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This work presents a general framework for blindly estimating the sensor parameters of decision-fusion systems
over wireless sensor networks (WSNs). The sensors report their binary decisions to a fusion center (FC) through
parallel binary symmetric channels. Then, the FC makes the final decision by combining the noisy sensor
decisions according to a certain fusion rule.

We present an algorithm for the FC to blindly estimate the sensor parameters from the noisy sensor
decisions received after a number of sensing periods. The algorithm covers a wide variety of situations that
may arise in WSNs. For example, the algorithm is applicable when the FC knows in advance some of the
parameters of some sensors, when it knows the true hypothesis for a subset of sensing periods, or when only
a subset of sensors communicates their decisions in each sensing period.

Based on the estimates of the system parameters, optimal channel-aware fusion rules are derived
considering the minimum Bayes risk criterion. Simulation results show that, after sufficient sensing periods,
the estimates of the WSN parameters are accurate enough for the fusion rule to exhibit near-optimal detection

performance.

1. Introduction

This paper addresses the so-called canonical distributed detection
problem [1] in wireless sensor networks (DD-WSN) composed of a
set of spatially distributed sensors and a fusion center (FC). Sensors
report their binary decisions about the presence or absence of a given
event of interest to the FC through dedicated wireless channels. The
FC then fuses the noisy binary decisions from the sensors to make
the final decision according to a given fusion rule. The sensors do not
communicate with each other, and there is no feedback from the FC
to the sensors. Communication is assumed only between each sensor
and the FC through the corresponding reporting channel. Therefore,
the only information at the FC is the noisy sensor decisions at the out-
put of the reporting channels. Dedicated reporting channels are quite
common in DD-WSNs [2-11]. They contrast with multi-access channels
where multiple sensors transmit simultaneously over a shared channel.
Using dedicated channels can provide more reliable and predictable
communication, but may require more bandwidth and energy than
multi-access channels.

In general, the design of DD-WSN systems requires determining the
local decision rules at the sensors and the fusion rule at the FC [1].
Variations of this formulation include the optimization of only the local
decision rules for a given fusion rule [12-14], and the optimization of

the fusion rule for given sensor decision rules [15-19]. In this work,
we focus on the last case, where the reliabilities of the sensor decision
rules are unknown to the FC.

In homogeneous WSNs, all sensors exhibit identical probabilities
of detection and false-alarm [5,20,21]. Some authors consider semi-
homogeneous WSNs where the sensors can have different detection
probabilities but identical false-alarm probabilities [4,8]. This work
considers fully heterogeneous networks where the sensors may operate
at different probabilities of detection and false-alarm [17,19].

The reliability of the sensor decisions observed by the FC depends
not only on the sensors themselves but also on the reporting channels.
Therefore, the design of fusion rules requires considering the effect of
the reporting channels as well. Those rules are called channel-aware
fusion rules [9]. In the WSN literature, the two most common reporting
channel models are the so-called noise fading channel (NFC) [17-19,
22] and the binary symmetric channel (BSC) [4,5,8,11,12,23,24]. In
the first case, the FC receives a faded and noisy version of each sensor
decision. Therefore, the output of a NFC is a complex random value
characterized by its channel response and the noise power. The BSCs
model the relationship between the binary decisions transmitted by the
sensors and the noisy binary decisions at the FC. The reliability of a
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BSC is characterized by its bit error probability (often called crossover
probability). In this work, we consider the general case in which BSCs
can have different bit error probabilities [5]. This usually occurs when
the sensors are placed at different locations with respect to the FC.
As usual in the related literature, we assume that the FC knows the
error probabilities of the BSCs [2,3,6,8,10,23]. Note that the coherent
demodulation of the sensor signals requires the FC to estimate the
reporting channels. From the channel estimates, the FC can obtain the
error probabilities of the BSCs.

The design of the optimal fusion rule is conceptually straightforward
when the FC knows the detection and false-alarm probabilities of
the sensors. In this case, the detection problem is a simple binary
hypothesis testing problem, so the optimal fusion rule is the likelihood
ratio test (LRT) [4]. To make the final decision, the FC compares the
likelihood ratio (LR) with a decision threshold whose value depends
on the detection criterion used [25,26]. The Neyman-Pearson theorem
establishes that the detection rule that maximizes the probability of
detection, for a given probability of false-alarm, is the likelihood-ratio
test (LRT) with a decision threshold determined by the distribution of
the FC observations under the null hypothesis H,,. Therefore, it requires
the FC to exactly know the sensors’ probabilities of false alarm, which
are unknown in our standard problem. Consequently, the Neyman-
Pearson criterion is not applicable in our problem. In this work, we
consider the Minimum Bayes Risk (MBR) detection criterion, which
includes the minimum probability of error as a particular case. In
this case, the optimal fusion rule is also the LRT, but the decision
threshold is independent of the distribution of the FC observations.
It only depends on the prior probability of occurrence of the event
to be detected [15]. However, the fact that the LRT depends on the
model parameters (probabilities of detection and false-alarm of the
sensors, and prior probabilities) is a major drawback, as some or even
all of them may be unknown to the FC in practice. In these cases, the
LRT is inapplicable. Two approaches have been proposed to overcome
this difficulty: 1) to use sub-optimal fusion rules independent of the
unknown model parameters, and 2) first estimate the unknown model
parameters and then design a fusion rule accordingly.

The counting rules (CR), also called voting rules, are the most
popular blind fusion rules. The test statistic is simply the sum of the
sensor decisions. Therefore, the fusion rule implicitly assigns the same
weight to sensor decisions regardless of their sensing performance.
Their main advantages are their simplicity and the fact that the FC
does not need to know any system parameters. Ref. [27] has shown
interesting properties of the CR in DD-WSNs. For example, in semi-
homogeneous WSNs when the FC knows the probability of false-alarm
of the sensors, the CR is statistically equivalent to the generalized
LRT and to the Rao test under the mild assumption that the common
probability of false alarm is lower than 1/2. Also, in semi-homogeneous
WSNs, the CR is statistically equivalent to the locally most-mean power-
ful test [28]. Moreover, the CR is the Uniform Most Powerful Invariant
test in heterogeneous DD-WSNs when the FC knows the sensor prob-
abilities of false-alarm [27]. Typically, the decision threshold of the
CR is an integer value, which represents the minimum number of
sensor decisions for the FC to decide the alternative hypothesis. Several
methods have been proposed to select the optimum decision threshold
in homogeneous networks [1,21] and in heterogeneous networks [11],
but all of them require knowing the reliability of the sensors. In any
case, the optimal decision threshold is highly dependent on the model
parameters.

Another fusion rule independent of the unknown model parameters
is the so-called Ideal Sensor Rule (ISR), where the LR is approximated
by assuming ideal sensors [8]. Therefore, if the detection probabilities
are unknown, they are set to one. Similarly, false alarm probabilities
are set to zero when they are unknown. Consequently, the resulting
test statistic only depends on the BSC’s error probabilities.

