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Lattice screening of the polar catastrophe and hidden in-plane polarization
in KNbO3/BaTiO3 interfaces
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We have carried out first-principles simulations, based on density functional theory, to obtain the atomic
and electronic structure of (001) BaTiO3/KNbO3 interfaces in an isolated slab geometry. We tried different
types of structures including symmetric and asymmetric configurations and variations in the thickness of the
constituent materials. The spontaneous polarization of the layer-by-layer non-neutral material (KNbO3) in these
interfaces cancels out almost exactly the “built-in” polarization responsible for the electronic reconstruction. As
a consequence, the so-called polar catastrophe is quenched and all the simulated interfaces are insulating. A
model, based on the modern theory of polarization and basic electrostatics, allows an estimation of the critical
thickness for the formation of the two-dimensional electron gas between 33 and 36 KNbO3 unit cells. We also
demonstrate the presence of an unexpected in-plane polarization in BaTiO3 localized at the p-type TiO2/KO
interface, even under in-plane compressive strains. We expect this in-plane polarization to remain hidden due to
angular averaging during quantum fluctuations unless the symmetry is broken with small electric fields.
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I. INTRODUCTION

The surprising discovery by Ohtomo and Hwang1 of
a metallic state at the interface between two good band
insulating oxides, LaAlO3 and SrTiO3, has triggered a large
amount of new studies on polar oxide interfaces.2 Indeed, the
quasi-two-dimensional electron gas (2DEG) that forms when
LaAlO3 is grown on top of a TiO2 terminated (001)-surface
of SrTiO3, i.e., when the interface between the two materials
is LaO/TiO2, displays very different properties from those
generated at interfaces between standard III-V semiconductors
(such as GaAs and AlxGa1−xAs). Among them we find
conducting carrier densities and electron effective masses
orders of magnitude larger than those found at semiconductor
interfaces.3 It is also fascinating how, depending on growth
conditions, magnetic4 and superconducting5 ground states
have been experimentally identified at this interface between
nonmagnetic insulating oxides. Very recently, two independent
groups have proven how both magnetic and superconducting
states might even coexist on the same sample,6,7 a very
unexpected result since magnetic order is usually considered
detrimental to superconductivity. As a consequence of all these
phenomena, interfaces in polar oxides can open the door to
novel implementations of field effect transistors and to a new
era of oxide electronics.3,8

Despite this recent activity, many fundamental questions
regarding the origin and confinement of the 2DEG remain
highly debated. Different models have been proposed to ex-
plain the experimental results. The pioneering one invokes the
so-called “polar catastrophe”9 that arises from the polarization
discontinuity10 between the III-III polar LaAlO3 film and
the II-IV nonpolar SrTiO3 layers along the [001] direction.
Indeed, from the formal ionic charge point of view, LaAlO3

can be described as a succession of positive (La+3O−2)+1 and
negative (Al+3O−2

2 )−1 layers, while the alternating (Sr+2O−2)0

and (Ti+4O−2
2 )0 layers of the perovskite structure of SrTiO3

are charge neutral. But, aside this first rationalization, other

explanations can be found in the literature for the origin of the
2DEG, among them (i) the interlayer mixing between LaAlO3

and SrTiO3 and nonabruptness of the interfaces (with the
formation of a few monolayers of metallic La1−xSrxTiO3

11),
(ii) doping due to oxygen vacancies12,13 (including those
produced in surface redox reactions14), and/or (iii) the presence
of charged defects and adsorbates.15,16 All these models
highlight the importance of the growth conditions of these
structures for the appearance and the behavior of the functional
properties of the 2DEG.

One of these properties, that is well reproduced by different
experimental groups on many samples grown with a variety
of techniques, is the existence of a critical thickness, tc, in
the number of layers of LaAlO3 for the formation of the
2DEG. Thiel and coworkers17 have demonstrated that, for
the interfaces to be conducting, the number of layers of
LaAlO3 has to be larger than four unit cells. The thickness
of the polar layer increases up to five unit cells in n-type
LaVO3/SrTiO3 interfaces.18 These observations are consistent
with the fact that the conductivity of SrTiO3-LaAlO3-SrTiO3

heterostructures with dissimilar interfaces is reduced if their
p-type (AlO2/SrO) and n-type (LaO/TiO2) interfaces are
spaced by less than six unit cells.19,20 Remarkably, even below
the critical thickness, a metal-insulator transition can be driven
by an external electric field.15,17 These studies suggested
the possibility of the design of new polar interfaces where
the appearance of the 2DEG could be switched on and off
by the action of an external perturbation.

