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Abstract 
 
Certain locally optimal tests for deterministic components in vector time series have associated sampling 
distributions determined by a linear combination of Beta variates. Such distributions are nonstandard and 
must be tabulated by Monte Carlo simulation. In this paper, we provide closed form expressions for the mean 
and variance of several multivariate test statistics, moments that can be used to approximate unknown distri-
butions. In particular, we find that the two-moment Inverse Gaussian approximation provides a simple and 
fast method to compute accurate quantiles and p-values in small and asymptotic samples. To illustrate the 
scope of this approximation we review some standard tests for deterministic trends and/or seasonal patterns 
in VARIMA and structural time series models. 
 
Keywords: Vector Time Series, Deterministic Components, Parametric Stability, Non-Invertibility, Unit 

Roots 

1. Introduction 
 
A wide class of test statistics for detecting the presence 
of deterministic components in univariate linear time 
series models can be derived following the [1] approach 
to the problem of testing for a scalar error covariance 
matrix in linear regression models with non-spherical 
disturbances. Members of this class are either locally 
best invariant (LBI) tests or LBI unbiased (LBIU) tests 
depending on whether the null hypothesis of a particular 
deterministic component is confronted with a one-sided 
or two-sided alternative, respectively. Some examples 
are the LBI test statistics for a null variance ratio or pa-
rametric stability proposed by [2-8], as well as the LBIU 
test statistics for non-invertibility or moving average 
(MA) unit roots derived by [9-12]. All these LBI and 
LBIU test statistics can be formulated as ratios of quad-
ratic forms in normal variables, whose distribution func-
tions are usually computed by numerical inversion of the 
corresponding characteristic functions using the [13] or 
[14] procedures. Moreover, their limiting distributions 
are related to that of the Cramèr-von Mises test statistics 
for goodness-of-fit derived and tabulated by [15]. Sev-
eral non-parametric and parametric corrections have 
been proposed to cope with serially correlated errors so 
that the modified statistics follow the same limiting dis-

tributions. 
Multivariate versions of these tests have been only de-

rived in the framework of structural time series models 
by [5] and [16] based on the multivariate generalization 
of the [1] approach given by [17]. As in the univariate 
case, the limiting distributions of the multivariate test 
statistics are also related to the Cramèr-von Mises distri-
bution. However, the small sample distributions are un-
known and must be evaluated by Monte Carlo simulation. 
A similar problem arises in the analysis of cointegrated 
VAR models with Dickey-Fuller type tests, where pro-
cedures for easily computing p-values and quantiles has 
been proposed among others by [18], using a response 
surface approach, and [19], fitting a Gamma distribution 
with moments estimated from a response surface regres-
sion. Approximating the unknown distribution of the 
tests for deterministic components has been also sug-
gested by [17], who found that such distributions can be 
expressed as linear combinations of Beta variates and 
gave closed form expressions for their first two moments, 
which involve the computation of the eigenvalues of a 
matrix whose order depends on the sample size. How-
ever, a tentative family has not been proposed yet. 

In this paper, we use the results of [17] to derive 
closed form expressions for the mean and variance of 
several test statistics for deterministic components that  
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depends on the sample size and avoid the computation of 
eigenvalues. Besides, we propose a two-moment Inverse 
Gaussian (IG) approximation to the distribution of a lin-
ear combination of Beta variates. To illustrate some ap-
plications of this approximation we provide seasonal 
extensions of the [5] tests that can be used to test for 
non-invertibility in vector seasonal ARIMA models, as 
well as to derive easily the [16] tests for deterministic 
seasonality at specific frequencies. 

The paper is organized as follows. In Section 2, we 
summarize the main results of the [17] approach. In Sec-
tion 3, we review some relevant test statistics for deter-
ministic components in vector time series and give exact 
expressions for the first two moments. In Section 4, we 
describe the two-moment IG approximation and assess 
its accuracy. Finally, in Section 5, we conclude with 
some extensions. 
 
