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Conditionally Specified Distributions:
An Introduction
Barry C. Arnold, Enrique Castillo and José Maŕıa Sarabia

Abstract. A bivariate distribution can sometimes be characterized com-
pletely by properties of its conditional distributions. The present article
surveys available research in this area. Questions of compatibility of con-
ditional specifications are addressed as are characterizations of distribu-
tions based on their having conditional distributions that are members
of prescribed parametric families of distributions. The topics of compat-
ibility and near compatibility of conditional distributions are discussed.
Estimation strategies for conditionally specified distributions are sum-
marized. Additionally, certain conditionally specified densities are shown
to provide convenient flexible conjugate prior families in certain multi-
parameter Bayesian settings.
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1. A ROLE FOR CONDITIONAL SPECIFICATION

A bivariate density is arguably only really
understandable in terms of its conditional den-
sities (i.e., normalized cross sections). Efforts to
model two-dimensional populations will probably
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be most easily implemented if they involve mod-
elling assumptions about conditional densities as
contrasted with assumptions about marginal den-
sities. For example, if we wish to model the joint
distribution of heights and weights of women in a
particular human population, we may find it quite
plausible to contemplate a unimodal distribution of
X = height for a given Y = log�weight�, undoubt-
edly with the modal value being an increasing
function of log�weight�. Likewise it is reasonable
to expect a unimodal distribution of log�weights�
for a given height. Even if we assume that these
conditional densities are all normal, we are still
quite distant from an assumption of classical bivari-
ate normality with its familiar elliptical contours.
Indeed we might even be a little taken aback by
the mathematical consequences of assuming the
classical bivariate normal model. For example, it
guarantees that (height) + log(weight) will be nor-
mally distributed. Is that self-evident? Note that
unimodal conditionals, of X given Y and of Y given
X, certainly do not guarantee unimodal distribu-
tions for X + Y and X − Y! Even if we assume
normal conditionals, we may still encounter a
bimodal distribution for X +Y or X −Y (more on
this in Section 5).
If we try to do our modelling in terms of marginal

densities, we will undoubtedly encounter difficulty.
The following exercise (borrowed from Arnold,
Castillo and Sarabia, 1999) is designed to underline
the difficulties we will likely have in visualizing
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marginal densities even for known joint densities.
A topographical map of a country, showing height
above sea level can be viewed, after normalization,
as a bivariate density. We claim that the marginal
densities in such settings are basically uninforma-
tive. In contrast, a few conditional densities (cross
sections) can be effectively used to visualize the
joint density. Specifically consider three countries
with whose topography you are reasonably famil-
iar: perhaps Mexico, Spain and United States. You
could identify the three countries quite easily from
the joint densities (i.e., the topographic maps).
However, the marginal densities are next to use-
less as tools for identifying the countries (i.e., the
joint densities). Figure 1 provides the Y marginals
for the three countries in random order. Figure 2
provides the X marginals in the same random
order as in Figure 1. Can you sort them out? Figure
10, later in the article, provides the corresponding
topographic maps in the same order as in Figures 1
and 2 so that you can grade your ability to visualize
marginal densities. In contrast, a few cross sec-
tions would easily permit discrimination between
the maps of the three countries.
Some role for conditional specification of joint

densities thus seems justified. There are several
questions that arise in this context. How can we
be sure that given families of conditional densities
are compatible? In other words, are we sure that
there exists any density with conditional densities
equal to the given ones? If existence is verified,
what about uniqueness? Section 2 will address
these questions. We will then turn in Section 3
to situations where the conditional densities are
not completely prescribed but are posited to be
members of given parametric families of densities.
The prototypical example of this, first studied by
Bhattacharyya (1943) (shown in Figure 3), involves
distributions for �X
Y� such that all conditionals
ofX given Y = y and of Y givenX = x are normal.
They form an interesting extension of the family of
classical bivariate normal densities and will be dis-
cussed at some length in Section 5. Section 4 will
address the issue of near-compatibility, focussing
for simplicity on the finite discrete case. The family
of normal distributions is the quintessential expo-
nential family. It is natural, and straightforward to
seek versions of Bhattacharyya’s model that involve
conditionals in arbitrary exponential families. This
will be described in Section 6. Section 7 outlines
briefly certain extensions to higher dimensions.
One of the disquieting features of many condition-

ally specified models is the presence of an awkward
normalizing constant which usually must be eval-
uated numerically. This complicates the business

Y-marginal

Y-marginal

Y-marginal

Fig. 1. Y-marginals �from north to south coast� for Mexico,
Spain and the United States in random order.

of estimating parameters, but several approaches
described in Section 8 can be successfully imple-
mented. Conditionally specified distributions turn
out to provide convenient conjugate prior families
in some multiparameter Bayesian settings. This
perhaps unexpected home for such distributions is
explained by the fact that conditionally specified
densities are “tailor-made” for Gibbs sampling sim-
ulation algorithms. A brief discussion of this topic
is the subject of Section 9. The final section of the
paper provides a discussion of the general problem
of marginal and conditional specification in higher
dimensions.
The present paper will supply only a survey of

ideas relating to “conditional specification of sta-
tistical models.” If it piques your attention, a good
starting point for a more leisurely and detailed
overview of the area together with an extensive
bibliography is to be found in Arnold, Castillo and
Sarabia (1999).
Kotz, Balakrishnan and Johnson (2000) also

include discussion of several conditionally specified
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Fig. 2. X-marginals �from west to east coast� for Mexico, Spain
and the United States in random order.

models in their survey of continuous multivariate
distributions.

2. COMPATIBLE CONDITIONAL DENSITIES

Assume that �X
Y� is a random vector that has a
joint density with respect to some product measure
µ1 × µ2 on S�X� × S�Y�, where S�X� denotes the
set of possible values of X and S�Y� the set of pos-
sible values of Y. For example, one variable could
be discrete and the other absolutely continuous
with respect to Lebesgue measure. The marginal,
conditional and joint densities are denoted by
fX�x�
 fY�y�
 fX�Y�x�y�
 fY�X�y�x�
 fX
Y�x
y� and
the sets of possible values S�X� and S�Y� can be
finite, countable or uncountable.
Consider two candidate families of conditional

densities a�x
y� and b�x
y�. We ask when is it true
that there will exist a joint density for �X
Y� such
that

fX�Y�x�y� = a�x
y�
 x ∈ S�X�
 y ∈ S�Y�

Fig. 3. A. Bhattacharyya.

and

fY�X�y�x� = b�x
y�
 x ∈ S�X�
 y ∈ S�Y��
If such a density exists we will say that a and b
are compatible families of conditional densities. We
define

Na = ��x
y�� a�x
y� > 0�
and

Nb = ��x
y�� b�x
y� > 0��
The following compatibility theorem may be found

in Arnold and Press (1989), though it is quite possi-
bly much older than this.

Theorem 1 (Compatible conditionals). A joint
density f�x
y�, with a�x
y� and b�x
y� as its
conditional densities, will exist iff

(i)

Na =Nb =N
 say

and

(ii) There exist functions u�x� and v�y� such that for
every �x
y� ∈N we have

a�x
y�
b�x
y� = u�x�v�y�(1)

in which u�x� is integrable, that is,∫
S�X�

u�x�dµ1�x� <∞�

Proof. The result is almost self-evident. If
a�x
y� and b�x
y� are compatible, then appro-
priate marginal densities f�x� and g�y� must
exist. Then, (1) must hold with f�x� ∝ u�x� and
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g�y� ∝ �v�y��−1. The integrability condition is
needed to guarantee that the joint density is proper
(integrable).

Example 1 (A compatible case). Consider S�X�=
S�Y�=�0
∞� and

a�x
y� = �y+ 2�e−�y+2�xI�x > 0�

b�x
y� = �x+ 3�e−�x+3�yI�y > 0��

The ratio a�x
y�/b�x
y� is readily confirmed to
factor in the form (1) with u�x� = �x + 3�−1e−2x
I�x > 0�, which is indeed integrable.

Example 2 (Compatible with an improper joint
density). Consider S�X� = S�Y� = �0
∞� and

a�x
y� = 2xy2I�0 < x < y−1�I�y > 0�

b�x
y� = 2yx2I�0 < y < x−1�I�x > 0��

Here Na = Nb = N = ��x
y�� x > 0
 y > 0

xy < 1� and the ratio

a�x
y�
b�x
y� =

y

x

factors readily into a function of x times a function
of y. However, in this example u�x� = 1/x is not
integrable over �0
∞�. So, there is no proper joint
density with the given family of conditional densi-
ties.

Incompatible examples, those in which a�x
y�/
b�x
y� does not factor, are of course very easy to
write down. Once we have determined that a�x
y�
and b�x
y� are compatible we need to address the
question of whether there is a unique joint den-
sity compatible with them. An early reference on
this problem is Gourieroux and Montfort (1979). The
problem may be viewed as one relating to Markov
chains. The idea (familiar to Gibbs sampling affi-
cionados) involves starting with X, then generat-
ing a value for Y using b�X
y�, then generating
another X value using a�x
Y�, etc.
If a�x
y� and b�x
y� are compatible there will

exist a compatible marginal density forX, say τ�x�.
We will relate this density τ�x� to the Markov chain
implicitly described above which involves using
b�x
y� then a�x
y� to obtain a new X value from
an initial X value. The corresponding stochastic
kernel, denoted by ba�·�·�, is

ba�x�z� =
∫
S�Y�

a�x
y�b�z
 y� dµ2�y��(2)

Consider a Markov chain with state space S�X�
and transition kernel ba as in (2).
It is evident that a and b will be compatible iff

τ�x� (the compatible marginal forX) is a stationary

distribution for this chain. The stationary distribu-
tion (long run distribution) will be unique provided
that the Markov chain is indecomposable.

Example 3 [a�x
y� and b�x
y� compatible but
with a nonunique compatible density]. Define the
sets

A1 = ��x
y�� − 1 < x < 0
−1 < y < 0�

and

A2 = ��x
y�� 0 < x < 1
0 < y < 1�

and set

a�x
y� = b�x
y� = I��x
y� ∈ A1 ∪A2��(3)

It is not difficult to verify that any joint density
of the form

f�x
y� = λ

2
I��x
y� ∈ A1� +

�1− λ�
2

I��x
y� ∈ A2�

for λ ∈ �0
1�, will be compatible with (3). It is also
not difficult to verify that the Markov chain with
transition kernel ba defined using (3) is decompos-
able. The state space S�X� = �−1
0�∪�0
1� is a dis-
joint union of two closed subsets of states, namely
�−1
0� and �0
1�.

The simplest sufficient condition for indecomposi-
bility of the Markov chain with kernel ba is a “pos-
itivity” condition. The assumption that Na = Nb =
S�X� × S�Y� will suffice since it assures us that
the kernel ba in (2) will be positive for every x and
every z.

