R

(4.1) {|8§a(x, s)| < pa(x) + Cyls]” with 0 <7 < 400 if n =2,
d

|02a(x,s)| < C, if n=3.

Associated to g2 and r we introduce p as follows. In dimension n = 3, we take
6/5 < p < 3/2 with  sufficiently close to 3/2 so that —A : W, P() — W=EP(Q) is
an isomorphism; see [17]. For n = 2 we take 1 < p < 2 so that W, ?(Q) ¢ LI(Q),
where

2QQ 47
¢ —22F—1

quax{ } with 7= max{1,7}.

The reason for this choice of p will be clear from the estimates below.
As usual, we have to consider an extended cone of critical directions to formulate
a sufficient second order condition for optimality. For every 7 > 0, we denote

Ci ={v e M(w) : F'(@)v + o' (t50) < 7l L2}

where z, = G'(u)v, with G defined in Theorem 2.2. The second order condition
involves this cone as follows:
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(SOSC) There exist positive constants s, p, and 7 such that
(4.2)  F"(u)v* > HHZUH%Q(Q) Yo e Cf Yue M(Q) with [lu—alw-150) < p.

Remark 4.1. We point out that the neighborhood for admissible controls in
(SOSC) is chosen in W~YP(Q) rather than M(w). This is the proper choice, as we
show by the following example. Let 2° € w and {xk}zozl C w be such that z* — 20,
Associated to these points we consider the controls @ = ¢,0 and ug = .. It is obvious
that uj, = @ in M(w), hence strongly in W~17(€2) and 4., — ya strongly in W, ?(Q).
Since [|txl|pmw)y = 18llamw) = 1, we have that J(ug) — J(@). Let us assume that @
satisfies the condition (4.2). As we will prove below, @ is a strict local minimizer of (P)
in the sense of the W~1P(Q2)-topology: there exists € € (0, p] such that J(u) < J(u)
for [Ju —llw-1.5) < &, u# u. Hence, J(u) < J(ug) for all k sufficiently large. If we
replace in (4.2) the W~1?(2)-ball by the ball |u— || p(w) < p, then we can also prove
that @ is a strict local minimum of (P) in the sense of the M(w)-topology. However,
if ¢ < 2, this does not allow to guarantee that J(u) < J(ux) for k sufficiently large
because ||ugr — Ul|pm(w) = 2 > € for every k. This example illustrates the fact that
the strong topology of M(w) is not the appropriate one for the analysis of the state
equation, but rather weaker topologies should be used.

The following theorem implies that (SOSC) is sufficient for strict local optimality
of u.

THEOREM 4.2. Under the assumptions (A1), (A2), (A3’), and (SOSC), there
exist positive constants € < p and o such that

_ o _
(4.3) J(@) + 5 ll2u-allfai) < J(w) V¥ llu—dllw-rs@) <e

Proof. Let us argue by contradiction and assume that (4.3) does not hold for any
¢ and 0. Then there exists a sequence {uy}72 | C M(w) such that

_ 1 B 1
(4.4) lur — @llw-1500) < % and J(ug) < J(u) + %quruﬂiz(ny

Let us prove that up —u € CF, for all k sufficiently large. Using the convexity of j we
know that

(4.5) Jw) = j(u) = j' (@ u—ua) Yue Mw).
Combining (4.4) and (4.5), a Taylor expansion of F around 4 leads to

1 o _ 1 _
(4.6) 2—k|\zuk,a||iz(m > F'(w)(uk — @) + o’ (@ u, — ) + §F"(ue)(uk —)?,

where ug = 4+ 0(uy, — ), 0 < 6 < 1. Using (3.3), (2.9), and (2.10) we get

" (ug) (g, — 1)? = /Q (40 — ya)wo + 23, _a] d,

where y9 = G(up), 20,up—a = G'(ug)(up — @), and wp = G"(ug)(ux — w)?. From
Lemma 4.3 below, we have for every k

126,ur—allL2() < Cllzu—allL2) and |lwollL2) < Cllzu—ally s ) llzue—all 2@,

where z,, —z = G'(u)(ur, — u). Because of our choice of p and (4.4), we have

[z —allz2 @) < Cllzu—allwir gy < Clluk = allw-100) < %
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The last inequalities imply

| (ug) (ur — 0)°| < [lys — yall L2 llwoll 2) + 126, —all72 (0

< C(llyo — yall L2 (@) 2w —allwr o) + lzw—all L2 @) 12w —all L2
C
< E”Zuk—ﬁHLz(Q)-

Combining this inequality and (4.6) we deduce
!~ — o) — _ C
F'(a)(up — ) + af' (G up, — @) < Equk,aHLz(Q) VE.

