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ABSTRACT 

In this work, we propose the use of the Mueller Coherency matrix of biological tissues in order to increase the 
information from tissue images and so their contrast. This method involves different Mueller Coherency matrix based 
parameters, like the eigenvalues analysis, the entropy factor calculation, polarization components crosstalks, linear and 
circular polarization degrees, hermiticity or the Quaternions analysis in case depolarisation properties of tissue are 
sufficiently low. All these parameters make information appear clearer and so increase image contrast, so pathologies 
like cancer could be detected in a sooner stage of development. The election will depend on the concrete pathological 
process under study. This Mueller Coherency matrix method can be applied to a single tissue point, or it can be 
combined with a tomographic technique, so as to obtain a 3D representation of polarization contrast parameters in 
pathological tissues. The application of this analysis to concrete diseases can lead to tissue burn depth estimation or 
cancer early detection. 

Keywords: tissue polarimetry, Mueller matrix, Mueller Coherency matrix, entropy, backscattering polarimeter 

1. INTRODUCTION 

Optical techniques in characterization of biological tissues present advantages like being harmless, non-invasive, 
without contact and with a very good resolution [1]. Optical characterization of tissues is usually related with intensity 
measurements, what allows the achievement of partial optical information from tissues. The fact that most tissues have 
intrinsic anisotropy and/or structural anisotropy, makes that polarization parameters can add important information to 
the images acquired, in such a way that hidden compounds or structures, significant from the point of view of diagnosis, 
may appear. Furthermore, scattering from tissues, that can also be anisotropic, changes the degree of polarization of 
light and this is of course reflected in polarization parameters [2]. For instance, blood or adipose tissue present no 
anisotropy but scattering due to the particles involved in their composition. On the other hand, collagen fibers like 
tendons show anisotropy as a consequence of their structural orientation. Polarimetry is an optical technique focused on 
the measurement of polarization properties of samples including the properties of depolarizing optical media. 
Polarimetric techniques are specially appropriate for biological tissues, due to the fact that their properties show 
dependence with the polarization of light, and they usually exhibit a depolarising behaviour. Methods of analysis that do 
not take into account tissue depolarisation, like Jones matrix, produce limited results [3]. The extension of these 
characterization techniques to Mueller matrix measurement adds data to the image obtained, but further information can 
be extracted [4]. 

In this work, a complex Mueller matrix analysis of biological tissue images is proposed, by means of significant 
and clearer parameters. Section 2 describes the main concepts of the Mueller polarimetry and the Mueller Coherency 
matrix method, the entropy factor, the horizontal-to-vertical cross-talk (HVC) as well as the right-to-left cross-talk 
(RVC) and the different degrees of polarization, linear and circular, are included. Lu-Chipman decomposition is also 
described as another approach to the study and decomposition of Mueller matrix. This method allows the extraction of 
information related with diattenuation, rotation and depolarisation by means of specifically obtained new matrices. In 
section 3 the results obtained applying the potentiality of the Mueller polarimetry previously described to the concrete 
Mueller matrices of two different suspensions that were measured in backscattering are presented. Their parameters are 
calculated and a discussion is included in section 4. As a final step, conclusions of the whole work are provided. 
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2. MUELLER POLARIMETRY ANALYSIS 

Biological tissues present in general a very high degree of heterogeneity and then they depolarise the optical 
radiation when inadiated [1]. Due to this behaviour the Mueller matrices are the most useful tool in order to study 
polarization dependent interaction between light and tissues. The Mueller matrix has 16 elements, and they include all 
the polarization dependent properties of the tissue [5]. 

The aim of this section is the theoretical description of the Mueller matrix polarimetry, focused both in the Mueller 
Coherency matrix description and in the Lu-Chipman decomposition. 

2.1. Mueller Coherency matrix method 

The Dirac matrices x\{ are a group of fifteen 4x4 matrices that, together with the 4x4 identity matrix, compound a 
basis for all 4x4 matrices. They are also known as Gamma matrices or Dirac Gamma matrices, which arise in quantum 
electrodynamics. They can be defined from the 2x2 Pauli matrices GJ and the 2x2 identity matrix by means of a 
Kronecker product: 

The use of the Dirac matrices allows the connection of the Mueller matrix elements mtJ with a 4x4 coherence 

matrix, C4x4, which is directly related with the properties of the optical device. This 4x4 coherence matrix is defined 
from the SU(4)<-+0+(6) homomorphism by the Mueller matrix elements and Dirac matrices as follows [6,7,8]: 