Example 4 (An alternative approach to condi-
tional specification). It was observed by Castillo
and Galambos (1987) that the function

F�x
y� = 1− exp �−xγyη�
 x > 0
 y > 0(4)

is remarkable in that for each fixed y > 0, it is
a valid distribution function when considered as a
function of x. In addition, for each fixed x > 0, (4)
is a valid distribution function as a function of y.
A possible conditional distribution specification is
evident here.
We may ask whether it is possible to have a joint

distribution for �X
Y� that will have both the fam-
ilies of conditional distributions of X given Y = y
and of Y given X = x, given by (4). If this is to be
true, we will be able to get the corresponding condi-
tional densities of X given Y and of Y given X by
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differentiation. For compatibility (using Theorem 1)
we would need to consider

fX�Y�x�y�
fY�X�y�x�

= yηγxγ−1 exp �−xγyη�
xγηyη−1 exp �−xγyη� =

γ

η

y

x
(5)

for x > 0, y > 0.
Evidently (5) may be factored into u�x�v�y�.

Unfortunately, the function u�x� = x−1I�x > 0�
is not integrable, so just as in Example 2, no
proper joint distribution exists with conditional
distributions given by (4). It is interesting to
speculate whether it is ever possible to have
P�X ≤ x�Y = y� = P�Y ≤ y�X = x� for every
x > 0
 y > 0, as was postulated abortively in this
example.

3. CONDITIONALS IN PRESCRIBED FAMILIES

Consider a k-parameter family of densities in �
with respect to µ1 denoted by �f1�x� θ�� θ ∈ F�,
where F ∈ �k. Also consider a second l-parameter
family of densities �f2�y� τ�� τ ∈ T�, where T ⊂ �l.
In some cases, f1 and f2 will be the same but gen-
erally they can be different. We wish to identify, if
possible, all of the joint densities for a random vari-
able �X
Y� which have all their conditional den-
sities given by f1 and f2. Thus, we insist that for
every y ∈ S�y� we have

fX�Y�x�y� = f1�x� θ�y��(6)

and for every x ∈ S�X� we have

fY�X�y�x� = f2�y� τ�x��(7)

for certain functions θ� S�Y� → F and τ� S�X� → T�
If (6) and (7) are to hold, there must exist

marginal densities for X and Y (say, fX�x� and
fY�y�) such that, writing the joint density as a
product of a marginal and a conditional density in
both possible ways,

fY�y�f1�x� θ�y��=fX�x�f2�y� τ�x��
∀x ∈ S�X�
 y ∈ S�Y��

(8)

To solve our problem we must solve the functional
equation (8) for θ�y�
 τ�x�, fX�x� and fY�y�, for
given choices of f1 and f2.
Functional equations are notorious for being easy

to write down and, usually, being very difficult to
solve. In Sections 5 and 6, we will consider certain
cases in which such a functional equation can be
solved. Before that, we digress to consider the ques-
tion of near compatibility as opposed to exact com-
patibility.

4. NEAR COMPATIBILITY

The concepts of compatibility and near compat-
ibility of conditional densities are most readily
discussed in the case where X and Y each have
only a finite number of possible values. We will
restrict discussion to that case. Some extensions to
more general settings are possible but more difficult
programming problems will be encountered. In the
finite case, matrix theory, linear programming and
some elementary iterative algorithms will carry us
a long way.
We focus then on random variablesX and Y with

possible values x1
 x2
 � � � 
 xI and y1
 y2
 � � � 
 yJ,
respectively. A possible conditional model for the
joint distributions of �X
Y� will consists of two
I × J matrices A and B. Matrix A will have
columns which sum to 1, while matrix B has rows
summing to 1.
We will say that A and B are compatible if there

exists an I×Jmatrix P with nonnegative elements,
pij, such that

I∑
i=1

J∑
j=1
pij = 1


and for every i and j,

aij =
pij

p·j
(9)

and

bij =
pij

pi·

(10)

where pi· =
�J
j=1pij and p·j = �I

i=1pij. If such
a matrix P exists, then we can identify, for some
random vector �X
Y�,

pij = P�X = xi
Y = yj�

aij = P�X = xi�Y = yj�

and

bij = P�Y = yj�X = xi�
for i = 1
2
 � � � 
 I; j = 1
2
 � � � 
 J.
Paralelling the discussion in Section 2 we may

define NA = ��i
 j�� aij > 0� and NB = ��i
 j� �
bij > 0�. Then A and B are compatible iffNA =NB

and there exist vectors u and v for which
aij

bij
= uivj ∀�i
 j� ∈NA�(11)

If (11) holds, then u normalized to sum to 1, will be
a compatible marginal density for X.
One approach to determining whether vectors

u and v exist to satisfy (11), involves two closely
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related Markov chains. Consider an I state Markov
chain with transition matrix BA′ and J state
Markov chain with transition matrix A′B. Denote
the long-run distributions of the chains correspond-
ing to BA′ and A′B by π and η, respectively. These
long-run distributions are obtainable by solving
two systems of linear equations. If A and B are
compatible, then

aijηj = bijπi
 i = 1
2
 � � � 
 I�
j = 1
2
 � � � 
 J�

(12)

Incompatibility ofA andBwill be signaled by some
inequalities in (12). So, oneway to resolve the compat-
ibility issue is to obtain the long-run distributions π
and η and check to see if (12) holds. There is good
news. The two systems of equations that we must
solve to get the long-run distributions are

πBA′ = π(13)

and

ηA′B = η�(14)

In fact only one system needs to be solved because
the solutions are related by

η = πB�(15)

We remark that solutions to (13) and (14) will
always exist [and satisfy (15)], but it is only in the
case of compatibility that (12) holds.
This has a Gibbs sampler interpretation. If we try

to simulate the joint distribution of �X
Y� using an
incompatible pair of conditional probability distri-
bution matrices A and B, we will get different joint
distributions depending on whether we start with
an X or a Y value.
Compatibility must therefore be checked before

we crank up our Gibbs algorithms.
Another view of the compatibility issue is as fol-

lows. In seeking a matrix P = �pij� to satisfy (9) and
(10) we are seeking solutions to a system of linear
equations in the pij’s, namely,

pij = aij
I∑
i=1
pij ∀i
 j(16)

and

pij = bij
J∑
j=1
pij ∀i
 j�(17)

These equation must be solved subject to the fol-
lowing constraints:

pij ≥ 0 ∀i
 j(18)

and
I∑
i=1

J∑
j=1
pij = 1�(19)

It is possible to identify all the possible solutions
to a system of linear constraints like (16), (18) and
(19) subject to the nonnegativity requirement (18)
using results in Castillo, Cobo, Jubete and Pruneda
(1999). Details for the present case may be found
in Arnold, Castillo and Sarabia (1999, pages 26–
30). However, if we will be happy finding one solu-
tion or perhaps a “near” solution in an incompatible
case, the following approach reduces our problem to
a standard linear programming exercise.
We will introduce a concept called ε-compatibility.

We say that A and B are ε-compatible if the fol-
lowing system of equations and inequalities has a
solution for ε′ ≥ ε but does not have one for ε′ < ε:∣∣∣∣pij − aij I∑

i=1
pij

∣∣∣∣ ≤ ε′ ∀i
 j
(20)

∣∣∣∣pij − bij J∑
j=1
pij

∣∣∣∣ ≤ ε′ ∀i
 j
(21)

I∑
i=1

J∑
j=1
pij = 1(22)

and

pij ≥ 0 ∀i
 j�(23)

Notice that the constraints (20)–(23) are lin-
ear in the IJ + 1 variables pij; i = 1
2
 � � � 
 I;
j = 1
2
 � � � 
 J and ε′. So, to determine the degree
of compatibility we merely minimize the objective
function

f�P
ε′� = ε′
subject to (20)–(23). Any standard linear program-
ming algorithm can be used to resolve this issue.
If the minimum value of f�P
ε′� is zero, then A
and B are compatible and the choice of P which
yields the minimum value of the objective function
will be the compatible joint distribution matrix.
More details and alternative formulations of near
compatibility may be found in Arnold, Castillo and
Sarabia (1999, pages 30, 43 and 362). An alterna-
tive approach to the near compatibility problem is
one in which Kulback–Leibler information distance
is used to quantify the discrepancy between the
conditional distributions of P and the correspond-
ing conditional distributions given by A and B. In
this case, the most nearly compatible P is found by
a variation of the iterative proportional fitting algo-
rithm much used in the study of contingency tables.
For details consult Arnold and Gokhale (1994).
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5. ANIL BHATTACHARYYA’S DISTRIBUTION

We return to the continuous case and focus now
on probably the first conditionally specified family of
densities to be studied in any detail. Bhattacharyya
(1943) was actually interested in determining sim-
ple sufficient conditions to guarantee that a ran-
dom vector �X
Y� would have a classical bivariate
normal density. Along the way he identified a large
class of joint densities with all conditional densities
of the Gaussian form. He may have realized that he
had in fact identified the class of all joint densities
with normal conditionals, but he did not make that
claim. His proof involved an assumption of differ-
entiability of the densities but that assumption can
easily be sidestepped. The following development is
very close in spirit to that in Bhattacharyya’s paper,
but credit for the first carefully enunciated speci-
fication of the class of all bivariate densities with
normal conditionals must be given to Castillo and
Galambos (1989).
We thus are seeking all joint densities fX
Y�x
y�

with support �2 such that every conditional density
of X given Y = y is normal with mean µ1�y� and
variance σ2

1 �y� (which may depend on y) and every
conditional density of Y given X = x is normal
with mean µ2�x� and variance σ2

2 �x� (which may
depend on x). Denoting the marginal densities of X
and Y by fX�x� and fY�y�, respectively, and writ-
ing the joint density of �X
Y� as a product of a
marginal and a conditional density in both possible
ways, yields the following functional equation:

fX�x�
σ2�x�

√
2π

exp

{
−1
2

(
y− µ2�x�
σ2�x�

)2
}

= fY�y�
σ1�y�

√
2π

exp

{
−1
2

(
x− µ1�y�
σ1�y�

)2
}(24)

We must solve (24) for µ1�y�
 σ1�y�
 µ2�x� and
σ2�x� [after which fX�x� and fY�y� will be read-
ily obtained]. It will simplify matters if we define

θ1�y� = �σ1�y��−2

θ2�y� = −2µ1�y�/σ1�y�

τ1�x� = �σ2�x��−2

τ2�x� = −2µ2�x�/σ2�x��

Using this notation and equating �−2� times the
logarithm of each side of (24) yields

h1�x� + τ1�x�y2 + τ2�x�y
= h2�y� + θ1�y�x2 + θ2�y�x


(25)

where h1�x� and h2�y� have been constructed by
gathering all the terms involving x alone and y

alone, respectively. However (25), a functional equa-
tion involving six unknown functions, is an example
of a Stephanos–Levi-Civita–Suto equation. Its solu-
tion is given by the following theorem which is read-
ily proved by differentiating. Convenient references
for this and other functional equations are Aczél
(1966), and Castillo and Ruiz-Cobo (1992).