2. Invariant Tests for Covariance Structures 
 
Consider the multivariate linear regression model 

  Y X E , ~ N(0,  ( ) ) E        (1) 

where Y and E are T × m random matrices, X is a T × k 
fixed design matrix,  is a k × m matrix of parameters, 
 () and  are T × T and m × m positive definite matri-
ces, respectively, and  is the parameter of interest de-
termining whether or not the columns of E are i.i.d. T- 
dimensional errors, i.e., (0) = IT. [17] found that the 
Locally Best Invariant (LBI) test statistic of the null hy-
pothesis H0:  = 0 against the one-sided alternative H1:  
> 0 has the following general expression 

   1ˆ ˆ ˆ ˆL tr
   

E E E KE 


,

           (2) 

where tr is the trace operator, Ê = MY is the residual 
matrix in the ordinary least squares regression of Y on X, 
M = IT – X(XX)–1 X and K is the first derivative d  
()/d evaluated at  = 0. Invariance is defined against 
the group of transformations Y  YP + XA for an arbi-
trary k × m matrix A and a positive definite m × m ma-
trix P. Thus, without loss of generality, it can be assumed 
that  = IT. From [17], and following [1], it can also be 
proved that the LBIU test statistic of H0:  = 0 against 
the two-sided alternative H1:  ≠ 0 is given by (2) but 
with K being the second derivative d2()/d2 evaluated 
at  = 0. 

The null distribution of L can be characterized rewrit-
ing it as 

1T k
T-k

t t t t t t tt 1
t 1

L B ,   B





     
 

            (3) 

where t are the non-null eigenvalues of the product ma-
trix MK, t  N(0, Im), Bt  Beta (m/2, (T – k – m)/2) 

and B1 + … + BT–k = m, see, e.g., [20] p. 540. [17] found 
that the first two moments of L are given by 

1E(L) m  and 2
2 1V(L) c       

with c = 2m(T – k – m)/[(T – k – 1)(T – k + 2)] and 

 rT k

r k 1
[1 (T k)] tr 


     MK  

In the next section, we give formulae to compute tr (MK) 
and tr(MK)2 for some useful test statistics. 
 
3. Test Statistics 
 
3.1. Multivariate Seasonal Random Walk Plus 

Noise Model 
 
[21] derived the LBI test statistic for a vector determinis-
tic level in the multivariate local level model. We con-
sider here the seasonal extension of this multivariate 
model given by 

t t t y u , t t k t  v  , ,    (4) t 1, ,T 

where the vector time series yt = (y1t, …, ymt) is decom-
posed into the sum of a vector seasonal random walk t 
= (1t, …, mt) plus a vector Gaussian white noise ut = 
(u1t, …, umt)  N(0, ), the vector Gaussian white noise 
vt = (v1t, …, vmt)  N(0, ) is assumed to be independ-
ent of ut, and the parameter  > 0 quantifies the degree of 
stochasticity of t. Without loss of generality we assume 
that the seasonal period k is even and that the dataset is 
balanced, T = nk. 

Defining the T × m matrices Y = [y1,…, yT], A = 
[1,…, T], U = [u1,…, uT] and V = [v1, , vT], (4) 
can be written in matrix form as 

 Y A U ,    n k n k 0   D I A d I A V    (5) 

where A0 = [–k+1, …, 0] is a k × m matrix of initial 
conditions,  denotes the Kronecker or tensor product, 
Dn is an n × n lower bidiagonal matrix with 1s on the 
main diagonal and –1s on the first sub-diagonal, which 
can be horizontally partitioned as Dn = [dn|n], being dn 
= (1, 0, …, 0) and n the (n – 1) × n first-order differ-
encing matrix. If A0 is assumed to be fixed, it follows 
that (4) is a special case of (1) with 

n k X i I , 0  A , T n n( ) ( )k     I C C I  

where 1
n n

C D , in = Cndn and X is a T × k matrix of 
seasonal dummy variables. 

The LBI test statistic for testing the null hypothesis of 
deterministic seasonality (H0:  = 0) against the alterna-
tive of seasonal random walk (H1:  > 0), denoted by 
RWm,k,n, is given by (2) with 

n n k K C C I                (6) 
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and Ê being the residual matrix in the multivariate re-
gression of Y on the full set of k seasonal dummies. To 
compute the two first moments of mkn , we find that 
the mean and mean-square of the eigenvalues of MK are 
given by 

RW

1 (n 1) 6    and 2
2 1 (2n 7) 30    

which suggest to correct the RWm,k,n test statistic by a 
factor depending of the sample size so that it converges 
to a non-degenerate limiting distribution. Some candi-
dates are n, mn or m (n – k). It should be noted that 
RWm,k,n/mn has asymptotic mean 1/6 and variance 1/45 
mk. 

