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Southern Economic Journal 2001, 67(3), 748-756 

An Exponential Family of Lorenz Curves 
Jos6-Maria Sarabia,* Enrique Castillo,t and Daniel J. Slottjet 

A new method for building parametric-functional families of Lorenz curves, generated from 
an initial Lorenz curve (which satisfies some regularity conditions), is presented. The method 
is applied to the exponential family since they use the exponential Lorenz curves as their 
generating curves. Several properties of these families are analyzed, including the population 
function, inequality measures, and Lorenz orderings. Finally, an application is presented for 
data from various countries. The family is shown to perform well in fitting the data across 
countries. The results are very robust across data sources. 

1. Introduction 

The purpose of this paper is to introduce a parametric family of Lorenz curves that are 
obtained by a general method. In a recent paper, Sarabia, Castillo, and Slottje (1999) (SCS) 
introduced a method that allowed for the building of hierarchies of Lorenz curves when some 

regularity conditions are satisfied. They introduced the Pareto family, which was found to be a 
flexible form and which fits actual income distribution data well. This paper introduces another 

family, the exponential family, which also has interesting characteristics. The exponential family 
involves more complex estimation with a form that is somewhat less flexible but in return gives 
a robust performance in fitting actual data across countries, as we will show here. The researcher 
or policy maker is provided another effective tool in the ongoing effort to quantify, analyze, 
and understand economic inequality. 

The strategy used here is to apply a Lorenz curve hierarchy that contains (as special cases) 
Lorenz curves derived from this general method. In section 2 we introduce the notation and 
some necessary background information. The general method is presented in section 3, which 
starts from an initial Lorenz curve Lo(p) (which is called the generating curve) and builds a 

family with an increasing number of parameters. These in turn can be interpreted in terms of 
elasticities of Lo(p). Also in section 3 we introduce the exponential family of Lorenz curves 
and discuss some of its properties as population functions and inequality measures and for 

undertaking Lorenz orderings. In section 4 we present a method for estimating Lorenz curves 
and apply it to the two families specified previously. Since the goodness of fit is one important 
criterion in the evaluation of these (and any) models, we use a method due to Gastwirth (1972) 
and actually incorporate his procedure into the estimation process, as will be clear in section 4. 
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An Exponential Family of Lorenz Curves 749 

An example of an application of our new methodology is presented in section 5. Finally, in 
section 6 we conclude the paper. 

2. Notation and Previous Results 

In this section we use the Lorenz curve as defined by Gastwirth (1971). That is, 

DEFINITION 1. Given a distribution function F(x) with support in the subset of the positive 
real numbers and with finite expectation pi, we define a Lorenz curve as P 

LF(p) 
= 1 

foF-'(x) 
dx, 0 p 1, (1) 

where 

F-'(x) = sup{y: F(y) - x}. 

A characterization of the Lorenz curve that is attributed to Gaffney and Anstis by Pakes 
(1981) is given by the following theorem: 

THEOREM 1. Assume that L(p) is defined and continuous in the interval [0,1] with second 
derivative L"(p). The function L(p) is a Lorenz curve i.f.f. 

L(O) = 0, L(1) = 1, L'(0+) - 0 for p E (0, 1) L"(p) 0. (2) 

Lorenz curves allow establishing a ranking in a set of distributions functions. If two dis- 
tribution functions have associated Lorenz curves that do not intersect, then they can be ordered 
without ambiguity in terms of welfare functions that are symmetric, increasing, and quasicon- 
cave (Atkinson 1970; Dasgupta, Sen, and Sarret 1973; Shorrocks 1983). A distribution function 
FAx) is said to have less inequality in the Lorenz sense than a distribution function G,(y) if 
their Lorenz curves LF(p) and LG(p) satisfy the condition LF(p) - LG(p) for all p, where the 
sign > applies for at least one p E (0, 1)'. In this case we write X -L Y. From the definition 
of the Lorenz curve (Eqn. 1), it is evident that the Lorenz partial order is invariant with respect 
to scale transformations, that is, X -L Y i.f.f. XX -L vY for all h, v > 0. 

THEOREM 2. Let L(p) be a Lorenz curve and consider the transformation 

L,(p) = p"L(p), a >_ 0. (3) 

Then, if a - 1, L,(p) is a Lorenz curve, too. In addition, if 0 - :a < 1 and Lm(p) 
- 

0, L,(p) 
is also a Lorenz curve. 