Theorem 2 [Stephanos (1904); Levi-Civita (1913);
Suto (1914)]. All solutions of the equation

r∑
i=1
fi�x�φi�y� =

s∑
j=1
gj�y�ψj�x�


x ∈ S�X�
 y ∈ S�Y�

(26)

where �φi�ri=1 and �ψj�sj=1 are given systems of lin-
early independent functions, are of the form

f�x� = Cφ�x�
and

g�y� = Dφ�y�

where D = C′.

Applying this result to (25) [where φ1�y� = 1,
φ2�y� = y, φ3�y� = y2, ψ1�x� = 1, ψ2�x� = x
and ψ3�x� = x2] we arrive at the conclusion that
h1�x�
 τ1�x� and τ2�x� are quadratic functions of x
and h2�y�
 θ1�y� and θ2�y� are quadratic functions
of y, with interrelated coefficients (since D = C′ in
Theorem 2).
Finally, introducing a parametrization which

extends naturally to more general exponential fam-
ily cases, we find that the totality of bivariate
densities with normal conditionals are those of the
form

fX
Y�x
y�

= exp

�1
x
x2�
m00 m01 m02
m10 m11 m12
m20 m21 m22

 1
y
y2

(27)

subject to the constraint that themij be chosen such
that (27) is integrable.
The conditional expectations and variances are

E�Y�x� = − m01 +m11x+m21x
2

2�m02 +m12x+m22x
2� 
(28)

Var�Y�x� = − 1
2�m02 +m12x+m22x

2� 
(29)

E�X�y� = − m10 +m11y+m12y
2

2�m20 +m21y+m22y
2� 
(30)

Var�X�y� = − 1
2�m20 +m21y+m22y

2� �(31)
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We call distributions with densities of the form
(27) normal conditionals distributions. Note that
(27) is an eight-parameter family of densities. The
coefficient m00 is a normalizing constant that is
determined by the other mij’s and the requirement
that the density integrates to 1.
Sufficient conditions for integrability of (27) are

that the mij’s satisfy one of the following two sets
of conditions:

�I� m22 =m21 =m12 = 0
 m20 < 0


m02 < 0 and m2
11 < 4m02m20


(32)

�II� m22 < 0
4m22m02 > m
2
12


4m22m20 > m
2
21�

(33)

If (32) holds, we encounter classical bivariate
normal densities. If (33) holds, we encounter non-
Gaussian densities with normal conditionals.
Densities of the form (27) with mij’s satisfying

(33) are markedly different from classical bivariate
normal densities. They have nonnormal marginal
densities. Their regression functions are either con-
stant or nonlinear, and each regression function is
bounded [see (28) and (30)]. The conditional vari-
ance functions are nonconstant [but bounded, see
(29) and (31)]. The fact that the regression functions
are nonlinear means that they can intersect more
than once. A consequence of this phenomenon is the
fact that if the mij’s satisfy (33) we may encounter
bimodal (Gelman and Meng, 1991) or even trimodal
(Arnold, Castillo, Sarabia and González-Vega, 2000)
densities. Figures 4 and 5 show the density and con-
tour plot of a representative bimodal density with
normal conditionals. It corresponds to the parame-
ter values

m10 = 4
 m20 = − 1
2 
 m01 = 4
 m11 = 0


m21 = 0
 m02 = − 1
2 
 m12 = 0
 m22 = − 1

2 �

[a configuration of values that satisfies (33)].
The unexpectedly bimodal marginal densities for

this density are shown as projections in Figure 4.
The corresponding densities of X + Y and X − Y
are displayed in Figure 6. The figure confirms the
suggestion in Section 1 that normal conditional
distributions might not guarantee unimodal densi-
ties for X+Y and X−Y.
In summary, as remarked in Section 1, the prop-

erty of normal conditionals is to be found associated
with some rather unusual joint densities.

Remark 1. There is a considerable body of liter-
ature dealing with the problem of characterizing

0
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4
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Fig. 4. Example of a normal conditionals density with two
modes showing its regression lines and its marginal densities.

distributions by means of conditional moments
rather than conditional densities. For example,
we might be interested in identifying all distribu-
tions with linear regression functions and constant
conditional variances (i.e., Gaussian conditional
structure) (see, e.g., Arnold and Wesolowski, 1996).
A related result, familiar to many in a Bayesian
formulation, is that in higher dimensions linear
regressions are sufficient to characterize normal-
ity (see, e.g., Rao, 1976; Goel and DeGroot, 1980).
Characterizations involving one conditional den-
sity and the other regression function have also
received attention (see, e.g., Wesolowski (1995);
Arnold, Castillo and Sarabia, 1999, Chapter 7).
Extensions to more abstract spaces are possible
(see, e.g., Bischoff and Fieger, 1991).

6. CONDITIONALS IN EXPONENTIAL FAMILIES

Instead of postulating that the conditional densi-
ties be normal ones, it is of interest to consider cases
where quite arbitrary exponential families are play-
ing the role of conditional densities. The main result
in this section may be found in Arnold and Strauss
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Fig. 5. Contour plot of the normal conditionals density in
Figure 4 (the mask of Zorro?).
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Fig. 6. Densities of X+Y �above� and X−Y �below�.

(1988a,b). Analogous results in a specified stochas-
tic process setting were discussed by Besag (1974).

Definition 1 (Exponential family of densities).
An l1-parameter family of densities �f1�x� θ�� θ ∈ F�
with respect to µ1 on S�X� of the form

f1�x� θ� = r1�x�β1�θ� exp
{ l1∑
i=1
θiq1i�x�

}
�(34)

is called an exponential family of densities.

In this definition F ⊂ �l1 is usually the natural
parameter space [all θ’s such that (34) is integrable],
and the q1i�x�’s are assumed to be linearly indepen-
dent. In applications, µ1 is often Lebesgue measure
or counting measure.
In addition to the family of densities (34) we will

consider a second (possibly distinct, possibly the
same) l2-parameter exponential family of densities
with respect to µ2 on S�Y� given by

f2�y� τ� = r2�y�β2�τ� exp
{ l2∑
j=1
τjq2j�y�

}
�(35)

The class of all bivariate densities whose condi-
tionals are in the families (34) and (35) is identified
in the following theorem.

Theorem 3 (Conditionals in exponential fami-
lies). Let f�x
y� be a bivariate density whose con-
ditional densities satisfy

f�x�y� = f1�x� θ�y��(36)

and

f�y�x� = f2�y� τ�x��(37)

for some function θ�y� and τ�x� where f1 and f2 are
defined in (34) and (35). It follows that f�x
y� is of
the form

f�x
y� = r1�x�r2�y� exp
{
q�1��x�Mq�2��y�′}
(38)

in which

q�1��x� = �q10�x�
 q11�x�
 q12�x�
 � � � 
 q1l1�x��

q�2��y� = �q20�y�
 q21�y�
 q22�y�
 � � � 
 q2l2�y��


where q10�x� = q20�y� ≡ 1 and M is a matrix of
parameters of appropriate dimensions [i.e., �l1+1�×
�l2 + 1�] subject to the requirement that∫

S�X�

∫
S�Y�

f�x
y� dµ1�x� dµ2�y� = 1�

For convenience we can partition the matrixM as
follows:

M =


m00 � m01 · · · m0l2−− + −− −− −−
m10 �
· · · � M̃
ml10 �

 �(39)

Note that the case of independence is included; it
corresponds to the choice M̃ ≡ 0.

Proof. Consider a joint density with condition-
als in the given exponential families. Denote the
marginal densities by g�x�
 x ∈ S�X� = �x� r1�x� >
0� and h�y�
 y ∈ S�Y� = �y� r2�y� > 0�, respec-
tively. Write the joint density as a product of a
marginal and a conditional density in two ways to
obtain the relation

r1�x�r2�y� exp
[
l2∑
j=0
τj�x�q2j�y�

]

= r1�x�r2�y� exp
[
l1∑
i=0
θi�y�q1i�x�

]



(40)

where we have defined

τ0�x� = log �g�x�β2�τ�x��/r1�x��

θ0�y� = log �h�y�β1�θ�y��/r2�y��


Cancelling r1�x�r2�y� from both sides of (40)
we reduce to an equation whose solution is given
directly by Theorem 2.
Of course Bhattacharyya’s normal conditionals

density is a fine example of a density of the form
(38). The exponential conditionals density (dis-
cussed in Arnold and Strauss, 1988a) is another.
For it we have

l1 = l2 = 1
 r1�t� = r2�t� = I�t > 0�
and q11�t� = q21�t� = −t�

(41)
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The resulting densities are of the form

f�x
y� = exp �m00 −m01x−m01y+m11xy�
× I�x > 0
 y > 0��

For convergence we must have m10 > 0, m01 > 0
and m11 ≤ 0. Densities of the form (41) always have
nonpositive correlation.
An early reference which includes discussion of

densities with Beta conditionals is James (1975).
As a discrete example, we might consider the

class of joint densities for �X
Y� with support
�0
1
2
 � � ��2 such that X given Y = y is a Poisson
distribution for every y, and Y given X = x also
has a Poisson distribution for every x. This will
be of the form (38) with densities with respect to
counting measure on �0
1
2
 � � ��2.
The specific form of such joint densities can be

written in reparametrized form as

fX
Y�x
y� = kp�λ1
 λ2
 λ3�λx1λy2λxy3 /x!y!

x = 0
1
2
 � � � 
 y = 0
1
2
 � � � 


(42)

For this to be a proper joint density we must have
λ1 > 0, λ2 > 0 and 0 < λ3 ≤ 1. This Poisson con-
ditionals distribution is also known as Obrechkoff ’s
distribution (Obrechkoff, 1963).
Other discrete distributions with conditionals in

exponential families can be defined. Arnold and
Strauss (1988a), for example, describe geometric
and binomial examples. Joe and Liu (1996) discuss
conditionally specified logistic regression models.
A final example, of interest in the Bayesian con-

text, to be discussed in Section 9, is the class of
distributions with conditional densities of X given
Y = y of the normal form for every y and the condi-
tional density of Y givenX = x being of the gamma
form for every x. This is an example with condi-
tionals in exponential families and so is covered by
Theorem 3.
In this case we have

r1�x� = 1
 r2�y� = y−1I�y > 0�

q11�x� = x
 q21�y� = −y

q12�x� = x2
 q22�y� = log y

and the joint density is given by

f�x
y�=y−1 exp
�1
 x
 x2�M

 1
−y
log y


× I�x ∈ �
 y > 0��

(43)

There are some constraints on the mij’s in (43)
needed to ensure integrability (for details on this,
see Castillo and Galambos, 1989).

7. MULTIVARIATE EXTENSIONS

Although the material in Sections 2–4, and 6 was
written assuming that the random variables X and
Y were one-dimensional, it all remains valid if we
assume thatX andY are multidimensional. Simply
going back and underliningX
Y, x and y or writing
them in bold face to indicate vector variables and
vectors instead of real variables and real numbers
is all that is required. In fact X and Y could take
on values in quite abstract spaces and our results
will still be valid.

