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This paper introduces a new method to compute the approximating explicit B-spline curve to a given set of noisy data points. The
proposedmethod computes all parameters of the B-spline fitting curve of a given order.This requires to solve a difficult continuous,
multimodal, and multivariate nonlinear least-squares optimization problem. In our approach, this optimization problem is solved
by applying the firefly algorithm, a powerful metaheuristic nature-inspired algorithm well suited for optimization.Themethod has
been applied to three illustrative real-world engineering examples from different fields. Our experimental results show that the
presented method performs very well, being able to fit the data points with a high degree of accuracy. Furthermore, our scheme
outperforms some popular previous approaches in terms of different fitting error criteria.

1. Introduction

The problem of recovering the shape of a curve/surface, also
known as curve/surface reconstruction, has received much
attention in the last few years [1–14]. A classical approach
in this field is to construct the curve as a cross-section of
the surface of an object. This is a typical problem in many
research and application areas such as medical science and
biomedical engineering, inwhich a dense cloud of data points
of the surface of a volumetric object (an internal organ, for
instance) is acquired by means of noninvasive techniques
such as computer tomography, magnetic resonance imaging,
and ultrasound imaging. The primary goal in these cases is
to obtain a sequence of cross-sections of the object in order to
construct the surface passing through them, a process called
surface skinning.

Another different approach consists of reconstructing
the curve directly from a given set of data points, as it
is typically done in reverse engineering for computer-aided
design and manufacturing (CAD/CAM), by using 3D laser

scanning, tactile scanning, or other digitizing devices [15, 16].
Depending on the nature of these data points, two different
approaches can be employed: interpolation and approxima-
tion. In the former, a parametric curve is constrained to
pass through all input data points. This approach is typically
employed for sets of data points that are sufficiently accurate
and smooth.On the contrary, approximation does not require
the fitting curve to pass through the data points, but just
close to them, according to prescribed distance criteria. Such
a distance is usually measure along the normal vector to the
curve at that point. The approximation approach is partic-
ularly well suited when data are not exact but subjected to
measurement errors. Because this is the typical case in many
real-world industrial problems, in this paper we focus on the
approximation scheme to a given set of noisy data points.

There two key components for a good approximation: a
proper choice of the approximating function and a suitable
parameter tuning.The usual models for curve approximation
are the free-form curves, such as Bézier, B-spline, and
NURBS [17–26]. In particular, B-splines are the preferred
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approximating functions because of their flexibility, their
nice mathematical properties, and its ability to represent
accurately a large variety of shapes [27–29]. The determi-
nation of the best parameters of such a B-spline fitting
curve is troublesome, because the choice of knot vectors has
proved to be a strongly nonlinear continuous optimization
problem. It is also multivariate, as it typically involves a
large number of unknown variables for a large number of
data points, a case that happens very often in real-world
examples. It is also overdetermined, because we expect to
obtain the approximating curve with many fewer parameters
that the number of data points. Finally, the problem is
known to be multimodal; that is, the least-squares objective
function can exhibit many local optima [30, 31], meaning that
the problem might have several (global and/or local) good
solutions.

1.1. Aims and Structure of This Paper. To summarize the pre-
vious paragraphs, our primary goal is to compute accurately
all parameters of the approximating B-spline curve to a set
of input data points. Unfortunately, we are confronted with a
very difficult overdetermined, continuous, multimodal, and
multivariate nonlinear optimization problem. In this paper,
we introduce a new method to solve this fitting problem
by using explicit free-form polynomial B-spline curves. Our
method applies a powerful metaheuristic nature-inspired
algorithm, called firefly algorithm, introduced recently by
professor Xin-SheYang (CambridgeUniversity) to solve opti-
mization problems. The trademark of the firefly algorithm is
its search mechanism, inspired by the social behavior of the
swarms of fireflies and the phenomenon of bioluminescent
communication. The paper shows that this approach can be
effectively applied to obtain a very accurate explicit B-spline
fitting curve to a given set of noisy data points, provided
that an adequate representation of the problem and a proper
selection of the control parameters are carried out. To check
the performance of our approach, it has been applied to some
illustrative examples of real-world engineering problems
from different fields. Our results show that the method
performs very well, being able to yield a very good fitting
curve with a high degree of accuracy.

The structure of this paper is as follows: in Section 2 pre-
vious work for computing the explicit B-spline fitting curve
to a set of data points is briefly reported. Then, some basic
concepts about B-spline curves and the optimization problem
to be solved are given in Section 3. Section 4 describes the
fundamentals of the firefly algorithm, the metaheuristic used
in this paper.The proposed fireflymethod for data fittingwith
explicit B-spline curves is described in detail in Section 5.
Then, some illustrative examples of its application to real-
world engineering problems from different fields along with
the analysis of the effect of the variation of firefly parameter
𝛼 on the method performance and some implementation
details are reported in Section 6. A comparison of our
approach with other alternative methods is analyzed in detail
in Section 7. The paper closes with the main conclusions
of this contribution and our plans for future work in the
field.

2. Previous Work

Many previous approaches have addressed the problem of
obtaining the fitting curve to a given set of data points with
B-spline curves (the reader is kindly referred to [32–34] for
a comprehensive review of such techniques). Unfortunately,
many works focus on the problem of data parameterization
and they usually skip the problem of computing the knots.
But since in this work we consider explicit B-spline curves as
approximating functions, our problem is just the opposite; the
focus is not on data parameterization but on the knot vector.
Twomain approaches have been described to tackle this issue:
fixed knots and free knots. In general, fixed-knot approaches
proceed by setting the number of knots a priori and then com-
puting their location according to some prescribed formula
[6, 9, 18, 19, 22].The simplest way to do it is to consider equally
spaced knots, the so-called uniform knot vector. Very often,
this approach is not appropriate as it may lead to singular
systems of equations and does not reflect the real distribution
of data. A more refined procedure consists of the de Boor
method and its variations [32], which obtain knot vectors
so that every knot span contains at least one parametric
value.