THEOREM 3. If L(p) is a Lorenz curve, 

L,(p) = L(p)Y, y 2 1 (4) 

is a Lorenz curve. Since L,(p) is an increasing convex transform of L(p) and L,(0) = 0 and 
L,(1) = 1, L,(p) is a Lorenz curve as well. We now present several examples to demonstrate 
the usefulness of these theorems. 

One well-known form of the Lorenz curve is that attributable to Rasche et al. (1980). Other 
forms are due to Kakwani and Podder (1973) and Kakwani (1980). Rasche et al. (1980) showed 
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750 Sarabia, Castillo, and Slottje 

that Kakwani's Lorenz curve does not satisfy all the requirements for a Lorenz curve. Using 
our Theorem 1, we find a modified Lorenz curve: 

L(p; a, P) = p - ap(1 - p)P, O - a - 1; 0 < P - 1. (5) 

Then, using Theorems 2 and 3, we generate a new family of Lorenz curves: 

La,a,p,,(p) = pa+Y[1 - a(1 - p)P]Y; 0 
a- 

1, a 2 0, O < p < 1, y - 1. (6) 

3. Hierarchical Families of Lorenz Curves 

The previous theorems suggest a method for obtaining hierarchical families of Lorenz 
curves. Towards this aim, we start with an initial generating Lorenz curve Lo(p) and consider 
the following parametric hierarchy: 

L,(p; a) = paLo(p), (a 2 1) or [0 a, 1, L.'"(p) > 0] (7) 

L2(p; y) = Lo(p)9, y 
- 

1 (8) 

L3(p; a, y) = paLo(p)Y, (a, y - 1) or [0 < a < 1, y 
- 

1, Lo"(p) - 0]. (9) 

Families 7 and 8 were obtained using Theorems 2 and 3 and Family 9 arises by combining 
both results. Note that Families 7 and 8 are ordered with respect to their parameters a and y. 
It is clear that 

(a) L, is ordered with respect to a since if at -> aY2 > 0, then Lj(p, a() - LI(p, a2). 
(b) L2 is ordered with respect to y since if j > ~Y2 > 0, then L2(p, yO) ? L2(p, Y2). 
(c) If Lo(p) = Lo(p; k) is ordered with respect to parameter k, that is, if k, - k2, we have 

L0(p; k,) - Lo(p; k2). (10) 

Then 
(i) If aU1 > 2, then 

plILo(p; 
k,) - paLo(p; k2) :- pa2Lo(p; k2); (11) 

that is, we have new ordering with respect to a. 
(ii) If 

i 
> Y2, then 

L~'(p; k,) - L~'(p; k2) 
- 

L12(p; k2); (12) 

that is, we have new ordering with respect to y. 
(d) Combining the previous results, we can also obtain a new ordering for family L3. The 

new parameters that are sequentially incorporated in the hierarchy can be interpreted in terms 
of the curve elasticities. For example, 

E(L3; p) = a + 
yE(L0; p), (13) 

where E(L; p) represents the elasticity of L. 

The Exponential Lorenz Curve Family 

The family we discuss is the exponential Lorenz curve family. This family is generated 
from the initial Exponential Lorenz curve, 
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An Exponential Family of Lorenz Curves 751 

L0(p; k) = ck(ekp - 1), 0 p 1, (14) 

with c k' = ek - 1, which satisfies Theorem 2. This curve is called the exponential Lorenz 
curve since it is generated from the suitably normalized exponential function g(p; k) = exp(kp), 
k > 0, and yields the Lorenz curve Lo(p, k) = [g(p; k) - g(O; k)]/[g(1; k) - g(O; k)]. This 
curve has been recently proposed by Chotikapanich (1993) and gives excellent fitting results 
with grouped data. The model Lo(p, k) includes as a particular case the egalitarian model L(p) 
= p. This is a limiting case for k going to zero, that is, Lo(p; k) = p. The model Lo(p; k) can 
also be interpreted as a linear convex combination of an infinite set of potential Lorenz curves, 
p', j = 1, 2, with weights decreasing with i, that is, 

L0(p; k) e -- = > wip' (15) ek- i=1 

where 

S= k wi 0, wi = 1. (16) 
i!(ek - 1) 

In some cases the fit is even better than that associated with some biparametric families. Using 
previous results again, we can consider the hierarchy of exponential Lorenz curves: 

