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Nonlinear optical properties of TeO2 crystalline phases from first principles
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We have computed second and third nonlinear optical susceptibilities of two crystalline bulk tellurium oxide
polymorphs: α-TeO2 (the most stable crystalline bulk phase) and γ -TeO2 (the crystalline phase that ressembles
the more to the glass phase). Third-order nonlinear susceptibilities of the crystalline phases are two orders of
magnitude larger than α-SiO2 cristoballite, thus extending the experimental observations on glasses to the case
of crystalline compounds. While the electronic lone pairs of Te contribute to those large values, a full explanation
of the anisotropy of the third-order susceptibility tensor requires a detailed analysis of the structure, in particular,
the presence of helical chains, that seems to be linked to cooperative nonlocal polarizabilty effects.
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I. INTRODUCTION

Tellurium oxide glasses have aroused much interest in the
field of nonlinear optics (NLO) since their unusual nonlinear
optical indices have been noticed. The third-order optical
susceptibility [χ (3)] exhibited by pure TeO2 glass, of the order
of 14 × 10−13 esu,1 is indeed among the highest observed for
oxide glasses (50 times larger than in pure silica glasses), and
thus tellurium oxide-based glasses are of great interest in both
fundamental science and technological applications as optical
modulators and frequency converters.1–3

The origin of these high values is not fully established yet.
Using a combination of experimental techniques (interfero-
metric measurements) and ab initio calculations (within the
restricted Hartree-Fock scheme), some authors 4 suggested that
the highly polarizable 5s2 electronic lone pair of Te(IV) could
be responsible for the high NLO indices. Other theoretical
works,5,6 based on the use of hybrid functionals within the
density functional theory (DFT), reinforced this idea by
demonstrating the importance of the Te(IV) lone pair on the
hyperpolarizabilities of isolated TeO4 and TeO3 structural
units. This conclusion was extrapolated, by extension, to
the case of TeO2-based glasses. However, another series of
theoretical studies,7–10 also carried out in the framework
of DFT with hybrid functionals on (XO2)n (X = Si or Te)
polymer clusters of different shapes (chains, rings, and cage
geometries) and sizes (monitored by the number n of XO2

units) suggested another origin for the unusually high values
of the NLO susceptibilities, highlighting the relevance of the
structural features themselves, in particular, how the structural
blocks (i.e., TeO2 units) are linked together. Only one type
of such molecules, the linear chains, seems to be capable of
realistically reproducing the high hypersusceptibility values
for the tellurium oxides. This was attributed to an exceptionally
strong nonlocality of the electronic polarization in these
chains, much more important for the Te than for the Si oxides.

Nevertheless, previous works were based on hypothetical
fragments that were supposed to be likely found in the glass.
The question about the high nonlinear susceptibility in the
solid phases was not addressed. Clearly, further studies are
needed to achieve a deeper understanding of the origin of

these properties and notably to gauge the relative importance
of the lone pair versus the structural features. A different way to
tackle this problem is to treat the case of TeO2-based crystalline
compounds. This would prevent the recourse to hypothetical
structural fragments to feed the first-principles calculations.
Besides, it would allow to study how the anisotropic nature in
the crystalline phases translates into the variations of dielectric
susceptibilities with crystalline directions.

Unfortunately, the situation for crystals is different than for
molecules, and two main problems arise in the first-principles
calculation of the hypersusceptibilities. The optical suscep-
tibilities are derivatives of the bulk macroscopic polarization
with respect to the electric field. If the polarization can be easily
expressed in terms of the charge distribution for molecules
(finite systems), it cannot be obtained that way for crystals
(infinite systems treated periodically). The polarization in
a periodic system would indeed depend on the choice of
the unit cell.11 Solutions arose in the early 1990’s and are
often referred to as the “modern theory of polarization.”12

The basic idea is to consider the change in polarization13

of a crystal as it undergoes some slow change, e.g., a slow
displacement of one sublattice relative to the others, and
to relate it to the current that flows during this adiabatic
evolution of the system.14 The second problem lies in the
nature of the applied electric field that is macroscopic. The
scalar potential of a macroscopic homogeneous electric field
is nonperiodic (so the Bloch theorem does not apply), and
unbounded from below (so the energy of the system can always
be lowered, transferring electrons to regions sufficiently far
away, hampering the applicability of traditional variational
methods).15 The first approach to circumvent this problem
in first-principles simulations, due to Kunc and Resta,16 was
to consider “sawtooth” potentials in a supercell. We have
previously tested this scheme, as implemented in the CRYS-
TAL06 program,17 on the computation of hypersusceptibilities
of TeO2 crystalline oxides.18 Although this method gives
satisfactory results, it requires defining a supercell for keeping
the periodicity along the applied field direction. The dimension
of the studied system is thus very quickly limiting in terms
of expansiveness in time and computational requirements.
A more recent variational alternative, firmly rooted on the
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TABLE I. Reference configuration, cutoff radii, and matching radius between the full core charge and the partial core charge for the
pseudopotentials used in our study. Units are in bohr.