However, it has been shown since the 70s that the
approximation of functions by splines improves dramatically
if the knots are treated as free variables of the problem
[30, 31, 35–38]. This is traditionally carried out by changing
the number of knots through either knot insertion or knot
removal. Usually, these methods require terms or parameters
(such as tolerance errors, smoothing factors, cost functions,
or initial guess of knot locations) whose determination is
often based on subjective factors [31, 39–43]. Therefore, they
fail to automatically generate a good knot vector. Some
methods yield unnecessary redundant knots [44]. Finally,
other approaches are generally restricted to smooth data
points [20, 45–47] or closed curves [11].

In the last few years, the application of Artificial Intel-
ligence techniques has allowed the researchers and prac-
titioners to achieve remarkable results regarding this data
fitting problem. Most of these methods rely on some kind of
neural networks [1, 8] and its generalization, the functional
networks [3–5, 7, 21, 23, 48]. Other approaches are based on
the application of metaheuristic techniques, which have been
intensively applied to solve difficult optimization problems
that cannot be tackled through traditional optimization algo-
rithms. Recent schemes in this area involve particle swarm
optimization [10, 13, 24], genetic algorithms [12, 49–51],
artificial immune systems [25, 52], estimation of distribution
algorithms [11], and hybrid techniques [26]. As it will be
discussed later on the approach introduced in this paper; also
it belongs to this class of methods (see Sections 4 and 5 for
more details).

3. Basic Concepts and Definitions

3.1. B-Spline Curves. Let U = {0 ≤ 𝑢
0

= 𝑎, 𝑢
1
, 𝑢
2
, . . .,

𝑢
𝑟−1

, 𝑢
𝑟
= 𝑏} be a nondecreasing sequence of real numbers

on the interval [𝑎, 𝑏] called knots.U is called the knot vector.
Without loss of generality, we can assume that [𝑎, 𝑏] = [0, 1].
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The 𝑖th B-spline basis function 𝑁
𝑖,𝑘
(𝑡) of order 𝑘 (or equiv-

alently, degree 𝑘 − 1) can be defined by the Cox-de Boor
recursive relations [38] as

𝑁
𝑖,1

(𝑡) = {

1 if 𝑢
𝑖
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𝑖+1

0 otherwise
(𝑖 = 0, . . . , 𝑟 − 1) , (1)
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(2)

for 𝑖 = 0, . . . , 𝑟 − 𝑘 with 𝑘 > 1. Note that 𝑖th B-spline basis
function of order 1 in (1) is a piecewise constant function
with value 1 on the interval [𝑢

𝑖
, 𝑢
𝑖+1

) called the support of
𝑁
𝑖,1
(𝑡) and zero elsewhere. This support can be either an

interval or reduced to a point, as knots 𝑢
𝑖
and 𝑢

𝑖+1
must

not necessarily be different. The number of times a knot
appears in the knot vector is called themultiplicity of the knot
and has an important effect on the shape and properties of
the associated basis functions (see, for instance, [29, 32] for
details). If necessary, the convention 0/0 = 0 in (2) is applied.

A polynomial B-spline curve of order 𝑘 (or degree 𝑘 − 1) is
a piecewise polynomial curve given by

𝐶 (𝑡) =

𝑛

∑

𝑖=0

𝑏
𝑖
𝑁
𝑖,𝑘 (

𝑡) , (3)

where {𝑏
𝑖
}
𝑖=0,...,𝑛

are coefficients called control points as they
roughly determine the shape of the curve and 𝑁

𝑖,𝑘
(𝑡) are the

basis functions defined above. For a proper definition of a B-
spline curve in (3), the following relationship must hold: 𝑟 =

𝑘 + 𝑛 (see [32] for further details).
In many practical applications, the first and last knots of

U are repeated as many times as the order as follows: 𝑢
0
=

𝑢
1
= ⋅ ⋅ ⋅ = 𝑢

𝑘−1
= 0,𝑢

𝑛+1
= 𝑢
𝑛+2

= ⋅ ⋅ ⋅ = 𝑢
𝑛+𝑘

= 1 (such a knot
vector is usually called a nonperiodic knot vector). In general,
a B-spline curve does not interpolate any of its control points;
interpolation only occurs for nonperiodic knot vectors. In
such a case, the B-spline curve does interpolate the first and
last control points [32]. Since they are the most common in
computer design and manufacturing and many other fields,
in this work we will restrict ourselves to nonperiodic knot
vectors. Note however that ourmethod does not preclude any
other kind of knot vectors to be used instead.

3.2. The Optimization Problem. Similar to [49], let us assume
that the data to be fitted are given as

𝑦
𝑖
= 𝐹 (𝑡

𝑖
) + 𝜖
𝑖
, (𝑖 = 1, . . . , 𝑁) , (4)

where 𝐹(𝑡) is the underlying (unknown) function of the data
and 𝜖
𝑖
is the measurement error and we assume that 𝑁 ≫

𝑛. In this regard, a convenient model function, 𝑓(𝑡), for (4)
is given by (3), where both the vector B = (𝑏

0
, 𝑏
1
, . . . , 𝑏

𝑛
)
𝑇

of coefficients and the vector U of knots are considered as
tuning parameters and (⋅)

𝑇 denotes the transpose of a vector
or matrix. In the least-squares minimization of problem (4),

we determine the control points 𝑏
𝑗
(𝑗 = 0, . . . , 𝑛) of the B-

spline curve 𝑓(𝑡) by minimizing the least-squares error, 𝑄,
defined as the sum of squares of the residuals as follows:

𝑄 =

𝑁
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2
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)

2

. (5)

Note that the objective function to be optimized, 𝑄, depends
on the B-spline coefficients and the interior knots. This
problem is well known to be a continuous multimodal and
multivariate nonlinear minimization problem [31]. In order
to address this problem, in this paper we apply a firefly
algorithm and obtain an accurate choice of bothU andB.