Example 5 (Logistic regression). An interesting
class of k+1-dimensional distributions with certain
conditionals in exponential families involves logistic
regression models as discussed in Arnold and Press
(1989). It is not unusual to assume that a binary
response Y (= 0 or 1) is related to several back-
ground variables X1
X2
 � � � 
Xk. We thus have

P�Y=1�X1=x1
���
Xk=xk�

=
(
1+exp−

[
β0+

p∑
j=1
βjφj�x1
���
xk�

])−1



(44)

where the βj’s are unknown constants and the φj’s
are known “link” functions. In addition it is some-
times assumed that given Y = 1, (and given Y = 0)
the vector �X1
X2
 � � � 
Xk� has some convenient
joint distribution, often multivariate normal. But
if we make this assumption then we are assuming
that Y given X has a Bernoulli distribution and
X given Y has a multivariate normal distribution.
Manifestly this is an example with conditionals in
exponential families and the choice of link functions
in (44) will be very restricted. In fact, a family of
conditional densities for Y of the form (44) will be
compatible with conditional densities for X given
Y only if the conditional distributions for X are
in some multiparameter exponential family whose
sufficient statistics are �φ1�X�
 φ2�X�
 � � � 
 φp�X��.
Unless the link functions (the φj’s) are quite sim-
ple in their structure, the resulting distributions
might be considered to be contrived and perhaps
implausible.

Example 6 (Dose response models). Let 0 < d1 <
d2 < · · · < dm be an ordered set of dose levels.
Assume that a fixed number Ni of individuals are
assigned to the dose level di, and letXi be the asso-
ciated number of positive observations. Let p�d� θ�
be the response probability to a dose d > 0, where
θ is a p × 1 vector, where p ≤ m, of parameters
ranging over a parameter space F. Then, we have

Xi�di ∼ Binomial�Ni
p�di� θ��
(45)
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Table 1
Number of beetles killed after exposure to CS2

Dose Number of
log10[CS2,mg/l] insects Killed

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

that is,

l�xi�θ�di�=
(
Ni

xi

)
p�di�θ�xi�1−p�di�θ��Ni−xi


xi=0
1
���
Ni�
(46)

We consider two models:

(i) Standard logistic model: we make the as-
sumption that

logit p�d� θ� = θ0 + θ1d
(47)

where logit u = exp�u�/�1+ exp�u��.
(ii) Quadratic logistic model: We assume that

di�xi follows a normal distribution. Then, similarly
to the case discussed in Example 5, we get

logit p�d� θ� = θ0 + θ1d+ θ2d2�(48)

Consider the data (see Bliss, 1935) in Table 1, that
gives the number of beetles deceased after expo-
sure to different concentrations of disulphuric car-
bon CS2.
The maximum likelihood parameter estimates

associated with both models are shown in Table 2.
The parameter estimates are significantly dif-

ferent from zero. Note, however, the improvement
produced by the second model that incorporates a
quadratic term, not arbitrarily selected, but selcted
because of conditional normality considerations.

Motivated by certain spatial models we may con-
sider a different extension of the results of Sections

Table 2
Parameter estimates of the logistic standard and quadratic

regression model

Logistic Standard Quadratic Standard
Parameters model error model error

θ0 −60�72 5�18 402�20 178�21
θ1 34�27 2�91 −487�71 201�68
θ2 — — 147�05 57�03

− log l 18�72 14�71

3, 5 and 6 to k dimensions. Suppose that X is a
k-dimensional random vector. For each i, we define
X�i� to be the �k − 1�-dimensional random vector
obtained from X by deleting Xi. The same conven-
tion will be used for real vectors. Thus x�i� is x with
xi deleted.
Consider conditional specifications based on the

collections of conditional distributions of Xi given
X�i�, for every i. Suppose that we have k parametric
families of densities on � given by

�fi�x� θ�i��� θ�i� ∈ F�
 i = 1
2
 � � � 
 k
(49)

where θ�i� is of dimension li and fi is a den-
sity with respect to µi, for each i. A conditionally
specified model will be one in which for certain
functions θ�i�� S�X�i�� → Fi we have

fXi�X�i�
�xi�x�i�� = fi�xi� θ�i��x�i���(50)

for every i [cf. (6) and (7)]. If (50) is to be satisfied,
then an array of functional equations must hold.
[cf. (8)].
In particular, consider the case in which the fam-

ilies of densities (49) are exponential families, that
is, if

fi�x� θ�i�� = ri�x� exp
{

li∑
j=0
θijqij�x�

}



i = 1
2
 � � � 
 k

(51)

[where qi0�x� = 1
 ∀ i]. In such a setting, the func-
tional equations can be solved (by a straightforward
extension of Theorem 2) to conclude that the joint
density of X must be of the form

fX�x�=
[
k.
i=1
ri�xi�

]

× exp

{
l1∑
i1=0

l2∑
i2=0

� � �
lk∑
ik=0

mi1
i2
���
ik

×
[
k∏
j=1
qiij�xj�

]}
�

(52)

For example, the k-dimensional analog of Bhat-
tacharyya’s distribution is of the form

fX�x� = exp

{ ∑
i∈Tk

mi

[
k∏
j=1
x
ij
j

]}

(53)

where Tk is the set of all vectors of 0’s, 1’s and 2’s of
dimension k. Densities of the form (53) have normal
conditional densities for Xi given X�i� = x�i� for
every x�i�, for every i.
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The classical k-variate normal density is of course
a (very) special case of (53). For it, most of the mi’s
must be zero (any mi for which

�k
j=1 ij > 2).

8. ESTIMATION

Inference from conditionally specified models is
somewhat complicated because of the almost ubiq-
uitous presence of an awkward normalizing con-
stant in the joint density. Typically, for example, the
m00 appearing in (39) is a complicated function of
the other mij’s that can only be evaluated numeri-
cally. Put another way, we usually know the shape
of the likelihood but not the factor required to make
it integrate to 1. In principle, maximum likelihood
estimation can be implemented using a standard
optimization procedure (not by solving likelihood
equations). In the case of conditionals in exponen-
tial families, this approach is reasonably viable.
However, at a price of a small loss in efficiency,

there are some attractive alternatives available.
One way to avoid dealing with the normalizing

constant is to base the analysis on conditional dis-
tributions. Suppose that �X1
Y1�
 � � � 
 �Xn
Yn� is
a random sample from some conditionally specified
density f�x
y� θ�, θ ∈ F. We define the pseudo-
likelihood estimate of θ (see Besag, 1974, 1975) to
be that value of θ which maximizes the pseudolike-
lihood function defined in terms of (nice) conditional
densities by

PL�θ� =
n∏
i=1
fX�Y�xi�yi� θ�fY�X�yi�xi� θ��(54)

It is not difficult (see e.g., Arnold and Strauss,
1988b) to verify that such estimates are consistent
and asymptotically normal. Pseudolikelihood esti-
mates are frequently much easier to obtain than
are maximum likelihood estimates. For example, if
the common density of the �Xi
Yi�’s is

f�x
y� ∝ exp �−x− y− θxy�I�x > 0
 y > 0�(55)

(a density with exponential conditionals), then the
pseudolikelihood estimate of θ is obtained by solving

n∑
i=1

Xi

1+ θXi

+
n∑
i=1

Yi
1+ θYi

= 2
n∑
i=1
XiYi�(56)

Since the left-hand side of (56) is decreasing in θ,
a simple search procedure quickly yields a solution.

Example 7 (Normal conditionals). In this exam-
ple we use the Fisher data (Fisher, 1936) to estimate
the parameters of the normal conditional model by
maximizing the pseudolikelihood function. We have
pooled together the 50 Iris-versicolor data points
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Fig. 7. Contours and regression curves of the normal condition-
als model (27) and data points corresponding to the Fisher Iris
data example.

and the 50 Iris-virginica data points, to get a total
sample size of 100.
The resulting model is

f�x
y� ∝ e
( −1/2�−5�75x+ 0�474x2 − 100�9y+ 0�439xy+ 0�552x2 y

+35�82y2 − 4�6xy2 + 0�1604x2 y2�
)
�

See Figure 7, where the data points, the contours of
the fitted probability density function and the non-
linear regression curves are shown.

Example 8 (Skew normal conditionals). A ran-
dom variable X is said to be skew-normal with
parameter λ, denoted by X ∼ SN�λ�, if its proba-
bility density function (pdf) is given by (see Azzalini,
1985, and Azzalini and Dalla Valle, 1996)

f�x�λ� = 2φ�x�G�λx�� x ∈ �
(57)

where φ�x� and G�x� are the density and distribu-
tion functions of a standardized normal distribution.
Arnold, Castillo and Sarabia, (2001) study the

class of bivariate distributions with skew normal
conditionals, that is �X
Y� such that X�Y = y ∼
SN�λ1�y��, ∀y ∈ � and Y�X = x ∼ SN�λ2�x��
∀ x ∈ �.
One of the resulting models is given by

f�x
y�λ� = 2φ�x�φ�y�G�λxy��(58)

Such densities are not necessarily unimodal.
However, with the aim of making Model (58) more

useful in practice, we introduce location and scale
parameters and obtain the following more flexible
family of densities:

f�x
y�λ
µ
 σ�= 2
σ1σ2

φ

(
x− µ1

σ1

)
φ

(
y− µ2

σ2

)
×G

(
λ
x− µ1

σ1
× y− µ2

σ2

)
�

(59)



CONDITIONALLY SPECIFIED DISTRIBUTIONS 261

5

6

7

8

2

2.5

3

3.5

0

0.2

0.4

0.6

5

6

7

8

Fig. 8. Probability density function of the skew normal condi-
tionals model corresponding to the Fisher Iris data example.

The conditional densities are

f�x�y�λ
µ
 σ�= 2
σ1
φ

(
x− µ1

σ1

)
×G

(
λ
x− µ1

σ1
× y− µ2

σ2

)(60)

and

f�y�x�λ
µ
 σ�= 2
σ2
φ

(
y− µ2

σ2

)
×G

(
λ
x− µ1

σ1
× y− µ2

σ2

)
�

(61)

The parameters can be estimated by maximizing the
pseudolikelihood function

L�x
y�λ
µ
 σ�

=
n∏
i=1
f�xi�yi�λ
µ
 σ�f�yi�xi�λ
µ
 σ��

(62)

As in the previous example, we used the Fisher
data (Fisher, 1936) and pooled together the 50 Iris-
versicolor data points and the 50 Iris-virginica data
points, to get a total sample size of 100.
The maximum pseudolikelihood estimates are:

µ1 = 6�164� µ2 = 2�817� σ1 = 0�666�
σ2 = 0�335� λ = 1�2�

Figures 8 and 9 show the probability density func-
tion and the contours of the fitted skew normal con-
ditionals model, respectively.