Hence, for C/k < 7, we get that ux — @ € CZ. Moreover, from (3.7) and (3.11) it
follows that
F'(a)(ur, — ) + aj' (a;up — u) >0

Finally, from this inequality, (4.6) and (4.2), and observing that [[us — @l|w-1.5(q) <
1/k < € for k large, it follows that

||Zurﬁ|\%2(n)~

N

1 1 _
Z—kHZuraH?Lz(Q) > §F”(U0)(Uk —a)’>

Since (4.4) implies that uy # @, the above inequality gives the contradiction. O

LeEMMA 4.3. Let u,u,v € M(w) and y,y,2,z,w € V(Q) with y = G(u), § =
G(u), z = G'(u)v, z = G'(4)v, and w = G" (u)v®. Then, for every M > 0 there exist
a positive constant Cyy independent of v such that the inequalities

(4.7) I2ll2@) < CumllZlo@)  and  |wllp2@) < CullZlwer)llZllz2 @

hold for every ||ullw-1.5() < M and |||y -1.5) < M.
Proof. According to (2.9) and (2.10), z, z, and w satisfy the equations

—Az+ 2 (z,9)z=v inQ
48 8y ) 5
) { z=0 onl,
~AzZ+ 8 (zg)z=v inQ
49 8y ) 5
) { z=0 onl,
and
(4.10) —Aw + G (x, y)w + giy‘i(a:, y)22 =0 inQ,
. w=0 onl.

Subtracting (4.9) from (4.8) and applying the mean value theorem, we get for some
J=y+0(y—y) with0<0(z) <1,

~A( =2+ P y) (e - 2 + 54,y -NE=0 inQ,
z—z=0 onl.
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From this equation and recalling our choice of p we have

(4.11)

0%a R N
Ha—yg(%y)(y—y)z

2 = zllL2@) < Cllz — EHWOLﬁ(Q) <C

W-15(Q)

0%a . _ _

< 0H—2<x,y><y T .
Oy 12(2)

H Wy —v)z
LY(Q)

In dimension 3, Assumption (A3') implies the boundedness of dja(x,7) and conse-
quently

(4.12) 12 = ZllL2() < Clly = §llywrr)llZll L2 @),

where we have estimated the L?(€2)-norm of y — § by the W *?(Q)-norm. Hence,
in dimension 3, the first inequality in (4.7) follows from the triangle inequality and
(4.12).

To obtain the estimate (4.12) for dimension 2, we use again assumption (A3’) to
get

826L AT AT
‘ < a(@) + Calil” < da(a) + Call + [3])".

a—yg(x,ﬂ)

Then, our choice of p and Holder’s inequality imply

H )y —v)
L2(Q)

< C (llo2ll Loz ioy + 1L+ 191 L2m@) 1y = Fll o) < Clly = Fllyw25q)-

We proceed as in the three-dimensional case to prove the first estimate in (4.7).
Let us also notice that from (4.11) and (4.12) we infer for n =2 or 3

12 = Zllwe s o) < Cllzllze) < Cllzllwg o)
Once again, the triangle inequality leads to
(4.13) 12l ) < Cllzllwpr )

Finally, to prove the second inequality of (4.7) we use (4.10) and the first inequal-
ity of (4.7) to obtain

52
w2 < Cllwl| e g <C Qz2
Iollen < Clolhg ooy <€ | ga02)
0%a 2a, _
<o|Tawe| el <0 Thwiz| peluse
L2(9) L2()

Replacing y—g by z, we can argue as above to estimate Bja(x, )z in L2(£2). Therefore,
with (4.13) we conclude

lwl 20y < O|‘Z||W01'ﬁ(9)|‘2|‘L2(Q) < OHEHWOLﬁ(Q)”Z”LQ(Q)- O
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Remark 4.4. The reader may observe that the second order sufficient optimality
condition (4.2) is not imposed at the point @ as usual. It is imposed for every u in a
certain ball around @. The reason for this stronger assumption is that we have not
been able to prove that given any € > 0 there exists p > 0 such that

[F" () = F"(@)}0?] < ellzull 2@y ¥ lu—allw-ssg0) < p and Yo € CF.

COROLLARY 4.5. Under the assumptions of Theorem 4.2, there exists a constant
& > 0 independent of u such that

., 0 _ _
(4.14) J(@) + 5 lly(w) = 72 < J(w) ¥ llu—alw-15q) <e,
where y(u) = G(u).
Proof. For simplification, we write y = y(u). Subtracting the equations satisfied

by y and § we get for § = 5+ 6(y — §), 6 being a Lebesgue measurable function such
that 0 < 6(z) < 1,

Using the identity

a
00 iy = 2% oy — 0() % (N (4 —
ay (z,9) oy (z,9) — 0(x) 052 (z,9)(y — 9)
in the equation of z,_z we get

—u in Q,

A~ 2(1 ~ —
_Azufﬁ + 2—2(957 y)zufﬁ - e(x) gyz (iC, y)(y - y)zufﬁ =u
Zu—u =0 onI'.

Subtracting the equations for y — y and z,_gz, and setting £ = y — 4§ — 2, g, we obtain

=0 in{,

—AE+ B2 (@, )6+ (@) 58 (@ D — )2ua
E=0 onl.

Proceeding as in the proof of Lemma 4.3 we find
I€ll20) < Clly = llwrr o) llzu—all2@)
< Cllu = allw-1.50)ll2u-all2) < Cellzu—allL2(0)-
Finally, from the triangle inequality we have
ly = ¥llr20) < l€llr2o) + [l2u—all2) < (Ce + D)|zu-all 20,

which with (4.3) leads to (4.14) for 6 = o/(Ce + 1). O

The rest of the section is dedicated to the stability analysis of the control problem
(P) with respect to perturbations of the desired state y4. More precisely, for § > 0
consider the problems

. 1
() min () = 5l = vl + ol o
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where y is the solution to (1.2) and {ya,s}s>0 C L*(Q) satisfies

(4.15) 1Ya — a5

r2(Q) < 0.

