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Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine
learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high
computational efficiency. The approach involves defining representative forcing conditions, carrying out
numerical model (XBeach) simulations for these cases, and training machine learning models capable of
predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis
further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with
exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are
compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a DeepNeural
Network (DNN). The LRmodel fails to account for the complex non‐linearities in coastal wave dynamics, which
warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNNmodels
demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐
averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking
waves. The proposed surrogatemodel thus offers an efficient alternative to computationally expensive numerical
model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts)
and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a
comprehensive description of the implementation details and assess the surrogate model's performance in
representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting
that this hybrid modeling technique can be adapted for use with other numerical models in various settings.

Plain Language Summary This study presents an efficient and accurate approach to modeling
nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine
learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach
presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building
this surrogate model, which involves defining a set of representative conditions and training a machine learning
model to capture the relationship between input forcings and output variables (gridded fields of selected
parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction
step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates
high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic
conditions (something that would be prohibitively expensive with the traditional numerical model), or the
almost instantaneous production of nearshore forecasts.

1. Introduction
Coastal and nearshore areas are complex, highly energetic and dynamic environments. These areas are home to an
array of ecosystems, human settlements and infrastructure, and they are exposed to numerous threats, including
erosion, storm surges, inundation and extreme wave conditions (McGranahan et al., 2007). Additionally, these
areas are critical for ocean safety, operational activities, and economic pursuits including fishing and tourism,
coastal defense, recreational use, andmarine conservation efforts. Climate change exacerbates the vulnerability of
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coastal areas, with an increase in the sea level and the frequency and severity of extreme weather events.
Therefore, understanding coastal and nearshore processes is fundamental to addressing these challenges effec-
tively, enhancing resilience and ensuring the sustainable development of coastal regions.

In this context, numerical models are an invaluable tool for better understanding the dynamics of coastal systems
and for quantifying and predicting oceanographic conditions at the nearshore. XBeach (Roelvink et al., 2009) is
an open‐source, process‐based morphodynamic numerical model widely used for analyzing nearshore wave
dynamics, currents, sediment transport and sea‐level conditions, and their impacts on the coast. For incident
waves, XBeach surf‐beat mode solves the short‐wave action balance on the scale of wave groups, resolving the
transformation processes waves undergo as they approach shallow waters (refraction, shoaling, breaking). In
addition, long (infragravity) wave motions and mean flow can be fully resolved using the nonlinear shallow water
equations (Phillips, 1977). Thus, wave‐driven currents, wave setup and swash processes are also included.
Importantly, XBeach is capable of modeling sediment transport processes and morphological changes of the coast
and nearshore areas. XBeach has been successfully implemented to quantify the impacts of tropical cyclones on
inundation levels (e.g., Tu'uholoaki et al., 2023), to better understand the dynamics of infragravity wave heights
(e.g., Pomeroy et al., 2012), and to study the morphological response of coastal settings (e.g., Smallegan
et al., 2016), among many other applications. However, increased accuracy and complexity in numerical models
entails elevated computational costs. Multi‐decadal and/or multi‐ensemble simulations of wave processes at the
nearshore, required for probabilistic climate and scenario prediction, are prohibitively computationally expensive
with XBeach. Although GPU‐based alternatives are being developed (Rautenbach et al., 2022) which reduce
these costs, they remain large and the alternatives to date lack the full functionality of XBeach. Coastal observing
networks, while providing highly accurate data, often lack the spatial resolution necessary to capture the dy-
namics of nearshore processes. Similarly, weather forecasts and climate models typically do not adequately
resolve the complexity of these coastal phenomena. Therefore, statistical methods, such as Extreme Value
Analysis (EVA), that rely on these data sets often carry substantial uncertainties and have limited applicability at
local scales (Hinkel et al., 2021). These limitations underscore the need for more sophisticated modeling ap-
proaches that can better account for the complexities of nearshore environments.

In this paper we investigate a hybrid approach, combining XBeach numerical simulations and machine learning
(ML) techniques, aimed at significantly reducing the high computational costs of the numerical model for such
applications whilst retaining accuracy. Importantly, this methodology predicts the spatial (gridded) output fields
of XBeach, rather than predefined coastal point locations, which is crucial for comprehensive coastal manage-
ment and planning. Spatial wave, current and water level predictions are particularly important for applications
within the surf‐zone. Comprehensive predictions enable better planning and preparedness for coastal defense,
infrastructure development, and environmental conservation, providing a holistic view of potential impacts across
varied scenarios.

Hybrid methodologies have emerged to bridge the gap between computational efficiency and physical accuracy,
combining the strengths of dynamical (numerical) models and statistical tools (e.g., Nieves et al., 2021; Ricondo
et al., 2023; Serafin et al., 2019; Tausía et al., 2023;Wang et al., 2024;Wang et al., 2025). Hybrid models leverage
the predictive power of ML models trained on outputs from process‐based models, enabling rapid, data‐driven
predictions without sacrificing accuracy. Unlike purely statistical models, hybrid approaches better retain both
the complexity and the geophysical constraints of dynamic model simulations, whilst significantly reducing
computational demands of dynamic model‐only solutions. The goal of a supervised ML algorithm is to relate
inputs and corresponding outputs by emulating or approximating the sometimes intricate and complex non‐linear
relationships between them. This is particularly true in the context of coastal wave dynamics, where non‐linear
effects such as bottom friction, wave breaking, and other wave transformations play a significant role. There is an
immense variety of approaches, techniques and methodologies aimed at improving the understanding of coastal
and nearshore oceanographic conditions, as well as predicting them. The reader is referred to review papers on
this topic (e.g., Goldstein et al., 2019; Kim & Lee, 2022). In this paper we closely follow the methods developed
by Zornoza‐Aguado et al. (2024) and expand them to include evaluation of both simpler (multivariate linear
regression, LR) and more complex (deep neural network, DNN) approaches in addition to the radial basis function
(RBF) algorithm. The incorporation of DNNs offers greater flexibility to capture complex, non‐linear relation-
ships in the data by allowing adjustments to the network's architecture and components to optimize performance,
potentially improving predictive accuracy. This contrasts with LR, which only captures the simpler correlations of
dependent variables. We also consider potential limitations of the empirical orthogonal function (EOF) data
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reduction step, compare both fully dynamic and hybrid results to observations and consider a wide range of
hydrodynamic output variables within the final hybrid model.

