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Universal scaling of Lyapunov-exponent fluctuations in space-time chaos
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Finite-time Lyapunov exponents of generic chaotic dynamical systems fluctuate in time. These fluctuations
are due to the different degree of stability across the accessible phase space. A recent numerical study of spatially
extended systems has revealed that the diffusion coefficient D of the Lyapunov exponents (LEs) exhibits a
nontrivial scaling behavior, D(L) ~ L7, with the system size L. Here, we show that the wandering exponent y
can be expressed in terms of the roughening exponents associated with the corresponding “Lyapunov surface.”
Our theoretical predictions are supported by the numerical analysis of several spatially extended systems. In
particular, we find that the wandering exponent of the first LE is universal: in view of the known relationship with
the Kardar-Parisi-Zhang equation, y can be expressed in terms of known critical exponents. Furthermore, our
simulations reveal that the bulk of the spectrum exhibits a clearly different behavior and suggest that it belongs

to a possibly unique universality class, which has, however, yet to be identified.
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I. INTRODUCTION

Lyapunov exponents (LEs) (};) are the most powerful tools
for a detailed characterization of chaotic dynamics [1]: they
allow determining of the number of unstable directions, the
Kolmogorov-Sinai entropy, the fractal dimension, and other
dynamical invariants. The number of LEs equals the number
of degrees of freedom N. The LEs, ordered from the largest
to the smallest one, define the so-called spectrum of LEs. In
spatially extended systems, N oc L¢ (where L is the system
linear size and d is the dimensionality of the space); in
the thermodynamic limit (L — oo) the Lyapunov spectrum
converges to an asymptotic curve, that is specific to each
system and depends only on p = i/L?. The existence of such
a limit shape is taken as the proof of extensivity, i.e., that
quantities like the fractal dimension or the Kolmogorov-Sinai
entropy are proportional to the system volume.

The LEs quantify the exponential expansion (contraction)
growth rates along the N covariant or characteristic directions
in the infinite-time limit. In fact, tangent space can be
decomposed into covariant subspaces, and the corresponding
vector base provides relevant information that is encoded in
the so-called characteristic or covariant Lyapunov vectors
(LVs) [2-4]. These vectors actually contribute to identify
the local structure of the invariant measure, to uncover the
possible presence of collective phenomena [5], to determine
the dimension of the inertial manifold [6], or to detect spurious
LEs observed in embedded time series [7], to cite a few
applications.

In a time interval ¢, an infinitesimal perturbation pointing
along the ith LV is expanded or contracted in tangent space by a
factor ™, where A, (1) s the so-called exponential expansion
factor. As a result of the variable degree of instability in phase
space, A;(t) fluctuates along the trajectory (or, equivalently,
across phase space). Nevertheless, the finite-time Lyapunov
exponent (FTLE) A;(¢r) = A;(t)/t converges, in the infinite-
time limit, to the ith LE, lim,_, o, A;(¢) = ();), where brackets
indicate an average over trajectories [8] (hereafter, phase-space
average and time average are assumed to coincide).
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Itis natural to ask how the FTLE fluctuations scale with both
time and system size. As already argued in [9], this question is
not only connected with the convergence to the thermodynamic
limit but also with the extensivity of space-time chaos. The
best way to approach the problem is by introducing the (time-
dependent) variances,

X2 = (MOA;0) — (1) ()2, M
and the corresponding diffusion coefficients,

2

It is expected that for large-enough times the distribution
P(A,t) of FTLEs [A(?) = (A1(?), ...,An(2))] is described by a
suitable large-deviation function, P(A,?) o exp[—S(X)¢], and
S({L)) = 0. Under the fairly general assumption that the LE
fluctuations are short range in time (this is typically true
away from bifurcations and phase transitions), the central limit
theorem implies that S(A) has a quadratic structure around its
minimum, i.e., that P(X,¢) is Gaussian:

PA.1) o exp [—%a — (ANQA — (AN } G

where T denotes the transpose, while the matrix Q is the inverse
of the symmetric diffusion matrix, i.e., Q = D~!. Thus, within
the Gaussian approximation, D describes how strong FTLE
fluctuations are for a given system size. In particular, the
diagonal elements D;; correspond to the diffusion coefficient
of the expansion rates A; around the average growth (A;)z.
Chaos extensivity would naively suggest that the diffusion
coefficients should scale as L~¢ with the system size. Based
on the numerical simulation of a variety of systems in
d =1, Kuptsov and Politi [9] have, however, found that
D;;(L) ~ L™ with a wandering exponent that is smaller than
1: y >~ 0.85fori > 1, while y = 1/2 fori = 1. At the same
time, it was found that the off-diagonal terms decay as L~
and so do the eigenvalues of the matrix D, in agreement with
the expectation for an extensive chaotic dynamics. It is rather
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intriguing that although the matrix D becomes increasingly
diagonal in the thermodynamic limit its diagonal terms scale
differently from the matrix eigenvalues [9]. In the absence of
theoretical arguments, one cannot a priori exclude that the
scaling behavior of the bulk of the spectrum is affected by
strong finite-size corrections, so that y — 1 as L — oco. We
shed some light on this problem by resorting to the well-known
connection between LV dynamics and the kinetics of rough
surfaces. This allows unveiling of a theoretical connection
between the scaling properties of the FTLE fluctuations and
the velocity fluctuations of rough surfaces subject to stochastic
forces. This mapping leads to a scaling relation between
the universal roughening exponents and the FTLE wandering
exponent y, which thus turns out to be a true critical exponent.

More specifically, in Sec. II, we develop the theoretical
scaling arguments which lead us to derive the relevant mathe-
matical relationships. In Sec. III, our systematic investigation
of the maximal Lyapunov exponent confirms the theoretical
expectations as well as the relationship with Kardar-Parisi-
Zhang (KPZ) dynamics [18]. Section IV is devoted to the
analysis of the bulk of the spectrum which suggests the
correspondence with some yet unknown stochastic field theory.
Finally, in Sec. V, we summarize the main results and briefly
discuss the open problems.

II. THEORY

In this section we focus on the scaling behavior of the
diagonal elements D;; of the matrix D. For the sake of
simplicity, from now on, we drop the index i in the formulas
and reintroduce it in the next sections, when it will be necessary
to distinguish between different values of the integrated density
p=1i/L%.

In the following we show that D(L) ~ L~7, where the
exponent y can be expressed in terms of the scaling properties
of the corresponding LV, v(x,?). Our scaling theory is based
upon the well-known interpretation of the dynamics of a LV
as the statistical evolution of a rough surface [10-14].

For each given LV v(x,t) we define an associated “sur-
face” field h(x,t) through the logarithmic transformation
h(x,t) = In|v(x,t)|. The LV surface so defined is known to
be generically rough and scale invariant [10-14]. As we are
interested in the expansion factor of the LV over a time interval
t, it is useful to introduce the field

¢(x.1) = h(x,1) — h(x,0), “)

which corresponds to the logarithm of the finite-time expan-
sion factor (over a time ¢). The fluctuations around the average
surface position at any given time are quantified by the surface
width W:

W2(,L) = ($2(x.0)) — (B0e.0) ), )

where the angular brackets denote an average over an ensemble
of different trajectories, while the overline is a spatial average
(here and in the following). Scale invariance generically leads
to finite-size scaling of surface fluctuations that can be cast in
the typical scaling form [15]:

W2(t,L) = L**F(t/L%), (6)
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where F(u) is a dynamical scaling function, which reaches
asymptotically (u1 — o0) a constant value and grows as u>%/%
for small values of u. All of the above means that at short
times W2 grows as t2*/%, until ¢ ~ L* when W? saturates to
a size-dependent value L?*. The roughness exponent @ and
the dynamic exponent z quantify space-time correlations and
fully characterize the statistical and dynamical behavior of the
surface (equivalently, the LV).

A. Main result

Before proceeding with the details of the theoretical
derivation, we anticipate our main result, namely, that for any
FTLE its variance x2(t,L) [defined by Eq. (1) with i = j]
scales as

x2(t,L) = L*7°G(t/ L), (7

where G(u > 1) >~ const. By then comparing this formula
with Eq. (2), this implies that the LE diffusion coefficient
scales as

D(L) = L*7*G(c0), ®

so that the wandering exponent y heuristically observed in
Ref. [9] is a truly critical exponent, connected to the LV surface
roughening exponents:

y =z7—2a. )

As a result, y can be determined, once the roughening
exponents of the corresponding surfaces are known. This is
valid for any spatial dimension d.