We denote by us local solutions to (Ps) with associated states ys. We have the
following approximation theorem as § — 0.

THEOREM 4.6. Suppose that (A1) holds. Then every family {us}ts=o of global
solutions is bounded in M(w) and every weak* subsequential limit @ is a global solution
to (P). The convergence properties

(4.16)  Nlusllam) = lullme), Nus —@llw-re@) =0 and flys = gllyir@) =0

hold for every p < n/(n —1). Conversely, for every strict local minimum u of (P) in
the W=LP(Q) (or M(w)) sense there exists a sequence of local solutions {us}ts=o of
(Ps) such that (4.16) holds.

Proof. Denote by yo the solution to (1.2) associated to the control u = 0. Then,
using (4.15) we get

ollugll ey < Jss) < J5(0) < 5 (Ivo — vallzeoy +6)°,

which proves the boundedness of {us}s~o. Hence, taking a subsequence, if necessary,
we have us — @ in M(w). From the compactness of the embedding M (w) C W~12(Q)
for every p < n/(n — 1), we get the strong convergence in W~1?(Q) and the strong
convergence ys — ¥ in WO1 P(Q), where j = G(u). Let us prove that @ is a global
solution to (P). From the stated convergence properties and (4.15) we get for every

u € M(w)

J(u) < lign iélf Js(us) < limsup Js(us) < limsup Js(u) = J(u),
—

6—0 6—0

which proves the optimality of w. In particular, taking ©v = % we deduce from the
above inequalities that J5(us) — J(@), which implies that [[us|| sy = |2/ A(w)-

Conversely, let u be a strict local solution of (P). Then, for some £ > 0, @ is the
unique global solution of the problem

. 1
(Pe) min J(u) = §Hy—yd|\%2(g) + allul| pmw)
with U. = {u € M(w) : |lu —allw-1rq) < e} We also introduce the perturbed
problems

. 1
(Peg)  min Js(w) = 3y — aslliam + ollul v

Observe that the compactness of the embedding M (w) € W~1P(Q) implies that U.
is sequentially weakly* closed in M (w). This implies the existence of global solutions
ugs to problems (P 5). Now, we can argue as in the first part of the theorem to deduce
(4.16). In this case we replace the inequality Js(us) < Js5(0) by Js(us) < Js(u). As a
consequence we have that ||us — @y 1.0y < € for § sufficiently small, which shows
that us is a local solution of (Ps). O

To get a rate of convergence for the states {ys}s>0 to § we use (SOSC). Let us fix
a local solution u of (P) satisfying (SOSC) and let € > 0 be given by Theorem 4.2. We
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know from the proof of Theorem 4.6 that there exists a sequence {us}s~o converging
to @ in the sense of (4.16) and such that every us is a minimum of Js in the ball
Hu — ’IEHW—Lﬁ(Q) <e.

THEOREM 4.7. With the above notation and assuming (Al), (A2), and (A3'),
there exists a constant C' independent of § such that

lys — llrz2@) < CVE  and  |||usl mew) — lEllme)| < CVG.

Proof. Using (4.14), the optimality of us, and (4.15) it follows that

o]

lys = Gll72(0) < J(us) = J (@)

1
< Js(us) — J(u) + §{||y6 —vallZ2) — I1vs — yasll 72 }

_ _ 1
< Js(u) — J(u) + §{|Iy5 —yallZ2) — I1vs — yasllizq) }

= %{Hﬂ ~yaslli2@) — 19— vall 22y }
+ %{Hya —yallZ20) — I1vs — yasll72) }
< 50129~ as + w2y + 1295 = (s + a2 }6 < €6,
which proves the first estimate of the theorem. For the second estimate we use the
optimality of @ and us to get
0<J(us) = J(u) = %(Ilya —yalla@) = 17— valia(e) + alluslsmew = lallae))
< CV5 + a(|lusl mew) = 12 me)

and

_ 1o _
0 < Js(@) = Js(us) = 5 (15 = vasllZ20) = 196 = vasliz() + allllme) = luslme)

< OVo + a(llallme) = lluslae))-

Combining these two estimates the second inequality follows. O
Remark 4.8. Consider a perturbation in the state equation of the following type:

{—Ay+a(w,y) =u+fs inQ,

(4.17) . ol

where

I fsllz1(o) < 6.

Associated to these perturbed state equations we can define control problems (Py),
analogous to problem (P) with solutions us. The previous analysis can be repeated to
get the estimates of Theorem 4.7. In this argumentation it is enough to establish that
for every control u € M(w) with corresponding states ys and y, solutions to (4.17)
and (1.2), respectively, satisfy

lys = yllwpr ) < Cllifsllia) < CO.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/14 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

354 EDUARDO CASAS AND KARL KUNISCH

5. A regularity result. The goal of this section is to prove a regularity result for
the optimal controls and the associated states assuming that yq € L°(2) and w = Q.
A similar result was obtained for linear state equations in [18]. The assumption
that the control domain coincides with the observation domain can be restrictive for
genuine control problems. However, it is an efficient way to determine the optimal
placement of actuators.