Te Si O
Reference 5s2,5p4,5d0,4f 0 3s2,3p2,3d0,4f 0 2s2,2p4,3d0,4f 0

Core radius s 2.00 1.77 1.15
p 2.00 1.96 1.15
d 3.00 2.11 1.15
f 3.00 2.11 1.15

Matching radius NLCC 1.30 1.50 1.17
Scalar relativistic? Yes No No

modern theory of polarization, was due to Souza, Íñiguez, and
Vanderbilt.15,19 It is based on the minimization of a electric
enthalpy functional with respect to a set of polarized Bloch
functions, thus including the effect of the electric field directly
inside the unit cell. This approach, recently implemented
in the SIESTA method,20,21 is the one used in the present
work.

In this paper we compute the second- and third-order
optical susceptibility tensors in two bulk TeO2 polymorphs: the
α-TeO2 phase (known as paratellurite), which is the most stable
one, and the γ -TeO2 phase, whose structure more resembles
the glass. The estimations of the nonlinear susceptibility data
provided in the present work intend to fill the gap in the
reported values of these quantities. Unfortunately, there is a
cruel lack of experimental nonlinear susceptibility data for
crystalline phases, mainly due to the difficulty of growing
sufficiently large single crystals. To our knowledge, only the
χ (2) susceptibility tensor elements for the α-TeO2 phase has
been measured, while there are no experimental values of the
χ (3) tensor elements for any crystalline phase.

In addition, third-order susceptibility tensor of α-SiO2

cristobalite, which is structurally similar to α-TeO2, is com-
puted for comparison.

The rest of the paper is organized as follows. After
presenting the computational details in Sec. II, and the
structure characteristics of the different polymorphs in Sec. III,
we describe the methodology used to compute the nonlinear
susceptibilities in Sec. IV. Second-order susceptibility values
are then calculated in Sec. V A, and compared to experimental
results in order to test the validity and the limitations of
the method. Finally, the method is used as a predictive tool
through the calculation of the third-order susceptibilities in
Sec. V B, and clues are given for exploring relevant features
responsible for large variations of the dielectric susceptibilities
with crystalline directions.

II. COMPUTATIONAL DETAILS

We have carried out density functional first-principles
simulations based on a numerical atomic orbital method as
implemented in the SIESTA code.20 All the calculations have
been carried out within the generalized gradient approximation
(GGA), using the functional parametrized by Perdew, Burke,
and Ernzerhof (PBE)22 to simulate the electronic exchange
and correlation.

Core electrons were replaced by ab initio norm-conserving
pseudopotentials, generated using the Troullier-Martins
scheme,23 in the Kleinman-Bylander fully nonlocal separable
representation.24 The 5s and 5p electrons of Te, 2s and
2p electrons of O, and 3s and 3p electrons of Si were
considered as valence electrons and explicitly included in the
simulations. In order to avoid the spiky oscillations close to the
nucleus that often appear in GGA-generated pseudopotentials,
we have included small partial core corrections25 for all
the atoms. The Te pseudopotential was generated scalar
relativistically. The reference configuration, cutoff radii for
each angular momentum shell, and the matching radius
between the full core charge density and the partial core charge
density for the nonlinear core corrections (NLCCs) for the
pseudopotentials used in the present work can be found in
Table I.

The one-electron Kohn-Sham eigenvalues were expanded
in a basis of strictly localized26 numerical atomic orbitals.20,27

The size of the basis set chosen was double-ζ plus polarization
for the valence states of all the atoms. All the parameters
that define the shape and the range of the basis functions
were obtained by a variational optimization of the energy in
the α-cristobalite polymorph of SiO2, and of the enthalpy
(with a pressure P = 0.2 GPa) in the α phase of TeO2,
following the recipes given in Refs. 28 and 29. In both
cases the optimization of the basis set was performed at
the experimental lattice parameters and internal positions
taken from Ref. 30 for α-TeO2 and from Ref. 31 for
α-cristobalite.

The electronic density, Hartree, and exchange correlation
potentials, as well as the corresponding matrix elements
between the basis orbitals, were calculated in a uniform
real-space grid. An equivalent plane-wave cutoff of 400 Ry
was used to represent the charge density. During the geometry
optimizations, we used a 6 × 6 × 6 Monkhorst-Pack mesh32

for all the Brillouin zone integrations. The macroscopic
polarization and its derivatives with respect to an external
electric field depend highly on the number of k points used.
To quantify this dependence, we have refined the Monkhorst-
Pack meshes and followed the evolution of the field-induced
polarization with an increasing number of k points. Further
details will be given in Sec. IV B.

For the structural characterization in the absence of an
external electric field, the atoms were allowed to relax until the
maximum component of the force on any atom was smaller
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FIG. 1. (Color online) Schematic view of the α-SiO2 cristobalite
unit cell in different perspectives. Si and O atoms are represented
by gray and red balls, respectively. Solid lines mark the unit cell.
(a) highlights the helical chains formed by the tetrahedra along z,
while in (b) the zigzag chains in the x direction are clearly observed.

than 0.01 eV/Å, and the maximum component of the stress
tensor was smaller than 0.0001 eV/Å3.