4. Firefly Algorithm

The firefly algorithm is a metaheuristic nature-inspired algo-
rithm introduced in 2008 by Yang to solve optimization prob-
lems [53, 54]. The algorithm is based on the social flashing
behavior of fireflies in nature. The key ingredients of the
method are the variation of light intensity and formulation of
attractiveness. In general, the attractiveness of an individual
is assumed to be proportional to their brightness, which in
turn is associated with the encoded objective function.

In the firefly algorithm, there are three particular ideal-
ized rules, which are based on some of the major flashing
characteristics of real fireflies [53]. They are as follows.

(1) All fireflies are unisex, so that one firefly will be
attracted to other fireflies regardless of their sex.

(2) The degree of attractiveness of a firefly is proportional
to its brightness, which decreases as the distance from
the other firefly increases due to the fact that the air
absorbs light. For any two flashing fireflies, the less
brighter one will move towards the brighter one. If
there is not a brighter or more attractive firefly than
a particular one, it will then move randomly.

(3) The brightness or light intensity of a firefly is deter-
mined by the value of the objective function of a given
problem. For instance, for maximization problems,
the light intensity can simply be proportional to the
value of the objective function.

The distance between any two fireflies 𝑖 and 𝑗, at positions
X
𝑖
and X

𝑗
, respectively, can be defined as a Cartesian or

Euclidean distance as follows:

𝑟
𝑖𝑗
=

󵄩
󵄩
󵄩
󵄩
󵄩
X
𝑖
− X
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
= √

𝑑

∑

𝑘=1

(𝑥
𝑖,𝑘

− 𝑥
𝑗,𝑘
)

2

, (6)

where 𝑥
𝑖,𝑘

is the 𝑘th component of the spatial coordinate X
𝑖

of the 𝑖th firefly and 𝑑 is the number of dimensions.
In the firefly algorithm, as attractiveness function of a

firefly 𝑗 one should select any monotonically decreasing
function of the distance to the chosen firefly, for example, the
exponential function as follows:

𝛽 = 𝛽
0
𝑒
−𝛾𝑟
𝜇

𝑖𝑗
, (𝜇 ≥ 1) , (7)
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where 𝑟
𝑖𝑗
is the distance defined in (6), 𝛽

0
is the initial

attractiveness at 𝑟 = 0, and 𝛾 is an absorption coefficient at
the source which controls the decrease of the light intensity.

The movement of a firefly 𝑖 which is attracted by a more
attractive (i.e., brighter) firefly 𝑗 is governed by the following
evolution equation:

X
𝑖
= X
𝑖
+ 𝛽
0
𝑒
−𝛾𝑟
𝜇

𝑖𝑗
(X
𝑗
− X
𝑖
) + 𝛼 (𝜎 −

1

2

) , (8)

where the first term on the right-hand side is the current
position of the firefly, the second term is used for considering
the attractiveness of the firefly to light intensity seen by
adjacent fireflies, and the third term is used for the random
movement of a firefly in case there are not any brighter ones.
The coefficient 𝛼 is a randomization parameter determined
by the problem of interest, while 𝜎 is a random number
generator uniformly distributed in the space [0, 1].

5. The Proposed Method

In this section, the firefly algorithm described in previous
paragraphs is applied to obtain the approximating explicit
B-spline curve of a given set of noisy data points expressed
according to (3)-(4). To this aim, in this work we consider
four different fitness functions. The first objective function
corresponds to the evaluation of the least-squares function,
given by (5). Since this error function does not consider the
number of data points, we also compute the RMSE (root-
mean squared error) given by

RMSE =
√

∑
𝑁

𝑖=1
(𝑦
𝑖
− ∑
𝑛

𝑗=0
𝑏
𝑗
𝑁
𝑗,𝑘

(𝑡
𝑖
))

2

𝑁

.
(9)

Note, however, that the best error might be obtained in
either (5) or (9) at the expense of an unnecessarily large num-
ber of variables. To overcome this limitation, we also compute
two other fitness functions: Akaike Information Criterion
(AIC) [55, 56] and Bayesian Information Criterion (BIC) [57].
Both are penalized information-theoretical criteria aimed
at finding the best approximating model to the true data
through an adequate trade-off between fidelity and simplicity.
They are comprised of two terms: the first one accounts for
the fidelity of the model function, while the second one is a
penalty term to minimize the number of free parameters of
the model, 𝜂. They are given, respectively, by

AIC = 𝑁log
𝑒
(𝑄) + 2𝜂,

BIC = 𝑁log
𝑒
(𝑄) + 𝜂log

𝑒
(𝑁) .

(10)

A simple comparison between (10) shows that both
criteria are quite similar, but BIC applies a larger penalty
than AIC. Thus, as other factors are equal, it tends to select
simpler models than AIC (i.e., models with fewer parame-
ters). Both methods provide very similar results for smooth
underlying functions. Differences might arise, however, for
functions exhibiting sharp features, discontinuities, or cusps.
In particular, AIC tends to yield unnecessary redundant knots

and, therefore, BIC becomes more adequate for such models.
A great advantage of AIC and BIC criteria is that they avoid
the use of subjective parameters such as error bounds or
smoothing factors. Furthermore, they provide a simple and
straightforward procedure to determine the best model: the
smaller their value, the better fitness. Because of that, we
use them to select the best model for our examples and to
compare our results to those of other alternative approaches.

