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 A B S T R A C T

This work presents a general framework for blindly estimating the sensor parameters of decision-fusion systems 
over wireless sensor networks (WSNs). The sensors report their binary decisions to a fusion center (FC) through 
parallel binary symmetric channels. Then, the FC makes the final decision by combining the noisy sensor 
decisions according to a certain fusion rule.

We present an algorithm for the FC to blindly estimate the sensor parameters from the noisy sensor 
decisions received after a number of sensing periods. The algorithm covers a wide variety of situations that 
may arise in WSNs. For example, the algorithm is applicable when the FC knows in advance some of the 
parameters of some sensors, when it knows the true hypothesis for a subset of sensing periods, or when only 
a subset of sensors communicates their decisions in each sensing period.

Based on the estimates of the system parameters, optimal channel-aware fusion rules are derived 
considering the minimum Bayes risk criterion. Simulation results show that, after sufficient sensing periods, 
the estimates of the WSN parameters are accurate enough for the fusion rule to exhibit near-optimal detection 
performance.
1. Introduction

This paper addresses the so-called canonical distributed detection 
problem [1] in wireless sensor networks (DD-WSN) composed of a 
set of spatially distributed sensors and a fusion center (FC). Sensors 
report their binary decisions about the presence or absence of a given 
event of interest to the FC through dedicated wireless channels. The 
FC then fuses the noisy binary decisions from the sensors to make 
the final decision according to a given fusion rule. The sensors do not 
communicate with each other, and there is no feedback from the FC 
to the sensors. Communication is assumed only between each sensor 
and the FC through the corresponding reporting channel. Therefore, 
the only information at the FC is the noisy sensor decisions at the out-
put of the reporting channels. Dedicated reporting channels are quite 
common in DD-WSNs [2–11]. They contrast with multi-access channels 
where multiple sensors transmit simultaneously over a shared channel. 
Using dedicated channels can provide more reliable and predictable 
communication, but may require more bandwidth and energy than 
multi-access channels.

In general, the design of DD-WSN systems requires determining the 
local decision rules at the sensors and the fusion rule at the FC [1]. 
Variations of this formulation include the optimization of only the local 
decision rules for a given fusion rule [12–14], and the optimization of 
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the fusion rule for given sensor decision rules [15–19]. In this work, 
we focus on the last case, where the reliabilities of the sensor decision 
rules are unknown to the FC.

In homogeneous WSNs, all sensors exhibit identical probabilities 
of detection and false-alarm [5,20,21]. Some authors consider semi-
homogeneous WSNs where the sensors can have different detection 
probabilities but identical false-alarm probabilities [4,8]. This work 
considers fully heterogeneous networks where the sensors may operate 
at different probabilities of detection and false-alarm [17,19].

The reliability of the sensor decisions observed by the FC depends 
not only on the sensors themselves but also on the reporting channels. 
Therefore, the design of fusion rules requires considering the effect of 
the reporting channels as well. Those rules are called channel-aware 
fusion rules [9]. In the WSN literature, the two most common reporting 
channel models are the so-called noise fading channel (NFC) [17–19,
22] and the binary symmetric channel (BSC) [4,5,8,11,12,23,24]. In 
the first case, the FC receives a faded and noisy version of each sensor 
decision. Therefore, the output of a NFC is a complex random value 
characterized by its channel response and the noise power. The BSCs 
model the relationship between the binary decisions transmitted by the 
sensors and the noisy binary decisions at the FC. The reliability of a 
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BSC is characterized by its bit error probability (often called crossover 
probability). In this work, we consider the general case in which BSCs 
can have different bit error probabilities [5]. This usually occurs when 
the sensors are placed at different locations with respect to the FC. 
As usual in the related literature, we assume that the FC knows the 
error probabilities of the BSCs [2,3,6,8,10,23]. Note that the coherent 
demodulation of the sensor signals requires the FC to estimate the 
reporting channels. From the channel estimates, the FC can obtain the 
error probabilities of the BSCs.

The design of the optimal fusion rule is conceptually straightforward 
when the FC knows the detection and false-alarm probabilities of 
the sensors. In this case, the detection problem is a simple binary 
hypothesis testing problem, so the optimal fusion rule is the likelihood 
ratio test (LRT) [4]. To make the final decision, the FC compares the 
likelihood ratio (LR) with a decision threshold whose value depends 
on the detection criterion used [25,26]. The Neyman-Pearson theorem 
establishes that the detection rule that maximizes the probability of 
detection, for a given probability of false-alarm, is the likelihood-ratio 
test (LRT) with a decision threshold determined by the distribution of 
the FC observations under the null hypothesis 0. Therefore, it requires 
the FC to exactly know the sensors’ probabilities of false alarm, which 
are unknown in our standard problem. Consequently, the Neyman-
Pearson criterion is not applicable in our problem. In this work, we 
consider the Minimum Bayes Risk (MBR) detection criterion, which 
includes the minimum probability of error as a particular case. In 
this case, the optimal fusion rule is also the LRT, but the decision 
threshold is independent of the distribution of the FC observations. 
It only depends on the prior probability of occurrence of the event 
to be detected [15]. However, the fact that the LRT depends on the 
model parameters (probabilities of detection and false-alarm of the 
sensors, and prior probabilities) is a major drawback, as some or even 
all of them may be unknown to the FC in practice. In these cases, the 
LRT is inapplicable. Two approaches have been proposed to overcome 
this difficulty: 1) to use sub-optimal fusion rules independent of the 
unknown model parameters, and 2) first estimate the unknown model 
parameters and then design a fusion rule accordingly.

The counting rules (CR), also called voting rules, are the most 
popular blind fusion rules. The test statistic is simply the sum of the 
sensor decisions. Therefore, the fusion rule implicitly assigns the same 
weight to sensor decisions regardless of their sensing performance. 
Their main advantages are their simplicity and the fact that the FC 
does not need to know any system parameters. Ref. [27] has shown 
interesting properties of the CR in DD-WSNs. For example, in semi-
homogeneous WSNs when the FC knows the probability of false-alarm 
of the sensors, the CR is statistically equivalent to the generalized 
LRT and to the Rao test under the mild assumption that the common 
probability of false alarm is lower than 1∕2. Also, in semi-homogeneous 
WSNs, the CR is statistically equivalent to the locally most-mean power-
ful test [28]. Moreover, the CR is the Uniform Most Powerful Invariant 
test in heterogeneous DD-WSNs when the FC knows the sensor prob-
abilities of false-alarm [27]. Typically, the decision threshold of the 
CR is an integer value, which represents the minimum number of 
sensor decisions for the FC to decide the alternative hypothesis. Several 
methods have been proposed to select the optimum decision threshold 
in homogeneous networks [1,21] and in heterogeneous networks [11], 
but all of them require knowing the reliability of the sensors. In any 
case, the optimal decision threshold is highly dependent on the model 
parameters.

Another fusion rule independent of the unknown model parameters 
is the so-called Ideal Sensor Rule (ISR), where the LR is approximated 
by assuming ideal sensors [8]. Therefore, if the detection probabilities 
are unknown, they are set to one. Similarly, false alarm probabilities 
are set to zero when they are unknown. Consequently, the resulting 
test statistic only depends on the BSC’s error probabilities.

The fusion rule proposed in [5] (known as ‘‘Wu rule’’ [8]) is an 
example of the second approach. Its test statistic is based on approx-
imated maximum likelihood (ML) estimates of the sensor detection 
2 
probabilities. This fusion rule is limited to homogeneous networks 
where the FC knows the false-alarm probability of the sensors. The 
fusion rules in [29] also belong to the second approach. These are 
described later.

Contribution
This paper presents a general method for the FC to learn the model 

parameters (the sensors’ probabilities of detection and false-alarm and 
the prior probability of the event to be detected) in heterogeneous 
DD-WSNs from the decisions reported by the sensors through BSCs 
with known error probabilities. These decisions may be incomplete in 
the sense that only a subset of sensors reports their decisions in each 
sensing period.

We first derive the learning algorithm for what we call the standard 
case, where we assume that all model parameters are unknown to the 
FC, and the FC does not know the true hypothesis for any of the sensing 
periods. We then specialize the standard algorithm to the following 
interesting practical cases:

• The FC knows some of the parameters (probability of false-alarm 
and/or probability of detection) of a subset of sensors.

• The FC knows the true hypothesis for a subset of sensing peri-
ods. This case is particularly interesting when there is an initial 
calibration stage of the DD-WSN under controlled conditions, so 
the FC knows the actual hypothesis for the corresponding sensor 
decisions.

To derive the learning algorithm, we consider a probabilistic mix-
ture model [30] of the sensor decisions with two components associated 
with the two hypotheses (presence or absence of the event to be 
detected). The noisy sensor decisions at the FC are the observed vari-
ables, and the presence/absence of the event to be detected is a latent 
(hidden) variable. Then, we apply the Expectation–Maximization (EM) 
algorithm [30–32] to estimate the unknown model parameters, which 
leads to quite simple closed-form expressions for both the E-step and 
the M-step.

Learning the sensor parameters is valuable in its own right. But 
in DD-WSS, the ultimate goal is to have an accurate fusion rule. We 
rewrite the LRT so the test statistic is the posterior probability of 
the sensor decisions, and the decision threshold is independent of the 
model parameters. Then, we propose a fusion rule where the test statis-
tic is the estimate of the posterior probability of the sensor decisions 
according to the EM estimates of the model parameters. Therefore, the 
performance of the fusion rule is determined by the accuracy of the 
estimates of the posterior probabilities rather than the accuracy of the 
individual sensor parameter estimates.

Extensive simulation experiments show that, after sufficient sensing 
periods, the posterior probability estimates are accurate enough for the 
fusion rule to exhibit near-optimal detection performance.

