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Abstract

Flag manifolds encode nested sequences of subspaces and
serve as powerful structures for various computer vision
and machine learning applications. Despite their utility in
tasks such as dimensionality reduction, motion averaging,
and subspace clustering, current applications are often re-
stricted to extracting flags using common matrix decompo-
sition methods like the singular value decomposition. Here,
we address the need for a general algorithm to factorize and
work with hierarchical datasets. In particular, we propose
a novel, flag-based method that decomposes arbitrary hier-
archical real-valued data into a hierarchy-preserving flag
representation in Stiefel coordinates. Our work harnesses
the potential of flag manifolds in applications including de-
noising, clustering, and few-shot learning.

1. Introduction

Hierarchical structures are fundamental across a variety of
fields: they shape taxonomies and societies [25], allow us
to study 3D objects [26], underpin neural network architec-
tures [59], and form the backbone of language [31]. They
reflect parts-to-whole relationships [55] and how our world
organizes itself compositionally [49]. However, when han-
dling hierarchies in data, we often resort to the temptation
to flatten them for simplicity, losing essential structure and
context in the process. This tendency is evident in standard
dimensionality reduction techniques, like principal compo-
nent analysis, which ignore any hierarchy the data contains.

In this work, we advocate for an approach rooted in flags
to preserve the richness of hierarchical linear subspaces.
A flag [33, 36] represents a sequence of nested subspaces
with increasing dimensions, denoted by its type or signa-
ture (n1, n2, . . . , nk;n), where n1<n2<. . .<nk<n. For
instance, a flag of type (1, 2; 3) describes a line within a
plane in R3. By working in flag manifolds—structured
spaces of such nested subspaces—we leverage the full com-
plexity of hierarchical data. Flag manifolds have already
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Figure 1. A flag decomposition (center) is used for a hierarchy-
preserving flag representation and reconstruction. This decompo-
sition separates a data matrix D with an associated hierarchy of
column indices A1 ⊂ A2 ⊂ A3 into Stiefel coordinates Q for
a flag [[Q]], a block-upper triangular matrix R, and a permutation
matrix P (not pictured). Example applications include denoising
(green), clustering (yellow), and few-shot learning (orange).

shown promise in extending traditional methods like Prin-
cipal Component Analysis (PCA) [36, 47, 53], Indepen-
dent Component Analysis (ICA) [41–45], generalizing sub-
space learning [54], and Self-Organizing Maps (SOM) [32].
They enable robust representations for diverse tasks: aver-
aging motions [33], modeling variations in face illumina-
tion [11, 33], parameterizing 3D shape spaces [9], and clus-
tering subspaces for video and biological data [33–35, 38].

Our main contribution is a Flag Decomposition (FD)
specifically designed to preserve hierarchical structures
within data (see Fig. 1). First, we formalize the notion of
hierarchies in data and the definition of a flag (§2). Next, we
provide a practical algorithm for deriving FDs (§3) and out-
line multiple promising applications (§4). Then we demon-
strate its robustness in clustering tasks involving noisy and
outlier-contaminated simulated data (§5). Our approach
outperforms standard methods, such as Singular Value De-
composition (SVD), in clustering and denoising hyperspec-



tral satellite images. Finally, we show that using flags as
prototypes in a few-shot framework improves classification
accuracy on benchmark datasets. Final remarks are in (§6)
and formal proofs are in the suppl. material. Our imple-
mentation is https://github.com/nmank/FD.

2. Preliminaries
We begin by formalizing hierarchical datasets. Then, build
to a definition of flags by providing the necessary back-
ground in matrix spaces. For notation, italicized capital let-
ters (e.g., A) denote sets, and boldface letters denote matri-
ces and column vectors (e.g., X and xi). [X] denotes the
subspace spanned by the columns of X.

Consider the data matrix D ∈ Rn×p with a hierarchy
defined by the subsets of column indices

∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ak = {1, 2, . . . , p}. (1)

Let DAi
be the matrix containing only columns of D in Ai.

Definition 1 (Column hierarchy for D). We call A1 ⊂
A2 ⊂ · · · ⊂ Ak a column hierarchy for D ∈ Rn×p when

dim([DAi−1 ]) < dim([DAi ]) for i = 1, 2, . . . , k. (2)

Given a column hierarchy for D 1, there is a natural cor-
respondence between column and subspace hierarchies

columns: A1 ⊂ A2 ⊂ · · · ⊂ Ak

subspaces: [DA1
] ⊂ [DA2

] ⊂ · · · ⊂ [DAk
].

These hierarchies can include coarse-to-fine neighborhoods
(e.g., Example 2.1), spectral hierarchies (e.g., Example 2.2),
and feature representations (e.g., Example 2.3).

Example 2.1 (Neighborhood Hierarchy). Consider (pi ×
pi) concentric RGB image patches increasing in size with
i = 1, 2, 3. We store the ith image patch in D ∈ R3×p2

i .
A1 contains the column indices of the smallest image patch
in D, A2 contains those of the next smallest patch, and A3

the largest patch. This results in the neighborhood column
hierarchy A1 ⊂ A2 ⊂ A3 for the data matrix D.