B. Derivation of the scaling function G

We now derive Eq. (8) and give further details on the scaling
of the diagonal elements of D in the intermediate regime
before saturation. First, let us notice that the expansion factor
A(t) necessarily refers to some norm in tangent space. The
norm selection is irrelevant for the calculation of dynamical
invariant quantities like the LEs or the diffusion coefficient D,
as they involve an infinite-time limit. However, the finite-time
expansion factor A(r) depend explicitly on the norm. Given a
perturbation v(x,t), a rather broad family of ¢ norms can be
defined as follows:

1/q
e, 0l = [(I/L)" > |v<x,t)|'f] : (10)

The standard Euclidean norm corresponds to g = 2. In the
following, our theoretical arguments will be developed with
reference to the zero norm: ||v(x,0)llo = [, [v(x,5)["/~’, un-
less otherwise specified. The zero norm is the most convenient
and natural choice because, in this framework, computing the
LV norm corresponds to determining the average height of the
surface h(x,t) = In|v(x,?)|, while the FTLE corresponds to
the surface velocity, so that

A1) = ¢(x.1), (an

which, by the definition in Eq. (4), corresponds to the net dis-
placement of the average surface position in a time interval ¢.
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Now, by combining Eqgs. (1) and (11) one obtains
X2tL) = (@GeD)) — (@.0)> (12)

This expression, like Eq. (5) for W2, is a quadratic correlation
function of ¢(x,t), and, therefore, it should scale as

x2(t,L) = L*G, (t/L%). (13)

Consistency with Eq. (2) requires that G, () diverges linearly
with time. This information can be included in the above
equation, by writing the scaling function as a product, G, (1) =
G(u)u, where G saturates for u — co. Altogether, this leads to
Eq. (7) and the main relation Eq. (9) for the scaling behavior
of the asymptotic diffusion coefficient.

Although our theoretical arguments are based on the use
of the zero norm, this does not affect the validity of our
main scaling relation Eq. (9), as, in the infinite-time limit,
the diffusion coefficient D is actually a dynamical invariant,
independent of the norm used.

Before saturation sets in (t << L%), the effective diffusion
coefficient is time dependent and exhibits long-range temporal
correlations. These correlations are important, since they
correspond to an anomalous diffusion of the expansion factor
A, as can be inferred by looking at the “short-time” behavior of
the dynamic scaling function G in Eq. (7),1i.e.,for | <« r < L*.
We indeed find that, still in the zero-norm framework,

20 —z+d
. .

Let us now show how this result arises from a simple
scaling argument. At short times, correlations only extend
over a linear distance of order ~¢!/% so that the system can
be considered as formed by a number Nj, ~ (L/t'/%) of
statistically independent blocks. Accordingly, we can write
o(x,t) = (q_b) + 6¢p(x,t), where §¢p(x,t) is the local (intra-
block) fluctuation. From Eq. (12), we can now estimate y*:

Gw)~u" with v= (14)

VN T 2 2
X" =(px.1) — (@) ) = (8¢p(x,1) ) ~ W7/Np, (15)

so that
e\
x2~(7> w? (16)

for t « L?. By then recalling that W2(t) ~ ¢**/% in this time
regime, we finally obtain Eq. (14). This concludes our scaling
analysis.

Itis worth remarking that, contrary to the asymptotic behav-
ior, Eq. (14) is valid only with reference to the zero norm. This
is because, while the stationary diffusion coefficient implies
an infinite-time limit, the time-dependent effective diffusion
coefficient is defined for + < L. This will become evident
later on from the comparison with numerical calculations with
both the zero norm and the Euclidean norm.

Let us finally mention that the scaling function Eq. (14)
arises also in the context of the nonequilibrium roughening,
where it describes the velocity fluctuations [16,17] of a driven
interface.

