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Abstract

Background: The integration of blood-based biomarkers and multiparametric

magnetic resonance imaging (mpMRI) has been proposed to improve prostate cancer

(PCa) diagnosis. However, few validated models combine both tools to support risk-

adapted clinical decision-making.

Objective: The study’s aim is to evaluate and internally validate a multivariable model

integrating clinical, analytical and imaging parameters—including the Prostate Health

Index (PHI) and mpMRI—for predicting clinically significant prostate cancer (csPCa) in

biopsy-naïve men.

Design, setting and participants: This prospective observational study included

183 biopsy-naïve men aged 50–75 years with PSA levels of 4–10 ng/mL and/or

abnormal digital rectal examination. All patients underwent PHI testing, and 47.5%

received prebiopsy mpMRI. All underwent systematic biopsy; targeted cognitive

fusion biopsy was performed for PIRADS ≥ 3 lesions.

Outcome measurements and statistical analysis: A multivariable logistic regression

model was constructed using PHI, PSA density, PSA free/total ratio, PIRADS score

and age. The model was internally validated with bootstrap resampling and converted

into a clinical nomogram. Diagnostic accuracy (AUC, sensitivity, specificity, NPV and

PPV) was assessed and compared with simplified strategies using PHI or PIRADS

alone, as well as a sequential approach (PHI ! PIRADS).

Results and limitations: The model achieved an AUC of 0.841 (95% CI 0.76–0.91), with

100% sensitivity and 66.7% specificity for csPCa in the mpMRI cohort at the optimal

17% risk threshold (65.5 points). It safely avoided 49.4% of biopsies without missing any

csPCa cases. Simpler strategies using PHI or PIRADS alone showed lower efficiency,

particularly in balancing sensitivity and biopsy reduction. As an additional analysis, the
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PHI–mpMRI nomogram by Siddiqui et al. (2023) was externally validated in our cohort,

confirming robust diagnostic accuracy (AUC 0.89, 95% CI 0.82–0.95). Limitations

include the modest size of the mpMRI cohort and the historical nature of recruitment

(2014–2018), although PHI and mpMRI remain standard in contemporary practice.

Conclusions: This model accurately predicts csPCa and outperforms individual tools

such as PHI or PIRADS alone. Its application may improve diagnostic efficiency and

reduce unnecessary procedures.

Patient summary: A model combining a blood test (PHI) and MRI can help avoid

unnecessary prostate biopsies while reliably detecting aggressive cancers.
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1 | INTRODUCTION

Prostate cancer (PCa) is the most frequently diagnosed malignancy in

men and remains one of the leading causes of cancer-related death

worldwide.1 According to GLOBOCAN, over 1.4 million new cases

were diagnosed in 2020, and this figure is projected to surpass 1.7

million by 2030.1 In Europe—and particularly in countries like

Spain—its incidence continues to rise, driven by population aging and

the widespread use of prostate-specific antigen (PSA) testing.2,3

PSA-based screening has been shown to reduce PCa-specific

mortality, as evidenced by the long-term outcomes of the ERSPC

study with 16 years of follow-up.4 However, this benefit has been

accompanied by substantial overdiagnosis and overtreatment, with

significant clinical, psychological and economic implications.5,6 In fact,

studies on conservative management of localized PCa have shown

that many low-risk tumours follow an indolent course, with a low

20-year cancer-specific mortality risk in such cases.5

To address the limitations of PSA, several complementary tools

have been developed to improve patient selection for prostate biopsy.

Among these, the prostate health index (PHI) has demonstrated

greater diagnostic specificity, enabling better discrimination of

clinically significant cancers versus indolent disease.7,8 More recently,

prospective studies in large cohorts, such as that of Chiu et al. con-

ducted in Hong Kong, have confirmed its utility in real-world clinical

settings.9

Concurrently, multiparametric magnetic resonance imaging

(mpMRI) has become a key tool for initial diagnosis and staging of

PCa. Landmark studies such as PRECISION, MRI-FIRST and 4M have

shown that mpMRI followed by targeted biopsy improves detection

of clinically significant cancer while reducing the diagnosis of low-risk

tumours.10–12 Despite its advantages, mpMRI has certain limitations

related to availability, cost and inter-reader variability, especially in

settings with less radiological expertise.13,1415

Although several studies have evaluated the combined perfor-

mance of biomarkers like PHI with imaging tools such as mpMRI,16–19

a clear and scalable clinical pathway for their joint implementation

remains lacking. Models based exclusively on mpMRI, such as that

proposed in the Göteborg–2 study, have raised concerns regarding

cost-effectiveness.