III. STRUCTURAL PROPERTIES OF THE
CRYSTALLINE PHASES

1. α-SiO2 cristobalite

α-SiO2 cristobalite crystallizes in the same space group
(P 41212, D4

4, No. 92) and with the same independent atomic
positions as paratellurite, α-TeO2. Two atoms are independent
by symmetry: one Si atom at position (u,u,0), and one O atom
at position (x,y,z). The unit cell contains four formula units
(12 atoms). In the case of α-cristobalite, the SiO4 entities are
almost regular tetrahedra (see Fig. 1) and the Si-O distances
are all close to 1.60 Å (see Table II). As shown in Fig. 1, the
tetrahedra are organized as to form an helical chain along the z

direction, while in the directions x and y, the structure is made
by zigzag chains.

Theoretical lattice parameters and Wyckoff positions are
reported in Table II, together with some experimental values
for comparison. Although the data summarized in Table II
include results obtained with different implementations of the
DFT (differences in the electrons included explicitly in the
calculation, with and without pseudopotentials, different basis
sets, and different ways of sampling the Brillouin zone), a
general trend that can be observed is that both PBE-GGA
and Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid
functional yield an overestimation of the lattice constant of up
to 3% with respect to the experimental values. The Wyckoff
positions obtained with the different DFT methods are in
very good agreement between them [the maximum difference
being in the O(y) position], and are perfectly comparable with
the experimental results. Indeed, this good performance in a
traditionally complicated system such as SiO2 (very sensible to
many approximations, in particular to basis sets 28) validates
the SIESTA basis sets and pseudopotentials used in the present
work.

2. α-TeO2 phase

α-TeO2 crystallizes in a tetragonal unit cell with the space-
group symmetry P 41212 (D4

4, No. 92) as discussed before.30

A schematic view of the unit cell is depicted in Fig. 2.

FIG. 2. (Color online) Schematic view of the α-TeO2 unit cell in
different perspectives. Te and O atoms are represented by gray and
red balls, respectively, while the blue spheres are the lone pairs of the
Te atoms. Solid lines mark the unit cell. Meaning of the panels as in
Fig. 1.

The tellurium atom occupies the center of triangle bipyra-
mids, whose basis is formed by two oxygen atoms, and by
the tellurium electronic lone pair, and whose apexes are also
oxygen atoms. Therefore, the Te atoms are coordinated with
four O atoms. This TeO4 bypiramidal unit, the building block
of the tellurium oxides discussed in the present work, is
referred to as a disphenoid. Two different Te-O bonds can
be distinguished within the disphenoid, with the equatorial
O atoms closer to Te than the apical O atoms (experimental
distances of 1.87 and 2.12 Å, respectively). As in α-SiO2

cristobalite, the polyhedra are connected by vertices to form
a three-dimensional (3D) network, resembling a helical chain
along the z direction and zigzag chains along the x and y

directions (see Fig. 2.)
Unit-cell lattice parameters and internal coordinates are

reported in Table III. The structural parameters obtained with
SIESTA are in very good agreement with those obtained with
a plane-wave code with ultrasoft pseudopotentials and an
energy cutoff of 30 Ry, showing the good performance of
the basis set used in the present work. As usual, the standard
overestimation of the experimental equilibrium volume by
the GGA is found. The calculated independent bond lengths
at the theoretical equilibrium lattice parameters also over-
estimate the experimental numbers. Nevertheless, the differ-
ence between the short equatorial and the long axial Te-O bond
lengths is preserved within SIESTA.

3. γ -TeO2 phase

γ -TeO2 crystallizes in an orthorhombic unit cell with the
space group P 212121 (D4

2, No. 19).39 A schematic view of the
unit cell is represented in Fig. 3. This phase is metastable at
normal conditions, and has been recently identified by x-ray
powder diffraction of recrystallized amorphous TeO2 doped
with oxides. The unit cell contains four formula units (12
atoms), with three atoms independent by symmetry: one Te
atom located at (u,v,w), and two oxygen atoms labeled as
OI and OII. As in the α phase, the structure of the γ phase
can be considered as a 3D network of corner-sharing TeO4

disphenoids. However, in the γ phase the disphenoids are
strongly deformed, so the length of the four Te-O bonds are
rather different (experimentally the bond lengths range from
1.86 to 2.20 Å), with a much larger spread (0.34 Å) than in
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TABLE II. Lattice constants (in Å), and Wyckoff structural parameters for α-cristobalite SiO2 (space group P 41212). PW stands for
a plane-wave method with pseudopotentials. d(Si-O)1 and d(Si-O)2 represent the Si-O bond lengths inside the tetrahedra. PBE stands for
the Perdew-Burke and Ernzerhof (Ref. 22) generalized gradient functional, and B3LYP stands for a three-parameter hybrid functional
[including part of the exact HF exchange (Ref. 33)]. For the O-Si-O angle the average between the four possible values is shown.