Before searching a solution to the problem, two sets of
control parameters must be set up. The first set corresponds
to the curve parameters: the number of control points and
the order of the B-spline curve. In general, they are freely
chosen by the user according to the complexity of the shape
of the underlying function of data and the requirements of
the particular problem under study, with the only constraint
that 𝑛 ≥ 𝑘. The second set of parameters relates to the firefly
algorithm itself. As usual when working with nature-inspired
metaheuristic techniques, the choice of control parameters
is very important, as it strongly influences the performance
of the method. Although some guidelines are given in the
literature to tackle this issue, such a selection is problem-
dependent and, therefore, it remains empirical to a large
extent. In this paper, our parameter tuning is based on a
combination of both theoretical results found in the literature
of the field and a large collection of empirical results. From
the former, it is well known that the value of absorption
coefficient, 𝛾, is important in determining the speed of
convergence and the behavior of the method. In theory, 𝛾 ∈

[0,∞), but in practice values in the extremes should be
avoided. When 𝛾 → 0 the attractiveness becomes constant,
which is equivalent to say that the light intensity does not
decrease with distance, so the fireflies are visible anywhere,
while that 𝛾 → ∞ corresponds to the case where the
attractiveness function in (7) becomes a Dirac 𝛿-function.
This case is equivalent to the situation where the fireflies
move in a very foggy environment, where they cannot see the
other fireflies and hence theymove randomly. In other words,
this corresponds to the case of a completely random search
method. Based on this analysis, we carried out thousands of
simulations to determine a suitable value for 𝛾 and found
that the value 𝛾 = 0.5 provides a quick convergence of
the algorithm to the optimal solution. Regarding the initial
attractiveness, 𝛽

0
, some theoretical results suggest that 𝛽

0
= 1

is a good choice for many optimization problems. We also
take this value in this paper, with very good results, as it will
be discussed in next section. For the potential coefficient, 𝜇,
any positive value can be used. But it is noticed that the light
intensity varies according to the inverse square law, so we
set up 𝜇 = 2 accordingly. Finally, a stochastic component is
necessary in the fireflymethod in order to allownew solutions
appear and avoid to getting stuck in a local minimum.
However, larger values introduces large perturbations on the
evolution of the firefly and, therefore, delay convergence
to the global optima. In this work, we carried out several
simulations to determine the optimal value for this parameter
𝛼 and finally we set up its value of 0.5 for this randomization
parameter. The reader is referred to Section 6.4 for a more
detailed discussion about how the variation of this parameter
affects the behavior of our method.
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Once the parameters have been set up, the firefly algo-
rithm is executed for a given number of fireflies, representing
potential solutions of the optimization problem. Each firefly
in our method is a real-valued vector of length 𝑛 − 𝑘 + 1,
initialized with uniformly distributed random numbers on
the parametric domain [0, 1] and then sorted in increasing
order. In this work, an initial population, 𝑛

𝑓
, of fireflies is

considered. Its value is set up to 𝑛
𝑓

= 100 in all examples
of this paper. We also tried larger populations of fireflies
(up to 1000 individuals) but found that our results do not
change significantly. Since larger populations mean larger
computation times with no remarkable improvement at all,
we found this value to be appropriate in our simulations.

This initial population is then subjected to the firefly
mechanism and least-squares minimization, yielding a col-
lection of new solutions to the optimization problem (5).
In our executions we compute independently all four fitness
functions indicated above, meaning that our simulations
are to be repeated for each fitness function. On the other
hand, each simulation is repeated several times according
to a parameter 𝜅 in order to remove the spurious effects of
randomization typically arising in any stochastic process. In
this paper, we consider a value of 𝜅 = 20, meaning that each
simulation is independently carried out 80 times to obtain
the final results. Each execution is performed for a given
number of iterations, 𝑛iter. In general, the firefly algorithm
does not need a large number of iterations to reach the global
optima. This also happens in this case. In all our computer
simulations, we found empirically that 𝑛iter = 10

3 is a suitable
value, and larger values for this parameter do not improve
our simulation results. Once the algorithm is executed for
the given number of iterations, the firefly with the best (i.e.,
minimum) fitness value is selected as the best solution to the
optimization problem.

6. Experimental Results

The method described in the previous section has been
applied to several examples from different fields. To keep the
paper in manageable size, in this section we describe only
three of them: the response of an RC circuit, a volumetric
moisture content example, and the side profile section of a
car body. These examples have been carefully chosen for two
reasons: firstly, to show the diversity of situations to which
our algorithm can be applied, and secondly, because they
correspond to interesting real-world engineering problems
rather than to academic examples. As wewill show below, our
method provides a very accurate solution to these problems
in terms of explicit B-spline curves. We think we have
provided enough examples to convince our readers about the
wide range of applicability of our approach.

6.1. Response of an RC Circuit. The resistor-capacitor (RC)
circuit is an electronic circuit comprised of resistors and
capacitors driven by a voltage or current source. RC circuits
are very popular, the most common being the high-pass
and low-pass filters. The simplest version is the first-order
RC circuit, where just one capacitor and one resistor are

Figure 1: Applying the firefly algorithm to fit a series of data points
from an RC circuit: original data points (red cross symbols) and best
explicit B-spline fitting curve (blue solid line).

considered. In this example, we consider a signal of 301 data
points of a series first-order RC circuit. They are depicted as
a collection of red cross symbols in Figure 1. We apply our
method to this sequence of data points by using a third-order
B-spline curve with 𝑛 = 42. The best fitting curve we obtain
is displayed as a blue solid line in Figure 1. This example has
been primarily chosen because the underlying curve of data
shows a qualitatively different behavior at both ends, with a
highly oscillating region on the left and a steady-state behav-
ior on the right. All these features make this function a good
candidate to check the performance of our approach. Even in
this case, our method yields a fitting of the curve to the data
points.The corresponding fitting errors for the best execution
and the average of 20 executions are reported in the last
columnof Table 3.They are in good agreementwith the visual
results in the figure about the accurate fitting of data points.