The fusion rule proposed in [5] (known as “Wu rule” [8]) is an
example of the second approach. Its test statistic is based on approx-
imated maximum likelihood (ML) estimates of the sensor detection
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probabilities. This fusion rule is limited to homogeneous networks
where the FC knows the false-alarm probability of the sensors. The
fusion rules in [29] also belong to the second approach. These are
described later.

Contribution

This paper presents a general method for the FC to learn the model
parameters (the sensors’ probabilities of detection and false-alarm and
the prior probability of the event to be detected) in heterogeneous
DD-WSNs from the decisions reported by the sensors through BSCs
with known error probabilities. These decisions may be incomplete in
the sense that only a subset of sensors reports their decisions in each
sensing period.

We first derive the learning algorithm for what we call the standard
case, where we assume that all model parameters are unknown to the
FC, and the FC does not know the true hypothesis for any of the sensing
periods. We then specialize the standard algorithm to the following
interesting practical cases:

» The FC knows some of the parameters (probability of false-alarm
and/or probability of detection) of a subset of sensors.

» The FC knows the true hypothesis for a subset of sensing peri-
ods. This case is particularly interesting when there is an initial
calibration stage of the DD-WSN under controlled conditions, so
the FC knows the actual hypothesis for the corresponding sensor
decisions.

To derive the learning algorithm, we consider a probabilistic mix-
ture model [30] of the sensor decisions with two components associated
with the two hypotheses (presence or absence of the event to be
detected). The noisy sensor decisions at the FC are the observed vari-
ables, and the presence/absence of the event to be detected is a latent
(hidden) variable. Then, we apply the Expectation-Maximization (EM)
algorithm [30-32] to estimate the unknown model parameters, which
leads to quite simple closed-form expressions for both the E-step and
the M-step.

Learning the sensor parameters is valuable in its own right. But
in DD-WSS, the ultimate goal is to have an accurate fusion rule. We
rewrite the LRT so the test statistic is the posterior probability of
the sensor decisions, and the decision threshold is independent of the
model parameters. Then, we propose a fusion rule where the test statis-
tic is the estimate of the posterior probability of the sensor decisions
according to the EM estimates of the model parameters. Therefore, the
performance of the fusion rule is determined by the accuracy of the
estimates of the posterior probabilities rather than the accuracy of the
individual sensor parameter estimates.

Extensive simulation experiments show that, after sufficient sensing
periods, the posterior probability estimates are accurate enough for the
fusion rule to exhibit near-optimal detection performance.

Related works

Ref. [33] establishes the analytical relationships between the DD-
WSN parameters and the joint probabilities of the sensor decisions,
assuming error-free reporting channels. Then, the authors propose esti-
mating the DD-WSN parameters by substituting the joint probabilities
with their sampling estimates. In the particular case of three sensors
DD-WSN, the authors derive a batch and an adaptive algorithm to
analytically estimate its parameters. In [29] the authors pose the Least-
Squares (LS) and the ML estimation of the model parameters in M-ary
distributed detection, where the sensors report M-ary decisions to the
FC. The computation of the LS estimates requires solving a system of
non-linear equations, whereas the ML estimates are the solutions of an
optimization problem. In both cases, the parameter estimates must be
obtained numerically. The above references do not take into account
the constraints imposed by the reporting channels. In addition, they
assume that all sensors report their decisions to the FC in each sensing
period, and all model parameters are unknown to the FC.
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The parameter estimation in DD-WSNss is closely related to the so-
called unsupervised ensemble learning, where a meta-classifier blindly
estimates the reliabilities of an ensemble of classifiers from their deci-
sions. The meta-classifier then derives a fusion rule, taking into account
the estimated classifiers’ reliabilities. In DD-WSN, the FC and the
sensors play the same role as the meta-classifier and the classifiers in
unsupervised ensemble learning, respectively. In this context, focusing
on binary classifiers, spectral-based methods have been proposed to
rank the classifiers according to their accuracies [34] or to estimate
their accuracy parameters [35]. More recently, [36] presents a learning
scheme for multi-class ensemble classification (called M-ary distributed
detection in the DD-WSN context) based on a moment matching method
that leverages joint tensor and matrix factorization. Mathematically,
the unsupervised ensemble learning problem is equivalent to estimat-
ing the parameters of a mixture of multinomial random variables, or
Bernoulli random variables in the case of binary classifiers. Those pa-
rameters are related to the performance of the individual classifiers and
the prior probabilities of the classes. Following this approach, the EM
algorithm has been proposed for unsupervised ensemble learning [37].
But in unsupervised ensemble learning, the classifier parameters are
usually unconstrained and all sensor decisions are available to the
meta-classifier. The specific constraints of the DD-WSN problem im-
posed by the reporting channels and sensor operating regions, as well
as the incompleteness of the observations, make all these ensemble
learning algorithms inapplicable to DD-WSN.

Paper organization

The remainder of this paper is organized as follows. Section 2
describes the system model and derives the probabilistic distribution
of sensor decisions at the FC as a function of the model parameters.
In Section 3 we propose the fusion rule, under the MBR detection
criterion, based on the estimates of the DD-WSN parameters. After-
wards, Section 4 derives the EM estimators of the parameters for the
standard case. In Section 5, we consider the scenario where the FC
has partial knowledge of some model parameters. Next, we derive
the EM estimators for the remaining unknown parameters. Section 6
shows a set of comprehensive simulation results for a wide variety
of cases. It is divided into two subsections. The first one presents
results that show the performance of the proposed estimators. Then, the
second subsection shows simulation results that illustrate the detection
performance of the proposed fusion rule. Finally, Section 7 concludes
the paper.

Notation

Throughout this paper, we use light-face lowercase letters for scalar
quantities, bold-face lowercase letters for vectors, and bold-face capital
letters for matrices. We employ a = (4;);<; to denote a real vector, of
length I, whose ith entry is a;, and A = (4, ;) <;<1,1<j<s denotes a I xJ
real matrix whose (i, j)-th entry is g; i The all-zeros vector and all-ones
vector are denoted by 0 and 1, respectively. E[-] denotes the expectation
operator and P(A) refers to the probability of the event A. S denotes
the complement of the set S, and |S| is its cardinality. Finally,  refers
to an estimate of parameter 6.

2. System model

Fig. 1 shows a DD-WSN comprising K sensors and a fusion center
(FQO).

The binary variable z denotes the presence (z = 1) or absence (z = 0)
of the event to detect. We denote the above hypotheses by H, and H,,
respectively. Each sensor makes its own binary decision, y, € {0,1},
about the absence or presence of the phenomenon. The decision y,
is subject to a probability of detection Pd(‘;i = P(y, = 1|H,;) and a
probability of false-alarm Pj(f) = P(y, = 1|H,). Each sensor reports its
decision to the FC through a dedicated BSC, so the FC receives a noisy

binary value, x;, € {0,1}. Let ¢, = P(x;, = 0|y, = 1) = P(x;, = 1|y, = 0)
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Fig. 1. Distributed detection in a wireless sensor network (DD-WSN).

be the error probability of the BSC of sensor k [10,38]. From the
noisy decision vector x = (x;);< <k, the FC makes the global decision
according to a certain fusion rule 2(x) € {0, 1}.