SIESTA PWa All electronb All electronc

xc-functional PBE PBE B3LYP B3LYP Expt.d Expt.e

Cell parameters (Å)
a 4.994 5.073 4.989 5.028 4.983 4.957
c 6.936 7.085 6.902 7.013 6.955 6.890

Atomic positions
Si(u) 0.305 0.300 0.307 0.299 0.306 0.305
O(x) 0.236 0.238 0.236 0.240 0.251 0.238
O(y) 0.118 0.108 0.119 0.104 0.095 0.111
O(z) 0.186 0.182 0.186 0.178 0.156 0.183

Bond lengths (Å)
d(Si-O)1 1.629 1.646 1.629 1.615 1.535 1.600
d(Si-O)2 1.638 1.646 1.632 1.626 1.606 1.620

Angles (deg)
Si-O-Si 142.00 144.39 142.28 146.58 158.86 144.55
〈O-Si-O〉 109.32 109.73 109.78 109.75 119.96 109.39

aReference 34.
bReference 35.
cReference 18.
dReference 31.
eReference 36.

the α phase (0.24 Å). Indeed, if we assume that the longest
Te-O distance (marked with a dashed line in Fig. 3) is too
long to form a chemical covalent bond, then the structure can
be viewed as an infinite zigzag chain of TeO3 units in the z

direction, connected by the bridge Te-OII-Te. Including now

FIG. 3. (Color online) Schematic view of the γ -TeO2 unit cell. Te
and O atoms are represented by gray and red balls, respectively, while
the blue spheres are the lone pairs of the Te atoms. Solid lines mark
the unit cell, repeated along the z direction for the sake of clarity. The
yellow dashed lines are the longest Te-O distance.

the longest bond Te-O, the disphenoids TeO4 forms zigzag
chains along the x direction and helical chains along the y

direction but with different bridges (Te-OI-Te and Te-OII-Te)
(see Fig. 4.)

In Fig. 3, despite the fact that the bridge between Te atoms
along the z-oriented chains is always through a OII atom, the
length of the Te-OII bond is different, ranging between 1.94 Å
for one of the bonds of the chain to 2.02 Å for the second bond.

The theoretical lattice parameters and independent posi-
tions of the atoms are reported in Table IV. The good agreement
between SIESTA and plane-wave results confirms and highlights
the transferability of our basis set, which was optimized
for the α-TeO2 structure. Again, the PBE-GGA functional
overestimates the experimental equilibrium volume, although
the deviation in this case (9%) is slightly larger than usual.
This overestimation translates also in a slight overestimation of
the spread of the bond lengths in the case of SIESTA (0.40 Å).

Regarding the first-principles simulations on the structure
of the TeO2 phases, we can summarize that the disphenoidal
configuration of the TeO4 entities are respected both in the α

and γ phases. The lone pair sterical effect is thus conserved in
our geometry optimization. The good comparison between our
structural parameters and the ones obtained with plane waves38

support the use of the numerical atomic orbital method
implemented in SIESTA in the present study.

IV. NONLINEAR OPTICAL PROPERTIES

A. Methodology

The polarization P can be expressed as an expansion of the
electric field E as
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TABLE III. Lattice constants and Wyckoff structural parameters
for paratellurite α-TeO2 (space group P 41212, D4

4 , No. 92). PW stands
for a plane wave calculation performed with the QUANTUM-ESPRESSO

package (Ref. 37). Oeq and Oap represent, respectively, the equatorial
and apical oxygen atoms within the disphenoids. Both SIESTA and
plane-wave simulations have been carried out within the PBE-GGA
functional (Ref. 22). All electron results were computed with the
B3LYP hybrid functional (Ref. 33). The units of the lattice constants
and distances are in Å and angles are in degrees.

SIESTA PWa All electronb Expt.c

Cell parameters (Å)
a 4.987 4.990 4.899 4.808
c 7.606 7.546 7.792 7.612

Atomic positions
Te(u) 0.0261 0.0272 0.0276 0.0268
O(x) 0.1418 0.1467 0.1389 0.1368
O(y) 0.2494 0.2482 0.2585 0.2576
O(z) 0.1973 0.1968 0.1845 0.1862

Bond lengths (Å)
d(Te-Oeq) 1.955 1.944 1.909 1.879
d(Te-Oap) 2.192 2.118 2.160 2.121

Angles (deg)
Oeq-Te-Oeq 104.6 103.6 103.2 103.4
Oap-Te-Oap 169.8 171.2 168.1 168.0
Te-O-Te 136.2 137.1 139.1 138.6

aReference 38.
bReference 18.
cReference 30.

Pi = P s
i +

3∑

j=1

ε0χ
(1)
ij Ej +

3∑

j,k=1

ε0χ
(2)
ijkEjEk

+
3∑

j,k,l=1

ε0χ
(3)
ijklEjEkEl + · · · , (1)

where i,j,k, and l refer to Cartesian directions, and Ps
i is the

zero-field (spontaneous) polarization. The coefficients of the
quadratic and cubic terms are used to define the second and
third order nonlinear optical susceptibility tensors.

FIG. 4. (Color online) Schematic view of the γ -TeO2 unit cell in
different perspectives. Te and O atoms are represented by gray and red
balls, respectively, while the blue spheres are the lone pairs of the Te
atoms. Solid lines mark the unit cell. The two symmetry-inequivalent
O atoms are labeled as OI and OII. The yellow dashed lines are the
longest Te-O distance. (a) and (b) highlight the zigzag chain along
the z and x directions, respectively. (c) Focus on the helical chain
along the y direction.

TABLE IV. Lattice constants and Wyckoff structural parameters
for γ -TeO2 (space group P 212121, D4

2 , No. 19). PW stands for a plane-
wave calculation performed with the QUANTUM-ESPRESSO package
(Ref. 37). d(Te-O)1 and d(Te-O)2 stand for the short and the long
equatorial Te-O distance, while d(Te-O)1′ and d(Te-O)2′ represent the
long and the short axial bond lengths within the disphenoid. Both
SIESTA and plane-wave simulations have been carried out within the
PBE-GGA functional (Ref. 22). Units of the lattice constants and
distances are in Å.