C. Universality

It is well known that for a wide class of extended dynamical
systems, which include coupled-map lattices, the Lorenz-96
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model, the Kuramoto-Sivashinsky equation, and many others
[11], the LV surface h(x,t) associated with the first LV belongs
to the universality class of KPZ [18]. The universality class of
KPZ in extended dynamical systems is, therefore, very large
and includes models which, in spite of relevant differences
in the microscopic details, share a universal behavior of
the first LV. This universality class seems to include all
dissipative models with short-range interactions as well as
some symplectic models. Therefore, we expect D;; to be
characterized by the same wandering exponent, for all models
in the KPZ universality class. For instance, in d = 1 one can
plug the exact values @ = 1/2 and z = 3/2 in Eq. (9) to obtain
y =1/2.

Regarding the wandering exponent in the bulk LEs (i > 1),
it is known that the corresponding LV surfaces are character-
ized by a different set of scaling exponents. This issue has been
much investigated in the last few years. Numerical simulations
ind = 1 suggest that the dynamic exponent is z ~ 1 [13], and
this result is also supported by theoretical arguments [14].
Moreover, 2« has been found to be much smaller than that in
KPZ, lying in the range 0.15-0.2 [13,14]. Our main relation in
Eq. (9) suggests a wandering exponent y = 0.8-0.85 for the
diffusion of the bulk LEs that is consistent with the numerical
observations in Ref. [9].

III. THE LARGEST LYAPUNOV EXPONENT:
NUMERICAL RESULTS

In this and the next section we compare our theoretical
predictions with detailed numerical simulations of several
systems. Here we focus on the diffusion coefficient of the
first LE.

A. One-dimensional systems (d = 1)

The first model we analyze is a chain of Hénon maps,
whose LE fluctuations have been recently studied in Ref. [9].
The model writes

Xt + 1) =a — [x,t) + €Dx, () + bx,(t — 1), (17)

where Dx, = x,_1 — 2x, + x,+1 is the discrete Laplacian
operator; n = 1,...,L; and we selecta = 1.4, b =0.3, ¢ =
0.025. In Fig. 1 we plot L x2/t, obtaining that for different
system sizes the data indeed collapse for y = 1/2 onto a
dynamic scaling function G that follows Eq. (7) and the
predicted asymptotes both above (¢ > L?) and below (1 <«
t < L*) the crossover time. In particular, the very good data
collapse observed at long times validates Eq. (9). y = 1/2
was also observed in Ref. [9], where the Euclidean norm was
used to measure vector metrics in tangent space, instead of
the zero norm considered in this paper. This confirms that
the norm choice does not affect the stationary behavior. At
shorter times, finite-size corrections are more sizable, but
one can nevertheless appreciate an increasing quality of the
data collapse with L. The initial slope increases with L and
approaches the theoretical prediction v = 1/3. Notice that
this means that x? initially grows as */3; i.e., the Lyapunov
dynamics is superdiffusive in the intermediate regime before
saturation of fluctuations.
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FIG. 1. (Color online) Rescaled variance x? of the fluctuations
of the maximum FTLE in a chain of Hénon maps (see the text for the
parameter values). The various curves correspond to L = 50, 100,
200, and 400. The exponent values used for the data collapse are
z=13/2, y = 1/2, while the slope of the straight line is 1/3.

We have also studied numerically the Lorenz-96 model
[19]

dy

==Y = Yi-1(Vi—2 — yi F, 18
i Yi = Yi—1(Vi—2 = yit1) + (18)

a time-continuous toy model of the atmosphere that represents
the value of a scalar variable on a midlatitude. The data collapse
shown in Fig. 2 confirms that the diffusion of the largest LE is
well described by Eq. (7). The only difference with respect to
the previous model is that, as the arrow indicates, the curves
converge toward the asymptotic shape from below.