[21] also derived the LBI test statistic for a vector de-
terministic linear trend. We obtain here the LBI test sta-
tistic for a vector deterministic seasonal linear trend by 
including a vector seasonal drift βt in (4) 

t t y u t , tt t k t     v , t t k =    (7) 

whose matrix form is given by 

 Y A U ,  

n k n k 0 n k 0( ) ( ) ( )     D I A d I A i I B V  

where B0 = [β–k+1, …, β0] is a k × m fixed matrix of ini-
tial conditions for t  If A0 is fixed, (7) is a special case 
of (1) with X = [in  Ik, tn  Ik],  = [A0, B0] and () = 
IT + (Cn n   Ik), where tn = (1, 2, …, n)'. It is now 
clear that the inclusion of the vector seasonal drift only 
affects the mean vector of the sampling distribution of Y, 

, but not its covariance matrix. Therefore, the LBI 
statistic for testing the null hypothesis of vector determi-
nistic seasonal linear trend (H0:  = 0) against vector 
seasonal drifted random walk (H1:  > 0) in (7), say 
DRWm,k,n, is computed as RWm,k,n, being now Ê the re-
sidual matrix in the multivariate regression of Y on k 
seasonal dummies and k seasonal lineal trends. We find 
for DRWm,k,n that the mean and mean-square of the ei-
genvalues of MK are given by 

C

X

1 (n 2) 15    and 2
2 1 (11n 181) 840    

and so DRWm,k,n has asymptotic mean 1/15 and variance 
11/6300 mk. 

We also obtain another relevant modification of the 
RWm,k,n test statistic by including the time index t as a 
regressor in (4) 

t t t   ty u  , t t k  v t         (8) 

or in matrix form, 

T  Y A t U ,  n k n k 0( ) ( )   D I A d I A V

which is a special case of (1) with X = [in  Ik, tT],  = 
[A0, 0] and () as in (7). By the same token, the LBI 
statistic for testing H0:  = 0 against H1:  > 0 in (8), say 

TRWm,k,n, is computed as RWm,k,n, being now Ê the re-
sidual matrix in the multivariate regression of Y on k 
seasonal dummies and a regular lineal trend. We find for 
TRWm,k,n that the mean and mean-square of the eigen-
values of MK are given by 

 2
1 [(5k 3)n (5k 3)] / 30[(n 1)k 1]        

and 
4 2

2

(140k 129)n (350k 213)n (490k 234)

12600[(n 1)k 1]
     


 

 

It should be noted that DRW1,1,n = TRW1,1,n is the [3] 
test statistic for a univariate deterministic linear trend, 
and that the asymptotic mean and variance of TRW1,1,n/n 
are 1/15 and 11/6300, which agree with those obtained 
by [3] in a rather complicated proof. 
 
3.2. Vector Seasonal IMA(1,1)k Model 
 
Multivariate structural model (4) can be written as a 
vector seasonal IMA(1,1)k process 

k k
m m t m m( B ) ( B  I I t)y I I a , t aN(0,  ) a   (9) 

where B is the backshift operator such that Bkyt = yt–k, at 

= (a1t, …, amt)', a is a m × m positive definite matrix, 
and the parameter   is restricted to be positive so that 
ρ = (1 – Θ)2/Θ > 0. Process (9) is said to be invertible 
when Θ < 1 and strictly non-invertible when Θ = 1. In 
the last case, the cancellation of the matrix polynomials 
on both sides of the equation reveals the presence of de-
terministic seasonality. Noting that ρ(Θ) = ρ(1/Θ), the 
one-sided testing problem H0:  = 0 versus H1:  > 0 is 
equivalent to the two-sided one H0: Θ = 1 versus H1: Θ ≠ 
1. Hence, the LBI test statistic RWm,k,n for a null variance 
ratio in (4) is the LBIU test statistic for strict noninverti-
bility in (9). Note that RW1,k,n is the [11] test statistic for 
a seasonal MA unit root. 