SIESTA PWa Expt.b

Cell parameters (Å)
a 5.181 5.176 4.898
b 8.636 8.797 8.576
c 4.446 4.467 4.351

Atomic positions
Te(u) 0.9632 0.9581 0.9686
Te(v) 0.1034 0.1032 0.1016
Te(w) 0.1368 0.1184 0.1358
OI(x) 0.7770 0.7641 0.759
OI(y) 0.2935 0.2851 0.281
OI(z) 0.1750 0.1645 0.173
OII(x) 0.8616 0.8599 0.855
OII(y) 0.0380 0.0406 0.036
OII(z) 0.7259 0.7131 0.727

Bond lengths (Å)
d(Te-O)1 1.912 1.900 1.859
d(Te-O)2 1.983 1.960 1.949
d(Te-O)1′ 2.116 2.119 2.019
d(Te-O)2′ 2.315 2.252 2.198

aReference 38.
bReference 39.

In general, the polarization depends both on the valence
electrons and the ions. In the present work, we deal only
with the electronic contribution. The main reason behind this
approximation is that the second (SHG) and third (THG)
harmonic generation experiments leading to the second- and
third-order susceptibilities are performed at frequencies high
enough to get rid of ionic relaxations but low enough to avoid

TABLE V. Symmetry-allowed components of the linear dielectric
susceptibility χ (1), and the second-order χ (2) and third-order χ (3)

nonlinear optical susceptibilities tensors for the P 41212 space group,
in which both the α-TeO2 and the α-SiO2 cristoballite crystallize.

χ (1) χ (2) χ (3)

xx xyz = −yxz xxxx = yyyy

yy xzy = −yzx zzzz

zz zxy = −zyx yyzz = xxzz

yzzy = xzzx

xxyy = yyxx

yzyz = xzxz

xyxy = yxyx

zzyy = zzxx

zyyz = zxxz

zyzy = zxzx

xyyx = yxxy
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TABLE VI. Same as in Table V but for the P 212121 space group,
in which the γ -TeO2 phase crystallizes.

χ (1) χ (2) χ (3)

xx xyz, yxz xxxx, yyyy, zzzz, yyzz, xxzz, yzzy, xzzx

yy xzy, yzx xxyy, yyxx, yzyz, xzxz, xyxy, yxyx, zzyy

zz zxy, zyx zzxx, zyyz, zxxz, zyzy, zxzx, xyyx, yxxy

electronic excitations.40 This constraint implies that both the
frequency of E and its second and third harmonics are lower
than the fundamental adsorption gap. Indeed, SHG and THG
experiments are pump-probe settings which are sensitive only
to the electronic contributions.

For the symmetry groups of α-TeO2 and γ -TeO2, Eq. (1)
implies, respectively, three, six, and 21 elements for χ (1), χ (2),
and χ (3) tensors. They can be found in Tables V and VI,
respectively.41

The idea used to compute the NLO susceptibilities in
this work is to combine the symmetry-allowed components
of the susceptibility tensors with a judicious choice of the
direction of the applied electric field, in order to restrict
the expansion in Eq. (1) so that only a given component of
the susceptibility is present. Then, its value can be obtained
by fitting the polarization versus electric field dependence as
obtained from first-principles computations of the response of
the bulk materials to an homogeneous electric field.15,19

To better fix this procedure, let us develop the way the χ (2)
yxz

of γ -TeO2 is computed. Taking into account the nonvanishing
optical susceptibilities of its crystal class, P 212121, the
expansion of the Eq. (1) in this case is reduced to

Py = P s
y + ε0χ

(1)
yy Ey

+ε0
(
χ (2)

yxzExEz + χ (2)
yzxEzEx

)

+ε0
(
χ (3)

yyyyEyEyEy + χ (3)
yyzzEyEzEz + χ (3)

yzzyEzEzEy

)

+ε0
(
χ (3)

yyxxEyExEx + χ (3)
yzyzEzEyEz + χ (3)

yxyxExEyEx

)

+ε0
(
χ (3)

yxxyExExEy

)
. (2)

To isolate the χ (2)
yxz component, we can apply a field with only

x and z components, E = (E,0,E), so the expansion in Eq. (2)
reduces to

Py = P s
y + ε0

(
χ (2)

yxz + χ (2)
yzx

)
E2. (3)

Assuming the Kleinman symmetry conditions,42 which
states that the second-order nonlinear optical susceptibility
tensor is symmetric under a permutation of the i,j,k indices
so χ (2)

yxz = χ (2)
yzx , then Eq. (3) transforms into

Py = P s
y + 2ε0χ

(2)
yxzE2. (4)

Up to now we have applied only basic definitions and
symmetry properties.

The ingredient from first principles comes from the com-
putation of the field-induced electronic polarization (the ionic
cores are clamped at the equilibrium zero-field positions) as a
function of the external electric field. Here, we have used the
method of Refs. 15 and 19.