Example 2.2 (Spectral Hierarchy). Let D ∈ Rn×p be a
hyperspectral image with n pixels and p bands. A hierarchy
is imposed on the bands by grouping wavelengths into:

Visible Red-edge Near-Infrared

Example 2.3 (Feature Hierarchy). Consider a feature ex-
tractor (e.g., deep network) admitting the following decom-
position: fΘ = f

(2)
Θ ◦f (1)

Θ : RN → Rn where f (1)
Θ : RN →

Rn. s samples x1, · · · ,xs are used to obtain

D =
[
f
(1)
Θ (x1) | · · · | f (1)

Θ (xs) | fΘ(x1) | · · · |fΘ(xs)
]
.

1A similar, complex, and well-studied notion of hierarchical matrices
is H-matrices [7].

Since information flows from f
(1)
Θ to f

(2)
Θ , it is natural to

assume that features extracted by f
(1)
Θ span a subspace of

the features extracted by fΘ. Therefore, we propose the hi-
erarchy {1, 2, . . . , s} ⊂ {1, 2, . . . , 2s}.

Next, we build a mathematical formalization of flags.

Definition 2 (Matrix spaces). The orthogonal group O(n)
denotes the group of distance-preserving transformations of
a Euclidean space of dimension n:

O(n) := {M ∈ Rn×n : M⊤M = MM⊤ = I}. (3)

A permutation matrix is a square matrix P ∈ Rn×n where
each column and each row contains only a single 1 value
and the rest are 0. DP permutes the columns of D. An im-
portant property of permutation matrices is P−1 = P⊤.
The Stiefel manifold St(k, n), a.k.a. the set of all or-
thonormal k-frames in Rn, can be represented as the quo-
tient: St(k, n) = O(n)/O(n − k). A point on the Stiefel
manifold is parameterized by a tall-skinny n × k real ma-
trix with orthonormal columns, i.e. X ∈ Rn×k where
X⊤X = I. The Grassmannian, Gr(k, n) represents the
set of all k-dimensional subspaces of Rn. Each point in
Gr(k, n) can be identified with an equivalence class of ma-
trices in the Stiefel manifold, where two matrices are equiv-
alent if their columns span the same subspace. We represent
[X] ∈ Gr(k, n) using the Stiefel coordinates X ∈ St(k, n).

Definition 3 (Flag). Let Vi be an ni-dimensional sub-
space of a vector space V of dimension n. A flag of type
(n1, n2, . . . , nk;n), is the nested sequence of subspaces

∅ ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ V. (4)

The flag manifold FL(n1, n2, . . . , nk;n) is a Rieman-
nian manifold and the collection of all flags of type, a.k.a.
signature, (n1, n2, . . . , nk;n) [52, 60]. The first empty sub-
space, ∅ with dimension n0 = 0, is now mentioned for com-
pleteness but will be dropped from notation and implicit
from here on. In this work, we will work with real flags,
namely V = Rn.

Remark 1 (Flag manifold as a quotient of groups). Ye et
al. [60, Proposition 4.10] prove that FL(n1, . . . , nk;n) is
diffeomorphic to the quotient space St(nk, n)/(O(m1) ×
O(m2) × · · · × O(mk)) where mi = ni − ni−1. This fact
gives a Stiefel manifold coordinate representation of a flag.

Definition 4 (Stiefel coordinates for flags [60]). A flag is
represented by X = [X1|X2| · · · |Xk] ∈ St(nk, n) where
Xi ∈ Rn×mi . Specifically, X represents the flag

[[X]] = [X1] ⊂ [X1,X2] ⊂ · · · ⊂ [X1,X2, . . .Xk] ⊂ Rn

(5)
We say [[X]] is a flag of type (or signature)
(n1, n2, . . . , nk;n) and [X1,X2, . . .Xi] denotes the
span of [X1|X2| · · · |Xi] (for i = 1, 2, . . . , k).

https://github.com/nmank/FD


Table 1. Computing the chordal distance on Steifel, Grassmann, and flag manifolds using matrix representatives. ∥ · ∥F is Frobenius norm.

Representation / Manifold X,Y ∈ St(nk, n) [X], [Y] ∈ Gr(nk, n) [[X]], [[Y]] ∈ FL(1, . . . , nk;n)

Chordal distance ∥X−Y∥F 1√
2
∥XX⊤ −YY⊤∥F

√
1
2

∑k
i=1 ∥XiX⊤

i −YiY⊤
i ∥2F

Given the tall-skinny orthonormal matrix representatives
X,Y ∈ Rn×nk , we also utilize their chordal distances as
given in Tab. 1. The chordal distance on the Stiefel man-
ifold measures the 2-norm of the vectorized matrices. In
contrast, the Grassmannian chordal distance measures the
2-norm of the vector of sines of the principal angles [6]
between the subspaces through the Frobenius norm of the
projection matrices [12]. The chordal distance on the flag
manifold [48] arises from the fact that it is a closed sub-
manifold of Gr(m1, n)× · · · ×Gr(mk, n) as shown by Ye
et al. [60, Proposition 3.2]. This distance is similar to the
Grassmannian chordal distance between subsequent pieces
of the flags (e.g., [Xi] and [Yi] for i = 1, . . . , k).

