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Use of Limited Proteolysis and Mutagenesis To Identify Folding
Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl
Coenzyme A:Diacylglycerol Acyltransferase Activity
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Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under
stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):
diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent
acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated
experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as inde-
pendent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically
important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our
study underscores the structural understanding of this protein family and paves the way for their modification to improve the

production of neutral lipids.

,VI any microbes have the capacity to accumulate intracellular
neutral lipids (mainly single cell oils [SCO]) up to a large
percentage of their biomass (1). This fact has a great biotechno-
logical potential, since there is a growing interest in the produc-
tion of sustainable oils for their use as biodiesel or as commodity
oils (2). These SCO have been found to be produced by different
oleaginous microorganisms, such as microalgae, yeast, fungi, and
bacteria (3).

SCO are very appropriate for use as the source of biodiesel or
commodity oils, because the producing microorganisms are able
to grow using a great variety of substrates, have a short life cycle,
and are easy to modify by genetic engineering.

Regarding bacteria, the accumulation of the neutral lipids tria-
cylglycerols (TAGs), wax esters (WEs), and polyhydroxyalkonates
(PHAs) has been reported. The main purpose of this accumula-
tion is the storage of carbon and energy under growth-limiting
conditions. While PHAs are synthesized in a wide variety of bac-
teria (4), the accumulation of TAGs has been described only for a
few bacteria belonging to different genera of the actinobacterium
group, like Mycobacterium (5), Streptomyces (6), or Rhodococcus
(7; for a review, see reference 8). The accumulation of TAGs is
remarkably high in Rhodococcus and Gordonia, with up to 80% of
the cellular dry weight in the form of neutral lipids (9, 10). Besides,
in proteobacteria of the genus Acinetobacter, Pseudomonas, or Ma-
rinobacter, WEs are accumulated as energy storage components
under growth-limiting conditions (11, 12).

In both TAG synthesis in actinobacteria and WE synthesis in
proteobacteria, the enzyme responsible for the accumulation is
the wax ester synthase/acyl coenzyme A:diacylglycerol acyltrans-
ferase (WS/DGAT) (reviewed in reference 13). This promiscuous
enzyme was first characterized in the bacterium Acinetobacter bay-
lyi, where it was shown to act as both a DGAT and a WS (14). The
WS/DGAT of A. baylyi uses in vitro a wide range of substrates as
acyl acceptors, including alcohols of many chain lengths, 1,2- and
1,3-diacylglycerols, monoacylglycerol, diols, and thiols (14-17).

WS/DGATs were also found in some of the above-men-
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tioned bacteria able to accumulate neutral lipids, such as the
actinobacteria Mycobacterium (18), Streptomyces, and Rhodococ-
cus (19) and the proteobacteria Marinobacter (20) and Alcanivorax
(21).

Moreover, genes encoding proteins of the WS/DGAT family
were also found in plants. The sequenced genomes of Arabidopsis
thaliana and Oryza sativa contain 11 and 3 homologs of the Acin-
etobacter WS/DGAT, respectively, while a homolog was cloned
and characterized in Petunia (22).

This WE production was exploited for the production of fatty
acid ethyl esters (FAEEs) (microdiesel) in an ethanologenic Esch-
erichia coli strain by the esterification of ethanol with acyl-CoA
(23). This approach was improved, avoiding the B-oxidation of
the fatty acids to increase FAEE production and expressing hemi-
cellulases for the use of hemicellulase as the carbon source in mi-
crodiesel-producing E. coli (24).

WS/DGAT proteins catalyze the final step of TAG or wax ester
biosynthesis by the condensation of acyl-CoA and fatty alcohol or
diacylglycerol, respectively (25). All the studied WS/DGATSs con-
tain the conserved catalytic motif HHxxxDG, which has been
proven to be involved in the protein activity (26). A similar
HHxxxDG motif is conserved in a large number of acyl-CoA-
dependent acyltransferases also involved in the transfer of fatty
acyl groups by the nucleophilic attack of a hydroxyl group on the
thioester bond of the fatty acyl-CoA (13, 27-30). In this motif, the
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second conserved His has been proposed to be a general base that
promotes deprotonation of the hydroxyl group of the alcohol to
catalyze the transfer of the acyl group. The aspartic acid present in
the motif has also been shown to be critical for activity, and it
appears to play a structural role in the organization of the active
site.