The skew-normal conditionals example did not
involve any awkward normalizing constant. For
it, method of moments estimates could be readily
obtained. When an awkward normalizing constant
is present, a feasible approach is to use what we can
call modified method of moments estimates. The
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Fig. 9. Contours of the skew normal conditionals model and
data points corresponding to the Fisher Iris data example.

standard method of moments approach to estimat-
ing a k-dimensional parameter involves judiciously
selecting k functions of �X
Y�, say g1
 g2
 � � � 
 gk
and then setting up and solving the following set of
equations for θ:

Eθ�gj�X
Y�� =
1
n

n∑
i=1
gj�Xi
Yi�


j = 1
2
 � � � 
 k�

(63)

In our conditionally specified settings, the expec-
tations will typically involve the awkward normal-
izing constant c�θ�. To avoid dealing with c�θ� we
simply treat it as an extra parameter (Arnold and
Strauss, 1988a) and choose an additional function
gk+1 to allow us to augment the system (63) to now
include k+1 equations in the, now, k+1 unknowns,
θ1
 θ2
 � � � 
 θk and c. The estimates obtained in this
way for θ are consistent asymptotically normal
estimates.
For example, for a sample from the exponential

conditionals density (55), denoting the normalizing
constant by c we can set up the following two equa-
tions:

1
n

n∑
i=1
�Xi +Yi� = E�X+Y� = 2�c− 1�

θ

(64)

1
n

n∑
i=1
�XiYi� = E�XY� =

�c− c2� − θ+ 2cθ
θ2

�(65)

The solution to (64) and (65) will yield our desired
estimate of θ.
A third estimation strategy is available.
We will illustrate the technique using a binomial

conditionals density but the technique can be used
quite generally for discrete models and, by suit-
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able grouping, can be used effectively for continuous
models also (see Moschopoulous and Staniswalis,
1994).
Suppose �X1
Y1�
 �X2
Y2�
 � � � 
 �Xn
Yn� are

i.i.d. random variables with a common binomial-
conditionals distribution. Here n1
 n2 are fixed and
known and the joint density for �X
Y� can be
written in the reparametrized form

fX
Y�x
y�= exp �c+ h�x
y� + θ1x+ θ2y+ θ3xy�
×I�x ∈ �0
1
2
 � � � 
 n1��
×I�y ∈ �0
1
2
 � � � 
 n2��


(66)

where h�x
y� = log
(
n1
x

) + log
(
n2
y

)
, θ1 ∈ �, θ2 ∈ �,

θ3 ∈ �. Of course ec is the awkward normalizing
constant. We wish to estimate �θ1
 θ2
 θ3�. For each
possible value �i
 j� of �X
Y� let Nij denote the
number of observations for which X = i and Y = j.
LetN denote the two-way contingency table ofNij’s.
The random variableN has a multinomial distribu-
tion, that is, N ∼ multinomial�n
p�, where

logpij = c+ h�i
 j� + θ1i+ θ2j+ θ3ij�(67)

However, the likelihood would be identical if
the Nij’s were independent Poisson (pij) random
variables. Consequently standard Poisson regres-
sion programs can be utilized to obtain consistent
asymptotically normal estimates of the θi’s.

9. A BAYESIAN NICHE

It turns out that conditionally specified densities
have potential in the role of providing convenient
conjugate prior families in multiparameter cases.
Suppose that our data X has a likelihood

�f�x� θ�� θ ⊆ F ⊂ �k�. In order to specify a suitable
prior for θ, we need to describe a k-dimensional den-
sity. In some cases, this may be done conditionally as
follows. Suppose that for each i, if the other param-
eters θ�i� were known, a convenient conjugate prior
family exists for θi; say �fi�θi�α�i��� α�i� ∈ A�i��. In
this notation the α�i�’s are hyperparameters for the
prior. We will then consider as a candidate family of
priors for θ, those distributions such that for each
i, the conditional density of θi given θ�i� belongs
to the family fi. It is not difficult to verify that
this will yield a flexible conjugate prior family for θ
which will include as special cases the priors usu-
ally proposed for θ. Since it is a conjugate family the
posterior will be in the same family and will, thus,
also be conditionally specified. Simulation from the
posterior will then be readily implemented using
a Gibbs sampling algorithm. Note that Gibbs sam-
pling algorithms can be implemented even when
using conditional densities that are incompatible
or only compatible with an improper joint density

Table 3
Adjustments in the parameters in the prior family (69),

combined with likelihood (68)

Parameter Prior value Posterior value

m10 m∗
10 m∗

10

m20 m∗
20 m∗

20

m01 m∗
01 m∗

01 − 1
2

�n
i=1 x

2
i

m02 m∗
02 m∗

02 + n/2

m11 m∗
11 m∗

11 +
�n
i=1 xi

m12 m∗
12 m∗

12

m21 m∗
21 m∗

21 − n/2

m22 m∗
22 m∗

22

(see Hobert and Casella 1996), for some discussion
of these issues). Rather than go though a general
discussion of conditionally conjugate priors, we
will illustrate them by considering a classical data
configuration involving normal data.
Suppose that our available data consist of n i.i.d.

normal random variables with mean µ and precision
(=reciprocal of the variance) τ.
The likelihood is of the form

fX�x�µ
 τ� =
τn/2

�2π�n/2 exp
[
−τ
2

n∑
i=1
�xi − µ�2

]
�(68)

If τ were known, a natural conjugate prior family
for µ would be the normal family. If µ were known,
a natural conjugate prior family for τ would be the
gamma family. This suggests that an appropriate
conjugate prior family for �µ
 τ� (assuming both are
unknown) would be one in which µ given τ is nor-
mally distributed for each τ, and τ given µ has a
gamma distribution for each µ.
Such normal-gamma conditionals distributions

were discussed in Section 6. They form an eight-
parameter exponential family of distributions with
densities of the form

f�µ
 τ� ∝ exp �m10µ+m20µ
2

+m12µ log τ +m22µ
2 log τ�

× exp �m01τ +m02 log τ

+m11µτ +m21µ
2τ��

(69)

In Table 3 we summarize the relationships
between prior and posterior values of the (hyper)
parameters appearing in (69), when combined with
the likelihood (68).
It is evident that 4 of the mij’s [those appearing

in the first factor in (69)] are not affected by the
data. The other four are changed by the data. The
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family (69) includes both of the usually suggested
joint priors for �µ
 τ�. The classical prior for �µ
 τ�
(see, e.g., DeGroot, 1970) corresponds to the choice

m10 =m20 =m12 =m22 = 0�(70)

Condition (70) enforces a peculiar dependence
structure on the joint prior for �µ
 τ�. It is not
self-evident that this will always adapt well to prior
beliefs.
A second approach, advocated by those who view

marginal assessment of prior beliefs to be the most
viable (see, e.g., Press, 1982), assumes independent
gamma and normal marginals in (70). This corre-
sponds to initially setting

m11 =m12 =m21 =m22 = 0�(71)

Here too, we might not always find the implied
dependence structure (in this case independence)
adapting well to our expert’s prior beliefs. The more
flexible full family (69) will retain the dual advan-
tages of conjugacy and ease of simulation.
The large number of hyperparameters appearing

in conditionally specified priors [such as (69)] might
be cause for concern if assessment of appropriate
prior values were viewed as a difficult problem. Of
course many or all could be set to zero to attain
varying degrees of diffuseness in the prior. It is how-
ever possible to develop quite simple assessment
algorithms involving prior specification of an array
of conditional moments and/or percentiles (Arnold,
Castillo and Sarabia, 1999).
The conditional specification approach extends

quite readily to more interesting cases, such as
Behrens–Fisher problems, variance components,
2 × 2 contingency tables, etc. For details and refer-
ences see Arnold, Castillo and Sarabia (1999).

10. THE PROBLEM OF MARGINAL AND
CONDITIONAL SPECIFICATION

When one is dealing with the distribution of a
k-dimensional random variable, there are a large
number of possible ways in which it can be specified
in terms of marginal and conditional densities. Gel-
man and Speed (1993) provide a careful discussion
of what combinations of marginal and conditional
densities will suffice to determine either a unique
joint density or a class of compatible joint densities.
For modeling purposes we are especially interested
in identifying which combinations of marginals and
conditionals will uniquely determine the joint den-
sity of �X1
 � � � 
Xk�. For example, if we are given
the density of Xi given X�i� for each i, those, if
consistent, will determine the joint density and,
under a positivity condition (or indecomposibility of
a related Markov chain), they will uniquely deter-

Fig. 10. Joint densities (i.e., normalized topographical maps) of
Spain, the United States and Mexico.

mine the joint density of X. In contrast, if we are
given the conditional density of Xi given Xj for
every i and j, this will fail to determine the joint
density of X (provided the dimension exceeds 2).
This is true because the given information can
only provide information about two-dimensional
marginals and not the full joint density. There are
some curious configurations that sometimes work.
It is obvious in two dimensions that the marginal
density of X1 and the conditional density of X2
given X1 will always uniquely determine the joint
distribution of �X1
X2�. It is, however, sometimes
possible (see Seshadri and Patil, 1964) that the
marginal distribution of X1 and the conditional
density of X1 given X2 (the “wrong” conditional,
if you wish) will uniquely determine the joint
distribution of �X1
X2�. But it doesn’t always
work.
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Gelman and Speed noted that knowledge of any
conditional density of the form

�Xi� i ∈ A� given �Xj� j ∈ B�

where B could be empty (corresponding to a
marginal rather than a conditional density), is
equivalent to knowledge of the conditional density
of individual Xi’s given other Xj’s. Thus, in trans-
parent notation: knowledge ofX1
X3�X2
X5 is the
same as knowing X1�X2
X5 and X3�X1
X2
X5
To be always certain that given marginal and con-

ditional information will, if consistent, determine
the joint distribution, it must include the distri-
bution of Xi given X�i� for some i and, sufficient
additional marginal and conditional information to
determine the distribution of X�i�.
Careful delineation of these claims may be found

in Arnold, Castillo and Sarabia (1999, Chapter 10),
building on the material in Gelman and Speed
(1993). Note that the necessary part of the main
theorem as stated in Gelman and Speed (1993) is
incorrect. A counterexample is documented in Gel-
man and Speed (1999). Suitable modification of the
statement of this theorem is discussed in Arnold,
Castillo and Sarabia (1999).