We apply and evaluate these hybrid methods at two different domains in Australia which experience distinct wave
climates and tidal/sea level variability regimes: one in Secret Harbour, Western Australia and the other in
Narrabeen, New South Wales (Figure 1). These locations and respective model configurations are described in
Section 2. In Section 3 we present the methods used to implement ML for prediction of wave parameters. Results
of these approaches are given in Section 4. We also provide an Appendix describing the deep neural network
design used in this study.

2. Forcing Data and XBeach Domain Configurations
At both study sites, XBeach is run in surf‐beat mode (XBeach‐SB hereafter), therefore resolving the infra-
gravity wave motions and transformations. Water level (wl) boundary conditions for both location domains

Figure 1. XBeach‐SB model domains and location maps. Upper right panel: location map of the two model domains in
Australia. Left panel: the Secret Harbour, Western Australia domain; location of in situ observations discussed in the text are
indicated. Lower right panel: the Narrabeen, New SouthWales domain. In both the (left and lower right) model domain plots,
the colored bathymetry and topography indicate the XBeach‐SB total domain extent, solid black lines indicate the areas used
for surrogate model training and numerical/surrogate model comparisons and the location of offshore open boundary
condition points are indicated with orange circles; for reference, the dotted black line indicates the − 3 m contour and the light
gray line indicates the shoreline, both at mean sea level.
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(Figure 1) are provided by the linear addition of TPXO9.2 (Egbert & Erofeeva, 2002) predicted tides and
monthly sea surface height from the ECMWF‐ORAS5 global ocean reanalysis (Copernicus Climate Change
Service, https://doi.org/10.24381/cds.67e8eeb7), providing ∼40‐year (1980–2024) hourly time series. Due to
the complexity of offshore reefs and bathymetry in the vicinity of Secret Harbour, wave boundary conditions
for this domain are drawn from a regional 500 m spatial resolution SWAN wave model downscale of the
CAWCR Global Wave Hindcast's regional Australia 4‐arcminute domain (Trenham et al., 2024); whereas at the
Narrabeen location, which has relatively simpler and deeper offshore bathymetry, wave boundary conditions
are drawn directly from the CAWCR Wave Hindcast Australia 4‐arcminute domain output (Smith et al., 2021).
At both locations, XBeach‐SB sediment transport processes are turned off, as the focus of this study is on
nearshore hydrodynamics. At each of the boundary points, integrated wave parameters (Hs: significant wave
height; Tp: peak wave period; Dp: peak wave direction; spr: directional wave spreading) are used to generate
JONSWAP spectra that provide the wave forcing conditions to the model.

Bathymetry and nearshore topography for both the Secret Harbour and Narrabeen model domains are based on
10 m gridded digital elevation models (DEMs) derived from Fugro LADS Corporation airborne LiDAR surveys
performed in 2009 and 2018, respectively. Secret Harbour region's DEMwas provided by the Western Australian
government's Department of Transport (https://www.transport.wa.gov.au/imarine/marine‐geographic‐data.asp);
the Narrabeen region's DEM was provided by (State Government of NSW and NSW Department of Climate
Change et al., 2023). The next two sub‐sections describe these two study sites/model domains in greater detail.

2.1. Secret Harbour Beach, Western Australia

Secret Harbour is located in south‐western Western Australia. It experiences a diurnal microtidal regime (mean
tidal range <0.5 m) and a wave climate consisting of swell waves arriving remotely from the Southern Ocean
(predominantly during winter) and locally generated wind waves due to strong sea breezes predominantly during
summer; both wave sources approach the coastline from the south to south‐west and it is further partly sheltered
from open ocean swell by a mostly continuous offshore reef located ∼6 km from the shore with a minimum depth
of ∼5 m (Contardo et al., 2019; Segura et al., 2018). The model domain is defined with a rotated regular grid
spanning approximately 9 km in the alongshore direction with a resolution of 15 m, and approximately 3 km with
a resolution of 10 m in the cross‐shore direction.

At this study site, in situ observations from previous studies are available (e.g., Contardo & Symonds, 2013).
Instruments used in this study (located as shown in the left panel of Figure 1) include:

• A Nortek acoustic wave and current (AWAC) profiler (at ∼7.16 m depth); the relevant observations used here
are hourly measurements of integrated wave parameters (especiallyHs), derived from the instruments acoustic
surface tracking.

• An RBR 1 Hz pressure sensor (at ∼0.9 m depth); observations were averaged at 3,600 s intervals to provide
hourly wl (including local wave setup) observations.

• A Nortek vector velocimeter with a 1 Hz pressure sensor (at ∼1.6 m depth) was used to calculate the infra-
gravity wave height (Hig), derived from the instantaneous water level elevation measurements.

These observations are used to assess the accuracy of the XBeach‐SB configuration (and later used to compare to
that of the surrogate model).

2.2. Narrabeen Beach, New South Wales

Approximately 3,300 km away, Narrabeen Beach in central New South Wales is located on the opposite side of
Australia from Secret Harbour (Figure 1); it experiences semi‐diurnal tides, and while it is still classified as micro‐
tidal (mean spring range of 1.3 m, e.g. see Turner et al., 2016), the range is roughly double that of Secret Harbour.
Local wave climate is dominated by a mix of sources: trade‐wind swell associated with the subtropical high,
Tasman Sea mid‐latitude cyclones and Australian East Coast Lows (Mortlock &Goodwin, 2015); wave incidence
tends to be much less oblique than at Secret Harbour, but is also considerably more energetic and variable. The
model domain consists of a regular grid which extends approximately 4.9 km in the alongshore direction and
approximately 3.3 km in the cross‐shore; the lateral boundaries coincide with rocky headlands and adjacent reefs
that delineate Narrabeen Beach. A few rocky reefs exist near the center of the domain, but few reefs with sig-
nificant impacts on wave propagation occur directly offshore from the domain. Spatial resolution in both the
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alongshore and cross‐shore directions is 10 m. Wave boundary conditions are
drawn from the CAWCR Wave Hindcast at a point in the middle of the
offshore boundary. Integrated wave parameters are used to generate JONS-
WAP spectra to provide wave boundary conditions to the model.