In this work, we have modeled the structure of WS/DGAT
proteins. The model suggests that WS/DGAT proteins can
adopt a three-dimensional (3D) structure with two domains
(N-terminal and C-terminal domains) connected by a helical
linker, similar to several other HHxxxDG acyltransferases
whose structures have been solved. To confirm the model pre-
diction, limited proteolysis and mutagenesis were carried out.
Limited proteolysis validated the presence of two structural
domains within the protein. Moreover, we have found that
both domains are active when coexpressed as independent
polypeptides. The structural prediction and sequence align-
ment of different WS/DGAT proteins allowed us to find some
of the catalytically important residues of the enzyme. The role
of these residues was tested by checking the activities of the
corresponding mutants. Thus, the structural characterization
of the family of proteins described in this article would facili-
tate the modification of the WS/DGAT enzymes to enhance the
production of TAGs or wax esters.

MATERIALS AND METHODS

Sequence analysis software and public gene expression data sets. All
protein and nucleic acid sequences were obtained from the public data-
bases at NCBI (http://www.ncbi.nlm.nih.gov/). Protein database searches
were performed using BLASTP (31), available on the NCBI web site (http:
/[www.ncbi.nlm.nih.gov). Multiple sequence alignments were made us-
ing the software program MUSCLE (32) and plotted using the program
ESPript 2.2 (33). Neighbor-joining phylogenetic analysis (34) with boot-
strap values (500 replicates) (35) was carried out using the software pro-
gram MEGAS5 (36). The evolutionary distances were computed using the
Poisson correction method (37).

Structural modeling. The Ma2 3D structure was predicted by homol-
ogy modeling using the Phyre server (38) (http://www.sbg.bio.ic.ac.uk
/phyre2) or the robetta server (39) (http://robetta.bakerlab.org/). The
crystal structure of tyrocidine synthetase TycC (PDB identifier [ID] 2]JGP)
was used as the template (40). An image of the resulting 3D model was
generated using the program Pymol (DeLano Scientific, Palo Alto, CA,
USA) (http://www.pymol.org).

Plasmid construction. Plasmids used in this work (described in Table
1) were constructed by cloning the relevant PCR-generated fragments
into pET29¢ (Km") or pET3a (Ap") expression vectors (Novagen). De-
sired DNA fragments were amplified using oligonucleotides containing
Ndel and Xhol restriction sites and Marinobacter hydrocarbonoclasticus
VT8 (DSMZ collection, Braunschweig, Germany) genomic DNA as the
template. After PCR amplification, the resulting products were digested
with Ndel and Xhol and ligated to an NdeI-Xhol-digested pET29c plas-
mid. The fragments to be inserted in pET3a were amplified and cloned
using oligonucleotides containing Ndel and BamHI restriction sites. Plas-
mids were introduced by electroporation into DH5a cells (41). The iden-
tity of constructed plasmids was checked by DNA sequencing. Plasmid
DNAs were then transferred to strain C41(DE3) (42) for protein overex-
pression.

Site-directed mutagenesis. Site-directed mutagenesis of the Ma2 gene
within the pET29¢ plasmid was performed using the QuickChange kit
(Stratagene, California) using the procedure specified by the manufac-
turer. A total of 3 colonies were selected, and their plasmids were isolated
by using the Miniprep kit (Qiagen, The Netherlands). Positive mutants
were selected by DNA sequencing.
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TABLE 1 Plasmids used in this work

Size Reference or

Plasmid Description Phenotype (kb) source
pET29¢ Expression vector Km" 5.4  Novagen
pET3a Expression vector Ap* 4.7 Novagen
pETMa2 pET29¢::Ma2 Km" 7 This work
pETMa2A297C  pET3a:Ma2(1-176) Ap* 6 This work
pETMa2A178N  pET29c:Ma2(179-473) Km" 6.3 This work
pETMa2H140A pET29c:Ma2H140A Km" 7 This work
pETMa2H141A pET29c:Ma2H141A Km" 7 This work
pETMa2D145A  pET29c:Ma2D145A Km" 7 This work
pETMa2P118A  pET29c:Ma2P118A Km" 7 This work
pETMa2L119A  pET29c:Ma2L119A Km" 7 This work
pETMa2W120A pET29c:Ma2W120A Km" 7 This work
pETMa2N270A  pET29¢:Ma2N270A Km" 7 This work
pETMa2D271A  pET29c:Ma2D271A Km" 7 This work
pETMa2R305A  pET29c::Ma2R305A Km" 7 This work