Related works
Ref. [33] establishes the analytical relationships between the DD-

WSN parameters and the joint probabilities of the sensor decisions, 
assuming error-free reporting channels. Then, the authors propose esti-
mating the DD-WSN parameters by substituting the joint probabilities 
with their sampling estimates. In the particular case of three sensors 
DD-WSN, the authors derive a batch and an adaptive algorithm to 
analytically estimate its parameters. In [29] the authors pose the Least-
Squares (LS) and the ML estimation of the model parameters in M-ary 
distributed detection, where the sensors report M-ary decisions to the 
FC. The computation of the LS estimates requires solving a system of 
non-linear equations, whereas the ML estimates are the solutions of an 
optimization problem. In both cases, the parameter estimates must be 
obtained numerically. The above references do not take into account 
the constraints imposed by the reporting channels. In addition, they 
assume that all sensors report their decisions to the FC in each sensing 
period, and all model parameters are unknown to the FC.
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The parameter estimation in DD-WSNs is closely related to the so-
called unsupervised ensemble learning, where a meta-classifier blindly 
estimates the reliabilities of an ensemble of classifiers from their deci-
sions. The meta-classifier then derives a fusion rule, taking into account 
the estimated classifiers’ reliabilities. In DD-WSN, the FC and the 
sensors play the same role as the meta-classifier and the classifiers in 
unsupervised ensemble learning, respectively. In this context, focusing 
on binary classifiers, spectral-based methods have been proposed to 
rank the classifiers according to their accuracies [34] or to estimate 
their accuracy parameters [35]. More recently, [36] presents a learning 
scheme for multi-class ensemble classification (called M-ary distributed 
detection in the DD-WSN context) based on a moment matching method 
that leverages joint tensor and matrix factorization. Mathematically, 
the unsupervised ensemble learning problem is equivalent to estimat-
ing the parameters of a mixture of multinomial random variables, or 
Bernoulli random variables in the case of binary classifiers. Those pa-
rameters are related to the performance of the individual classifiers and 
the prior probabilities of the classes. Following this approach, the EM 
algorithm has been proposed for unsupervised ensemble learning [37]. 
But in unsupervised ensemble learning, the classifier parameters are 
usually unconstrained and all sensor decisions are available to the 
meta-classifier. The specific constraints of the DD-WSN problem im-
posed by the reporting channels and sensor operating regions, as well 
as the incompleteness of the observations, make all these ensemble 
learning algorithms inapplicable to DD-WSN.

Paper organization
The remainder of this paper is organized as follows. Section 2 

describes the system model and derives the probabilistic distribution 
of sensor decisions at the FC as a function of the model parameters. 
In Section 3 we propose the fusion rule, under the MBR detection 
criterion, based on the estimates of the DD-WSN parameters. After-
wards, Section 4 derives the EM estimators of the parameters for the 
standard case. In Section 5, we consider the scenario where the FC 
has partial knowledge of some model parameters. Next, we derive 
the EM estimators for the remaining unknown parameters. Section 6 
shows a set of comprehensive simulation results for a wide variety 
of cases. It is divided into two subsections. The first one presents 
results that show the performance of the proposed estimators. Then, the 
second subsection shows simulation results that illustrate the detection 
performance of the proposed fusion rule. Finally, Section 7 concludes 
the paper.

Notation
Throughout this paper, we use light-face lowercase letters for scalar 

quantities, bold-face lowercase letters for vectors, and bold-face capital 
letters for matrices. We employ 𝐚 = (𝑎𝑖)1≤𝑖≤𝐼  to denote a real vector, of 
length 𝐼 , whose 𝑖th entry is 𝑎𝑖, and 𝐀 = (𝑎𝑖,𝑗 )1≤𝑖≤𝐼,1≤𝑗≤𝐽  denotes a 𝐼 × 𝐽
real matrix whose (𝑖, 𝑗)-th entry is 𝑎𝑖,𝑗 . The all-zeros vector and all-ones 
vector are denoted by 𝟎 and 𝟏, respectively. E[⋅] denotes the expectation 
operator and 𝑃 (𝐴) refers to the probability of the event 𝐴.  denotes 
the complement of the set , and || is its cardinality. Finally, 𝜃̂ refers 
to an estimate of parameter 𝜃.

2. System model

Fig.  1 shows a DD-WSN comprising 𝐾 sensors and a fusion center 
(FC).

The binary variable 𝑧 denotes the presence (𝑧 = 1) or absence (𝑧 = 0) 
of the event to detect. We denote the above hypotheses by 1 and 0, 
respectively. Each sensor makes its own binary decision, 𝑦𝑘 ∈ {0, 1}, 
about the absence or presence of the phenomenon. The decision 𝑦𝑘
is subject to a probability of detection 𝑃 (𝑠)

𝑑,𝑘 = 𝑃 (𝑦𝑘 = 1|1) and a 
probability of false-alarm 𝑃 (𝑠)

𝑓,𝑘 = 𝑃 (𝑦𝑘 = 1|0). Each sensor reports its 
decision to the FC through a dedicated BSC, so the FC receives a noisy 
binary value, 𝑥 ∈ {0, 1}. Let 𝑒 = 𝑃 (𝑥 = 0|𝑦 = 1) = 𝑃 (𝑥 = 1|𝑦 = 0)
𝑘 𝑘 𝑘 𝑘 𝑘 𝑘

3 
Fig. 1. Distributed detection in a wireless sensor network (DD-WSN).

be the error probability of the BSC of sensor 𝑘 [10,38]. From the 
noisy decision vector 𝐱 = (𝑥𝑘)1≤𝑘≤𝐾 , the FC makes the global decision 
according to a certain fusion rule 𝑧̂(𝐱) ∈ {0, 1}.

We assume that the sensor decisions at the FC, 𝑥𝑘, are conditionally 
independent. This requires both the BSC errors, 𝑒𝑘, and the sensor 
decisions, 𝑦𝑘, to be conditionally independent. This is a common as-
sumption in the WSN literature [4,5,7,8,11,15,16,19,39] because it 
leads to tractable analyses and useful fusion rules.

Let 𝑃 (𝐹𝐶)
𝑓,𝑘 = 𝑃 (𝑥𝑘 = 1|0) and 𝑃 (𝐹𝐶)

𝑑,𝑘 = 𝑃 (𝑥𝑘 = 1|1) be 
the probabilities of false-alarm and detection of sensor 𝑘 at the FC, 
respectively. They depend on the sensors’ probabilities and on the BSC 
error probability as follows [4,11] 

𝑃 (𝐹𝐶)
𝑓,𝑘 = 𝑒𝑘(1 − 𝑃 (𝑠)

𝑓,𝑘) + (1 − 𝑒𝑘)𝑃
(𝑠)
𝑓,𝑘 = 𝑒𝑘 + 𝑃 (𝑠)

𝑓,𝑘(1 − 2𝑒𝑘), (1)

𝑃 (𝐹𝐶)
𝑑,𝑘 = 𝑒𝑘(1 − 𝑃 (𝑠)

𝑑,𝑘) + (1 − 𝑒𝑘)𝑃
(𝑠)
𝑑,𝑘 = 𝑒𝑘 + 𝑃 (𝑠)

𝑑,𝑘(1 − 2𝑒𝑘). (2)

Note that, when 𝑒𝑘 is known, 𝑃 (𝑠)
𝑓,𝑘 and 𝑃

(𝑠)
𝑑,𝑘 are determined by 𝑃

(𝐹𝐶)
𝑓,𝑘

and 𝑃 (𝐹𝐶)
𝑑,𝑘 , respectively. Without loss of generality, we assume that 

0 < 𝑒𝑘 < 1∕2. The limit value 𝑒𝑘 = 0 would correspond to an error-
free channel, whereas 𝑒𝑘 = 1∕2 would be the case of a fully random 
channel. We also assume that 𝑃 (𝑠)

𝑓,𝑘 ≤ 𝑃 (𝑠)
𝑑,𝑘. This assumption comes 

from the informativeness of the sensors’ decisions. In other words, 
we assume that sensor decisions are not worse than random guessing. 
Then, from (1) and (2), it is straightforward to show that the sensor 
error probabilities at the FC are constrained as follows, 

𝑒𝑘 ≤ 𝑃 (𝐹𝐶)
𝑓,𝑘 ≤ 𝑃 (𝐹𝐶)

𝑑,𝑘 ≤ 1 − 𝑒𝑘. (3)

To simplify notation, hereafter we will denote 𝑃 (𝐹𝐶)
𝑓,𝑘  and 𝑃 (𝐹𝐶)

𝑑,𝑘  by 𝑓𝑘
and 𝑑𝑘, respectively. The 𝑘th sensor output is governed by Bernoulli 
distributions with parameters 𝑓𝑘 and 𝑑𝑘 for each hypothesis. Since 
we assume that the 𝑥𝑘 are conditionally independent, the conditional 
probability mass function (pmf) of the decision vector under each 
hypothesis will be 

𝑝(𝐱|0; 𝐟 ) =
𝐾
∏

𝑘=1
𝑓𝑥𝑘
𝑘 (1−𝑓𝑘)1−𝑥𝑘 , 𝑝(𝐱|1;𝐝) =

𝐾
∏

𝑘=1
𝑑𝑥𝑘𝑘 (1−𝑑𝑘)1−𝑥𝑘 , (4)

where 𝐟 = (𝑓𝑘)1≤𝑘≤𝐾 and 𝐝 = (𝑑𝑘)1≤𝑘≤𝐾 contain the sensors’ probabili-
ties of false-alarm and detection observed by the FC, respectively. The 
marginal distribution of 𝐱 will be the mixture of the conditional pmfs 
(4) with mixing coefficients equal to the prior probabilities of 0 and 
1, 

𝑝(𝐱;𝛩) = (1 − 𝑢) 𝑝(𝐱| ; 𝐟 ) + 𝑢 𝑝(𝐱| ;𝐝), (5)
0 1
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where 𝛩 = {𝐟 ,𝐝, 𝑢} denotes the set of model parameters, 𝑢 = 𝑃 (1) and 
1 − 𝑢 = 𝑃 (0). Let 𝑧 be a binary variable denoting the true hypothesis. 
Then, the joint pmf of 𝐱 and 𝑧 can be written as follows 
𝑝(𝐱, 𝑧;𝛩) =

[

(1 − 𝑢) 𝑝(𝐱|0; 𝐟 )
]1−𝑧 [

𝑢 𝑝(𝐱|1;𝐝)
]𝑧 . (6)

3. Fusion rules

In DD-WSN, the FC makes the final decision from the decisions 
reported by the individual sensors, so the ultimate goal is to design 
an accurate fusion rule 𝑧̂(𝐱) ∈ {0, 1} (see Fig.  1).