Along this line, the replacement of one (or the two)
materials at the interface by ferroelectric perovskites is
particularly attractive. The spontaneous polarization present
in these materials is very sensitive to electric fields and could
be used to create a bound charge at the interface that could
reinforce/deplete the 2DEG. Previous theoretical works have
been focused on I-V/II-IV interfaces (NaNbO3/SrTiO3,21,22

and KNbO3/ATiO3 interfaces, where A = Sr, Ba, or
Pb22–24). From the formal ionic charge point of view, I-V
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ferroelectric perovskite oxides, such as NaNbO3 and KNbO3,
are made of alternating positive (B+5O−2

2 )+1 and negative
(A+1O−2)−1 charged layers along the [001] direction (es-
sentially as LaAlO3, although now the AO layers of the
perovskite ABO3 structure are negative, while the BO2 layers
are positive). Therefore the layer-by-layer electrostatic of
the previous I-V/II-IV interfaces is analogous to that in the
LaAlO3/SrTiO3 interface. Density functional theory simula-
tions on nonstoichiometric (i.e., with a noninteger number
of unit cells of the layer-by-layer non neutral perovskite),
symmetric superlattices indeed suggested the existence of a
2DEG in KNbO3/ATiO3 interfaces, switchable between two
conducting states by the ferroelectric polarization orientation
of the titanate layer.23,24

However, with the simulation boxes used in the previous
works, only the n- or p-type interfaces are present. It can
be proved (see Sec. 4 of Supplemental Material of Ref. 25)
that, within this configuration, the local interface properties
exactly reproduce those of the infinite isolated slab geometries,
obviously beyond the critical thickness for the formation of
the 2DEG. In other words, the calculations of Refs. 23 and 24
show the charge distribution and properties after the electronic
reconstruction has taken place, but nothing is said about the
magnitude of the critical thickness for the formation of the
2DEG.26

In this work, we carry out first-principles calculations of
BaTiO3/KNbO3 interfaces where we explicitly avoid the issue
of lack of stoichiometry in the simulation box. We have found
that, due to the large lattice screening provided by the KNbO3

layer, the critical thickness for the formation of the 2DEG
is one order of magnitude larger than in LaAlO3/SrTiO3

interfaces. An unexpected result of our simulations is that
an in-plane polarization develops on the BaTiO3 side of
a (TiO2/KO) p-type BaTiO3/KNbO3 interface even when
BaTiO3 is subject to in-plane compressive strains. We explain
this effect using basic electrostatic arguments.

The rest of the paper is organized as follows. After sum-
marizing the basic theory behind the electronic reconstruction
in Sec. II, we present the computational details used in our
simulations in Sec. III. The first-principles results, together
with the relevant comparisons to the model, can be found in
Sec. IV.

II. BACKGROUND ON THE “POLAR DISCONTINUITY”
MODEL

In order to establish the nomenclature and the basic theory
that will be used later, we review the most important points
of the “polar discontinuity” model. Although this model has
been invoked since the discovery of the 2DEG at polar oxide
interfaces,9 only recently it has been rigorously rationalized
with explanations firmly rooted on the modern theory of
polarization (for a recent review, see Ref. 27 and references
therein). This has been developed by Stengel and Vanderbilt
in Ref. 10 for insulating interfaces, and later generalized by
Stengel for the case of a nonzero surface density of “free”
charge in Ref. 25, and to the case of surfaces in Ref. 28. The
theory presented in these works is absolutely general, and we
strongly point the interested reader to those milestone papers.
Here, we particularize it to the conditions considered in this

work, and estimate the critical thickness for the formation of
2DEG in the case where any of the two materials forming the
interface is ferroelectric.

The standard nomenclature used in the literature of polar
oxide interfaces denote the materials that are nonneutral layer
by layer (i.e., LaAlO3) as polar, and the materials that are
neutral layer by layer (i.e., SrTiO3) as nonpolar. Rigorously,
this notation does not apply here since the two materials
that constitute our interfaces are ferroelectric and, therefore,
might undergo polar phase transitions with the appearance of a
nonvanishing spontaneous polarization. Nevertheless, for the
sake of consistency with previous works, we will maintain
the convention and refer to the ferroelectric nonneutral layer-
by-layer material (i.e., KNbO3) as the polar material and the
ferroelectric neutral layer-by-layer material (i.e., BaTiO3) as
the nonpolar one.

During the development of the model we assume a n-type
interface, simulated within an isolated slab geometry, with
the nonpolar material at the left and the polar material (with
a formal ionic charge of ±e alternating from layer to layer,
where e is the magnitude of the electronic charge) at the right
[see Fig. 1(a)]. The generalization for other configurations is
straightforward, changing the appropriate signs when required.

Within the modern theory of polarization, we can compute
the “formal” bulk polarization from the positions of the
atomic nuclei and the center of localized Wannier functions.
This decomposition of the charge (nuclear and electronic)
into localized contributions allows for a simple classical
interpretation of the bulk polarization in terms of a point charge
model, and rescue the Clausius-Mossotti formulation.