11. ENVOI

We close by reiterating our claim that condi-
tional specification is quite natural. Cross-sectional
descriptions are quite basic. Conditional specifica-
tion provides a much needed augmentation in the
flexibility of parametric multivariate models. As in
many branches of statistics, life is smoothest when
dealing with exponential families. The concept of
conditional specification does provide us with some
new (or old as in the case of the Bhattacharyya
density!) alternatives to the customary tool box of
models available in classical and Bayesian statis-
tical scenarios. It doesn’t come with a money back
guarantee, but we recommend you give it a try.
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Comment
Julian Besag

I am grateful for the opportunity to comment on
this paper and on the role of conditionally specified
distributions. My contribution will focus on the mul-
tivariate rather than the bivariate problem. I think
my 1974 paper, mentioned in passing by the present
authors, was the first to exploit the general idea
of constructing a joint density f�x� for a random
vector X = �X1
 � � � 
Xn� from its local character-
istics or, as they are now known, full conditionals
fi�xi�x−i�, where x−i denotes the values taken by
all the Xj’s other than Xi. This paper owes a great
deal to Maurice Bartlett, with whom I was priv-
ileged to work from 1968–1969 (see also Bartlett,
1967), to Hammersley and Clifford (1971; see also
Clifford 1990) and, for stationary Gaussian lattice
systems, to Lévy (1948).
In spatial statistics, the conditional probabil-

ity approach is motivated by applications of the
following type. Consider an agricultural experi-
ment in which different varieties of a crop occur
over a rectangular array of plots according to a
particular design, with rather limited replication.
The plots are harvested, their yields are measured
and these observations are used to make compar-
isons between the effects of the different varieties. It
is easy to accommodate standard fixed effects due to

Julian Besag is Professor, Department of Statistics,
Box 354322,University ofWashington, Seattle,Wash-
ington 98195 (e-mail: julian@stat.washington.edu).

management practice but usually the yields are
also heavily influenced by variation in fertility over
the experimental region. Direct measurements of
soil properties are not made in general and this
makes estimation difficult. The Fisherian solution
uses randomization, within the block constraints
of the design, to induce a corresponding reference
distribution. Alternatively, one may represent the
true fertility xi in each plot i by an unknown Xi

and then assign an appropriately flexible spatial
distribution to the Xi’s, whether from a frequen-
tist or a Bayesian viewpoint. The intention is that
accuracy and precision of estimates will improve,
without the need for very intricate designs that
plant breeders are often unwilling to implement.
Note that, because the main focus is the compar-
ison of variety effects and not the estimation of
the xi’s and because of the replication, the con-
clusions from the analysis should be relatively
insensitive to a quite wide range of spatial distri-
butions. Spatial formulations were first proposed in
the 1920’s by the distinguished Greek agronomist,
J. S. Papadakis, but received scant attention from
statisticians until the 1980s, apart from Bartlett
(1938, 1978). However, the past twenty years has
seen a flurry of activity and now overtly spatial
analyses are used quite widely; for example, in
some 5000 field experiments annually in Australia.
To see the relevance of conditional specifications

to field experiments, suppose that f�x� is a postu-
lated joint density for the plot fertilities Xi. Then
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the full conditional fi�xi�x−i� ∝ f�x� is a rather
natural object to examine because of the spatial con-
text. This contrasts with time series analysis, where
the obvious conditioning set for any particular ran-
dom variable consists of its predecessors, a mean-
ingless concept in purely spatial settings. It is now a
short step to suggest that formulation of f�x� should
be in made in terms of its full conditionals. That is,
for each plot i, one imagines knowing the fertilities
x−i in all other plots and attaching a correspond-
ing conditional distribution to Xi. Note that this
involves a form of interpolation rather than extrap-
olation. A starting point is to assume that each
fi�xi�x−i� is Gaussian with a mean that is a linear
combination of the fertilities in plots that are closest
to i. If outliers or jumps in fertility need to be accom-
modated, the Gaussian form can be replaced by one
based on spatial medians or by a hierarchical–t.
The interested reader may consult Besag and Hig-
don (1999) for further details and the analysis of
several awkward datasets from a Bayesian perspec-
tive. Of course, it must be ensured that the formula-
tion knits together to produce a genuine f�x�. Note
that it is also possible to mix and match conditional
and joint assumptions, as in Besag and Kooperberg
(1995), and this is often my preferred approach.
The above topic, in an important area of applied

science, I hope provides some motivation for con-
sidering conditional specifications. I could instead
have chosen examples from geographical epidemi-
ology, statistical ecology, texture analysis, semi
conductor manufacturing, computerized tomog-
raphy, synthetic magnetic resonance imaging or
social networks, to all of which conditional speci-
fications have been applied, with varying degrees
of success. I could even have discussed the analy-
sis of higher dimensional contingency tables, where
conditional probability formulations provide an
alternative route to hierarchical models; or the
example, pointed out by Stephen Stigler, in which
Francis Galton adopted the approach as an aid
to the statistical analysis of fingerprint data in
the 1890s! My point is that there is no need to
resort to contrived examples of the type described
by the present authors in their Section 1. Indeed,
their reduction of an inherently spatial problem
to a bivariate distribution seems strange from any
viewpoint.
I would like now to return to my 1974 paper.

Although this is set in the context of spatial statis-
tics, where conditionally specified distributions are
known as Markov (random) fields, the mathematics
is rather general and draws on the Hammersley–
Clifford theorem. This establishes a correspondence
between such fields and Gibbs distributions in sta-
tistical physics but is not tied to lattice systems

or even to Euclidean space. Indeed, it is embar-
rassing that my own attempts to solve the prob-
lem had been far too specific and merely led to an
extremely limited result, obtained by some turgid
mathematics! My 1974 paper is more enlightened
and, in particular, Section 4 examines the conse-
quences of assuming that only pairwise interactions
exist between the n random variables and also that
the full conditionals belong to an exponential fam-
ily. The first of these restrictions is of course vacu-
ous for a bivariate distribution and, as regards the
second, the development in Besag (1974) extends
to the more general definition of an exponential
family adopted in Section 6 of the present paper.
It is rather misleading of the authors to suggest
that the 1974 results arise “in a specified stochas-
tic process setting,” because not only is the mathe-
matics quite separate from any spatial context but
also I emphasize the distinction between a space–
time formulation (or “process”) and a purely spa-
tial one (or “scheme”). Although the latter can be
interpreted as the instantaneous cross-section of a
space–time process, assuming temporal stationarity
(e.g., Besag, 1977), this is generally unconvincing
and is of course untestable from purely static data.
I contend that conditionally specified distributions
usually arise from thought processes rather than
physical ones, and this may fit more comfortably
into a Bayesian rather than a frequentist paradigm.
Besag (1974, Section 4) also discusses special

cases of distributions with pairwise interactions
and exponential family full conditionals, including
so-called auto-logistic, auto-binomial, auto-Poisson,
auto-exponential, auto-gamma and auto-Normal
schemes, with the obvious connotation that an
auto-binomial distribution has binomial/full con-
ditionals and so on. The auto-exponential and
auto-Poisson are the generalizations of (41) and
(42) to n variables. Also, it is remarked in the 1974
paper that the Poisson, exponential and gamma
versions are probably of little practical interest
because of the parameter restrictions (though this
has not prevented their occasional abuse). In brief,
the references to specific distributions in Section 6
of the present paper seem very carefully selected!
The auto-logistic scheme can also be thought of as

a truncated Bahadur expansion for the distribution
of multivariate binary variables, without recourse
to conditional probability. It has been rediscovered
as the Boltzmann distribution in computer science
and as the quadratic exponential in statistics. It is
used quite widely in statistical ecology and in the
study of familial diseases, where it often takes the
form of a so-called auto-logistic regression model,
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sometimes claimed to be a generalization of the
autologistic but in fact a special case. Another spe-
cial case is the celebrated Ising model in statistical
physics. Although this is derived classically from
thermodynamic principles, it is remarkable that
the Ising model follows necessarily as the very sim-
plest non-trivial binary Markov random field on any
finite d-dimensional cubic lattice. The Ising model
has been used with some success as a prior distri-
bution for object against background in low-level
Bayesian image reconstruction but is not suitable
for more complicated tasks, which require cum-
bersome higher-order Markov random fields; see
Tjelmeland and Besag (1998). A superior approach
is based on Ulf Grenander’s deformable templates.
In Section 8 of their paper, the authors resurrect

maximum pseudolikelihood estimation. Originally,
this was devised for Markov random fields, for
which the normalizing constant in the likelihood
function is usually horrendous. Quite generally,
the pseudolikelihood is defined as the product of
the full conditionals for the observed data (Besag,
1975) and, in particular, for a random sample from
a bivariate distribution, this indeed leads to equa-
tion (54). Pseudolikelihood also extends to Markov
point processes (Besag, 1978), where it is defined in
terms of the corresponding Papangelou conditional
intensities. For recent work, including central limit
theorems, see, for example, Comets and Janzura
(1998), Baddeley and Turner (2000) and Baddeley
(2001). Note that asymptotics for spatial systems
are much more difficult than for the repeated
bivariate or multivariate samples of Section 8. Also
Baddeley (2000) gives an interesting discussion
of the relationship between pseudolikelihood and
other methods of estimation in a general setting.
My own view is that the technique is really a crea-
ture of the 1970’s and 1980s and I am surprised
to see it recommended in the computer age, all
the more so in the rather undemanding context of
bivariate distributions.
Despite its consistency, maximum pseudolikeli-

hood performs poorly in most spatial systems with
strong interactions and it is easy to find exam-
ples in the literature where the estimates are of
questionable value. This is also true in the analy-
sis of social networks, formulated conditionally in
terms of a Markov assumption due to Frank and
Strauss (1986) that has some intuitive appeal. It is
not always the case that the price paid for the sim-
plicity of pseudolikelihood is merely “a small loss
in efficiency,” even for bivariate distributions. Per-
haps the main role for the method these days is to

provide initial approximations for iterative maxi-
mum likelihood algorithms, whether deterministic
or Monte Carlo. An extreme example in which
pseudolikelihood is not even consistent has been
pointed out by Gareth Roberts. Consider a random
walk X1
 � � � 
Xn, seeded by x0 = 0 and with inde-
pendent N�µ
1� increments. Then the likelihood
and pseudolikelihood estimators of µ are Xn/n and
Xn −Xn−1, respectively!
Finally, almost all Markov chain Monte Carlo

algorithms, whether Gibbs sampler or otherwise,
are driven by univariate full conditionals, so that
conditional specifications arise automatically. Not
surprisingly, the original uses of the methods in
statistics were for conditionally specified spatial
distributions. As the authors point out in their
Section 4, one can also imagine a Gibbs sampler
running with incompatible full conditionals, a pro-
cedure that Heckerman, Chickering, Meek, Rounth-
waite and Kadie (2000) refer to as a pseudo-Gibbs
sampler. The analogous idea appears in Section
6 of Besag (1986) but for a greedy determinis-
tic version of Gibbs known as iterated conditional
modes. One possible application occurs in model
criticism. Suppose that, in a basic formulation, the
full conditionals are sufficiently interpretable that
some invite possible modification without particu-
lar regard to others. For example, this happens in
the basic Gaussian formulations for plot fertilities,
mentioned previously. Then, in general, the new full
conditionals will not be strictly compatible. Nev-
ertheless, one can run a pseudo-Gibbs algorithm
and obtain samples from the limiting distribution,
presuming this exists, which should be roughly con-
sistent with the amended full conditionals. One
might use a random scan rather than a fixed one
to produce a unique end result. In the research at
Microsoft, Heckerman et al. (2000) are interested in
synthesizing joint distributions from conditionals,
derived empirically and without regard to compat-
ibility. The theoretical properties of pseudo-Gibbs
samplers are largely unknown and no doubt con-
siderable caution must be exercised. It would be of
interest to extend the methods in Section 4 beyond
the bivariate case.
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Comment
Andrew Gelman and T. E. Raghunathan