Protein purification. Ma2 protein containing a C-terminal His tag
(Ma2HT) and its corresponding mutants were purified as follows. An
overnight culture of Escherichia coli C41(DE3) cells harboring the appro-
priate pET29c-derived plasmid was diluted 20-fold in 1 liter of LB
medium containing kanamycin (50 pg/ml) and incubated at 37°C with
shaking until an A4, of 0.6 was reached. Then, isopropyl-B-p-thiogalac-
topyranoside (IPTG) was added to a final concentration of 0.5 mM. After
3 h of further incubation, cells were pelleted and then frozen at —80°C.
This pellet was resuspended in 20 ml of buffer A (50 mM Tris—HCI [pH
7.5] and 1 M NaCl) containing 0.1 mM phenylmethylsulfonyl fluoride
(PMSF) and then sonicated. Cellular debris was eliminated after centrif-
ugation at 40,000 rpm for 20 min. Supernatant was loaded onto a 5-ml
His-Trap column (GE Healthcare) equilibrated with buffer A. Bound pro-
teins were eluted with a linear gradient of buffer B (50 mM Tris—HCI [pH
7.5], 1 M NaCl, and 0.5 M imidazole) in 20 column volumes. The protein
sample was then loaded onto a Superdex 200 HR 10/30 size exclusion
column (GE Healthcare, United Kingdom) equilibrated with buffer C (50
mM Tris—HCI [pH 7.5] and 600 mM NaCl) and eluted with the same
buffer. Glycerol was added to a 20% final concentration, and proteins
were stored at —80°C. Protein molecular weights were checked by matrix-
assisted laser desorption—ionization time of flight (MALDI-TOF) mass
spectrometry as described below.

Limited trypsin digestion. The Ma2 protein at a concentration of 0.8
mg/ml in buffer B was incubated with different amounts of trypsin at
37°C. After 30 min of trypsin treatment, loading buffer blue (2X) (0.5 M
Tris-HCI [pH 6.8], 4.4% [wt/vol] SDS, 20% [vol/vol] glycerol, 2% [vol/
vol] 2-mercaptoethanol, and bromophenol blue) was added to stop the
reaction. After boiling the samples for 5 min, limited trypsin digestion was
verified by 12% SDS-PAGE and Coomassie brilliant blue staining.

Mass spectrometry analysis. Molecular masses of intact and protease-
digested Ma2 proteins were determined by MALDI-TOF mass spectrom-
etry. Both preparations were desalted using ZipTip C, microcolumns
(Millipore) (2-pl sample of Ma2 at 0.8 mg/ml) with elution using a 0.5-jl
SA (sinapinic acid [10 mg/ml] in [70:30] acetonitrile-trifluoroacetic acid
[0.1%]) matrix on a GroundSteel massive 384 target (Bruker Daltonics).
An Autoflex III MALDI-TOF/TOF spectrometer (Bruker Daltonics) was
used in linear mode with the following settings: 5,000~ to 50,000-Da win-
dow; linear positive mode; ion source 1, 20 kV; ion source 2, 18.5 kV; lens,
9 kV; pulsed ion extraction of 120 ns; and high gating ion suppression up
to 1,000 M,. Mass calibration was performed externally with Bruker’s
Protein 1 standard calibration mixture (Bruker Daltonics) in the same
range as the samples. Data acquisition was performed using the Flex-
Control 3.0 software program (Bruker Daltonics), and peak peaking and
subsequent spectral analysis were performed using FlexAnalysis 3.0 soft-
ware (Bruker Daltonics).
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Pulldown assay. Pulldown assay with fragments Ma2(1-176) and
Ma2(179-473) and the His tag was carried out as follows. E. coli
C41(DE3) cells were transformed with plasmids pETMa2A178N (Km")
and pETMa2A297C (Ap"). LB medium containing kanamycin (50 p.g/ml)
and ampicillin (100 pg/ml) was used to ensure that both plasmids were
maintained in the cell. Twenty-five milliliters of these cultures were in-
duced as described above, resuspended in 1 ml of buffer A, and then
sonicated. After sonication, the pellet was centrifuged at 40,000 rpm for 10
min. Supernatant was incubated for 30 min with nickel-nitrilotriacetic
acid (Ni-NTA) agarose resin (Qiagen). The resin was washed with buffer
A, and then proteins were eluted with 100 wl of buffer B. All the fractions
were applied to SDS-PAGE. The gels were stained with Coomassie bril-
liant blue.