3. Hybrid Methodology
A schematic of the methodology used in this study is presented in Figure 2.
The main objective is to predict or “emulate” the output of XBeach‐SB
simulations from the input parameters used to run those simulations
leveraging ML techniques. The initial step is related to the model training/
learning. For the ML model to accurately represent a range of potential
scenarios, it needs to be trained (and tested) using a comprehensive data set
encompassing a wide range of possible wave and sea level conditions. An
effective way of achieving a set of representative conditions of a given N‐
dimensional data set is through use of the Maximum Dissimilarity Algo-
rithm (MDA, see Camus et al. (2011) for a detailed description of this
methodology). MDA extracts a set of the most dissimilar cases in a certain
data set, defined as those that are the farthest apart based on the Euclidian
distance between the cases. In our case, the data set is comprised of the pa-
rameters that define the wave boundary conditions (Hs, Tp, Dp, and spr,
described in Sections 2.1 and 2.2 for each respective study site) and the water

level elevations (wl, accounting for tides and background sea level variability). The MDA is performed on this 5‐
dimensional data set (Hs, Tp,Dp, spr,wl) to extract the 1000most dissimilar cases, thus ensuring that the resulting
XBeach‐SB simulations will encompass a wide range of possible scenarios covering this parameter space. The
training data set is generated using data from 1980 to 2015, while the testing data is generated running the MDA
analysis on the last 5 years of hindcast data (2015–2019). For the Secret Harbour case, the MDA is applied to data
from the central offshore boundary point among seven total boundary points. This yields 1,000 representative
training cases based on conditions at this central point. To simulate the full boundary conditions, we record the
times in the hindcast corresponding to these representative cases and then extract data from all seven boundary
points at those specific times.

The results of the application of the MDA are shown in Figure 3, where the gray dots show the entire hindcast data
set, the blue dots denote the 1,000 MDA cases used for training, and the red dots show an independent data set of
1,000 MDA cases that will be used for testing the performance of the surrogate model in representing unseen data
and prevent over‐fitting. The MDA is a particularly useful technique for this hybrid methodology, as it covers the
diversity in the input parameter space with a reduced number of representative cases. However, the MDA
approach is inherently limited to the input data set on which it was performed, meaning that it may not account for
potential future scenarios, such as those induced by climate change or tropical cyclones, which could introduce
new, unseen conditions. To account for the projected impacts of climate change, Anderson et al. (2021) devised an
approach in which the MDA is performed on data generated by a stochastic climate model emulator, thus pro-
ducing plausible synthetic time series of future scenarios. This approach enables surrogate models to capture
potential long‐term variations in wave and water level conditions, improving their applicability for future climate
assessments. Additionally, in cases where detailed historical data are not available, alternative approaches for
generating training/testing data sets, such as the Latin Hypercube Sampling approach (McKay et al., 2000) can be
implemented instead (see, for example, Zornoza‐Aguado et al. (2024) and Ricondo et al. (2024)).

Next, the numerical model is run for these MDA scenarios (in this case, for example, the XBeach‐SB model for
the Secret Harbour domain). The model is run for each of the 2,000 MDA cases (encompassing both training and
testing data sets). The simulations are run separately, for a period of 3 hr, with the initial 2 hr considered as spin‐up
and thus excluded from the analysis. The simulations utilize the previously described hourly wave boundary
conditions and water levels as forcing. The timestep used for defining the wave energy and long wave flux at the
offshore boundary (keyword dtbc in XBeach) was set to 2 s. The CFL time step was set to 0.7.

The following step in this methodology involves a dimensionality reduction of the XBeach‐SB output fields by
means of a decomposition with Empirical Orthogonal Functions (EOF, e.g. see Björnsson & Venegas, 1997).

Figure 2. Schematic representation of the hybrid numerical model/ML
methodology proposed in this study.
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Given a gridded (longitude/latitude) time‐varying field of a scalar quantity (in this case XBeach‐SB outputs, such
as the wave fields), the EOF analysis identifies and isolates the dominant patterns or modes of variability,
decomposing the data in what will be termed here EOF patterns (these are the eigenvectors of the data covariance
matrix, and represent the main spatial patterns of variability) and Principal Components (PCs), which are pro-
jections of the data on the EOF patterns, and represent the temporal variability of these. The original data can then
be reconstructed using the following equation:

reconstructed data = Σ(EOFi(x,y) × PCi(t)) i = 1,… ,N (1)

Here, EOFi(x,y) represents the EOF patterns and PCi(t) the PCs. It should be noted that there is no explicit time
dimension in the MDA data sets, therefore in this context t represents each independent MDA case (1, 2, …,
1,000). The accuracy of the reconstruction is determined by the number of EOFs retained (N). The methodology
outlined in this paper consists of predicting the PCs that result from this decomposition, rather than the raw,
temporally varying gridded XBeach‐SB outputs. First, the training data set is decomposed into EOF patterns and
PCs. For the testing data set, the same EOF patterns are used, and only the PCs are calculated by projecting the

Figure 3. Scatter plots of XBeach‐SB forcing parameters (significant wave height, peak period, directional spread, water level and peak direction) for the Secret Harbour
domain. The gray points show the entire hindcast data set (from 1980 till 2019). The blue points show the 1,000 MDA cases selected for training the ML model (MDA
applied to hindcast data from 1980 to 2015), and the red dots are an independent data set of 1,000 MDA cases used for testing (MDA using data from 2015 to 2019).
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data into these EOF patterns. Through this approach, the problem becomes building a ML model that can learn
and predict the values of the PCs given the input parameters used to force the XBeach‐SB simulations (wave
boundary conditions and water levels). With the predicted PCs values, the original data can then be reconstructed
using Equation 1.

As a demonstration of the methodology, the results for the short‐wave significant wave height (Hs) and infra-
gravity RMS (root mean square) wave height (Hig) outputs will be presented hereafter. The results for other output
variables can be found in Supporting Information S1. The first (dominant) two EOF patterns of the Hs output and
their PCs distribution are presented in Figure 4. In addition, the original data was reconstructed using 20 EOFs,
which ensures an accurate representation of the original data set (variance explained >99.9%). Increasing the
number of EOFs did not result in a significant improvement in accuracy (see Figure S1 in Supporting

Figure 4. EOF analysis of Hs fields from XBeach‐SB outputs. Top left: First two dominant EOF patterns, computed with the training data set. Top right: Histograms of
the first two PCs for the training and testing data sets. Bottom left: Root‐mean‐square error normalized by the mean of the true Hs fields reconstructed with 20 EOFs.
Bottom right: Scatter plot of all Hs values across all grid points and MDA cases.
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Information S1). The testing data can be reconstructed using the EOFs and PCs (see Equation 1), and the
normalized root‐mean‐square error of the reconstructed Hs data set attains values of less than 3% overall, as
shown in Figure 4, indicating the precision of the EOF‐based decomposition.