3. Flag Decomposition (FD)
We will now introduce our novel Flag Decomposition (FD)
that, given D, outputs a hierarchy-preserving flag [[Q]].
From this point on, [·, ·, ·] denotes column space and [·| · |·]
block matrices. Let Bi = Ai \ Ai−1 be the difference of
sets for i = 1, 2, . . . , k and Bi = DBi so that [DAi ] =
[B1,B2, . . . ,Bi]. We define the permutation matrix P so
B = [B1|B2| · · · |Bk] = DP. Also, denote the projection
matrix onto the null space of [Qi] with Qi ∈ St(mi, n)
as ΠQ⊥

i
= I − QiQ

⊤
i . We use n0 = 0, A0 = ∅, and

ΠQ⊥
0
= I.

Definition 5 (Hierarchy-preserving flags). A flag [[X]] ∈
FL(n1, n2, . . . , nk;n) is said to preserve the hierarchy of
D if [DAi

] = [X1,X2, . . . ,Xi] for each i = 1, 2, . . . , k.

If A1 ⊂ A2 ⊂ · · · ⊂ Ak is a column hierarchy for D,
then a hierarchy-preserving flag results in the three, equiva-
lent, nested sequences of subspaces

[DA1 ] ⊂ [DA2 ] ⊂ · · · ⊂ [DAk
]

[B1] ⊂ [B1,B2] ⊂ · · · ⊂ [B1,B2, . . . ,Bk]
[X1] ⊂ [X1,X2] ⊂ · · · ⊂ [X1,X2, . . . ,Xk].

SVD and QR decomposition can recover flags from data
with certain, limited column hierarchies (see suppl. mate-
rial for details). However, when faced with a more complex
column hierarchy, both QR and SVD cannot recover the en-
tire hierarchy-preserving flag (see Fig. 2).

These examples motivate a generalized decomposition
of D that outputs a hierarchy-preserving flag. In particular,
unlike in QR decomposition, D can be rank-deficient (e.g.,
rank(D) < p); and unlike the SVD, we can decompose into
flags of type (n1, n2, . . . , nk;n) with nk ≤ p.

Figure 2. We recover a flag from D with hierarchy A1 ⊂ A2.
Columns of D are plotted as points with A1 in blue and A2 \ A1

in orange. FD is the only method that recovers the flag (line inside
plane). SVD correctly recovers the plane but not the line whereas
QR only recovers the line and the plane misses the orange points.

Definition 6 (Flag Decomposition (FD)). Let D ∈ Rn×p

be data with the hierarchically nested sequence of column
indices A1 ⊂ A2 ⊂ · · · ⊂ Ak. A flag decomposition of
type (n1, n2, · · · , nk;n) is the matrix factorization

D = QRP⊤ (6)

where the block structures are

Q = [ Q1︸︷︷︸
n×m1

| Q2︸︷︷︸
n×m2

| · · · | Qk︸︷︷︸
n×mk

] ∈ Rn×nk , (7)

R =


R11 R12 · · · R1k

0 R22 · · · R2k

...
...

. . .
...

0 0 · · · Rkk

 ∈ Rnk×p, (8)

P = [P1 |P2 | · · · |Pk] ∈ Rp×p. (9)

Here, Q corresponds to the Stiefel coordinates for the
hierarchy-preserving flag [[Q]] ∈ FL(n1, n2, . . . , nk;n)
with mi = ni − ni−1 and nk ≤ p, R is a block upper-
triangular matrix, and P is a permutation matrix so that
QR = DP.

We now use Prop. 1 to determine when we can recover a
hierarchy-preserving flag from data and then we use Prop. 2
to show how to construct R and P from this flag. Finally,
we combine Prop. 1 and 2 to define when we can find an FD
(see Prop. 3) and investigate its uniqueness (see Prop. 4).

Proposition 1. Suppose A1 ⊂ A2 ⊂ · · · ⊂ Ak is
a column hierarchy for D. Then there exists Q =
[Q1 |Q2 | · · · |Qk] that are coordinates for the flag [[Q]] ∈
FL(n1, n2, . . . , nk;n) where ni = rank(DAi

) that satis-
fies [Qi] = [ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi] and the projection prop-

erty (for i = 1, 2 . . . , k):

ΠQ⊥
i
ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi = 0. (10)



Proof. Define (for i = 2, 3, . . . , k) the projector onto the
null space of [Q1,Q2, . . . ,Qi], as ΠQ⊥

:i
= I−Q:iQ

⊤
:i . We

use this to define Ci = ΠQ⊥
:i−1

Bi and Qi ∈ St(mi, n) so
that [Qi] = [Ci]. Then we use mathematical induction to
show results ending in Eq. (10) and Qi ∈ St(mi, n) with
mi = ni − ni−1 where ni = rank(DAi).

