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Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles
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1Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain
2Departamento de Ciencias de la Tierra y Fı́sica de la Materia Condensada, Universidad de Cantabria, Avda. de los Castros s/n,

E-39005 Santander, Spain
3Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland

(Received 2 March 2011; published 7 June 2011)

Based on recent advances in first-principles theory, we develop a general model of the band offset at
metal/ferroelectric interfaces. We show that, depending on the polarization of the film, a pathological regime
might occur where the metallic carriers populate the energy bands of the insulator, making it metallic. As the
most common approximations of density functional theory are affected by a systematic underestimation of
the fundamental band gap of insulators, this scenario is likely to be an artifact of the simulation. We provide a
number of rigorous criteria, together with extensive practical examples, to systematically identify this problematic
situation in the calculated electronic and structural properties of ferroelectric systems. We discuss our findings in
the context of earlier literature studies, where the issues described in this work have often been overlooked. We
also discuss formal analogies to the physics of polarity compensation at LaAlO3/SrTiO3 interfaces, and suggest
promising avenues for future research.
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I. INTRODUCTION

Advances in oxide thin-film growth techniques over the
past 10 years have led to the fabrication of many oxide-based
metal-insulator heterostructures with a dizzying range of
functionalities. Not only are the current technological limits of
information storage density and speed being pushed forward
by the use of, e.g., nanoscale ferroelectric memories,1–6

but entirely unique concepts in device applications are also
emerging, in which the electrical and the magnetic degrees
of freedom are both present within the same active element
and strongly coupled.7,8 Examples of this trend include thin-
film capacitors,4 strongly correlated field-effect devices,9 and
magnetic/ferroelectric tunnel junctions.10–13

Density functional theory (DFT) methods, either within
the local density (LDA) or generalized gradient (GGA)
approximation, have been an invaluable tool in achieving
a fundamental understanding of this class of systems,4,14,15

particularly with recent developments that allow the appli-
cation of finite electric fields to periodic solids or layered
heterostructures.16–20 However, since this domain of research
is relatively new, it is important to identify, in addition to
the virtues, also the limitations of DFT that are specific to
metal/ferroelectric interfaces, and that when overlooked might
lead to erroneous physical conclusions.

For most practical applications, a capacitor must be in-
sulating to dc current; transmission of electrons via nonzero
conductivity and/or direct tunneling (leakage) is generally an
undesirable source of heating and power consumption. At
the quantum-mechanical level, the insulating properties of a
capacitor are guaranteed by the presence of a dielectric film
with a finite band gap at the Fermi level, where propagation of
the metallic conduction electrons is forbidden. In the language
of semiconductor physics, we can alternatively say that both
Schottky barrier heights (SBHs), respectively φn and φp for
electrons and holes, need to be positive for the device to behave
as a capacitor. (By convention we assume that, if the Fermi

level of the metal lies in the gap of the insulator, both φn and
φp are positive.)

If, on the contrary, either φp or φn is negative, injection
of holes or electrons into the dielectric becomes energetically
favorable and the device behaves instead as an Ohmic contact.
Most importantly, at such a junction there is necessarily (at
thermodynamic equilibrium) a spillout of charge from the
metal to the insulator, as the system reequilibrates the chemical
potential of the free carriers on either side. Such intrinsic
space charge induces metallicity (by intrinsic doping) in the
dielectric film, and overall profoundly alters the electronic and
structural properties of the interface.

While in principle the charge spillage might be a real
physical feature of a given system, there are several arguments
that advise caution in the interpretation of DFT calculations
where this effect is found. The use of an approximate
functional to model the exchange and correlation energy, such
as LDA or GGA, generally produces severe and systematic
errors in the values of φp and φn, which can be generally
traced back to the well-known band-gap problem.21,22 This
implies that finding a negative value of either φp or φn is
unlikely to be a robust result of a LDA or GGA calculation.
Furthermore, the total amount of spilled-out charge depends on
the DFT values of φp and φn (the more negative the SBH, the
larger the number of states of the insulator that cross the Fermi
level). This means that, in such a pathological regime, the
error in φp or φn will directly propagate to the charge density,
and potentially affect a number of fundamental ground-state
properties of the interface. In order to avoid undesirable
artifacts in the DFT results, it is therefore crucial to clearly
identify whether this scenario applies to a given interface
calculation.

Such an analysis is not entirely straightforward, as the
physics governing the band alignment in a ferroelectric capac-
itor significantly departs from the well-established concepts
of semiconductor physics. First, the imperfect screening at
the electrode interface produces a potential drop15,23 that
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is roughly linear in the polarization P ,24 and modifies the
lineup between the bands of the insulator and the Fermi level
of the metal.20 This phenomenon, central to the physics of
ferroelectric capacitors, has important implications for the
stability of a monodomain polar state,15 and for devices based
on the tunneling electroresistance effect.25 Second, the residual
“depolarizing” electric field produces a linearly increasing
electrostatic potential in the film. This prevents a precise
determination of the band lineup,20 as a proper (and physically
meaningful) definition of the latter requires a macroscopically
constant reference energy in the insulating region. Third, the
marked covalent character of bonding in perovskites produces
nontrivial changes in the band structure of the insulator,
depending on the magnitude of the polar distortion. This
further complicates the extraction of an accurate band lineup
by means of standard first-principles procedures, as the bulk
reference calculation needs to accurately match the electrical,
in addition to the mechanical, boundary conditions of the film.
Finally, and most importantly, one must keep in mind that all
these different physical ingredients may coexist with the more
traditional features that are typical of metal/semiconductor
interfaces, e.g., the phenomenon of metal-induced gap states
(MIGS).26 To guide future works in this field, and to build a
firm theoretical basis for the interpretation of the experiments,
it is becoming increasingly urgent to rationalize all these
many competing effects into a coherent picture, where the
limitations of the current simulation methods can be clearly
drawn.

Here we develop a general and intuitive model of the band
offset at a ferroelectric/metal interface, and its dependence
on the polarization. We identify two qualitatively distinct
regimes, corresponding to (i) that of a normal Schottky
alignment and (ii) that of a pathological Ohmic junction.
We demonstrate the artifacts typically associated with (ii) by
performing extensive calculations of technologically relevant
ferroelectric/metal interfaces. We discuss the relevant litera-
ture works, pointing out those where our results suggest a
revision of the currently accepted interpretation. We further
identify a direct relationship between the pathological Ohmic
regime and the physics of “electronic reconstruction”27 at polar
oxide interfaces such as LaAlO3/SrTiO3, and trace a viable
route toward a unified description of these two phenomena.
Finally, we discuss a number of viable methodological per-
spectives to overcome the limitations of DFT illustrated in this
work.

The paper is organized as follows: In Sec. II we develop
our theoretical model of the band offset at a ferroelec-
tric/metal interface, illustrating the main consequences of
a “pathological” band alignment. In Sec. III we present a
self-contained overview of the theoretical methods we use to
detect such features in a first-principles calculation. In Sec. IV
we present the results of our simulations for paraelectric
capacitors, by comparing nonpathological (PbTiO3/SrRuO3

and BaTiO3/SrRuO3) and pathological cases (KNbO3/SrRuO3

and BaTiO3/Pt). In Sec. V we demonstrate that the two
cases which we find to be nonpathological in the paraelectric
configuration indeed become pathological when the polarized
ferroelectric state is fully relaxed. In Sec. VI we discuss the
implications of this work with respect to the existing literature

on the subject. Finally, in Sec. VII we present our conclusions
and outlook for future research.

II. GENERAL THEORY OF THE BAND OFFSET

A. Metal/semiconductor interfaces

The Schottky barrier, a rectifying barrier for electrical
conduction across a metal/semiconductor junction, is of vital
importance for the operation of any modern electronic device.
For the case of an n-type semiconductor, the Schottky barrier
height is the energy difference between the conduction-band
minimum and the Fermi level across the interface, and we
indicate it as φn. The nature of the microscopic mechanisms
governing the magnitude of φn has troubled scientists for
several decades. In spite of the ongoing debates, it seems to
be widely accepted now that, while bulk material properties
certainly play a substantial role, φn is best understood as
a genuine interface property. This is in agreement with
the intuitive picture one gets from quantum mechanics:
The charge rearrangement due to chemical bonding at the
interface produces an interface dipole, and this will uniquely
determine the offset between the energy bands of the insulator
and the Fermi level of the metal.

To be more specific, it is useful to consider the electrostatic
Hartree potential at the interface between two semi-infinite
solids,

VH(r) =
∫

ρ(r′)
|r − r′|d

3r ′, (1)

where ρ(r) is the total charge density (including electrons
and nuclei). VH is a rapidly varying function of the position,
reflecting the underlying atomic structure. In order to filter
out the large oscillations and preserve only those features that
are relevant on a macroscopic scale, it is convenient to apply
an averaging procedure.28,29 This consists of (i) performing a
global average of VH(r) over planes parallel to the interface,
and (ii) convoluting the resulting one-dimensional function
with a Fourier filter to suppress the high spatial frequency
components. (See Ref. 30 for a detailed description of the
method, and Ref. 31 for an extensive review of its applications
to SBH calculations.) After this “nanosmoothing”30 procedure,

the doubly averaged V H(z) reduces to a step function, from
which we can extract the electrostatic lineup term,28,29

�〈V 〉 = 〈
V dielectric

H

〉 − 〈
V metal

H

〉
, (2)

which includes all the physics of the interface dipole formation.

[〈V dielectric
H 〉 and 〈V metal

H 〉 are the asymptotic values of V H(z) far
from the interface.] To determine the band offsets from �〈V 〉
it is then necessary to know how the bulk energy bands of the
insulator and the Fermi level of the metal are related to their
respective average electrostatic potential. In full generality, one
can write (recall that we defined both φp and φn as positive
when the Fermi level lies in the gap)

φp = −EV + EF − �〈V 〉, (3a)

φn = EC − EF + �〈V 〉. (3b)

EV, EC, and EF are usually referred to as the band-structure
term,28,29 and are bulk properties of the two materials. They
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FIG. 1. Schematic representation of the band offset at a
metal/insulator junction, illustrating the main quantities discussed
in the text.

are defined as the energy positions of the valence- (EV) and
conduction- (EC) band edges of the insulator, and the Fermi
level of the metal (EF), all referred to the average 〈VH〉 in the
respective bulk (see Fig. 1).

In Sec. III we provide further details of the standard
computational procedures used to calculate these quantities
in practice. In the following section we discuss how the
above theory needs to be revised and extended in the case
of metal/ferroelectric interfaces.

B. Metal/ferroelectric interfaces

Ferroelectric materials entail a different degree of freedom,
the macroscopic polarization P , which is absent in the
semiconductor case. It is natural then to expect that the above
picture of the band offset at metal/insulator interfaces may need
to be extended to take this different variable into account. In
the following, we discuss how P affects both the lineup and
the band-structure terms in Eqs. (3a) and (3b).

1. Lineup term

We represent a simple ferroelectric material as a nonlinear
dielectric, which in bulk is characterized by an internal energy
Ub per unit cell of the form

Ub(D) = A0 + A2D
2 + A4D

4 + O(D6). (4)

Here D is the electric displacement field, A0 is an arbitrary
reference energy, and A2 is negative and the highest expansion
coefficient positive. (As we are concerned with the essentially
one-dimensional case of a parallel-plate capacitor, we only
consider the component of the D vector that is normal to the
interface plane, indicated as D henceforth.) The A0,2,4,... coeffi-
cients implicitly contain all the complexity of the microscopic
physics, and can be calculated from first principles using the
methods of Ref. 32. It follows from elementary electrostatics32

that the internal electric field, E(D), is the derivative of U (D),

Eb(D) = 1

�

dUb(D)

dD
, (5)

where � is the cell volume.
The electrostatics of a parallel-plate capacitor configuration

can be well described23,24,33 within the imperfect screening
model, as sketched in Fig. 2. The N -layer thick ferroelectric
film can be thought of as separated from the ideal metal
electrode by a thin layer of vacuum, of thickness λeff . Of

λeff λeff

λeff

t

ε0
D

−V(z)

MM FE

P

FIG. 2. Schematic representation of a symmetric short-circuited
ferroelectric capacitor in a polarized configuration within the
imperfect-screening model. t is the thickness of the ferroelectric
film. M and FE represent, respectively, the metal electrode and the
ferroelectric film. Both materials are assumed to be separated by
a vacuum layer of thickness λeff . The thick solid line indicates the
opposite of the electrostatic potential, −V (z).

course, in real capacitors there is physically no vacuum at the
interface, but rather a thin layer with a lower local permittivity,
or some other mechanism that produces a spatial separation
between bound charges and free screening charges. λeff is an
“effective screening length” that takes into account the overall
effect of all these mechanisms, regardless of their microscopic
nature,24 including electronic and chemical bonding effects.33

In other words, only the “interface capacitance density”33

really matters, and this is uniquely defined by λeff . At the
interface between the ferroelectric and the vacuum layer D

must be preserved. Therefore, an homogeneous electric field
appears inside the vacuum layer, of magnitude Evac = D/ε0.
Recalling that the energy density of a static electric field E in
vacuum is u = ε0E2/2 = D2/2ε0, the energy of the N -layer
thick ferroelectric film can then be written as

UN (D) = NUb(D) + 2Sλeff
D2

2ε0
, (6)

where S is the surface cell area. [Note that two symmetric
electrodes of equal λeff are considered in Eq. (6).] The second
important consequence of a nonzero λeff is that the lineup
term, Eq. (2), now linearly depends on the external parameter
D, due to the additional potential drop at the interface, that
can be computed as the product of the electric field within the
vacuum layer times its width,

�〈V 〉(D) = �〈V 〉(0) + λeff
D

ε0
. (7)

[It is worth noting that, whenever Eb(D) �= 0, at the mi-
croscopic level, �〈V 〉(D) contains an intrinsic arbitrariness;
furthermore, in such a case it is no longer justified to think
in terms of an “isolated” interface between two semi-infinite
solids. Techniques to deal with these issues in practical
calculations are described in Ref. 20.]

To give a more quantitative flavor of the impact of this D de-
pendence in real systems, we can use the values of λeff reported
in the literature for PbTiO3/SrRuO3 and BaTiO3/SrRuO3

capacitors. Upon polarization reversal, the interface lineup
term �〈V 〉 will undergo a variation corresponding to

�φ = �〈V 〉(DS) − �〈V 〉(−DS) = 2λeff
DS

ε0
, (8)

where DS is the spontaneous polarization of the ferroelectric
material (in the spontaneous configuration the internal electric
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TABLE I. Estimation of the change in the lineup term �φ of
typical ferroelectric capacitors upon polarization reversal. DS is the
bulk spontaneous polarization of the ferroelectric material. λeff were
calculated in Ref. 33 for capacitors with SrRuO3 electrodes.

DS (C/m2) λeff (Å) �φ (V)

BaTiO3 0.39 0.20 1.8
PbTiO3 0.75 0.15 2.6

field within the ferroelectric Eb vanishes and DS equals the
spontaneous polarization.) The values reported in Table I
indicate that this effect can be rather large, of the order of
1–2 eV, even for ideal defect-free interfaces.