As mentioned, the challenge becomes developing a ML model that uses the input parameters (namely wave
boundary conditions and water levels) and predicts the PCs (20 in the case of Hs). Among the plethora of ML
approaches available for such tasks, we decided to implement and compare three different approaches: (a) a
deep neural network (DNN), (b) a Radial Basis Function (RBF) interpolator, and (c) a multi‐variate linear
regression (LR) model. The decision to use a DNN was guided by the seminal work of Hornik et al. (1989).
Their study demonstrated that multi‐layer feedforward neural networks are “universal approximators” of any
measurable function, provided that enough hidden layers are selected. The authors argue that the ineffec-
tiveness of a given DNN typically stems from three core issues: inadequate learning (which may be due to
insufficient data or parameter fitting), a shortage of hidden layers within the network, or an inherent lack of
relationship or connection between the inputs and outputs. Given these insights and considering the diverse
options of neural networks potentially suitable for this application, we opted to employ a densely connected
deep neural network. This choice is rooted in the principles laid out by Hornik et al. (1989), ensuring our
model will be able to predict the PCs from the given input parameters. The specific details of the imple-
mentation of the neural network can be found in Appendix A. On the other hand, the RBF interpolator has
also been successfully implemented in surrogate modeling studies in the past (e.g., Zornoza‐Aguado
et al., 2024; Ricondo et al., 2024, among many others). The RBF Interpolator employs a series of radially
symmetric functions (in this case we use a Gaussian kernel) to represent a target function as a weighted sum
of RBFs. These weights are adjusted during the training phase, allowing the model to effectively learn from
the input forcing parameters and accurately predict the PCs. The choice of a Gaussian kernel was motivated
by previous successful implementations of the RBF interpolator to predict nearshore oceanographic param-
eters (e.g., Guanche et al. (2013); Camus et al. (2013)). Lastly, the multivariate LR will serve as a funda-
mental baseline to discern the linearity in the relationships between inputs and outputs. These results will help
in distinguishing scenarios where a linear model suffices from those requiring more complex, non‐linear ML
algorithms to accurately capture the underlying dynamics.

4. Results
4.1. Secret Harbour Domain

As outlined above, the DNN is trained to predict the 20 PCs of XBeach‐SB's significant wave height (Hs) output
using scaled input parameters (from the seven offshore boundary locations) on a data set comprising 1,000 MDA
cases. It is then validated against a distinct test set of an equal number of MDA cases (see Figure 3). In this
supervised learning approach, the neural network iteratively adjusts its weights and biases to minimize the loss
function, using Adam (Kingma & Ba, 2014) as the optimization strategy to converge on a solution. Additionally,
to prevent overfitting to the training data, the validation loss is monitored during the training phase, using the test
data set. If the validation loss does not improve after 100 epochs, the training of the model stops.

After about 1,200 epochs, the model converges to a minimal loss in both the training and testing data sets,
indicating a successful training of the network (see Appendix A). The DNN's performance is first evaluated by
comparing the predicted PCs with the original ones from the test data set. This comparison is visually represented
in Figure 5, which shows the scatter plots for the first nine original versus predicted Hs PCs. These plots un-
derscore the DNN's proficiency in predicting the PCs, particularly for the first EOFmodes. The first PC, being the
dominant mode that accounts for the highest variance in the data set, shows points closely aligning with the 1:1
line, whereas for higher‐order PCs increased scatter is observed, yet the comparison shows good agreement.

We repeat this process using the RBF interpolator as the ML model. The accuracy of the predictions ofHs PCs by
the RBF interpolator is almost indistinguishable to that attained with the DNN, therefore these results are not
shown. The final step involves using the predicted PCs to reconstruct the original test data set using Equation [1].
The reconstructed data set is then compared with the original XBeach‐SB output for the test set.

Finally, we developed a LRmodel that links the input parameters with the PCs through a linear combination of the
input parameters, each weighted by a coefficient, plus an intercept. A linear regression model was built for
each PCs.
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Figure 6 illustrates the accuracy of the reconstructedHs: On the left, spatial maps show the normalized root‐mean‐
squared error (nRMSE, normalized by the mean of the true values at each grid point) between the predicted wave
height and that of the test data set, as rendered by the LR model (left), the RBF interpolator (middle) and the DNN
(right). The LR model presents the highest errors, being around 3% in deep waters, increasing to well over 5% in
shallower waters, particularly the surf‐zone. Notably, for the RBF interpolator and the DNN, the reconstructedHs

shows errors below 2% in the deeper areas of the domain, increasing to approximately 3% in some places near the
coastline. This indicates a high level of accuracy of the surrogate model, with the DNN being only marginally
more accurate than the RBF interpolator, evidenced by the slightly lower nRMSE in the reconstructed Hs,
particularly close to the coast. The right panel of Figure 6 features a scatter plot comparing actual versus
reconstructed Hs across all grid points for all MDA cases in the test data set. There is a considerable scatter in the
original versus reconstructedHs for the LRmodel, whereas for the RBF interpolator and the DNN there is a closer
correlation, with most points lying within ±10% of the original values, particularly for higher wave heights.
However, discrepancies are higher for very low wave heights (below 0.5 m).

A variable of interest for many XBeach‐SB applications is the infragravity wave height (Hig). Given the complex
and non‐linear relationship between this variable, bathymetry and the forcing conditions such as integrated wave
parameters and water levels, Hig serves as an excellent candidate for assessing the predictive capabilities of our
surrogate model. We applied the same methodology to the Hig outputs as used previously for Hs: EOF analysis
followed by the training of MLmodels (LR, RBF and DNN) to predict the PCs. For this variable, we increased the

Figure 5. Scatter plots of the first 9 Hs PCs of the testing data set versus the PCs predicted by the neural network. The black
line in each plot is the 1:1 line, and the colors indicate the density of points.