3.1. Performance metrics

As 𝐱 is a binary random vector, the probabilities of false-alarm and 
detection of 𝑧̂(𝐱) are
𝑃𝑓 = 𝑃 (𝑧̂(𝐱) = 1|0) =

∑

𝐱∈𝛺𝐱

𝑧̂(𝐱) 𝑝(𝐱|0; 𝐟 ),

𝑃𝑑 = 𝑃 (𝑧̂(𝐱) = 1|1) =
∑

𝐱∈𝛺𝐱

𝑧̂(𝐱) 𝑝(𝐱|1;𝐝), (7)

where the sample space of 𝐱, denoted by 𝛺𝐱, is the set of binary K-tuples 
with cardinality |𝛺𝐱| = 2𝐾 . We consider the Bayesian risk [25,26] as 
the performance metric of the fusion rules, 
𝐵 = 𝑃𝑓 (1 − 𝑢) 𝐶1,0 + (1 − 𝑃𝑑 ) 𝑢 𝐶0,1 + (1 − 𝑃𝑓 ) (1 − 𝑢) 𝐶0,0 + 𝑃𝑑 𝑢 𝐶1,1, (8)

where 𝐶𝑖,𝑗 is the cost of deciding 𝑧̂(𝐱) = 𝑖 when the true value is 
𝑧 = 𝑗. Usually, no cost is assigned to the correct decisions so that 
𝐶0,0 = 𝐶1,1 = 0. In addition, if the two types of errors (false-alarms and 
miss-detections) have unit cost, 𝐶1,0 = 𝐶0,1 = 1, the Bayes risk reduces 
to the probability of error: 
𝑃𝑒 = 𝑃 (𝑧̂(𝐱) ≠ 𝑧) = 𝑃𝑓 (1 − 𝑢) + (1 − 𝑃𝑑 ) 𝑢. (9)

3.2. Optimal and proposed fusion rule

The Minimum Bayes Risk (MBR) criterion aims to minimize the 
Bayesian risk (8). Assuming the FC knows the model parameters, the 
MBR fusion rule is the LRT [1,15] 

𝑧̂𝑀𝐵𝑅(𝐱) =
{

1, if 𝛬(𝐱; 𝐟 ,𝐝) > 𝜆𝑀𝐵𝑅(𝑢),
0, if 𝛬(𝐱; 𝐟 ,𝐝) ≤ 𝜆𝑀𝐵𝑅(𝑢),

(10)

where the test statistic (the LR) and the decision threshold are given by

𝛬(𝐱; 𝐟 ,𝐝) =
𝑝(𝐱|1;𝐝)
𝑝(𝐱|0; 𝐟 )

, 𝜆𝑀𝐵𝑅(𝑢) =
1 − 𝑢
𝑢

𝐶1,0 − 𝐶0,0

𝐶0,1 − 𝐶1,1
.

It is easy to show that the MBR fusion rule can be rewritten as follows 

𝑧̂𝑀𝐵𝑅(𝐱) =
{

1, if 𝑡(𝐱;𝛩) > 𝜆′𝑀𝐵𝑅,
0, if 𝑡(𝐱;𝛩) ≤ 𝜆′𝑀𝐵𝑅,

(11)

where the test statistic is now the posterior probability of 1, 

𝑡(𝐱;𝛩) = 𝑃 (𝑧 = 1 | 𝐱;𝛩) =
𝑢 𝑝(𝐱|1;𝐝)

(1 − 𝑢) 𝑝(𝐱|0; 𝐟 ) + 𝑢 𝑝(𝐱|1;𝐝)
, (12)

and the new decision threshold is

𝜆′𝑀𝐵𝑅 =
𝐶1,0 − 𝐶0,0

𝐶0,1 − 𝐶1,1 + 𝐶1,0 − 𝐶0,0
.

The test statistic in (11) depends on the model parameters 𝛩, while 
the decision threshold is independent of them. When all or some 
model parameters are unknown, we propose a fusion rule as (11), but 
replacing the unknown parameters in the test statistic expression (12) 
by their estimates provided by the EM algorithm: 𝑡(𝐱; 𝛩̂). Notice that the 
detection performance is determined by the accuracy of the posterior 
probability estimation, rather than by the accuracy of the individual 
model parameter estimates.
4 
4. EM estimates of the model parameters

Consider a sequence of 𝑁 consecutive sensing periods, and let 𝐳 =
(𝑧𝑛)1≤𝑛≤𝑁  be the unknown true hypothesis at them. In each sensing 
period, a subset of sensors reports their decisions to the FC. Let 𝑙𝑘,𝑛
be a binary indicator variable such that 𝑙𝑘,𝑛 = 1 if sensor 𝑘 reported 
its decision at sensing period 𝑛, and 𝑙𝑘,𝑛 = 0 otherwise. Therefore, 
𝑀𝑘 =

∑𝑁
𝑛=1 𝑙𝑘,𝑛 is the number of decisions reported by the sensor 𝑘 to 

the FC, and 𝐾𝑛 =
∑𝐾

𝑘=1 𝑙𝑘,𝑛 is the number of sensors that report decisions 
to the FC at sensing period 𝑛. We assume that each sensor reports its 
decisions at least once, so 𝑀𝑘 > 0 for all 𝑘. We also assume that at least 
one sensor reports its decision in each sensing period, so 𝐾𝑛 > 0 for all 
𝑛.

Let 𝐱𝑛 = (𝑥𝑘,𝑛)1≤𝑘≤𝐾 be the decision vector (possibly incomplete) at 
sensing period 𝑛. From (4), the conditional pmfs at 𝐱𝑛 can be written 
as follows:

𝑝(𝐱𝑛|0; 𝐟 ) =
𝐾
∏

𝑘=1

[

𝑓𝑥𝑘,𝑛
𝑘 (1 − 𝑓𝑘)1−𝑥𝑘,𝑛

]𝑙𝑘,𝑛
,

𝑝(𝐱𝑛|1;𝐝) =
𝐾
∏

𝑘=1

[

𝑑𝑥𝑘,𝑛𝑘 (1 − 𝑑𝑘)1−𝑥𝑘,𝑛
]𝑙𝑘,𝑛

. (13)

The sensor decisions at the FC can be arranged in an 𝐾 ×𝑁 incomplete 
matrix 𝐗 = (𝑥𝑘,𝑛) 1≤𝑘≤𝐾, 1≤𝑛≤𝑁 , whose 𝑛th column is 𝐱𝑛. Given 𝐗, the 
ML estimates of the model parameters are 

𝛩̂ = {𝐟 , 𝐝̂, 𝑢̂} = argmax
𝛩∈𝛩

log𝐿(𝛩), (14)

where the log-likelihood function is given by 

log𝐿(𝛩) =
𝑁
∑

𝑛=1
log 𝑝(𝐱𝑛;𝛩). (15)

The feasible set is 𝛩 = {𝐟 ,𝐝, 𝑢 | 𝑢 ∈ (0, 1), (𝑓𝑘, 𝑑𝑘) ∈ 𝑘,∀𝑘}, where 𝑘
denotes the set of feasible operational points of sensor 𝑘 given by (3), 

𝑘 = {(𝑓𝑘, 𝑑𝑘) | 0 < 𝑒𝑘 ≤ 𝑓𝑘 ≤ 𝑑𝑘 ≤ 1 − 𝑒𝑘 < 1} (16)

The optimization problem (14) has no closed-form solution, so we 
resort to the EM algorithm [31,32] to solve it, where 𝐗 contains the 
observed variables and 𝐳 the latent variables. The EM is an iterative 
algorithm whose iterations comprise two steps, termed the E-step and 
the M-step:

• E-step: 
𝑄(𝛩; 𝛩̂(𝑖−1)) = E

𝐳

[

log𝐿𝑐 (𝛩) | 𝐗; 𝛩̂(𝑖−1)] , (17)

• M-step: 
𝛩̂(𝑖) = argmax

𝛩∈𝛩
𝑄(𝛩; 𝛩̂(𝑖−1)), (18)

where 𝑖 is the index to iterations and log𝐿𝑐 (𝛩) denotes the log-
likelihood function if the true hypotheses 𝐳 were known, which is given 
by 

log𝐿𝑐 (𝛩) =
𝑁
∑

𝑛=1
log 𝑝(𝐱𝑛, 𝑧𝑛;𝛩). (19)

In [30,40] the EM algorithm is applied to mixtures of Bernoulli 
random variables. In [32,37] it is applied to mixtures of multinomial 
random variables, which generalize mixtures of Bernoulli random vari-
ables. But in all the above cases, the parameters are unconstrained and 
the observations are complete. The specific constraints (16) of the DD-
WSN problem and the incomplete nature of the observations 𝐱𝑛 make 
the application of the EM algorithm to (14) challenging and different 
from those references.
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E-step:

Substituting (6) into (19), 

log𝐿𝑐 (𝛩) =
𝑁
∑

𝑛=1
(1 − 𝑧𝑛) log

[

(1 − 𝑢) 𝑝(𝐱𝑛|0; 𝐟 )
]

+ 𝑧𝑛 log
[

𝑢 𝑝(𝐱𝑛|1;𝐝)
]

.

(20)

Then, the expectation function (17) will be 

𝑄(𝛩; 𝛩̂(𝑖−1)) =
𝑁
∑

𝑛=1

(

1 − 𝑡(𝑖)𝑛
)

log
[

(1 − 𝑢) 𝑝(𝐱𝑛|0; 𝐟 )
]

+ 𝑡(𝑖)𝑛 log
[

𝑢 𝑝(𝐱𝑛|1;𝐝)
]

,

(21)

where

𝑡(𝑖)𝑛 = E
𝐳

[

𝑧𝑛|𝐱𝑛; 𝛩̂(𝑖−1)] = 𝑃
(

𝑧𝑛 = 1|𝐱𝑛; 𝛩̂(𝑖−1)) (22)

=
𝑢̂(𝑖−1) 𝑝

(

𝐱𝑛|1; 𝐝̂(𝑖−1)
)

(

1 − 𝑢̂(𝑖−1)
)

𝑝
(

𝐱𝑛|0; 𝐟 (𝑖−1)
)

+ 𝑢̂(𝑖−1) 𝑝
(

𝐱𝑛|1; 𝐝̂(𝑖−1)
) .

Indeed, the posterior probability 𝑡(𝑖)𝑛  can be interpreted as a soft 
estimate of 𝑧𝑛 at iteration 𝑖 once 𝐱𝑛 is observed and given the parameter 
estimation at the previous iteration. For notation convenience, we 
group these soft estimates in vector 𝐭(𝑖) = (𝑡(𝑖)𝑛 )1≤𝑛≤𝑁 .