The simplest methods for recovering Q so that [Qi] =
[ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi] include the left singular vectors from

the truncated SVD and the Q matrix from the QR decompo-
sition with pivoting. We will now use Q and the projection
property to construct R and P for the FD.

Proposition 2. Suppose A1 ⊂ A2 ⊂ · · · ⊂ Ak is a col-
umn hierarchy for D. Then there exists some hierarchy-
preserving [[Q]] ∈ FL(n1, n2, . . . , nk;n) (with ni =
rank(DAi

)) that satisfies the projection property of D and
can be used for a flag decomposition of D with

Ri,j =

{
Q⊤

i ΠQ⊥
i−1

· · ·ΠQ⊥
1
Bi, i = j

Q⊤
i ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bj , i < j

, (11)

Pi =
[
ebi,1 | ebi,2 | · · · | ebi,|Bi|

]
(12)

where {bi,j}|Bi|
j=1 = Bi and eb is the bi,j

th standard basis
vector.

Proof sketch. This is proved using the previous proposition.

Proposition 3. A data matrix D admits a flag decomposi-
tion of type (n1, n2, · · · , nk;n) if and only if A1 ⊂ A2 ⊂
· · · ⊂ Ak is a column hierarchy for D.

Proof sketch. We use Prop. 1 and 2 and the definition of a
column hierarchy for D. Details in suppl. material.

Therefore, any D with an associated column hierarchy
admits a hierarchy-preserving FD. Now we state a unique-
ness result for the FD.

Proposition 4 (Block rotational ambiguity). Given the FD
D = QRP⊤, any other Stiefel coordinates for the flag [[Q]]
produce an FD of D (via Prop. 2). Furthermore, differ-
ent Stiefel coordinates for [[Q]] produce the same objective
function values in Eq. (13) and Eq. (14) (for i = 1, · · · , k).

Proof sketch. Notice QiQ
T
i = (QiMi)(QiMi)

⊤ for any
Qi ∈ St(mi, n) and Mi ∈ O(mi). See our suppl. material
for details.

3.1. Flag recovery
In this section, we introduce an approach for recovering the
FD D = QRP⊤ from a given, corrupted version of the
dataset, D̃ and the column hierarchy A1 ⊂ A2 ⊂ · · · ⊂ Ak

for D. We call recovering [[Q]] from D̃ and A1 ⊂ A2 ⊂
· · · ⊂ Ak the flag recovery.

Recall that any [[Q]] satisfying the projection property of
D can be used for a FD (see Prop. 2). However, since we
only have access to D̃, we may not be able to satisfy this
property. As a remedy, we try to get as close as possible
to satisfying the projection property by optimizing for [[Q]]
such that ΠQ⊥

i
· · ·ΠQ⊥

1
B̃i ≈ 0 for each i = 1, 2, . . . , k.

We minimize this cost column-wise to solve the problem in
maximum generality. Specifically, we propose the follow-
ing minimization:

[[Q]] = argmin
[[X]]∈FL(n1,n2,...,nk;n)

k∑
i=1

∑
j∈Bi

∥ΠX⊥
i
· · ·ΠX⊥

1
d̃j∥qr

(13)
for r ≥ 0, q > 0. Choosing small r and q (e.g., r = 0
and q = 1) would result in a robust flag recovery, optimal
for recovering D in the presence of outlier columns in D̃.
This problem is difficult, even after restricting q and r, so
we address the iterative optimization for each Qi for i = 1,
then i = 2, and so on until i = k.

Qi = argmin
X∈St(mi,n)

∑
j∈Bj

∥ΠX⊥ΠQ⊥
i−1

· · ·ΠQ⊥
1
d̃j∥qr. (14)

The solution to the case where r = q = 2 is obtained by
the first mi left singular vectors of ΠQ⊥

i−1
· · ·ΠQ⊥

1
D̃Bj

.
In general, solving Eq. (14) for some i recovers Qi whose
columns form a basis for a mi dimensional subspace in Rn.
Although outputting a truncated basis via QR with pivoting
or rank-revealing QR decompositions would offer faster al-
ternatives to SVD for solving Eq. (14), SVD offers more
reliable subspace recovery [10]. Thus, we use SVD-based
algorithms and leave QR methods for future work.

For cases where D̃ has outlier columns, we use an L1

penalty, i.e., q = 1, and introduce an IRLS-SVD solver2,
a simple method that resembles IRLS algorithms for sub-
space recovery [15, 27–29, 34, 57, 61]. In practice, we
implement a vanilla IRLS-SVD algorithm which could fur-
ther be made faster and provably convergent using tools
from [1, 4, 23, 24, 58]. We leave more advanced solvers,
as well as working with other values of r and q (e.g.,
r = 0 [30]), for future work.