JGR: Machine Learning and Computation 10.1029/2024JH000523

ECHEVARRIA ET AL. 9 of 19

 29935210, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000523 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [28/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



number of EOFs to 30 to enhance reconstruction accuracy (see Figure S2 in Supporting Information S1).
However, although increasing the number of EOFs increased the accuracy of the reconstruction, the precision of
the surrogate model diminishes since the ML model makes inaccurate predictions of higher‐order PCs, leading to
increased errors in the reconstruction process. The first two EOF patterns and corresponding PCs for Hig, along
with the accuracy of the reconstruction using 30 EOFs, are detailed in Figures S3 and S4 of Supporting Infor-
mation S1. Here we focus on the results of the final reconstruction with the surrogate model.

Figure 7 showcases the precision of Hig reconstruction via the surrogate model. For the DNN‐based recon-
struction, the spatial distribution of nRMSE indicates a pattern akin to that observed with significant wave height

Figure 6. The spatial maps show the normalized root‐mean‐squared error (nRMSE) between the original XBeach‐SBHs output for the test data set and the reconstructed
Hs (left: by the multi‐variate linear regression model (LR); middle: by the RBF interpolator (RBF); right: by the deep neural network (DNN)). Notice the different ranges
in the colorbars. The scatter plot shows the original versus reconstructed Hs output across all grid points for all MDA cases in the test data set. The black line indicates a
1:1 agreement, and the dashed lines represent a ±10% deviation from the 1:1 line.

Figure 7. The spatial maps show the normalized root‐mean‐squared error (nRMSE) between the original XBeach‐SBHig output for the test data set and the reconstructed
Hig (left: by the multi‐variate linear regression model (LR); middle: by the RBF interpolator (RBF); right: by the deep neural network (DNN)). Notice the different
ranges in the colorbars. The scatter plot shows the original versus reconstructed Hig output across all grid points for all MDA cases in the test data set. The black line
indicates a 1:1 agreement, and the dashed lines represent a ±10% deviation from the 1:1 line.
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(Hs): lower errors (∼8%) occur in the deeper regions of the domain, while
errors increase nearer to the coast, reaching maximum nRMSE values of
approximately 11%. On the other hand, the RBF model's reconstruction
shows slightly higher values of nRMSE, generally ranging between 11% and
13% across the domain. The LR model, however, falls short in accurately
predicting Hig, achieving a nRMSE as high as 50% in certain domain areas,
with the lowest observed nRMSE exceeding 30%. The scatter plot in Figure 7,
encompassing all Hig values from the testing data set, depicts a wider spread
around the 1:1 line compared to the Hs results, with many grid points at
certain time steps deviating beyond the 10% accuracy envelope. Despite the
presence of this greater scatter, the absence of extreme outliers suggests that
the models achieve some level of prediction skill for Hig. Both the RBF and
the DNN present an overall similar scatter, with the RBF having a slightly
greater spread of data points outside the 1:1 line. The scatter points from the
LR model's predictions underscore its relatively poor performance and un-
suitability for this complex, non‐linear variable.

Regarding the number of MDA cases selected for building the surrogate
model, Figure S5 in Supporting Information S1 indicates that 1,000 cases is

suitable to achieve a highly accurate surrogate model, and that increasing the number of MDA cases only brings
marginal changes to the overall accuracy of the surrogate model. This means the selected 1,000 cases are
representative of most conditions found in the historical record at this location, thus allowing the ML model to
learn the full range of combinations necessary for accurate predictions. Beyond this point, adding more data
becomes redundant, as it does not provide additional information that significantly improves model performance.
This is consistent with previous studies using the MDA technique, such as Zornoza‐Aguado et al. (2024) with 500
MDA cases, Ricondo et al. (2024) with 750 MDA cases, and Ricondo et al. (2023) with 800 MDA cases. Future
work could develop location‐dependent optimisation of the number of MDA cases, depending on the variability
of local wave and sea level climate(s). Figures S6–S9 in Supporting Information S1 demonstrate the surrogate
model's accuracy in predicting additional XBeach‐SB wave variables, specifically mean wavelength (Lmean,
Figure S6 in Supporting Information S1), fraction of breaking waves (Qbmax, Figure S7 in Supporting Infor-
mation S1), and zonal and meridional components of depth‐averaged Eulerian currents (uemean and vemean,
Figures S8 and S9 in Supporting Information S1 respectively). While all ML models (LR, RBF and DNN) can
predict the mean wavelength with a high level of accuracy, they perform less effectively in predicting the fraction
of breaking waves. This variable is highly non‐linear and discontinuous, which represents a significant challenge.
Additionally, the fraction of breaking waves is dependent on the water level (wl) of each specific MDA case. The
inter‐tidal area, which is intermittently wet and dry, shows the highest values ofQbmax when the grid points in the
surf zone are “wet”, and no value is computed when they are dry. Thus, although wl is one of the training var-
iables, the EOF decomposition is fundamentally limited by its inability to represent the wetting and drying
processes in the model domain, and the related prediction of patterns of variability in the surf zone are less
reliable. Finally, Figures S8 and S9 in Supporting Information S1 showcase the surrogate model's performance in
predicting the zonal and meridional components of depth‐averaged currents. The LR model again fails to
accurately capture this variable, while the RBF and DNNmodels attain overall RMSE values below 0.04 m/s. The
greatest discrepancies occur at lower current speeds, whereas higher speeds are predicted with greater accuracy.
Table 1 summarizes the performance of the surrogate model for the Secret Harbour domain, presenting the
correlation coefficients and the RMSE values of predicted versus actual XBeach‐SB output variables in the
testing data set.