THEOREM 5.1. Let u satisfy the first order optimality conditions (3.5)—(3.7) with
associated state y. Assume that w = Q, yq € L>(Q), and (Al) and (A2) hold with
o € L1 (Q), q1, and r given by (2.7). Then, we have that §j € H} () N L>(Q),
uweM(Q)NHYQ), and

(5.1) 7l 2oy < C (lyall (@) + llal-,0) || La (@) »
B B ) 1/2
(5.2) 19z < C (||yd|\L°°(Q)||UHM(Q) + ”a('ﬂO)Hqu(Q))

for a constant C' independent of .
The reader can easily check that (5.1) and (5.2) hold if u = 0. Hence, we assume
that @ # 0. Let us introduce some notation. We decompose § = w + (™ — ¢~ with

(5.3) —A@ =t inQ, —AC:_ =au~ in
' (=0 onT, ("=0 onT,
—Aw+g(x,w) = f inQ,
(5-4) { w=0 onl
with

f(@) = —a(z,¢*(x) = (" (2)) and g(z.t) = a(w,t+ (" (z) — ¢ () + f(2).

Taking into account that (¥ — (= € V(Q) C LP(Q) for all p < +o0 if n = 2, and all
p < 3if n = 3, that ¢9 € L1 (Q), with ¢1 > n/2, r < 2 if n = 3, and assumption
(A1), we conclude that the function f € L(Q) for some g1 > ¢ > n/2. In dimension
n = 3, we take ¢ > 3/2 and such that r¢ < 3. Hence, the solution @ of (5.4) belongs
to H3(Q) N Co(Q); see [15, Chapter 8].

We also consider the functions

(o (x) = x ut (¥ (x) = x U and (*=(CTr— (7
R N e O A B

where G denotes the Green’s function for the Dirichlet problem in §2 associated to the
Laplace operator. The reader should notice that (* ({~) denotes a class of measurable
functions, while (** ((~*) is a particular selection in this class well defined at every
point of 2, that could take the value +oc0 at some points. Define 7* = w + (*.

The proof will utilize the following three lemmas.

LEMMA 5.2. The following properties hold:

7 (x) < Hyallpe ) Vo € suppa ™,
(5.5) - __
v (x) > ~||yall () Yo € suppu.

Proof. Let us prove the first inequality, the proof of the second being analogous.
Let us assume that the inequality is false. Then, there exists a point z¢ € suppu™
such that 7*(zo) > [|yallL= (o). From (3.8) we know that the supports of & and @~
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are disjoint compact sets. Then we have that (~* is continuous in a neighborhood
of suppu™; see [21]. Moreover, w is continuous and (** is lower semicontinuous in
Q. Hence, * is also lower semicontinuous in a neighborhood of supp 4. Therefore,
there exists a ball B,(zo) such that §*(z) > |lyl| () for every x € B,(z0). Then,
(3.5) leads to

oa .
_A¢+8_y(x’g)¢:y_yd>0 a.e. in B,(zo).

From (3.8), we know that @(r9) = —a; consequently ¢ cannot be constant in the
ball B,(z) because the left-hand side would be nonpositive and the right-hand side
strictly positive. Therefore, an application of the maximum principle shows that there
exists 2’ € OB, (zo) such that ¢(z') < @(x¢) = —a, which contradicts (3.7). a

Remark 5.3. In the case w # Q, (3.7) says that [|@[/¢,w) < «, but [p| can be
bigger than « outside w. As a consequence, the proof of Lemma 5.2 is not valid.
Indeed, ¢(x¢) = —a and @(z') < —a, with 2’ € 0B,(zo), is not a contradiction.
Since this lemma is crucial in the proof of Theorem 5.1, it is our opinion that the
regularity result is not valid for w # €.

LEMMA 5.4. We have that §j € H(Q) N L>=(Q) and u € H~1().

Proof. According to Lemma 5.2, §* is bounded in supp @. Hence, the continuity
of w implies that (* = §* — w is also bounded in supp . Then, following [18], we get
that ¢* is bounded in Q; therefore §* is also bounded. Since * = § almost everywhere
in Q, we conclude that § € L>(Q). From Lemma 5.5 below, we get that § € Hg (12).
Finally, from the state equation the H~1(Q)-regularity of @ follows. O

LEMMA 5.5. Let y € WyP(Q), with p < =, and u € M(Q) such that the
following linear equation is satisfied:

Ay =u in,
y=0 onl.

If y € L>=(Q), then y € HY(Q), u e H~Y(Q), and
IVYllZ20) < Nyl Lo @) 1l me)-

Proof. By convolution of u with a sequence of mollifiers, we get {us}72, in L*(2)
such that u, = wu in M(Q) and lurlloi@) < llullame). Associated to uy we set
yr € H}(Q) as the solution to

—Ayr = up in §,
y. =0 onlI.

Let us take M = ||y|| L~ (o) and define yx s = proji_ s 4 a(yx). From the equation
satisfied by y, we deduce

IVykarll 720 :/QVkayk,M dfC:/Qukyk,M dz
< Mlugllpr) < Iyl @ llullmee)-

First, we observe that y, — y in Wol’p(ﬂ), hence yg,m — Y = Proji_ns 4 (y) in
WyP(€2) too. But the above inequality means that {y s}, is a bounded sequence
in H{(€2), hence y belongs also to H} () and consequently u € H (). Moreover,

IVyllZ20) < 1ikn_1>go}f|\Vyk,M||2L2(Q) < lyllee@llvllme O
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Proof of inequality (5.2). Since § € HE(Q)NL>(Q) and 4 € H~ () N M(Q), we
can multiply (1.2), with w = @ and y = g, by § and using (5.5) we get

IV7lZq) S/leﬂlzdxﬂL/Q[a(x,?(x))—a(%o)]ﬂ(l’) dx

z/gjda—/a(x,())g(x)dx
Q Q
- [r@dit@) - [ 5@ di @ - [ a0 d
Q Q Q
< llyallze@ 17" aee) + Iyall @) 127 sty + la, 0)ll Lo @) 171l 41 g

< Mlyall L@ |l me) + Cllal-, 0)[ Lo (o[ VUl 220,

which obviously implies (5.2).
Proof of inequality (5.1). Let us prove that

(5.6) g () < O (llyallze=() + a(- 0)||La () Yz € Q.