LI (p; k, a) = ckpa(ekp - 1); k > 0, 0a ?> 0 (17) 

L2(p; k, y) = ck,(ekp - 1)Y; k > 0, y - 1 (18) 

L3(p; k, a, y) = ck,p (ekp - 1)Y; k > 0, a ? 0, y 1, (19) 

where Ck, - (ek - 1)- 

Population Functions 

The quantile functions of the exponential hierarchies are given by 

X0(p; k, 
IX) 

= plkCkekp (20) 

X,(p; k, aWX) = IxCk[oaP 
k(ekP - 1) + kpaekp] (21) 

X2(p; k, 
yI) 

= 
pykck,ekP(ekp - 1)v-1 (22) 

X3(p; k, a, y, 9) = 
Ixck,y[apa-l(ekP- 

1)Y + kyp"ek(ekp - l)v-]. (23) 

In some particular cases we can obtain closed-form expressions for the distribution func- 
tions, as with Lo. Again we can prove that the distribution function for Equation 20 becomes 
F0(x; k, px) 

= 0 if x ? 
pxu(k), Fo(x; k, p) = 1 if x > pv(k) and 

F0(x; k, ) = {log k if 
pIu(k) 

? x ? pv(k), (24) 

where, u(k) = kl(ek - 1) and v(k) = kekl(ek - 1). 
For the remaining families we also can obtain results. For example, for L2 with y = 2, we 

obtain 
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752 Sarabia, Castillo, and Slottje 

F2(x; k, 2, ) = klog 1(1 + 1 + 4x/c) if 0 ? x s 2v(k)pL, k> 0, and 

a _ 0 c = 2kpll(ek - 1)2 and 

F2(x; k, 2, pi) = 0 if x ! 0 and F2(x; k, 2, pL) = 1 if x - 2v(k)pL. (25) 

We present some inequality measures that correspond to these Lorenz curves in the Appendix. 
We now discuss estimation of these models. 

4. Estimation 

In inequality studies, several types of data are normally utilized: grouped data and micro 
data. Micro data can consist of a set of individual observations or a set of points on the empirical 
Lorenz curve, for example, income deciles. The estimation method that is presented here can 
be used for any of the three types of data. For estimating the parameters of Families 17 to 19, 
least squares is the most direct method to be applied. In all cases, we need to minimize a 
nonlinear function of the parameters. This method presents some well-known problems, such 
as the need for proving the existence of an absolute minimum and the need from initial values 
of the estimates for the iterative process to converge. We discuss these problems and propose 
solutions now. 

The Proposed Method 

The merits of parametric methods, as opposed to nonparametric methods, for the construc- 
tion of indices and inequality measures for income probability distributions with grouped data 
have recently been discussed by Slottje (1990). Slottje concludes that the indices should be 
constructed using the parametric method and then the results checked using a nonparametric 
method. In this sense, Gastwirth's (1972) Gini bounds are nonparametric constraints that should 
be satisfied by the Gini index of any parametric family of Lorenz curves. 

Consequently, any estimation method for the exponential family should lead to parameter 
values whose Gini indices satisfy Gastwirth's bounds. The usual estimation method consists of 
minimizing with respect to 0 the sum of squares: 

2 [q,- L(pi; 0)]2; 0 e 0, (26) 
i=1 

where 0 is the set of feasible parameters. Unfortunately, an estimation method based on Equa- 
tion 26 does not guarantee a Gini satisfying the Gastwirth bounds. An empirical study on this 
problem has been done by Schader and Schmid (1994), who arrived at conclusions similar to 
those in Slottje (1990). 

One possible solution to this problem consists of incorporating the Gastwirth bounds di- 
rectly into the programming problem as one more constraint. Thus, we propose to minimize the 
function Equation 26 subject to 

GL 
- 

2 [p - L(p; 0)] dp 
- 

GU (27) 
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Table 1. Gastwirth Lower Bounds for Different Countries 

Country Lower Bound to G 

Brazil 0.62105 
Columbia 0.54710 
Denmark 0.36215 
Finland 0.46585 
India 0.44925 
Indonesia 0.43575 
Japan 0.30660 
Kenya 0.60635 
Malaysia 0.50345 
Netherlands 0.44210 
New Zealand 0.36580 
Norway 0.35740 
Panama 0.44085 
Sri Lanka 0.40395 
Sweden 0.38205 
Tanzania 0.52615 
Tunisia 0.49645 
United Kingdom 0.35790 
Uruguay 0.49135 

where GL and GU are the Gastwirth bounds associated with the set of data (pi, q,), i - 1 .... 
n, that is 

k+1 

GL = 1 - > (pj - pj-1)(qj + q-1), 
j=1 

k+1 

GU = GL + m-1' > (pj - pj_,)2(aj - mj)(mj - aj_1)(aj- aj,)- 
j=1 

where po = q0 = 0, Pk+1 = qk+1 = 1 [aj-aj], are the limits of the income intervals, mj is the 
mean income of the interval, and m is the overall mean. 