The statistics presented above (as well as in Section 4.2) allow for an assessment of how well the surrogate model
methods presented are able emulate the full numerical (XBeach‐SB) model under the quasi‐stationary boundary
conditions associated with the MDA testing data set conditions. They do not allow for assessment of the surrogate
model's ability to simulate realistic time‐varying conditions, nor do they contextualize the surrogate model's
errors relative to the XBeach‐SB's predictive skill (i.e., validation against observations). The observations
summarized in Section 2.1 (with locations show in Figure 1) are therefore compared to both XBeach‐SB and
surrogate model predictions with continuous time‐varying boundary conditions. These conditions are derived
from the same sources as the for the MDA simulations, but the simulations run continuously for a 2‐week period

Table 1
Correlation Coefficient (r) and Root‐Mean‐Square Error (RMSE) Between
Observed and Predicted Significant Wave Height (Hs), Infragravity Wave
Height (Hig), Mean Wavelength (Lmean), Fraction of Breaking Waves
(Qbmax), Zonal and Meridional Components of Depth‐Averaged Currents
(uemean and vemean) for the Testing Data Set at Secret Harbour

LR RBF DNN

r RMSE r RMSE r RMSE

Hs 0.997 0.031 m 0.999 0.016 m 0.999 0.015 m

Hig 0.963 0.013 m 0.991 0.006 m 0.992 0.005 m

Lmean 0.999 1.03 m 0.999 0.360 m 0.999 0.340 m

Qbmax 0.933 0.159 0.978 0.088 0.992 0.052

uemean 0.866 0.022 m/s 0.966 0.010 m/s 0.975 0.009 m/s

vemean 0.922 0.044 m/s 0.987 0.017 m/s 0.993 0.012 m/s

Note. Results for the multi‐variate linear regression model (LR), the Radial
Basis Functions interpolator (RBF) and the Deep Neural Network (DNN).
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in February 2014. Note that the input forcing for the surrogate model is the same as that for the numerical XBeach
simulations.

The validation against the AWAC Hs observations shows that the XBeach‐SB simulations capture the pattern of
wave variability (Figure 8). There is a diurnal cycle in the Hs values that is related to variations in the wind
associated with the local sea breeze (this variation is provided by the SWAN hindcast data used as wave boundary
forcing). However, XBeach‐SB tends to overestimate low Hs values, and while some peaks are accurately
captured, many are slightly underestimated. Specifically, the largest discrepancies inHs outputs from XBeach‐SB
simulations manifest around the 10th of February 2014, with a notable overestimation observed. These errors can
be attributed primarily to inaccurate wave forcing from the offshore boundaries. The XBeach‐SB simulation also
reproduces the pattern of oscillation in the time‐averaged surf zone water levels (wl) as represented by RBR;
however, it underestimates them at the beginning and end of the observation period. Similarly, while this variable
presents the highest levels of disagreement between the model and observations, this XBeach‐SB configuration
captures the magnitude of Hig height (at the Vector location) and discerns most of its fluctuations, particularly
during the first half of the simulated period.

Beyond errors attributable to boundary forcing, utilisation of JONSWAP spectra limits the ability of XBeach‐SB
to capture complex cases involving multi‐modal wave spectra, or spectral shapes different than those of a
JONSWAP spectrum. Additionally, nearshore morphological changes can have a significant impact on wave
transformations; discrepancies between the bathymetric features represented by the LiDAR‐derived survey data
used and subsequent changes can also play a role in contributing to the observed errors. While there is un-
doubtedly room for improvement, for example, calibration of the bed friction coefficients and other physical

Figure 8. Verification of XBeach‐SB and DNN surrogate model simulations for February 2014 at observations locations
indicated in Figure 1: top) significant wave height (Hs) compared against AWAC measurements; middle) mean water depth
compared against RBR measurements; bottom) infragravity wave heights (Hig) compared against calculated Hig from 1 Hz
observations from a Vector Velocimeter. The tables on the right show the Pearson correlation coefficient (r) and the root‐
mean‐square error (RMSE) values for the numerical model output (XBeach) and the surrogate model predictions (XB‐
surrogate).
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parameters (XBeach‐SB implementations are known to benefit from extensive tuning, see for example Simmons
et al., 2017), the aim of this study is not to carry out an exhaustive calibration/validation. Rather it is to compare
the predictive skill of both XBeach‐SB and develop the proposed surrogate modeling technique. Inspection of
Figure 8 demonstrates that any differences in the predictive skill of the surrogate model are minimal compared to
the skill of XBeach‐SB to observations. The surrogate model closely replicates the XBeach‐SB model output,
with only minor discrepancies. The most significant differences are observed for the Hig, which the surrogate
model tends to overestimate. Although an extensive calibration of XBeach‐SB is out of the scope of this paper, it
is a fundamental step to ensure the accuracy of the surrogate model. Notably, ML methods can also be employed
to perform calibrations of numerical models (see, for example, Itzkin et al., 2022; Simmons et al., 2017). Such
methods could be applied prior to building the surrogate model as discussed in this paper. Alternatively, future
work could involve incorporating the coefficient parameters as inputs to the surrogate model; this way, any sea
state could be reconstructed under any combination of calibration coefficients, and through an optimisation al-
gorithm, obtain the combination that yields the minimum errors when compared to measured data.

4.2. Narrabeen Domain

As described in Section 2, Secret Harbour and Narrabeen experience different tidal regimes and wave climates, so
exactly the same methods described in the last section were applied to the Narrabeen XBeach‐SB domain in order
to evaluate the relocatability of the methods and test for sensitivities. That is, the same steps were taken: defining
1,000 training and 1,000 testing scenarios through MDA, conducting XBeach‐SB simulations for each of these,
carrying out an Empirical Orthogonal Functions analysis to selected gridded outputs, and training ML models to
predict the PCs from the input forcing parameters.

Figure 9 demonstrates the accuracy of the reconstructed significant wave height (Hs) fields from the testing data
set. As was the case for Secret Harbour, the LR model exhibits severe limitations, failing to accurately represent
the wave heights inside the domain, with percentage errors ranging from 20% to 30% in shallow areas. On the
other hand, both the DNN and the RBF interpolator show a similar performance, representing the wave heights
inside the domain with a reasonable degree of accuracy, with maximum errors of around 8% in the surf zone. The
DNN is marginally more accurate than the RBF for this domain.