2. Band-structure term

The polar displacements in the ferroelectric film modify
not only the lineup term, but also the bulk band-structure
term. This is most easily understood by recalling the role
played by covalent bonding in the ferroelectric instability of
perovskite titanates. Hybridization effects between the cation
3d states and the oxygen 2p states are intimately linked to
the off centering of the Ti sublattice. This implies that the
polar distortions can significantly modify both the conduction-
and valence-band structure. For example, in both BaTiO3 and
PbTiO3 the fundamental gap increases when going from the
centrosymmetric cubic structure to the polar tetragonal phase.
Using the arguments of Ref. 20, we can think of a continuous
dependence of both EV and EC, respectively, in Eqs. (3a) and
(3b), on the electric displacement D. The Fermi level EF, of
course, remains fixed as the electric displacement does not af-
fect the bulk of the metallic electrode. In summary, the general
expression for the n-type SBH at a metal/ferroelectric interface
(an analogous expression follows for the p-type one) is

φn(D) = EC(D) − EF + �〈V 〉(D), (9)

where at the lowest order EC is quadratic in D (the linear
order is forbidden by symmetry), and in most cases of interest
�〈V 〉(D) can be approximated by a linear function as in
Eq. (7). In the following, we shall elaborate on this expression
and identify a unique, qualitatively different regime, with
important implications for the physics of the interface.

C. Ferroelectric capacitors in a pathological regime

Equation (9) implies that φn(D) might become negative for
some values of D. From the point of view of first-principles
calculations, already by looking at the values of Table I, we can
be reasonably sure that this will happen at the PbTiO3/SrRuO3

interface: 2.6 eV is already larger than the LDA gap of
PbTiO3 in the ferroelectric phase (∼2.0 eV). To the best of
our knowledge, this possibility has been almost systematically
overlooked in the literature. As this is a central point of this
work, we shall illustrate in detail the consequences of such
a regime, and explain why we regard it as “pathological.”
We discuss in the following two possible occurrences of
this scenario: (i) φn is negative already in the paraelectric
configuration at D = 0 and (ii) φn is positive at D = 0 but
becomes negative at some value of |D| < DS.

1. The centrosymmetric case

We start with a capacitor in the reference paraelectric
structure with two symmetric electrodes, and we hypothesize
that, for whatever physical reason, the interface dipole that
forms between the metal and the film leads to a negative φn.
(Similar arguments apply to the case, not explicitly discussed
here, of a negative φp .) As the quantum states of the conduction
band of the film lie at lower energy than the Fermi level
of the metal, the former will be filled up to EF, leading to
a nonzero free-charge density ρfree in the film. Neglecting
quantum confinement effects, we can use the Thomas-Fermi
model and treat the free-charge distribution as macroscopically
uniform. Within this approximation, ρfree is exactly given in
terms of φn and the electronic density of states of the bulk
insulator ρb(E) in a vicinity of the conduction-band bottom
EC,

ρfree = − e

�

∫ EC−eφn

EC

ρb(E) dE. (10)

This additional charge density, superimposed on an otherwise
charge-neutral insulating film, will produce a strong electro-
static perturbation in the system. For example, if such a charge
rearrangement occurred in vacuum, the Poisson equation

d2V (z)

dz2
= −ρfree

ε0
, (11)

would imply a parabolic potential of the form

V (z) = −ρfree

2ε0
z2. (12)

(We assume that z = 0 corresponds to the center of the
ferroelectric film.) Throughout this work, we shall assume that
the interface is oriented along the z axis, and each material is
periodic in the plane parallel to the interface, referred to as the
(x,y) plane. As typical ferroelectric materials are exceptionally
good dielectrics, in a first approximation we can assume that
V (z) will be perfectly screened by the polar displacements of
the lattice. However, this does not mean that electrostatics has
no consequences—quite the contrary. Macroscopic Maxwell
equations in materials indeed dictate that

dD(z)

dz
= ρfree. (13)

Hence, if we assume perfect bulk screening, we have E(z) = 0,
D(z) = ε0E(z) + P (z) = P (z), and, after integrating Eq. (13),
P (z) = ρfreez. So, since the sign of the electronic charge and
ρfree are negative within our convention, we have a nonuniform
and linearly decreasing polarization in the ferroelectric film
[see Fig. 3(d)]. This means that, at the film boundaries (z =
±t/2, where t is the thickness), the local electric displacement
has now opposite values, proportional to the total amount of
free charge that was transferred,

D

(
− t

2

)
= − t

2
ρfree, D

(
t

2

)
= t

2
ρfree. (14)

Of course, the band offset at the interface depends on the
local value of D in the film region adjacent to the interface,
so φn will be consequently shifted in energy according to
Eq. (9). We can expect that for small D values the (quadratic)
polarization effects on the band structure will be less important
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FIG. 3. Schematic representation of the effect of free-charge
redistribution onto the band diagram of a paraelectric capacitor
with a negative φn. (a) Band alignment under perfect interface
screening (i.e., when ρfree vanishes), and (b) after charge spillout
and electrostatic reequilibration. The corresponding profiles of the
electric displacement field within the ferroelectric films are displayed
in (c) and (d), obtained after integrating Eq. (13).

than the (linear) dependence of the lineup term on D. (Note
that the presence of additional charge in the conduction band
might also alter the band-structure term, e.g., through on-site
Coulomb repulsions or other exchange and correlation effects;
in the limit of weak correlations we expect these to be
even smaller and essentially irrelevant for this discussion.)
Therefore, we approximate Eq. (9) with Eq. (7), and write

φn = φ0
n − λeffD

ε0
= φ0

n − tλeffρfree

2ε0
. (15)

[The minus sign comes from the fact that at the z < 0
interface, which is the one for which Eq. (7) is valid within
our conventions, D is negative.] In turn, the different φn will
modify ρfree through Eq. (10). For some value of φn, Eqs. (10)
and (15) will be mutually self-consistent and the system will
reach electrostatic equilibrium. This can be expressed through
an integral equation where we have eliminated ρfree,

e

�

∫ EC−eφn

EC

ρb(E) dE = 2ε0
(
φn − φ0

n

)
tλeff

. (16)

To qualitatively appreciate the physical implications of this
expression, we can explicitly solve it by using a constant
ρb(E) = α. (Note that this assumption is not completely
unrealistic as the t2g bands forming the bottom of the con-
duction band in many ferroelectric perovskites have a marked
two-dimensional (2D) character; in other words, the in-plane
effective mass m∗

‖ is much smaller than the out-of-plane one,
m∗

⊥. Within the approximation m∗
⊥ = ∞, the constant density

of states of the sixfold degenerate, free-electron-like 2D band
is uniquely determined by m∗

‖.) This leads to

φn − φ0
n

φn

= −e2tλeffα

2ε0�
, (17)

and with a few rearrangements to

φn = φ0
n

Ctλeffα̃ + 1
, (18)

where C = e2/2ε0 is a constant, and α̃ = α/� is the density
of states per unit energy and volume of the bulk. In spite of the

drastic simplifications, Eq. (18) already contains most of the
relevant ingredients for our analysis. A few notable ones are
missing—we shall come back to those in Secs. II C 2 and II C 3.
Before going into more detailed considerations, however, it is
important to spell out the direct implications of Eq. (18), which
we shall be concerned with in the following.

First, note that all quantities appearing at the denominator
on the right-hand side of Eq. (18) are positive. This means
that φn will be negative, and will satisfy φ0

n < φn < 0. The
lower limit corresponds to the perfect interface screening case,
λeff = 0. The upper limit corresponds to no screening, λeff →
∞. The situation is schematically represented in Figs. 3(a) and
3(b). Given a negative φ0

n [Fig. 3(a)], the charge redistribution
will induce an upward energy shift of the conduction-band
minimum (CBM), bringing φn closer to the Fermi level
[Fig. 3(b)]. Second, in the limit of t → ∞ (infinite thickness)
φn will tend to zero from below as φn ∝ −1/t . This means
that the self-consistent band offset φn is not determined by the
local physical properties of the junction, i.e., it is no longer
an interface property—the spilled-out charge will redistribute
over the whole film thickness as t is varied. Third, the density
of states of the conduction band, represented in Eq. (18) by
the parameter α, will also affect the value of φn: the larger
α, the strongest the reduction in φn upon charge spillout
and electrostatic reequilibration. [To avoid confusion, note
that in the above paragraphs, we used the word “screening”
in two different contexts. By “perfect bulk screening” we
mean Eb(D) = 0. By “perfect interface screening” we mean
λeff = 0.]

We can attempt a semiquantitative assessment of Eq. (18) in
a representative capacitor of thickness t = 50 Å (comparable
to those that are typically simulated within DFT). In atomic
units, we use λeff = 0.3 (of the order of the values reported
in Table I), C = 2π , and α̃ = 0.05 (appropriate for the
conduction band of SrTiO3, a prototypical perovskite material,
with a calculated m∗

‖ = 0.77 and � = 385 a.u.). We obtain

φn ∼ φ0
n

10
. (19)

This implies that the effect is quite strong—even if φ0
n is a

rather large negative value (e.g., of the order of −1 eV),
in most practical cases the conduction charge redistribution
will reduce it to a value that lies just below the Fermi
level. Most importantly, this implies that, when φ0

n < 0, the
physical parameters φ0

n and λeff , governing the band offset at
the interface, are neither accessible in a simulation, nor are
they directly measurable in an experiment—only φn might be.
Note, however, that the “self-consistent” φn value is generally
not a well-defined physical quantity—this is only true within
the many approximations used in the above derivations. In
particular, we have neglected band-bending effects: In general,
the electrostatic potential will be nonuniform in the film
(see Sec. II C 3) and φn will be a function of the distance
from the interface. But even if we put this caveat aside
for a moment, the reader should keep in mind that φn

is determined here by space-charge effects through several
independent contributions. Furthermore, the film is no longer
insulating but becomes a metal. This is a substantial, qualitative
departure from the physical concepts that were developed in
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the context of semiconductor/metal interfaces, and that led
to the consensus understanding of φn as a genuine interface
property.

Given this situation, one needs to revisit the very founda-
tions of the methodological ab initio approaches that have been
used with great success in the past to compute Schottky barrier
heights. This success has critically relied on a key observation:
The interface dipole, which one identifies with the lineup term
Eq. (2), is a ground-state property, i.e., is not directly affected
by the well-known limitations of the Kohn-Sham eigenvalue
spectrum. This is excellent news: One can efficiently (and
accurately) calculate �〈V 〉 within DFT, and combine it with
a band-structure term (EV or EC) calculated at a higher level
of theory (e.g., GW); within this formally sound procedure,
theoretical calculations have shown remarkable agreement
with the experimental observations in the past.

In the spillout regime (i.e., φ0
n < 0) described in this section,

the above key observation no longer holds—the erroneous
DFT value of φ0

n plays a direct and dominant role in the
interface dipole formation, as is apparent from Eq. (18).
Furthermore, as φ0

n is systematically underestimated within
LDA or GGA, there is the concrete possibility that the spillout
regime itself (φ0

n < 0) might be an artifact of the band-gap
problem. Thus, the ground-state properties of the system
found in a simulation might be qualitatively wrong due to this
issue, in loose analogy to, e.g., the erroneous LDA prediction
of metallicity in many transition-metal compounds. It goes
without saying that the results of a simulation where significant
spillout of charge is found because of the mechanism described
in this section should be regarded with great suspicion.

2. The broken-symmetry case

Even if the band aligmnent is Schottky-like in the reference
paraelectric structure of the capacitor, Eq. (9) entails the
possibility that it might become pathological in the ferro-
electric regime (i.e., when the polar instability is allowed
to fully relax). Unfortunately, for this case many of the
simplifying assumptions used above are no longer valid, and
for a detailed description one would need to take into account
the more refined physical ingredients discussed in Sec. II C 3.
At the qualitative level, however, we can already draw some
important conclusions, as we shall briefly illustrate in the
following.

Equation (9) predicts that, if φ0
n is positive and the capacitor

is compositionally symmetric [as in Fig. 4(a)], at finite D at
most one of the two opposite interfaces will have a negative
φn. This implies that only part of the ferroelectric film,
i.e., the region adjacent to this “pathological” interface, will
become metallic, while the rest of the film will stay insulating
[Fig. 4(b)]. (To understand this point, note that in contrast with
the previous case one has now a finite “depolarizing” electric
field in the insulating part of the capacitor. This wedgelike
potential will keep the conduction electrons electrostatically
confined to the pathological side.) In the insulating region, the
polarization will be macroscopically constant, as in a well-
behaved capacitor [recall Eq. (13)]. According to the same
Eq. (13), D(z) [and hence P (z)] will be nonhomogeneous,
with a negative slope, in the metallic region.

MM

EF

MM FE

EF

CBM

FE

(a) (b) P

FIG. 4. (Color online) (a) Paraelectric capacitor with a Schottky-
like band alignment in the paraelectric structure. (b) When the polar
instability sets in, the band alignment becomes pathological, the
conduction band is locally populated (red shaded area), and the film
becomes partially metallic (light shaded area bounded by the dashed
line).

In this context it is worth pointing out an important
physical consequence of such a peculiar electronic ground
state. This concerns the response of the capacitor to an applied
bias potential. In well-behaved cases, the polarization of
the capacitor will respond uniformly to a bias, i.e., all the
perovskite cells up to the electrode interface will undergo
roughly the same polar distortion. In the present “ferroelectric-
pathological” regime, part of the ferroelectric film has become
metallic, i.e., the metal/insulator interface has moved to a
place that lies somewhere in the film. This means that, if one
tries to switch the device with a potential, the electric field
will not affect the dipoles that lie closest to the pathological
interface—they will be screened by the spilled-out free charge.
A consequence is that the dipoles near a pathological interface
will appear as if they were pinned to a fixed distortion, which is
almost insensitive to the electrical boundary conditions. This
pinning phenomenon has been studied in earlier theoretical
works, and was ascribed to chemical bonding effects. In Sec. V
we shall substantiate with practical examples that “dipole
pinning” is instead a direct consequence of the problematic
band-alignment regime described here. In Sec. VI we shall
come back to this point and put it in the context of the relevant
literature.

3. Toward a quantum model

In order to draw a closer connection between the semi-
classical arguments of the previous sections and the quantum-
mechanical results that we present in Secs. IV and V, we briefly
discuss here how to improve our physical understanding of
the charge spillout process by lifting some of the simplifying
approximations used so far. As a detailed treatment goes
beyond the scope of the present work, we shall limit ourselves
to qualitative considerations.

The most drastic approximation of our model appears to
be the assumption of perfect dielectric screening within the
ferroelectric material, where the spillout charge is perfectly
compensated by the polar displacements of the lattice. This
implies that the electric field in the film vanishes, and the excess
conduction charge can spread itself spatially at essentially no
cost. In this scenario, the macroscopically uniform distribution
of ρfree postulated in Sec. II C 1 appears very reasonable. In
reality, the internal E field in the bulk ferroelectric material
does not vanish, but is a nonlinear function of D, which can
be written by combining Eqs. (4) and (5),

Eb(D) ∼ 1

�
(2A2D + 4A4D

3). (20)
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FIG. 5. Schematic representation of the effects of dielectric
nonlinearity on the band diagram of a centrosymmetric capacitor.

The effective potential felt by the conduction electrons is −V H(z)
(see text). (a) Ferroelectric material. (b) Paraelectric material.

Of course, solving for the self-consistent ρfree(z) in a nonlinear
medium would require a numerical treatment. Still, we can
gain some insight about qualitative trends by starting, for
example, from the linearly decreasing D(z) found in the D = 0
case of Sec. II C 1. Using Eq. (20) we can write E(z) =
Eb[D(z)]. The electrostatic potential is then given by inte-

grating E(z). This essentially leads to V H(z) = Ub[D(z)]/Q0,
where Ub is the internal electrostatic energy of Eq. (4), and Q0

is a (positive) constant with the dimension of a charge. This

means that the spatial variation in V H(z) reflects the energy

landscape of the bulk material: V H(z) will be a double-well
potential in a ferroelectric material (A2 < 0), and a single-well
potential in a paraelectric material (A2 > 0). Remarkably,
the double-well potential accounts for the possibility of free-
charge accumulation in the middle of the centrosymmetric film
[Fig. 5(a)], which would produce a head-to-head domain wall
in the polarization P (z). Conversely, for a paraelectric material
one would expect the free charge to be (more or less loosely)
bound to the interface, and have a minimum in the middle
of the film [Fig. 5(b)]. Of course, these considerations are
valid for a centrosymmetric capacitor, and are presented just
to give the reader an idea of the physics—in the ferroelectric
case, more complex patterns can occur and exploring them all
would require an in-depth study that is beyond the scope of
this paper.