We assume that the sensor decisions at the FC, x,, are conditionally
independent. This requires both the BSC errors, ¢, and the sensor
decisions, y, to be conditionally independent. This is a common as-
sumption in the WSN literature [4,5,7,8,11,15,16,19,39] because it
leads to tractable analyses and useful fusion rules.

Let P\Y = P(x, = 1/Hy) and P\O = P(x, = 1M} be
the probabilities of false-alarm and detectlon of sensor k at the FC,
respectively. They depend on the sensors’ probabilities and on the BSC
error probability as follows [4,11]

P}ch) e (1— “)) +(1- ek)P(f;( =e + P}fi(l —2e,), @
PO = ep(1= PP) + (1 - )Py = e + P)(1 = 2¢;). @

Note that, when e, is known, P;S,)( and P;S) are determined by P(F ©)

and P(FC), respectively. Without loss of generality, we assume that
0 < e, < 1/2. The limit value e, = 0 would correspond to an error-
free channel, whereas ¢, = 1/2 would be the case of a fully random
channel. We also assume that P}‘) < P(Y) This assumption comes
from the informativeness of the sensors’ dec151ons In other words,
we assume that sensor decisions are not worse than random guessing.
Then, from (1) and (2), it is straightforward to show that the sensor

error probabilities at the FC are constrained as follows,
e < PO < PO <1, ®

To simplify notation, hereafter we will denote P(Fc) and P(Fc) by fi
and d,, respectively. The kth sensor output is governed by Bernoulh
distributions with parameters f, and d, for each hypothesis. Since
we assume that the x, are conditionally independent, the conditional
probability mass function (pmf) of the decision vector under each
hypothesis will be

K K
pxHy: D) =[] £ =0, pxlH;d) =[] 4 (1-dp)'=*, 4

k=1 k=1
where f = (f); <<k and d = (d;); <<k contain the sensors’ probabili-
ties of false-alarm and detection observed by the FC, respectively. The
marginal distribution of x will be the mixture of the conditional pmfs
(4) with mixing coefficients equal to the prior probabilities of H, and
H,,

p(x;0) = (1 —u) px|Hy:£) +u p(x|H;: d), 5)
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where O = {f,d,u} denotes the set of model parameters, u = P(H,) and
1 —u = P(H,). Let z be a binary variable denoting the true hypothesis.
Then, the joint pmf of x and z can be written as follows

px.z:0) = [(1—w) pxIHy: D] ™ [u pxlH,: )] 6
3. Fusion rules

In DD-WSN, the FC makes the final decision from the decisions
reported by the individual sensors, so the ultimate goal is to design
an accurate fusion rule 2(x) € {0,1} (see Fig. 1).

3.1. Performance metrics

As x is a binary random vector, the probabilities of false-alarm and
detection of 2(x) are

Py = P(2(x) = 1|Hg) = ), 2(x) p(x|H: ),

XEQy

Py =PEX =1|H)) = Z 2(x) p(x|H};d), @)
XEQy

where the sample space of x, denoted by Q,, is the set of binary K-tuples

with cardinality |Q,| = 2X. We consider the Bayesian risk [25,26] as

the performance metric of the fusion rules,

B=P (1-uw)Ciy+(1-=P)uCy; +(1=P;)) (1-u) Cyy+ P, uCy,, (8)

where C;; is the cost of deciding 2(x) = i when the true value is
z = j. Usually, no cost is assigned to the correct decisions so that
Coo = C;; = 0. In addition, if the two types of errors (false-alarms and
miss-detections) have unit cost, C,, = C;; = 1, the Bayes risk reduces
to the probability of error:

P,=PEX)#2)=P; (1-u)+ (=P u 9)
3.2. Optimal and proposed fusion rule

The Minimum Bayes Risk (MBR) criterion aims to minimize the
Bayesian risk (8). Assuming the FC knows the model parameters, the
MBR fusion rule is the LRT [1,15]

2MBR(X)={1, it AE,d) > Ay pr(), 10

0, if Ax:f,d) < Apprw),

where the test statistic (the LR) and the decision threshold are given by

px|Hy;d) 1-u Cio—Cop
A d) = ——L 2 A @) = —2 20
p(x|Hy; £) MBR u  Coy—Cyy
It is easy to show that the MBR fusion rule can be rewritten as follows
1, if 1(x;0)> 4 s
Zypr(X) = { . (:9) fVIBR an
0, if 1(x0)< A, pp
where the test statistic is now the posterior probability of H,,
H,;d
(x:0)=P(z=1|x0) = u px|H,; d) (12)

(A —w px|Hy:f) +u px|Hp;d)’
and the new decision threshold is

v Cio—Cop
MBR = Coy = Cy 1+ Crp = Cop

The test statistic in (11) depends on the model parameters ©, while
the decision threshold is independent of them. When all or some
model parameters are unknown, we propose a fusion rule as (11), but
replacing the unknown parameters in the test statistic expression (12)
by their estimates provided by the EM algorithm: #(x; ©). Notice that the
detection performance is determined by the accuracy of the posterior
probability estimation, rather than by the accuracy of the individual
model parameter estimates.

Signal Processing 239 (2026) 110238

4. EM estimates of the model parameters

Consider a sequence of N consecutive sensing periods, and let z =
(z,)1<n<n be the unknown true hypothesis at them. In each sensing
period, a subset of sensors reports their decisions to the FC. Let [, ,
be a binary indicator variable such that /,, = 1 if sensor k reported
its decision at sensing period n, and /,, = O otherwise. Therefore,
M, = Zﬁ’: 1 i is the number of decisions reported by the sensor k to
the FC,and K, = ). ,’;1 Iy is the number of sensors that report decisions
to the FC at sensing period n. We assume that each sensor reports its
decisions at least once, so M, > 0 for all k. We also assume that at least
one sensor reports its decision in each sensing period, so K, > 0 for all
n.