M-step:

Substituting (21) into (18),

𝛩̂(𝑖) = {𝐟 (𝑖), 𝐝̂(𝑖), 𝑢̂(𝑖)} = argmax
𝛩∈𝛩

𝑁
∑

𝑛=1
(1 − 𝑡(𝑖)𝑛 ) log(1 − 𝑢) + 𝑡(𝑖)𝑛 log 𝑢 + (23)

(1 − 𝑡(𝑖)𝑛 ) log 𝑝(𝐱𝑛|0; 𝐟 ) + 𝑡(𝑖)𝑛 log 𝑝(𝐱𝑛|1;𝐝).

Since the terms depending on 𝑢 are decoupled from the rest, (23) can 
be broken down into two independent problems: 

𝑢̂(𝑖) = argmax
0<𝑢<1

𝑁
∑

𝑛=1
(1 − 𝑡(𝑖)𝑛 ) log(1 − 𝑢) + 𝑡(𝑖)𝑛 log 𝑢, (24)

{𝐟 (𝑖), 𝐝̂(𝑖)} = argmax
(𝑓𝑘,𝑑𝑘 )∈𝑘,∀𝑘

𝐾
∑

𝑘=1

𝑁
∑

𝑛=1

(

1 − 𝑡(𝑖)𝑛
)

𝑙𝑘,𝑛 [𝑥𝑘,𝑛 log 𝑓𝑘 + (1 − 𝑥𝑘,𝑛) log(1 − 𝑓𝑘)] +

+ 𝑡(𝑖)𝑛 𝑙𝑘,𝑛 [𝑥𝑘,𝑛 log 𝑑𝑘 + (1 − 𝑥𝑘,𝑛) log(1 − 𝑑𝑘)], (25)

where we have considered the expressions of the conditional probabilities (13). 
Moreover, in (25) the terms of the objective function associated with each sensor 
are decoupled from each other, so it can be divided into 𝐾 decoupled problems 
of the form

{𝑓 (𝑖)
𝑘 , 𝑑(𝑖)

𝑘 } = argmax
(𝑓𝑘 ,𝑑𝑘)∈𝑘

𝑁
∑

𝑛=1

(

1 − 𝑡(𝑖)𝑛
)

𝑙𝑘,𝑛 [𝑥𝑘,𝑛 log 𝑓𝑘 + (1 − 𝑥𝑘,𝑛) log(1 − 𝑓𝑘)] +

+ 𝑡(𝑖)𝑛 𝑙𝑘,𝑛 [𝑥𝑘,𝑛 log 𝑑𝑘 + (1 − 𝑥𝑘,𝑛) log(1 − 𝑑𝑘)]. (26)

Optimization problem (24) can be expressed as 
𝑢̂(𝑖) = argmax

0<𝑢<1
𝑁 (𝑖)

0 log(1 − 𝑢) +𝑁 (𝑖)
1 log 𝑢, (27)

where 

𝑁 (𝑖)
1 =

𝑁
∑

𝑛=1
𝑡(𝑖)𝑛 , 𝑁 (𝑖)

0 =
𝑁
∑

𝑛=1
(1 − 𝑡(𝑖)𝑛 ), (28)

can be interpreted as soft estimates of the number of sensing periods 
under 0 and 1, respectively, according to 𝐭(𝑖). Setting the deriva-
tive of the objective function in (27) to zero, after simple algebraic 
manipulations, yields 

𝑢̂(𝑖) =
𝑁 (𝑖)

1 , (29)

𝑁

5 
where we have considered the fact that 𝑁 (𝑖)
0 +𝑁 (𝑖)

1 = 𝑁 .
Before solving (26), we first introduce the following notation

𝑀 (𝑖)
𝑘,1|1 =

𝑁
∑

𝑛=1
𝑙𝑘,𝑛𝑥𝑘,𝑛𝑡

(𝑖)
𝑛 , 𝑀 (𝑖)

𝑘,0|0 =
𝑁
∑

𝑛=1
𝑙𝑘,𝑛(1 − 𝑥𝑘,𝑛)(1 − 𝑡(𝑖)𝑛 ),

𝑀 (𝑖)
𝑘,1|0 =

𝑁
∑

𝑛=1
𝑙𝑘,𝑛𝑥𝑘,𝑛(1 − 𝑡(𝑖)𝑛 ), 𝑀 (𝑖)

𝑘,0|1 =
𝑁
∑

𝑛=1
𝑙𝑘,𝑛(1 − 𝑥𝑘,𝑛)𝑡(𝑖)𝑛 , (30)

where the term 𝑀 (𝑖)
𝑘,𝑗|𝑠 can be interpreted as the soft estimate of the 

number of decisions 𝑗 of sensor 𝑘 under 𝑠, according to 𝐭(𝑖). Notice 
that 

𝑀 (𝑖)
𝑘,0 = 𝑀 (𝑖)

𝑘,0|0 +𝑀 (𝑖)
𝑘,1|0 =

𝑁
∑

𝑛=1
𝑙𝑘,𝑛(1 − 𝑡(𝑖)𝑛 ), 𝑀 (𝑖)

𝑘,1 = 𝑀 (𝑖)
𝑘,0|1 +𝑀 (𝑖)

𝑘,1|1 =
𝑁
∑

𝑛=1
𝑙𝑘,𝑛𝑡

(𝑖)
𝑛

(31)

are the estimated number of decisions of sensor 𝑘 under 0 and 1
respectively, and 

𝑀 (𝑖)
𝑘,0 +𝑀 (𝑖)

𝑘,1 =
𝑁
∑

𝑛=1
𝑙𝑘,𝑛 = 𝑀𝑘 (32)

is the total number of decisions reported by sensor 𝑘.
Considering (30), the optimization problem (26) can be written as 

follows

{𝑓 (𝑖)
𝑘 , 𝑑(𝑖)𝑘 } = argmax

(𝑓𝑘 ,𝑑𝑘)∈𝑘
𝑀 (𝑖)

𝑘,1|0 log 𝑓𝑘 +𝑀 (𝑖)
𝑘,0|0 log(1 − 𝑓𝑘) +

𝑀 (𝑖)
𝑘,1|1 log 𝑑𝑘 +𝑀 (𝑖)

𝑘,0|1 log(1 − 𝑑𝑘). (33)

Appendix  A shows that (33) has only one solution that can be 
expressed as follows: 

(

𝑓 (𝑖)
𝑘 , 𝑑(𝑖)𝑘

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

𝑎(𝑖)𝑘 , 𝑏(𝑖)𝑘
)

, if 𝑒𝑘 < 𝑎(𝑖)𝑘 < 𝑏(𝑖)𝑘 < 1 − 𝑒𝑘
(

𝑐𝑘, 𝑐𝑘
)

, if 𝑒𝑘 < 𝑐𝑘 < 1 − 𝑒𝑘 ∧ 𝑎(𝑖)𝑘 ≥ 𝑏(𝑖)𝑘
(

𝑒𝑘, 𝑏
(𝑖)
𝑘

)

, if 𝑎(𝑖)𝑘 ≤ 𝑒𝑘 < 𝑏(𝑖)𝑘 < 1 − 𝑒𝑘
(

𝑎(𝑖)𝑘 , 1 − 𝑒𝑘
)

, if 𝑒𝑘 < 𝑎(𝑖)𝑘 < 1 − 𝑒𝑘 ≤ 𝑏(𝑖)𝑘
(

𝑒𝑘, 𝑒𝑘
)

, if 𝑏(𝑖)𝑘 ≤ 𝑒𝑘 ∧ 𝑐𝑘 ≤ 𝑒𝑘
(

1 − 𝑒𝑘, 1 − 𝑒𝑘
)

, if 𝑎(𝑖)𝑘 ≥ 1 − 𝑒𝑘 ∧ 𝑐𝑘 ≥ 1 − 𝑒𝑘
(

𝑒𝑘, 1 − 𝑒𝑘
)

, if 𝑎(𝑖)𝑘 ≤ 𝑒𝑘 ∧ 1 − 𝑒𝑘 ≤ 𝑏(𝑖)𝑘
(34)

where 

𝑎(𝑖)𝑘 =
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

, 𝑏(𝑖)𝑘 =
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

, 𝑐𝑘 =
𝑀 (𝑖)

𝑘,1|0 +𝑀 (𝑖)
𝑘,1|1

𝑀𝑘
= 1

𝑀𝑘

𝑁
∑

𝑛=1
𝑙𝑘,𝑛𝑥𝑘,𝑛.

(35)

The terms 𝑎(𝑖)𝑘  and 𝑏(𝑖)𝑘  can be interpreted as the soft sample probabilities 
of false-alarm and detection of sensor 𝑘, according to 𝐭(𝑖). For 𝑎(𝑖)𝑘  and 𝑏(𝑖)𝑘
to be well-defined (take finite values), 𝑀 (𝑖)

𝑘,0 and 𝑀
(𝑖)
𝑘,1 must be greater 

than zero, which is fulfilled when 𝑡(𝑖)𝑛 ∈ (0, 1). The term 𝑐𝑘 is the fraction 
of 1 decisions of the sensor 𝑘, which does not change with iterations, 
so it can be calculated in advance.

The seven cases of the expression (34) are mutually exclusive. Each 
corresponds to a region of the 

(

𝑎(𝑖)𝑘 , 𝑏(𝑖)𝑘
)

-coordinate plane, as depicted 
in Fig.  2.