6.2. Volumetric Moisture Content. This example uses a set
of 16 measurements of a volumetric moisture content, as
described in [41].This example has been traditionally used as
a benchmark to test different curve approximation methods
(see [41] for details). Figure 2 shows the collection of 16

data points along with their best fourth-order B-spline fitting
curve for 𝑛 = 7 obtained with our firefly-based method for
this data set.The figure clearly shows the good approximation
of data points. Note that the fitting curve does not generally
pass through the data points (i.e., it is truly an approximating
curve, not an interpolating one). Note also that the fitting
curve captures the tendency of points verywell evenwith only
a few parameters, thus, encoding economically the primary
information of data. The corresponding fitting errors for the
best execution and the average of 20 executions are again
reported in the last column of Table 3.

6.3. Side Profile Section of a Car Body. This example consists
of the data fitting of a set of 243 noisy data points from the In
(+𝑌 axis) side profile section of a clay model of a notchback
three-box sedan car body.The data points were obtained by a
layout machine by the Spanish car maker provider Candemat
years ago. Data points of the side profile section are sorted in
standard order, that is, from forward (−𝑋 axis) on the left to



6 Mathematical Problems in Engineering

Table 1: Best and average values of 𝑄, RMSE, AIC, and BIC fitting errors of the first example for different values of 𝛼 from 0.1 to 0.9 (best
results are highlighted in bold).

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

𝑄(best): 4.06737 𝑄(best): 4.13276 𝑄(best): 4.41259

𝑄(avg.): 4.53278 𝑄(avg.): 5.08751 𝑄(avg.): 5.37882

RMSE(best): 0.11624 RMSE(best): 0.11717 RMSE(best): 0.12107

RMSE(avg.): 0.12271 RMSE(avg.): 0.13000 RMSE(avg.): 0.13367

AIC(best): 588.3019 AIC(best): 593.1025 AIC(best): 612.8230

AIC(avg.): 620.9119 AIC(avg.): 655.6633 AIC(avg.): 672.4231

BIC(best): 895.9921 BIC(best): 900.7927 BIC(best): 920.5131

BIC(avg.): 928.6021 BIC(avg.): 963.3534 BIC(avg.): 980.1133

𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6

𝑄(best): 3.75236 𝑄(best): 3.84178 𝑄(best): 4.33295
𝑄(avg.): 4.02171 𝑄(avg.): 4.00119 𝑄(avg.): 5.12274
RMSE(best): 0.11165 RMSE(best): 0.11297 RMSE(best): 0.11997
RMSE(avg.): 0.11559 RMSE(avg.): 0.11529 RMSE(avg.): 0.13045
AIC(best): 564.0378 AIC(best): 571.1274 AIC(best): 607.3408
AIC(avg.): 584.9038 AIC(avg.): 583.3645 AIC(avg.): 657.7405
BIC(best): 871.7280 BIC(best): 878.8175 BIC(best): 915.0309
BIC(avg.): 892.5940 BIC(avg.): 891.0546 BIC(avg.): 965.4306

𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9

𝑄(best): 6.31058 𝑄(best): 8.56754 𝑄(best): 8.79361

𝑄(avg.): 6.97132 𝑄(avg.): 9.71118 𝑄(avg.): 10.14490

RMSE(best): 0.14479 RMSE(best): 0.16871 RMSE(best): 0.17092

RMSE(avg.): 0.15218 RMSE(avg.): 0.17961 RMSE(avg.): 0.18358

AIC(best): 720.5105 AIC(best): 812.5421 AIC(best): 820.3816

AIC(avg.): 750.4831 AIC(avg.): 850.2566 AIC(avg.): 863.4083

BIC(best): 1028.2006 BIC(best): 1120.2323 BIC(best): 1128.0717

BIC(avg.): 1058.1733 BIC(avg.): 1157.9467 BIC(avg.): 1171.0984

Figure 2: Applying the firefly algorithm to fit a series of data points
from the volumetric moisture content example in [41]: original data
points (red cross symbols) and best explicit B-spline fitting curve
(blue solid line).

backward (+𝑋 axis) on the right [58]. This example has been
chosen because it includes areas of varying slope, ranging
from the strong slope at both ends (upwards on the left,
downwards on the right) to the soft slope inmiddle part, with
a horizontal area between pillars𝐴 and𝐶 and in the cargo box
area, and a soft upward area in the car hood. Consequently, it

Figure 3: Applying the firefly algorithm to fit a series of data points
from a side profile section of a car body: original data points (red
cross symbols) and best explicit B-spline fitting curve (blue solid
line).

is also a very good candidate to check the performance of our
approach.

We have applied our firefly-based fitting method by using
a fourth-order B-spline curve with 𝑛 = 30. The best fitting
curve alongwith the data points is displayed in Figure 3.Once
again, note the excellent fitting of the curve to the data points.
The corresponding fitting errors for the best execution and
the average of 20 executions are again reported in the last
column of Table 3.

6.4. Analysis of Variation of Parameter 𝛼. In this section we
present a detailed discussion about the effects of the variation
of the parameter 𝛼 on the performance of our method.
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Table 2: Best and average values of 𝑄, RMSE, AIC, and BIC fitting errors of the third example for different values of 𝛼 from 0.1 to 0.9 (best
results are highlighted in bold).