In the perfectly ideal structure without rumpling, where
an atomically sharp junction in the absence of defects is
supposed, all the atoms at a given layer lie at the same plane
[see Fig. 1(a)]. Then, we can always choose unit cells that
tile the crystal under appropriate primitive translations, and
that leave the leftover interface region charge neutral.10 (It is
important to note that, for the moment, we are assuming that
the thickness of the polar layer is below the critical thickness
for the formation of the 2DEG.) Then, the magnitude of the
dipole of an individual (AO)-(BO2) unit in this material is
d = ea/2, where a is the out-of-plane lattice constant. The
sign of the dipole is always directed from the negative to
the positive layer, so in the considered configuration the
sign is negative [see Fig. 1(a)]. This dipole corresponds to
a “built-in formal” polarization (calculated for the previous
choice of unit cell for the primitive basis of atoms and Wannier
functions) of

P 0
polar = d

�
= − ea

2aS
= − e

2S
, (1)

where � is the volume of the unit cell of the polar material and
S is the cell surface. Analogously, since the layers are formally
charged neutral in the nonpolar material, P 0

nonpolar = 0.
Now, we can wonder what would happen if the materials

that constitute the interface are ferroelectric, with a nonvan-
ishing ferroelectric contribution to the polarization P S (this
might be also the case when a compressive epitaxial strain is
applied to the SrTiO3/LaAlO3 interface29). In this situation,
the ferroelectric polarization must be added to the “built-in”
polarization of the polar layer.28
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FIG. 1. (Color online) (a) Schematic representation of a pristine
polar interface in an isolated slab geometry. Atoms are represented
by balls: O (small size, red), Ba (large size, yellow), Ti (medium
size, blue), K (large size, green), and Nb (medium size, gray), with
the corresponding atomic layer printed on top. The dots at the left
of the BaTiO3 indicates that we assume a thick layer. At the other
side, a free KO-terminated surface of the polar KNbO3 is assumed.
Numbers below each layer indicate the formal ionic charge. The
interface is marked with a red dashed line. Our choice for the unit
cells that tile the entire crystal are represented by black dashed boxes.
a stands for the out-of-plane lattice constant of the polar material
unit cell. (b) Electrostatic potential of the polar interface in the
isolated slab geometry. Within our electrostatic boundary conditions,
the macroscopic electric field in BaTiO3 is forced to be zero. Note that
the field within the nonneutral layers points away from the interface.
(c) Induced polarizations �P due to the macroscopic electric fields.
(d) Schematic representation of the energy bands of the polar
interface.

The difference in the polarization at the interface between
the two materials produces a surface density of bound charge,

σbound = Pnonpolar − Ppolar. (2)

Classical electromagnetic theory (Gauss’s theorem) teaches us
that this sheet of interfacial charge gives rise to a change in the
macroscopic electric field in the two materials of

Epolar − Enonpolar = σbound

ε0
, (3)

where ε0 is the dielectric permittivity of vacuum [see Fig. 1(b)].
The exact magnitude of the fields depends on the electrostatic

boundary conditions, extremely linked with the geometry of
the simulation boxes used in the computations (see Supple-
mental Material of Ref. 25 for a complete review).

The field might induce strong structural changes in the
materials and polarizes the electronic Wannier functions.
Both facts translate into the development of a field-induced
polarization �P [see Fig. 1(c)] that tends to screen the
discontinuity of the total polarization P ,

P = P 0 + P S + �P (4)

and, consequently, of the macroscopic electric field. At the end,
a self-consistent solution of Eqs. (2)–(4) is achieved where the
polarizations in the two materials are in equilibrium with the
corresponding macroscopic electric fields, and the total energy
of the system is minimized.

For a sufficiently thin polar layer thickness, before the
electronic reconstruction takes place, the absence of free
charge at the interface requires the normal component of the
electric displacement field D to be preserved,

Dnonpolar = Dpolar ≡ D. (5)

The finite electric displacement is an input parameter of the
model. In a first-principles simulation, its value can be set
by hand using the virtual crystal approximation to introduce
external fractional charges in the surface atoms layers, while
constraining the macroscopic electric field to be strictly zero
in the vacuum region.25 Other authors fix the atomic positions
on the surface unit cell to some specific values.29

From the definition of the electric displacement field,

Dpolar = ε0Epolar + Ppolar

= ε0Epolar + P 0
polar + P S

polar + �Ppolar, (6)

and assuming that the polar material behaves as a linear
dielectric of susceptibility χpolar around the spontaneous
polarization structure, then

�Ppolar = ε0χpolar Epolar, (7)

and Eq. (6) transforms into

Dpolar = ε0εpolar Epolar + P S
polar + P 0

polar, (8)

where εpolar = 1 + χpolar is the dielectric constant of the polar
material. From Eqs. (5) and (8),

Epolar = D − (
P 0

polar + P S
polar

)
ε0εpolar

. (9)