4.1. Initialization and convergence

The EM algorithm requires an initial estimate of the model param-
eters: 𝛩̂(0). For this, we first set an initial vector of soft estimates, 𝐭(0), 
and then apply the M-step to obtain 𝛩̂(0). We propose the following 
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Fig. 2. Mutually exclusive regions associated with the cases of Eq.  (34).

heuristic soft estimates: 

𝑡(0)𝑛 =

⎧

⎪

⎨

⎪

⎩

𝜖𝑡, if ∑𝐾
𝑘=1 𝑙𝑘,𝑛𝑥𝑘,𝑛 < 𝐾𝑛∕2

1
2 , if ∑𝐾

𝑘=1 𝑙𝑘,𝑛𝑥𝑘,𝑛 = 𝐾𝑛∕2
1 − 𝜖𝑡, if ∑𝐾

𝑘=1 𝑙𝑘,𝑛𝑥𝑘,𝑛 > 𝐾𝑛∕2,

0 < 𝜖𝑡 ≪ 1. (36)

Put into words, given a decision vector 𝐱𝑛, its initial soft estimate 𝑡(0)𝑛  is 
set to 𝜖𝑡 when the majority of the active sensors decide 0. Similarly, 
𝑡(0)𝑛  is set to 1 − 𝜖𝑡 when the majority of the active sensors decide 
1. In case of a tie, 𝑡(0)𝑛  is set to 1∕2. The parameter 𝜖𝑡 ensures that 
𝑡(0)𝑛 ∈ (0, 1) for all 𝑛, so 𝑎(0)𝑘  and 𝑏(0)𝑘  will be well-defined and the initial 
estimates will belong to the feasible set: 𝛩̂(0) ∈ 𝛩. Then, according 
to (13) and (22), 𝑡(1)𝑛 ∈ (0, 1) for all 𝑛, so 𝛩̂(1) ∈ 𝛩. Consequently, 𝜖𝑡
ensures that the expressions of the M-step will be consistent across all 
iterations, and 𝛩̂(𝑖) ∈ 𝛩 for all 𝑖. The EM algorithm always increases 
the value of the log-likelihood function in each iteration [30–32]. 
Therefore, since the log-likelihood function (15) is bounded for 𝛩 ∈
𝛩, the algorithm converges monotonically. Then, convergence may 
be determined by observing when the log-likelihood function stops 
increasing with the iterations. Moreover, since 𝛩 is a convex set and 
𝑄(𝛩;𝛩′) is a continuous function in both arguments (see (21)), the limit 
point of the EM sequence 𝛩̂ is either a local maximum of 𝐿(𝛩) in the 
interior of 𝛩 or a boundary point of 𝛩 where 𝐿(𝛩̂) ≥ 𝐿(𝛩) for all 
𝛩 ∈ 𝑆𝛩 ∩ 𝐵𝛩̂, 𝐵𝛩̂ being an open ball centered on 𝛩̂ [41].

In general, the log-likelihood function (15) can exhibit multiple 
local maxima. Moreover, there can be multiple local maxima attaining 
the ML. This usually occurs in situations with few decision vectors 
and/or a large number of parameters to estimate. In our experience, the 
initial soft estimates given by (36) are particularly useful for locating 
a local maximum that leads to good detection performance.

5. Partial knowledge at the FC

It might be the case that some of the model parameters are known 
by the FC. For example, it might know the probabilities of false-alarm 
and/or detection for a subset of sensors, or it might know the prior 
probability 𝑢. Those cases can occur simultaneously. The following 
Sections 5.1 and 5.2 particularize the EM algorithm to these cases.

In some cases, there is a training or calibration stage, under con-
trolled conditions, in which the FC knows the actual hypothesis for 
a subset of sensing periods. We refer to the corresponding sensor 
6 
Algorithm 1 : ML estimation of the model parameters 𝛩 = {𝐟 ,𝐝, 𝑢}
1: input: 𝐗, 𝐞, 𝜖𝑡, 𝜖𝐿
2: Set the initial soft estimates 𝐭(0) from (36)
3: Apply the M-step to 𝐭(0) to obtain the initial estimates 𝛩̂(0)

4: Compute the log-likelihood function, log𝐿(𝛩̂(0)), from (15)
5: Compute the fraction of 1 decisions of the sensors, {𝑐𝑘}𝐾𝑘=1, from 
(35)

6: Initialize iterations index: 𝑖 = 0
7: repeat 
8:  𝑖 = 𝑖 + 1
9:   E-step: 
10:   Compute the soft estimates, 𝐭(𝑖), from (22) and (4)
11:   M-step: 
12:   Compute 𝑁 (𝑖)

0  and 𝑁 (𝑖)
1  from (28)

13:   Compute 𝑢̂(𝑖) from (29)
14:   for 𝑘 = 1 to 𝐾
15:   Compute 𝑎(𝑖)𝑘  and 𝑏(𝑖)𝑘  from (35)
16:   Compute 𝑓 (𝑖)

𝑘  and 𝑑(𝑖)𝑘  from (34)
17:   end for 
18:   Compute the log-likelihood function log𝐿(𝛩̂(𝑖)) from (15)
19: until convergence: | log𝐿(𝛩̂(𝑖))−log𝐿(𝛩̂(𝑖−1)

|

| log𝐿(𝛩̂(𝑖))|
< 𝜖𝐿

20: return: Final parameter estimates, 𝛩̂ = 𝛩̂(𝑖)

decisions as labeled or supervised. Section 5.3 shows how to apply the 
EM algorithm in this case.

5.1. Known probabilities of false-alarm and/or detection of some sensors

Let 𝐟  and 𝐝 be the subsets of sensors for which the FC knows 
their probabilities of false-alarm and detection, respectively. Then, 𝑓𝑘
is known for 𝑘 ∈ 𝐟 , and unknown for 𝑘 ∈  𝐟 . Similarly, 𝑑𝑘 is known 
for 𝑘 ∈ 𝐝, and unknown for 𝑘 ∈ 𝐝.

In the E-step, the soft estimates are calculated as in the standard 
case (22) but with the appropriate pmfs: 

𝑝(𝐱𝑛|0; 𝐟 (𝑖−1)) =
∏

𝑠∈𝑆𝐟

[

𝑓 𝑥𝑠,𝑛
𝑠 (1 − 𝑓𝑠)1−𝑥𝑠,𝑛

]𝑙𝑠,𝑛 ∏

𝑘∈𝑆𝐟

[

(

𝑓 (𝑖−1)
𝑘

)𝑥𝑘,𝑛 (
1 − 𝑓 (𝑖−1)

𝑘

)1−𝑥𝑘,𝑛
]𝑙𝑘,𝑛

(37)

𝑝(𝐱𝑛|1; 𝐝̂(𝑖−1)) =
∏

𝑠∈𝑆𝐝

[

𝑑𝑥𝑠,𝑛
𝑠 (1 − 𝑑𝑠)1−𝑥𝑠,𝑛

]𝑙𝑠,𝑛 ∏

𝑘∈𝑆𝐝

[

(

𝑑(𝑖−1)
𝑘

)𝑥𝑘,𝑛 (
1 − 𝑑(𝑖−1)

𝑘

)1−𝑥𝑘,𝑛
]𝑙𝑘,𝑛

(38)

In the M-step, there are four possibilities regarding the optimization 
problem (33):

(1) 𝑘 ∈ 𝐟 ∩ 𝐝: In this case, all parameters of sensor 𝑘 are known 
by the FC, so there is nothing to estimate.

(2) 𝑘 ∈  𝐟 ∩ 𝐝: Since both 𝑓𝑘 and 𝑑𝑘 are unknown, their estimates 
𝑓 (𝑖)
𝑘  and 𝑑(𝑖)𝑘  are given by (34).

(3) 𝑘 ∈ 𝐟 ∩ 𝐝: Now, 𝑓𝑘 is known and 𝑑𝑘 is unknown. Then, (33) 
reduces to 
𝑑(𝑖)𝑘 = argmax

𝑑𝑘∈𝑘
𝑀 (𝑖)

𝑘,1|1 log 𝑑𝑘 +𝑀 (𝑖)
𝑘,0|1 log(1 − 𝑑𝑘), (39)

where 𝑘 = {𝑑𝑘 | 𝑓𝑘 ≤ 𝑑𝑘 ≤ 1 − 𝑒𝑘}. Appendix  B shows that in 
this case (39) has a unique solution given by 

𝑑(𝑖)𝑘 =

⎧

⎪

⎨

⎪

𝑏(𝑖)𝑘 , if 𝑓𝑘 < 𝑏(𝑖)𝑘 < 1 − 𝑒𝑘
𝑓𝑘, if 𝑓𝑘 ≥ 𝑏(𝑖)𝑘 (40)
⎩

1 − 𝑒𝑘, otherwise.
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(4) 𝑘 ∈  𝐟∩𝐝: Now, 𝑑𝑘 is known and 𝑓𝑘 is unknown, so (33) reduces 
to 
𝑓 (𝑖)
𝑘 = argmax

𝑓𝑘∈𝑘
𝑀 (𝑖)

𝑘,1|0 log 𝑓𝑘 +𝑀 (𝑖)
𝑘,0|0 log(1 − 𝑓𝑘), (41)

where 𝑘 = {𝑓𝑘 | 𝑒𝑘 ≤ 𝑓𝑘 ≤ 𝑑𝑘}. Appendix  C shows that in this 
case (41) has a unique solution given by 

𝑓 (𝑖)
𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑎(𝑖)𝑘 , if 𝑒𝑘 < 𝑎(𝑖)𝑘 < 𝑑𝑘
𝑒𝑘, if 𝑒𝑘 ≥ 𝑎(𝑖)𝑘
𝑑𝑘, otherwise.

(42)

5.2. Known prior probability

When the FC knows the prior probability 𝑢, the set of unknown 
parameters reduces to 𝛩 = {𝐟 ,𝐝} and the feasible set is now 𝛩 =
{𝐟 ,𝐝 |(𝑓𝑘, 𝑑𝑘) ∈ 𝑘,∀𝑘}. In the E-step, the soft estimates will be given 
by 

𝑡(𝑖)𝑛 = E
𝐳

[

𝑧𝑛 | 𝐱𝑛; 𝛩̂(𝑖−1)] =
𝑢 𝑝

(

𝐱𝑛|1; 𝐝̂(𝑖−1)
)

(1 − 𝑢) 𝑝
(

𝐱𝑛|0; 𝐟 (𝑖−1)
)

+ 𝑢 𝑝
(

𝐱𝑛|1; 𝐝̂(𝑖−1)
) ,

(43)

which has the same form as in (22), but substituting the estimates 𝑢̂(𝑖−1)
by 𝑢. In the M-step, the computation of 𝐟 (𝑖) and 𝐝̂(𝑖) remains the same 
as in the standard case.

5.3. Supervised decision vectors

In the standard case, we assumed that the FC infers the model 
parameters only from the decisions of the available sensors 𝐗. Let us 
now consider the case in which the FC also knows the true hypothesis 
for a subset of decision vectors 𝐳 ⊆ {1, 2,… , 𝑁}. We call them 
supervised decision vectors. Now, the available data at the FC is 𝐗 and 
{𝑧𝑛}𝑛∈𝐳 . Then, the expectation function of the E-step will be
𝑄(𝛩; 𝛩̂(𝑖−1)) = E

{𝑧𝑛}𝑛∉𝐳
[log𝐿𝑐 (𝛩)| 𝐗, {𝑧𝑛}𝑛∈𝐳 ; 𝛩̂

(𝑖−1)].