Let x, = (x;,)1<x<kx De the decision vector (possibly incomplete) at
sensing period n. From (4), the conditional pmfs at x, can be written
as follows:

K
p(x,|Hy: f) = H [f:kﬁ(l _ fk)l_xk,n][k'" ’
k=1
K
ot =TT [atea - dk>1"‘k’"]lk'" : as)
k=1

The sensor decisions at the FC can be arranged in an K X N incomplete
matrix X = (x;,) j<k<k, 1<n<n> Whose nth column is x,. Given X, the
ML estimates of the model parameters are

0 = {f,d,a) = argmax log L(©), 14)
0eS,

where the log-likelihood function is given by

N

log L(©) = Y 10g p(x,;; O). 15)
n=1

The feasible set is Sg = {f,d,u | u € (0, 1), (f}.d}) € S, Vk}, where S,

denotes the set of feasible operational points of sensor k given by (3),

S ={(fid) | 0< e, < fy <dy <1-¢, <1} (16)

The optimization problem (14) has no closed-form solution, so we
resort to the EM algorithm [31,32] to solve it, where X contains the
observed variables and z the latent variables. The EM is an iterative
algorithm whose iterations comprise two steps, termed the E-step and
the M-step:

» E-step:

0(0:6 ") =E[log L.(6) | X;6¢7V], a”
* M-step:

6 = argmax Q(0O; 6=, (18)

0eSe

where i is the index to iterations and log L.(©) denotes the log-
likelihood function if the true hypotheses z were known, which is given
by
N
log L.(©) = Z log p(x,,, z,; ©). 19
n=1

In [30,40] the EM algorithm is applied to mixtures of Bernoulli
random variables. In [32,37] it is applied to mixtures of multinomial
random variables, which generalize mixtures of Bernoulli random vari-
ables. But in all the above cases, the parameters are unconstrained and
the observations are complete. The specific constraints (16) of the DD-
WSN problem and the incomplete nature of the observations x, make
the application of the EM algorithm to (14) challenging and different
from those references.
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E-step:

Substituting (6) into (19),

N
log L,(0) = Y (1 - z,)log [(1 - u) p(x, |Ho: D)] + z,log [u p(x,|H,:d)]

n=1
(20)
Then, the expectation function (17) will be
N

0(0;6") = 3 (1-1) log [(1 - u) p(x,|Hy; 0)] +1$ log [u p(x,|Hy; )],

n=1

(21
where
10 = E [2,1%,; 69" V] = P (z, = 1]x,;6V) (22)

2= p (xnIHI;&(i_l))

(1=a6-0) p(x,[Ho: 860 ) + 26D p (x, 17, d6-D)

Indeed, the posterior probability tf,i) can be interpreted as a soft
estimate of z,, at iteration i once x,, is observed and given the parameter
estimation at the previous iteration. For notation convenience, we
group these soft estimates in vector t = (1\), < y-

M-step:

Substituting (21) into (18),

N
0 = (f0,d", a7} = argmax Y (1—1)log(l —u) + 1 logu + 23)
oesy, =

(1 = 1D)log p(x,, | Hy: £) + 19 log p(x,, |, ; d).

Since the terms depending on u are decoupled from the rest, (23) can
be broken down into two independent problems:

N
a® = argmax Z (1- IEP) log(1 —u) + tfqi) logu, (24)
O<u<l1 n=1

K N
(f0,d0) = argmax Z
k- di)ESKVK j=i n=1

(1=1D) 1y, [y, 108 fi + (1= xp,) log(1 = f)l +

+ 1910, [x, logdy + (1 = x; ) log(1 — d})], (25)

where we have considered the expressions of the conditional probabilities (13).
Moreover, in (25) the terms of the objective function associated with each sensor
are decoupled from each other, so it can be divided into K decoupled problems
of the form

N

(£0,d0} = argmax Y (1=19) 1, [x,log fi + (1= x; ) log(1 = f)] +
(fredi)ESK =1
+ (0, X, logd, + (1= x, ) log(1 —d)]. (26)

Optimization problem (24) can be expressed as

a® = argmax N(()i) log(1 —u) + Nfi) logu, 27)
O<u<1

where
N N

NP =340 NP =Y -0, (28)
n=1 n=1

can be interpreted as soft estimates of the number of sensing periods
under H, and H,, respectively, according to t). Setting the deriva-
tive of the objective function in (27) to zero, after simple algebraic
manipulations, yields

N(l’)

a0 = Tl (29)
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where we have considered the fact that Néi) +N f") =N.
Before solving (26), we first introduce the following notation

N N
() i (@) i
Mk’,1|] = Z lk,nxk,ntg,l)’ Mkl,0|0 = Z lk,n(1 - xk,n)(l - IE:)),
n=1 n=1

N N
M,E’fllo = Y lepxg (1= ), M}(’},Il = Y L= x )10, (30)
n=1

n=1

where the term Mff;_ls can be interpreted as the soft estimate of the

number of decisions #; of sensor k under H,, according to t. Notice
that

MO — MO 4D

N N

_ O) B _ @ o _ (i)

k0 k,0]0 k10 — zlkvn(l L ); Mk.] - Mk,()\] + Mk,lll - 2 lk«’ltn
n=1 n=1

(31)

are the estimated number of decisions of sensor k under H, and H,
respectively, and

N
YIRS 2
n=1

is the total number of decisions reported by sensor k.
Considering (30), the optimization problem (26) can be written as
follows

(f0,d0y = rgmax M) o log fic + My Tog(1 = f) +
k%K k

M logd + My, Tog(l - dy). (33)

Appendix A shows that (33) has only one solution that can be
expressed as follows:

(@),
(ck, ck) ) if

(ek,bif)) s if
( i

a? l—ek), if

ek<a§(i)<b§:)<l—ek
e <c <l—-e A ag)zbg)
a;!)Sek<b:)<l—ek

(70.d0) =1

ek<a§j)<1—ek gb}j)

(ex-ex) s if b <e A c<e
(1-ep.1—¢), if a:)zl—ek AN c=1—¢
(ers1—¢), if a?gek A l—eksbg)
(34
where
(@) @ (@) (@) N
20 = k10 G _ My o = M+ My 1 Zl .
= ~ > = > k= T = knXkn-
k M,((,z) k ]\ll((o1 M, M, “~ nXicn
(35)

The terms ag) and bg) can be interpreted as the soft sample probabilities
of false-alarm and detection of sensor k, according to t. For a;:) and bg)
to be well-defined (take finite values), M 1% and M,E')l must be greater
than zero, which is fulfilled when #” € (0, 1). The term ¢, is the fraction
of H, decisions of the sensor k, which does not change with iterations,
so it can be calculated in advance.

The seven cases of the expression (34) are mutually exclusive. Each
corresponds to a region of the (ag), bg))—coordinate plane, as depicted
in Fig. 2.