Analogously, it can be proved that DRWm,k,n and 
TRWm,k,n are the LBIU test statistics of H0: Θ = 1 versus 
H1: Θ ≠ 1 in the reduced form of (7),  

k 2 k k
m m t m m m m( B ) ( B )( B   I I t)y I I I I a  

and (8) 

k k
m m m m t m m m m( B)( B ) ( B)( B    I I I I t)y I I I I a  

respectively. Note that DWR1,k,n is closely related to the 
[22] test statistic, while TRW1,k,n is the [12] test statistic 
for non-invertibility in the seasonal IMA(1,1)k model. 
 
3.3. Dynamic Seasonal Linear Models 
 
[6] considered testing the null hypothesis of deterministic 
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seasonality against the alternative of mixed deterministic 
and stochastic seasonality. A related multivariate LBI 
test statistic can be derived in the seasonal linear regres-
sion 

k

t jt jt t jt jt 1 j jtj 1
x ,  

   y u   v     (10) 

where xjt (j = 1, …, k) are a full set of seasonal dummy 
variables, βjt is either a time-varying parameter if j = 1 
or a nuisance constant parameter if j = 0, ut  N(0, ), 
vjt  N(0, (/k)) are mutually and serially uncorrelated 
vector errors, and is here divided by k for comparison 
purposes given that (10) reduces to (4) when 1 + … + K 
= k. Assuming that the initial conditions β1,0, …, βk,0 are 
fixed, (10) is a special case of (1) with X = [x1, …, xk]', 
 = [β1,0, …, βk,0]' and (') = IT + '(A1 + … + kAk), 
where xj = (xj1, …, xjT)', Aj = xjCTC'Txj, and the opera-
tor denotes the Hadamard product. The LBI test statistic 
for testing the null hypothesis of deterministic seasonal-
ity (H0: 1 + … + k = k) against the alternative hypothe-
sis of mixed deterministic-stochastic seasonality (H1: 1 
+ … + k = r < k), say SDm,k,n (r), is given by (2) with K 
= (A1 + … + kAk)/k, which coincides with RWm,k,n 
when r = k. Noting that MAjMAi = 0 for j ≠ i, we find 
that the eigenvalues of MK have mean and mean-square 
are given by 

1 (n 1)r / (6k)    and 2
2 1(2n 7) / 30    

Analogously, when the explanatory variables in (10) 
are trigonometric seasonal variables (x1t = 1, xjt = cos(jtπ/k) 
for j even, and xjt = sin[(j – 1)tπ/k] for j odd and j > 1), it 
is convenient to assume that vjt  N(0, j), where j = 
aj/k2 with aj = 1 (j = 1, k) and aj = 2 (j = 2, …, k – 1). 
Now, as before, (10) reduces to (4) when r = k. Here, we 
can focus our attention on testing the deterministic or 
stochastic nature of the local level β1t, the (j/2)-th har-
monic βjtcos(πjt/k) + βj+1,tsin(πjt/k) (j = 2, 4, …, k) or any 
combination of these k/2 harmonics. Taking as illustra-
tion the (j/2)-th harmonic, the LBI test statistic for testing 
the null hypothesis of deterministic seasonality (H0: 1 
+ … + k = k) against the alternative of mixed determi-
nistic-stochastic seasonality (H1: 1 + … + k = 2) is 
given by (2) with K = aj (Aj + Aj+1)/k

2 with Aj as defined 
before. We find that the eigenvalues of MK have mean 
and mean-square given by 

1 ja (n 1) / (6k)    

and 

2 2

2 1 j2 2 2

(4n 1)k 15 3
b

60k 4k sin ( j k)
 

  
   

 

where bj = 0 (j = 1, k) and bj = 1 (j = 2, …, k – 1). Note 
that these expressions are also valid to compute the mean  

and variance of the LBI test statistic for a deterministic 
level in presence of deterministic seasonality, H0:  = 0 
versus H1:  > 0, which is closely related to the KPSS 
test with seasonal dummies proposed by [23]. Further-
more, [7,8] derived the LBI test statistic, say TV1,k,n, for 
the dual testing problem of deterministic seasonality in 
presence of a deterministic level, which was generalized 
to the multivariate case by [16]. This test statistic is 
given by (2) with K = (a2A2 + … + akAk)/k

2. We find that 
the eigenvalues of MK have mean and mean-square 
given by 

1

(n 1)(k 1)

6k
  
  and 

2

2 1 2

2n 7 k 1

30 4k
 

  
  