Recently, Patel et al.20 reviewed the landscape of predictive

models based on mpMRI, highlighting that although several risk calcu-

lators exist, very few incorporate advanced serum biomarkers such as

PHI. Among the exceptions, Siddiqui et al.21 developed a nomogram

integrating PHI, PSA density, age, and PIRADS, which achieved excel-

lent diagnostic accuracy in a large contemporary cohort. However,

this tool has not yet been externally validated in European prospec-

tive series. This underscores the clinical relevance of evaluating inte-

grative models that combine imaging with blood-based biomarkers in

biopsy-naïve patients.

In this study, we aimed to assess the diagnostic value of PHI and

mpMRI—independently and in combination—through a prospectively

collected cohort of biopsy-naïve men. Our primary objective was to

develop and internally validate a multivariable predictive model for

clinically significant PCa, integrating analytical, imaging, and clinical

parameters. As a secondary aim, we also performed the first prospec-

tive European external validation of the recently proposed PHI–

mpMRI nomogram by Siddiqui et al.21

2 | MATERIAL AND METHODS

This was a prospective, observational study involving a cohort of

patients evaluated for suspected PCa between 2014 and 2018.

Eligible participants were men aged 50 to 75 years (or over 40 with a

family history of PCa) and an estimated life expectancy greater than

10 years. Inclusion criteria included PSA levels between 4 and

10 ng/mL and/or a suspicious digital rectal examination, with no prior

prostate biopsy. Exclusion criteria were active urinary tract infection,

bladder stones, recent catheterization, ongoing hormonal therapy or

use of 5α-reductase inhibitors, severe renal impairment (MDRD < 20),

significant protein alterations, haemophilia, recent blood transfusion

or absolute contraindications to magnetic resonance imaging.
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All patients underwent blinded PHI testing using validated kits

(Beckman Coulter®), and the results were concealed from the clinical

team to avoid influencing diagnostic decisions. Independently, approx-

imately 50% of the patients underwent prebiopsy mpMRI, without

PHI results affecting the indication for imaging. Images were

interpreted by experienced radiologists using the current version of

the PI-RADS system at the time of the study.

All patients subsequently underwent transrectal ultrasound-

guided prostate biopsy. For those with mpMRI available, a systematic

biopsy (≥ 12 cores) was performed along with cognitive-targeted

biopsy of lesions scored PIRADS 3, 4 or 5. In patients without mpMRI,

a standard systematic biopsy protocol was followed.

Clinically significant PCa was defined as tumours with a Gleason

score ≥ 3 + 4. Tumours classified as very low risk included those with

a Gleason score of 3 + 3 in ≤2 cores, involving < 50% and/or < 6 mm

of affected tissue per core.

Clinical, demographic and pathological characteristics were col-

lected prospectively. A comparative analysis between patients with

and without mpMRI revealed no statistically significant differences in

key variables such as age, PSA, PSA density, PSA f/t, PHI, or the prev-

alence of clinically significant PCa, supporting the validity of extrapo-

lating diagnostic models to the full cohort.

2.1 | Model development and validation

A multivariable logistic regression model was constructed to predict

the presence of clinically significant PCa. The model incorporated the

following predictors: PHI, PSA density, PSA free/total ratio, PIRADS

score and age. Model performance was evaluated using the area

under the receiver operating characteristic curve (AUC), sensitivity,

specificity, positive and negative predictive values, and odds ratios

(OR) with 95% confidence intervals (CIs). The final model was con-

verted into a clinical nomogram.