In these milestone works, Souza, Íñiguez, and Vanderbilt
showed how to compute stationary states of a periodic system
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FIG. 5. Field-induced polarization along y, Py , as a function of
an applied electric field only with components along the x and z

directions, E = (E,0,E), for the γ -TeO2 phase. The x axis represents
the component of the field along the x direction. Atomic coordinates
and unit-cell lattice parameters are clamped to the optimized structure
at zero external field, and only the electronic response is considered
while computing the polarization. Circles are the first-principles
results and the solid line is the fit to Eq. (4).

at a finite, constant electric field E on a uniform discrete k-point
mesh, providing that the magnitude of the field does not exceed
a critical value Ec(N ), which decreases as the number of k

points N increases.
Once a set of polarization versus electric field data have

been obtained from first principles, one can make a choice
between different methods to extract a value for the nonlinear
susceptibility. The first one is a direct fit of the raw data (see
the symbols of Fig. 5) to expressions such as Eq. (4).

The second one is to compute the derivatives of the
macroscopic polarization with respect the electric field by
finite differences, by using Richardson’s extrapolation to
estimate the limit h → 0 from calculations with two different
step sizes:

f (n)(x) = 4
3D(n)(x,h) − 1

3D(n)(x,2h) + O(h4), (5)

where D(1) is given by the centered finite difference expression

D(1)(x,h) ≡ f (x + h) − f (x − h)

2h
= f ′(x) + O(h2), (6)

where D(2) is given by

D(2)(x,h) ≡ f (x + h) + f (x − h) − 2f (x)

h2

= f
′′
(x) + O(h2), (7)

and D(3) is given by

D(3)(x,h) ≡ f (x +2h)−2f (x + h)+2f (x − h)−f (x −2h)

2h3

= f ′′′(x) + O(h2). (8)

Here, in the results quoted below, we have used a field step of
h = 0.04 V/Å.
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FIG. 6. (a) χ (2)
yxz component of the second-order NLO susceptibil-

ity tensor of γ -TeO2, and (b) the χ (3)
xxxx component of the third-order

NLO susceptibility tensor of α-TeO2 as a function of the size of the
N × N × N shifted Monkhorst-Pack (Ref. 32) grid. Circles and solid
lines represent the results obtained with a direct fit of the polarization
vs electric field curve. Squares and dashed lines have been obtained
with the Richardson extrapolation formula to compute derivatives by
finite differences. The lines are fits to analytical functions that would
allow an extrapolation to N → ∞.

A comparison between the results obtained with the two
methods will be presented in Sec. IV B.

B. Convergence studies

It is well known that the total energy ground-state cal-
culations for insulators converge exponentially fast with
respect to k-point sampling. However, while a given k-point
sample might be perfectly adequate for some properties, it
might constitute a too severe approximation for others.43

In other words, the convergence with respect to the k-point
sampling is property dependent. That is the case of the
computation of the polarization and its derivatives when a
discretized Berry phase polarization expression is used.44

In the formalism developed in Ref. 19, and summarized in
Sec. IV A, both the calculation of the stationary states of
the periodic system at a finite constant electric field, and the
Berry-phase polarization is made on a uniform discrete k-point
mesh in the first-Brillouin zone, and the convergence for finite
field simulations is considerably slower than in total energy or
charge density calculations.44 The situation does not improve
significantly when a perturbation approach is used instead of
the finite field method. Previous first-principles simulations
on the nonlinear optical susceptibilities in the framework of
the density functional perturbation theory40 show that the
convergence of the results is quite poor with the number of
special k points, at least when the discretization of the formula
for the Berry phase of the occupied bands is performed after
the perturbation expansion (although the situation improves
dramatically when the perturbation expansion is performed
after the discretization). We can wonder how rapidly our results
converge with respect to the k-point sampling.

In Fig. 6 we represent the χ (2)
yxz component of the second-

order NLO susceptibility tensor of γ -TeO2 [Fig. 6(a)], and

TABLE VII. Symmetry-allowed values for the second-order
nonlinear susceptibilities of α-TeO2 and γ -TeO2. Units are in 10−9

esu (1 esu = 4.192 ×10−4 m/V).

Material Element Theory Experiment

α-TeO2 d14 0.0 1.4a–1.9b

d25 0.0
d36 0.0

γ -TeO2 d14 11.6
d25 11.6
d36 11.5

aReference 45.
bReference 46.

the χ (3)
xxxx component of the third-order NLO susceptibility

tensor of α-TeO2 [Fig. 6(b)] as a function of the size of
the N × N × N shifted Monkhorst-Pack 32 grid. The results
are shown for the two different methods used to obtain
the derivatives of the macroscopic polarization with respect the
electric field: the direct fit to the polarization versus field curve
and the Richardson extrapolation to compute finite difference
derivatives. The results provided by both methods are in good
agreement, with differences smaller than 2% for reasonable
sizes of the Monkhorst-Pack mesh. For the rest of the paper all
the reported results have been obtained with the Richardson
extrapolation method.

In any case, as we can see from Fig. 6, the convergence with
respect to the number of k points included in the simulations
is rather slow. A way of predicting converged values44 for
a given magnitude p would be to extrapolate to N → ∞
through a least-square fit against an analytical formula of the
form p = p∞ + a/Nb (where p∞, a, and b are adjustable
parameters). However, this would require several calculations
at different N . Here, we have proceeded in a different way,
computing only the values of the NLO susceptibilities for
N = 20. This would lead to results with errors of usually
∼2% for the second-order and up to 15% for the third-order
susceptibilities. However, a similar trend is expected for
estimations of the susceptibilities in different phases with
approximately the same unit-cell volume and number of atoms
per unit cell. Therefore, for the consequence of the main goal
of this work, that is, the comparison of the nonlinear optical
susceptibilities between phases to ascertain the origin of their
large values, the previous approach is justified.