 
 

 
4. Approximate Distributions and Accuracy 
 
4.1. Asymptotic Samples 
 
Following [11] and [21], it can be shown that the limiting 
distribution of RWm,k,n/mn under testing H0:  = 0 is  

2
m,k,n jj 1

1
RW ( j)

mk
 


           (11) 

where ξj ~ iid mk
2 . [2] noted that RW1,1,n/n follows the 

same limiting distribution as the Cramèr-von Mises 
goodness-of-fit test statistic. Hence, (11) is the average 
of mk copies of the Cramèr-von Mises distribution, de-
noted by CvM(mk)/mk. [24] found that the first four 
cumulants of a CvM(r) distribution are given by 

1k r / 6 , 2k r / 45 , , , 3k 8r / 945 4k 8r /157 5

which reveal that the distribution is strongly right- 
skewed and leptokurtic. We observe that the two pa-
rameter Inverse Gaussian distribution, IG(µ, λ), can be 
fitted to possess similar characteristics. The first four 
cumulants of this distribution are 

1k  , 3
2k   , 5 2

3k 3 /  , 7 3
4k 15 /   

and matching the first two cumulants, μ = r/6 and μ3/λ= 
r/45, we obtain that the fitted IG(r/6, 45r2/63) distribution 
has third and fourth cumulants given by κ3 = 8r/900 and 
κ4 = 8r/1350, which seem to be quite close to those of the 
CvM (r) distribution. The accuracy of the IG approxima-
tion is illustrated in Figure 1, which shows the limit pdf 
of RW1,1,n/n evaluated by the [13] procedure (solid line), 
along with the pdf of the fitted IG(µ, λ) distribution 
(dashed line) given by 

3 1/2 2 2f (x; , ) [ / (2 x )] exp  [ (x ) / (2 x)]          

with x > 0, μ = 1/6 and λ = 45m/63. We can see that the 
IG approximation provides a very good fit on both tails 
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Figure 1. Accuracy of the IG approximation. 

of the distribution. Therefore, accurate asymptotic p- 
values for RWm,k,n/mn can be computed from the cdf of 
the IG(µ, λ) distribution. 
 
4.2. Finite Samples 
 
The goodness-of-fit in the asymptotic case take us to ask 
if the approximation will be also good in finite samples. 
To evaluate the exact null distribution of RWm,k,n/mn 
from (3)-(6), we must determine the eigenvalues of the 
matrix MK. To this end, it is convenient to note that the 
projection matrix M can be alternatively written as M = 
[n(nn)–1n]  Ik. Hence, MK = (nn)–1  Ik and 
its eigenvalues are the reciprocals of those of the tridi-
agonal matrix nn, λt = [4sin2(tπ/2n)]–1 (t = 1, 2, …, n – 1), 
each one with multiplicity k. In the case m = 1, (3)-(6) 
can be expressed as a ratio of quadratic forms in normal 
variables whose distribution was tabulated by [11] using 
the [13] procedure (they used n – 1 as correction factor 
instead of n). However, when m > 1, similar tables can 
be obtained by Monte Carlo simulation from (2)-(6). 

To assess the accuracy of the IG approximation in 
small samples we simply compare the approximate p- 
values with the nominal sizes for n = 10, 20, 30, 50 10, k 
= 1, 2, 3, and m = 1, 2, 3, 4, 5. In general, the approxi-
mate p-values agree closely with the nominal sizes even 
in small samples, being the mean absolute errors less 
than 0.003. Such discrepancies seem not to be relevant in 
practical applications. Similar results have been found 
for DRWm,k,n and TVm,k,n. The results of this simulation 
study are not presented here due to space restrictions but 
are available from authors at request. 

5. Conclusions 
 
We have presented seasonal extensions of the [21] test 
for a deterministic level in multivariate models that can 
be used to detect different forms of non-invertibility in 
VARIMA models. The two-moment IG approximation to 
the null distribution of these test statistics, along with the 
closed forms expressions for the first two moments here 
derived, provide a simple and fast way to compute accu- 
rate critical values and p-values in practical applications. 
The proposed approximation could be also useful when 
modifying the test statistics to deal with intervention 
variables and serially correlated errors. Finally, the test- 
ing procedures described have been implemented in a 
computer program that can be freely obtained from au- 
thors at request. 
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