4.1. Initialization and convergence

The EM algorithm requires an initial estimate of the model param-
eters: OO, For this, we first set an initial vector of soft estimates, t©,
and then apply the M-step to obtain @©. We propose the following
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Fig. 2. Mutually exclusive regions associated with the cases of Eq. (34).

heuristic soft estimates:
. K
€ if Zk:] lk.nxk,n < Kn/2
0 _J1 . K
t§1> 12 if Zk:l lk,nxk,n = Kn/2
. K
l—¢, if Y. L, > K, /2,

0<e <1 (36)

Put into words, given a decision vector x,, its initial soft estimate 7 is
set to ¢, when the majority of the active sensors decide H,,. Similarly,
19 is set to 1 — ¢, when the majority of the active sensors decide
H,. In case of a tie, IS‘O) is set to 1/2. The parameter ¢, ensures that
t§,0> € (0,1) for all n, so aio) and b;(o) will be well-defined and the initial
estimates will belong to the feasible set: 6© € S,. Then, according
to (13) and (22), tf,” € (0,1) for all n, so 61 € S,. Consequently, ¢,
ensures that the expressions of the M-step will be consistent across all
iterations, and ¥ € S, for all i. The EM algorithm always increases
the value of the log-likelihood function in each iteration [30-32].
Therefore, since the log-likelihood function (15) is bounded for © €
Sg, the algorithm converges monotonically. Then, convergence may
be determined by observing when the log-likelihood function stops
increasing with the iterations. Moreover, since Sy is a convex set and
Q(©; @) is a continuous function in both arguments (see (21)), the limit
point of the EM sequence @ is either a local maximum of L(©) in the
interior of Sy or a boundary point of S, where L(©) > L(O) for all
O € Sg N By, By being an open ball centered on O [41].

In general, the log-likelihood function (15) can exhibit multiple
local maxima. Moreover, there can be multiple local maxima attaining
the ML. This usually occurs in situations with few decision vectors
and/or a large number of parameters to estimate. In our experience, the
initial soft estimates given by (36) are particularly useful for locating
a local maximum that leads to good detection performance.

5. Partial knowledge at the FC

It might be the case that some of the model parameters are known
by the FC. For example, it might know the probabilities of false-alarm
and/or detection for a subset of sensors, or it might know the prior
probability u. Those cases can occur simultaneously. The following
Sections 5.1 and 5.2 particularize the EM algorithm to these cases.

In some cases, there is a training or calibration stage, under con-
trolled conditions, in which the FC knows the actual hypothesis for
a subset of sensing periods. We refer to the corresponding sensor
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Algorithm 1 : ML estimation of the model parameters © = {f,d,u}

1: input: X, e, ¢, ¢

: Set the initial soft estimates t© from (36)

: Apply the M-step to t© to obtain the initial estimates 6©

: Compute the log-likelihood function, log L(O©), from (15)

: Compute the fraction of H, decisions of the sensors, {c, },’le, from
(35)

: Initialize iterations index: i =0

: repeat

i=i+1

E-step:

10: Compute the soft estimates, t), from (22) and (4)

11: M-step:

12: Compute N(()i) and Nfi) from (28)

13: Compute 4 from (29)

14: fork=1to K

15: Compute a;") and bg) from (35)

16: Compute f]ii) and dA,(:) from (34)

17: end for

18: Compute the log-likelihood function log L(O®) from (15)
| log L(OW)—log L(OU~D|

1oz LOW)| ‘L
20: return: Final parameter estimates, © = @

a A wN

19: until convergence:

decisions as labeled or supervised. Section 5.3 shows how to apply the
EM algorithm in this case.

5.1. Known probabilities of false-alarm and/or detection of some sensors

Let S; and S; be the subsets of sensors for which the FC knows
their probabilities of false-alarm and detection, respectively. Then, f,
is known for k € S, and unknown for k € S;. Similarly, d, is known
for k € Sy, and unknown for k € Sy.

In the E-step, the soft estimates are calculated as in the standard
case (22) but with the appropriate pmfs:

pOx, 180 = T [ = 1] T [(fk"’“)”" (1- f”k"*“)lfx"”]

SES; keS;

lin

37

p(xanl;d"(i—l)) - H [d;n.u(l _ ds)1_xm]1.\_n H [(J;{i—]))xk.n (1 _ dfil))lka_n]lk,n

SESy keSy

(38)

In the M-step, there are four possibilities regarding the optimization
problem (33):

(1) k € S N S4: In this case, all parameters of sensor k are known
by the FC, so there is nothing to estimate.

(2) k € S; n'Sy: Since both f, and d, are unknown, their estimates
A,E") and dAf(") are given by (34).

3) ke s ngd: Now, f; is known and d, is unknown. Then, (33)

reduces to
d¥ = argmax MY logd, + MY log(1 —d,) 39)
k s, k11 k k0[1 k/»

where S, = {d; | fx <d, <1-e¢.}. Appendix B shows that in
this case (39) has a unique solution given by

b f<bl <1-e
A =3f. if fi2b) (40)

1 —e,, otherwise.
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4) ke §m$d: Now, d, is known and f; is unknown, so (33) reduces
to

()

. = argmax MIEI,)I\O log f} + MIEI})\O log(1 = f4), (41)

J1E€Sk

where S, = {f; | e, < fi < d,}. Appendix C shows that in this
case (41) has a unique solution given by
a0,
f,?) =qe, if
d,, otherwise.

if e <az) <d

e > ag) (42)

5.2. Known prior probability

When the FC knows the prior probability u, the set of unknown
parameters reduces to © = {f,d} and the feasible set is now Sy =
{f.d |[(fy.dy) € Sy, Vk}. In the E-step, the soft estimates will be given
by

u p(xan];&(””)
(1—u) p (xn|Ho;f““)) +u p (X,,IHI;(i("“))

(43)

0 — O] =
iy _]E: [Zﬂlxﬂ’e ]_

which has the same form as in (22), but substituting the estimates 4¢~"
by u. In the M-step, the computation of f© and d” remains the same
as in the standard case.

5.3. Supervised decision vectors

In the standard case, we assumed that the FC infers the model
parameters only from the decisions of the available sensors X. Let us
now consider the case in which the FC also knows the true hypothesis
for a subset of decision vectors S, C {1,2,...,N}. We call them
supervised decision vectors. Now, the available data at the FC is X and
{z,}es,- Then, the expectation function of the E-step will be
0©:6") = E

{zn)ngs,

Now, the terms {1 }nes, are no longer soft estimates but the known
values, so IEP = z,, whereas the soft estimates for the unsupervised
decision vectors will be as in (22). The M-step remains the same.

If all decision vectors were supervised, S, = {1,..., N}, the resulting
estimate is just the ML estimate for the complete data, {X,z}, which is
given by

llog L.(O)| X, {z,},es,: 07 "1.

6 = {f.d, 2} = argmax log L (©). (44)
0eSe

Its solution can be viewed as a particular case of the EM algorithm

where t = z. Note that now the terms N; in (28), My s in (30) and

M; , in (31) are known in advance, so the solution to (44) is obtained

after a single iteration of the M-step.

5.4. Computational complexity

The memory storage requirements of the EM algorithm are negligi-
ble, whereas its computational cost (time complexity) depends mainly
on the number of iterations of the EM algorithm, which is quite
unpredictable. When the detection and false-alarm probabilities of a
subset of sensors are known (section 5.1, case 1), they do not need
to be estimated in the M-step. When the prior probability is known
in advance (section 5.2), Egs. (28)-(30) do not apply in the M-step.
However, this does not result in a significant reduction in computa-
tional cost. Finally, when supervised decision vectors exist (section 5.3),
their posterior probabilities are known. Therefore, only the posterior
probabilities of the unsupervised decision vectors need to be estimated
in the E-step. Focusing on a single iteration of the EM algorithm, the
computational cost of the E-steps and M-steps is summarized in the
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following table for the different cases considered in Sections 4 and 5
(see Table 1).