V. RESULTS

A. Second-order NLO susceptibilities

The values for the symmetry-allowed components of the
second-order susceptibilities of α-TeO2 and γ -TeO2 are
gathered in Table VII, where they are presented in terms of
the d tensor, often used in the literature of nonlinear optics,
and defined as

dil = dijk = 1
2χ

(2)
ijk, (9)

where the first index i refers to a Cartesian direction (1 for
x, 2 for y, and 3 for z), while the second index l contracts
the two other Cartesian indices j and k in Voigt notation (see
Table VIII).
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BERKAÏNE, ORHAN, MASSON, THOMAS, AND JUNQUERA PHYSICAL REVIEW B 83, 245205 (2011)

TABLE VIII. Relationship between contracted
index l and Cartesian indices jk in the definition
of the d tensor in Eq. (9).

l jk

1 xx

2 yy

3 zz

4 yz = zy

5 zx = xz

6 xy = yx

According to (i) the conditions imposed by the space groups
(see Tables V and VI), and (ii) the Kleinman symmetry, which
means that χ

(2)
ijk is symmetric under a permutation of i, j , and

k, all the elements of the NLO susceptibility tensor of α-SiO2

and α-TeO2 should vanish, and all the independent elements
of γ -TeO2 should be equal. To illustrate this, let us take, for
instance, the d14 element for α-TeO2. The crystal symmetry
imposes that

d14 = 1
2χ (2)

xyz = − 1
2χ (2)

yxz = −d25, (10)

while following the Kleinman symmetry

d14 = 1
2χ (2)

xyz = 1
2χ (2)

yxz = d25. (11)

The only way to satisfy Eqs. (10) and (11) simultaneously
is d14 = d25 = 0. A similar reasoning for γ -TeO2, where in
principle all the crystal symmetry-allowed elements of the
second-order nonlinear susceptibility might be independent,
shows that the Kleinman rules force them to be equal. A
permutation of indices imposes that

dxyz = dxzy = dyxz = dyzx = dzxy = dzyx. (12)

Both results are clearly visible in Table VII.
Unfortunately, the comparison with the experiment is not

straightforward. To the best of our knowledge, the only
experimental results published up to now on crystals concern
the α-SiO2 critoballite47 and α-TeO2 phase,48 resulting in a
weak SHG response (indicating the presence of a second-order
susceptibility) with the SHG efficiency of α-TeO2 five times
larger than in SiO2. The metastable nature of the γ -TeO2 phase
makes it impossible to grow single crystals big enough to be
optically characterized.

It can be surprising at first sight to obtain χ (2) values for
the α-TeO2 where, as explained before, the combination of
the space-group symmetry and the Kleinman’s rules 42 should
inhibit the presence of a SHG signal. Different mechanisms
have been called to explain this apparent inconsistency. First,
Kleinman’s relations are expected to breakdown if the second
harmonic frequency is close to an absorption band of the
material, but this was not the case for α-TeO2 under the
measurement conditions.45 Second, although the Kleinman’s
rule is always satisfied in nondispersive media, it can be
broken in dispersive materials, as might be the case for the
experimental α-TeO2 samples. As the present calculations
were done in the static finite field limit, no dispersive effect

TABLE IX. Symmetry-allowed values for the third-order non-
linear susceptibilities of α-SiO2 cristoballite, α-TeO2, and γ -TeO2.
The all electron simulations have been carried out with the B3LYP
functional (Ref. 33) as implemented in the CRYSTAL06 package
(Ref. 17). The experimental values, written in italics, correspond
to the corresponding glass phase, whose structure for the Te oxide
is not so different from the γ -TeO2 phase as suggested by Raman
spectroscopy measurements (Ref. 8). Units are in 10−13 esu (1 esu =
1.398 ×10−8 m2/V2).

Material Element of χ (3) χ (3)

This work All electrona Expt.b

α-SiO2 xxxx 0.4 0.52 0.28
zzzz 0.7 0.59

α-TeO2 xxxx 17.3 18.36
zzzz 31.3 32.07

γ -TeO2 xxxx 12.2 14.1
yyyy 23.6
zzzz 20.8

aReference 18.
bReference 1.

can be taken into account so that the Kleinman’s conditions
are verified.

B. Third-order NLO susceptibilities

A glance at Tables V and VI reveals that there are 21
elements of the third-order nonlinear susceptibility allowed
by spatial symmetry considerations. A first-principles esti-
mation of all of the independent elements would be a rather
cumbersome task, which is out of the scope of this work.

Instead, we have computed the xxxx, yyyy, and zzzz

elements of the third-order susceptibilities only. Since these
tensor elements are related with the directions of the different
chains type (helical and zigzag) as presented in Sec. III, they
are informative enough for considering the effect of chains
type on the χ (3) values.