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

𝑄(best): 1.26931𝐸 − 3 𝑄(best): 1.42578𝐸 − 3 𝑄(best): 1.28343𝐸 − 3

𝑄(avg.): 1.48146𝐸 − 3 𝑄(avg.): 1.71288𝐸 − 3 𝑄(avg.): 1.61544𝐸 − 3

RMSE(best): 2.28549𝐸 − 3 RMSE(best): 2.42227𝐸 − 3 RMSE(best): 2.29817𝐸 − 3

RMSE(avg.): 2.46911𝐸 − 3 RMSE(avg.): 2.65497𝐸 − 3 RMSE(avg.): 2.57835𝐸 − 3

AIC(best): −1504.6354 AIC(best): −1476.3878 AIC(best): −1501.9472

AIC(avg.): −1467.0787 AIC(avg.): −1431.8077 AIC(avg.): −1446.0399

BIC(best): −1302.0379 BIC(best): −1273.7902 BIC(best): −1299.3496

BIC(avg.): −1264.4811 BIC(avg.): −1229.2101 BIC(avg.): −1243.4423

𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6

𝑄(best): 1.33544𝐸 − 3 𝑄(best): 1.24781E − 3 𝑄(best): 1.26573𝐸 − 3

𝑄(avg.): 1.55296𝐸 − 3 𝑄(avg.): 1.44402E − 3 𝑄(avg.): 1.47353𝐸 − 3

RMSE(best): 2.34427𝐸 − 3 RMSE(best): 2.26606E − 3 RMSE(best): 2.28227𝐸 − 3

RMSE(avg.): 2.52799𝐸 − 3 RMSE(avg.): 2.43771E − 3 RMSE(avg.): 2.46250𝐸 − 3

AIC(best): −1492.2941 AIC(best): −1508.7864 AIC(best): −1505.3218

AIC(avg.): −1455.6249 AIC(avg.): −1473.2995 AIC(avg.): −1468.3829

BIC(best): −1289.6965 BIC(best): −1306.1884 BIC(best): −1302.7242

BIC(avg.): −1253.0274 BIC(avg.): −1270.7020 BIC(avg.): −1265.7853

𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9

𝑄(best): 1.38751𝐸 − 3 𝑄(best): 1.57325𝐸 − 3 𝑄(best): 1.79923𝐸 − 3

𝑄(avg.): 1.62695𝐸 − 3 𝑄(avg.): 1.93681𝐸 − 3 𝑄(avg.): 2.47886𝐸 − 3

RMSE(best): 2.38954𝐸 − 3 RMSE(best): 2.54446𝐸 − 3 RMSE(best): 2.72210𝐸 − 3

RMSE(avg.): 2.58752𝐸 − 3 RMSE(avg.): 2.82319𝐸 − 3 RMSE(avg.): 3.19391𝐸 − 3

AIC(best): −1482.9994 AIC(best): −1452.4706 AIC(best): −1419.8563

AIC(avg.): −1444.3147 AIC(avg.): −1401.9512 AIC(avg.): −1341.9894

BIC(best): −1280.4018 BIC(best): −1249.8730 BIC(best): −1217.2587

BIC(avg.): −1241.7171 BIC(avg.): −1199.3536 BIC(avg.): −1139.3918

To this purpose, we carried out several simulation trials and
computed the fitting error for the eight error criteria used in
this work. In this section, we show the results obtained for the
first and third examples of this paper.Results for the second
example are not reported here because the low number of
input data points makes it particularly resilient to variations
of parameter 𝛼. As a result, the fitting errors for different
values of𝛼 are very similar to each other and to those reported
in the second row of Table 2.

Table 1 shows the variation of the eight fitting error crite-
ria for the RC circuit example and parameter 𝛼 varying from
0.1 to 0.9 with step-size 0.1. Once again, we carried out 20
independent simulations for each value of 𝛼 and obtained the
best and the average values of the 20 executions. Best results
for each error criterion are highlighted in bold for the sake of
clarity. We can see that the values 𝛼 = 0.4 and 𝛼 = 0.5 lead
to the best results for the best and average fitting error values,
respectively. Figure 4 shows graphically, from left to right and
top to bottom, the best (in blue) and average (in red) values
of the 𝑄, RMSE, AIC, and BIC fitting errors, respectively.
From the figure, we can conclude that both 𝛼 = 0.4 and
𝛼 = 0.5 are good choices, as they lead to the best results
for this example. Note that values lower and larger than this
optimal values yield worse fitting error results. This effect is
particularly noticeable for values of 𝛼 approaching to 1.

Table 2 and Figure 5 show the corresponding results for
the side profile section of a car body example. As the reader
can see, the value 𝛼 = 0.5 is again a very good choice,
although 𝛼 = 0.1 and 𝛼 = 0.6 also yields good results. Once
again, increasing the value of 𝛼 towards 1 leads to a strong
increase of the fitting errors.

It is worthwhile to recall that the choice of parameters is
problem-dependent, meaning that our choice of parameters
might not be adequate for other examples. Therefore, it is
always advisable to carry out a preliminary analysis and com-
puter simulations to determine a proper parameter tuning for
better performance, as it has been done in this section.

6.5. Computational Issues. All computations in this paper
have been performed on a 2.9GHz. Intel Core i7 processor
with 8GB of RAM. The source code has been implemented
by the authors in the native programming language of the
popular scientific programMatlab, version 2010b. Regarding
the computation times, all exampleswe tested can be obtained
in less than a second (excluding rendering). Obviously, the
CPU time depends on several factors, such as the number of
data points and the values of the different parameters of the
method, making it hard to determine how long does it take
for a given example to be reconstructed.
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Figure 4: (𝑙-𝑟, 𝑡-𝑏) Variation with parameter 𝛼 of the best (in blue) and average (in red) 𝑄, RMSE, AIC, and BIC fitting error values for the
RC circuit example.