The lower estimate is proved similarly. By (5.5), the estimate (5.6) holds in supp @*.
From the identity * = @ + ¢*, we deduce that (t* = §* —w + (~*. Since (~* is
continuous in a neighborhood containing supp @, and since @ is continuous in 2, and
taking into account (5.5), we obtain

(@) < lyallLe(e) + 110 e @) + 1€ Lo (suppa+) < +00 Vo € suppu.

Then, the same upper estimate for (T* holds in the whole domain §2; see [18]. There-
fore, applying [1, Corollary 4.5.2], we obtain a sequence of compact sets {Ej}, with
E; C supput such that

(5.7) at(Q\ Ey) =a" (supput \ Er) =0 ask — oo and ( € Co(Q),
where
Cr(x) = G(z, &) dut.
Ey

It is obvious that ¢ (z) < (**(2) for every x € Q and every k. Therefore, {(x}x is a
sequence of uniformly bounded functions. As a consequence of Lemma 5.5, we have
that {(x}x is also uniformly bounded in H}(Q2). We set

yr = (e +w— (.

Hence, yr € Hg(Q) and yi(z) < §*(2) < ||yal (o) for every & € suppa™. Since w
and (i are continuous in €2, and since (~* is continuous outside supp %, we get that
Yk is also continuous outside supp @~ . Therefore, we have

(5.8) Ilggg yk(z) = yr(20) < ¥ (20) < |yallL=(e)y Vzo € I(2\ supp a™).

We are going to prove that the upper estimate (5.6) is satisfied by yi. Then, using
that yi(z) — y*(x) for every z € Q \ suppu™, we conclude (5.6). This pointwise
convergence follows from (5.7):

17 () — i (2)] = T+ (2) — Cula) = / G(x, &) du* (€)

Q\Ek
< ||g(x, ')HC(Suppﬁ‘*’)ﬂJr(Q \ Ek) — 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/14 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH MEASURES 357
To prove the upper bound of y; we define for every n > [|yall ()

Yk,n () = max {0, yx(z) — n}.

The rest of the proof is divided into two parts. First we prove that vy, € HJ(2\
supp at) for every 1 > ||y4l| L () and later we prove the estimate for y.

Proof of yr., € Hj(2\ suppu™). It is clear that vy, € H'(2) because y €
H(£2). The issue is to establish that yy, is the limit of a sequence of functions
{1j} C C°(Q\ suppat), i.e., every ¢; is of class C°° and has a compact support in
Q \ suppu’. First, we notice that there exists an open set Qg C Qo C (2 \ suppa™)
such that yi,(x) = 0 for every v & Qp. Indeed, if this is false, we can take a
sequence {x;} C Q\ supput such that z; — &, with 2 € 9(Q \ supput), and
yr(Z) —n = limj oo yry(z;) > 0. But this implies that yx (%) > ||yl (), Which
contradicts (5.8). Now, making the convolution of y; , with a sequence of mollifiers,
we get functions in C§°(Q \ suppu™) converging in H'(Q \ suppa™) to yi,,. This
proves that yx,, € Hi(Q\ suppa™).

Proof of the estimate for yi. Observe that Ay, = Ay in Q \ supput and
a(z,yr(z)) < a(z,y(x)) in the same set. Since gy satisfies

~Ay+a(r,y)=—u" <0 in Q\suppu',
Yy is a subsolution of the equation
~Ay+a(z,y) =0 in Q\supput.
This can be written
—Ayy + [a(z,yx) — a(z,0)] < —a(z,0) in Q\suppa.

Finally, we can proceed as in [21, Proof of Theorem 4.1], taking into account that the
test function yj , belongs to Hg (Q\supp ') and the nonlinear term [a(z, yx) —a(z, 0)]
can be removed using the fact that [a(x, yr) —a(z, 0)]yk,, > 0. Thus we get the desired
estimate.

Remark 5.6. (i) Let us assume that (A1) holds with ¢y € L(€2) for some ¢ > &
and r < 3. Given u € M(), we consider (2.4) and (2.6) so that the solution y to
(1.2) can be written y = w+¢. Then, y is in L>°(Q) if and only if ¢ € L>(Q). Indeed,
if ¢ € L*°(Q), then a(-,¢) € L1(§2), and therefore (2.6) implies that w € L>(£2) too;
consequently y € L>(€Q). Conversely, if y € L>(Q), then a(-,y) € LI(f), and from
the equation

—Aw+a(z,y) =0 in
w=0 onl

we get that w € L°°(Q), which implies that ¢ € L>=(9Q).
This equivalence implies that the set of measures u € M(Q) leading to solutions
of (1.2) belonging to L*(2) is vector space, which we denote by

Moo (Q) ={u e M(Q) : the solution to (2.4) belongs to L>=(02)}.