Now, the terms {𝑡(𝑖)𝑛 }𝑛∈𝐳  are no longer soft estimates but the known 
values, so 𝑡(𝑖)𝑛 = 𝑧𝑛, whereas the soft estimates for the unsupervised 
decision vectors will be as in (22). The M-step remains the same.

If all decision vectors were supervised, 𝐳 = {1,… , 𝑁}, the resulting 
estimate is just the ML estimate for the complete data, {𝐗, 𝐳}, which is 
given by 
𝛩̂ = {𝐟 , 𝐝̂, 𝑢̂} = argmax

𝛩∈𝛩
log𝐿𝑐 (𝛩). (44)

Its solution can be viewed as a particular case of the EM algorithm 
where 𝐭 = 𝐳. Note that now the terms 𝑁𝑗 in (28), 𝑀𝑘,𝑗|𝑠 in (30) and 
𝑀𝑘,𝑠 in (31) are known in advance, so the solution to (44) is obtained 
after a single iteration of the M-step.

5.4. Computational complexity

The memory storage requirements of the EM algorithm are negligi-
ble, whereas its computational cost (time complexity) depends mainly 
on the number of iterations of the EM algorithm, which is quite 
unpredictable. When the detection and false-alarm probabilities of a 
subset of sensors are known (section 5.1, case 1), they do not need 
to be estimated in the M-step. When the prior probability is known 
in advance (section 5.2), Eqs. (28)–(30) do not apply in the M-step. 
However, this does not result in a significant reduction in computa-
tional cost. Finally, when supervised decision vectors exist (section 5.3), 
their posterior probabilities are known. Therefore, only the posterior 
probabilities of the unsupervised decision vectors need to be estimated 
in the E-step. Focusing on a single iteration of the EM algorithm, the 
computational cost of the E-steps and M-steps is summarized in the 
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following table for the different cases considered in Sections 4 and 5 
(see Table  1).

6. Simulation results

Following [5,7,8], we assume that the sensors employ on-off keying 
signaling to transmit their decisions to the FC through the reporting 
channels, which experience slow flat fading. Then, at time 𝑛, the 
discrete-time base-band signal at the FC coming from sensor 𝑘 is given 
by 𝑟𝑘,𝑛 = ℎ𝑘 𝑦𝑘,𝑛+𝑤𝑘,𝑛. We make the standard assumption that the noise 
at the FC, 𝑤𝑘,𝑛, is independent, identically distributed, and circularly 
symmetric complex Gaussian with variance 𝜎2𝑤. We assume that the 
FC knows the channel responses, ℎ𝑘, so it employs coherent detection 
to obtain 𝑥𝑘,𝑛 from 𝑟𝑘,𝑛 with decision threshold |ℎ𝑘|∕2. Then, the bit-
error rate is 𝑒𝑘 = 𝑄

(

|ℎ𝑘|
2𝜎𝑤

)

. We also assume that the reporting channels 
experience independent Rayleigh fading, so ℎ𝑘 ∼ C(0, 1). Notice that 
the above assumptions are just the ones we consider in the simulations. 
They are not required by the proposed method.

We analyze the estimation and detection performance of the EM 
algorithm using Monte Carlo simulations. Each experiment averages 
the performance of 𝑅 = 105 independent runs. In each experiment, we 
fix the prior probability 𝑢, the number of sensors 𝐾, and the number 
of decision vectors 𝑁 . We also choose 𝜎2𝑤 so that the average error 
probability of the reporting channels takes a given value 𝑒 = 𝐸[𝑒𝑘] =
𝐸
[

𝑄
(

|ℎ𝑘|
2𝜎𝑤

)]

. These parameters do not change in the 𝑅 runs of each 
experiment. Unless otherwise stated, we consider a network comprising 
𝐾 = 8 sensors. The prior probability is 𝑢 = 1

3  and the average BER of 
the reporting channels is 𝐸[𝑒𝑘] = 𝑒 = 0.02. In any case, the figures show 
the values of the simulation parameters in the experiments.

In each run, the local sensor probabilities are drawn indepen-
dently from uniform distributions within the following intervals: 𝑃 (𝑠)

𝑓,𝑘 ∼
𝑈 (0, 1∕2), 𝑃 (𝑠)

𝑑,𝑘 ∼ 𝑈 (𝑃 (𝑠)
𝑓,𝑘, 1). We also draw independent channel re-

sponses, ℎ𝑘, and the corresponding error rates 𝑒𝑘. Then, from (1) and 
(2), we obtain the probabilities 𝐟 and 𝐝 in the run. Finally, a sequence 
of states 𝐳 is drawn according to 𝑢, and the matrix of decisions 𝐗
is drawn from 𝐳, 𝐟 and 𝐝. Finally, the EM algorithm is applied to 
obtain the estimates 𝛩̂ = {𝐟 , 𝐝̂, 𝑢̂} from 𝐗, and the estimation errors 
are computed. In each run, the EM algorithm is applied only once 
with the initialization (36) with 𝜖𝑡 = 10−3. From the EM estimates, we 
analytically calculate the detection performance of the resulting EM-
based fusion rule using (7). After the 𝑅 runs of the experiment, the 
estimation errors and the detection performance are averaged. These 
are the outputs of the experiment.

In the simulations, unless otherwise indicated, we consider the 
standard case where the FC does not know any model parameters 
𝛩 = {𝐟 ,𝐝, 𝑢}, so it must estimate them from 𝐗 exclusively. In addition, 
if not otherwise stated, we assume that the decision matrix is complete, 
so the FC receives the decisions from all sensors in each sensing period.

6.1. Estimation performance

To analyze the estimation performance of the EM algorithm, we 
compare it with the fully supervised estimator (see Section 5.3), which 
can be considered as an upper bound for the EM estimator. We use the 
root mean squared error (RMSE) as a performance metric:

RMSE(𝐟 ) =

√

√

√

√
1

𝐾𝑅

𝑅
∑

𝑟=1
‖𝐟 (𝑟) − 𝐟 (𝑟)‖2,

where 𝑟 is the index of the runs, 𝐟 (𝑟) is the vector of the false-alarm 
probabilities in run 𝑟, and 𝐟 (𝑟) is the corresponding estimate. The RMSE 
of 𝐝̂ and 𝑢̂ is defined analogously.

Fig.  3 compares the estimation performance of the EM estimator and 
the fully supervised estimator (labeled 𝑆) as a function of the number 
of decision vectors. As expected, the S estimator outperforms the EM, 
and the RMSEs decrease with 𝑁 more rapidly when 𝑁 is low.
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Table 1
Computational cost per iteration of the EM algorithm.
 E-step M-step  
 Section 4: Standard problem 𝑂(𝑁) 𝑂(𝐾)  
 Section 5.1: Known performance of some sensors 𝑂(𝑁) 𝑂(|𝑆𝐟 ∩ 𝑆𝐝|) 
 Section 5.2: Known prior probability 𝑂(𝑁) 𝑂(𝐾)  
 Section 5.3: Supervised decision vectors 𝑂(𝑁 − |𝑆𝐳|) 𝑂(𝐾)  
Fig. 3. RMSE of the EM and supervised estimates as a function of the number of 
decision vectors.

Fig. 4. RMSE of the EM and supervised estimates as a function of the prior probability 
of 1.

Fig.  4 shows the performance of the EM estimator and the fully 
supervised estimator as a function of the prior probability of 1. For 
low values of 𝑢, most of the decision vectors come from 0, so the 
RMSE of the 𝐟 estimates is small, while the RMSE of the 𝐝 estimates 
is high. The opposite occurs for high values of 𝑢. In any case, after 
𝑁 = 80 decision vectors, the performance gap between the S and the 
EM estimators is quite low for any value of 𝑢.

Fig.  5 shows the RMSE of the estimates when a subset of 𝐾𝑎 sensors, 
out of 𝐾 = 10, are active in each sensing period. In other words, 
𝐾𝑛 = 𝐾𝑎 for all 𝑛. The active sensors are randomly selected in each 
sensing period. Now, it is more difficult for the FC to learn the sensor 
parameters because it has fewer decisions from each sensor. It can be 
observed that the RMSE of the EM estimates converges quite fast to the 
supervised ones as the number of active sensors grows.

Fig.  6 shows the estimation performance when 𝑁𝑧 of the 𝑁 = 80
decision vectors are supervised (see Section 5.3). It is observed that the 
RMSEs of the EM estimates decrease rather slowly with 𝑁𝑧, so a high 
fraction of supervised decision vectors is required to obtain a significant 
improvement.

As it was mentioned, the detection performance of the fusion rule 
proposed in Section 3 is determined by the accuracy of the test statistic 
estimates 𝑡(𝐱; 𝛩̂) which, in turn, is determined by the accuracy of the 
parameter estimates 𝛩̂. The RMSE of the test statistic estimates is given 
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Fig. 5. RMSE of the EM estimates and the supervised estimates as function of the 
number of active sensors.

Fig. 6. RMSE as a function of the number of supervised decision vectors.

by

RMSE(𝑡) =

√

√

√

√

√

1
𝑅

𝑅
∑

𝑟=1

∑

𝐱∈𝛺𝐱

|𝑡(𝐱; 𝛩̂(𝑟)) − 𝑡(𝐱;𝛩(𝑟))|2 𝑝(𝐱;𝛩(𝑟)).

Fig.  7 shows the RMSE of 𝑡(𝐱; 𝛩̂) as a function of the number of decision 
vectors. The simulation parameters are as in Fig.  3. As expected, 
according to Fig.  3, the RMSEs of the test statistic estimates decrease 
faster for low values of 𝑁 . Interestingly, the performance gap between 
the supervised and the EM estimates remains quite constant in the 
entire range of 𝑁 .