A second important approximation is the neglect of (i)
quantum confinement effects beyond the simple Thomas-
Fermi filling of the bulklike density of states and (ii) the
band-structure changes due to the polar distortions, which we
briefly mentioned in Sec. II B 2. These will further modify the
equilibrium distribution of the free charge, and we expect them
to be important to gain a truly microscopic understanding of
the system, although not essential for the points of this work.
Remarkably, a promising model taking all these ingredients
into account (dielectric nonlinearity and band-structure ef-
fects) was recently proposed in the context of the (at first sight
unrelated) LaAlO3/SrTiO3 interface.34 This indicates that the
physics of a ferroelectric capacitor in the pathological band-
alignment regime described here is essentially analogous to
that of the “electronic reconstruction”27 in oxide superlattices.
Further work to explore these interesting analogies is under
way.

D. Implications for the analysis of the ab initio results

The above derivations show that there are two qualitatively
dissimilar regimes in the physics of a metal/insulator interface,
Ohmic-like and Schottky-like. During the derivation, we have

evidenced some distinct physical features that we expect to
be intimately associated with the “pathological” Ohmic case.
As these are of central importance to help distinguish one
scenario from the other, we shall briefly summarize them in
the following, mentioning also how each of these “alarm flags”
can be detected in a first-principles simulation.

First, even after the electron reequilibration takes place,
the band edges cross the Fermi level of the metal, i.e., the
apparent Schottky barrier is negative. Therefore, the analysis
of the local electronic structure and of the SBH appears to be
the primary tool to identify a pathological case. However, as the
“self-consistent” φn tends to stay very close to the Fermi level,
this analysis should be performed with unusual accuracy—
techniques to do this will be discussed in Sec. III A.

Second, the presence of a substantial density of free
charge populating the conduction band of the insulator is
another important consequence of the pathological regime.
In Sec. III B 1 we illustrate how to rigorously define ρfree in a
ferroelectric heterostructure.

Finally, a remarkable consequence of charge spill out is
the presence of an inhomogeneous polarization in the system.
Note that this feature has been ascribed in earlier works to
phenomena of completely different physical origin. We shall
devote special attention in Secs. IV and V to demonstrating
the intimate relationship between ρfree and spatial variations
in P .

III. METHODS

In this section we spell out the practical techniques that
we use to extract the SBH from first-principles calculations,
the operational definitions of free charge and bound charge,
and the methods we use to control the electrical boundary
conditions in supercell calculations. We also summarize the
other relevant computational parameters used in Secs. IV
and V.

A. Schottky barrier estimations

First, we briefly review the methods that were used in earlier
works to compute Schottky barriers at metal/semiconductor
interfaces, pointing out advantages and limitations of each of
them. Then, we illustrate potential complications that might
arise, with special focus on ferroelectric oxide systems and the
issues discussed in Sec. II.

1. From the local density of states

In order to calculate the band offset at a metal/insulator
interface, one needs to identify the location of the band edges
deep in the insulating region, with the Fermi level of the metal
taken as a reference. To that end, it has become common
practice35 to define a spatially resolved density of states,

ρ(i,E) =
∑

n

∫
BZ

dk|〈i|ψnk〉|2δ(E − Enk), (21)

where |i〉 is a normalized function, localized in space around
the region of interest.

When |i〉 = |r〉 is an eigenstate of the position operator,
the resulting ρ(r,E) is commonly known as local density of
states (LDOS). Conversely, when |i〉 = |φnlm〉 is an atomic
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orbital of specified quantum numbers (n,l,m), we call it instead
projected density of states (PDOS).

The integral is performed over the first Brillouin zone (BZ)
of the supercell and the sum runs over all the bands n. Enk
stands for the eigenvalue of the electronic wave function ψnk.

The LDOS defined in Eq. (21), that depends on the position
in real space as well as on the energy, gives a very intuitive
picture of the band offset: “Sufficiently far” away from the
interface, the LDOS converges to a bulklike curve,35 and in
principle the location of the band edges (and hence the SBH)
can be directly extracted by visual inspection. However, several
approximations are used in practice to make the calculation
tractable, and these can introduce significant deviations in
the SBH computed by means of either the LDOS or PDOS.
First, all studies are done on a finite supercell, usually with a
symmetric capacitor geometry. This implies that the LDOS
of the most dispersive bands will be altered by quantum
confinement effects, which might produce a spurious gap
opening. Also, the LDOS associated to the evanescent MIGS
might be still important at the center of an insulating film that is
not thick enough, thus preventing an accurate identification of
the band edge. Second, a discrete k-point mesh is used instead
of the continuous one implicitly assumed in Eq. (21). Such
a k-point mesh is generally optimized for efficiency, which
means that high-symmetry (HS) points are often excluded.36

As the edges of the valence- and conduction-band manifolds
are usually located at the HS points,37 estimating those
features from the calculated LDOS might lead to substantial
inaccuracies. For materials that display a very dispersive
band structure (see, e.g., Ref. 38) it is not unusual to have
deviations of the order of several tenths of an eV. Third, a
fictitious electronic temperature (or Fermi surface smearing)
is commonly used, in order to alleviate the errors introduced
by the k-mesh discretization. This implies that the Dirac delta
function in Eq. (21) needs to be replaced by a normalized
smearing function (e.g., a Gaussian) with finite width. This
is a again potential source of inaccuracies, because the
apparent edges of the smeared LDOS-PDOS actually might
not correspond to the physical band edges but to the (artificial)
tail of the smearing function used.

Summarizing the above, we get to the following operational
definition of the smeared LDOS,

ρ̃(r,E) =
∑
nk

wk|ψnk(r)|2g(E − Enk), (22)

where the BZ integral has been replaced with a sum over a
discrete set of special points k with corresponding weights
wk, and the Dirac delta has been replaced with a smearing
function g. As will become clear shortly (a detailed analysis
is provided in Appendix B), it is very important to use in
Eq. (22) a g function that is minus the analytical derivative of
the occupation function used in the actual calculations. The
Gaussian smearing (G) and the Fermi-Dirac (FD) smearing
are by far the most popular choices. These correspond to the
following definitions of g,

gG(x) = 1√
πσ

e−x2/σ 2
, (23a)

gFD(x) = σ−1

2 + ex/σ + e−x/σ
, (23b)

where σ is the smearing energy used during self-consistent
minimization of the electronic ground state.

2. From the electrostatic potential

To work around these difficulties, it is in most cases
preferrable to avoid the direct estimation of the SBH based on
the LDOS-PDOS, and use instead the indirect procedure, based

on the nanosmoothed electrostatic potential V H described
in Sec. II A. The interface lineup term �〈V 〉, generally (a
notable exception is the pathological spillout regime described
in Sec. II—for further details, see Sec. III A 4) converges
much faster than the LDOS-PDOS with respect to all the
computational parameters described above (slab thickness, k

mesh, and Fermi-surface smearing). The band-structure terms
EV and EC can be then accurately and economically evaluated
in the bulk, without the complications inherent to MIGS
and quantum confinement effects. While this is in principle
a very convenient and robust methodological framework it
is, however, also prone to systematic errors. In particular,
great care must be used when performing the reference bulk
calculations. In the vast majority of cases these must not be
performed on the equilibrium structure of the bulk solid, but
will be constructed to accurately match (i) the mechanical
and (ii) the electrical boundary conditions of the insulating
film in the supercell. Issue (i) is well known: In a coherent
heterostructure the insulating film is strained to match the
substrate lattice parameter, and for consistency the “bulk”
calculation should be performed at the same in-plane strain.
(The dependence of the band-structure term on the lattice strain
is well known in the literature, and referred to as “deformation
potentials.”39) Issue (ii) concerns ferroelectric systems, and
is therefore not widely appreciated within the semiconductor
community. Whenever the symmetry of the capacitor is broken
and there is a net macroscopic polarization in the ferroelectric
film, the structural distortions may alter the band structure
significantly, often more than purely elastic effects do.34 Note
that in most capacitor calculations the film is only partially
polarized (i.e., it has neither the centrosymmetric nonpolar
structure, nor the fully polarized ferroelectric structure because
of the depolarizing effects described in Sec. II B). The “bulk”
reference calculation should then accurately match the polar
distortions of the film, extracted in a region where the interface-
related short-range perturbations have healed into a regular
pattern.

3. The “best of both worlds”

In order to minimize the drawbacks associated with either
of the two methods described above, we find it very convenient
to combine them in the following procedure. First, we compute
the LDOS in the supercell at an atomic site (or layer) located far
away from the interfaces, where the relaxed atomic structure
has converged into a regular pattern. Second, we extract
the relaxed atomic coordinates from the same region of the
supercell, and build a periodic bulk calculation based on them,
by preserving identical structural distortions and strains, and
by using an equivalent k mesh. (An approximation is made
here, since the periodic bulk simulation is carried out at zero
macroscopic field while the LDOS in the supercell might
contain the effects of a nonzero depolarizing field. The problem
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of computing the bulk layer-by-layer LDOS under a finite
electric field remains an open question.) Third, we extract the
LDOS from the bulk at the same atomic site or layer; we
construct the bulk LDOS using Eq. (22) and an identical g

function to that used in the supercell. Finally, we superimpose
the bulk LDOS on the supercell LDOS at each layer j ; we
align them by matching the sharp peaks of a selected deep
semicore band, which are located at energies E

supercell
sc (j ) and

Ebulk
sc . The deep semicore states are insensitive to the chemical

environment and have negligible band dispersion; this means
that they provide an excellent, spatially localized reference
energy for the estimation of the lineup term.

At this point, we look at either LDOS curve in the vicinity
of the Fermi level. If it is nonzero, we are probably facing a
pathological spillout case (see the following section). If it is
zero, then we can go one step further and accurately estimate
the positions of the local band edges. To this end, we compute
from the bulk calculation Ebulk

C and Ebulk
V , together with Ebulk

sc .
(A further non-self-consistent run might be needed if the
original k mesh did not include the HS k points where the band
edges are located.) Finally, assuming that E

supercell
sc (j ) are all

referred to an energy zero corresponding to the self-consistent
Fermi level of the supercell, we define the local position of the
band edges as

E
supercell
C,V (j ) = Esupercell

sc (j ) − Ebulk
sc + Ebulk

C,V . (24)

This procedure avoids the (often inaccurate) estimate of the
band edges based on the tails of the smeared LDOS, and at
the same time preserves the advantages of the “lineup+band-
structure” technique. In principle, the latter method should
accurately match the results of Eq. (24), except for quantum
confinement effects in the metallic slab used to represent the
semi-infinite electrode, as discussed in Ref. 40.

Note that this technique is not only useful to detect
pathological band alignments and extract accurate band offsets
in the nonpathological cases. Given that we are superimposing
two LDOS calculated with identical computational parameters
and structures, their direct comparison can be very insightful.
Most importantly, one expects all the features to closely match
unless there are MIGS or confinement effects. Therefore,
one has also a powerful tool to directly assess the impact
of the latter physical ingredients in the supercell electronic
structure. This procedure, therefore, yields far more physical
information than the separate use of either the PDOS-LDOS
or the nanosmoothing method.

4. The pathological regime

In the pathological regime described in Sec. II, many of
the conditions that formally justify application of the above
methods to the estimation of the SBH break down. First, the
presence of a nonuniform electric displacement D(z) implies
that the polar distortions are also nonuniform, and they may
not converge to a regular bulklike pattern anywhere in the
film. Second, electrostatic and exchange and correlation effects
due to the partial filling of the conduction band imply that
the band structure may significantly depart from what one
computes in the insulating bulk (note that this is distinct from
the effect of the structural distortions discussed in the previous
section). Third, the usual assumption of fast convergence of

the interface dipole with respect to slab thickness, k-mesh
resolution, and smearing energy also breaks down, as the
conduction band DOS (which converges slowly with respect to
these parameters) is now directly involved in the electrostatic
reequilibration process. Based on this, the reader should keep
in mind that there is an intrinsic arbitrariness, of physical more
than methodological nature, in the definition of the band edges
in spillout cases. This arbitrariness reflects itself in the fact,
already pointed out in Sec. II, that the band alignment at a
pathological interface is no longer a well-defined interface
property, nor is it directly measurable in an experiment. The
position of the bands is essentially the result of a complex
electron redistribution process that may occur on a scale that
is almost macroscopic, and is driven by different factors than
those usually involved in the SBH formation.

Of course, by using all the precautions that are valid at
well-behaved interfaces, one might still gain some qualitative
insight into the local electronic properties of the system.
However, the data must be interpreted with some caution,
and it is most appropriate to combine the analysis with other
post-processing tools before drawing any conclusion. We shall
discuss some of these further analysis tools in the following
sections.

B. Electrical analysis of the charge spillout

In this section we introduce the methodological tools that
we use to analyze in practice the spillout regime, in light of
the theory developed in Sec. II. In particular, we illustrate how
to rigorously define the “local electric displacement” D(z)
and the “conduction charge” ρfree. To evaluate the former, we
discuss two approaches. The first one is based on a Wannier
decomposition of the bound charges. The second one is an
approximate formula in terms of the ionic distortions and the
Born effective charges (BECs). This simplified formula is very
practical for a quick analysis, but is generally affected by
systematic errors. We address this issue by proposing a simple
correction that significantly improves the accuracy of the BEC
estimate.

1. Definition of bound charge and conduction charge

In a typical metal, it is difficult to rigorously identify con-
duction electrons and bound charges, as usually the respective
energy bands intersect each other in at least some regions of the
BZ. (This is true, for example, in all transition metals, where
the delocalized sp bands cross the more localized d bands.) By
contrast, in all perovskite materials considered here, even upon
charge spillout and metallization, a well-defined energy gap
persists between the bound electrons and the partially filled
conduction bands. Therefore, it is straightforward to separate
the two types of charge densities, free and bound, simply by
integrating the LDOS, defined in Eq. (22), over two distinct
energy windows. For example, for the conduction charge ρfree

we have

ρfree(r) =
∫ EF

E0

ρ̃(r,E) dE =
∑

Enk>E0

wkfnk|ψnk(r)|2, (25)

where E0 is an energy corresponding to the center of the
gap between valence and conduction band, ρ̃ is the smeared

235112-9



STENGEL, AGUADO-PUENTE, SPALDIN, AND JUNQUERA PHYSICAL REVIEW B 83, 235112 (2011)

DOS of Eq. (22), fnk are the occupation numbers, and the
sum is restricted to the states with eigenvalue Enk higher than
E0. [Note that Eq. (25) only holds if the g smearing of ρ̃

is compatible with the definition of fnk; see Sec. III A1 and
Appendix B.] Since we are working with layered systems that
are perfectly periodic in plane, we will be mostly concerned
with the planar average of ρfree,

ρfree(z) = 1

S

∫
S

ρfree(r) dx dy, (26)

where S is the area of the interface unit cell. In some cases, it
is also useful to consider the nanosmoothed function,30 which
we indicate by a double-bar symbol, ρfree(z).

Concerning the bound charges, we shall approximate the
local electric displacement D(z) with the local polarization
P (z). This is an excellent approximation in many ferroelectric
materials, where P is of the order of 0.1–1 C/m−2 and D −
P = ε0E is typically much smaller than 10−3 C/m−2. (The
largest electric fields E that can be applied without dielectric
breakdown41 are of the order of 0.1 GV/m.) Thus, assuming
D(z) ∼ P (z) entails errors of 1% or less, which we consider
negligible for the purposes of our discussion. Techniques to
extract P (z) from a supercell calculation are described in the
following sections.