3.2. Flag-BMGS
We now propose Flag-BMGS, an algorithm for finding FD
and its robust version, Robust FD (RFD). Our algorithm
is inspired by the Block Modified Gram-Schmidt (BMGS)
procedure [3, 19]. Modified Gram-Schmidt (MGS) is a
more numerically stable implementation of the classical
Gram-Schmidt orthogonalization. BMGS runs an MGS al-
gorithm on block matrices, iteratively projecting and ortho-
normalizing matrices rather than vectors, to output a QR

2IRLS denotes iteratively reweighted least squares.



Table 2. A summary of GS algorithms and their properties.

Algorithm GS MGS BMGS Flag-BMGS

Stable ✗ ✓ ✓ ✓
Block-wise ✗ ✗ ✓ ✓
Hier.-pres. ✗ ✗ ✗ ✓

decomposition. In contrast, we use Flag-BMGS on a data
matrix with a column hierarchy to produce a hierarchy-
preserving FD. We summarize the properties of Gram-
Schmidt variants in Tab. 2.

Flag-BMGS operates by first generating a permutation
matrix P (see Eq. (12)) to extract the matrix B = DP⊤,
using the column hierarchy. Then each iteration i =
1, 2, . . . , k constructs ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi, solves an opti-

mization of the form Eq. (14), and then constructs each Ri,j

for j ≤ i (see Eq. (11)). In experiments, we call FD the out-
put of Flag-BMGS using SVD with r = q = 2 and Robust
FD (RFD) the iterative variant using r = 2 and q = 1 to
solve Eq. (14). Algorithm details are in suppl. material.

Stability results and the search for more optimal algo-
rithms, such as those using block Householder transforma-
tions [17] are left to future work. Many other block ma-
trix decompositions exist and a brief discussion of such a
low-rank block matrix decomposition [46] can be found in
suppl. material.

On the flag type. Flag type is an input to Flag-BMGS. De-
tecting or selecting an adapted flag type from data rather
than relying on a heuristic choice, is recently addressed by
Szwagier et al. in principal subspace analysis [53]. The FD
model does not benefit from this advance because it pre-
serves hierarchies rather than directions of maximum vari-
ance. We now discuss methods for estimating flag type.

Assuming full access to D, the flag type is
(n1, n2, . . . , nk;n) where ni = rank(DAi

) (see Prop. 1).
Yet, the data can be corrupted, i.e., we observe only
D̃ = D + ϵ (ϵ denotes random noise) instead of the true
D. This leads to an estimation problem of the flag type of
the FD assuming access to D̃ and the true (known) column
hierarchy for D.

A naive approach to address the problem of flag type es-
timation for our FD is to run the FD along with a singu-
lar value truncation in each SVD. Methods for truncating
the SVs include the elbow and Gavish-Dohono [13, 16]. In
this work, given a column hierarchy and D̃ (but not D), we
choose a flag type where nk < rank(D̃) and input it to FD.
In doing so, the output of FD forms a reduced-rank approx-
imation of D denoted D̂ = QRP⊤.

A promising future research direction involves exploring
smarter truncation methods for extracting the flag type of D
under specific contamination criteria.
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Figure 3. Images from the YFB [5] are flattened and horizontally
stacked into D. We use the hierarchy with the images of the first
subject as A1 and all images as A2. We run FD (flag type (1, 2))
and baselines (rank 2). FD is the only method to correctly recon-
struct the subjects. We plot the basis vectors (eigenfaces) on the
right and find FD extracts basis elements that most closely resem-
ble the subjects.

4. Applications

Before moving on to experimental results, we specify appli-
cations of Flag Decomposition (FD), which enables recon-
struction in the presence of data corruption, visualization,
classification, and a novel prototype and distance for few-
shot learning.

4.1. Reconstruction
Consider the matrix D with an associated column hierarchy
A1 ⊂ A2 ⊂ · · · ⊂ Ak. Suppose we have a corrupted ver-
sion D̃ and the feature hierarchy is known a priori. We use
FD to recover D from D̃. For example, D̃ could be a (pixels
× bands) flattened hyperspectral image with a hierarchy on
the bands (see Example 2.2 and Fig. 1) with outlier bands
or additive noise. Another example includes a hierarchy of
subjects: with images of subject 1 inside those of subjects
1 & 2 (see Fig. 3). A reconstruction using FD respects this
hierarchy by preserving the identities of the two subjects.

Suppose FD is computed by running Flag-BMGS on D̃
to output Q,R,P. Then we reconstruct D̂ = QRP⊤ ≈
D. This is a low-rank reconstruction of D̃ when nk <
rank(D̃). Unlike other reconstruction algorithms this ap-
plication preserves the column hierarchy.

4.2. Leveraging the geometry of flags
Consider a collection of D = {D(j) ∈ Rn×pj}Nj=1

with column hierarchies A(j)
1 ⊂ A(j)

2 ⊂ · · · ⊂ A(j)
k .