This electric field tilts the electronic bands of the polar layer
[see Fig. 1(d)]. At a given critical thickness tc, the top of
the valence band of the polar material reaches the level of
the bottom of the conduction bands.30 Beyond tc, a Zener
breakdown takes place, with the concomitant transfer of charge
from the surface of the polar material to the interface. The
magnitude of tc can be easily computed from Eq. (9) as

tc = �

e|Epolar| = ε0εpolar�

e
∣∣D − (

P 0
polar + P S

polar

)∣∣ , (10)

where � is the interfacial potential step. � will depend on the
type of band alignment and on the particular interface (p or
n). Here, according to the band alignment of Fig. 1(d), for the
n interface is given by31

� = Epolar
gap , (11)
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where E
polar
gap is the band gap of the polar material. Note that

the band alignment in our interfaces, where the band gaps of
BaTiO3 and KNbO3 are very similar, is of type II, different
from that in the prototypical LaAlO3/SrTiO3 case (type I). For
schematic views of the types of interfaces according to the
band offset see Fig. 1(b) of Ref. 32 for a type I interface and
Fig. 1(a) of the same work for a type II interface.

The first conclusion that can be drawn from Eq. (10) is that
the polarizability of the polar layer is essential to determine
the critical thickness for the formation of the 2DEG (it is
directly proportional to εpolar). The role played by the polar
distortions to avoid the polar catastrophe in LaAlO3/SrTiO3

interfaces has been confirmed by first-principles simulations.33

The importance of the extra screening due to lattice relaxations
has also been discussed in the strongly related LaTiO3/SrTiO3

interfaces.34–36 Indeed, the success of explaining the critical
thickness for the formation of the 2DEG,17,20,26 together with
the electrostrictive effect on the polar LaAlO3 films,37 is one
of the most important achievements of the polar discontinuity
model.

The second conclusion is related with the relationship
between D and the ferroelectric polarization in the nonpolar
layer. In many works, the simulations try to reproduce the
behavior of a thin polar layer on top of a thick nonpolar
substrate. In such cases, the macroscopic field in the nonpolar
materials is forced to be zero, either by symmetry or by using a
dipole correction in vacuum. As a consequence, D = Pnonpolar.
If the ferroelectric contribution to the polarization in the
nonpolar layer points in the same direction as the “built-in”
polarization in the polar one, then it contributes to the increase
of the critical thickness. This has been proven in Ref. 29 for
the case of a SrTiO3/LaAlO3 interface subject to epitaxial
strain [Eq. (10) is equivalent to Eq. (4) in Ref. 29 taking into
account that, in this particular system, P S

polar = P S
LaAlO3

= 0
and D = P S

SrTiO3
].

Finally, the third conclusion is that there is also a strong
influence of an eventual spontaneous polarization of the polar
material in the value of tc. In particular, if P S

polar is close
in magnitude to P 0

polar and points in the opposite direction,
so the “built-in” polarization can be almost compensated
by the ferroelectric contribution to the polarization, a large
cancellation of the term in parentheses in the denominator
of Eq. (10) is produced, with the concomitant increase in the
critical thickness. In a previous work, Murray and Vanderbilt38

have estimated how in SrTiO3/KNbO3 superlattices the system
would not become metallic until the number of layers of
KNbO3 is larger than 32.

To further validate Eq. (10) in an isolated slab geom-
etry, we have carried out simulations on BaTiO3/KNbO3

interfaces. The motivation for this choice is fourfold.
(i) Under appropriate compressive in-plane strains, KNbO3 is a
ferroelectric polar material, with the spontaneous polarization
pointing along the [001] direction, and with a “built-in” po-
larization of P 0

polar = P 0
KNbO3

= e/2S ≈ 53 μC/cm2 (a value
computed at the theoretical in-plane lattice constant of a
hypothetical SrTiO3 substrate, a‖ = 3.874 Å). (ii) Under this
mechanical boundary condition, both KNbO3 and BaTiO3

can be stabilized with the same tetragonal P 4mm symmetry.
(iii) The theoretical spontaneous polarization of our tetragonal

KNbO3 in bulk is P S
polar = P S

KNbO3
= 48 μC/cm2, close to the

built-in polarization. (iv) We can also test to which extent the
ferroelectric contribution to the polarization in the BaTiO3

layer is dominated by the imposed value of the displacement
field in the simulations. First-principles results and comparison
with the previous model will be presented in Sec. IV.