(ii) Let us observe that the more strict assumption r < 2 was assumed in
Theorem 5.1. The reason for that was to guarantee that either ¢ or y are in L>=().
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(iii) If u € Moo(R2) and suppu™ and suppu™ are disjoint, then |u|,u™,u~™ €
Mo (92) as well. To prove this we consider the decomposition ¢* = (** — (~* intro-
duced in the proof of Theorem 5.1. Then, (~* is continuous in a neighborhood of the
support of 4+ and hence is bounded. Consequently, 0 < ¢(** = ¢* + (~* is bounded
from above in such a neighborhood. Using again [18] we deduce that (T is bounded.
Analogously, we prove the boundedness of (~*. Thus the solution (™ + (~* to (2.4)
corresponding to the measure |a| is bounded, which implies that |a| € M (92). Con-
sequently, 4™ = 1(|a| + @) and = = 1(|u| — @) also belong to Mu(L2).

Remark 5.7. Let us address the situation in which the observation y, is supported
in a open subset O C . In this situation, all the previous results in sections 3 and 4
remain valid with the obvious modifications. In particular the adjoint state equation
must be written as follows:

{—Aw + 5z, y)e = (y —ya)xo nQ,

5.9
(5:9) p=0 on I,

where xo denotes the characteristic function of O.

Theorem 5.1 is also valid if we introduce an additional assumption. Namely, we
assume that Q\ O consists of finitely many components {;}™ ;| satisfying 9Q,;NT # 0
for every 4 = 1,...,m. Indeed, according to the location of the point z° selected in
the proof of Lemma 5.2, we distinguish two cases. First, let 2° € O; then the equation
in the ball B,(z°) is written

_ Oa, . .
-Ap+ a—y(x,y)w =" —vya)xo >0 in By(a")

with (y* — ya)xo #Z 0. Then, the strong maximum principle can be applied as before.

Second, we assume that z° € ; for some 7. Then we have

da
Jy

Since [|@]lcy (o) = @ and @(z") = —a, the maximum principle implies that ¢ = —« in
Q;, which contradicts the fact that @ =0 on I' N 0%Q;.

In the case there exists a connected component €); such that I' N 9Q; = 0, we
assume that {z € Q; : g—;(x, s) >0 for all s € R} has positive Lebesgue measure. In
this case the only constant function satisfying the last equation is the zero function,
which is a contradiction with the fact that @(z°) = —a.

—Ap+ —(z,5)pg=0 in Q.

6. Dealing with highly nonlinear terms a(x,y). Remark 5.6 suggests the
possibility to formulate the control problem (P,) for highly nonlinear functions a(x, y)
under the more restrictive assumption on the control: u € My, (£2). Hereafter, (P)
will denote the control problem

) 1
(6.1) (Poo) ueﬁf(m J(u) = §||y - yd||2L2(Q) + aflul m@),

where y is the unique solution of (1.2). In what follows we will assume that yq €
L>(Q). The following hypotheses are assumed for the function a.

(A4) The mapping a : 2 x R — R is a Carathéodory function of class C! with
respect to the second variable for almost all x € 2, and it satisfies for almost all z €
and all s e R

a(-,0) € L1 (Q) for some g1 > g, and VM > 0 3Cys > 0 such that

0<9dya(z,s) <¢i(x)+Cuy V|s| <M andaa. x€Q with ¢; € L1(Q).
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Let us prove that (P,) is well formulated, which means that y is uniquely defined
for every v € Moo (Q).

THEOREM 6.1. Under assumption (A4), there exists for every u € Mo (Q) a
unique solution y € H(Q) N L>®(Q) of (1.2).

Proof. To prove existence we proceed as in the proof of Theorem 2.1 and consider
the Dirichlet problems (2.4) and (2.6). By the definition of M (2) and Lemma 5.5,
we have that ¢ € H(2) N L>(Q). Hence, assumption (A4) implies that f € L7(Q)
with ¢ > %. Therefore, (2.6) has a unique solution w € Hg(€2) N L>(Q). Thus,
we get that y = ¢ +w € H}(Q) N L®(Q) is a solution of (1.2). To prove the
uniqueness, we first observe that Lemma 5.5 implies that M. (Q) C H~ (). Now,
if y1,y2 € HE(2)NL>®(Q) satisfy (1.2), then we multiply the corresponding equations
by y2 — y1 and subtracting we get

/ Vo — Vg2 da + / o, 12(2)) — alz, 11 (2))) (s (&) — 1 () d = 0.
Q Q

Monotonicity of a with respect to the second component implies that y2 = ;. O

The difficult issue is to prove that (P,) has at least one solution. To this end,
given M > 0, we consider a function vyy; : R — [=M — 1, +M + 1] of class C? having
the properties

M4+1 ift>M+1,
T (t) = t if Jt] < M, and |y (t)] + [yar (1) < Cy VE ER,
-M -1 ift<—-M-—1,

for some constant C’, independent of M. For instance, we can select

M+1 ift > M—+1,
p(t— M)+ M fM<t<M+1,
Y (t) = t if J¢] < M,
pt+M+1)—M—1 if —M—-1<t<—M,
-M -1 ift < —M—1,

where p(t) = 3t> — 7t* + 4¢3 +t. With this choice, we can take Cy = ||p/| cpo,1) +

P leo,1)-

Now, we define aps : QxR — R by ap(z,t) = a(z,yar(t)). Hence, by assumption
(A4), aypy is of class C'! with respect to the second variable and, using the mean value
theorem, we get for every s € R and almost all z € Q

0 < Oyanm(z,s) < (¢1(x) + Cr41)Cy and

G8) s (@ 9)] < [l 0)] + 61(2)C (M + 1)] + Cara Oy (M +1).