1. INTRODUCTION

The authors discuss conditionally specified mod-
els in probability theory and for modeling joint
distributions in various applications. This theoreti-
cal structure is useful, considering that conditional
models are becoming standard in many spatial
applications, following Besag (1974). (Rather than
attempting an exhaustive or even representative
list, we shall just refer to Besag and Higdon, 1999,
as a recent example with discussion.) In addition,
there has been occasional discussion in the liter-
ature as to the relative merits of conditionally or
jointly specified models (for example, Besag, 1974;
Haslett, 1985; Ripley, 1988).
Here, however, we would like to address a differ-

ent topic: the use of conditional distributions, not
to model an underlying joint distribution, but for
the purpose of imputing missing data. At first this
might seem like an unimportant distinction—after
all, imputation requires modeling (if only implic-
itly). However, when the fraction of missing data
is not large, imputations can be reasonable even
if they are not based on the correct complete-data
model (see Meng, 1994; Rubin, 1996). Thus, it
makes sense to consider modeling for imputation
separately from modeling of underlying phenomena.
We shall refer to the example of the New York City

Social Indicators Survey (Garfinkel and Meyers,
1997), where we had to impute missing responses
for family income conditional on demographics
and information such as whether or not anyone
in the family received government welfare bene-
fits. Conversely, if the “welfare benefits” indicator
is missing, then family income is clearly a useful
predictor. The whole situation was actually more
complicated because the survey asked about several
different sources of income, and these questions had
different patterns of nonresponse.

Andrew Gelman is Professor, Department of Statis-
tics and Director of the Quantitative Methods in
Social Science Program, Columbia University, 2990
Broadway, New York, New York, 10027 (e-mail:
gelman@stat.columbia.edu). T. E. Raghunathan is
Professor, Department of Biostatistics and Institute
for Social Research, University of Michigan, Ann
Arbor, Michigan.

2. INCONSISTENT CONDITIONAL
DISTRIBUTIONS

As discussed by the authors, a multivariate nor-
mal distribution has conditionals that are normal
linear regressions, in which case the conditional dis-
tributions are automatically compatible. However,
when any of these conditions is relaxed—that is,
if data are bounded or discrete (and thus cannot
be modeled as normal), or regression relationships
are nonlinear or have interactions—then, in gen-
eral, reasonable-seeming conditional models will not
be compatible with any single joint distribution.
Nonetheless, imputations can be performed using

conditional models; that is, one can start with
guesses of all the missing data, then impute
x1�x2
 x3
 � � � 
 xk, impute x2�x1
 x3
 � � � 
 xk, and so
forth, looping indefinitely through all the variables.
If the imputations are stochastic, this is just the
notorious “inconsistent Gibbs” algorithm, for which
the simulation draws never converge to a single
joint distribution; rather, the distribution depends
upon the order of the updating and on when the
updating is stopped.
With the inconsistent Gibbs sampler, one is

always afraid of reasonable-seeming conditional
distributions that produce a diverging random
walk; for example, if x1�x2 ∼ N�x2
1�, and
x2�x1 ∼ N�x1
1�, then the distribution of the
simulations simply diffuses out to infinity. How-
ever, in practice, with the distributions estimated
from data (and using constraints or proper prior
distributions when dimensions are high and data
sparse), this should not happen.
A big advantage of conditional (rather than

joint) modeling is that it splits a k-dimensional
problem into k one-dimensional problems, each
of which can be attacked flexibly. Thus, condi-
tional imputation using k separate regression
models is a popular approach, and it has recently
been formalized by Raghunathan, Lepkowski,
Solenberger and Van Hoewyk (2001) and imple-
mented in SAS-compatible software (Raghunathan,
Solenberger and Van Hoewyk, 1997). This partic-
ular program allows continuous variables to be
modeled using normal distributions, binary vari-
ables with logistic regression, with other options for
ordered and unordered discrete variables and for
continuous variables with constraints. The corre-
sponding joint posterior distribution may not exist,
of course, which means that the Bayesian inference
used to get uncertainties for the imputations is only
uncertain. [It could, however, possibly be formalized
as a Bayesian counterpart to the pseudolikelihood
(Besag, 1975), in which the likelihood function is
replaced by the product of conditional densities.]
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Performing imputation is awkward without a
joint model, and it also results in difficulties in
inference for the imputation model itself (for exam-
ple, how do you correctly adjust for truncation in
a bounded-variable model when there is no joint
distribution over which to integrate). However,
the separate regressions often make more sense
than joint models which either assume normal-
ity and hope for the best (Gelman, King and Liu,
1998) or mix normality with completely unstruc-
tured discrete distributions (Schafer, 1997) or mix
normality (with random effects) and log-linear
structures for discrete distributions (Raghunathan
and Grizzle, 1995) or generalize with the t distri-
bution (Liu, 1995). From a practical perspective, all
these approaches provide useful tools, and some of
the time it will make sense to go with the incon-
sistent, but flexible, conditional models such as
described by Raghunathan et al. (2001).
One may argue that having a joint distribution

in the imputation is less important than incorpo-
rating information from other variables and unique
features of the data set (such as zero–nonzero fea-
tures in income components, bounds, skip patterns,
nonlinearity, interactions and so forth). Conditional
modeling allows enormous flexibility in dealing
with practical problems. We have never been able
to apply the joint models to a real data set without
making drastic simplifications.
However, if one is modeling some aspect of

the nature, then the joint distribution has to be
the end point. Specifying just the conditionals
without a coherent joint distribution will not be
acceptable. However, many of our applied collab-
orators are just as happy with conditionals such
as p(Hypertension � Body Mass Index) or p(Body
Mass Index � Hypertension, Socioeconomic Status),
rather than p(Hypertension, Body Mass Index,
Socioeconomic Status).

3. CHOICES IN SETTING UP THE
IMPUTATION MODELS

We conclude with a discussion of an awkward (or
perhaps promising) issue: structural features of the
conditional models can affect the distributions of the
imputations in ways that are not always obvious.
To return to the example introduced at the end of
Section 1 of this discussion, suppose we are imput-
ing a continuous income variable y1, and a binary
indicator y2 for welfare benefits, conditional on a set
X of fully observed covariates.
We can consider two natural approaches. Per-

haps simplest is a direct model where, for example,
p�y1�y2
X� is a normal distribution (perhaps a
regression model on y2, X, and the interactions of
y2 and X) and p�y2�y1
X� is a logistic regression

on y1, X, and the interactions of y1 and X. (For
simplicity, we ignore the issues of nonnegativity
and possible zero values of y1.)
A more elaborate, and perhaps more appealing

model uses hidden variables: let z2 be a latent con-
tinuous variable, defined so that

y2 =
{
1
 if z2 ≥ 0,
0
 if z2 < 0.

(1)

We can then model p�y1
 z2�X� as a joint nor-
mal distribution (i.e., a multivariate regression).
Compared to the direct model, this latent-variable
approach has the advantage of a consistent joint
distribution. And, once inference for �y1
 z2� has
been obtained, we can directly infer about y2 using
(1). In addition, this model has the conceptual
appeal that z2 can be interpreted as some sort of
continuous “proclivity” for welfare, that is, only acti-
vated if it exceeds a certain threshold. In fact, the
relation between z2 and y2 can be made stochastic
if such a model would appear more realistic.
So the latent-variable model is better (except for

possible computational difficulties), right? Not nec-
essarily. A perhaps disagreeable byproduct of the
latent model is that, because of the joint normal-
ity, the distributions of income among the welfare
and non welfare groups—that is, the distributions
p�y1�y2 = 1
X� and p�y1�y2 = 0
X�—must neces-
sarily overlap. In contrast, the direct model allows
there to be overlap or nonoverlap, depending on
the data. Thus, although the latent-variable model
seems to be a generalization, it is not.

4. CONCLUSIONS

Where does this leave us in practice? Must we
just choose a model and hope for the best? Fortu-
nately, we are not completely without tools: in par-
ticular, we can use a procedure to impute missing
data and then check the fit of the model to the com-
pleted dataset (Gelman, King and Liu 1998; Gelman
et al., 2001). Serious problems (such as overlapping
distributions for imputed data amidst nonoverlap-
ping distributions of observed data) should show up.
With checking, we should be able to notice major
flaws in an imputation model. But we do not have
a good sense of how general the models have to
be in order to work well, and it is not clear when
incompatibility of conditional distributions presents
a practical problem.
As with so much of statistics, the study of condi-

tional distributions is an area where theory has not
caught up with practice.

5. ACKNOWLEDGMENT

We thank the NSF for support through Grants
SES-9987748 and SES-0084368.



270 B. C. ARNOLD, E. CASTILLO AND J. M. SARABIA

Comment
Harry Joe

The authors have provided a very nice introduc-
tion to topic of conditionally specified models. There
is nothing in the paper that I disagree with, so this
discussion is a supplement to the paper that aims
to provide intuitive understanding of some of the
results and some guide in choices of conditional dis-
tributions. The main topic is relating properties of
conditional distributions to strength of dependence.
Recently several books (Joe, 1997; Arnold, Castillo

and Sarabia, 1999; Nelsen, 1999; Kotz, Balakrish-
nan and Johnson, 2000) with theory for multivari-
ate nonnormal families have been published. In the
framework of given univariate margins rather than
given conditional distributions, a multivariate dis-
tribution is said to be of type x if all of its univariate
margins are of type x. The most commonly used mul-
tivariate distribution is multivariate normal. Other
than x = normal and x = Poisson, there is no “nat-
ural” multivariate family with a given parametric
family for the univariate margins, and a common
approach has been through copulas. Because of some
difficulty in the construction of multivariate copulas
(in dimensions greater than or equal to 3) with nice
properties, the method of conditional specified distri-
butions is a good approach to consider. However, in
this case one should pay attention to the type and
range of dependence in the resulting multivariate
family.
There are some unusual or surprising results for

conditional distributions in exponential families.
For example, only negative dependence is possi-
ble if conditional distributions are all exponential
or Poisson. I will demonstrate that these unusual
results occur mainly in one-parameter families. The
explanation can be seen from the range of possible
dispersions in the conditional distributions.
Properties to keep in mind when specifying con-

ditional distributions are the following:

1. Positive dependence is obtained if the conditional
distributions are stochastically increasing in the
variables being conditioned on.