For those particular components both the polarization
and the electric fields involved are directed along the same
Cartesian direction. Results for α-SiO2, α-TeO2, and γ -TeO2

are summarized in Table IX.
The results obtained with SIESTA using the variational

implementation of the finite field in a periodic system
approach are in very good agreement with those obtained
with CRYSTAL06, where the field was introduced as a sawtooth
potential. However, the last approach requires the use of a
supercell to adapt the periodicity of the potential and, therefore,
the increase of the computational cost of the simulation.

Unfortunately, the comparison with the experiment is
not so straightforward, since there are no measurements
yet concerning the crystalline phases of TeO2 or SiO2.
Therefore, the values reported in Table IX can be considered
as purely predictive. To the best of our knowledge, the only
χ (3) available data for tellurium oxides has been measured
on the corresponding glass.1 However, Raman spectroscopy
measurements8 have shown that the structure of γ -TeO2 is
close to the structure of this glass, so it is tempting to think that

245205-8



NONLINEAR OPTICAL PROPERTIES OF TeO2 . . . PHYSICAL REVIEW B 83, 245205 (2011)

the order of magnitude of the third-order susceptibility should
be the same in both the glass and the crystalline γ -TeO2 phase.

As can be drawn from Table IX, the third-order sus-
ceptibilities of TeO2 and SiO2 crystals obtained from our
first-principles simulations are of the same order of magnitude
as the experimental values for the relevant glasses. The very
large χ (3) predicted for the two tellurium oxide polymorphs,
on the range of 10−12 esu, are nearly two order of magnitudes
larger than for crystallized silica, with an average χ (3) (TeO2)/
χ (3) (SiO2) ratio close to 50, thus extending the experimental
observations on glasses to the case of crystalline compounds.

A more detailed analysis of the χ (3) tensor elements reveals
that the highest values are for the z direction in the case of
α-SiO2 and α-TeO2 and for the y direction for the γ -TeO2. As
stated in Sec. III, those are precisely the crystalline directions
where the chains display a helical shape. In addition, for
α-TeO2 and α-SiO2, nearly the same ratio χ (3)

zzzz/χ
(3)
xxxx of ∼1.8

is obtained. Although α-TeO2 and α-SiO2 present different
polyhedra (tetrahedron in SiO2 and disphenoid in TeO2),
the chain types of these two compounds are similar along
the x and z directions. Thus, since no lone pair is present
in SiO2 compounds, the same ratio found for α-TeO2 and
α-SiO2 suggests that the lone pair effect (orientation of the
LP with respect to the electric field for example) is not the
key point for such a χ (3) anisotropic variations. All these
observations emphasise that high χ (3) values are structurally
induced and that helical chains are much more favourable
than the zigzag chains structures shown along the x direction
for these materials. They can be compared to the results of
Mirgorodsky et al.9 and Soulis and co-workers 10 who have
shown how there is a strong link between the structure of
polymer TeO2 molecules and its nonlinear optical properties,
with the chainlike species developing a drastic increase in their
third-order hyperpolarizability with increasing chain length.
The Te-O-Te bridges play a dominant role in the polarization
properties of the long TeO2 chains. This was attributed to an
exceptionally strong nonlocality of the electronic polarization,
that is, assuming that the electric field applied at a given point
would induce a dipole moment not only at the very point but in
the vicinity of this point (extending up to eight to ten neighbors
from the point of perturbation).

Now, let us turn our attention to the zigzag chains of the two
TeO2 compounds (along the x and y directions for the α-TeO2

phase and along the x and z directions for the γ -TeO2 phase.)
They are all very similar in shape and made of asymmetric
single Te-O-Te bridges with a bond length sequence −S −
L − S − L− (where S and L stand for short and long bond
lengths, respectively). We can define an asymmetry index as
AI = 100 × (L − S)/L, whose value amounts to 11 for the

chains parallel to x or y in α-TeO2, 15 parallel to x in γ -TeO2,
and four parallel to z in γ -TeO2. It is interesting to note that the
AI values evolve as the inverse of the χ (3) values, suggesting
that, for a given chain, the more symmetrical the bridge,
the higher the third-order nonlinear optical susceptibility
value.

VI. CONCLUSION

The second- and third-order nonlinear optical suscep-
tibilities of two bulk crystalline phases of TeO2 and α-
SiO2 cristoballite have been computed using the variational
approach to compute the response of a periodic solid to an
external electric field.

The third-order nonlinear susceptibilities are in good agree-
ment with previous more expensive theoretical predictions,
where the electric field is introduced by means of a sawtooth
potential, and with the experimental results for related glass
phases. Indeed, we were able to reproduce the large values
for the χ (3) tensor elements of the tellurium oxides, 50 times
larger than in pure silica glasses.

Our results provide some clues to explain the origin for the
high hypersusceptibilities and the large variations with respect
to the crystalline directions. In particular, these properties
could be attributed to the presence of helical chains in the
structure.

A next step to be taken in order to shed some light
onto the origin of the large values of the nonlinear optical
susceptibilities would require the calculation of the center of
the localized Wannier functions, and their variation with the
external fields.

Our results emphasize how first-principles calculations are
an efficient tool to estimate nonlinear optical susceptibilities
of crystalline solids. These might contribute to fill the gap
usually left by experimental measurements due to the difficulty
in growing single crystals large enough to be optically
characterized.
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