Now, we define the control problems

. 1
() min () = 5y = vl + ol

where y is the solution of the state equation

—Ay+apy(z,y) =u inQ,
(6.4) { y=0 onl.
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Since aps satisfies assumptions (A1) and (A2), the existence of a global minimum w s
for (Pas), with associated state yys, is immediate. Moreover, (unr,yrs) along with
the adjoint state ¢y satisfy the optimality system (3.5)—(3.7), which we write

o da g
(6.5) { Aen + 5,

(z,ym)enm = ymr —ya  in K,

YoM = 0 on P,
(6.6) afluarlam) +/ P duns =0,
Q
=a ifuy #0,
(6.7) llontllco(e) {< a ifuy =0.

Moreover, if ups # 0, then

supp(uy,) C {z € Q: pu(z) = —al,

(6.8) supp(uy,) C{z € Q: pum(x) = +aj.

Let us prove that up € Moo (€2) and it is a solution of (Ps) for M sufficiently
large.

THEOREM 6.2. Suppose that (A4) holds. Then there exists Mo > 0 such that uny
is a solution of (Ps) for every M > M.

Proof. First, we observe that Theorem 5.1 implies up; € H~1(2) N M(Q) and
ym € H(Q) N L>®(Q). Now, from Remark 5.6(i) it follows that upy € My ().
Moreover (5.1) leads to

lyallLoe() < C (HdeLoo(Q) + ”a('aO)Hqu(Q)) .
Set My equal to the right-hand side of the above inequality. Then, we have that
llyarllLoe oy < My for all M > 0. As a consequence we get that ar(z,yar) = a(x, yar)
for all M > M.

Let us prove the boundedness of {uns}ar=0 and {yas}ar=o in M(Q) and H}(Q),
respectively. From the definition of Jj; and the optimality of u; we obtain

alluarl|me) < Ju(unr) < Ju(0) = J(0) VM > 0.

Hence, [[uar | am) < J(0)/a for every M > 0. Now, from (5.2) it follows

J(0) .\
lyarll g ) < C { yall =) == + lla(, 0)l|za (@) ~
Let us take a subsequence of {(uas, yar)} s>, denoted in the same form, such that
upr = in M(Q), upy —a in HHQ), yu — 7 in H(Q).

We have that § also satisfies (5.1) and (5.2), that it is the state associated to @, and
therefore u € Moo (€2). Moreover, for every u € Moo (£2)

N < Tim T < Timi _
J(u)*lzl\/[m_}?ofJ(UM) li?igofJM(uM)*ljl\?l—}gofJM(u) J(u).
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Hence, @ is a solution of (P,). But, we also have for every M > M
J(@) < J(unr) = Jn(unr) < Jae() = J (1),

where we used that wuys is a solution of (Pps). Therefore, J(up) = J(a) for every
M > My, and consequently wuys is a solution of (Py,) for all M > M. O

Next we study second order optimality conditions. To this end we make the
following assumption.

(A5) The mapping a is a Carathéodory function of class C? with respect to the
second variable for almost all x € €2, and it satisfies

(6.9) {3¢2 € L%2(Q) with g2 > n and VM > 0 3C» > 0 such that

|02a(x, s)| < |pa(x)| + Car for a.a. x € Q and V|s| < M.

Since (A4) and (Ab) replace (A1), (A2), and (A3), we cannot rely on Theorem 2.2
to deduce the differentiability of the control-to-state mapping. Consequently, we do
not have the differentiability of F' stated in Proposition 3.1. However, let us observe
that under assumptions (A4) and (A5), (1.2), (2.9), and (2.10) and expressions (3.1)
and (3.3) for F’ and F" are well defined for every u € M (Q) and v, v1,v2 € M(Q).
If we perturb u in M(2), then the existence of a solution to these equations may fail.
Since our goal is to get first and second order necessary conditions for local optimality,
differentiability of F' is required. This motivates the introduction of a stronger norm
in Moo () where this differentiability holds. We define the norm

llull me ) = el ame) + 1<l L= (@)

where ( is the solution to (2.4). Endowed with this norm, M, (Q2) is a Banach space.
Now we introduce the space of associated states as

Voo () = {y € Hy(2) N LX(Q) : Ay € M(Q)},
endowed with the norm

[¥llveo() = lYllzz o) + [¥llze @) + 1AY M)

Voo () is also a Banach space. From Theorem 6.1 we know that the mapping G :
M (2) = Voo (Q) is well defined. To prove the differentiability we argue as in the
proof of Theorem 2.2. To this end we define Foo : Voo (2) X Moo (©2) = Moo (2) by

Fooly,u) = —Ay +a(-,y) — u.