The model was first trained using the subset of patients with

complete data for all predictors, including mpMRI (n = 81). This step

focused exclusively on parameter estimation, ensuring consistency

and minimizing bias from missing data—particularly PIRADS score,

which was only available in patients who underwent imaging.

In a second phase, the trained model was applied to the entire

study cohort (n = 184) to simulate its potential impact at a population

level. For patients without mpMRI, PIRADS values were extrapolated

to mirror the distribution observed in the imaged subgroup. Impor-

tantly, this step was used exclusively for exploratory simulations to

estimate the potential clinical impact and was not included in model

training or internal validation. In sensitivity analyses, men without

MRI were alternatively categorized as a separate group (‘No mpMRI’),
alongside PIRADS 1–2, 3, 4 and 5, to avoid any risk of overfitting. The

optimal decision threshold was identified using the Youden index,

balancing sensitivity and specificity.

In the final phase, the model and its decision threshold were

applied back to the original 81-patient cohort with mpMRI and com-

plete data to assess its diagnostic utility under real-world conditions.

This three-step approach—model development, simulated extrapola-

tion, and internal validation—provided a rigorous framework for evalu-

ating the robustness and scalability of the proposed strategy.

All statistical analyses and multivariable model development were

conducted using Python (version 3.10), employing standard libraries

for data processing (pandas, numpy), statistical analysis (scikit-learn,

statsmodels) and data visualization (matplotlib, seaborn).

3 | RESULTS

A total of 183 patients with PSA levels between 4 and 10 ng/mL

underwent transrectal ultrasound-guided prostate biopsy. All patients

had PHI values available, and 87 of them (47.5%) underwent multi-

parametric MRI (mpMRI) prior to biopsy. The clinical, demographic

and pathological characteristics of the entire cohort are presented in

Tables S1 and S2 (Appendix).

A comparative analysis between the groups with and without

mpMRI revealed no statistically significant differences (see Table S3,

appendix). This supported the homogeneity of the cohort and the

validity of extrapolating the model’s application to broader clinical

settings.

PCa was diagnosed in 91 patients (49.7%), of whom 46 (25.1%)

had clinically significant tumors (defined as Gleason score ≥ 3 + 4).

3.1 | Diagnostic performance of PHI and PIRADS

As individual predictors of clinically significant PCa, both PHI and PIR-

ADS demonstrated strong diagnostic performance:

• The ROC curve for PHI showed an AUC of 0.83. The optimal

cutoff determined by the Youden index was 35.0, with a sensitivity

of 85%, specificity of 67% and negative predictive value (NPV)

of 92%.

• Among the 87 patients who underwent mpMRI, PIRADS showed

an AUC of 0.84 for detecting clinically significant PCa. A PIRADS

score ≥ 3 yielded a sensitivity of 89%, specificity of 63% and NPV

of 91%.

3.2 | Comparative performance of simplified
diagnostic strategies

To further contextualize the performance of the multivariable model,

we assessed the diagnostic utility of PHI and PIRADS as individual

tools, as well as in a sequential approach (PHI ! PIRADS). The results

are summarized in Table 1.

When applying PHI alone with a threshold of 35 to the entire

cohort (n = 184), 35.9% of biopsies would have been avoided, with a

sensitivity of 91.5% for clinically significant prostate cancer (csPCa).

Using PIRADS alone (cutoff ≥ 3) among patients with available mpMRI

(n = 87), 27.6% of biopsies would be avoided, with a sensitivity of
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96.2%. Finally, a sequential strategy whereby only patients with PHI ≥

35 underwent MRI and were subsequently biopsied if PIRADS

≥ 3 would have avoided 42.5% of biopsies while maintaining a sensi-

tivity of 92.3%.

These results support the value of combining both serum and

imaging markers to optimize diagnostic efficiency while minimizing

the risk of missing significant cancers.