Constraint (Eqn. 27) can be incorporated with other alternative estimation methods, as, for 

example, that proposed in Castillo, Hadi, and Sarabia (1995, 1998). 

5. Some Examples 

To illustrate the method proposed here, we apply it to income distribution data on national 

samples of income recipients across countries. The data are from Shorrocks (1983). The data 

correspond to figures for cumulated income shares for 19 countries derived from Jain (1975). 
The 19 countries selected for analysis were chosen because they cover samples with relatively 
high, middle, and low income groups with varying degrees of inequality. 

Using our approach, the Gastwirth lower bounds associated with the different countries are 
shown in Table 1. As can be seen, the lower bound varies significantly across the countries 
scrutinized in our study. These should be viewed in light of the overall estimates. 

In Tables 2 to 3, we give the parameter estimates and the mean square error (MSE), the 
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Table 2. Goodness-of-Fit Measures and Gini Indices Corresponding to Model L, 
Country K MAE MSE MAXABS Gini Index 

Brazil 6.11303 0.0672026 0.00670074 0.184059 0.677267 
Columbia 4.40909 0.0446958 0.00353165 0.136717 0.571024 
Denmark 2.36837 0.0103202 0.00014356 0.0223345 0.36215 
Finland 3.27372 0.0184473 0.000568854 0.0520662 0.467785 
India 3.23994 0.0499807 0.00423375 0.149348 0.46423 
Indonesia 3.15391 0.0633097 0.00652695 0.184605 0.455043 
Japan 1.96496 0.0146695 0.000358936 0.0371705 0.308185 
Kenya 6.00083 0.0766118 0.00835894 0.202144 0.671678 
Malaysia 3.7724 0.0343096 0.00203517 0.102055 0.51691 
Netherlands 3.0776 0.023943 0.000997398 0.0704869 0.446732 
New Zealand 0.39684 0.0132102 0.000240519 0.0297536 0.3658 
Norway 0.33157 0.0150283 0.000283704 0.042860 0.3574 
Panama 3.06741 0.0247178 0.00106703 0.0728711 0.445611 
Sri Lanka 2.73551 0.0172091 0.000491571 0.0462995 0.407594 
Sweden 2.5308 0.0146085 0.000328096 0.03686 0.382693 
Tanzania 4.32115 0.0635603 0.00610748 0.173073 0.564087 
Tunisia 3.72563 0.0276664 0.00104612 0.0608432 0.512564 
United Kingdom 2.34177 0.0215614 0.000809624 0.0627512 0.35872 
Uruguay 3.57844 0.0159616 0.000408415 0.0394658 0.498539 

mean absolute error (MAE), the maximum absolute error (MAXABS) and the Gini index for 
each country, where 

MSE = [qi - L(p,; k, , )]2/n (28) 

is the mean squared error and 

Table 3. Goodness-of-Fit Measures and Gini Indices Corresponding to Model L, 
Country K y MAE MSE MAXABS Gini Index 