From (A4), respectively, (A5), it follows that the mapping y — a(-,y) is C!, respec-
tively, C2, from Voo (2) to L9 (Q) C Mo (). Then following the same arguments as
in the proof of Theorem 2.2, we obtain that G, is C!, respectively, C2, and that (2.9)
and (2.10) hold. Furthermore, by using the chain rule, we deduce the differentiability
of F: My (£2) — R and the identities (3.1) and (3.3) for every v, vi,v2 € Moo (). It
is immediate from the expressions (3.1) and (3.3) that the linear and bilinear forms
F'(u) and F"(u) can be extended to linear and bilinear continuous forms on M ()
and M (2) x M(Q) for every u € Mo (£2). These extensions are unique by the weak*
density of M () in M(€2).
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To formulate the second order necessary optimality conditions we define the anal-
ogous cone to (3.9)

Cooa = {v € Moo(Q) : F'(a)v + o’ (u;v) = 0},

where @ € M () satisfies the first order optimality conditions.

THEOREM 6.3. Under assumption (A4), if u is a local solution of (Pw), then
there exists ¢ € Wol’p/(Q) for some p’ > n such that (3.5)—~(3.7) hold. If in addition
(A5) is satisfied, then F"(iw)v* > 0 for every v € Cooa-

Proof. The first order necessary optimality conditions can be proved as in
Theorem 3.4. In the proof of second order necessary conditions given in Theorem
3.7, the only issue to take into account is the following one. For v € M (Q), we
construct vy in the same way, but we have to prove that vy € M (Q); otherwise the
existence of the state associated to @ + pvy can fail. To this end, we first observe, as
pointed out in Remark 5.6, that |v| € M (2) as well. Comparing the expressions

[v| = |gvld|a| + d|vs| and |vk| = |gu, |d|a| + d|vs],

we obtain by the definition of g,, that |vg| < |v|. Hence, the solutions ¢ and ¢, of (2.4)
corresponding to |v| and |vg|, respectively, satisfy 0 < (x < (. Since, |[v] € M (),
then ¢ € L, hence ¢, € L*°(Q2) too. This implies that |vy] € My (). Finally,
since 0 < v,f: < |ug] and 0 < v, < |vg|, arguing in the same way we conclude that
v = v — v, € Mo(9). O

Analogously to section 4, for the sufficient conditions we introduce the extended
cone

Cla=1{v € Muo(Q) : F'(u)v + aj'(w;v) < 7|20l L2(0) }-
Let us denote for M > 0
Boomr = {u € Moo (9) : the solution ¢ to (2.4) satisfies ||| (o) < M}.

Based on the cone C7, ; we define the second order sufficient condition:
(SOSC) There exist positive constants &, p, 7, and M > My such that

(6.10)  F"(u)v® > k|l 20l|720) Yo € CL 4y Yu € Boo ar with [Ju — @llw-1.5(0) < p,

where My was introduced in Theorem 6.2 and 1 < p < n/(n — 1) is chosen so that
A WyP(Q) — WP(Q) is an isomorphism.
THEOREM 6.4. Let i € Moo (Q) satisfy the first order conditions (3.5)—(3.7) and

(SOSC). Under the assumptions (A4) and (Ab), there exist positive constants enr < p
and op; such that

o . _
(6.11) J(u)+ TMHy(u) - 17||2L2(Q) < J(u) Yu € Boo,ar with [Ju — llw 1) < enm-

Proof. The proof of this theorem follows the steps of the proof of Theorem 4.2
with the following differences. First we observe that there exists a constant K s such
that

ly(u)ll L) < Kpm Vu € Boo -

Indeed, we can decompose y(u) = ¢ + w with ¢ solving (2.4) and w satisfying (2.6).
By definition of Beo,ar we know that (|| L) < M. Moreover, (2.6) and assumption
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(A4) imply that [|wl| e (q) is bounded by a constant depending on M, which leads to
the above estimate.

In the statement of Lemma 4.3, v and @ must belong to Beo ar and v € Bug 2a7-
Recall that when Lemma 4.3 is used in the proof of Theorem 4.2 v = up — u with ug
and @ both belonging to By ar in the present case. Now, the estimate in (4.11) can
be obtained as follows:

|-

1/2
0%a R 2 B
<V2Kuy / —— (@ 9) ) ly—yldz
Q 0y
32
< /2Ky Ha—yﬁ(az,y)

L2()

_n1/2
Hy - yHLq2/(LI2—2)

L92(Q)
< O(V2Km) =™ | 55 () ly = 3l /o
Y Laz2 ()
a2 8261 a2-2
< COW2Ky)e2—2 ||—(x,9 — g 2=
> ( M) 2 ayz (x y) Loy ||y y”WO“’(Q)
_ax_||0%a, . a2
< C(V2Ky )22 ﬁ(xay) flu — u||u2/q—21,ﬁ(g)-
Y La2(Q)

Finally, it is enough to observe that |g§(z)] < K and to recall assumption (A5) to
deduce

a
0y?

<x,y>} < 6o(a) + Ciy  with o € L®(Q).

Similar arguments are used to get the second estimate of (4.7), taking into account
that the solution of (4.8) is bounded due to the fact v € Boo am- 0

Remark 6.5. The stability results stated in Theorems 4.6 and 4.7 remain valid
for problem (Poo) if {y4,6}s>0 is uniformly bounded in L>°(§2). For the proof we only
need to take into account that the local minima us have associated states ys uniformly
bounded in L>°(Q2) by a constant

J(0)

1/2
- 2 |
31 = (o laslomo 22 + ol Ol ey )

see Theorem 5.1. Then M in (6.10) has to be taken so that M > max{Mo, M}.
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