As a last example of a (pseudo) one-dimensional (1D)
system, we present our numerical results for a very different
type of chaotic system: a model with delayed feedback. For
many models of this type, the main LV scales as in typical
1D spatiotemporal chaotic systems [11,20], after identifying
the delay 7 with the system size L. Note that one also must
rescale the time axis ¢ by a factor 1/7, as is so for the
Lyapunov spectrum [21]. More specifically, we have carried
out simulations of the Mackey-Glass model [22]:

dy(t) y —T)

—— = —ay(t) + b———. 19
d O+ b G (19)
3 L

L2/t
Ir
/ 1-128
L=256
=512 ||
[-1024
0.3 ‘—4 ‘ 3 ‘—2 ‘—1 ‘0 ‘ 1
10 10 10 10 10 10

t/L

FIG. 2. (Color online) Rescaled variance x? in the Lorenz-96
model, Eq. (18), with F = 8. The slope of the straight line is 1/3.
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FIG. 3. (Color online) Rescaled variance x2 in the Mackey-Glass
model, Eq. (19), with @ = 0.1 and b = 0.2 (like in [20]). The slope
of the straight line is 1/3.

The results are plotted in Fig. 3. Apart from a relatively slow
convergence they are again in agreement with our theoretical
predictions.

B. Two-dimensional systems (d = 2)

It is very instructive to check the theoretical predictions in
two-dimensional models, since the KPZ critical exponents de-
pend on the spatial dimension. Current numerical capabilities
allow us to study a two-dimensional lattice composed by L?
coupled logistic maps (on a torus geometry):

un(t +1) =1 —e€)flu,(t)] + € Z Slun(@®)], (20)
meN(n)

where flu(t)] = 4u(t)[1 — u(¢)] and the sum is over the set
N of nearest neighbors.

In two dimensions, only numerical estimates of the KPZ
scaling exponents « and z are available. The best estimations
[23] are @ ~ 0.387 and z ~ 1.613, and so we predict y ~
0.839 and v ~ 0.720 for the wandering exponent in Eq. (9)
and the time exponent in Eq. (14), respectively. Numerical
results for the dynamic scaling function are plotted in Fig. 4.

10"
Lx2/t
107
/ =126
/ 1=256
100 1w0° 10" 10 100 100 10
t/L*

FIG. 4. (Color online) Rescaled variance x? of the fluctuations
of the maximum FTLE for a two-dimensional lattice of logistic maps
with € = 0.1 (the different curves correspond to L = 32, 64, 128,
and 256, from top to bottom. The exponent values used for the data
collapse are z = 1.613 and y = 0.839, while the slope of the straight
line is 0.72.
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The data collapse is excellent, confirming again the validity
of our theoretical arguments. Notice that the LE fluctuations
decay with the system size faster in two dimensions than in
one dimension, since y is larger. At short times one observes
again the presence of strong finite-size corrections, but one can
nevertheless appreciate the predicted scaling behavior ~¢%72
as the system size is increased.

IV. THE BULK OF THE LYAPUNOV SPECTRUM:
NUMERICAL RESULTS

In this section, we investigate numerically the scaling
behavior of D;; for i > 1, including the intermediate time
regime before saturation, by revisiting the chain of Hénon
maps and studying the Lorenz-96 model.

It is worth recalling that, in the limit of large system sizes,
the LEs depend on the integrated density p = (i — 0.5)/L (in
this section we limit ourselves to studying one-dimensional
systems). As a consequence, a meaningful comparison of LVs
for different system sizes must be made by selecting the index
i which corresponds to the same density p. Since i is, by
definition, an integer variable in the following we interpolate
between the two nearest integers that correspond to the given
o value.

A. Chain of Hénon maps

In Fig. 5 we plot the results of simulations performed
with the chain of Hénon maps for p = 0.25. This p value
is (i) sufficiently distant from the singularity at p = 0 to avoid
crossover problems and (ii) small enough to be computation-
ally achievable in large systems [24]. We monitor the evolution
of dx?/dt rather than x2/t. The two quantities would be
equally valid, as both obey the same scaling relation Eq. (7),
but we prefer to use the former one, since it converges faster
(i.e., for smaller values of ¢) to the asymptotic value. The solid
curves in Fig. 5 correspond to simulations performed with
the zero norm for different system sizes. Altogether, the good
data collapse confirms our scaling analysis, with y =~ 0.865

10

L7 (dx*/dt)

10

t/L

FIG. 5. (Color online) Scaled FTLE fluctuations in a chain of
Hénon maps, Eq. (17), for p = 0.25. The exponent y is set equal
to y = 0.865. The solid curves (which correspond to L = 40, 80,
and 160) have been obtained for the zero norm. The various symbols
(squares, triangles, pluses, and crosses correspond to L = 40, 80, 160
and 320, respectively) are obtained by using the Euclidean norm of
the Gram-Schmidt LVs. The dashed line corresponds to a power law
growth (t/L*)" withv = 0.135and z = 1.
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(close to the numerical value 0.85 measured in [9]) and z = 1
(as determined from direct LV studies [13,14]). Moreover, the
initial growth agrees with the theoretical prediction [see the
dashed line, whose slope is v = (d — y)/z =~ 0.135].