Activity assay. A spectrophotometric assay was developed to deter-
mine the kinetic properties of Ma2 and the two-domain complex. The
concentration of sulthydryl groups of CoA released during the con-
densation reaction between fatty/isoprenoid CoA-activated acids and
the group alcohol was determined by using Ellman’s reagent (5,5'-
dithio-bis-[2-nitrobenzoic acid] [DTNB]) (43), essentially as de-
scribed previously (20). Final concentrations of reagents in the assay
were as follows: 250 wM palmitoyl-CoA, 250 pM 1,2-dipalmitoyl glyc-
erol or other alcohols (hexadecanol, glycerol, butanol, ethanol, or
methanol), and 250 wM DTNB. Five-hundred-microliter reaction
mixtures were incubated for 12 min at 37°C with 0.5 pg/ml of Ma2 or
the complex formed by the N- and C-terminal domains. Released CoA
was measured using a € value (extinction coefficient) of 14,150
M~ 'ecm ! for TNB (2-nitro-5-thiobenzoic acid) (44). At least 3 reac-
tions per sample were measured.

RESULTS

Structural modeling of WS/DGAT proteins predicts the CoA-
dependent acyltransferase fold. Despite the growing number of
WS/DGAT proteins that have been characterized for their bio-
technological interest, little is known about the structural features
and the role of the conserved residues of this family of proteins.

A BLAST search against current databases using the sequence
of one of the best-characterized WS/DGAT enzymes, M. hydro-
carbonoclasticus Ma2 (UniProt accession number A1U572) (20),
revealed more than 1,000 putative WS/DGAT homologs in bacte-
ria and plants (Fig. 1A). A phylogenetic analysis with 51 represen-
tative enzymes is shown in Fig. 1B. The alignment of the proteins
used in the phylogenetic analysis is shown in Fig. S1 in the supple-
mental material. Plant WS/DGAT forms a well-supported mono-
phyletic subclade that shares a common origin with bacterial WS/
DGAT. Within bacteria, most proteobacterial WS/DGATSs are
phylogenetically related. However, the different actinobacterial
WS/DGAT enzymes do not form a monophyletic group. Each
actinobacterium strain shows a high number of WS/DGAT para-
logs (up to 15) dispersed along the bacterial branches of the phy-
logenetic tree. Some of them seem to be recent, such as the
YP_702929 and YP_707847 proteins of R. jostii.

To further characterize this WS/DGAT family of proteins, we
carried out structural prediction and modeling using the Protein
Homology/analogY Recognition Engine (PHYRE) Web server
(38).We have launched a PHYRE batch job using the primary
sequences of seven representative bacterial and plant WS/DGAT
proteins selected from phylogenetic analysis (Fig. 1B). Three
different actinobacterial WS/DGATSs (Ms, Mycobacterium sp.,
YP_001073143; Rj, Rhodococcus jostii, YP_701572; Nf, Nocardia
farcinica, YP_117375), three gammaproteobacterial WS/DGATSs
(Ma, M. Hydrocarbonoclasticus Ma2; Ab, Alcanivorax borkumen-
sis, YP_693524; As, Acinetobacter sp., YP_045555), and one plant
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WS/DGAT (At, Arabidopsis thaliana, NP_568547) were used. The
alignment of these selected proteins is shown in Fig. 2A. For the
seven studied proteins, the same predicted structural homologs
were found, including surfactin A synthetase (PDB ID 2VSQ
[45]), tyrocidine synthetase TycC (PDB ID 2JGP [40]), VibH, a
nonribosomal peptide synthetase (NRPS) condensation enzyme
(PDB ID 1L5A [46]), polyketide synthase-associated protein 5
(PDBID 1Q9J [47]), trichothecene 3-0-acetyltransferase (PDB ID
3B30 [48]), or vinorine synthase (PDB ID 2BGH [49]). All the
found homologs were CoA-dependent acyltransferases contain-
ing the HHxxxDG motif also present in WS/DGAT. The confi-
dence of the prediction was 100% for all seven proteins. For clar-
ity, we have chosen the structural prediction of Ma2 as the WS/
DGAT structural model. Ma2 is the protein we have used for the
subsequent in vitro experiments because it was previously shown
to be soluble and active when purified after overexpression in E.
coli (20). A 3D model of Ma2 was generated by PHYRE homology
modeling using tyrocidine synthetase (TycC) acyltransferase
(PDBID 2JGP) as the template (Fig. 2B). A similar Ma2 model was
obtained using robetta as the modeling software program (data
not shown). Four hundred fifty-eight residues (97%) of Ma2
could be modeled at >90% accuracy, although the sequence iden-
tity between Ma2 and 2JPG is only 11%. The structural homology
between Mal and 1Q9] was also recently reported (50).