6. Simulation results

Following [5,7,8], we assume that the sensors employ on-off keying
signaling to transmit their decisions to the FC through the reporting
channels, which experience slow flat fading. Then, at time n, the
discrete-time base-band signal at the FC coming from sensor k is given
by r, = hy Y n+wy,.- We make the standard assumption that the noise
at the FC, w, ,, is independent, identically distributed, and circularly
symmetric complex Gaussian with variance ¢2. We assume that the
FC knows the channel responses, 4, so it employs coherent detection
to obtain x;, from r, , with decision threshold |A,|/2. Then, the bit-

error rate is ¢, = Q (‘;’y—"' . We also assume that the reporting channels
experience independenl{ Rayleigh fading, so h; ~ N¢(0, 1). Notice that
the above assumptions are just the ones we consider in the simulations.
They are not required by the proposed method.

We analyze the estimation and detection performance of the EM
algorithm using Monte Carlo simulations. Each experiment averages
the performance of R = 10° independent runs. In each experiment, we
fix the prior probability u, the number of sensors K, and the number
of decision vectors N. We also choose o‘i so that the average error
probability of the reporting channels takes a given value e = E[e;] =
E [Q (%)] These parameters do not change in the R runs of each
experiment. Unless otherwise stated, we consider a network comprising
K = 8 sensors. The prior probability is u = % and the average BER of
the reporting channels is E[e,] = € = 0.02. In any case, the figures show
the values of the simulation parameters in the experiments.

In each run, the local sensor probabilities are drawn indepen-
dently from uniform distributions within the following intervals: P}S}( ~
U(0,1/2), P‘E’f,)c ~ U(P/E‘f;(,l). We also draw independent channel re-
sponses, h;, and the corresponding error rates e,. Then, from (1) and
(2), we obtain the probabilities f and d in the run. Finally, a sequence
of states z is drawn according to u, and the matrix of decisions X
is drawn from z, f and d. Finally, the EM algorithm is applied to
obtain the estimates ® = {f,d, 4} from X, and the estimation errors
are computed. In each run, the EM algorithm is applied only once
with the initialization (36) with ¢, = 1073. From the EM estimates, we
analytically calculate the detection performance of the resulting EM-
based fusion rule using (7). After the R runs of the experiment, the
estimation errors and the detection performance are averaged. These
are the outputs of the experiment.

In the simulations, unless otherwise indicated, we consider the
standard case where the FC does not know any model parameters
O = {f,d,u}, so it must estimate them from X exclusively. In addition,
if not otherwise stated, we assume that the decision matrix is complete,
so the FC receives the decisions from all sensors in each sensing period.

6.1. Estimation performance

To analyze the estimation performance of the EM algorithm, we
compare it with the fully supervised estimator (see Section 5.3), which
can be considered as an upper bound for the EM estimator. We use the
root mean squared error (RMSE) as a performance metric:

R
RMSE(®D) = || 2= 3, I~ 0|2,
r=1

where r is the index of the runs, f*) is the vector of the false-alarm
probabilities in run r, and f) is the corresponding estimate. The RMSE
of d and 4 is defined analogously.

Fig. 3 compares the estimation performance of the EM estimator and
the fully supervised estimator (labeled ) as a function of the number
of decision vectors. As expected, the S estimator outperforms the EM,
and the RMSEs decrease with N more rapidly when N is low.
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Table 1
Computational cost per iteration of the EM algorithm.
E-step M-step
Section 4: Standard problem O(N) O(K)
Section 5.1: Known performance of some sensors O(N) O(]:S; N S4l)
Section 5.2: Known prior probability O(N) O(K)
Section 5.3: Supervised decision vectors O(N - |S,]) O(K)

20 40 60 80 100 120 140 160
N

Fig. 3. RMSE of the EM and supervised estimates as a function of the number of

decision vectors.

Fig. 4. RMSE of the EM and supervised estimates as a function of the prior probability
of H,.

Fig. 4 shows the performance of the EM estimator and the fully
supervised estimator as a function of the prior probability of H,. For
low values of u, most of the decision vectors come from H,, so the
RMSE of the f estimates is small, while the RMSE of the d estimates
is high. The opposite occurs for high values of u. In any case, after
N = 80 decision vectors, the performance gap between the S and the
EM estimators is quite low for any value of u.

Fig. 5 shows the RMSE of the estimates when a subset of K, sensors,
out of K = 10, are active in each sensing period. In other words,
K, = K, for all n. The active sensors are randomly selected in each
sensing period. Now, it is more difficult for the FC to learn the sensor
parameters because it has fewer decisions from each sensor. It can be
observed that the RMSE of the EM estimates converges quite fast to the
supervised ones as the number of active sensors grows.

Fig. 6 shows the estimation performance when N, of the N = 80
decision vectors are supervised (see Section 5.3). It is observed that the
RMSEs of the EM estimates decrease rather slowly with N,, so a high
fraction of supervised decision vectors is required to obtain a significant
improvement.

As it was mentioned, the detection performance of the fusion rule
proposed in Section 3 is determined by the accuracy of the test statistic
estimates 7(x; @) which, in turn, is determined by the accuracy of the
parameter estimates @. The RMSE of the test statistic estimates is given

Fig. 5. RMSE of the EM estimates and the supervised estimates as function of the
number of active sensors.

0 20 40 60 80

Fig. 6. RMSE as a function of the number of supervised decision vectors.

by

R
1 ® r . r . r
RMSE() = | | 2 >, X 11(x:6) — 1(x: )] p(x; O0).

r=1 X€Qy

Fig. 7 shows the RMSE of 7(x; @) as a function of the number of decision
vectors. The simulation parameters are as in Fig. 3. As expected,
according to Fig. 3, the RMSEs of the test statistic estimates decrease
faster for low values of N. Interestingly, the performance gap between
the supervised and the EM estimates remains quite constant in the
entire range of N.

6.2. Detection performance

This subsection shows the detection performance of the EM-based
detection rule (proposed in Section 3.2 and labeled EMR in the figures).
It is compared with the fusion rule based on fully supervised estimates
of the model parameters (labeled SR in the figures), and with the
optimal fusion rule (10) (labeled LRT in the figures) when the FC knows
the model parameters. The performance of the LRT and the SR are both
upper bounds for the EMR, with SR being the tightest one. We also
compare the EMR with the counting rules (CRs) with different values
of decision threshold. If not otherwise stated, we use the probability
of error (9) as a performance metric. The detection performance of the
ISR is the worst in all experiments, so it is not shown in the figures.