For comparison, in Fig. 5 we plot also the results obtained
by computing the FTLE fluctuations obtained from the
standard Gram-Schmidt orthogonalization procedure (see the
symbols). They correspond not only to a different way of
computing the LEs but also to a different norm (namely, the
Euclidean or 2 norm). One can see that the asymptotic value of
the diffusion coefficient fully agrees with the previous results:
this is consistent with the expectations that long-time LEs are
independent of the norm adopted, and this extends to their
fluctuations too. The shape of the corresponding dynamic
scaling function is, however, very different for both metrics,
as expected. In fact, the LEs exhibit a subdiffusive transient
rather than superdiffusive behavior if the Euclidean metric is
used.

Besides estimating the exponent y, we have directly
determined 2« from the covariant LVs for p values below
1, in order to test the validity of our main relation Eq. (9). The
best estimation of « is typically obtained from the structure
factor (power spectral density) of &2, which follows a power-law
decay due to its self-affine character:

Stk) = lim (h(k,0)h(—k 1)) ~ k~@*+D, (21)

where /1 is the Fourier transform. A general representation is
portrayed in Fig. 6, where the effective value of 2« is plotted
versus p for different system sizes. In the bulk (i.e., for 0 <
p < 1), the data reveal a clear tendency to flatten toward 2« ~
0.16 for increasing the system size. This « value corresponds to
y ~ 0.84, to be compared with the direct estimate y = 0.865.
This agreement, besides validating relation Eq. (9), hints at
a possible universal behavior of the LV structure in the bulk
of the spectrum. A careful numerical analysis (analogous to
that described in Fig. 5) for p = 0.75 (data not shown) further
confirms that y is independent of p.

1.2

1

0.8

K06/

0.4

02}, ===

0 0.2 0.4 0.6 0.8 1

FIG. 6. (Color online) Estimation of 2« vs p for the LVs in a
chain of Hénon maps obtained from the structure factors of the LVs
by linear fitting (in log-log scale) of the three smallest wave numbers.
The values of i used in the x axis correspond to the positive LEs,
save for L = 256, in which case only the first 128 LEs have been
considered due to computational limitations. The dotted line indicates
20 = 0.16.
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Appreciable deviations from the basal value 2« =~ 0.16 are
clearly visible in Fig. 6 in the vicinity of the two extreme
values p — 0 and — 1. For p <« 1, we know that the first
LV follows KPZ scaling, 2o = 1, and the data must show a
crossover toward such a different scaling, when p = 0.5/L ~
0 is approached. A similar behavior is found for p = 1. Note
that this value does not correspond to the smallest LE (which
is obtained for p = 2, as there are 2L exponents in a system
of size L) but rather to the edge of the band of positive LEs. In
fact, for small € values as used here there exists a gap between
the positive and negative bands of LEs: the singularity at p =
1 thus reinforces the idea that the spectrum band edges are
characterized by a quantitatively different behavior, although
here we do not see a direct argument to relate the scaling to,
e.g., KPZ dynamics.

B. Lorenz-96 model

The most intriguing message that arises from the study of
the Hénon maps is the possibly universal scaling behavior of
the bulk LVs. Given the relevance of such an observation,
we have studied also the Lorenz-96 model [Eq. (18)]. Being
a continuous-time system, simulations are heavier than in the
previous case, and for this reason we have been able to carry out
extensive simulations only for p = 0.1, which is nevertheless
far enough from p = 0 to draw meaningful conclusions. The
results for L up to 256 for the zero norm and covariant LVs, and
up to 512 for the Gram-Schmidt LVs, are plotted in Fig. 7. The
good data collapse confirms that the dynamic exponentis z = 1
as in the previous model. As for y, we find a slightly different
value, namely, y = 0.897 (to be compared with y = 0.865).
So far it is not possible to determine whether this difference is
significative or just due to strong model-dependent finite-size
effects hiding a universal system-independent value. However,
the closeness of both numbers suggests that y is universal in
the bulk Lyapunov spectrum.