The structural model suggests that Ma2 can adopt a 3D struc-
ture with two domains (N-terminal and C-terminal domains)
connected by a helical linker. The N domain contains a core of
five-stranded mixed sheet (32, B5, B6, B7, and B12) surrounded
by three alpha-helices (a2, a3, and a4). The core of the C domain
is composed by a six-stranded mixed sheet (38, 39, 310, B11, 313,
and B14) and four alpha-helices covering the external face of the
sheet (a8, a9, a10, and «12). The internal face of the C sheet is
covered by the N domain. Both domains are connected by a helical
linker formed by alpha-helices a6 and 7.

Limited proteolysis validates two structural domains. The
predicted tertiary structure of WS/DGAT enzymes was probed in
vitro by limited proteolysis of the purified protein Ma2HT.
Ma2HT was treated with trypsin as described in Materials and
Methods. We observed, after trypsin treatment, two discrete
bands with lower molecular masses than the full-length protein
(Fig. 3A). Moreover, MALDI-TOF spectrometry of the digested
protein gave two peaks of molecular masses 20,174.3 and 28,556.9
Da, respectively. The sizes perfectly match the M1-R177 and
L209-R468 fragments of the Ma2HT protein, respectively. The
result suggests that indeed there are two connected domains in
this family of proteins. The predicted connecting segment (70
amino acids [aa]) is very exposed to the protease action and was
rapidly degraded by the trypsin treatment, and thus, after the tryp-
sin treatment, only the two N and C domains were observed. In
Ma2, this helical link is located approximately between residues
170 and 240 (shown in green in Fig. 2A and 3B).

Ma2 domains interact and are functional together when co-
expressed. To further demonstrate the existence of this structural
organization of two interacting domains, both domains were si-
multaneously coexpressed in different plasmids contained in the
same cell.

According to the structural prediction and the trypsin treat-
ment results, we decided to separately express amino acids 1 to 176
and 246 to 473. The 1-176 fragment (N domain) was cloned into
pET3a (plasmid pETMa2A297C) and was effectively expressed in
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FIG 1 WS/DGAT family of CoA-dependent acyltransferases. (A) Distribution of the WS/DGAT proteins found by BLASTP. (B) Phylogeny of the WS/DGAT
family of acyltransferases. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test is shown next to the branches. The
evolutionary distances are in the units of the number of amino acid substitutions per site. All positions containing gaps and missing data were eliminated. Plant
enzymes are highlighted in green, actinobacterial enzymes in blue, and proteobacterial enzymes in red. The accession number of each enzyme is shown. The
sequence of the unrelated acyltransferase TycC was used to root the tree. Sequences used in the multiple alignment shown in Fig. 2 are marked by black

arrowheads.

C41(DE3) cells. However, we were not able to express the 246—
473 fragment cloned into pET29c. Four other constructions con-
taining the predicted C-terminal domain were tested (178465,
178—-473, 216—465, and 216—473), and we were able to overex-
pressed only the 178-473 fragment (plasmid pETMa2A178N)
(datanot shown). Although according to the structural prediction
both domains should fold independently, removal of the helical
linker somehow affects the stability of the C-terminal domain.

As shown in Fig. 4A, both domains are soluble when coexpressed
and could be purified using a Ni-NTA column. The resultant com-
plex formed by the 1-176 and 178473 fragments eluted as a single
complex with an elution volume corresponding to a molecular mass
of 100 kDa in S200 gel filtration chromatography (data not shown).
The elution volume of the purified Ma2HT protein also corre-
sponded to a molecular mass of 100 kDa. This value is in agreement
with the molecular mass of a homodimer Ma2 protein as described
for other WS/DGAT acyltransferases (16).