2. Local polarization via Wannier functions

A very useful tool to describe the local polarization proper-
ties of layered oxide superlattice are the “layer polarizations”
introduced by Wu et al.42 First, we transform the electronic
ground state into a set of “hermaphrodite” Wannier orbitals42,43

by means of the parallel-transport44 procedure. Note that we
restrict the parallel-transport procedure only to the orbitals
that we consider as “bound charge,” i.e., those with an energy
eigenvalue lower than E0. Then, we group the Wannier centers
and the ion cores into individual oxide layers, and define the
dipole density of layer j as

pj = 1

S

(∑
α∈j

ZαRαz − 2e
∑
i∈j

zi

)
, (27)

where Zα is now the bare valence charge of the atom α, whose
position along z is Rαz, and zi is the location of the Wannier
orbital i.

Note that individual oxide layers in II-IV perovskites such
as BaTiO3 or PbTiO3 are charge neutral and the pj are
well defined; however, in I-V perovskites such as KNbO3,
individual layers are charged, and the pj become meaningless
as they are origin dependent. To circumvent this problem,
one can either combine the layers two by two as was done
in Ref. 45, or perform some averaging with the neighboring
layers, as, for example, in Ref. 43. It is important to keep
in mind that, depending on the specific averaging procedure,
one might end up with the formal or with the effective local
polarization;46 in this work we find it more convenient to work
with the latter. As we do not need, for the purpose of our
discussion, to resolve P into contributions from individual AO

and BO2 oxide layers, at variance with Ref. 43 we perform a
simple average

p̄j = 1
4pj−1 + 1

2pj + 1
4pj+1. (28)

We then define the local polarization by scaling this surface
dipole density by the average out-of-plane lattice parameter
c of the oxide film, and by taking into account that every
individual oxide layer occupies only half the cell. We thus
define the local polarization as

Pj = 2

c
p̄j . (29)

The local polarization Pj is, of course, a discrete set of
values, but we can think of it as a continuous function of
the z coordinate P (z), which is sampled at the oxide plane
locations. In the remainder of this work, we will write Pj or
P (z) depending on the context, but the reader should bear in
mind that these two notations refer to the same object.

3. Approximate formula via Born effective charges

While the above definition of Pj in terms of Wannier
functions is accurate and rigorous, it is not immediately
available in most electronic structure codes. An approximate
estimate of the local polarization can be simply inferred
from the bulk BECs Z∗

α and the local atomic displacements.
Analogously to the above formulation, we can write the
Z∗

α-based approximate layer dipole density pZ
j as

pZ
j = 1

S

∑
α∈j

Z∗
αRαz, (30)

where Z∗
α is now the bulk BEC associated with the atom α.

Again, pZ
j are ill defined in perovskite materials, as typically

individual oxide layers do not satisfy the acoustic sum rule
separately. To address this issue, we perform an analogous
averaging procedure and define

p̄Z
j = 1

4pZ
j−1 + 1

2pZ
j + 1

4pZ
j+1. (31)

The approximate local polarization then immediately follows,

P Z
j = 2

c
p̄Z

j . (32)

Such an approximation provides an exact estimate, in the
linear limit, of the polarization induced by a small polar
distortion under short-circuit electrical boundary conditions,
i.e., assuming that the macroscopic electric field vanishes
throughout the structural transformation. Neither of these
conditions is respected in a ferroelectric capacitor, where the
polar distortion is generally large (close to the spontaneous
polarization of the ferroelectric insulator), and where there is
generally an imperfect screening regime, with a macroscopic
“depolarizing field.”24 We investigate both issues in the
Appendix A, where we find that a simple scaling factor
corrects, to a large extent, the discrepancy between Pj and
P Z

j . In particular, we write the “corrected” P̃ Z
j as

P̃ Z
j =

(
1 + χ∞

χion

)
P Z

j , (33)
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where χ∞ and χion are, respectively, the electronic and ionic
susceptibilities of the bulk material in the centrosymmetric
reference structure, calculated at the same in-plane strain as the
capacitor heterostructure. Note that for a ferroelectric material
in the centrosymmetric reference structure, χion is negative,
which is a consequence of the polar unstable mode in the
phonon spectrum. This means that the scaling factor will be
smaller than 1 (∼0.9 for the materials considered in this work).
Practical methods to calculate χ∞ and χion are reported in the
Appendix A.

C. Constrained-D calculations

In Sec. II we have shown that a pathological spillout regime
can be triggered by the ferroelectric displacement D of the
film, as the band offset generally strongly depends on D.
It is therefore important, in order to perform the analysis
described in the previous sections, to calculate the electronic
and structural ground state of a metal/ferroelectric interface at
different values of D. To this end, we can use two different
approaches in first-principles calculations.

The first and more “traditional” approach involves the
construction of a capacitor of varying thicknesses t , and the
relaxation of the corresponding ferroelectric ground states
within short-circuit boundary conditions. Due to the interface-
related depolarizing effects mentioned in Sec. II (these are
strongest in thinner films and tend to reduce P from the
bulk value Ps), the polarization will increase from P = 0
(for t < tcrit, where tcrit is the “critical thickness”24,33) to
P ∼ Ps, in the limit of very large thicknesses. This might be
cumbersome in practice: Thicker capacitor heterostructures
imply a substantial computational cost, due to the larger size
of the system; this severely limits the range of P values that
can be studied within short-circuit boundary conditions.

An alternative, more efficient methodology to explore
the electrical properties of the interface as a function of
polarization is to use the recently developed techniques to
constrain the macroscopic electric displacement to a fixed
value.20,32 With this method, one is able, in principle, to access
at the same computational cost the structural and electronic
polarization of the capacitor for an arbitrary polarization state.
In the specific context of the present work, however, there
are two drawbacks related to the use of the constrained-D
method as implemented in Refs. 32 and 20. First, fixed-D
strategies make use of applied electric fields to control the
polarization of the system. This is a problem here, where the
metallicity associated with the space charge which populates
the ferroelectric film makes such a solution problematic. (If a
capacitor becomes metallic, it is a conductor and no metastable
polarized state can be defined at any given bias.) Second, our
philosophy in this work is to adopt “standard” computational
techniques, i.e., those that are in principle available in any
standard electronic structure package.

To this end, we introduce here an alternative way of
performing constrained-D calculations for a metal/insulator
interface, which does not rely on the direct application
of macroscopic electric fields or on the calculation of the
macroscopic Berry-phase polarization. We adopt a vac-
uum/ferroelectric/metal geometry. To induce a given value of
the polarization in the ferroelectric film, we introduce a layer

of bound charges (Q per surface unit cell S) at its free surface.
If we do so in such a way that the surface region remains
locally insulating, at electrostatic equilibrium, the difference
in the macroscopic displacement D on the left-hand side and
on the right-hand side of the surface will exactly correspond
to the additional surface charge density Q/S. By applying a
dipole correction in the vacuum region, we ensure that D = 0
in the region near the surface on the vacuum side; then on the
insulator side we have exactly

D = Q

S
. (34)

In practice, the additional charge density is introduced by
substituting a cation at the ferroelectric surface by a fictitious
cation of different formal valence. As we are interested
in exploring intermediate values of D, we use the virtual
crystal approximation to effectively induce a fractional nuclear
charge.

The reader might have noted that this method to control D

is just a generalization of Eq. (13) to consider other forms of
“external” charge that are not “free” in nature. Indeed, in the
most general case, one can state

∇ · D(r) = ρext(r), (35)

where D encompasses all bound-charge effects that can be
referred to the properties of a periodically repeated primitive
bulk unit, and ρext contains all the rest (e.g., delta-doping
layers, metallic free charges, charged adsorbates, variations
in the local stoichiometry, etc.). In Eq. (34) we simply applied
Eq. (35) to the vacuum/ferroelectric interface, where the
“bound” nature of the external charge allows us to control
it as an external parameter.

D. Computational parameters

To demonstrate the generality of our arguments, which are
largely independent of the fine details of the calculation (except
for the choice of the density functional), we use two different
DFT-based electronic structure codes, LAUTREC and SIESTA.47

In both cases, the interfaces were simulated by using a
supercell approximation with periodic boundary conditions.48

A (1 × 1) periodicity of the supercell perpendicular to the in-
terface is assumed. This inhibits the appearance of ferroelectric
domains and/or tiltings and rotations of the O octahedra. A
reference ionic configuration was defined by piling up m unit
cells of the perovskite oxide (PbTiO3, BaTiO3, or KNbO3),
and n unit cells of the metal electrode (either a conductive
oxide, SrRuO3, or a transition metal, Pt). In order to simulate
the effect of the mechanical boundary conditions due to the
strain imposed by the substrate, the in-plane lattice constant
was fixed to the theoretical equilibrium lattice constant of bulk
SrTiO3 (a0 = 3.85 Å for LAUTREC and a0 = 3.874 Å for
SIESTA).

To simulate the capacitors in an unpolarized configuration
in Sec. IV, we imposed a mirror-symmetry plane at the central
BO2 layer, where B stands for Ti or Nb, and relaxed the
resulting tetragonal supercells within P 4/mmm symmetry.
For the ferroelectric capacitors described in Sec. V a second
minimization was carried out, with the constraint of the
mirror-symmetry plane lifted. Tolerances for the forces and
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stresses are 0.01 eV/Å and 0.0001 eV/Å3, respectively.
Other computational parameters, specific to each code, are
summarized below.

1. LAUTREC

Calculations in Secs. IV B and V A were performed with
LAUTREC, an “in-house” plane-wave code based on the
projector-augmented wave method.49 We used a plane-wave
cutoff of 40 Ry and a 6 × 6 × 1 Monkhorst-Pack50,51 mesh.
As the systems considered here are metallic, we adopted a
Gaussian smearing of 0.15 eV to perform the BZ integrations.

2. SIESTA

Computations in Secs. IV A and V B on short-circuited
SrRuO3/PbTiO3 and SrRuO3/BaTiO3 capacitors were per-
formed within a numerical atomic orbital method, as imple-
mented in the SIESTA code.47 Core electrons were replaced
by fully separable52 norm-conserving pseudopotentials, gen-
erated following the recipe given by Troullier and Martins.53

Further details on the pseudopotentials and basis sets can be
found in Ref. 54.

A 6 × 6 × 1 Monkhorst-Pack50,51 mesh was used for the
sampling of the reciprocal space. A Fermi-Dirac distribution
was chosen for the occupation of the one-particle Kohn-
Sham electronic eigenstates, with a smearing temperature
of 0.075 eV (870 K). The electronic density, Hartree, and
exchange-correlation potentials, as well as the corresponding
matrix elements between the basis orbitals, were computed
on a uniform real space grid, with an equivalent plane-wave
cutoff of 400 Ry in the representation of the charge density.

IV. RESULTS: PARAELECTRIC CAPACITORS

A. Nonpathological cases

In the centrosymmetric unpolarized reference structure,
some metal/ferroelectric interfaces such as BaTiO3/SrRuO3

or PbTiO3/SrRuO3 are “well behaved” within LDA. [We
focus here on the TiO2/SrO termination—the properties of
the alternative (Ba,Pb)O/RuO2 termination might differ.] This
conclusion emerges from the analysis shown in Fig. 6 for
the PbTiO3-based capacitor; qualitatively similar results, not
shown here, are obtained for the BaTiO3-based capacitor.
Figure 6(a) represents schematically the Schottky barriers
for electrons (φn) and holes (φp) at the ferroelectric/metal
interfaces, computed using the nanosmoothed electrostatic
potential method described in Sec. III A 2. The bottom of the
conduction band of the ferroelectric lies above the Fermi level
of the metal (φn amounts to 0.38 eV for the PbTiO3-based
capacitor, and only to 0.19 eV in the BaTiO3-based case).
Note that, if the experimental band gap could be reproduced
in our simulations, φn would be much larger [dashed lines
in Fig. 6(a); we have taken the experimental indirect gap of
the cubic phase of PbTiO3, 3.40 eV (Ref. 55) and assumed
that the quasiparticle correction on the valence band edge
is negligible]. The results summarized in Table II indicate
that, in all the cases discussed here, different methodologies
yield Schottky barrier values that are consistent within a
few hundredths of an eV. The flatness of the profile of the
nanosmoothed electrostatic potential at the central layers of
PbTiO3 confirms the absence of any macroscopic electric field,
as expected from a locally charge-neutral and centrosymmetric
system.
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FIG. 6. (a) Schematic representation of φn and φp in an unpolarized SrRuO3/PbTiO3/SrRuO3 capacitor. EV, EC, EF, and �〈V 〉 were

defined in Sec. II A. The calculated values are also indicated in the figure. The black solid line represents −V H(z). The dashed line represents
the hypothetical position of the CBM if EC were shifted to reproduce the experimental band gap. (b) Profile of ρ̄free as defined in Eq. (26).
(c) Profile of the layer-by-layer polarization P Z

j . The size of the capacitor corresponds to n = 5.5 unit cells of SrRuO3 and m = 12.5 unit cells
of PbTiO3. Only the top half of the symmetric supercell is shown.
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TABLE II. LDA values of φn and φp , obtained with two different
methods: using the decomposition into EV,C and �〈V 〉 (BS+Lineup),
or using the method of Sec. III A 3 (Semicore). In the “Semicore” case
we used the sharp Ti(3s)-derived peak of the LDOS (extracted from
the central TiO2 layer of the capacitor) to align the energies of the
bulk band edges with the supercell Fermi level.

Capacitor BS+Lineup Semicore

SrRuO3/PbTiO3/SrRuO3

φp (eV) 0.97 0.99
φn (eV) 0.38 0.37
SrRuO3/BaTiO3/SrRuO3

φp (eV) 1.39 1.40
φn (eV) 0.19 0.19

Figure 6(b) displays ρ̄free(z), as defined in Sec. III B 1. As
expected, ρ̄free(z) has a rapid decay in the insulating layer,
consistent with the evanescent character of the metallic states
(MIGS): These cannot propagate in the insulator as their
energy eigenvalues fall within the forbidden band gap. Figure
6(c) shows the layer-by-layer polarization P Z

j computed using
Eqs. (30)–(32). Consistent with the absence of space charge,
the P Z

j profile is remarkably flat. Due to the imposed mirror-
symmetry constraint, P Z

j also vanishes inside the ferroelectric
material.

Figure 7 shows the layer-resolved PDOS of the Ti(3s)
semicore peaks, the O(2s) peak, the upper valence band, and
the lower conduction band (black curves, shaded in gray).
On top of the heterostructure PDOS we superimpose the bulk
PDOS, calculated with an equivalent k-point sampling and
aligned with the Ti(3s) peak (dashed red curves). Note that all
PDOS curves were calculated using Eq. (22), and the smearing
function gFD of Eq. (23b) with σ = 0.075 eV, consistent
with the parameters used in the calculation. The PDOS of
the conduction and valence bands converges fairly quickly to
the bulk curve when moving away from the interface—they
are practically indistinguishable already at the fourth layer.
The estimated energy locations of the conduction and valence
bands converge even faster [these are directly related to the
shifts of the Ti(3s) state, which are less affected by quantum
confinement effects]. All curves except those adjacent to the
electrode interface vanish at the Fermi level, confirming the
absence of charge spillout in this system.

As a summary of this section we can conclude that, when
a centrosymmetric unpolarized interface is nonpathological
in the sense that the bottom of the conduction band of
the ferroelectric is above the Fermi level of the metal: (i)
The free charge, as defined in Sec. III B 1, vanishes due to
the absence of charge spillout; (ii) the local polarization profile
(Sec. III B 3) is perfectly flat as the interface-induced polar
lattice distortions heal rapidly (within the first unit cell); and
(iii) the LDOS-PDOS vanishes at the Fermi level, except for
one or two interface layers, where the signatures of the MIGS
might be still present (they are barely detectable in the curves
of Fig. 7).