3.3 | Multivariable model and nomogram

A multivariable logistic regression model was developed using the

subset of 81 patients with complete data, including mpMRI. The pre-

dictors included the following: PHI, PSA density, PSA free/total ratio

(PSA l/t), PIRADS score and age. The model demonstrated excellent

discriminative capacity with an area under the ROC curve (AUC) of

0.841. Table 2 summarizes the model coefficients and odds ratios.

The final model was transformed into a clinical nomogram (see

Figures 1 and 2) for individualized risk estimation. A 17% probability

threshold was defined as optimal using the Youden index, balancing

sensitivity and specificity.

3.4 | Real-world application of the model (mpMRI
cohort, n = 81)

Once finalized and calibrated using the optimal 17% threshold derived

from diagnostic simulations, the multivariable model was retrospec-

tively applied to the real-world subgroup of 81 patients with complete

clinical, analytical and imaging data.

When applied to this cohort, the model demonstrated strong

discriminative capacity, with an area under the ROC curve (AUC) of

0.820. For the purposes of internal validation, a bootstrap analysis

with 1000 iterations was performed, yielding a mean AUC of 0.772

(95% CI: 0.664–0.922). This confirms the model’s robustness despite

the moderate sample size.

This performance is graphically represented in Figure 3, where

the ROC curve illustrates the model’s ability to distinguish between

patients with and without clinically significant disease. In Table 3 are

described the odds ratios (OR) with 95% CIs and relative risk change

for each predictor in the final logistic regression model developed

using the mpMRI cohort (n = 81). According to the model, 41 patients

(50.6%) would have been recommended for prostate biopsy, while

40 (49.4%) would have been spared the procedure. Among those clas-

sified as biopsy candidates by the model, 23 patients were diagnosed

with csPCa, including 13 with Gleason 3 + 4 and 10 with Gleason ≥

4 + 3. In contrast, none of the patients who would have avoided

biopsy were found to harbour csPCa. This group included 33 patients

with negative biopsy results and 7 patients with Gleason 3 + 3,

consistent with very low or low-risk profiles.

At the 17% threshold, the model achieved the following:

• Sensitivity: 100%

• Specificity: 66.7%

• Positive Predictive Value (PPV): 56.1%

• Negative Predictive Value (NPV): 100%

These findings reinforce the model’s clinical utility in safely reducing

unnecessary prostate biopsies while maintaining high diagnostic

safety.

3.5 | External validation of the Siddiqui nomogram

We additionally evaluated the performance of the nomogram

proposed by Siddiqui et al.,21 which integrates PHI, PSA density, age,

and PIRADS. A total of 86 patients from our mpMRI subcohort were

eligible, as this model does not require PSA free/total ratio, explaining

the difference compared to the 81 patients used for our own

T AB L E 1 Comparative performance of different diagnostic strategies for detecting clinically significant prostate cancer (csPCa).

Comparative Table of diagnostic strategies

# Strategy
N (patients
evaluated)

Biopsies
avoided (n)

Biopsies
avoided (%)

csPCa not
detected (n)

Total csPCa
cases

Sensitivity
(%)

1 PHI ≥ 35 (entire cohort) 184 66 35.9 4 47 91.5

2 PI-RADS ≥ 3 (MRI only) 87 24 27.6 1 26 96.2

3 PHI ≥ 35 ! PI-RADS ≥ 3 (MRI only) 87 37 42.5 2 26 92.3

Note: The number and percentage of biopsies avoided, csPCa cases missed and sensitivity are shown for each strategy.

T AB L E 2 Multivariable logistic regression model for the
prediction of clinically significant prostate cancer.

Multivariable logistic regression model for csPCa prediction

Variable β coefficient OR 95% CI

Intercept �8.685 — —

PHI 0.053 1.054 1.027–1.082

PSA density 0.015 1.015 0.966–1.065

PSA l/t ratio �1.882 0.152 0.002–13.332

PIRADS score 0.663 1.941 1.21–3.112

Age 0.041 1.042 0.981–1.108

Note: Reported are β coefficients, odds ratios (OR), and 95% confidence

intervals (CI) for each variable included in the final model.
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F I GU R E 1 Nomogram for predicting the probability of clinically significant prostate cancer (csPCa, Gleason score ≥ 3 + 4). Each variable
(PHI, PSA density, PSA l/t ratio, PIRADS score and age) contributes a number of points on the upper scale. The total score corresponds to an
estimated probability of harbouring csPCa. *the x-axis represents the total score calculated from the nomogram; the y-axis indicates the
estimated probability (%) of clinically significant PCa. The red dashed line marks the optimal 17% threshold (cutoff of 65.5 points) determined
using the Youden index.