February 2014 Volume 80 Number 3

The activity of the reconstituted enzyme was checked in vitro us-
ing a spectrophotometric coupled assay with the Ellman’s reagent
(DTNB) (see Materials and Methods). The specific activities were
measured with palmitoyl-CoA as the acyl-CoA and hexadecanol or
dipalmitoyl glycerol (DPG) as the alcohol. Hexadecanol was used for
the measurement of WS activity, and dipalmitoyl glycerol was used
for DGAT activity. As shown in Fig. 4B, the activity of the purified N
and C complex was in the same range as the activity of wild-type (wt)
Ma2, which we have used as a control.

Asmentioned in the introduction, there is a growing interest in
finding natural or modified proteins able to produce intracellular
biodiesel (microdiesel) in an effective manner. Biodiesel (FAEEs)
is produced by the esterification of a small alcohol (ethanol or
methanol) with a fatty acid. Thus, we have also checked the activ-
ity of wt Ma2 with different small alcohols (ethanol, methanol,
butanol, and glycerol). Very poor activity of wt Ma2 was found in
any case (see Fig. S2 in the supplemental material). The same poor
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FIG 2 (A) Multiple sequence alignment of representative WS/DGAT proteins from different organisms as described in Results. Identical residues are shown in
white on a red background, while similar residues are shown in red. The secondary structure elements of the modeled Ma2 protein are shown above the
alignment. Secondary structure representation is colored red for the N-terminal domain, blue for the C-terminal domain, and green for the connecting helices.
(B) Structural prediction analysis of the Ma2 protein revealed a monomer with a two-domain structure: beta sheets are shown in blue, alpha helices in magenta,
and connecting loops in green. The position of the active site motif HHxxxDG is shown by a red star. The acyl-CoA binding face or front face (top) and the fatty

alcohol/DAG binding face or back face (bottom) are shown.

activity for the production of FAEEs was found for the reconsti-
tuted complex (Fig. 4B).

The WS/DGAT HHxxxDG catalytic motif is required for in
vitro acyltransferase activity. The main conserved motif in WS/
DGAT enzymes is the HHxxxDG motif, also present in other acyl—
CoA-dependent acyltransferases (Fig. 2A) (26).

To study the requirement of the active site residues of WS/
DGAT enzymes in the catalytic reaction, we constructed H140A,
H141A, and D145A Ma2 mutants by site-directed mutagenesis of
the pETMa2 plasmid (see Materials and Methods). We compared
the activities of the mutants and the wild-type enzyme by using a
spectrophotometric coupled assay of the purified proteins (Fig. 5).

Our results showed that the mutation HI141A resulted in a
defective enzyme: Ma2 H141A is 60-fold less active than wild-type
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Ma2 with hexadecanol and 5-fold less active with dipalmitoyl
glycerol (Fig. 5).

H140A and D145A Ma2 mutants have also been shown to be
critical for activity. The activity of the purified D145A mutant was
similar to the activity of H141A mutant, while the activity of the
H140A mutant was slightly higher but in any case at least 10 times
lower than the activity of wt Ma2.

WS/DGAT motifs involved in the proper conformation of
the active site are also essential for acyltransferase activity. To-
gether with the conserved residues HHxxxDG, involved in the
direct catalysis of the acyltransferase reaction, there are other con-
served motifs characteristic of WS/DGAT enzymes (51). The con-
served residues '"* PLW'?° form motif I (Fig. 2A). Mutation of the
residue P118 to alanine reduced catalysis to the same extent as the
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FIG 3 Limited trypsin digestion of Ma2. (A) Twelve percent SDS-PAGE gel containing 15 M samples of Ma2 treated for 30 min at 37°C with different amounts of
trypsin and subjected to electrophoresis at 200 V for 45 min. Lane 1, Ma2 without trypsin treatment; lane 2, 130 M trypsin without Ma2; lanes 3 to 7, Ma2 treated with
130 nM, 65 nM, 13 nM, 6.5 nM, or 1.3 nM trypsin, respectively. Positions of bands corresponding to the wt Ma2 protein and the C and N-terminal domains are shown
at left. The corresponding molecular masses of the fragments, as determined by MALDI-TOF mass spectrometry, are also indicated. (B) Locations of the C-terminal
(magenta) and N-terminal (cyan) domains in Ma2 modeled structure and in the primary sequence. The position of the active site motif HHxxxDG is shown.

essential catalytic histidine H140 (Fig. 5). Purified Ma2 L119A Residues Asn270 and Asp271 form motif IT. Mutation of either
mutant activity was also reduced compared to wild-type Ma2 ac- N270 or D271 to Ala significantly reduced the activity of the pro-
tivity. The Ma2 W120A mutant was overexpressed in C41(DE3)  tein.