B. Pathological cases

We analyze now two examples of capacitors that are
characterized by a pathological band alignment already in

-57.6 -57.2 -56.8

P
D

O
S

 (
ar

b.
 u

ni
ts

)

-20 -18 -16
Energy (eV)

-4 -3 -2 -1 0 1

FIG. 7. (Color online) PDOS of the inequivalent TiO2 layers in
the unpolarized PbTiO3/SrRuO3 capacitor (solid curves with gray
shading). The bottom curve lies next to the electrode, and the top one
lies in the center of the PbTiO3 film. Only the PDOS on half of the
symmetric supercell are shown. The bulk PDOS curves (red dashed)
are aligned to match the Ti(3s) peak at E ∼ −57 eV. The Fermi level
is located at zero energy.

their centrosymmetric reference structure: NbO2-terminated
KNbO3/SrRuO3, and TiO2-terminated BaTiO3/Pt. This choice
of materials is motivated by the fact that there exist recent the-
oretical works on these systems,56,57 where the consequences
of the pathological band alignment were neglected.

1. KNbO3/SrRuO3

We construct a heterostructure consisting of m = 6.5
KNbO3 unit cells and n = 7.5 SrRuO3 cells, for a total of 14
perovskite units; we use symmetrical NbO2 (SrO) terminations
of the KNbO3 (SrRuO3) film. After full relaxation with a
mirror-symmetry constraint at the central NbO2 layer, we
perform the analysis of the LDOS, the conduction charge,
and the local polarization as explained in Sec. III. In Fig. 8 we
show the LDOS integrated over the NbO2 layers (the bottom
one is adjacent to the electrode interface, and the top one lies
on the mirror plane in the middle of the film). The unphysical
Ohmic band alignment is evident from the location of the
conduction-band bottom—the whole film is clearly metallic.
This points to the pathological situation that is sketched in
Fig. 3. Note that the LDOS does not converge to the bulk curve
anywhere in the heterostructure. There are nontrivial shifts
of all peaks that make it difficult to identify a well-defined
alignment with the bulk curves. In Fig. 8 we choose to align
the O(2s)-derived feature at E ∼ −19 eV. In this specific
system, aligning the O(2s) peaks appears to yield a reasonably
good match of the conduction- and valence-band edges (the
most relevant features from a physical point of view); this,
however, leads to a marked mismatch, e.g., in the position of
the semicore Nb(4s) state. We show in the following that these
effects stem from a number of (rather dramatic) electrostatic
and structural perturbations acting on the KNbO3 film, which
are a direct consequence of the pathological band alignment.

First we show that the nonvanishing LDOS at the Fermi
level results in a sizable spillout of conduction charge into
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FIG. 8. (Color online) LDOS integrated over the NbO2 layers of
the KNbO3/SrRuO3 heterostructure (solid curves with gray shade).
The bottom curve lies next to the electrode, and the top one lies in the
middle of the KNbO3 film. Only the PDOS on half of the symmetric
supercell are shown. The bulk LDOS (red dashed curves) are aligned
to match the O(2s)-derived peaks. The Fermi level is located at zero
energy.

the ferroelectric film. To that end, we plot ρfree(z), which
represents the planar average of the artificially populated
part of the KNbO3 conduction band, and the corresponding
nanosmoothed version, ρfree(z), in Fig. 9, respectively, as
black continuous and red dashed lines. The additional electron
density in the ferroelectric region is apparent, and reaches
a maximum of ∼0.15 electrons in the central perovskite
unit cell. Such a density is significant—it can be thought
as resulting from an unrealistically large doping of, e.g.,
one Sr2+ cation every six or seven K+ ions. However,
unlike in a doped perovskite, the spurious electron spill-
out here is not compensated by an appropriate density of
heterovalent cations. The system is therefore not locally
charge neutral, and as a consequence strong, nonuniform
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FIG. 9. (Color online) Calculated free charge for paraelec-
tric SrRuO3/KNbO3/SrRuO3 heterostructure. Black curve: Planar-
averaged ρfree. Red dashed: ρfree, nanosmoothed using a Gaussian
filter. Blue symbols: Finite differences of the local Pj (shown as a
black curve in Fig. 10), calculated using the Wannier-based layer
polarization described in Sec. III B 2.
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FIG. 10. (Color online) Local polarization profile in the
SrRuO3/KNbO3/SrRuO3 capacitor. Black circles: Polarization from
Wannier-based layer polarizations. Red squares: Approximate polar-
ization from “renormalized” Born effective charges (see Sec. III B 3).
Analogous results for a paraelectric SrRuO3/BaTiO3/SrRuO3 capac-
itor are shown for comparison (blue diamonds).

electric fields arise in the insulating film that act on the ionic
lattice.

In order to elucidate how the underlying polarizable
material responds to such an electrostatic perturbation, we
plot in Fig. 10 the effective polarization profile in the KNbO3

film calculated in two ways: (i) the rigorous Wannier-function
analysis of the layer polarizations and (ii) the approximate
expression based on the renormalized bulk dynamical charges.
The matching between the curves is excellent, indicating
that the approximate Z∗-based formula provides a reli-
able estimate of P (z); this suggests that the electrostatic
screening is indeed dominated by structural relaxations, as
anticipated in Sec. II, and as expected in a ferroelectric
material. To substantiate this point, we compare in Fig. 11
the relaxed layer rumplings in KNbO3/SrRuO3 to those
of the nonpathological case, PbTiO3/SrRuO3, discussed in
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FIG. 11. (Color online) Layer rumplings (cation-oxygen vertical
relaxations) in the centrosymmetric KNbO3/SrRuO3 (black line,
empty circles) and PbTiO3/SrRuO3 (red line, filled circles) capacitors.
Dashed vertical lines indicate the location of the BO2 planes. The
shaded areas correspond to the SrRuO3 electrode region.
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Sec. IV A. The KNbO3 film is characterized by strong
nonhomogeneous distortions, which are consistent with the
polarization pattern shown in Fig. 10. Conversely, the distor-
tions are negligible in the PbTiO3/SrRuO3 capacitor, where all
the oxide layers are essentially flat.

The polarization profile Pj is characterized by a uni-
form, negative slope. This nicely confirms the prediction
of our semiclassical analysis in Sec. II of a uniform linear
decrease of D(z) throughout the film. Pj varies from 0.3
to −0.3 C/m2 when moving from the bottom to the top
interface. Note that such spatial variation is completely absent
in, e.g., isostructural paraelectric BaTiO3/SrRuO3 (diamonds
in Fig. 10) and PbTiO3/SrRuO3 [Fig. 6(c)] capacitors, where
the profile is remarkably flat with P vanishing throughout
the film. We stress that the nonuniform perturbation expe-
rienced by KNbO3/SrRuO3 is qualitatively different from a
ferroelectric distortion, which involves an almost perfectly
rigid displacement of the ionic sublattices: In the absence
of space-charge effects, a macroscopically uniform rumpling
pattern across the film is typically found.20

To demonstrate that the spatial variation in P (z) is directly
related to ρfree according to Eq. (13), we perform a numerical
differentiation of the polarization profile derived from the
Wannier-based layer polarizations. The result, plotted in Fig. 9
as a blue line, shows an essentially perfect match between
dP/dz and −ρfree, illustrating the fact that the polarization
profile is really a consequence of KNbO3 responding to the
spurious population of the conduction band, rather than of
interface bonding effects.56

2. BaTiO3/Pt

We next present results of an analogous investigation for
a paraelectric (BaTiO3)m/(Pt)n capacitor, with m = 8.5 and
n = 11. We consider symmetric TiO2 terminations, with the
interfacial O atoms in the on-top positions. (Note that this
interface structure is different than the AO-terminated films
simulated, e.g., in Refs. 20 and 33, where a Schottky-like band
offset was found.) We find this interface to have a pathological
band alignment, similar to the KNbO3/SrRuO3 case discussed
above. The comparative analysis of the bound-charge polar-
ization profile and of the excess conduction charge, shown in
Fig. 12, again shows excellent agreement between ρfree(z) and
the compensating bound charge. The effect is analogous to

KNbO3/SrRuO3, with an overall magnitude which is smaller
by roughly a factor of 2; the polarizations at the two extremes
of the film reach values of approximately ±0.15 C/m2.

The almost perfect similarity in behavior between these two
chemically dissimilar systems is further proof that the unusual
effects described here and in Ref. 56—the apparent head-to-
head domain wall in the ferroelectric film—have little to do
with the bonding at the interface, but are merely a consequence
of the artificial charge spillout, as discussed in Sec. II.

Before moving on to the next section we briefly comment
on the physical nature of the conduction charge that spills
into the ferroelectric film. In particular, it is important to
clarify that the charge densities plotted in Figs. 9 and 12(a)
indeed originate from population of the conduction band of the
insulator, and not from MIGS as some authors have recently
argued.58 First, all charge density plots show a maximum in
the middle of the ferroelectric layer, rather than a minimum,
which one would expect if the former hypothesis were true,
given the evanescent character of the MIGS. Second, if MIGS
were present they would be clearly identifiable in the LDOS;
however, the LDOS plotted in Fig. 8 shows no evidence of
quantum states lying within the energy gap of the KNbO3

film. Therefore, we must conclude that these are genuine
conduction-band states, and not MIGS. The maximum of ρfree
in the middle of the ferroelectric film can be interpreted either
as a quantum confinement effect [the lowest-energy solution of
the electron-in-a-box problem is indeed a sine function with
a shape reminiscent of the ρfree plots of Figs. 9 and 12(a)],
and/or as a result of the dielectric nonlinearities discussed in
Sec. II C 3.

C. Estimating the “prespill” band offset

We mentioned in Sec. II that, whenever an elec-
trode/ferroelectric interface enters the pathological spillout
regime, the transfer of charge into the conduction band of
the insulator produces an upward shift of the CBM. This
effect prevents a direct, unambiguous determination of the
interface parameter φ0

n. To circumvent this problem, and obtain
an approximate estimate of the negative “prespill” Schottky
barrier φ0

n, we use an approach inspired by a recent work.59

The authors of Ref. 59 show that the Schottky barrier at
the interface between a perovskite insulator (SrTiO3) and a
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FIG. 12. (Color online) (a) Calculated
free charge and (b) local polarization pro-
file for a paraelectric Pt/BaTiO3/Pt capaci-
tor with TiO2-type interfaces. All symbols
have the same meaning as in Figs. 9 and 10.
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FIG. 13. (Color online) n-type Schottky barrier as a function of
interface doping in KNbO3/AO-terminated SrRuO3, where A is a
fictitious atom with atomic number Z = 37 + x. Only the Sr atoms
at the interfacial layer are replaced by this fictitious atom. The dashed
line is a linear regression of the data between x = 0 and 0.3, where
the interface is nonpathological from the band-alignment point of
view. Blue and red empty symbols represent, respectively, the results
for x = 0.5 and 1.0, where the interface is already pathological. All
values were obtained from Eq. (24), using either the Nb(4s) (squares)
or the O(2s) (circles) semicore peaks of the central NbO2 layer as a
reference.

perovskite electrode (La0.7A0.3MnO3, where A is Ca, Sr, or Ba)
evolves linearly as a function of the compositional charge of the
interface layer. (This interface layer is of the type LaxSr1−xO,
where x interpolates between a +3 and a +2 cation.) Of course,
this linear behavior refers to a range of x values where the
interface is nonpathological; our arguments indicate that as
soon as the system enters the spillout regime, the value of φn

saturates to a nearly constant value. Based on this observation,
if one knows the linear behavior of φn in a range of x values
for which the interface is nonpathological, one can extrapolate
this straight line to the values of x which cannot be directly
calculated, and obtain an estimate for φ0

n.
We apply this strategy to the same KNbO3/SrRuO3 ca-

pacitor system described in Sec. IV B1. To tune the interface
charge, we replace the Sr cation in the interface SrO layer
with a fictitious atom of fractional atomic number Z =
37 + x. x = 1 corresponds to the example already shown in
Sec. IV B1, with a charge-neutral SrO interface layer, and
x = 0 corresponds to a RbO layer of net formal charge −1. The
results for the Schottky barrier are plotted in Fig. 13. The region
from x = 0.0 to 0.3 is nonpathological and shows an almost
perfectly linear evolution of φn (dashed line). By extrapolating

this linear trend to x = 1, we obtain φn ∼ −1.2 eV, which is ∼1
eV lower than the value calculated from first principles. This
confirms the remarkable impact of the space-charge effects
described in Sec. II C 1. Assuming a polarization of ∼0.3 C/m2

for KNbO3 near the interface, a potential drop of 1 eV would
be accounted for by an effective screening length of 0.3 Å
at the electrode interface. This value is quite reasonable, and
similar in magnitude to those reported in Table I.

In order to examine the crossover between the Schottky
(nonpathological) and the Ohmic (pathological) regimes in
terms of the analysis tools developed in this work, we plot in
Fig. 14 the polarization profiles and the density of conduction
electrons for each of the calculations summarized in Fig. 13.
These plots confirm that from x = 0 to 0.3 the capacitors
are nonpathological, with absence of conduction charge in
the insulating region [Fig. 14(a), thinner lines] and a flat
polarization profile [Fig. 14(b), filled circles—all these curves
overlap on this scale]. Conversely, at x = 0.5 the conduction
band starts populating significantly [thicker dashed blue line
in Fig. 14(a) and empty blue circles in Fig. 14(b); note that the
corresponding points in Fig. 13 starts to depart from the linear
regime]. At x = 1.0 the population of the conduction band
has become dramatic, and so is the corresponding slope in the
polarization profile. The departure from linearity in Fig. 13 is
correspondingly large. Note that the use of either the Nb(4s)
or the O(2s) semicore peaks in Eq. (24) yields identical results
in the nonpathological regime (the filled squares and circles
overlap in Fig. 13). Conversely, the result depends significantly
on this (completely arbitrary) choice at x = 0.5, and even more
so at x = 1.0 (the circles and squares split). This is another
proof that in the pathological regime the band lineup is ill
defined—due to the electrostatic effects discussed throughout
this work, the LDOS does not converge to a bulklike value
in the center of the KNbO3 film (see Fig. 8), and there is no
obvious reference energy to determine the offset.

V. RESULTS: FERROELECTRIC CAPACITORS

As discussed in the Introduction, although some of the
unpolarized reference structures (e.g., the PbTiO3/SrRuO3

interface) appear artifact-free within LDA, because of the
strong dependence of the Schottky barrier on D [Eq. (9)],
they might become problematic when the constraint of mirror
symmetry is lifted and the system is polarized. To address this
issue, in this section we first use the fixed-D strategy described
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FIG. 14. (Color online) (a) Conduction
electrons and (b) local (Wannier-based) polar-
ization profiles extracted from the calculations
with x = 0.0, 0.1, 0.2, and 0.3 (filled circles,
thin black curves), 0.5 (empty blue circles,
dashed blue curve), and 1.0 (empty red circles,
solid red curve). In (a) only half of the KNbO3

film is shown.
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in Sec. III C to explore the behavior of the PbTiO3/metal
interface over a wide range of polarization states. Then, we
will demonstrate that the behavior that we calculate using the
fixed-D method corresponds exactly to that of a true short-
circuited capacitor by performing more “standard” large-scale
calculations for a few selected thickness values.