2. Negative dependence is obtained with the
stochastic decreasing behavior.

3. With positive dependence, conditional distribu-
tions are generally less dispersed (say, as mea-

Harry Joe is Professor, Department of Statistics, Uni-
versity of British Columbia, Vancouver BC V6T 1Z2
(e-mail: harry@stat.ubc.ca).

sured through conditional variance or conditional
coefficient of variation) than the univariate mar-
gins, and conditional dispersion decreases as the
amount of positive dependence increases.

These properties are illustrated with a few exam-
ples of (1), known bivariate distributions with given
margins, and (2), bivariate distributions with condi-
tional distributions in exponential families.

Example 9. �X
Y� has the bivariate Poisson dis-
tribution if the stochastic representation

�X
Y� d=�Z12 +Z1
Z12 +Z2�

where Z1
Z2
Z12 are independent Poisson ran-
dom variables with means λ1
 λ2
 λ12, respec-
tively (a Poisson random variable with mean
zero is equivalent to the degenerate random vari-
able at zero). The conditional distribution of Y
given X = x corresponds to a convolution of a
Binomial�x
 λ12/�λ1 + λ12�� random variable and a
Poisson�λ2� random variable. Hence

E �Y�X = x� = p1x+ λ2

Var�Y�X = x� = xp1�1− p1� + λ2


(1)

where p1 = λ12/�λ1 + λ12�. For nonnegative integer-
valued random variables, the common measure of
dispersion is the variance to mean ratio. For (1), the
ratio is 1−xp2

1/�p1x+λ2� which is less than 1, and
decreases as the dependence in �X
Y� increases
(i.e., as p1 increases).

Example 10. Consider a bivariate exponential
survival function based on the copula family,

C�u
 v� δ� = �u−δ + v−δ − 1�−1/δ

0 ≤ u ≤ 1
 0 ≤ v ≤ 1
 δ ≥ 0�

For this family, dependence increases in δ with the
independence copula obtaining as δ → 0 and the
Fréchet upper bound obtaining as δ → ∞. Substi-
tute u = e−x and v = e−y to get

F�x
y� = C�e−x
 e−y� δ� = �eδx + eδy − 1�−1/δ

as the survival function for a bivariate exponen-
tial random vector �X
Y�. The conditional survival
function for Y given X = x is

FY�X�y�x� =
[
1− e−δx + eδ�y−x�]−1−1/δ�(2)

This is a (zero-)truncated generalized logistic distri-
bution (see Johnson and Kotz, 1970). (2) has scale
parameter δ−1, location parameter x and median
δ−1 log�1 + �2δ/�1+δ� − 1�eδx�. Note that with the
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positive dependence, the location parameter of the
conditional distribution is increasing as x increases,
and the dispersion (measured as scale parameter
divided by either the median or location parameter)
decreases as δ increases.

Example 11. The bivariate family with Poisson
conditional distributions is a special case of Theo-
rem 3, and given in (42). This family has negative
dependence only with correlation range from 0 down
to around −1/3. For this family, the conditional vari-
ance to mean ratio is Var�Y�X = x�/E �Y�X = x� =
1, so the properties given above also suggest a lim-
ited amount of dependence. The univariate margins
of this family are overdispersed relative to Poisson,
since

Var�Y� = E �Var�Y�X�� + Var�E �Y�X��
= E �E �Y�X�� + Var�E �Y�X��
= E �Y� + Var�E �Y�X��

so that

Var�Y�
E �Y� = 1+ Var�E �Y�X��

E �Y� ≥ 1�

Example 12. The bivariate family with exponen-
tial conditional distributions is also a special case
of Theorem 3, and given in the equation after (41).
This family has negative dependence only with cor-
relation range from 0 down to around −0�3. For
this family, the conditional coefficient of variations
is

√
Var�Y�X = x� /E �Y�X = x� = 1, so the prop-

erties given above again suggest a limited amount
of dependence. The univariate margins of this fam-
ily have coefficients of variation larger than 1.

With a�X� = E �Y�X�,
Var�Y� = E �Var�Y�X�� + Var�E �Y�X��

= E �a2�X�� + Var�a�X��
= 2Var�a�X�� + �E �Y��2

so that
Var�Y�
�E �Y��2 = 1+ 2Var�a�X��

�E �Y��2 ≥ 1�

Example 13. The bivariate family with gamma
conditional distributions is also a special case of
Theorem 3, and detailed properties are given in
Section 4.6 of Arnold et al., 1999. Because gamma
distributions have two parameters, this family has
a lot more flexibility in the properties of the con-
ditional distributions and regression functions. The
dispersions of the conditional distributions have a
wide range, there is a wide range of positive and
negative correlations, and the regression functions
can have a variety of patterns (although if increas-
ing, the regression function reaches an asymptote
rather than increase without bound).

As a guideline on other choices of conditional dis-
tributions, one could study more conditional distri-
butions of known multivariate families with given
margins (cf. Examples 1 and 2), but usually they are
not in standard parametric families.
In conclusion, the method of multivariate mod-

els based on conditionally specified distributions is
quite broad in scope. With this approach, one should
pay attention to properties of conditional distribu-
tions and how they relate to the type of multivariate
dependence that can be attained. Conditional dis-
tributions in one-parameter parametric family seem
not to provide a flexible class of multivariate models.

Rejoinder
Barry C. Arnold, Enrique Castillo and José Maŕıa Sarabia

We thank all the discussants for their con-
tributions. Several interesting variations on the
conditional specification theme are included in their
comments. The additional references that they pro-
vide will assist the interested reader in further
research in several interesting directions. We will
respond to some of their comments though, as will
be apparent, there are not any major disagreements
to be resolved, except perhaps, in the case of Profes-
sor Besag, for questions of pedagogical strategy and

style. We begin with some clarifications related to
Professor Besag’s comments.
Professor Besag begins with an excellent review

of conditional specification models with special
emphasis on spatial models. Further review of his
1974 paper will certainly reward the reader. It
contains many insights and models which have
been subsequently utilized and developed by many
researchers. That said, it must be emphasized that
conditional specification is not inherently a spatial
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problem. It is perfectly legitimate and, we believe,
pedagogically appropriate to begin with the bivari-
ate case and build up from there to multivariate
cases. We are sorry that Professor Besag does not
like our topographical map example (presumably
that is one of the “contrived” examples that dis-
appointed him). The reader will perhaps be able
to envision better introductory examples for use in
emphasizing the essential role that conditional den-
sities must play in modeling multivariate phenom-
ena (bivariate, multivariate or even spatial or tem-
poral processes).
Our comment that Professor Besag had discussed

distributions with conditionals in exponential fam-
ilies in a specified stochastic process setting is jus-
tified by the fact that the title, the first sentence
and the general thrust of the 1974 article clearly
are focused on spatial processes. The ideas do not
have to arise in a stochastic process setting, but Pro-
fessor Besag’s contributions certainly seem to have
done so.
The auto-Poisson, autologistic, etc. models dis-

cussed in Professor Besag’s 1974 paper are
intimately related to the multivariate models dis-
cussed in our Section 7. Indeed we mention there
that they can be viewed as being motivated by cer-
tain spatial models. It should be noted that the
automodels introduced in the 1974 paper involve
a restricted degree of dependence between the
variables (related to neighboring sites) and conse-
quently the multivariate models in Section 7 are
actually more general than the 1974 automodels
(except in the bivariate case where they coincide).
We do plead guilty to having selected our examples
in Section 6 carefully. If on the other hand Profes-
sor Besag’s “careful selection” comment was directed
not at the choice of examples but at the choice of
references given in Section 6, we plead guilty there,
too. We referred only to him and to us (and our coau-
thors). In either case we feel that our careful selec-
tion was fair and appropriate. If more examples are
desired, reference may be made to Arnold (1987,
1995) and Arnold, Castillo and Sarabia (1993a, b,
1996, 1998).
The practical utility of certain automodels is ques-

tioned by Professor Besag. For example, densities
with exponential conditionals can only have nega-
tive correlations. But this surely complements the
perhaps equally restrictive positive correlation usu-
ally encountered in marginally specified bivariate
exponential densities. As Professor Joe points out,
having just one parameter available to model “inter-
action” does lead to restricted flexibility. However
many conditionally specified models actually involve
a surfeit of “interaction” parameters.

Perhaps pseudolikelihood is a creature of the
1970s and the 1980s as Professor Besag sug-
gests. However, it does seem to perform well in
finite-dimensional settings (a recent paper by Geys,
Molenberghs and Ryan, 1999, is quite enthusiastic
about its performance in a high-dimensional situ-
ation). Recent progress with regard to method of
moments estimation for conditionally specified mod-
els is described in Arnold, Castillo and Sarabia
(2001a), using a multivariate version of Stein’s iden-
tity.
The extension of the results of Section 4 to mul-

tivariate settings that Professor Besag mentions at
the end of his comments has been accomplished in
a series of recent reports of ours (Arnold, Castillo
and Sarabia, 2001b, c, d).
We do apologize to Professor Besag for any errors

in our references to his important work in this area;
nevertheless, we reserve the right to present the
material using what we feel is a pedagogically sound
structure even though, clearly, it is not the structure
that he would have selected.
Professors Gelman and Raghunathan appear to

share Professor Besag’s view that spatial applica-
tions provide the major arena for conditionally spec-
ified models. We feel that their potential in lower-
dimensional settings should not be underestimated.
Professors Gelman and Raghunathan provide inter-
esting insights into the potential role of conditional
specification in missing data imputation. We are
initially somewhat disturbed by their enthusiasm
for using incompatible conditional specifications.
Even though applied collaborators may be happy
with possibly inconsistent conditional models, we
feel that they should be informed of the degree of
incompatibility and perhaps should be persuaded
to accept a consistent specification that is in some
sense minimally incompatible with the given incon-
sistent specification. Further investigation of practi-
cal problems associated with incompatible specifica-
tion is clearly called for. Does theory have to catch
up with practice here as suggested by Professors
Gelman and Raghunathan, or does practice need to
catch up to theory? Perhaps both. Until more evi-
dence is in, we confess to a vague distrust of results
obtained via inconsistent conditional specifications.
In response to Professor Gelman and Raghu-

nathan’s suggestion of a formal Bayesian counter-
part to pseudolikelihood, we mention that incon-
clusive discussion of what is called a pseudo-Bayes
(how many different definitions of pseudo-Bayes are
there?) approach may be found in Arnold and Press
(1991).
Professor Joe provides an informative discus-

sion of dependence phenomena encountered in
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conditionally and marginally specified distributions.
His comments nicely complement our discussion. He
remarks that, as mentioned above, limited corre-
lation flexibility in conditional models is typically
encountered when only one “interaction” param-
eter is present. Postulating that conditional den-
sities belong to multiparameter (rather than one-
parameter) exponential families leads to more flex-
ibility in modeling dependence.
Again, we would like to express our gratitude to

all the discussants. The ideas, the references and
the disagreements that they present should help
the reader in further thought, reading, research and
application of conditional specification concepts.
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