cells, but the resulting protein was insoluble. In most of the solved structures of HHxxxDG acyltransferases,

70
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specific activity
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FIG 4 Interaction of Ma2 N- and C-terminal domains. (A) Twelve percent SDS-PAGE gel showing the induction and binding assay in a Ni-NTA agarose resin of C41
cells transformed with both the pETMa2A 178N and pETMa2A297C plasmids. Lane MW, molecular mass standards; lane 1, no induced fraction; lane 2, induced culture;
lane 3, fraction after His-trap Ni agarose resin; lane 4, fraction after a Superdex 200 HR 10/30 column chromatography. (B) Activity of Ma2 wild type (WT) and the
reconstituted complex (N +C) with palmitoyl-CoA and hexadecanol (Hex), 1,2-dipalmitoyl glycerol (DPG), or ethanol (Eth). Values are averages for three experiments.
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FIG 5 Activities of different Ma2 mutants for ester production using palmitoyl-CoA and hexadecanol (A

dipalmitoyl glycerol (B). Values are averages for three experiments.

there is a conserved arginine interacting with the aspartic acid of
the consensus motif. In the alignment of the WS/DGAT acyltrans-
ferases (Fig. 2A), we have found that there is a conserved arginine
(R305) in the loop between B9 and B10. R305 was mutated to
alanine to check the role of this residue in protein activity. As
shown in Fig. 5, the protein Ma2R305A has reduced activity in
vitro.

To analyze the position and role in catalysis of these conserved
residues, we have compared the model of Ma2 from M. hydrocar-
bonoclasticus with the structure of hydroxycinnamoyltransferase
(HCT) from sorghum bound both to shikimate (acyl acceptor)
and p-coumaroyl-CoA (acyl donor) (Fig. 6). HCT is the closest
homolog to WS/DGAT, whose structure has been solved, bound
to both the acyl acceptor and the acyl donor (52). Thus, we have
been able to model the acyl-CoA molecule bound to Ma2 (Fig. 6).

DISCUSSION

Phylogenetic analysis of the WS/DGAT family, found in bacteria
and plants, showed that bacterial and plant WS/DGATs are lo-
cated in two monophyletic subclades (Fig. 1B). Within the bacte-
rial WS/DGAT enzymes, two groups have also been found: acti-

B dipalmitoyl glycerol
50
45
40
35
30
25
20

specific activity
pmol (mg min)!

15
10

V-S0€-d

%

or DAG production using palmitoyl-CoA and

nobacteria and proteobacteria. Proteobacterial WS/DGATSs show
evolutionary proximity. However, actinobacterial WS/DGAT
paralogs are dispersed along the bacterial clusters (53). It was re-
cently found that there are differences in the substrate selectivities
of two different R. jostii WS/DGAT enzymes (50). The finding of
these different paralogs in actinobacteria could be due to differ-
ences in enzyme selectivity. Structural analysis of the family could
help in the elucidation of the specificity factors for accepting a
fatty alcohol or a diacylglycerol (DAG) molecule as a substrate.

Molecular threading and limited proteolysis showed that pro-
teins of the WS/DGAT family structurally belong to the CoA-
dependent acyltransferases family. WS/DGAT enzymes, like other
CoA-dependent acyltransferases, are composed of two structural
domains (N- and C-terminal domains) with similar fold (Scop:
CoA-dependent acyltransferase fold) and size. Using a spectro-
photometric coupled assay, we have found that the complex
formed by the two domains coexpressed as independent polypep-
tides is active in vitro (Fig. 4). The slightly lower activity of the
reconstituted complex could be due to some dissociation.

Not only WS activity but also significant DGAT activity was
found using the coupled assay for purified wild-type Ma2 and for

FIG 6 Structural alignment of Ma2 and HCT. Back (A) and front (B) views of the alignment are shown. The Ma2 model is shown in wheat color, and the HCT
structure (4KEC.pdb) is shown in cyan. Important secondary structural elements are highlighted, including the catalytic motif (cm), motifs I (mI) and II (mlII),
CoA, acyl group (Ac), and acyl acceptor group (AA). A zoomed view of the Ma2 catalytic site modeled with CoA and the acyl and acyl acceptor groups is also

shown.
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the reconstituted complex (Fig. 4B). This DGAT activity of Ma2
was not observed before using a less-sensitive thin-layer chroma-
tography (TLC) assay (20).