Figure 10 shows the results of the surrogate model in representing infragravity wave height (Hig), a variable
characterized by its non‐linear behavior compared to Hs. This non‐linearity is evident in the performance of the
linear regression model, which predicts Hig with errors exceeding 60% in most of the domain, indicating the
significant mismatch between predicted and actual values. Although the RBF model offers substantial im-
provements in accuracy with respect to the linear regression model, it still encounters errors of ∼25% in certain
areas, highlighting its limitations in capturing the complex dynamics of infragravity waves. The DNN model

Figure 9. The three left maps show the normalized root‐mean‐squared error (nRMSE) between the original XBeach‐SB Hs output for the test data set and the
reconstructed Hs by the multi‐variate linear regression model (LR), the RBF interpolator (RBF), and by the deep neural network (DNN). The scatter plot shows the
original versus reconstructed Hs output across all grid points for all MDA cases in the test data set. The black line indicates a 1:1 agreement, and the dashed lines
represent a ±10% deviation from the 1:1 line.
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exhibits the highest accuracy, outperforming the RBF model slightly, with an overall nRMSE ranging from 10%
to 25% and displaying fewer outliers in the scatter plot.

5. Discussion
5.1. Surrogate Model Performance

This study presents a robust methodology for integrating high‐fidelity numerical simulations with ML techniques
to create a surrogate model capable of predicting key variables describing coastal hydrodynamics. This hybrid
methodology leverages the XBeach‐SB numerical model; when paired with efficient ML methods, we demon-
strate the effectiveness of Deep Neural Networks (DNNs) and Radial Basis Functions (RBF) interpolators in
capturing the complex coastal dynamics under varying conditions. Variables tested include significant wave
height (Hs), infragravity wave height (Hig), mean wavelength, fraction of breaking waves (Qbmax), and depth‐
integrated currents.

The DNN and RBF models exhibited high predictive accuracy for Hs, maintaining error margins well within
±10% across most scenarios. Specifically, maximum errors were around 3% at Secret Harbour and 8% at Nar-
rabeen across the domains, and only a few grid points at certain times attaining errors of more than 10% (see
scatter plots in Figures 6 and 9). The highest errors are found for Hs lower than 0.5 m, indicating areas where
model performance could be further improved. In contrast, the multi‐variate linear regression (LR) model pre-
sents significantly higher errors than the DNN or the RBF, particularly in shallow water areas, highlighting its
inadequacy for non‐linear processes such as wave breaking, currents and Hig generation, which warrants the use
of more complex ML models to represent the inherently complex coastal dynamics.

ForHig, the DNN proved to be consistently slightly more accurate than the RBF interpolator. At Secret Harbour, it
achieved errors generally around 8% with maximum nRMSE around 11% close to the coast. At Narrabeen the
DNN's predictions ofHig were less accurate, with errors ranging from 10% to 25% across the domain, however the
scatter plot in Figure 10 indicates that the models are making reasonably accurate predictions of Hig. In terms of
mean wavelength, all ML models were able to make highly accurate predictions of it. On the other hand, the
fraction of breaking waves (Qbmax) presents more challenges, due to the discontinuity in the grid points close to
the coast, where Qbmax goes from one (on a “wet” grid point) to 0 (in a “dry” grid point corresponding to land).
Despite this, our methodology can efficiently capture the main spatial patterns and intensity of Qbmax, with the
highest errors being attained in the inter‐tidal area where transitional water levels significantly influence the
results.

The main strength of the hybrid surrogate model presented here is its computational efficiency, which enables
extremely rapid prediction of gridded XBeach‐SB output variables relative to the full dynamics numerical model.
Such efficiency facilitates a range of applications, from enhancing nearshore forecasting capabilities (e.g., via
ensembles), to generating extensive multi‐year time series of XBeach‐SB output fields, crucial for informed

Figure 10. Same as Figure 9 but for infragravity wave height (Hig).
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decision‐making in coastal management and planning. Table 2 compares the estimated computational time
required to generate a 40‐year deterministic simulation of XBeach outputs using both the fully numerical model
and the surrogate model, which is a commonly used time frame to establish climatological baselines for extreme
event analysis and coastal hazards assessment (e.g., Perez et al., 2017), except in certain areas such as those
impacted by tropical cyclones (Haigh et al., 2014). Carrying out such long simulations with the fully dynamical
numerical model can be quite computationally demanding, and the surrogate model can reduce this computational
time by two orders of magnitude.

Moreover, the versatility of this methodology extends beyond the specific outputs discussed herein; it can
predict additional variables and can be adapted to other numerical models, such as SWAN, WAVEWATCHIII,
and SCHISM‐WWM3 wave models, to develop corresponding surrogate models. This adaptability provides a
robust framework for comprehensive coastal studies. Regarding the boundary conditions used to force the
model, we utilized a 40‐year hindcast of waves and water levels to create the MDA cases for training and
testing, and (once the surrogate model has been built) to create a climatology of XBeach‐SB outputs. As
mentioned, alternative approaches include implementing the MDA on data sets generated through methods such
as Latin Hypercube Sampling (e.g., Ricondo et al., 2024; Zornoza‐Aguado et al., 2024), or applying the MDA
to synthetic data sets created by stochastic climate emulators to generate plausible time series of future climate
scenarios (Anderson et al., 2021; Wang et al., 2024). Additionally, the validation of the surrogate model can be
made more robust in certain conditions by applying the MDA on the entire historical data set (if available) and
implementing a K‐fold cross‐validation approach. Regardless of the method used, it is essential to ensure that
the training and testing data sets encompass a wide range of potential conditions to enhance model
generalizability.

5.2. Limitations of the Hybrid Surrogate Model

It is also important to highlight the limitations of this methodology for a proper interpretation of its outputs. First,
the XBeach‐SB simulations were carried out without the morphology option activated, resulting in a constant
bathymetry across all simulations and surrogate model's predictions. This simplification does not reflect real‐
world conditions where morphological changes can significantly affect wave breaking patterns and wave
propagation in shallow waters. In addition, this methodology does not contemplate changes in coastal structures,
such as seawalls, breakwaters, and beach nourishment, which can also influence wave transformation, nearshore
hydrodynamics and sediment transport. While the DNN canmake accurate predictions of XBeach‐SB outputs, the
real‐world accuracy of these predictions is inherently limited by the fidelity of the XBeach‐SB configuration
itself. Therefore, ensuring the accuracy of the XBeach‐SB configuration is essential and might require a
meticulous calibration prior to running the MDA cases to train and test the ML models.