7. Comparison with Other Approaches

In this section a careful comparison of ourmethodwith other
alternative methods is presented. In particular, we compare
the results of our method with the two most popular and
widely used methods: the uniform and the de Boor methods
[28, 29, 32]. These methods differ in the way components
of the knot vector are chosen. The uniform method yields
equally spaced internal knots as

𝑢
𝑗
=

𝑗 − 𝑘 + 1

𝑛 − 𝑘 + 2

, 𝑗 = 𝑘, . . . , 𝑛. (11)

This knot vector is simple but does not reflect faithfully the
distribution of points. To overcome this problem, a very
popular choice is given by the de Boor method as

𝑢
𝑗
= (1 − 𝜆

𝑗
) 𝑡
𝑖−1

+ 𝜆
𝑗
𝑡
𝑖
, 𝑗 = 𝑘, . . . , 𝑛, (12)

where 𝑑 = 𝑁/(𝑛 − 𝑘 + 2) and 𝜆
𝑗

= 𝑗𝑑 − int(𝑗𝑑). Finally,
in our method the knots are determined by the best solution
of the optimization problem described in Section 3.2, solved
with the firefly-based approach described in Section 5. In this
section we have applied these three methods to the three
examples of this paper.

Table 3 summarizes our main results. The three examples
analyzed are arranged in rows with the results for each exam-
ple in different columns for the compared methods: uniform
method, de Boor method, and our method, respectively. For
each combination of example and method, eight different
fitting errors are reported, corresponding to the best and
average value of the𝑄, RMSE, AIC, and BIC error criteria. As
mentioned above, the average value is computed from a total
of 20 executions for each simulation. The best result for each
error criterion is highlighted in bold for the sake of clarity.

It is important to remark here that the error criteria used
in this paper for comparison must be carefully analyzed.
While the general rule for them is “the lower and the
better,” this is exclusively true to compare results obtained for
experiments carried out under the same conditions, meaning
that we cannot compare the results for the three examples
globally, as they are not done under the same conditions (for
instance, they have different number of data points, control
points, and even the order of the curve).Therefore, we cannot
conclude that the fitting curve for the third example (with
the lower global AIC/BIC) fits better than the other ones.The
only feasible comparison is among the different methods for
the same curve under the same simulation conditions.Having
said that, some important conclusions can be derived from
the numerical results reported in Table 3.
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Table 3: Best and average values of 𝑄, RMSE, AIC, and BIC fitting errors for the examples in this paper for the uniform method, de Boor
method, and our method (best results are highlighted in bold).

Uniform de Boor Our method

RC circuit

𝑄(best): 10.93778001 𝑄(best): 10.19525052 𝑄(best): 3.84178962
𝑄(avg.): 11.73847555 𝑄(avg.): 11.05389142 𝑄(avg.): 4.00119535

RMSE(best): 0.19062565 RMSE(best): 0.18404147 RMSE(best): 0.11297531
RMSE(avg.): 0.19747976 RMSE(avg.): 0.19163478 RMSE(avg.): 0.11529530
AIC(best): 886.05907876 AIC(best): 864.89851523 AIC(best): 571.12743013
AIC(avg.): 907.32445861 AIC(avg.): 889.23754197 AIC(avg.): 583.36453972
BIC(best): 1193.74923073 BIC(best): 1172.58866720 BIC(best): 878.81758210
BIC(avg.): 1215.01461058 BIC(avg.): 1196.92769387 BIC(avg.): 891.05469169

Volumetric moisture content

𝑄(best): 0.00235781 𝑄(best): 0.00012203 𝑄(best): 0.00008527
𝑄(avg.): 0.00476785 𝑄(avg.): 0.00024751 𝑄(avg.): 0.00013525

RMSE(best): 0.01213932 RMSE(best): 0.00276171 RMSE(best): 0.00230860
RMSE(avg.): 0.01726240 RMSE(avg.): 0.00393317 RMSE(avg.): 0.00290751
AIC(best): −72.80034161 AIC(best): −120.17949976 AIC(best): −125.91417106
AIC(avg.): −61.53376508 AIC(avg.): −108.86443657 AIC(avg.): −118.53321768
BIC(best): −63.52927694 BIC(best): −110.90843509 BIC(best): −116.64310640
BIC(avg.): −52.26270041 BIC(avg.): −99.59337190 BIC(avg.): −109.26215301

Side profile of car body

𝑄(best): 0.00647026 𝑄: 0.00280562 𝑄(best): 0.00124781
𝑄(avg.): 0.00738719 𝑄(avg.): 0.00310424 𝑄(avg.): 0.00144402

RMSE(best): 0.00516009 RMSE(best): 0.00339791 RMSE(best): 0.00226606
RMSE(avg.): 0.00551361 RMSE(avg.): 0.00357416 RMSE(avg.): 0.00243771
AIC(best): −1108.85088744 AIC(best): −1311.89939612 AIC(best): −1508.78640537
AIC(avg.): −1076.64583126 AIC(avg.): −1287.32145345 AIC(avg.): −1473.29956438
BIC(best): −906.25332372 BIC(best): −1109.30183241 BIC(best): −1306.18841665
BIC(avg.): −874.04826754 BIC(avg.): −1084.72388973 BIC(avg.): −1270.70200066

(i) First and foremost, they confirm the good results of
our method for the examples discussed in this paper.
The fitting errors are very low in all cases, meaning
that the fitting curve approximates the given data very
accurately.

(ii) On the other hand, the numerical results clearly show
that our method outperforms the most popular alter-
native methods in all cases. The proposed approach
provides the best results for all error criteria and for all
examples, both for the best and for the average values.

(iii) Note also that the uniform approach is the worst in
all examples, as expected because of its inability to
account for the distribution of data points of the given
problem. This problem is partially alleviated by the
de Boor approach but the errors can still be further
improved. This is what our method actually does.

To summarize, the numerical results from our exper-
iments confirms the very accurate fitting to data points
obtained with the proposed method as well as its superiority
over the most popular alternatives in the field. This superior
performance can be explained from a theoretical point of
view. Firstly, we notice that the uniform method does not
reflect the real distribution of points; in fact, (11) shows that
the knots depend exclusively on 𝑛 and 𝑘, and hence it is
independent of the input data. Consequently, it lacks the
ability to adapt to the shape of the underlying function of data.