In this case the coherence matrix is describing the polarization properties of the optical medium instead of those of 
the light. Nevertheless, additional information can be obtained from the eigenvalue analysis of the 4x4 coherence matrix 
[9]. A maximum of four non-zero eigenvalues Xh with their conesponding eigenvector Q, can be extracted from its 
decomposition: 
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The number of significant (non-zero) eigenvalues and their values are directly related to the depolarizing 
characteristics of the optical media. In polarization maintaining media, there is only one significant eigenvalue, and then 
a direct correspondence between the Jones and Mueller matrices can be established [10,11,12]. However, in 
depolarizing devices, those producing a variation of the polarization degree, there is more than one significant 
eigenvalue, and the concept of entropy-factor H is then introduced [10,13-15]: 

If there is only one significant eigenvalue, the entropy-factor takes the value 0, which corresponds to a perfectly 
defined output polarization state. In the opposite case, when there are four significant eigenvalues and all of them take 
the same value, the entropy-factor takes the value 1, which corresponds to a random output polarization state. The 
entropy-factor will take a value between 0 and 1, corresponding to all the different situations, according to the number 
and value of the significant eigenvalues. Therefore, the entropy-factor introduces an independent measurement of the 
polarization behavior of optical media, which can be properly characterized without any consideration of the input light. 
According to the values of entropy, three zones can be defined: small value of H (between 0 and 0.25), intermediate 
value of H (between 0.25 and 0.8), and high value of H (more than 0.8). The depolarization properties of most 
biological tissues are included into the intermediate region and have a great interest due to the fact that the correlation 
between the photon pattern and the biological medium is significative. 

When the entropy factor does not introduce any significant information, other parameters should be analyzed to 
obtain an angle-dependent variation of the polarization properties. In this case, the horizontal-to-vertical crosstalk, HVC, 
is calculated. Since in most applications the relative properties of the DUT (Device Under Test) are important, the 
absolute values of the crosstalk can also lead to valuable information. The horizontal-to-vertical crosstalk (HVC) as well 
as the right-to-left crosstalk (RLC) can be verified [12]. When the incident light is linearly horizontally polarized 
horizontal-to-vertical crosstalk is defined as the ratio: 

where par corresponds to the intensity of the horizontal polarization output component when irradiating the tissue with 
horizontally polarized light, and perp is the intensity associated to the vertical component. In order to obtain both 
intensities, it is not necessary to make the experimental procedure, because from tissue Mueller matrix, Mueller matrices 
of horizontal and vertical ideal polarizers and the Stokes vector of linearly vertically and horizontally polarized light, 
they can be calculated by a product of matrices. This parameter HVC shows the isolation degree of the vertical and 
horizontal components of light coming from the tissue. For instance, if all the incident light is horizontally polarized, 
then it measures how the tissue depolarises moving the output state of polarization to the vertical axis. More cross-talk 
parameters can be defined in an analogous way, like VHC (Vertical-to-Horizontal Crosstalk) or LRC (Left-to-Rigth 
Crosstalk). 

All these parameters oscillate between -1 and 1. In case they present the value 1, it means that incident light with a 
concrete polarization state is transformed in an output light with the same state. On the contrary, the value -1 
corresponds to a situation in which a concrete incident polarization state would result in a completely opposed output 
polarization state. 

Apart from the process showed before, from the light Stokes vector [16] degrees of total, linear and circular 

polarization of the output S0 can be obtained by means of the following expressions: 
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2.2. Polar decomposition of Mueller matriz 
It is possible to extract precise information about the depolarisation, retardance and diattenuation of a Mueller 

matrix by means of the so-called polar decomposition proposed by Lu and Chipman [17]. This method decomposes this 

matrix in a product of three components, M = MA \MR \MD . The decomposition can be also carried out in a reverse 

form as suggested by R. Ossikovski, A. De Martino and S. Guyot [18], M = MD -MR -MA. 

The calculation process of these decomposition components will be briefly described now. First of all, the 

diattenuation component is calculated. From the first row of the Mueller matrix, the diattenuation vector D is obtained, 

and from its unitary vector and module, the submatrix mD is constructed. The diattenuation matrix appears then as: 

The calculus of the depolarisation component MA requires that of the submatrix m A , that is carried out by the 

following expression: 

With this equation, the final expression results: 

The retardance matrix MR can be calculated from the previous ones, and from this matrix several parameters like 

the total retardance R, the linear retardance 8, the optical rotation y/ and the fast axis orientation respect to the 

horizontal axis 9 can be obtained [17]. 