F I GU R E 2 Calibration curve of the nomogram
for predicting clinically significant prostate cancer
(csPCa). The x-axis shows the total points derived

from the nomogram, and the y-axis represents the
estimated probability of csPCa. The orange line
depicts the estimated risk curve, while the red
dashed line indicates the optimal threshold of 17%
(corresponding to 65.5 points) as determined by
the Youden index.
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multivariable model. Model discrimination, calibration and clinical

utility were assessed as in the original publication. In our mpMRI

subcohort (n = 86), this model achieved an AUC of 0.89 (95% CI:

0.82–0.95), with a calibration slope of 1.16 and Brier score of 0.12.

Using the recommended 20% risk threshold, sensitivity was 96.2%,

specificity 68.3%, PPV 56.8% and NPV 97.6%, allowing 48.8% of

biopsies to be avoided. These figures are consistent with the original

publication and represent the first external validation of this nomo-

gram in a European prospective cohort.

4 | DISCUSSION

The results of this study confirm that both the PHI and mpMRI dem-

onstrate high diagnostic performance in identifying csPCa, consistent

with previously published evidence.9–12,17 Beyond their individual util-

ity, this work presents a validated multivariable model that integrates

biomarkers and imaging parameters to improve clinical decision-

making in biopsy-naïve patients.

The model, which includes PHI, PSA density, PSA free/total ratio

(PSAlt3), PIRADS score and age, achieved an AUC of 0.841 and

demonstrated excellent clinical performance in the real-world cohort

with mpMRI. When applied with the optimal risk threshold (17%)

determined by simulation, it correctly identified all csPCa cases while

avoiding biopsy in nearly half of the patients. This level of perfor-

mance notably exceeds that of the individual variables alone.

The discriminative capacity of PHI observed in this cohort (AUC:

0.83) supports its value in risk stratification and in reducing unneces-

sary procedures, as previously reported in studies such as those by

Chiu et al. and in the PRIM Study.9,17 A PHI cutoff > 35 achieved high

sensitivity and specificity, reinforcing its role as a reliable biomarker

for prebiopsy decision-making.7,8,19

Likewise, mpMRI showed robust individual performance (AUC:

0.84), aligning with findings from pivotal trials such as PRECISION and

MRI-FIRST, which have established mpMRI as the imaging modality of

choice in the prebiopsy setting.11,12 In our model, the addition of

PIRADS significantly enhanced predictive accuracy, underscoring the

synergistic potential of combining PHI and mpMRI—as suggested by

recent combinatorial analyses.22

A key strength of this study lies in the availability of biopsy results

for all patients, allowing objective evaluation of diagnostic accuracy.

Importantly, PHI results were blinded to the clinical team, ensuring

that this biomarker did not influence biopsy decisions. In contrast,

mpMRI—when available—was used to guide cognitive fusion biopsies

in addition to systematic sampling, which reflects routine clinical

practice and may explain the higher number of cores obtained in this

subgroup. The model’s internal validation in a real-world mpMRI-

based cohort, with 100% sensitivity for csPCa and a high NPV, sup-

ports its applicability in clinical settings. The additional validation of

the Siddiqui et al. nomogram21 in our cohort further supports the clini-

cal utility of combining PHI and mpMRI. While their model, derived

from a large contemporary dataset, achieved excellent discrimination,

our multivariable approach yielded comparable results with slightly

higher NPV and biopsy-sparing efficiency. As the intercept of the

Siddiqui model was not available, our validation was limited to

discrimination and calibration metrics rather than absolute risk

prediction.