6.2. Detection performance

This subsection shows the detection performance of the EM-based 
detection rule (proposed in Section 3.2 and labeled EMR in the figures). 
It is compared with the fusion rule based on fully supervised estimates 
of the model parameters (labeled SR in the figures), and with the 
optimal fusion rule (10) (labeled LRT in the figures) when the FC knows 
the model parameters. The performance of the LRT and the SR are both 
upper bounds for the EMR, with SR being the tightest one. We also 
compare the EMR with the counting rules (CRs) with different values 
of decision threshold. If not otherwise stated, we use the probability 
of error (9) as a performance metric. The detection performance of the 
ISR is the worst in all experiments, so it is not shown in the figures.

Fig.  8 shows the average probability of error of the fusion rules 
as functions of the prior probability of  . As expected, the optimal 
1
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Fig. 7. RMSE of the test statistic estimates 𝑡(𝐱; 𝛩̂) as a function of the number of 
decision vectors.

Fig. 8. Average probability of error of the fusion rules as a function of the prior 
probability of 1.

decision threshold of the CR (denoted by 𝐶) is highly dependent on 
the value of 𝑢. Note that, if the model parameters are unknown, the FC 
cannot know the optimal 𝐶. In any case, after 𝑁 = 80 decision vectors, 
the EMR outperforms all CRs over the entire range of 𝑢 values. The 
performance gaps between the EMR, the LRT and the SR remain quite 
constant for any value of 𝑢.

Fig.  9 shows the average probability of error of the EMR, as a 
function of the number of decision vectors, when different subsets 
of model parameters are known to the FC. As expected, the more 
parameters the FC knows, the better the EMR performs. The EMR is 
compared with the LRT and the optimal CR (labeled CR∗). In this case, 
the optimal CR threshold is 𝐶 = 4, as Fig.  8 shows. Notice that the EMR 
outperforms the CR∗ in all cases after 𝑁 = 30 decision vectors. As 𝑁
increases, the 𝑃𝑒 of the EMR converges to the LRT more rapidly when 
more parameters are known by the FC.

Fig.  10 compares the average probability of error of the fusion rules, 
as a function of the number of sensors. It can be observed that, as 𝐾
increases, the performance of the EMR detector converges quite fast to 
the LRT. In contrast, the performance gap between the CR∗ and the LRT 
remains fairly constant as 𝐾 increases.

Fig.  11 shows the average probability of error of the fusion rules as 
a function of the average error probability of the BSCs. In this case, the 
best CR threshold is again 𝐶 = 4. The EMR outperforms the CR∗ except 
for extremely large values of 𝑒. Moreover, the 𝑃𝑒 gap between the EMR 
and the SR and LRT remains almost constant with 𝑒. In other words, 
the EMR fusion rule is quite robust against the errors in the BSCs.

Fig.  12 shows the average Bayes risk (8) as a function of the ratio 
of the Bayesian costs assigned to false alarms and miss-detections, 
𝐶1,0∕𝐶0,1. The hits are not penalized (𝐶0,0 = 𝐶1,1 = 0), so the Bayes 
risk when 𝐶1,0 = 𝐶0,1 coincides with the probability of error. The figure 
shows that the optimal CR highly depends on the costs ratio. The EMR 
outperforms the optimal CR except for extreme values of 𝐶 ∕𝐶 . 
1,0 0,1
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Fig. 9. Average probability of error of the EMR when some of the model parameters 
are known.

Fig. 10. Average probability of error for different number of sensors.

Fig. 11. Average probability of error as a function of the average crossover probability 
of the BSCs.

Interestingly, the higher performance gap between the EMR and the 
LRT occurs when the costs ratio is close to 1 (minimum 𝑃𝑒 criterion), 
and decreases as 𝐶1,0∕𝐶0,1 deviates from 1. The little asymmetry with 
respect 𝐶1,0∕𝐶0,1 = 1 is due to the value of 𝑢.

Fig.  13 shows the detection performance of the EMR when the 
FC knows the operational point (𝑓𝑘, 𝑑𝑘) of 𝐾𝑓,𝑑 sensors out of 𝐾. In 
particular, it shows the average probability of error after learning the 
unknown model parameters for 𝑁 = 80 and 𝑁 = 40 decision vectors. 
In this case, 𝑢 is unknown. As expected, knowing the operational point 
of some sensors produces a detection improvement and reduces the 
performance gap between the LRT and the EMR. Even when the FC 
knows the operating points of all sensors, 𝐾𝑓,𝑑 = 𝐾, the EMR does 
not achieve the LRT performance because the prior probability 𝑢 is 
estimated.
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Fig. 12. Average Bayes Risk as a function of the ratio between the costs assigned to 
false alarms and miss-detections.

Fig. 13. Average probability of error of the EMR when the FC knows the operational 
point of 𝐾𝑓,𝑑 of the sensors.

7. Conclusion

We have presented an algorithm for the FC to blindly estimate the 
sensor parameters in canonical DD-WSN with BSCs. It is flexible and 
generally applicable in the sense that it can cover a wide variety of 
situations that may arise in practical DD-WSN. It is applicable when all 
or some of the parameters of a subset of sensors are unknown to the 
FC. In addition, the FC may know or ignore the prior probabilities of 
the hypotheses in advance. The algorithm is also applicable when only 
a subset of sensors reports their decisions in each sensing period, and 
when the FC knows the true hypothesis for a subset of sensing periods. 
All these cases can occur simultaneously.

The algorithm is derived by applying the EM algorithm, where the 
observed variables are the noisy sensor decisions at the FC, and the la-
tent variables are the unknown true hypotheses at each sensing period. 
The application of the EM algorithm leads to quite simple closed-form 
expressions for both the E-step and the M-step, so its computational cost 
is quite low. Numerical simulations show the accuracy of the estimates 
after sufficient sensing periods.

In DD-WSN, the ultimate goal is to have an accurate fusion rule 
of the sensor decisions. In this work, we have proposed a fusion rule 
considering the MBR criterion. It is based on the estimates of the pos-
terior probability of the alternative hypothesis obtained from the EM 
estimates of the model parameters. Exhaustive numerical simulations 
show that, in all cases, the proposed fusion rules exhibit near-optimal 
detection performance when the estimates of the unknown model 
parameters are sufficiently accurate. And this is achieved after a rather 
small number of sensing periods.

In closing, we mention a possible extension of our work. We have 
considered a stationary environment in which sensors’ performance 
does not change with time, so we use a batch EM algorithm to estimate 
them. But in many practical DD-WSN systems, the sensors’ detection 
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probabilities can vary with time. In these cases, some online version of 
the EM algorithm could be used.
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Appendix A. M-step of the em algorithm when 𝒇𝒌 and 𝒅𝒌 are 
unknown

The feasible set 𝑘 is determined by the constraints 𝑒𝑘 ≤ 𝑓𝑘 ≤
𝑑𝑘 ≤ 1 − 𝑒𝑘. Therefore, (33) is a two-variable nonlinear optimization 
problem with three inequality constraints. The feasible set is compact 
(closed and bounded) and convex. The objective function of (33) is 
differentiable, bounded, and strictly concave in 𝑘. Therefore, it has 
only one maximum in 𝑘, which is the only solution to the optimization 
problem. Since there are no irregular points associated with the con-
straints, the solution to (33) is the only point (𝑓𝑘, 𝑑𝑘) that satisfies the 
Karush–Kuhn–Tucker (KKT) conditions. The gradient of the objective 
function is 
⎡

⎢

⎢

⎣

𝑀 (𝑖)
𝑘,1|0

𝑓𝑘
−

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
,

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
−

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘

⎤

⎥

⎥

⎦

𝑇

. (45)

The inequality constraint functions are 𝑓𝑘−𝑑𝑘, 𝑒𝑘−𝑓𝑘 and 𝑑𝑘−(1−𝑒𝑘), 
and their gradients are [1,−1]𝑇 , [−1, 0]𝑇  and [0, 1]𝑇 , respectively. Then, 
the KKT conditions are

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
+ 𝜆1 − 𝜆2 = 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
− 𝜆1 + 𝜆3 = 0,

𝜆1(𝑓𝑘 − 𝑑𝑘) = 0, 𝜆2(𝑒𝑘 − 𝑓𝑘) = 0, 𝜆3(𝑑𝑘 − (1 − 𝑒𝑘)) = 0,

𝑓𝑘 ≤ 𝑑𝑘, 𝑒𝑘 ≤ 𝑓𝑘, 𝑑𝑘 ≤ 1 − 𝑒𝑘, 𝜆1, 𝜆2, 𝜆3 ≥ 0,

where 𝜆1, 𝜆2 and 𝜆3 are the KKT multipliers. In the following lines, we 
particularize the KKT conditions to the different types of points (𝑓𝑘, 𝑑𝑘)
on the feasible set (see Fig.  2):

(1) Interior points: 𝑒𝑘 < 𝑓𝑘 < 𝑑𝑘 < 1 − 𝑒𝑘 ⇒ 𝜆1 = 𝜆2 = 𝜆3 = 0. Then 
the KKT conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+
𝑀 (𝑖)

𝑘,0|0

1 − 𝑓𝑘
= 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+
𝑀 (𝑖)

𝑘,0|1

1 − 𝑑𝑘
= 0, 𝑓𝑘 < 𝑑𝑘, 𝑒𝑘 < 𝑓𝑘, 𝑑𝑘 < 1−𝑒𝑘.

From the two equations, we obtain 𝑓 (𝑖)
𝑘 =

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

, 𝑑(𝑖)𝑘 =
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1
, 

where we have considered (31). The inequalities require 𝑒𝑘 <
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

<
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

< 1 − 𝑒𝑘.

(2) Points on the boundary 𝑒𝑘 < 𝑓𝑘 = 𝑑𝑘 < 1 − 𝑒𝑘 ⇒ 𝜆2 = 𝜆3 = 0. 
Then the KKT conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0 +
𝑀 (𝑖)

𝑘,0|0 + 𝜆1 = 0, −
𝑀 (𝑖)

𝑘,1|1 +
𝑀 (𝑖)

𝑘,0|1 − 𝜆1 = 0,

𝑓𝑘 1 − 𝑓𝑘 𝑑𝑘 1 − 𝑑𝑘
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𝑓𝑘 = 𝑑𝑘, 𝑒𝑘 < 𝑓𝑘, 𝑑𝑘 < 1 − 𝑒𝑘, 𝜆1 ≥ 0.