A. Open-circuit calculations

We construct a vacuum/PbTiO3/SrRuO3 heterostructure as
explained in Sec. III C. The reduced macroscopic displacement
field,32 d = DS, is controlled by substituting the Ti at the
PbTiO3/vacuum interface with a fictitious cation of atomic
number Zleft = 40 + d (i.e., Zr for d = 0). The thickness of the
PbTiO3 slab is set to five unit cells, and that of SrRuO3 to four;
other computational parameters are kept the same as in the rest
of this work. We considered four different values of d: 0.2, 0.4,
0.6, and 0.74, the latter one corresponding to the ferroelectric
ground state of PbTiO3 at the SrTiO3 in-plane lattice constant.
In each case, we verify by examining the LDOS that the free
surface remains locally insulating; therefore, the macroscopic
D = d/S in the film corresponds exactly to the value enforced
by the artificial pseudopotential.

The evolution of ρfree and of the Wannier-based layer
polarization profiles for 0.2 � d � 0.74 is shown in Fig. 15. It
is apparent from the plots of ρfree that already for the smallest
value of the polarization [d = 0.20, black curve in Fig. 15(a)]
the TiO2 layer closest to the electrode has an important density
of conduction electrons. This is expected, as the evanescent
tails of the MIGS penetrate into the insulating region for some
distance at any metal/insulator junction. However, these states
do not propagate very far, and already at the second TiO2 layer
they are barely noticeable on the scale of the plot. At d = 0.4
[red curve in Fig. 15(a)] the peak on the second TiO2 layer
significantly increases in magnitude, and a unique small peak
appears at the third TiO2 layer. Analysis of the LDOS (not
shown) shows that these unique peaks are conduction-band
states of PbTiO3, rather than evanescent SrRuO3 states. The
reason why ρfree decays relatively fast when moving into the
insulator is due here to the internal field in PbTiO3, which
generates a confining wedgelike potential. We stress again
that this mechanism is fundamentally different from the usual
quantum-mechanical damping of the MIGS that fall in a

forbidden energy window of the insulator. We identify this
mechanism with the onset of the Schottky breakdown, which
becomes increasingly apparent if the polarization of the film
is further increased to d = 0.60 [green curve in Fig. 15(a).] As
in the discussion of the paraelectric capacitors, the presence of
the space charge is reflected in the progressive “bending” of
the layer polarization profile [Fig. 15(b)].

At d = 0.74, the population of the conduction band
becomes rather dramatic, and the charge distributes over the
whole film. Here, the space charge is no longer confined
by the depolarizing field: In the fully polarized ferroelectric
state the internal field of PbTiO3 vanishes. Therefore, the
intrinsic carriers are only loosely bound to the interface by the
band-bending effect, analogous to the mechanism that confines
the compensating carriers at the LaAlO3/SrTiO3 interface.34

Since the dielectric permittivity of PbTiO3 is rather large, the
band bending is very efficiently screened, and the distribution
of charge can reach quite far into the insulator. To demonstrate
this fact, we have repeated the simulation with the same value
of d = 0.74, but with a thicker PbTiO3 film of eight unit
cells [Fig. 16(b)]; indeed, the conduction electrons redistribute
over the whole volume of the film to minimize their kinetic
energy. Thus, in close analogy to the LaAlO3/SrTiO3 case, the
metallization of the fully polarized PbTiO3 film at d = 0.74
can be thought as a form of “electrostatic doping” induced
by spillout of electrons from the electrode to the PbTiO3

conduction band. We shall further elaborate on this point in
Sec. VI F.

Figure 15(b) illustrates a further important consequence
of the charge spillout regime, which was mentioned already
in Sec. II C 2: In the pathological regime the dipoles that lie
closest to the electrode interface may appear “pinned” to a
fixed value. This is indeed the case for the TiO2 layer adjacent
to the electrode, which seems to saturate at ∼0.08 nC/m for
increasing values of D. Again, we caution against interpreting
this dipole pinning effect as a robust physical result.

B. Short-circuit calculations

To demonstrate in practice that the conclusions of Sec. V A,
inferred by using open-circuit boundary conditions, are di-
rectly relevant to short-circuited capacitors, we have per-
formed simulations on SrRuO3/PbTiO3 heterostructures, with
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FIG. 15. (Color online) Results for the
polarized PbTiO3/SrRuO3 interface for in-
creasing polarization of the film. (a) planar
averaged ρfree. Black, red, green, and blue
curves correspond to the results for d = 0.20,
0.40, 0.60, and 0.74e, respectively. The sharp
peaks in ρfree correspond to the Ti ions in the
PbTiO3 film. (b) layer polarizations from the
Wannier-based analysis. Same color code as
in (a).
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FIG. 16. (Color online) Calculated results
for the fully polarized PbTiO3/SrRuO3 in-
terface at d = 0.74. (a) Local polarization
from the Wannier-based layer polarizations,
and (b) planar-averaged ρfree (black curve),
macroscopically averaged ρfree (red dashed
curve), and finite differences of the polar-
ization shown in (a) (blue squares) for an
m = 8 unit-cell-thick PbTiO3 film. (c) and (d)
are the corresponding figures for an m = 5
unit-cell-thick PbTiO3 film. The sharp peaks
in ρfree correspond to the Ti ions in the PbTiO3

film.

m = 12.5 and n = 5.5. A soft-mode distortion of the bulk
tetragonal phase, inducing a polarization perpendicular to the
interface, is superimposed on the PbTiO3 layers of the previous
unpolarized configurations discussed in Sec. IV A. Then the
atomic positions of all the ions, both in the ferroelectric
and in the metallic electrodes, and the out-of-plane stress
are relaxed again with the same convergence criteria as
before.

By means of the approximate Eq. (33), derived in
Sec. III B 3, we computed the local layer-by-layer polarization
P̃ Z

j plotted in Fig. 17(a). Far enough from the interface, the
polarization profile is rather uniform, with a polarization that
amounts to 0.53 C/m2 in PbTiO3 (64% of the strained bulk
polarization), which we identify as the macroscopic P of
the PbTiO3 film. This corresponds to d ∼ 0.5, i.e., a value
that in the open-circuit study of the previous section (see
Fig. 15) we found to be already pathological. To verify that
the same happens here, we analyze the density of conduction
electrons. The planar average of ρfree(r) for the relaxed polar
configuration is plotted in Fig. 17(b). The existence of a charge
populating the Ti 3d orbitals is evident from the peaks of
ρ̄free(z) at the TiO2 layers, which are detectable up to four
unit cells away from the interface. Indeed, the profile of the
conduction charge appears to be intermediate between the
d = 0.4 and 0.6 cases of Sec. V A, consistent with the present
estimate d ∼ 0.5.

As we already anticipated in the previous sections, ρfree

is responsible for nontrivial lattice relaxations, which act
to screen the electrostatic perturbation. Figure 17(a) indeed
shows a small bending of the local polarization profile, starting
roughly three unit cells away from the top interface and with a
negative slope of the local polarization P̃ Z

j . To prove that such
a spatial variation of P (z) [which in PbTiO3 provides a reason-
ably accurate estimate of the local electric displacement D(z)]
is a direct consequence of the presence of the nonvanishing
conduction charge [recall Eq. (13)], we numerically differen-

tiatiate the polarization profile and compare it with ρfree(z) in
Fig. 17(b). As in the SrRuO3/KNbO3/SrRuO3 unpolarized case
(see Fig. 9), the bound charge (divergence of P ) accurately
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FIG. 17. (Color online) (a) Profile of the layer-by-layer polariza-
tion P̃ Z

j , defined in Eq. (33), in the relaxed polar configuration of
a short-circuited SrRuO3/PbTiO3/SrRuO3 capacitor. The dashed line
represents the bulk spontaneous polarization under the same in-plane
strain as in the capacitor. (b) ρ̄free(z) as defined in Eq. (26) (black
solid line), and its nanosmoothed average ρfree(z) (red dashed line).
The blue line represents the profile of the bound charge, computed as
a finite-difference derivative of P̃ Z

j .
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neutralizes the conduction charge (nanosmoothed profile
of ρfree).

In order to further prove that the present case fits into
the model description of Sec. II C 2, in Fig. 18 we plot the
layer-resolved PDOS. The curves were constructed exactly as
in Fig. 7, except that (i) the capacitor is now polarized, and
(ii) consistent with the discussion of Sec. III A 3, we set up
the bulk reference calculation by using the PbTiO3 structure
extracted from the polarized supercell calculation (i.e., with
atomic distortions and out-of-plane strain consistent with a
polarization of 0.53 C/m2). The agreement is again very good,
showing that our approximation of neglecting the macroscopic
depolarizing field in the bulk reference calculation is a
reasonable one, and that the most important effects on the
LDOS originate from the lattice distortions. In the capacitor we
clearly distinguish two regions. In the lower part of the PbTiO3

film, the PDOS at the Fermi level vanishes, which implies that
the system is locally insulating. Furthermore, the PDOS in each
layer appears rigidly shifted with respect to the neighboring
two layers, consistent with the presence of a depolarizing field.
In the upper region, close to the top electrode, the PDOS
crosses the Fermi level and the system is locally metallic. All
these features are in full agreement with the scheme drawn in
Fig. 4.

In Fig. 18 we also plot the estimated band edges for each
layer EV,C(j ) obtained from Eq. (24). We used the semicore
Ti(3s) peak at each layer as Esc(j ), and we calculated the
bulk contributions in Eq. (24) from a non-self-consistent bulk
calculation (based on the ground-state charge density of the
bulk reference calculation at P = 0.53 C/m2 described above)
that included the high-symmetry k points. The resulting data
points lie very accurately on a straight line. By extrapolating
this straight line, we see that it crosses the Fermi level near
the fourth PbTiO3 cell from the top electrode interface. This
illustrates the pathological character of the band alignment in
this system, consistent with the model of Fig. 4.
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FIG. 18. (Color online) Layer-by-layer PDOS on the TiO2 layers
of the polar SrRuO3/PbTiO3/SrRuO3 ferroelectric capacitor. Meaning
of the lines as in Fig. 7, but now the PDOS on all the TiO2 layers
are plotted (there is no longer a mirror-symmetry plane). The squares
represent the position of the local band edges, computed following
the recipe of Sec. III A 3. The dashed lines are a linear interpolation
of the calculated local band edges.

As a final remark, we mention that we performed similar
calculations for a polarized BaTiO3/SrRuO3 capacitor, and
found a very similar scenario, with the conduction band locally
crossing the Fermi level as the mirror-symmetry plane is
lifted and a spontaneous polarization is allowed to develop. In
general, the onset of such a pathological regime has important
consequences on many physical properties of the capacitor, as
we shall discuss in the following section.

VI. DISCUSSION

In this section we discuss the important aspects of our
work in the context of the existing literature. The discussion is
organized in several categories, corresponding to the different
properties of a ferroelectric/electrode interface (or, more
generally, of a perovskite material) that might be affected by
the (more or less spurious) presence of free charges in the
system.

A. Structural properties of the film

The authors of Ref. 56 studied KNbO3 thin films placed
between symmetric metallic electrodes (either SrRuO3 or
Pt) under short-circuit electrical boundary conditions. In
the SrRuO3 case, the layer-by-layer polarization pointed in
opposite directions at the top and bottom interfaces for
all thicknesses, creating 180◦ head-to-head domain walls,
which were denominated interface domain walls (IDWs). The
physical origin of the IDW was attributed to a strong bonding
between interfacial Nb and O atoms, which would induce a
“pinning” of the interface dipoles to opposite values at the top
and bottom electrode interfaces.

Here we have demonstrated with analytical derivations and
practical examples that both the inhomogeneous polarization
and the “dipole pinning” effect are clear signatures of a
pathological band alignment. In particular, in an unpolarized
KNbO3/SrRuO3 capacitor analogous to those simulated by
Duan et al.,56 we obtain a monotonously decreasing polar-
ization profile, from (∼0.3 C/m2) at the bottom interface to
an opposite value of ∼−0.3 C/m2 at the top, in excellent
agreement with the results of Duan and co-workers.56 In
contrast with the conclusion of Ref. 56, however, here we
find that the microscopic origin of this strong inhomogeneous
polarization is the spillage of charge from the metallic
electrode to the bottom of the conduction band of KNbO3,
rather than a bonding effect.

These findings have important consequences concerning
the physical understanding of the system with regard to the
relevant observables. First, the ferroelectric material becomes
in fact a metal, and such a device would respond Ohmically
with a large direct dc current that would make switching
difficult or impossible. This questions the appropriateness
of interpreting the “average” polarization of the film as a
macroscopic physical quantity that can be measured in an
experiment (see the next section). Second, our arguments
indicate that two essential factors governing the equilibrium
free-charge distribution (and hence the spatial variation of
P ) are the conduction-band structure (e.g., the DOS) of the
ferroelectric material, and the interface band offset. Both
ingredients are absent in traditional Landau-Ginzburg models,
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e.g., those used in Ref. 56 to interpret the above data
on KNbO3/SrRuO3 capacitors, or in Ref. 58 to interpret
qualitatively similar results for a hole-doped BaTiO3/SrRuO3

interface. We therefore caution against overinterpreting the
results of such models, as they might fail at capturing the
relevant physics of the free-charge equilibration. A promising
route toward overcoming these limitations appears to be the
model Hamiltonian approach proposed in Ref. 34. Extending
that strategy to the case of a metal/ferroelectric interface will
be an interesting subject of further research.

B. Stability of the ferroelectric state

The pathological spillout of charge has important conse-
quences on the spontaneous polarization of a ferroelectric
capacitor. To give a qualitative flavor of such an effect,
we consider the case of a capacitor that is only partially
metallic, i.e., there is a depolarizing field that keeps the carriers
confined to the pathological side as sketched in Fig. 19(a). We
further consider two symmetric electrodes, i.e., characterized
by identical values of φ0

n (that we assume positive) and λeff .
Assuming a monodomain state, there are then two stable
configurations, related by a mirror-symmetry operation. As
φ0

n is positive, upon application of an electric field there will
always be an insulating region in the middle of the film, i.e.,
the polarization can be switched without passing through a
globally metallic state.

To appreciate the impact of the charge spillout on the
spontaneous polarization of the film, it is useful to look at the
schematic band diagram of Fig. 19(a), where the conduction-
band bottom goes below the Fermi level in proximity of the
right-hand electrode (red area). This induces metallicity in
a significant portion of the film (light gray shaded area, up
to the dashed line). Based on our arguments of Sec. II, the
charge spillout is associated with a spatially decreasing D(z)
[Fig. 19(b)]. This, in turn, modifies the interface potential
barrier by producing a strong upward shift in energy of the
conduction-band edge from what one would have if D(z) were
uniform and equal to the “physical” value D1. This implies
that the charge spill out generally reduces the depolarizing
field [the “prespill” estimate is sketched as a thick dashed
line in Fig. 19(a)], and hence overstabilizes the ferroelectric
state. This is what one intuitively expects—population of
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FIG. 19. (Color online) Schematic representation of the impact
of the charge spillage on the ferroelectric stability. M are the metal
electrodes, and FE is the ferroelectric film. The polarization points to
the right-hand side.

the conduction band constitutes an additional channel for
screening the polarization charge, and this cooperates with the
metallic carriers of the electrode. This, however, contrasts with
the conclusions of Ref. 58, where it was argued that charge
leakage suppresses P by producing a ferroelectrically “dead”
layer. These conclusions are based on the assumption that the
physically measurable P is the average polarization 〈P 〉 taken
over the whole volume of the film. As the polarization is locally
reduced near a pathological interface, charge spillout indeed
results in a reduced 〈P 〉.