Fig. 8 shows the average probability of error of the fusion rules
as functions of the prior probability of H,. As expected, the optimal
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Fig. 7. RMSE of the test statistic estimates #(x; @) as a function of the number of

decision vectors.
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Fig. 8. Average probability of error of the fusion rules as a function of the prior
probability of H,.

decision threshold of the CR (denoted by C) is highly dependent on
the value of u. Note that, if the model parameters are unknown, the FC
cannot know the optimal C. In any case, after N = 80 decision vectors,
the EMR outperforms all CRs over the entire range of u values. The
performance gaps between the EMR, the LRT and the SR remain quite
constant for any value of u.

Fig. 9 shows the average probability of error of the EMR, as a
function of the number of decision vectors, when different subsets
of model parameters are known to the FC. As expected, the more
parameters the FC knows, the better the EMR performs. The EMR is
compared with the LRT and the optimal CR (labeled CR*). In this case,
the optimal CR threshold is C = 4, as Fig. 8 shows. Notice that the EMR
outperforms the CR* in all cases after N = 30 decision vectors. As N
increases, the P, of the EMR converges to the LRT more rapidly when
more parameters are known by the FC.

Fig. 10 compares the average probability of error of the fusion rules,
as a function of the number of sensors. It can be observed that, as K
increases, the performance of the EMR detector converges quite fast to
the LRT. In contrast, the performance gap between the CR* and the LRT
remains fairly constant as K increases.

Fig. 11 shows the average probability of error of the fusion rules as
a function of the average error probability of the BSCs. In this case, the
best CR threshold is again C = 4. The EMR outperforms the CR* except
for extremely large values of e. Moreover, the P, gap between the EMR
and the SR and LRT remains almost constant with e. In other words,
the EMR fusion rule is quite robust against the errors in the BSCs.

Fig. 12 shows the average Bayes risk (8) as a function of the ratio
of the Bayesian costs assigned to false alarms and miss-detections,
Cy/Cp,- The hits are not penalized (C,, = C;; = 0), so the Bayes
risk when C, , = C,; coincides with the probability of error. The figure
shows that the optimal CR highly depends on the costs ratio. The EMR
outperforms the optimal CR except for extreme values of C;,/C ;.
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Fig. 9. Average probability of error of the EMR when some of the model parameters
are known.
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Fig. 11. Average probability of error as a function of the average crossover probability
of the BSCs.

Interestingly, the higher performance gap between the EMR and the
LRT occurs when the costs ratio is close to 1 (minimum P, criterion),
and decreases as C,/C,; deviates from 1. The little asymmetry with
respect C;(/Cy; = 1 is due to the value of u.

Fig. 13 shows the detection performance of the EMR when the
FC knows the operational point (f;,d,) of K .4 SENsors out of K. In
particular, it shows the average probability of error after learning the
unknown model parameters for N = 80 and N = 40 decision vectors.
In this case, u is unknown. As expected, knowing the operational point
of some sensors produces a detection improvement and reduces the
performance gap between the LRT and the EMR. Even when the FC
knows the operating points of all sensors, K;, = K, the EMR does
not achieve the LRT performance because the prior probability u is
estimated.
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Fig. 12. Average Bayes Risk as a function of the ratio between the costs assigned to
false alarms and miss-detections.
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Fig. 13. Average probability of error of the EMR when the FC knows the operational
point of K, of the sensors.

7. Conclusion

We have presented an algorithm for the FC to blindly estimate the
sensor parameters in canonical DD-WSN with BSCs. It is flexible and
generally applicable in the sense that it can cover a wide variety of
situations that may arise in practical DD-WSN. It is applicable when all
or some of the parameters of a subset of sensors are unknown to the
FC. In addition, the FC may know or ignore the prior probabilities of
the hypotheses in advance. The algorithm is also applicable when only
a subset of sensors reports their decisions in each sensing period, and
when the FC knows the true hypothesis for a subset of sensing periods.
All these cases can occur simultaneously.

The algorithm is derived by applying the EM algorithm, where the
observed variables are the noisy sensor decisions at the FC, and the la-
tent variables are the unknown true hypotheses at each sensing period.
The application of the EM algorithm leads to quite simple closed-form
expressions for both the E-step and the M-step, so its computational cost
is quite low. Numerical simulations show the accuracy of the estimates
after sufficient sensing periods.

In DD-WSN, the ultimate goal is to have an accurate fusion rule
of the sensor decisions. In this work, we have proposed a fusion rule
considering the MBR criterion. It is based on the estimates of the pos-
terior probability of the alternative hypothesis obtained from the EM
estimates of the model parameters. Exhaustive numerical simulations
show that, in all cases, the proposed fusion rules exhibit near-optimal
detection performance when the estimates of the unknown model
parameters are sufficiently accurate. And this is achieved after a rather
small number of sensing periods.

In closing, we mention a possible extension of our work. We have
considered a stationary environment in which sensors’ performance
does not change with time, so we use a batch EM algorithm to estimate
them. But in many practical DD-WSN systems, the sensors’ detection

10
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probabilities can vary with time. In these cases, some online version of
the EM algorithm could be used.
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Appendix A. M-step of the em algorithm when f, and d, are
unknown

The feasible set S, is determined by the constraints ¢, < f, <
d, < 1 — e;. Therefore, (33) is a two-variable nonlinear optimization
problem with three inequality constraints. The feasible set is compact
(closed and bounded) and convex. The objective function of (33) is
differentiable, bounded, and strictly concave in S,. Therefore, it has
only one maximum in S, which is the only solution to the optimization
problem. Since there are no irregular points associated with the con-
straints, the solution to (33) is the only point (f,,d,) that satisfies the
Karush-Kuhn-Tucker (KKT) conditions. The gradient of the objective
function is

0) 0) 0) o 1"
Mk,l\O _ Mk,OlO Mk,1|l _ k,0[1 (45)
fi 1-f’ d, 1—d,

The inequality constraint functions are f, —d,, e, — f; and d;, — (1 —e,),
and their gradients are [1,-1]7, [-1,0]” and [0, 1], respectively. Then,
the KKT conditions are

(i) i) (i) (i)
Mk,1|0 .00 Mk,1|l k0[1
_— +A =4 =0, ———t —— - A+ A3=0,
S L= fi dy 1-d,
M(fx—dp) =0, Ay(ey — fi) =0, }»3(11/(—(1—91()):0,
fkﬁdk, ekﬁfk, dkﬁl—ek, 11,12,1320,

where 4, 4, and A; are the KKT multipliers. In the following lines, we
particularize the KKT conditions to the different types of points (f},d;)
on the feasible set (see Fig. 2):

(1) Interior points: e, < f; <d, <1—¢; = A} = 1, = 13 = 0. Then
the KKT conditions reduce to

0] (@) @) @)
_ Mk,llt) + Mk,(Jl(J _ _ Mk,lll Mk,[)ll

=0, + =0,
fk l_fk dk l_dk

fi<dy, e < fi, dp<l—e.