From the equations we have 𝑓 (𝑖)
𝑘 = 𝑑(𝑖)𝑘 =

𝑀 (𝑖)
𝑘,1|0+𝑀

(𝑖)
𝑘,1|1

𝑀𝑘
=

1
𝑀𝑘

∑𝑁
𝑛=1 𝑙𝑘,𝑛 𝑥𝑘,𝑛, where we have considered (30), (31) and (32). 

The inequalities require 𝑒𝑘 < 1
𝑀𝑘

∑𝑁
𝑛=1 𝑙𝑘,𝑛 𝑥𝑘,𝑛 < 1 − 𝑒𝑘  and 

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

≥
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1
.

(3) Points on the boundary 𝑒𝑘 = 𝑓𝑘 < 𝑑𝑘 < 1 − 𝑒𝑘 ⇒ 𝜆1 = 𝜆3 = 0. 
Then the KKT conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
− 𝜆2 = 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
= 0,

𝑓𝑘 = 𝑒𝑘, 𝑓𝑘 < 𝑑𝑘, 𝑑𝑘 < 1 − 𝑒𝑘, 𝜆2 ≥ 0,

From the equations we have 𝑓 (𝑖)
𝑘 = 𝑒𝑘, 𝑑(𝑖)𝑘 =

𝑀 (𝑖)
𝑘,1|1

𝑀 (𝑖)
𝑘,1
, and the 

inequalities require 𝑀
(𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

≤ 𝑒𝑘 <
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

< 1 − 𝑒𝑘.

(4) Points on the boundary 𝑒𝑘 < 𝑓𝑘 < 𝑑𝑘 = 1 − 𝑒𝑘 ⇒ 𝜆1 = 𝜆2 = 0. 
Then the KKT conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
= 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
+ 𝜆3 = 0,

𝑒𝑘 < 𝑓𝑘, 𝑓𝑘 < 𝑑𝑘, 𝑑𝑘 = 1 − 𝑒𝑘, 𝜆3 ≥ 0.

From the equations 𝑓 (𝑖)
𝑘 =

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

, 𝑑(𝑖)𝑘 = 1 − 𝑒𝑘, and the 

inequalities require 𝑒𝑘 <
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

< 1 − 𝑒𝑘 ≤
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1
.

(5) The vertex (𝑓𝑘, 𝑑𝑘) = (𝑒𝑘, 𝑒𝑘) ⇒ 𝜆3 = 0. Then the KKT conditions 
reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
+ 𝜆1 − 𝜆2 = 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
− 𝜆1 = 0,

𝑒𝑘 = 𝑓𝑘 = 𝑑𝑘, 𝜆1, 𝜆2 ≥ 0.

The inequalities require 𝑒𝑘 ≥
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

, 𝑒𝑘 ≥ 1
𝑀𝑘

∑𝑁
𝑛=1 𝑙𝑘,𝑛 𝑥𝑘,𝑛

(6) The vertex (𝑓𝑘, 𝑑𝑘) = (1 − 𝑒𝑘, 1 − 𝑒𝑘) ⇒ 𝜆2 = 0. Then the KKT 
conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
+ 𝜆1 = 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
− 𝜆1 + 𝜆3 = 0,

𝑓𝑘 = 𝑑𝑘 = 1 − 𝑒𝑘, 𝜆1, 𝜆3 ≥ 0.

The inequalities require 1−𝑒𝑘 ≤
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

, 1−𝑒𝑘 ≤ 1
𝑀𝑘

∑𝑁
𝑛=1 𝑙𝑘,𝑛 𝑥𝑘,𝑛

(7) The vertex (𝑓𝑘, 𝑑𝑘) = (𝑒𝑘, 1 − 𝑒𝑘) ⇒ 𝜆1 = 0. Then the KKT 
conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
− 𝜆2 = 0, −

𝑀 (𝑖)
𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
+ 𝜆3 = 0,

𝑓𝑘 = 𝑒𝑘, 𝑑𝑘 = 1 − 𝑒𝑘, 𝜆2, 𝜆3 ≥ 0.

The inequalities require 𝑒𝑘 ≥
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

, 1 − 𝑒𝑘 ≤
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1
.

Appendix B. M-step of the em algorithm when 𝒇𝒌 is known and 𝒅𝒌
is unknown

The optimization problem (39) is a single-variable nonlinear prob-
lem with two inequality constraints: 𝑓𝑘 − 𝑑𝑘 ≤ 0 and 𝑑𝑘 − (1 − 𝑒𝑘) ≤ 0. 
The derivatives of the objective function and the inequality constraint 
functions are
𝑀 (𝑖)

𝑘,1|1 −
𝑀 (𝑖)

𝑘,0|1 , −1, 1,

𝑑𝑘 1 − 𝑑𝑘

11 
respectively. The feasible set, [𝑓𝑘, 1 − 𝑒𝑘], is compact and convex, and 
the objective function is differentiable, bounded, and strictly concave 
in the feasible set. Then (39) has only one maximum, which is the 
only solution. Since there are no irregular points associated with the 
constraints, the solution to (39) is the only value 𝑑𝑘 that fulfills the 
Karush–Kuhn–Tucker (KKT) conditions:

−
𝑀 (𝑖)

𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
− 𝜆1 + 𝜆2 = 0, 𝜆1(𝑓𝑘 − 𝑑𝑘) = 0, 𝜆2(𝑑𝑘 − (1 − 𝑒𝑘)) = 0,

𝑓𝑘 ≤ 𝑑𝑘, 𝑑𝑘 ≤ 1 − 𝑒𝑘, 𝜆1, 𝜆2 ≥ 0,

where 𝜆1 and 𝜆2 are the KKT multipliers associated with the inequality 
constraints. We particularize the KKT conditions for the possible values 
of 𝑑𝑘 in the feasible set.

(1) Interior point: 𝑓𝑘 < 𝑑𝑘 < 1 − 𝑒𝑘 ⇒ 𝜆1 = 𝜆2 = 0. The KKT 
conditions reduce to

−
𝑀 (𝑖)

𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
= 0, 𝑓𝑘 < 𝑑𝑘, 𝑑𝑘 < 1 − 𝑒𝑘.

From the equation, we obtain 𝑑(𝑖)𝑘 =
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1
, and the inequalities 

require 𝑓𝑘 <
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

< 1 − 𝑒𝑘.

(2) Point on the boundary 𝑑𝑘 = 𝑓𝑘 ⇒ 𝜆2 = 0. The KKT conditions 
reduce to

−
𝑀 (𝑖)

𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
− 𝜆1 = 0, 𝑓𝑘 = 𝑑𝑘, 𝜆1 ≥ 0.

Then, 𝑑(𝑖)𝑘 = 𝑓𝑘, and the inequality requires 
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

≤ 𝑓𝑘.

(3) Point on the boundary 𝑑𝑘 = 1− 𝑒𝑘 ⇒ 𝜆1 = 0. The KKT conditions 
reduce to

−
𝑀 (𝑖)

𝑘,1|1

𝑑𝑘
+

𝑀 (𝑖)
𝑘,0|1

1 − 𝑑𝑘
+ 𝜆2 = 0, 𝑑𝑘 = 1 − 𝑒𝑘, 𝜆2 ≥ 0.

Then, 𝑑(𝑖)𝑘 = 1 − 𝑒𝑘, and the inequality requires 
𝑀 (𝑖)

𝑘,1|1

𝑀 (𝑖)
𝑘,1

≥ 1 − 𝑒𝑘.

Appendix C. M-step of the em algorithm when 𝒇𝒌 is unknown and 
𝒅𝒌 is known

The optimization problem (41) is a single-variable nonlinear prob-
lem with two inequality constraints: 𝑒𝑘 − 𝑓𝑘 ≤ 0 and 𝑓𝑘 − 𝑑𝑘 ≤ 0. 
The derivatives of the objective function and the inequality constraint 
functions are
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
−

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
, −1, 1,

respectively. The feasible set, [𝑒𝑘, 𝑑𝑘], is compact and convex, and 
the objective function is differentiable, bounded, and strictly concave 
in the feasible set. Then (41) has only one maximum, which is the 
only solution. Since there are no irregular points associated with the 
constraints, the solution to (41) is the only value 𝑑𝑘 that fulfills the 
Karush–Kuhn–Tucker (KKT) conditions:

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
− 𝜆1 + 𝜆2 = 0, 𝜆1(𝑒𝑘 − 𝑓𝑘) = 0, 𝜆2(𝑓𝑘 − (𝑑𝑘)) = 0,

𝑒𝑘 ≤ 𝑓𝑘, 𝑓𝑘 ≤ 𝑑𝑘, 𝜆1, 𝜆2 ≥ 0,

where 𝜆1 and 𝜆2 are the KKT multipliers associated with the inequality 
constraints. We particularize the KKT conditions for the possible values 
of 𝑓  in the feasible set.
𝑘
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(1) Interior point: 𝑒𝑘 < 𝑓𝑘 < 𝑑𝑘 ⇒ 𝜆1 = 𝜆2 = 0. Then the KKT 
conditions reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
= 0, 𝑒𝑘 < 𝑓𝑘, 𝑓𝑘 < 𝑑𝑘.

From the equation, we obtain 𝑓 (𝑖)
𝑘 =

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0
, and the inequalities 

require 𝑒𝑘 <
𝑀 (𝑖)

𝑘,1|0

𝑀 (𝑖)
𝑘,0

< 𝑑𝑘.

(2) Point on the boundary 𝑓𝑘 = 𝑒𝑘 ⇒ 𝜆2 = 0. The KKT conditions 
reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
− 𝜆1 = 0, 𝑓𝑘 = 𝑒𝑘, 𝜆1 ≥ 0.

Then, 𝑓 (𝑖)
𝑘 = 𝑒𝑘, and the inequality requires 

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

≤ 𝑒𝑘.

(3) Point on the boundary 𝑓𝑘 = 𝑑𝑘 ⇒ 𝜆1 = 0. The KKT conditions 
reduce to

−
𝑀 (𝑖)

𝑘,1|0

𝑓𝑘
+

𝑀 (𝑖)
𝑘,0|0

1 − 𝑓𝑘
+ 𝜆2 = 0, 𝑓𝑘 = 𝑑𝑘, 𝜆2 ≥ 0.

Then, 𝑓 (𝑖)
𝑘 = 𝑑𝑘, and the inequality requires 

𝑀 (𝑖)
𝑘,1|0

𝑀 (𝑖)
𝑘,0

≥ 𝑑𝑘.

Data availability

No data was used for the research described in the article.
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