Several limitations should be acknowledged. First, our cohort size

was relatively small, and recruitment ended in 2018. Although mpMRI

has become increasingly used in recent years, our study represents a

prospective series in which PHI was systematically assessed and all

men underwent biopsy, minimizing selection bias. Second, the extrap-

olation of PIRADS values in non-imaged patients was performed

exclusively for exploratory simulations and not for model training or

validation. To further address this limitation, we conducted a sensitiv-

ity analysis categorizing patients without imaging as a separate group

(‘No mpMRI’). Third, inter-reader variation in mpMRI interpretation

and biopsy targeting—both influenced by local expertise—may limit

F I GU R E 3 Receiver operating characteristic (ROC) curve of the
final multivariable logistic regression model for detecting clinically
significant prostate cancer (csPCa). The model achieved an AUC of
0.820. Internal validation with 1000 bootstrap iterations yielded a
mean AUC of 0.772 (95% CI: 0.664–0.922).

T AB L E 3 Odds ratios (OR) with 95% confidence intervals (CI) and
percentage change in risk for each predictor in the final logistic
regression model, developed using the mpMRI cohort (n = 81).

Variable OR
95% CI
lower

95% CI
upper

% change
in risk

PHI 2.92 2.26 3.80 192.6

PSA density 0.96 0.74 1.25 �3.8

PSA l/t 0.44 0.35 0.55 �56.1

Age 1.02 0.82 1.28 2.1

PIRADS 3.94 3.10 5.01 293.9
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generalizability. Finally, our model has not yet undergone external

validation, which will be required in larger, contemporary multicenter

cohorts before clinical implementation.

This study reinforces the value of integrated predictive tools to

guide prostate biopsy decisions, especially in scenarios where multiple

diagnostic elements must be considered. The nomogram derived from

the model provides a user-friendly interface for clinical application

and may support shared decision-making with patients.

This study reinforces the value of integrated predictive tools to

guide prostate biopsy decisions, especially in scenarios where multiple

diagnostic elements must be considered. The nomogram derived from

our model provides a user-friendly interface for clinical application

and may support shared decision-making with patients. In parallel, the

external validation of the Siddiqui et al. nomogram21 in our cohort

further confirms the robustness of PHI–mpMRI–based strategies

across populations. Future studies should explore its integration with

emerging tools, including SelectMDx, 4Kscore,16 or micro-ultrasound

imaging,18 as well as its adaptation into digital clinical decision support

systems, in line with initiatives such as the ReIMAGINE study.23

5 | CONCLUSIONS

This study demonstrates that the integration of clinical, analytical

(PHI, PSA density, PSA l/t) and imaging variables (PIRADS score) into

a multivariable model enables accurate prediction of csPCa in biopsy-

naïve patients. The model was internally validated in a real-world

cohort of patients with mpMRI and demonstrated excellent diagnostic

performance, with 100% sensitivity and 66.7% specificity for clinically

significant disease at a 17% risk threshold. The negative predictive

value reached 100%, supporting its potential to safely reduce unnec-

essary biopsies while maintaining high diagnostic certainty. Additional

analyses showed that simplified strategies based on PHI or PIRADS

alone—or in sequential combination—were less effective in balancing

diagnostic yield and biopsy reduction. Furthermore, the concordant

results obtained with the Siddiqui nomogram emphasize the robust-

ness of PHI–mpMRI–based approaches across populations. These

findings support the implementation of integrated predictive strate-

gies in urological practice, particularly in complex diagnostic scenarios

requiring individualized decision-making. Prospective multicenter

studies are warranted to externally validate this model and evaluate

its applicability in diverse healthcare settings.

6 | TAKE HOME MESSAGE

• A multivariable model combining PHI, PSA density, PSA l/t,

PIRADS score, and age enables accurate identification of csPCa in

biopsy-naïve patients.

• The model achieved 100% sensitivity and safely avoided biopsies

in nearly 50% of cases.

• The derived nomogram can support clinical decision-making and

outperform simplified strategies based on PHI or PIRADS alone.

• External validation of the Siddiqui et al. nomogram in our cohort

further confirmed the robustness of PHI–mpMRI–based strategies

across populations.
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