We have also found conserved residues essential for Ma2 ac-
tivity (Fig. 5) that could be responsible for the WS/DGAT activity.
In the HHxxxDG acyltransferases, the second histidine (His141 in
Ma2) has been proposed to be the only catalytic residue that acts as
a general base to extract the proton from the hydroxyl group of the
alcohol to catalyze the nucleophilic attack (30), although both
histidines were shown to be essential for wax ester synthase/acyl-
CoA:diacylglycerol acyltransferase catalysis in A. baylyi (26). In
Ma2, alanine scanning not only shows that the H141A mutant is
poorly active in vitro but that it is one of the most deleterious
mutants of all the mutants tested, thus confirming the essential
catalytic role of the second histidine in WS/DGAT. H140 was also
shown to be important for catalysis, since the H140A mutant is
10-fold less active than wt Ma2.

Although it had been proven that the aspartic acid of the
HHxxxDG motif is essential for enzyme activity in acyl-CoA-
dependent acyltransferases, playing a structural role in the or-
ganization of the active site (54), the mutation of the aspartic
residue in acinetobacter WS/DGAT did not affect the activity of
the protein (26). However, Asp145 in Ma2 again seems to be
essential for both wax and TAG synthesis in vitro (Fig. 5). Thus,
despite having the same fold, some differences in the catalytic
residues could appear between different homologs of the WS/
DGAT family.

According to these results, we propose that, as in some other
acyltransferases, the second histidine in WS/DGAT is the catalytic
histidine, while the aspartic acid and the first histidine play a struc-
tural role in the organization of the active site.

Together with the catalytic HHxxxDG motif, we have found
some other conserved motifs involved in WS/DGAT activity. The
conserved residues '"*PLW"'?° that form motif T have been found
to be involved in protein activity according to the alanine scanning
results. However, we do not think the role of these residues is
specific to the diacylglycerol acyltransferase reaction, since similar
residues are also present in other acyl-CoA-dependent acyltrans-
ferases, such as HCT ("*°PLL'*?*), TycC 2JPG (***PLV**), or VibH
1L5A (*°*PIT!®). Motif I is located at the N-terminal end of 6,
proximal to the C-terminal end of B7, where the catalytic His
resides (Fig. 6A). This suggests a structural function of motif I in
the right folding of the catalytic center.

The essential role of R305 (Fig. 5) is also consistent with the
CoA-dependent acyltransferase fold, where a conserved arginine
was always found in the corresponding loop connecting 39 and
10. This conserved arginine binds the aspartic acid of the active
site to position the HHxxxDG catalytic loop (48, 52). However,
this important role of the conserved arginine had not been dem-
onstrated by mutagenesis. In our study, the poor acyltransferase
activity of Ma2R305A is similar to the activity of Ma2D144A, as
expected if the main role of R305A is the right positioning of
D144.

Finally, motif II is located at the N-terminal end of a9.
Comparing our WS/DGAT structure with the structure of HCT
bound to acyl-CoA, we observed that motif II Asn270 and
Asp271 in Ma2 could be interacting with the phosphate groups
of the acyl-CoA molecule (Fig. 6) in the same way as S268 and
Thr269 in HCT.

Moreover, WS/DGAT alignment with HCT also showed that
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the oxyanion of the modeled CoA is close to the side chain hy-
droxyl of the conserved residues Ser388 and N389 at the C termi-
nus of B11 (Fig. 6). Thus, S388 and N389 could be the residues
interacting with the acyl-CoA oxyanion for a proper binding of
acyl-CoA. In fact, a point mutation in the equivalent serine of
WS/DGAT AtfA (S374P) resulted in significant reduction of ac-
tivity in A. baylyi (51).

The essential role of R305 and the residues forming motifs I
and II is consistent with the acyl-CoA-dependent acyltransferase
fold. However, despite the essential role of the found WS/DGAT
motifs in the catalysis of the acyltransferase reaction, none of them
seems to be involved in selectivity. WS/DGAT motifs are con-
served in all the different subfamilies, and identical or similar res-
idues have been found in other acyltransferases not belonging to
the WS/DGAT family.

Thus, the structural characterization presented in this arti-
cle identifies two folding domains and sequence motifs critical
for WS/DGAT acyltransferase activity. This identification facil-
itates the understanding of this family of proteins with a wide
biotechnological potential for the production of TAGs or wax
esters.
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