Is it justified, though, to assume that 〈P 〉 is the physically
relevant quantity in the capacitor? Does 〈P 〉, in other words,
reflect what is experimentally measured? In an experiment one
measures the time integral of the transient current density �j

that flows through the capacitor during the switching process.
�j does not relate to 〈P 〉. Under the hypothesis that at least
a portion of the film remains insulating throughout switching,
it rigorously follows from the modern theory of polarization60

that �j = �D = 2|D|; D is the value of the (locally uniform)
electric displacement deep in the insulating region, indicated
as D1 in Fig. 19. (We assume for simplicity that D = 0 in the
paraelectric reference state.) Therefore, observing that 〈P 〉 is
reduced upon charge leakage does not reflect the true physical
effect of the pathological band alignment, which is an artificial
enhancement of the spontaneous P via the reduction of the
depolarizing field illustrated above.

A large number of works61–64 have investigated the stability
of PbTiO3-based capacitors, and it is impossible here to discuss
in detail whether and how the above band-alignment issues
might have affected each of them (for instance, regarding
the polarization enhancements reported in Ref. 61). We
limit ourselves to observe that, due to the large spontaneous
polarization of PbTiO3, the possible consequences of having
a pathological ferroelectric state need to be taken seriously
into account in the analysis, as we showed for the example of
SrRuO3 electrodes in Sec. V.

C. Transport properties in the tunneling regime

Ferroelectric capacitors have been explored as potential
tunneling electroresistance devices,25 and many recent cal-
culations focused on the calculation of the conductance by
means of first-principles methods. Metallicity and spillout
of electrons is a serious potential issue in this context, as
the calculated conductance can potentially be affected by the
presence of space charge in the system, in a way which is
difficult to predict. The recent work of Velev et al.57 appears to
be concerned by these issues, as it focuses on TiO2-terminated
Pt/BaTiO3/Pt capacitors. Indeed, we find (see Sec. IV B 2) that
this interface is problematic already in the centrosymmetric
paraelectric case. While we have not explored the ferroelectric
regime in this system, based on the imperfect screening
arguments of Sec. II (the lineup depends linearly on P around
the paraelectric reference phase), we expect the spillout effect
to become worse at least at one of the two interfaces when the
capacitor is polarized.

In fact, the metallicity of the ferroelectric film seems to be
confirmed by the data presented by the authors: In Figs. 2(a)
and 2(b) of Ref. 57 the CBM of the central BaTiO3 cell appears
to be degenerate or lower than the Fermi level, and in Fig. 1 of
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the same paper the atomic displacements of the ferroelectric
phase seems to be strongly asymmetric, consistent with our
speculations. While we cannot draw a definitive conclusion
(our computational setup slightly differs from that of Ref. 57),
our analysis highlights the crucial importance of the band-
alignment issue, and the necessity of performing an adequate
and convincing assessment of its impact on the results (e.g.,
the conductance) in each case.

D. Interface magnetoelectric effects

Magnetoelectricity is one of the emerging topics in oxide
research. Despite the intense efforts, one of the main limiting
factors still persists: Bulk materials displaying a robust
magnetoelectric effect are notoriously difficult to find. To
work around this problem, several researchers have been
looking for alternative solutions by exploring heterostructures
and composite materials. An interface, due to its lower
symmetry, might allow for physical response properties that
are absent in the parent compounds. A promising route
to interfacial magnetoelectric (ME) coupling that has been
proposed recently65 is mediated by charge. The polarization
of the ferroelectric (or dielectric) lattice produces a bound
charge at the interface, which is screened by the carriers of the
metal. If these carriers are spin polarized, as in a ferromagnet,
there will be a net change in the magnetization.

It is easy to see that the band-alignment issues that we
discuss in this work have direct and important implica-
tions for the calculation of the carrier-mediated interface
ME coefficient. In the pathological regime, the calculated
(magnetic) response will most likely be suppressed, as the
spillout charge, rather than the spin-polarized carriers in
the electrode, will screen the applied bias potential (or the
ferroelectric polarization). This speculation is directly relevant
for interpreting the results of Yamauchi et al.66 on BaTiO3 films
sandwiched between Co2MnSi (Heusler alloy) electrodes.
Depending on the termination, two qualitatively different
behaviors were reported: The MnSi/TiO2 interface results in a
pathological band alignment and a strongly nonhomogeneous
local polarization profile; conversely, neither is present in
the capacitor with the other type of termination, which has
symmetric Co/TiO2 interfaces. A very small ME response was
reported for the MnSi/TiO2 case (contrary to the Co/TiO2

case), in qualitative agreement with our arguments above.
Other recent studies,67,68 focusing on ME effects in thin

Fe film deposited on ATiO3 (A = Ba, Pb, Sr), also reported
strongly nonuniform polarization profiles in the ferroelectric
film (e.g., Fig. 3 of Ref. 68). This suggests that also the
ATiO3/Fe interface might be concerned by the band-alignment
issues discussed in this work, with potential impact on the
physical observables. Our analysis tools should help clarify
these issues in the above systems and in the Fe/BaTiO3/Fe
capacitors of Ref. 69.

E. Schottky barriers

Direct calculations of Schottky barriers at
metal/ferroelectric interfaces are, among the many useful
physical properties of these junctions, those that are
most directly affected by the issues we discuss here.

The consequence of a pathological band alignment
is that the estimated Schottky barrier is no longer a
physically meaningful interface property, but is influenced by
macroscopic space-charge phenomena.

A rather comprehensive work on the SrTiO3/transition-
metal interface was recently reported in Ref. 70. Without going
into too detailed an analysis of the results, we limit ourselves
to noting that many of the reported p-type SBH for TiO2-
or SrO-terminated interfaces are very close to, or sometimes
well in excess of 1.8 eV. Considering that the LDA-GGA
fundamental gap of SrTiO3 is ∼1.8 eV, the actual n-type
SBH of the calculation (i.e., not the value corrected with the
experimental band gap) is close to zero or negative. Therefore,
charge spillout is a concrete and likely possibility for many of
the investigated structures.

Note that, contrary to the case of oxide electrodes, ideal
interfaces between SrTiO3 and simple metals tend to have a
smaller λeff .23 This implies that the effects of the electrostatic
reequilibration described in Sec. II might be somewhat less
dramatic, and the values of the self-consistent φn closer to
φ0

n. This suggests that the trends and the conclusions reported
in Ref. 70 are likely to be robust with respect to the issues
described in this work. However, a more detailed analysis
would be certainly interesting in order to assess their impact
at the quantitative level.

F. Relationship to LaAlO3/SrTiO3

Many of the analysis tools developed in this work are
not limited to ferroelectric capacitors, but can be readily
extended to other systems where free-charge doping of a
band insulator plays a central role. An excellent example,
where the interpretation of the observed effects is still widely
debated, is 2D conducting electron gas (2DEG) that forms
at the polar LaAlO3/SrTiO3 interface.71 A central problem
is the determimation of the physical effects governing the
confinement and equilibrium distribution of the 2DEG. Some
authors72 propose a mechanism for the confinement of the
gas based on the formation of MIGS in the band gap of
SrTiO3. Other authors,73 however, explain the experimental
observations in terms of a semiclassical Thomas-Fermi model
that is analogous to that described in Sec. II, and where
the MIGS are completely absent. Answering the question
of whether the MIGS play an important role in this system
involves a careful analysis of the local electronic properties,
and more specifically of the LDOS.72 In this sense, the
methodology discussed in Sec. III A 3 appears ideally suited
to clarifying this issue.

We base our analysis on the calculations done in Ref. 34,
with a 24-cell-thick SrTiO3 slab and a three-cell LaAlO3

overlayer. (This calculation was performed with a 12 × 12
Monkhorst-Pack sampling of the surface BZ, and with a
Gaussian smearing of 0.1 eV; full details of the computational
parameters are reported in Ref. 34.) The boundary conditions
are set to DSTO = 0, DLAO = −e/2S, and are equivalent to
those of the symmetric superlattice used by Janicka et al.72

In Fig. 20 we show the LDOS corresponding to the TiO2

layers number 15 [curve (a)], 10 (b), and 5 (c), where layer
1 is adjacent to the LAO interface. On top of each curve
we superimpose the bulk TiO2 LDOS, which we align with
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FIG. 20. (Color online) LDOS of selected TiO2 layers in the
electrostatically doped LaAlO3/SrTiO3 system. The insets are a blow
up of the regions indicated by the small squares. The energy scale of
the insets comrpises between −0.25 and 0.25 eV.

the supercell LDOS by matching the semicore Ti(3s) peak at
∼−57.5 eV. [As in earlier works the O(2s) peak was used as
a reference, we also show the O(2s)-derived feature, which is
located at ∼−18 eV.] The matching is excellent in all cases,
especially in the layers lying furthest from the interface where
the effect of the structural distortions and free charge are less
pronounced. (Note that we performed the bulk calculation
with a k-point mesh that accurately matches the one used
in the supercell calculation. Also, in the construction of the
LDOS curves, we used the same Gaussian smearing function
of width 0.1 eV, corresponding to the smearing used to relax
the self-consistent ground state of the supercell structure.) In
the insets we show a blowup of the conduction-band edge,
which goes below the Fermi energy in agreement with the
semiclassical arguments of Ref. 73 and of our Sec. II. Clearly,
our plots do not show any evidence for MIGS in the energy
gap, contrary to the conclusions of Janicka et al.72

To reconcile this discrepancy, we can speculate that the
LDOS curves presented in Ref. 72 might have been constructed
with a substantially larger smearing width than ours, and
this might have precluded an accurate identification of the
band edges. We believe that the technique presented here (of
superimposing an appropriately constructed bulk LDOS on
top of the supercell curves) provides a very practical means of
minimizing systematic errors in the analysis of the results.

VII. CONCLUSIONS

Due to its accuracy and efficiency, density functional theory
has emerged as the method of choice for studying ferroelectric
oxides from first principles. This predominance has been
reinforced since the early 1990’s by the many successes
achieved in the determination of the structural, energetic,
piezoelectric, and dielectric properties at the bulk level. In
the past few years, those efforts have evolved to address
the behavior of the functional properties in thin films and
superlattices, including in some cases (for instance, in the study
of ferroelectric capacitors) the presence of metal/insulator
interfaces.

For a reliable prediction of the functional properties of these
devices, the atomic displacements, distortions of the unit cell,

the electronic structure, and the band gap have to be accurately
described simultaneously. However, the proper DFT treatment
of such interfaces is complicated by the so-called “band-gap
problem,” which might produce a pathological alignment
between the Fermi level of the metal and the conduction band
of the insulator, thus precluding explicit DFT investigation of
many systems of practical interest. In this work we provide
useful guidelines to identify such a pathological scenario in
a calculation by examining its main physical consequences:
(i) an inhomogeneous polar distortion propagating into the
bulk of the film, (ii) the film becoming partially or totally
metallic due to a nonvanishing free charge, and (iii) the local
conduction-band edge crossing the Fermi level. The above
three effects are intimately linked, and should be considered
as potential artifacts of the aforementioned band-gap problem.
Whenever one of these “alarm flags” is raised in a calculation,
the results should be examined with great caution.

A route to overcoming this limitation involves correcting
the LDA-GGA band gap while preserving the excellent
accuracy of these functionals in the prediction of ground-state
properties. Traditional methods to increase the band gap
of insulators, such as the inclusion of a Hubbard U term
in the Hamiltonian, are not satisfactory in the case of a
ferroelectric capacitor with B-cation driven ferroelectricity.
A more promising avenue has been recently opened by Bilc
et al.74 and Wahl and co-workers,75 using the so-called
“hybrid” functionals that combine Hartree-Fock exchange
and DFT. In particular, the B1-WC functional proposed in
Ref. 74 has been shown to provide good structural, electronic,
and ferroelectric properties as compared to experimental data
for BaTiO3 and PbTiO3; verifying the accuracy of B1-WC
in interface studies will be an interesting subject for future
research. Unfortunately, the price to pay for this accuracy
is the substantially higher computational cost of B1-WC as
compared to LDA-GGA.

In addition to the purely technical issues, our work also
opens interesting avenues regarding fundamental physical
concepts. For example, ferroelectricity is usually understood
within the modern theory of polarization, which is only
applicable in the absence of conduction electrons (i.e., in
pure insulators at zero electronic temperature). It is an
important fundamental question, therefore, to assess whether
our understanding of ferroelectrics in terms of bound charges,
polarization, and macroscopic electrical quantities still applies
(and to what extent) in a regime where a sizable amount
of space charge is present in the system. This issue is of
crucial importance also for other systems, e.g., electrostatically
doped perovskites, which bear many analogies to the physical
mechanisms discussed in this work. The first-principles-based
modeling approach proposed in Ref. 34 appears to be a
promising route to further exploring this interesting topic.
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APPENDIX A: LOCAL POLARIZATION VIA BORN
EFFECTIVE CHARGES

In this Appendix we discuss the approach, used in several
parts in this paper and ubiquitously in the recent literature,
of associating the local value of the “effective” polarization
(i.e., the induced P with respect to the reference centrosym-
metric configuration60) in capacitor heterostructures with an
approximate formula, based on the Born effective charges Z∗.
In particular, we provide formal justification for an improved
formula, still based on the Z∗, that we introduced in this work,
and we already mentioned in Sec. III B 3.

Recall the definition of the approximate effective polariza-
tion in terms of the Born effective charges in a bulk solid,

P Z = e

�

∑
α

Z∗
αRαz. (A1)

It is easy to verify that the layer-resolved expression P Z
j of

Eq. (32) reduces to P Z in the case of a periodic crystal, where
P Z

j is a constant function of the layer index j . P Z does not
reduce to the “correct” polarization P (D) at any value of D,
as it does not take into account the additional polarization of
the electronic cloud due to the internal field E(D) (recall that
the Born effective charges are defined under the condition of
zero macroscopic electric field.76)

Taking the Taylor expansion of the polarization as a function
of D (we assume for simplicity that D, P , and P Z all vanish
in the reference centrosymmetric structure), we can write

P Z(D) = dP Z

dD
D + · · · = dP Z

dE
dE
dD

D + · · · . (A2)

For small values of D, we can truncate the previous
expansion at the linear order term. Now, by definition

dP Z

dE = ε0χion, (A3)

where χion is the lattice-mediated susceptibility, and

dE
dD

= (ε0εtot)
−1, (A4)

where εtot is the total dielectric constant of the insulator
(relative to the vacuum permittivity ε0). Substituting Eqs. (A3)
and (A4) into Eq. (A2),

P Z(D) ∼ D
χion

εtot
. (A5)

The same kind of arguments applied to the total polarization
yield

P (D) ∼ D
χtot

εtot
, (A6)

TABLE III. Values of the susceptibilities χ and scaling factors
χtot/χion for the ferroelectric materials considered in this work.

εtot ε∞ χtot/χion

BaTiO3 −48.87 6.48 0.90
PbTiO3 −96.54 8.33 0.93
KNbO3 −34.92 6.27 0.87

where χtot is the sum of the lattice-mediated susceptibility
χion and the purely electronic (frozen-ion) susceptibility χ∞.
Note that χion is not bound to be positive. In a ferroelectric
material, for example, the centrosymmetric reference structure
is unstable and therefore yields a negative χion (and hence εtot),
as discussed in Ref. 32. The present derivation is general and
encompasses those cases.

From the above considerations it immediately follows that
an estimate of the total polarization, which is exact in the linear
limit, can be given as

P (D) ∼ χtot

χion
P Z(D). (A7)

This is essentially Eq. (33). In practice, χion and χ∞ are
calculated in the reference phase according to the standard
definitions,77

χion = εtot − ε∞ = e2

M0�

∑
m

(Z̃∗
m)2

ω2
m

, (A8)

where M0 is a unit mass, Z̃∗
m are the normal mode charges, and

ω2
m are the eigenvalues of the dynamical matrix, and

χ∞ = (ε∞ − 1), ε−1
∞ = ε0

dE
dD

∣∣∣
fixed ions

. (A9)

The values of these physical constants that are relevant for the
results presented in this paper are reported in Table III.