The surrogate hybrid models presented here are predicated on training and testing using quasi‐stationary simu-
lations of XBeach‐SB (i.e., the MDA training and test cases do not individually contain time‐varying boundary
conditions). Nevertheless, comparisons of surrogate model output generated using time‐varying forcing condi-
tions is in very good agreement with fully numerical XBeach‐SB simulations using the same forcing (Figure 8),
indicating the surrogate models' capability in this regard. The ability of the surrogate model to maintain accuracy
using time‐varying inputs, despite being trained with stationary inputs is likely due to the small domain size and
quick “spin‐up” period of the XBeach‐SB model domains. In any case, the differences between surrogate and
XBeach‐SB time‐varying predictions are significantly less than the difference between model predictions and in

Table 2
Estimated Run Times (Expressed as CPU Hours) for Creating a 40‐Year Climatology Hourly Timeseries of XBeach Model
Outputs, Using the Dynamical Numerical Model (Top Row) and the Hybrid Surrogate Model (Bottom Rows)

Dynamical numerical model Running a full 40‐year XBeach simulation ∼1,600,000 CPU hr

Surrogate model Carrying out 2,000 MDA XBeach simulations ∼30,000 CPU hr

Training the surrogate model ∼0.15 CPU hr

Creating 40 yearly NetCDF files of predicted outputs ∼8 CPU hr

Note. This table highlights the computational efficiency of the hybrid approach relative to the fully numerical dynamical
model.
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situ observations. This indicates that (at least for this particular domain) the predictive skill of the surrogate
models relative to XBeach‐SB are considerably better than XBeach‐SB's skill to observations.

In addition, the computational efficiency of this methodology is greatly facilitated by the EOF decomposition
of the XBeach‐SB gridded outputs. However, intermittent wetting and drying of grid points in the inter‐tidal
area presents challenges, as it introduces discontinuities that compromise the effectiveness of EOF analysis in
accurately reducing and reconstructing the data. This limitation leads to errors in the EOF reconstruction of
XBeach‐SB output fields, which are then carried over to the ML models' predictions. In the two sandy beach
domains studied, which have relatively small inter‐tidal areas, it was feasible to identify and exclude these
outliers. However, in more complex domains with extensive inter‐tidal areas, this issue could significantly
impact model accuracy. One potential solution is to bypass the EOF decomposition step and develop larger
and more complex DNN architectures that are trained to predict the entire gridded output rather than just the
PCs. While this approach might enhance prediction accuracy in the intertidal zone, it would tend to negate the
computational efficiency provided by the EOF analysis. Specifically, the DNN built with the EOF approach
contains approximately 400,000 trainable parameters, with training times ranging between 10 and 20 min
(depending on the selected output variable) on a CPU‐based environment. In contrast, constructing a DNN to
predict the entire gridded output (without the EOF decomposition) involves around 30 million trainable
parameters and can require 1–3 hr of training. While the latter approach can yield more accurate predictions
in the surf zone, the observed improvements were overall marginal, leading us to conclude that the EOF‐
based approach offers a more effective balance between efficiency and accuracy for the two domains
studied here.

6. Conclusions
The hybrid model developed in this study offers a computationally efficient and accurate approach for
predicting gridded output fields from XBeach‐SB simulations, which is valuable for a wide range of ap-
plications. The surrogate model facilitates the rapid downscaling of long‐term nearshore wave conditions
and nearshore hydrodynamics, crucial for effective coastal hazard analysis, management and planning, as
well as enhancing coastal forecasting capabilities for operational and safety consideration, amongst other
benefits.

Our results show that the DNN and RBF based models outperform traditional multi‐variate linear regression,
particularly for variables representing complex and non‐linear coastal processes such as infragravity wave heights
and waves breaking. However, recognizing the limitations of this approach (see the Discussion section) is
essential for its effective application across varied coastal settings. Future research should focus on integrating
morphological changes into the model to better mimic real‐world coastal dynamics, and optimizing ML archi-
tectures to improve the surrogate model performance in complex coastal settings with significant inter‐tidal
variability. Additionally, expanding this hybrid technique to other coastal numerical models can broaden its
utility, providing valuable tools for coastal engineers and scientists.

Appendix A: Neural Network Design
The neural network was constructed using the Keras python library. It is a feedforward neural network with
multiple fully connected (dense) layers. Through iterative optimization and evaluation, the architecture that
provided an optimum performance was: an input layer with as many neurons as input features (predictors), a
Normalization layer, four hidden layers with 360 neurons, and an output layer matching the number of PCs to be
predicted. The leaky_relu activation function was used for all dense layers except the output layer which had a
linear activation function. For the compilation of the model, the Adam optimizer was used (Kingma & Ba, 2014),
with the mean absolute error as the loss parameter and a learning rate of 1E− 4. To enhance training efficiency, a
callback was implemented to track the loss in the validation (testing) data set and stop the training of the model if
the gains in accuracy in the validation set were not improved after 100 epochs. Finally, the input data was scaled
using a min‐max scaler. In cases where the range of the different PCs varies substantially, the PCs were stan-
dardized using the StandardScaler from the scikit‐learn library; this ensures a balanced training of the network.
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Figure A1 shows a schematic of the network implemented in this study and the training‐validation loss curves,
illustrating the model's learning progress.

Data Availability Statement
The XBeach numerical model can be downloaded from https://download.deltares.nl/xbeach. The output from the
2,000 XBeach simulations carried out for the Secret Harbour domain (1,000 training and 1,000 testing simula-
tions) can be obtained from Echevarria et al. (2025). The SWAN WAXA 500 m hindcast data used to create the
wave boundary forcing at the Secret Harbour domain can be obtained from Trenham et al. (2024). For the
Narrabeen domain, the CAWCR Wave Hindcast was used to generate the wave forcing files, and this can be
downloaded from Durrant et al. (2019). The ORAS5 global ocean reanalysis used for sea level forcing in both
simulations can be downloaded from Copernicus Climate Change Service, Climate Data Store, (2021). The tidal
forcing for both simulations was generated using the “tpxo‐tide‐prediction” Python package (https://github.com/
fwrnke/tpxo‐tide‐prediction), which utilizes the TPXO9‐atlas models provided by Oregon State University. The
Deep Neural Network was developed using the TensorFlow Python library (https://www.tensorflow.org/). The
Maximum Dissimilarity Algorithm code and the Radial Basis Function code were sourced from the Bluemath
initiative (https://github.com/GeoOcean/BlueMath_tk/tree/develop).
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