III. COMPUTATIONAL DETAILS

We have carried out density functional first-principles
simulations based on a numerical atomic orbital method as
implemented in the SIESTA code.39 All the calculations have
been carried out within the local density approximation (LDA),
using the Perdew and Zunger40 parametrization of the Ceperley
and Alder functional41 to simulate the electronic exchange and
correlation. This choice avoids the systematic overestimation
of the ferroelectric character42 of perovskite oxides found in
other commonly used functionals43 based on the generalized
gradient approximation. This is an important point in this
study, since the dielectric properties of the oxides at the
bulk level might determine the behavior of the interfaces, in
particular, a tendency for “overscreening” of the 2DEG when
the ferroelectric properties are favored.25

Core electrons were replaced by ab initio norm conserv-
ing pseudopotentials, generated using the Troullier-Martins
scheme44 in the Kleinman-Bylander fully nonlocal separable
representation.45 Due to the large overlap between the semi-
core and valence states, the semicore 3s and 3p electrons of
Ti, 3s and 3p electrons of K, 4s and 4p electrons of Nb, and 5s

and 5p electrons of Ba were considered as valence electrons
and explicitly included in the simulations. K, Ti, Nb, and Ba
pseudopotentials were generated scalar relativistically. The
reference configuration and cutoff radii for each angular mo-
mentum shell for the pseudopotentials used in this work can be
found in Ref. 46 for Ba, Ti, and O, and in Table I for K and Nb.

The one-electron Kohn-Sham eigenstates were expanded in
a basis of strictly localized numerical atomic orbitals.47,48 We
used a single-ζ basis set for the semicore states of K, Ti, Nb,
and Ba and double-ζ plus polarization for the valence states of
all the atoms. For K (Ba), an extra shell of 3d (5d) orbitals was
added. All the parameters that define the shape and range of
the basis functions were obtained by a variational optimization
of the energy49 in bulk cubic BaTiO3 (for Ba, Ti, and O), and

TABLE I. Reference configuration and cutoff radii of the pseu-
dopotential used in our study. Because of the inclusion of the semicore
states in valence within the Troullier-Martin scheme, K and Nb
pseudopotentials must be generated for ionic configurations (ionic
charge of +1). However, these are more suitable than the neutral
ones, given the oxidation numbers of these atoms in the perovskites.
Units in Bohr.

K Nb
Reference 3s2,3p6,3d0,4f 0 4s2,4p6,4d4,4f 0

Core radius s 1.50 1.45
p 1.35 1.50
d 1.50 1.40
f 2.00 2.00

Scalar relativistic yes yes
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of the entalphy50 (with a pressure P = 0.03 GPa) in bulk cubic
KNbO3 (for K and Nb, the basis set of O was frozen to that
obtained in BaTiO3).

The electronic density, Hartree, and exchange correlation
potentials, as well as the corresponding matrix elements
between the basis orbitals, were calculated in a uniform real
space grid. An equivalent plane-wave cutoff of 1200 Ry was
used to represent the charge density. For the Brillouin zone
integrations, we use a Monkhorst-Pack sampling51 equivalent
to 12 × 12 × 12 in a five atom perovskite unit cell.

To avoid the problem of artificially charging the in-
terface with the use of nonstoichiometric superlattices
with periodic boundary conditions, we follow the pro-
posal of Lee and Demkov.26 Within this approach,
the calculations were performed on vacuum-terminated
(KNbO3)m/(BaTiO3)l /(KNbO3)m slabs, where the number of
KNbO3 cells, m, is always an integer number to guarantee
the electrical neutrality of the interface. In particular, we have
focused on two kinds of systems: symmetric slabs where both
interfaces between BaTiO3 and KNbO3 are of the same kind
(either p-type TiO2/KO, or n-type BaO/NbO2 interfaces) and
asymmetric interfaces where one interface is TiO2/KO and
the other BaO/NbO2. In both cases, we have relaxed structures
containing a different number of KNbO3 and BaTiO3 unit cells,
given by the subscripts m and l, respectively. Note that l is an
integer number in the asymmetric interfaces and an half-integer
in the symmetric ones. In the asymmetric interface, a dipole
slab correction is used to guarantee that the electric field in
vacuum vanishes.

The in-plane lattice constant was fixed to the theoretical one
of an hypothetical SrTiO3 substrate (a‖ = 3.874 Å). Under this
constraint, both BaTiO3 and KNbO3 are under conditions of
compressive epitaxial strains. This will be relevant for the
discussion of Sec. IV B. We have not considered the influence
of octahedral rotations over these interfaces as both BaTiO3

and KNbO3 are highly resistant to this kind of distortion, even
when BaTiO3 thin films are strained to match the SrTiO3 lattice
parameter,52 or KNbO3 films are grown under a higher 5%
compressive in-plane strains.53

Starting from ideal reference structures, built by piling
up the corresponding unit cells of bulk strained materials
without rumpling, the atomic coordinates are relaxed until the
maximum component of the force on any atom was smaller
than 0.01 eV Å−1. In the symmetric slabs, the minimization
is performed in a two step process. First, mirror symmetry
planes are imposed on the central layer of BaTiO3 to avoid
the development of a polarization in any direction. Then,
symmetry is broken displacing coherently the cations by hand,
and a second relaxation is carried out without any imposed
symmetry. In the asymmetric slabs, the relaxations are carried
out in a single step, since the symmetry is broken directly in
the initial reference structure. To establish the notation, we will
call the plane parallel to the interface the (x,y) plane, whereas
the perpendicular direction will be referred to as the z axis.