We proceed in the following to test this approximation on
two representative bulk ferroelectric materials, PbTiO3 and
BaTiO3. We take the relevant data (linear susceptibilities,
Born charges, and relaxed structures as a function of D) from
the calculations of Refs. 32 and 20. Note that the BaTiO3

calculation was performed at a fixed value of the in-plane
lattice parameter (indicated as “film” in the figure) while
in the PbTiO3 calculation both a and c parameters were
relaxed for each value of D. The results are presented in
Fig. 21. In both cases, the “bare” value P Z is systematically
overestimated compared to the Berry-phase polarization. With
the correction described above, i.e., by rescaling all values
by the factor χtot/χion, the approximate value of P accurately
matches the Berry-phase one. The accuracy is surprisingly
good in BaTiO3, where the maximum deviation is of the order
of 1%. In PbTiO3, for large values of d, the rescaled-Z∗
value of P presents significant deviations. Note that these
deviations mostly concern values of d that are larger than that
of the ferroelectric ground state (d ∼ 0.74), and therefore are
not of concern in this paper. We ascribe these deviations to
the field-induced structural transition that was described in
Ref. 32.

In conclusion, this simple rescaling factor appears to be
an effective way to obtain a relatively accurate value of the
local P in heterostructure calculations, based only on the
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FIG. 21. (Color online) Polarization P in a BaTiO3 film and
PbTiO3 bulk as a function of the reduced electric displacement field
d = DS. Data are taken from Ref. 20 (see Section IIIC.1) and Ref. 32.

local atomic positions and a few ingredients that can be easily
computed in the bulk reference structure. From the results
of our tests, we expect the agreement to be best in cases
where the polarization is small (closer to the linear limit where
the approximation becomes exact). Furthermore, cases where
the ferroelectric polarization can be represented in terms of a
single “soft mode” such as BaTiO3 seem to work better than
cases, such as PbTiO3, where significant mode mixing and
nontrivial structural transitions occur at higher D values.

APPENDIX B: CONVOLUTIONS AND ENERGY
SMEARING OF THE LOCAL DENSITY OF STATES

1. Convolutions

Convolution is a mathematical operation on two functions
f and g, producing a third function that is typically viewed
as a modified version of one of the original functions. For the
purpose of the present notes, it is useful to think of f as a data
curve containing the relevant physical information, and g as a
rapidly decaying “smoothing” function that produces a local
weighted average of f . We define the convolution of f and g,
f ∗ g, as the following integral transform,

(f ∗ g)(x) =
∫ +∞

−∞
f (y)g(x − y) dy. (B1)

Convolutions have many properties, including commuta-
tivity and associativity. Furthermore, the Dirac delta can be
thought as the identity under the convoluton operation,

(f ∗ δ)(x) = f (x), (B2)

and under certain assumptions an inverse operation can also
be defined. In other words, the set of invertible distributions
forms an Abelian group under the convolution.

A particularly useful property holds in relationship to the
Fourier transform,

F(f ∗ g) = k · F(f ) · F(g), (B3)

where F(f ) denotes the Fourier transform of f , and k is a
constant that depends on the normalization convention for the
Fourier transform. Thus, in reciprocal space the convolution

becomes a simple product. This naturally provides an efficient
convolution algorithm: the workload is reduced from O(N2)
to O[N log(N )].

2. Local density of states

In this work we use [Eq. (22)] the following formula to
compute the smeared LDOS,

ρ̃(r,E) =
∑
nk

wk |ψnk(r)|2 g(E − Enk). (B4)

We shall see that this is indeed a convolution. We first get rid of
the spatial coordinates. To this end, it is customary to integrate
the LDOS in real space over a given volume V ,

ρV (E) =
∑
nk

wkρnk(V )g(E − Enk), (B5)

where

ρnk(V ) =
∫

V

d3r |ψnk(r)|2 . (B6)

(Note that sometimes it might be more convenient to use a
PDOS, rather than a LDOS. In such cases it is sufficient to
replace the real-space integral in the above equation with an
appropriate sum over angular momentum components. The
following discussion remains unchanged.) Now the LDOS is
a function of a single energy variable. If we write

fV (E) =
∑
nk

wkρnk(V )δ(E − Enk), (B7)

we can easily see that ρV = fV ∗ g. This leads to a simple
reciprocal-space expression. We first define an energy window
[Elow,Ehigh] that contains the entire eigenvalue spectrum Enk.
We actually take a window which is slightly larger, where this
“slightly” depends on the decay properties of g,

Elow = min(Enk) − ε, Ehigh = max(Enk) + ε. (B8)

The width of this window is Ehigh − Elow = �E. We represent
ρV (E) in reciprocal space as a discrete Fourier transform,

ρV (E) =
∑

ω

eiωEρV (ω), (B9)

where ω = 2πn/�E and n is an integer. By using Eq. (B3)
we have

ρV (ω) = �EfV (ω)g(ω). (B10)

The Fourier transform of a Dirac delta centered in the origin
is a constant. Equation (B10) then decomposes the LDOS into
a structure factor,

fV (ω) = 1

�E

∑
nk

wkρnk(V )e−iωEnk , (B11)

and a form factor g(ω). Obviously, this formulation is only
convenient if the function g has a fast decay in both real and
reciprocal space, so that the sum in Eq. (B9) can be truncated.
This is indeed the case for the most widely used smoothing
functions g, as we shall see in the following.
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FIG. 22. (a) Gaussian (σ = 0.15 eV) and
Fermi-Dirac (σ = 0.075 eV) occupation func-
tions. (b) Kernel of the occupation functions
as defined in the text. (c), (d) Fourier transform
of the smearing kernels g, assuming an energy
window of [−1,1].

3. Gaussian versus Fermi-Dirac smearing

The Gaussian smearing (G) and the Fermi-Dirac (FD)
smearing are by far the most popular choices for the occupation
function in first-principles calculations of metallic systems.
If we define the occupation function f as the integral of a
“kernel” function g,

f (E) = 1 −
∫ E

−∞
g(x) dx, (B12)

one can verify that the Gaussian or Fermi-Dirac occupation
are, respectively, reproduced by the following choices of g,

gG(x) = 1√
πσ

e−x2/σ 2
, (B13)

gFD(x) = σ−1

2 + ex/σ + e−x/σ
, (B14)

where σ is the smearing energy [these correspond to Eqs. (23a)
and (23b)]. It is easy to see that, by combining Eqs. (B13) or
(B14) with Eq. (B12), one obtains the standard definitions of
the occupation function (we assume that the complementary
error function, erfc, values 2 at −∞),

fG(x) = 1
2 erfc (x/σ ), (B15)

fFD(x) = 1

ex/σ + 1
. (B16)

It is useful to spell out the explicit formulas for the Fourier
transforms of both smearing functions,

gG(ω) = e−ω2σ 2/4

�E
, (B17)

gFD(ω) = πωσ

�E sinh(πωσ )
. (B18)

Note that the above formulas are normalized according to the
conventions on the Fourier transforms that we used in the
previous section. The functions f and g defined above are

shown in Fig. 22. Note that a different choice of σ was used in
the Fermi-Dirac and in the Gaussian case. A FD distribution
is roughly equivalent to a G distribution with a σ value that is
twice as large.

In the main text and here we have assumed that it is a good
idea to use the same g kernel in the calculation and in the
construction of the LDOS.

We shall substantiate this point in the following section.

4. On the optimal choice of g

In many cases, the specific choice of the g function to be
used in Eq. (B4) is largely arbitrary. Typically, the goal is to
filter out the unphysical wiggles due to the discretization of
the k mesh, but at the same time to preserve the main physical
features, without blurring them out completely. This calls for
a smearing function that is neither too sharp nor too broad.
Since a “slightly too broad” or a “slightly too sharp” smearing
function usually does not influence the physical conclusions,
in many cases one has the freedom of choosing whatever yields
the clearest visual aid to support the discussion.

There are cases, however, where this choice is not just a
matter of aesthetics, and using the “wrong” g function can
qualitatively and quantitatively influence the interpretation of
the results. More specifically, the issue concerns cases where
the analysis of the LDOS (or DOS or PDOS) is used to detect
and quantify the population of orbitals that lie close in energy
to the Fermi level. As we focus on charge spillout phenomena
that concern the conduction band of a dielectric/ferroelectric
film in contact with a metallic electrode, this is a central point
of our work. The problem is most easily appreciated by looking
at the left-hand panel of Fig. 23. There is a single orbital
lying at an energy of 0.15 eV above the Fermi level. As this
orbital lies above the Fermi level, one might be tempted to
think that the orbital is empty, and that charge spillout does
not occur at all. However, calculations in metallic systems
are routinely performed by using an occupation function that
is artificially broadened, in order to improve convergence of
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FIG. 23. (Color online) Left-hand side:

Fermi-Dirac occupation function, identical to
that of Fig. 22(a) (solid curve); hypothetical
orbital located at an energy of 0.15 eV above
the Fermi level (dashed line); the thermal
occupation of this state yields a total charge
of 0.119 electrons (red dot). Right-hand side:
DOS corresponding to the single isolated
orbital at an energy of 0.15 eV above the
Fermi level, smeared by using the gFD kernel
of Fig. 22(b); the integral of the DOS up to
the Fermi level (shaded area) yields the exact
same charge of 0.119 electrons.

the ground-state properties; in Fig. 23 we assume a Fermi-
Dirac occupation with a fictitious electronic temperature of
0.075 eV. It is easy to see that with such an occupation function,
the orbital lying at 0.15 eV will not be empty, but will be
“thermally” populated by tail of the Fermi-Dirac distribution.
The final result is a charge transfer of 0.119 electrons into this
orbital.

Now, is there a “right” way to construct the DOS curve,
such that the above-mentioned charge transfer could be
qualitatively and quantitatively inferred from the DOS, without
knowing any further detail of the calculation? The answer
is yes, and consists in constructing the DOS by using as
broadening g function which is consistent with the occupation
function used by the code. In this case, this is gFD, with a
σ identical to that used to calculate the electronic ground
state. To demonstrate this point, we plot in the right-hand

panel of Fig. 23 the DOS of this isolated orbital at 0.15 eV,
appropriately convoluted with gFD. Equation (B12) guarantees
that, by doing this, one recovers the very intuitive result
that the total amount of electron charge Q present in the
volume V (over which the LDOS was integrated) exactly
corresponds to the integral of the DOS up to the Fermi
level,

Q =
∫ EF

−∞
ρV (E) dE. (B19)

Then, a simple look at the DOS curve is sufficient to ascertain
whether a significant transfer of charge has occurred into a
specific group of bands. As this rigorous sum rule can be very
practical in the analysis of the results, we encourage a sys-
tematic use of the “internally consistent” LDOS construction
described above.
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22L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
23M. Stengel and N. A. Spaldin, Nature (London) 443, 679 (2006).
24J. Junquera and P. Ghosez, Nature (London) 422, 506 (2003).
25M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal,

Phys. Rev. Lett. 94, 246802 (2005).
26V. Heine, Phys. Rev. 138, A1689 (1965).
27S. Okamoto and A. J. Millis, Nature (London) 428, 630 (2004).
28A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734

(1988).
29L. Colombo, R. Resta, and S. Baroni, Phys. Rev. B 44, 5572 (1991).
30J. Junquera, M. H. Cohen, and K. M. Rabe, J. Phys. Condens. Matter

19, 213203 (2007).
31A. Franciosi and C. G. Van de Walle, Surf. Sci. Rep. 25, 1 (1996).
32M. Stengel, N. A. Spaldin, and D. Vanderbilt, Nat. Phys. 5, 304

(2009).

235112-26

http://dx.doi.org/10.1126/science.246.4936.1400
http://dx.doi.org/10.1063/1.882324
http://dx.doi.org/10.1103/RevModPhys.77.1083
http://dx.doi.org/10.1103/RevModPhys.77.1083
http://dx.doi.org/10.1088/0953-8984/18/17/R02
http://dx.doi.org/10.1126/science.1129564
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1038/nature05023
http://dx.doi.org/10.1038/nature05023
http://dx.doi.org/10.1038/nature01878
http://dx.doi.org/10.1038/nature01878
http://dx.doi.org/10.1126/science.1126230
http://dx.doi.org/10.1126/science.1171200
http://dx.doi.org/10.1038/nature08128
http://dx.doi.org/10.1038/nature08128
http://dx.doi.org/10.1126/science.1184028
http://dx.doi.org/10.1166/jctn.2008.1101
http://dx.doi.org/10.1166/jctn.2008.1101
http://dx.doi.org/10.1103/PhysRevLett.89.117602
http://dx.doi.org/10.1103/PhysRevLett.89.117602
http://dx.doi.org/10.1103/PhysRevLett.89.157602
http://dx.doi.org/10.1103/PhysRevLett.89.157602
http://dx.doi.org/10.1103/PhysRevB.69.085106
http://dx.doi.org/10.1103/PhysRevB.69.085106
http://dx.doi.org/10.1103/PhysRevB.75.205121
http://dx.doi.org/10.1103/PhysRevB.80.224110
http://dx.doi.org/10.1103/PhysRevB.80.224110
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1038/nature05148
http://dx.doi.org/10.1038/nature01501
http://dx.doi.org/10.1103/PhysRevLett.94.246802
http://dx.doi.org/10.1103/PhysRev.138.A1689
http://dx.doi.org/10.1038/nature02450
http://dx.doi.org/10.1103/PhysRevLett.61.734
http://dx.doi.org/10.1103/PhysRevLett.61.734
http://dx.doi.org/10.1103/PhysRevB.44.5572
http://dx.doi.org/10.1088/0953-8984/19/21/213203
http://dx.doi.org/10.1088/0953-8984/19/21/213203
http://dx.doi.org/10.1016/0167-5729(95)00008-9
http://dx.doi.org/10.1038/nphys1185
http://dx.doi.org/10.1038/nphys1185


BAND ALIGNMENT AT METAL/FERROELECTRIC . . . PHYSICAL REVIEW B 83, 235112 (2011)

33M. Stengel, D. Vanderbilt, and N. A. Spaldin, Nat. Mater. 8, 392
(2009).

34M. Stengel, Phys. Rev. Lett. 106, 136803 (2011)
35M. Peressi, N. Binggeli, and A. Baldereschi, J. Phys. D 31, 1273

(1998).
36In practical simulations, the origin of the k-point grid may

be displaced from k = 0 in order to decrease the number of
inequivalent k points (Refs. 50 and 51). This shift usually prevents
the appearance of high-symmetry points from the list of k points
used during the self-consistent procedure or in the calculations of
the density of states.

37The band gap of both BaTiO3 and PbTiO3 is indirect, with the top
of the valence band located at R in BaTiO3 and at X in PbTiO3, and
the bottom of the conduction band at � in both materials.

38K. T. Delaney, N. A. Spaldin, and C. G. Van de Walle, Phys. Rev.
B 81, 165312 (2010).

39J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
40C. J. Fall, N. Binggeli, and A. Baldereschi, J. Phys. Condens. Matter

11, 2689 (1999).
41A. Grigoriev, R. Sichel, H. N. Lee, E. C. Landahl, B. Adams, E. M.

Dufresne, and P. G. Evans, Phys. Rev. Lett. 100, 027604 (2008).
42X. Wu, O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett.

97, 107602 (2006).
43E. D. Murray and D. Vanderbilt, Phys. Rev. B 79, 100102 (2009).
44N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
45J. B. Neaton and K. M. Rabe, Appl. Phys. Lett. 82, 1586 (2003).
46M. Stengel and D. Vanderbilt, Phys. Rev. B 80, 241103 (2009).
47J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera,

P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter 14,
2745 (2002).

48M. Payne, M. Teter, D. Allan, T. Arias, and J. Joannopoulos, Rev.
Mod. Phys. 64, 1045 (1992).
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