An ideal and pure depolarizer, with null retardance and diattenuation, can be expressed by the following Mueller 
matrix: 

A natural consequence is that the component M A from the Lu-Chipman decomposition will resemble to this 

matrix, but it will not be completely identical, due to the fact that in spite of the heterogeneous structure of biological 
tissues, in general samples measured do not behave like totally depolarising media. 
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Due to this similarity, it is convenient to introduce a parameter, called depolarisation power, that comes directly 

from a, b and c parameters. Like the entropy, it measures the depolarisation introduced by the component M A in a 

simpler way: 

3. BACKSCATTERING MUELLER MATRICES ANALYSIS OF BIOLOGICAL TISSUES 
SUSPENSIONS 

The experimental scheme to obtain the Mueller matrices of the biological tissues in backscattering is shown in 
Figure 1. The measurement system includes both the input and output polarization devices employed to obtain the 
Mueller matrix M of the depolarizing medium. Light coining from an input source is introduced into a polarizer and a 
quarter-wave plate and its output is sent to a beam splitter (BS). This BS transmits the light on the sample (DUT), 
focusing it onto the sample through an optical lens. The reflected signal is conducted by the BS to an output analyzer 
and to the detector. 

Figure 1. Experimental setup for polarimetry backscattering measurements 

Optical devices introduced in the measurement system in order to extract out the Mueller matrix of an optical media 
can produce depolarization and the introduction of error factors in the measurements because of their imperfections. In 
this work no depolarization is considered and they are supposed to introduce only first-orders errors, in which no 
relationship between the orthogonal components or frequency change is produced. These errors are optical activity ($>), 
strain (<5>) and leakage (yP) in the linear polarizer and optical activity ($?) and dichroism (aR) in the linear retarder [3]. 
As polarization devices are supposed to produce no modification of the degree of polarization, they could be analyzed 
by simple Jones matrix [19]. However, Mueller matrix results are more general, and allow a fast and easy calculation of 
the whole system to be analyzed, as the DUT's are actual depolarizing media that cannot be analyzed by a Jones matrix. 
Therefore, the Mueller matrices with the error factors for the linear polarizers and retarders are calculated and the 
influence of these error-terms on the elements of the Mueller matrix is taken into account. 

As a first application example of this procedure, we use a Mueller matrix measured from a glucose solution, whose 
scattering coefficient is jus = 0.6mm'1 in backscattering [20]. The Mueller matrix of this sample is expressed in the 
following equation: 
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The application of the Lu-Chipman or polar decomposition to this measured matrix gives the following matrices as 
a result: 

The Mueller Coherency matrix can also be calculated, as was stated in the previous section, in order to get another 
parameters set. This Coherency matrix is presented in next equation: 

The method was also applied to a cancerous cell suspension, whose scattering coefficient is ^=2.2 cm"1. It 

presents a concentration of 10s cells/cm3. The measurement was made in backscattering with a laser source that 
presented a wavelength of X = 543 nm. The resulting Mueller matrix is: 

In this specific case the Mueller matrix is very near from singularity, what implies some problems for the polar 
decomposition. After applying it, this three matrices are obtained: 
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With all these calculated matrices, it is now possible to start the parameters calculation showed in section 2, as a 
way of making it clearer the polarization information contained in Mueller matrix. Next discussion is devoted to this 
aim. 

4. DISCUSSION OF RESULTS 

The first case of a glucose suspension will be analysed first. The analysis of the matrices of the polar decomposition 
makes it possible to obtain the diattenuation D = 0.135, the total retardance R = 160.867°, the linear retardance 
S = 160.766 °, the optical rotation y/ = 5.833 ° , the fast axis orientation 9 = 13.510 ° and the depolarisation power 
A = 0.473. 

If we take into account the Mueller Coherency matrix, the entropy value can be calculated. In this case, the concrete 
value is HT = 0.6611, which is inside the range 0.25 <HT < 0.8, previously considered as an optimal study area. This 
value represents an intermediate-high depolarizing medium [21]. 

Another parameters that we can calculate are the crosstalks. The horizontal-to-vertical crosstalk results in this case 
HVC = 0.7322 , and the corresponding vertical-to-horizontal is VHC = 0.78027. Consequently, these parameters 
indicate that the medium tends to produce vertically polarized light then it is irradiated with horizontally polarized light 
in a similar way as vice versa. The tendency is slightly superior in the latter case. 