IV. RESULTS

A. Out-of-plane lattice relaxations and screening

In order to characterize the atomic displacements induced
by the relaxation, we define the “out-of-plane” rumpling

z(M)

(a)

z(O)
2ηz

x

z
z(M)

z(O)
2ηz

x 

y
2ηηy

2ηx

(b)

FIG. 2. (Color online) Schematic representation about the proce-
dure to calculate (a) the out-of-plane rumpling ηz and (b) the in-plane
rumplings ηx and ηy . Solid lines represent the position of the atoms in
the ideal unrelaxed structure. After relaxation, the atoms move in the
directions indicated by the arrows. Meaning of the balls as in Fig. 1.

parameter along z of layer i as ηz
i = [z(Mi) − z(Oi)]/2, where

z(Mi) and z(Oi) are, respectively, the z coordinates of the
cations and the oxygens at a given layer i [see Fig. 2(a)]. We
also define the “in-plane” rumplings (ηx,ηy), in an equivalent
way, as represented graphically in Fig. 2(b).

In all the studied systems, a large out-of-plane rumpling is
observed within the KNbO3 layers, with a magnitude that
is essentially independent of their thickness and the kind
of interface: symmetric p [see Fig. 3(a)], symmetric n [see
Fig. 3(b)], or asymmetric [see Fig. 3(c)]. Two oxide layers
away from the interface, the layer-by-layer rumpling converges
to a rather uniform sawtooth pattern, with values slightly larger
than those observed in bulk KNbO3 under the same epitaxial
conditions. This fact is consistent with |P 0

KNbO3
| > |P S

KNbO3
|,

with �PKNbO3 tending to compensate for the difference in
order to screen the polarization discontinuity at the interface.
Only in the neighborhood of the free surface, a small deviation
from this trend is obtained due to the larger relaxations on the
surface atoms.

The dipole slab correction ensures that the displacement
field in vacuum vanishes, D = 0. Due to the absence of surface
external charges in the simulations, this value is preserved at
the interfaces. This implies that a polarization in the BaTiO3

layer induces a depolarizing field that is responsible for a large
electrostatic energy. Therefore, under this electrical boundary
conditions, no polarization is expected on BaTiO3. Both facts
are well reproduced in our simulations, where we observe that
the out-of-plane polarization vanishes within the BaTiO3 layer
in all cases. This happens even when the mirror symmetries are
lifted by hand (in the symmetric interfaces) or spontaneously
(in the asymmetric slabs).

According to the model developed in Sec. II, the polariza-
tion in the polar layer tends to screen the discontinuity of the
polarization at the interface and, therefore, its sign opposes
that of the “formal” polarization. The lattice screening avoids
the development of an electric field in the polar material that
would result in the tilting of its bands and, for sufficiently
large thicknesses, to a Zener breakdown and accumulation
of charge at the interfaces. The lattice screening provided by
KNbO3 is much stronger than the one anticipated in LaAlO3,
where the structural distortion sustains the insulating behavior
up to only five overlayers of LaAlO3 on SrTiO3.33 As a
consequence, in our simulations, all the computed structures
are insulating. The reason behind this is that the LaAlO3

is a wide band gap insulator with a low dielectric constant
(εr = 25) and no ferroelectric instability (P S

LaAlO3
= 0). It costs
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(a)

(b)

(c)

FIG. 3. (Color online) Out-of-plane (solid blue) and in-plane (long-dashed red) lattice polarization calculated for (a) symmetric-p [l fixed
to 4.5 and m = 2 (diamonds), m = 3 (squares), m = 4 (circles), m = 5 (crosses)], (b) symmetric-n (m = 5, l = 4.5), and (c) asymmetric
(m = 4, l = 8) BaTiO3/KNbO3 slabs. Short-dashed (dot-dashed) lines represent the rumplings of the NbO2 (KO) layers in bulk KNbO3 under
the same epitaxial constraint. The arrows point along the direction of the “built-in” polarization. Vertical dashed lines indicate the position of

the interfaces. The in-plane rumplings plotted here correspond to ηxy =
√
η2

x + η2
y defined in Fig. 2.

some energy to polarize it. On the contrary, KNbO3 is a
ferroelectric oxide that polarizes spontaneously, contributes
to reduce the field [making smaller the numerator of Eq. (9)],
and increase the critical thickness for the formation of the
2DEG [making larger the denominator of Eq. (10)]. The
reduction of the internal field within KNbO3 can be directly
checked from the nanosmoothed54,55 electrostatic potential in
the slabs. Independently of the geometry, the magnitude of
the field amounts to 0.024 V Å−1 [see red dashed lines in
Fig. 4] to be compared with the roughly constant electric
field of 0.24 V Å−1 (one order of magnitude larger) found in
LaAlO3/SrTiO3 interfaces.26,37 This is in very good agreement
with the prediction of the electrostatic model developed in
Sec. II: using a dielectric constant of bulk KNbO3 around the
ferroelectric structure under the same mechanical boundary
condition of 25.0,56 Eq. (9) yields a value of 0.023 V Å−1.