For example, D could be a collection of (band × pixel)
hyperspectral image patches. After choosing one flag
type (n1, n2, . . . , nk;n) with nk ≤ min(p1, . . . , pN ), we
can use Flag-BMGS with this flag type on each D(j)

to extract the collection of flags Q = {[[Q(j)]]}Nj=1 ⊂
FL(n1, n2, . . . , nk;n). Now, we can use chordal distance
on the flag manifold FL(n1, n2, . . . , nk;n) or the prod-
uct of Grassmannians Gr(m1, n) × Gr(m2, n) × · · · ×
Gr(mk, n) to build an N×N distance matrix and run multi-
dimensional scaling (MDS) [22] to visualize D or k-nearest
neighbors [39] to cluster D (see Fig. 1). Other cluster-
ing algorithms like k-means can also be implemented with



Figure 4. To perform few shot-learning, we embed all s = 3 shots
(x1,x2,x3) of one class into one flag using FD. The light shapes
are pre-trained and frozen feature extractors.

means on products of Grassmannians (e.g., [11, 14, 34, 37])
or chordal flag averages (e.g., [33]). Additionally, we can
generate intermediate flags by sampling along geodesics be-
tween flags in Q using tools like manopt [8, 56] for explo-
ration of the flag manifold between data samples.

4.3. Few-shot learning
In few-shot learning, a model is trained on very few la-
beled examples, a.k.a. ‘shots’ from each class to make ac-
curate predictions. Suppose we have a pre-trained feature
extractor fΘ : X → Rn, parameterized by Θ. In few-
shot learning, the number of classes in the training set is
referred to as ‘ways.’ We denote the feature representation
of s shots in class c as fΘ(xc,1), fΘ(xc,2), . . . , fΘ(xc,s)
where xc,i ∈ X . The ‘support’ set is the set of all shots
from all classes. A few-shot learning architecture contains
a method for determining a class representative (a.k.a. ‘pro-
totype’) in the feature space (Rn) for each class using its
shots. A test sample (‘query’) is then passed through the
encoder, and the class of the nearest prototype determines
its class. Overall, a classical few-shot learning architecture
is comprised of three (differentiable) pieces: (1) a mapping
of shots in the feature space to prototypes, (2) a measure
of distance between prototypes and queries, and (3) a loss
function for fine-tuning the pre-trained encoder.

Flag classifiers. Take a feature extractor that decomposes
into k ≥ 2 functions. Specifically, fΘ = f

(k)
Θ ◦ · · · ◦ f (1)

Θ :

X → Rn, where each f
(i)
Θ maps to Rn. We can general-

ize Example 2.3 to construct a k-part hierarchical data ma-
trix. For simplicity, we consider the case where k = 2. Af-
ter constructing a data matrix with a corresponding column
hierarchy, we use Flag-BMGS to represent the support of
one class, c, in the feature space as [[Q(c)]] ∈ FL(n1, n2;n)

(see Fig. 4). Now, each subspace [Q
(c)
1 ] and [Q

(c)
2 ] repre-

sents the features extracted by f
(1)
Θ and fΘ, respectively.

Given a flag-prototype [[Q(c)]] ∈ FL(n1, n2;n) and
query

{
f
(1)
Θ (x), fΘ(x)

}
⊂ Rn, we measure distance be-

tween the them as∥∥∥Π
Q

(c)
1

⊥f
(1)
Θ (x)

∥∥∥2
2
+
∥∥∥Π

Q
(c)
2

⊥fΘ(x)
∥∥∥2
2

(15)

Table 3. Metrics for evaluating simulations. LRSE stands for Log
Relative Squared Error, and ∥ · ∥F is the Frobenius norm. [[X]]
represents true flag, D the true data, [[X̂]] the estimated flag, and
D̂ the reconstructed data.

Metric (↓) Formula

Chordal Distance
√∑k

i=1 mi − tr(XT
i X̂iX̂T

i Xi))

LRSE 10 log10

(
∥D− D̂∥2F /∥D∥2F

)

where Π
Q

(c)
i

⊥ = I − Q
(c)
i Q

(c)
i

⊤
for i = 1, 2. This is

proportional to the squared chordal distance on FL(1, 2;n)
when the matrix

[
f
(1)
Θ (x)|fΘ(x)

]
is in Stiefel coordinates.

Flag classifiers are fully differentiable enabling fine-
tuning of the feature extractor with a flag classifier loss. We
leave this as an avenue for future work.