@)
p) — Mo g0 _
K= 0 G =

From the two equations, we obtain

k0 s
where we have considered (31). The inequalities require e, <
Moo _ M

0]
Mk,O

(2) Points on the boundary ¢, < f, =d; <1—¢, = 4, = 43 = 0.
Then the KKT conditions reduce to
(@) (@) (@) ()
_ M, o KOO g _Mk,lll KL _ 0 g
fi 1= f U7 d, 1-4, 77
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fi=d, e <fr. dp<l—e, 1,20

A(i) k110" k11
k M,

k
ML 2,1,\]:1 li» Xi» Where we have considered (30), (31) and (32).
P n Xk,

The inequalities require ¢, <

) MO g ®
From the equations we have = dl') e

1 ¢N
szrmllk,n Xpn < 1—¢ and

10 0]
Mk.l\() Mk.l\l
O = 3,0 "
Mk,O Mk,]
(3) Points on the boundary ¢, = f, < d;, <1—-¢, = 4 = A3 = 0.
Then the KKT conditions reduce to
(@) (@) @) ()
Mo Moo M Mo
—1,=0, =0,
fx L= 7y dy 1 —dy
fe=ep fi<dp dy<l-—e, 420,
» ) u®
From the equations we have f© = ¢,, 4 = —&ll and the
k k k M@
0] (i) -
. aps . k,1]0 Mk 111
inequalities require i Se< - < 1—e.

k0 k,1

oints on the boundary ¢, < f; <d, =1—-¢, = A, =4, =0.
(4) Points on the boundary e, < f <d, =1—¢, = 4; = Ay = 0
Then the KKT conditions reduce to
(i) (i) @) (i)
_ M, + M, o0 _ _Mk4,1\1 M, o T
S I dy 1—d, 77
ey < fin Si<dy di=1l-¢p, A3>0.
A (’) .
From the equations /i') = kb dAL') = 1 - ¢, and the
0] Mo 0]
inequalities require e, < 1% <1 —¢, < M
My T oM
(5) The vertex (fy,d;) = (e;,e;) = A3 = 0. Then the KKT conditions
reduce to
@) (@) @) 0]
Mo Moo A — A =0 M Mo 1 =0
fi 1—f P TY dy 1-d4, '
ey =fr=dp. A4 20.
mD
The inequalities require e, > M"—(:)“ e > ML,( Z,,N= len Xicn
k.1
(6) The vertex (fy.dy) = (1 — e, 1 —e) = A, = 0. Then the KKT
conditions reduce to
@) (@) @) (@)
Mo Moo M Mo
- +4, =0, - A +43=0,
Sk I dy 1 —d;
fu=dy=1=¢,, A.A320.
0
The inequalities require 1—e; < ﬁ l—e;, < ML,( SN L X
k.0
(7) The vertex (fy.d,) = (e, 1 —e) = A, = 0. Then the KKT
conditions reduce to
(@) (i) @) (i)
Mo Moo =0 M Mo =0
p -5 27 dy I—d, 77
fi=ewn di=1—e¢e, Ay,A320.
@ @
The inequalities require e, > A;U')'O l—e < M";f)“ .
k0 k1

Appendix B. M-step of the em algorithm when f; is known and d;
is unknown

The optimization problem (39) is a single-variable nonlinear prob-
lem with two inequality constraints: f; —d;, <0 and d;, — (1 —¢;) < 0.
The derivatives of the objective function and the inequality constraint
functions are

(i) ()
Mk,1|l Mk4,0|1 |
d, 1-d, =

11
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respectively. The feasible set, [f,,1 — e,], is compact and convex, and
the objective function is differentiable, bounded, and strictly concave
in the feasible set. Then (39) has only one maximum, which is the
only solution. Since there are no irregular points associated with the
constraints, the solution to (39) is the only value d, that fulfills the
Karush-Kuhn-Tucker (KKT) conditions:
M M
d,  1-d,
fisd dp<l—e,

—Mt+A=0, A4(fi-d)=0, A(d,—(1-e))=0,

A dy 20,

where A, and 4, are the KKT multipliers associated with the inequality
constraints. We particularize the KKT conditions for the possible values
of d; in the feasible set.

(1) Interior point: f; < dy < 1 —¢, = A = 4, = 0. The KKT
conditions reduce to

0] ()
Bow  Reon o0 g g<ie
4 T—a, k < dgs k k-
oy MY
From the equation, we obtain d,((’) = M";:)" , and the inequalities
0} ko
require f, < —=lb <1 —¢;.
Mk,l
(2) Point on the boundary d, = f; = 4, = 0. The KKT conditions
reduce to
@) (@)
M Myon
- —4 =0, fi=d. i >0
4, 1-d,
i (@)
Then, d\" = f,, and the inequality requires A;ill)“ < fi
k1
(3) Point on the boundary d;, = 1—¢;, = 4; = 0. The KKT conditions
reduce to
@) (@)
Mo Meon 3 _o gmime 1,20
4 =g, T2=0 = ko 2 20.
. (i)
Then, d\ = 1 - ¢,, and the inequality requires 1\;:)“ >1—e.

k.1

Appendix C. M-step of the em algorithm when f; is unknown and
d; is known

The optimization problem (41) is a single-variable nonlinear prob-
lem with two inequality constraints: ¢, — f;, < 0 and f, — d;, < 0.
The derivatives of the objective function and the inequality constraint
functions are

() ()
Mk,ll() _ Mkn\o 11
S 1= f’ T

respectively. The feasible set, [e,,d,], is compact and convex, and
the objective function is differentiable, bounded, and strictly concave
in the feasible set. Then (41) has only one maximum, which is the
only solution. Since there are no irregular points associated with the
constraints, the solution to (41) is the only value d; that fulfills the
Karush-Kuhn-Tucker (KKT) conditions:

M(i) MO
k110 k.00

— I + ! —A+4=0, Ale—f)=0, 4L(f,—d)) =0,
p 1=/

e < fio [fi<d. A4 20,

where A, and 4, are the KKT multipliers associated with the inequality
constraints. We particularize the KKT conditions for the possible values
of f, in the feasible set.
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(1) Interior point: e, < f, < d;y = A; = A, = 0. Then the KKT

(2

@3

—

=

conditions reduce to

@) (@)
M

k110 k,0(0
-——t+ —— =0, e, < fr fi <dy.

Sk 1= fi

MO
From the equation, we obtain f ,E') = —&0and the inequalities
k0
M

. k110
require ¢, < M_;% <dy.
Point on the boundary f;, = ¢, = 4, = 0. The KKT conditions
reduce to

@) (@)

k1[0 k,0[0
- M =0, fi=en A >0

Sk I=fx

» 0]
Then, flﬁ’) = ¢, and the inequality requires A:;:)'O <e.
k0

Point on the boundary f; = d;, = 4; = 0. The KKT conditions
reduce to

@) (@)

M

k1[0 k,0(0
— +4,=0,  fi=d, A 20

Sk 1= fi

0
» M
Then, f :) = d,, and the inequality requires A;;:)'O > d,.
)
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