Taking the experimental value of the indirect band gap of
KNbO3 in the cubic phase (3.3 eV)57 and the valence band

offset between KNbO3 and BaTiO3 in the p-type interface as
0.24 eV (computed using the recipe given in Ref. 58 when
the bands of one material are tilted), the estimated critical
thickness to trigger the polar catastrophe under the condition
of a vanishing electric displacement according to Eq. (10)
is 133 and 143 Å for the p- and n-type interfaces (between
33 and 36 unit cells), respectively—one order of magnitude
larger than in LaAlO3/SrTiO3. It is important to note that some
authors have found experimentally that no more than 4 nm of
coherently strained BaTiO3 (around ten cells) can be grown
on SrTiO3.59 This suggests that the formation of switchable
2DEGs by employing ferroelectric materials in interfaces
might face additional difficulties in the structural stabilization
of the interfaces, avoiding the formation of misfit dislocations.

B. In-plane polarization

Even though the ground state of bulk KNbO3 and BaTiO3

at zero temperature is rhombohedral, where the polarization
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FIG. 4. (Color online) Macroscopically averaged internal elec-
trostatic potential (black solid line) for (a) symmetric-p (m = 5,
l = 4.5), (b) symmetric-n (m = 5, l = 4.5), and (c) asymmetric
(m = 4, l = 8) BaTiO3/KNbO3 slabs. The red dashed lines indicates
the region used to extract numerically the macroscopic field.

displays both in-plane (x,y) and out-of-plane (z) components,
when a compressive in-plane strain is applied, the polarization
in the (x,y) directions is strongly reduced or even suppressed.52

In particular, when KNbO3 or BaTiO3 thin films are grown on
top of a SrTiO3 substrate, the in-plane polarization of these
materials vanishes and the tetragonal c phase is stabilized.60,61

However, contrary to current thought, in our calculations
of the BaTiO3/KNbO3 interfaces, we can observe in Fig. 3
the appearance of a moderate in-plane polarization in these
systems along the [110] direction. The layer-by-layer in-plane
rumpling profile plotted in Fig. 3 reveals that the effect is highly
localized at the p-type TiO2/KO interface, quickly decaying
upon moving into BaTiO3, and it is completely absent at the
n-type BaO/NbO2 interfaces.

The origin of the hidden interfacial in-plane polarization
can be easily understood with a simple electrostatic model
based on formally charged ions. In Fig. 5, we compare the
atomic structure of bulk BaTiO3 [see Fig. 5(a)] and KNbO3

[see Fig. 5(b)] with that present in the p-type TiO2/KO [see
Fig. 5(c)] and n-type BaO/NbO2 [see Fig. 5(d)] interfaces.
The cleavage of bulk BaTiO3 and KNbO3 to form the p-type
TiO2/KO interface is accompanied by a change in the local
electrostatic potential felt by the Ti cations. At the interface,
some of the Ba cations (nominal charge +2) in the first-
neighbor atomic layer are replaced by K cations (nominal
charge +1). This implies that at that interface the in-plane
Ti cation movement is less constrained than in bulk, due to
the reduced repulsions with K ions with respect to Ba ones.
Analogously, in the n-type interface, the electrostatic potential
felt by the Nb atoms is also altered. In this case, the K+1 cations
are replaced by Ba+2 ions, leading to an enhanced repulsion
that hinders the appearance of any in-plane polarization. As
this effect is directly related to the nominal charges of the ions
in both interfacial materials, we would expect it to be present
in other similar systems and could be used to induce in-plane
polarizations in other ferroelectric nanostructures.

(a)

+1

+5

(b)

(c) (d)

Ba2+ O2-K+ 

Nb5+ Ti4+

+1+2 +2

+1 +1 +2 +2

+5

+4

+4

-2 -2

-2 -2

+2 +2-2 +1 +1-2

+1 +1+2 +2-2 -2

FIG. 5. (Color online) Schematic view of bulk unit cells of (a)
BaTiO3 and (b) KNbO3, together with the ideal atomic structure at
(c) p-type TiO2/KO, and (d) n-type BaO/NbO2 interfaces. Atoms
are represented by balls following the same conventions as in Fig. 3.
Numbers indicate the nominal charge of the different ions. Solid
blue (dashed red) arrows represent an enhancement (depletion) of
the in-plane electrostatic repulsion between ions. The schema shows
how the replacement of ions favors the movement of the transition
metal B-cation in TiO2/KO interfaces and hinders it in the BaO/NbO2

interfaces.