5. Results
We run three simulations in Sec. 5.1 to test the capacity
of FD and RFD for flag recovery and reconstruction for
noisy and outlier-contaminated data. In Sec. 5.2 we visual-
ize clusters of flag representations for hierarchically struc-
tured D matrices using FD. We highlight the utility of FD
for denoising hyperspectral images in Sec. 5.3. We clus-
ter FD-extracted flag representations of hyperspectral image
patches via a pixel hierarchy in Sec. 5.4. Finally, in Sec. 5.5,
we apply flag classifiers to three datasets for classification.
Baselines. While more modern, task-specific algorithms
may exist as baselines for each experiment, our primary ob-
jective is to demonstrate the effectiveness of FD and RFD
(computed using Flag-BMGS) compared to the de facto
standards, SVD and QR, in the context of hierarchical data.
SVD is a standard denoising method. Two common flag ex-
traction algorithms are SVD [11, 33, 34, 53] and QR [33].
In Sec. 5.5 we compare our results to two standard proto-
types (e.g., means and subspaces) for classification within
the few-shot learning paradigm.
Metrics. In the additive noise model D̃ = D+ ϵ, we com-
pute the signal-to-noise ratio (SNR) in decibels (dB) as

SNR(D, ϵ) = 10 log10
(
∥D∥2F /∥ϵ∥2F

)
. (16)

A negative SNR indicates more noise than signal, and a pos-
itive SNR indicates more signal than noise. The rest of our
metrics are in Tab. 3.

5.1. Reconstruction Under Corruption
For both experiments, we generate X ∈ St(10, 4) that rep-
resents [[X]] ∈ FL(2, 4; 10). Then we use X to build a data
matrix D ∈ R10×40 with the feature hierarchy A1 ⊂ A2 =
{1, 2, · · · , 20} ⊂ {1, 2, · · · , 40}. We generate D̃ as either
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Figure 5. FD & RFD improve flag recovery while maintaining ac-
curate reconstructions. SNR is Eq. (16). LSRE & Dist are in Tab. 3
with Dist as the chordal distance. Best fit lines are quadratic.

D with additive noise or D with columns replaced by out-
liers. Our goal is to recover [[X]] and D = XRP⊤ from D̃
using FD and RFD with a flag type of (2, 4; 10), and the first
4 left singular vectors from SVD. We evaluate the estimated
[[X̂]] and D̂ using Tab. 3.

Additive noise. We contaminate with noise by D̃ = D+ ϵ
where ϵ is sampled from either a mean-zero normal, expo-
nential, or uniform distribution of increasing variance. FD
and RFD improve flag recovery over SVD and produce sim-
ilar reconstruction errors (see Fig. 5).

Robustness to outliers. We construct D̃ to contain out-
lier columns. The inlier columns of D̃ form the flag-
decomposable D = XRP⊤ with the flag [[X]]. FD and
RFD outperform SVD and IRLS-SVD, with RFD provid-
ing the most accurate flag recovery and inlier reconstruc-
tions (see Fig. 6).

5.2. MDS Clustering
We generate 60 D matrices in 3 clusters, each with 20
points. Then we add normally-distributed noise to gener-
ate 60 D̃ matrices (see suppl. material). We compute the
SNR for each D̃ via Eq. (16) and find the mean SNR for the
60 matrices is −4.79 dB, indicating that significant noise
has been added to each D. This experiment aims to find the
method that best clusters the D̃ matrices.

We use SVD (with 4 left singular vectors) and FD (with
flag type (2, 4; 10)) on each of the 60 D̃ matrices to recover
the flag representations. Then the chordal distance is used
to generate distance matrices. Finally, MDS visualizes these
data in 2 dimensions. Our additional baseline is run on the
Euclidean distance matrix between the flattened D̃ matri-
ces. We find that FD produces a distance matrix and MDS
with most defined clusters in Fig. 7.

5.3. Hyperspectral Image Denoising
We consider denoising images captured by the AVIRIS hy-
perspectral sensor. Two hyperspectral images are used for
model evaluation: the KSC and Indian Pines datasets [2].
KSC is a (512 × 614) image with 176 bands and Indian
Pines is a (145 × 145) image with 200 bands. We run two
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Figure 6. FD and RFD improve flag recovery and reconstruction
error over SVD and IRLS-SVD with RFD. LSRE & Dist are de-
fined in Tab. 3 with Dist as the chordal distance.

experiments, one on each image, by randomly selecting a
50 × 50 square and flattening it to generate D ∈ R2500×p

(pixels as rows and bands as columns). Then, we add mean-
zero Gaussian noise of increasing variance to obtain D̃,
on which we run our FD and SVD to denoise. LRSE is
measured between D and the denoised reconstruction D̂
(see Tab. 3) to determine the quality of the reconstruction.

For our FD, we specify a flag of type (8, 9, 10; 2500),
and SVD is run using the first 10 left singular vectors. The
hierarchy used as input to our algorithm mirrors the spec-
trum hierarchy (see Example 2.2) by assigning A1 to the
first 40 bands, A2 to the first 100 bands, and A3 to all the
bands. We find in Fig. 8 that FD consistently improves HSI
denoising over SVD. When testing exponential and uniform
noise, FD and SVD produce similar quality denoising.