We have also determined the values of « from the structure
factors S(k) of the LV surfaces. The values of 2« for the

10

L (dx?/dt)

5
10 10 10" 10 10
t/L

FIG. 7. (Color online) Scaled FTLE fluctuations in the Lorenz-96
model, Eq. (18), for p = 0.1. The exponent y is set equal to y =
0.897. The solid curves, corresponding to L = 128 and 256, have been
obtained from the covariant LVs using the zero norm. The various
symbols (triangles, squares, and circles correspond to L = 128, 256,
and 512, respectively) are obtained by using the Euclidean norm
during the forward iteration of the Gram-Schmidt LVs.
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0 005 01 015 02 025 03
(i —0.5)/L

FIG. 8. (Color online) Estimation of 2« vs p for the Lorenz-96
model obtained from the structure factors of the LVs by linear fitting
(in log-log scale) of the three smallest wave numbers. The values of i
used in the x axis correspond to the positive LEs, save for L = 1024,
in which case only the 152 largest LEs have been considered due to
computational limitations. The dotted line indicates 2« = 0.13.

positive LEs are plotted in Fig. 8. As shown above for the chain
of Hénon maps, here the curve also becomes increasingly flat
as the system size grows except for the points close to p = 0
and ~0.33: (i) p = 0 corresponds to the first LE, where we
know that 2« = 1; and (ii) p >~ 0.33 corresponds to the vanish-
ing Lyapunov exponent [14], so that S(k) ~ k°,i.e.,2a = —1.
These results suggest the existence of a common « for the bulk
in the thermodynamic limit. Our best estimation is 2o >~ 0.13,
not far from the estimation 0.15 in Ref. [14]. Moreover,
assuming z = 1, the value of y expected via Eq. (9) is 0.87,
which is relatively close to the value 0.897 observed in Fig. 7.

V. CONCLUSIONS AND OPEN PROBLEMS

Altogether, in this paper we have shown that the analogy
between roughening phenomena and LV dynamics in spatially
extended systems is rather fruitful in that it allows relating
of the scaling behavior of the LE diffusion coefficients
with the roughness exponents of the corresponding vectors.
Numerical simulations of various models support the general
scaling relation Eq. (7) and its asymptotic behavior Egs. (8)
and (14). With reference to the first LV, our analysis confirms
the validity of the relationship with the KPZ equation in
dissipative systems.

More intriguing is the question of the scaling behavior for
the bulk of the Lyapunov spectrum. Our studies of Hénon
maps and of the Lorenz-96 model reveal that in both cases,
independently of p, z = 1 and « ~ 0.07. Nonetheless, small
but not-so-negligible differences for the latter exponent are
observed.

Two questions are, therefore, still open in the case of the
fluctuations of the bulk LEs: (i) whether « is strictly larger
than zero (y < 1) in the thermodynamic limit and (ii) the very
existence of a single universality class. The y < 1 issue arises
from the comparison with the cross correlations of different
LEs, namely, the scaling of the off-diagonal terms D;; with
i # j.InRef. [9] such terms have been found to scale as 1/L;
i.e., their y value is 1. This finding has been interpreted as
the evidence of an extensive behavior of the large deviation
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function (which is proportional to the inverse of D). On the
one hand, it is strange that the diagonal term scaling differs
from that of the off-diagonal ones. On the other hand, the very
fact that ¥ < 1 implies that « > 0. This, in turn, indicates a
strong localization of the covariant LV, a property that has
been observed in different models by using different methods
[13,25]. On the basis of the results derived in this paper for
the Hénon maps (that are more reliable than those for the
Lorenz-96 model) we feel confident in stating that y < 1. In
order to draw firmer conclusions, however, we believe that it is
necessary to make some substantial progress on the theoretical
side by either identifying a minimal stochastic model of the
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LV dynamics for i > 1 (such as the KPZ equation for the first
vector) or by resorting to new results within the field of random
matrices.
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