To further characterize the development of the in-plane
polarization, we take the relaxed coordinates of the asymmetric
slab with m = 5 and l = 8 and remove by hand the in-plane
displacements. We use this new structure as a reference
configuration. Then, we compute the in-plane distortions
required to go from the reference configuration to the relaxed
structure and decompose into their x and y components.
Finally, given fractions of these distortions are frozen in on
top of the reference structure. The energy surface obtained
for different fractions of the in-plane rumplings is represented
in Fig. 6. From this energy landscape, we can extract (i) the
stabilization energy (the energy difference between the polar
state and the reference one), that amounts to 43.5 meV per
slab, and (ii) the energy barriers that prevents the system to
rotate the in-plane polarization from [110] direction to any of
the other symmetry-equivalent positions, passing through the
transition state at [100] positions. This is only 16 meV, slightly
larger than those found in artificial Ruddlesden-Popper-type
superlattices.62 To gauge the magnitude of these barriers, we
compare them with the rotation zero-point-energy (ZPE) in
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e
e

FIG. 6. (Color online) Two-dimensional energy surface as a
function of the in-plane distortions of the BaTiO3 atoms, as indicated
in the main text. The dashed line follows the minimum of the valley.
Units in milli-electron-volts.

this slab. This value is obtained through the nuclear motion
Hamiltonian

Ĥ = − h̄2

2M∗

(
∂2

∂η2
x

+ ∂2

∂η2
y

)
+ V (ηx,ηy), (12)

where V (ηx,ηy) is the energy represented in Fig. 6 and M∗
can be shown to be

1

M∗ =
∑

i

c2
i

Mi

, (13)

by writing the kinetic energy operator expressed in terms
of atomic coordinates and masses (Mi) using the linear
transformation relating the effective modes ηx and ηy with the
atomic displacements through the coefficients ci . In Eq. (12),
ηα = ∑

i ci(R
(relax)
iα − R

(0)
iα ), where α = x,y and R

(relax)
iα and

R
(0)
iα are the α coordinates of the fully relaxed system when the

in-plane distortion is taken into account and the tetragonal het-
erostructure, respectively. To solve the Schrödinger equation
associated to Eq. (12) and find the vibrational levels associated
to Fig. 6, we follow the recipe given in Ref. 63. Then, we
compute the ZPE by comparing the position of the first level to
the minimum of the energy surface. The resulting value for the
ZPE, 13.6 meV, is much smaller than the global stabilization
energy but comparable to the height of the rotational barrier,
indicating that quantum fluctuations will be important in these
nanostructures. These fluctuations prevent the observation of
any in-plane spontaneous polarization, since the system will be
delocalized over the four equivalent minima in [110] directions
in a similar way to what happens in a dynamic Jahn-Teller
problem.63

This case can be compared with what happens in an
incipient ferroelectric. In the latter case, quantum fluctuations
make the ZPE larger than the double well stabilization energy
making the maximum of the probability density associated
to the distortion (and the polarization) to be localized at the
centrosymmetric state (origin in Fig. 6). On the other hand,
in the present case, the maximum of the probability density
corresponds with a nonzero polarization region around the
origin (see dashed line in Fig. 6) but directional averaging
results in a null net polarization. However, the coherent
dynamics between the wells could be disrupted by small
electric fields along the plane, which would induce large
changes in the directionality of the in-plane polarization. The
signature of such potential energy surface for polarization
rotation would be a high dielectric constant.62

V. CONCLUSIONS

In summary, using accurate first-principles simulations we
have studied the influence of the ferroelectric polarization of
the polar layer in the formation of 2DEG at BaTiO3/KNbO3

interfaces. The most important conclusions that can be drawn
are the following: (i) the spontaneous polarization of the
polar KNbO3 layer cancels out almost exactly the “built-in”
polarization discontinuity at the interface; (ii) as a consequence
of this compensation, the critical thickness for the formation
of the 2DEG is estimated to be between 33 and 36 unit cells of
KNbO3, one order of magnitude larger than in SrTiO3/LaAlO3

interfaces; (iii) this behavior can be easily explained in terms of
a simple model based on the modern theory of polarization and
basic electrostatics; and (iv) surprisingly, BaTiO3 displays an
in-plane component of the polarization at the p-type TiO2/KO
interface, even when BaTiO3 is under in-plane compressive
strains. However, we do not expect this in-plane polarization
to be experimentally observable as the barriers for its rotation
are very small and quantum fluctuations will prevent it from
being localized in a particular direction. This situation could be
easily modified by the application of small electric fields that
will break the symmetry and reveal the hidden polarization.
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E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto,
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