Brazil 6.11300 1.00019 0.0672139 0.00670082 0.184018 0.677324 
Columbia 4.41021 1.00000 0.0447035 0.00353165 0.136675 0.571111 
Denmark 1.96676 1.12001 0.0107581 0.00016163 0.025593 0.363753 
Finland 3.26489 1.00201 0.0184466 0.00056943 0.052112 0.467757 
India 3.24050 1.00000 0.0499908 0.00423375 0.149326 0.464290 
Indonesia 3.15433 1.00000 0.0633176 0.00652695 0.184589 0.455088 
Japan 0.08593 1.89580 0.0342035 0.00136918 0.054208 0.323708 
Kenya 6.00158 1.00004 0.0766221 0.00835896 0.202107 0.671729 
Malaysia 3.77466 1.00004 0.0343362 0.00203522 0.101962 0.517135 
Netherlands 3.07786 1.00003 0.0239475 0.00099742 0.070474 0.446772 
New Zealand 1.47461 1.30012 0.0137192 0.00030297 0.035858 0.365800 
Norway 1.44674 1.28799 0.0141477 0.00029580 0.035039 0.357400 
Panama 3.06767 1.00001 0.0247216 0.00106704 0.072860 0.445644 
Sri Lanka 2.73138 1.00148 0.0172602 0.0049237 0.046265 0.407800 
Sweden 2.52290 1.00157 0.0145834 0.00032861 0.036961 0.382464 
Tanzania 4.32084 1.00000 0.0635580 0.00610748 0.173085 0.564062 
Tunisia 3.72630 1.00016 0.0276857 0.00104624 0.060793 0.512692 
United Kingdom 2.34042 1.00086 0.0215970 0.00081023 0.062703 0.358960 
Uruguay 3.57863 1.00009 0.0159672 0.00040845 0.039445 0.498597 
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MAE = jqj - 
L(pi, 

k, ( &, 9)/n (29) 
i=1 

is the mean absolute error. The maximum absolute error is 

MAXABS = max Iqi - L(pi; k, &, -)y. (30) 
i=.1,...,n 

As can be seen in Tables 2 and 3, across all countries, the first model (LI) gives lower 
MAE, MSE, and MAXABS. The order of magnitude of the coefficients, however, is virtually 
the same. The differences in the measures of goodness of fit are not different until the fourth 
or fifth decimal place. In sum, L, appears to be a slightly better fitting model than L2. The Gini 
coefficients for the L, and L2 models are essentially the same in both cases, but the Ginis are 
slightly higher in L2. In fact, it appears that L, is giving better precision of the model's descrip- 
tion of inequality, yet L2 yields Gini measures that are more sensitive to inequality. Thus, L2 
and L, appear to flip-flop across countries with respect to their relative Ginis vis-a-vis their 
goodness-of-fit measures. 

6. Conclusions and Recommendations 

In this paper we have introduced a new family of Lorenz curves that are generated from 
the exponential family. Several parameters are incorporated sequentially, keeping the Lorenz 
character of the resulting families of curves. Several properties of this family are analyzed, and 
a general estimation method has been proposed that guarantees the existence of unique estimates. 
The exponential models appear to be very good approximations to actual income distribution 
data. The results are robust to different data sets for different countries from various parts of 
the world. Perhaps the most attractive feature of the proffered estimation method is that it is 
robust. The only cost of this method is some loss of flexibility. 

Appendix 
The Gini index of the exponential hierarchy can be expressed in terms of the confluent hypergeometric function, 

whose integral representation is given by (b > a): 

F(b - a)F(a)M(a, b, z) = eztta-l(1 - t)b-a-1 dt. (A.1) F(b) 

F(b - a)F(a)/F(b) M(a, b, z) = Iez'ta-t(1 - t)b-a-ldt. (A.1) 

The most important properties of the confluent hypergeometric can be found in Abramowitz and Stegum (1970, p. 503). 
We have the following theorem. 

THEOREM Al. The Gini indices of the exponential hierarchy are given by 
k(ek + 1) - 2(ek - 1) 

Go(k) = (A.2) 
k(ek - 1) 

G,(k, a)= 1 - 2k[M(a + 1, a + 2, k)- 1] (A.3) ca+l 

G2(k, y) = 1 - 2c, 
. F(i- (A.4) 

=o F(i + 1)F(-y)k(y - i) 

F 

o(i 

-y) 
G3(k, a, y)= 1 -2ck M[a + 1, o + 2, k(y - i)], (A.5) 

i= F(i + 1)F(-y) 
where B( ) and F( ) are the well-known beta and gamma functions. 
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PROOF. The index Go(k) is given by Chotikapanich (1993). For G,(k, a), we have 

F(1)F(a + 1) 1 
G,(k, ) = 1 - 2ck (paeP -pa) dp =1 - 2ck F( + 2) M( + 1, + 2, k) 

Ck 
= 1 - 2 - [M(a + 1, a + 2, k)- 1], ao+l 

and for the index G2, we can write 

L2(p; k, y) = (CkyekPY)Y = 

ck,ekPY(1 

- e-kP)Y F(i ) 
-)kpi 

i=o (i + 1)F(-ty) 

and integrating, term by term, we obtain the index G2. Finally, the index G3 can be obtained in a similar form. QED. 
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