5.4. Hyperspectral Image Clustering
We now showcase image patch clustering using the KSC
hyperspectral image. The data was pre-processed to re-
move low SNR and water absorption bands, then split into
3 × 3 patches of pixels from the same class. Each patch
is translated into a D ∈ R176×9 (bands as rows and pixels
as columns) with the hierarchy described in Example 2.1
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Figure 7. (Top row) distance matrices using Euclidean distance
(Euclidean) and chordal distance between flags (SVD and FD).
(Bottom row) 2D representation of the data colored by cluster via
MDS applied to the distance matrix.

https://aviris.jpl.nasa.gov/
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Figure 8. FD improves hyperspectral image denoising over SVD
(see SNR Eq. (16), LRSE Tab. 3).

with A1 as the center pixel. A flag recovery method is run
on each D to extract a flag of type (1, 8; 176). Then, we
compute a chordal distance matrix between the collection of
flags. Finally, we classify these flags using k-nearest neigh-
bors. We compare FD to QR and SVD in Fig. 9 and find
that FD produces the highest classification accuracy for the
number of nearest neighbors between 6 and 24.

Instead of using chordal distance between flags to mea-
sure distance, we use a sum of Grassmannian chordal dis-
tances. We hypothesize that this is a more suited distance
for this example because it is more robust to outlier pixels.
Given [[X]], [[Y]] ∈ FL(1, 8; 176), we use a chordal distance
on the product of Grassmannians that takes advantage of the
embedding of FL(1, 8; 176) in Gr(1, 176) × Gr(7, 176).
See our suppl. material for details.

5.5. Few-shot Learning
We deploy FD in few-shot learning using an Alexnet [21],
pre-trained on ImageNet, as the feature extractor fΘ : X →
R4096, admitting the representation fΘ = f

(1)
Θ ◦ f (2)

Θ where
the range of both f

(1)
Θ and f

(2)
Θ is R4096. We use the fea-

ture hierarchy outlined in Example 2.3 and the procedure
in Sec. 4.3 to map the support of one class to a flag proto-
type using FD (see Fig. 4). The distance between a query
point and a flag prototype is Eq. (15). We call this pipeline
a flag classifier. Our baselines include Euclidean [51] and
subspace [50] classifiers. No fine-tuning is used to optimize
the feature extractor in any experiments.

Our two baseline methods, Euclidean and subspace, use
means and subspaces as prototypes. Specifically, proto-
typical networks [51] are a classical few-shot architecture
that uses averages for prototypes and Euclidean distance be-
tween prototypes and queries. On the other hand, subspace
classifiers from adaptive subspace networks [50] use sub-
spaces as prototypes and measure distances between pro-
totypes and queries via projections of the queries onto the
prototype. Building upon these baseline methods, we use a
flag-based approach (see Figs. 1 and 4). For a fair compari-
son, baselines stack features extracted by f

(1)
Θ and fΘ.

We evaluate flag classifiers on EuroSat [18], CIFAR-
10 [20], and Flowers102 [40] datasets, and report the av-
erage classification accuracy in Tab. 4 over 20 random trials
each containing 100 evaluation tasks with 10 query images
and 5 ways per task. We find that flag classifiers perform
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Figure 9. k-nearest neighbors classification accuracies (↑) using
chordal distance matrices derived from flag representations of 3×3
image patches of the KSC dataset over 20 random trials with a
70%− 30% training-validation split.

similarly to subspace classifiers and improve classification
accuracy in two cases. Further results are in suppl. material.

Table 4. Classification accuracy (↑) with s shots, 5 ways, and 100
evaluation tasks each containing 10 query images, averaged over
20 random trials. Flag types for ‘Flag’ are (s − 1, 2(s − 1)) and
the subspace dimension is s− 1.

s Dataset Flag Euc. Subsp.

3 EuroSat 77.7 76.7 77.6
CIFAR-10 59.6 58.6 59.6
Flowers102 90.2 88.2 90.2

5 EuroSat 81.8 80.7 81.8
CIFAR-10 65.2 65.2 65.2
Flowers102 93.2 91.4 93.2

7 EuroSat 83.9 82.6 83.8
CIFAR-10 68.0 68.6 68.1
Flowers102 94.5 92.7 94.5

6. Conclusion

We introduced Flag Decomposition (FD), a novel matrix
decomposition that uses flags to preserve hierarchical struc-
tures within data. We further proposed Flag-BMGS to ro-
bustly find this decomposition even under noise and outlier
contamination and studied its properties. With this algo-
rithm, FD augments the machine learning arsenal by provid-
ing a robust tool for working with hierarchical data, appli-
cable in tasks like denoising, clustering, and few-shot learn-
ing, as demonstrated by our evaluations.

Limitations & future work. Our FD framework is a first
step to hierarchy-aware decompositions and leaves ample
room for future study. For example, Flag-BMGS is prone
to the instabilities of Gram-Schmidt and requires a flag type
and column hierarchy as inputs. In the future, we will im-
prove algorithms for faster and more stable computation.
Next, we plan to automate the flag type detection and ex-
plore fine-tuning a feature extractor for few-shot learning
with flags. We will also investigate directly learning (latent)
hierarchical structures from data.
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