Paying attention to the circular crosstalk values, the right-to-left crosstalk results RLC = -0.37146 , and the left-to-
right crosstalk LRC = -0.29478. Both of them are negative, and this is consistent with the fact that measurements were 
made in backscattering and so the mirror effect appears for circularly polarized light. The backscattering process inverts 
the handedness of circular light. 

The same entropy method can be applied to each of the matrices coming from the polar decomposition, instead of 
doing it with the general Mueller matrix. If this is done with the depolarisation matrix MA, the entropy obtained, 

HT = 0.66923, is practically coincident with the total entropy calculated before. This is due to the fact that all the 

depolarization capacity is concentrated in this component. 

The result of applying the same analysis to the diattenuation matrix MD gives an almost negligible value of 

HT = 0.01464 , because this matrix is expected to show only diattenuation and no depolarization. If the crosstalks are 

extracted, HVC, VHC, RLC and LRC are equal to unity, so the fact of no depolarization is restated. 

We also applied the analysis to the retardance matrix MR, and similarly it presents a very low entropy value of 

HT = 0.00168 like the diattenuation matrix, due to the same fact. The linear crosstalks HVC and VHC are unity, while 

the circular ones, RLC and LRC, are equal to - 1 , what indicates again the handedness inversion for circularly polarized 
light when measuring in backscattering. 

A final analysis is presented in Figure 2, where the eigenvalues of the Mueller Coherency matrix are represented, in 
order to see their relative importance and influence in the general polarization behaviour of the tissue. 
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Figure 2. Representation of the Mueller Coherency matriz eigenvalues. In this case, the fourth eigenvalue is bigger than the 
rest, although it is not dominant due to the fact that the second one is only 2.64 times below (-4.21 dB). 

The analysis is also applied to the cancerous cells suspension, whose polar decomposition was previously shown. In 
this way, the parameters calculated are the diattenuationZ) = 0.598, the total retardancei? = 179.944°, the linear 
retardance<5 = 165.871 °, the optical rotation\y = 89.771 °, the fast axis orientation 9 = -29.675 ° and the depolarisation 
power A = 0.781. 

From the Mueller Coherency matrix, the entropy factor is HT = 0.66278 , which is similar to the value obtained 
before for the glucose suspension, and indicates that the medium is intermediate-high depolarizing. The linear crosstalks 
show an interesting behaviour, because HVC = 0.741 while VHC = 0.0232, different as in the other suspension, where 
both were similar. This fact can show that this tissue suspension presents a certain anisotropy in form of characteristic 
longitudinal structure, what would make the output light to be preferentially oriented in a particular direction. The 
importance of the orientation of the incident light in the measurement process is seen in this case. 

The calculations can go ahead with the circular crosstalks. Here the right-handed circularly polarized light is almost 
completely depolarized, because RLC = -0.0192 . This implies that the right-handed light is transformed in the output 
light in a radiation with almost the same proportion of right and left-handed polarization. For the left-handed circularly 
polarized light input, the negative value of the crosstalk LRC = -0.1794 indicates that the reflected light contains an 
important amount of right-handed polarized light. 

Due to singularity problems with Mueller matrix in this case, no significant results are obtained when applying this 
method individually to each of the matrices resulting from the polar decomposition, as was perfectly possible in the 
previous example of a glucose suspension. In this way, the entropy in the depolarization component is not similar to the 
total entropy of the complete Mueller Coherency matrix, and also the entropy in the other two matrices, diattenuation 
and retardance, is not near zero. 

5. CONCLUSIONS 

The application of optical polarimetry techniques to characterize biological samples and tissues provides an 
improved tool in the analysis of tissue properties and structure. The possibility to obtain backscattering Mueller matrices 
of biological tissues makes possible a non invasive and non contact in-vivo characterization. The introduction of 
polarization analysis based on Muller Coherency matrix and group theory and /or the Lu-Chipman decomposition 
makes information appear clearer and contrast increase. 

A glucose suspension and a cancerous cells suspension tissue have been analysed using both methods. The 
corresponding parameters have been calculated and an interpretation has been provided. An exhaustive study of the 
values of the here proposed polarimetric parameters for different tissues and pathological states should be accomplished 
in order to provide a clear and confident tool for medical diagnosis in tissue examination, providing an extra instrument 
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for the development of optical biopsies. The potentiality of this analysis could be extended to tomographic techniques 
[22,23], in such a way that not only the parameters coming from one point would be obtained, but the ones 
corresponding to a complete 3D biological tissue. 
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