Regarding the de Boor method, the choice of knots is based
on ensuring that the system of equations is well conditioned
and has solution on optimizing the process. Accordingly, it
focuses on the numerical properties of the matrices involved.
From (4) and (5), we can obtain the following vector
equation:

Y = N ⋅B, (13)

where Y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
)
𝑇 and𝑁 = ({𝑁

𝑗,𝑘
(𝑡
𝑖
)}
𝑗=0,...,𝑛;𝑖=1,...,𝑁

)

is the matrix of basis functions sampled at data point
parameters. Premultiplying at both sides by N𝑇, we obtain

N𝑇 ⋅ Y = N𝑇 ⋅ N ⋅B, (14)

where N𝑇 ⋅ N is a real symmetric matrix and, therefore,
Hermitian, so all its eigenvalues are real. In fact, up to a
choice of an orthonormal basis, it is a diagonal matrix, whose
diagonal entries are the eigenvalues. It is also a positive
semidefinite matrix, so the system has always solution. It can
be proved that the knots in the de Boormethod are chosen so
that it is guaranteed that every knot span contains at least one
parametric value [59].This condition implies that theN𝑇 ⋅N is
positive definite and well conditioned. As a consequence, the
system (14) is nonsingular and can be solved by computing
the inverse of matrix N𝑇 ⋅ N. As the reader can see, the
choice of knots in this method is motivated by the numerical
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Figure 5: (𝑙-𝑟, 𝑡-𝑏) Variation with parameter 𝛼 of the best (in blue) and average (in red) 𝑄, RMSE, AIC, and BIC fitting error values for the
RC circuit example.

properties of matrixN, and never attempted to formulate the
fitting process as an optimization problem. In clear contrast,
in our approach the problem is formulated as an optimization
problem, given by

minimize
{𝑢
𝑙
}
𝑙=𝑘,...,𝑛

{𝑏𝑗}𝑗=0,...,𝑛

{

{

{

𝑁

∑

𝑖=1

(𝑦
𝑖
−

𝑛

∑

𝑗=0

𝑁
𝑗,𝑘

(𝑡
𝑖
) 𝑏
𝑗
)

2

}

}

}

. (15)

In other words, in our method the emphasis is on optimizing
the choice of knots rather than on the numerical properties
of the system equation. Note that our method allows con-
secutive nodes to be as close as necessary; they can even
be equal. A simple visual inspection of (11) and (12) shows
that this choice is not allowed in these alternative methods.
However, near knots are sometimes required for very steep
upwards/downwards areas or areas of sharp changes of
concavity, such as those in the figures of this paper. These
facts justify why our method outperforms both the uniform
and the de Boor methods for the computation of the knot
vector.

8. Conclusions and Future Work

This paper addresses the problem of curve fitting to noisy
data points by using explicit B-spline curves. Given a set of
noisy data points, the goal is to compute all parameters of
the approximating explicit polynomial B-spline curve that
best fits the set of data points in the least-squares sense. This
is a very difficult overdetermined, continuous, multimodal,
and multivariate nonlinear optimization problem. Our pro-
posed method solves it by applying the firefly algorithm, a
powerfulmetaheuristic nature-inspired algorithmwell suited
for optimization. The method has been applied to three
illustrative real-world engineering examples from different
fields. Our experimental results show that the presented
method performs very well, being able to fit the data points
with a high degree of accuracy. A comparison with the
most popular previous approaches to this problem is also
carried out. It shows that our method outperforms previous
approaches for the examples discussed in this paper for eight
different fitting error criteria.

Future work includes the extension of this method to
other families of curves, such as the parametric B-spline
curves and NURBS.The extension of these results to the case
of explicit surfaces is also part of our future work. Finally, we
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are also interested to apply our methodology to other real-
world problems of interest in industrial environments.

Acknowledgments

This research has been kindly supported by the Computer
Science National Program of the Spanish Ministry of Econ-
omy and Competitiveness, Project Ref. no. TIN2012-30768,
Toho University (Funabashi, Japan), and the University of
Cantabria (Santander, Spain). The authors are particularly
grateful to the Department of Information Science of Toho
University for all the facilities given to carry out this research
work. Special thanks are owed to the Editor and the anony-
mous reviewers for their useful comments and suggestions
that allowed us to improve the final version of this paper.

References

[1] P. Gu and X. Yan, “Neural network approach to the reconstruc-
tion of freeform surfaces for reverse engineering,” Computer
Aided Design, vol. 27, no. 1, pp. 59–64, 1995.

[2] W. Ma and J. Kruth, “Parameterization of randomly measured
points for least squares fitting of B-spline curves and surfaces,”
Computer Aided Design, vol. 27, no. 9, pp. 663–675, 1995.

[3] A. Iglesias andA.Gálvez, “A new artificial intelligence paradigm
for computer aided geometric design,” in Artificial Intelligence
and Symbolic Computation, vol. 1930 of Lectures Notes in
Artificial Intelligence, pp. 200–213, 2001.

[4] A. Iglesias and A. Gálvez, “Applying functional networks to
fit data points from B-spline surfaces,” in Proceedings of the
Computer Graphics International (CGI ’01), pp. 329–332, IEEE
Computer Society Press, Hong Kong, 2001.
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Hungary, 1973.

[56] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–
723, 1974.

[57] G. Schwarz, “Estimating the dimension of a model,”TheAnnals
of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[58] “Volvo Car Coordinate. Volvo Cars Report,” 2009.
[59] C. A. de Boor, Practical Guide to Splines, Springer, 2nd edition,

2001.



Impact Factor 1.730
28 Days Fast Track Peer Review
All Subject Areas of Science
Submit at http://www.tswj.com

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal


