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A B S T R A C T

Combining deep learning (DL) with eXplainable Artificial Intelligence (XAI) techniques has led to clinically 
applicable models that simplify the diagnosis of pediatric obstructive sleep apnea (OSA) using a restricted 
number of cardiorespiratory signals. However, no prior study has applied these techniques to concurrently 
analyze electrocardiogram (ECG) and oxygen saturation (SpO2) data. Here, we present an explainable DL 
approach integrating convolutional neural networks with overnight SpO2 and ECG signals to identify pediatric 
OSA. SHapley Additive exPlanations (SHAP) XAI technique was used to extract relevant patterns linked to pe
diatric OSA and explain the model decisions. Patients (n = 3,320) from the semi-public Childhood Adeno
tonsillectomy Trial (CHAT) and Pediatric Adenotonsillectomy Trial for Snoring (PATS), and the private 
University of Chicago (UofC) databases were analyzed. Performance obtained Cohen’s 4-class kappa of 0.549, 
0.457, and 0.378 in CHAT, PATS, and UofC, respectively. Shapley values increased with OSA severity and 
highlighted the complementarity of SpO2 and ECG, with SpO2 being more relevant in moderate and severe cases 
and ECG in mild or no OSA cases. SHAP visualizations identified SpO2 desaturations linked to clusters of apneic 
events and those occurring independently. It also highlighted bradycardia-tachycardia and ECG cardiovascular 
risk patterns, including variations in P and T waves, PQ and QT intervals, and the QRS complex. Shapley values 
identified correlations between respiratory and cardiac patterns, showing that desaturations in OSA are linked to 
cardiac changes. Therefore, our interpretable DL approach may improve pediatric OSA diagnosis by integrating 
breathing information and accompanying cardiac changes, supporting its effective adoption in clinical settings.

1. Introduction

Pediatric obstructive sleep apnea (OSA) is a common prevalent 
condition affecting approximately 1 % to 5 % of children, presenting 
unique challenges in its etiology, diagnosis, and treatment [1]. This 
disorder is characterized by recurrent episodes of complete airway 
obstruction (apneas) and/or significant airflow reduction (hypopneas) 
during sleep, leading to transient hypoxemia, hypercapnia, increased 
respiratory efforts, and arousal events [1,2]. Consequently, heightened 
sympathetic activity elicited by the repeated episodes of oxygen desa
turation and disrupted sleep associated with OSA have been linked to 
various morbid consequences [1–3]. Indeed, if left untreated, these 

disturbances can increase the risk of neurocognitive and behavioral 
impairments and reduced cardiovascular and metabolic function [3]. 
Cardiovascular complications may include systemic and pulmonary 
vascular hypertension, while the metabolic consequences may manifest 
as dyslipidemia and insulin resistance [1,3–5]. As a result, well-being 
and quality of life, academic performance, and developmental prog
ress are diminished. Despite its widespread occurrence, pediatric OSA 
remains significantly underdiagnosed, with only about 10 % of affected 
children receiving a confirmed diagnosis [6]. Early detection and 
treatment are essential to reducing associated health risks, as available 
therapies are highly effective [7]. However, the combination of high 
prevalence and low diagnosis rates leaves many children at risk of the 
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aforementioned serious consequences.
The gold standard for diagnosing OSA is overnight polysomnography 

(PSG), a comprehensive test conducted in a specialized laboratory [1]. 
During PSG, up to 32 biomedical signals from patients are recorded and 
monitored during the night, including electrocardiogram (ECG), blood 
oxygen saturation (SpO2), and airflow (AF), among others [2]. Sleep 
specialists thoroughly analyze these physiological parameters to deter
mine the apnea-hypopnea index (AHI). AHI reflects the average number 
of respiratory abnormalities (apnea and hypopnea events per hour of 
sleep (e/h)) and serves as the most widely used metric for assessing both 
the presence and severity of OSA [2,8]. The effectiveness of PSG is well- 
known, but it involves extensive monitoring, specialized equipment, and 
highly trained personnel [2]. These requirements make PSG a costly, 
complex, and often uncomfortable procedure with limited accessibility, 
particularly in the pediatric population. These issues, combined with the 
high prevalence of OSA in children, result in long waiting times and 
limited access to diagnosis and treatment [1].

Over the last decade, researchers have focused on developing alter
native automated methods to simplify and facilitate pediatric OSA 
diagnosis [9]. Most of these studies have focused on analyzing signals 
such as AF, SpO2, and ECG [10,11]. Specifically, the study of SpO2 is 
highly relevant as it can provide critical insights into oxygenation dis
turbances during sleep, often linked to the respiratory events [12]. Its 
analysis enables the identification of specific patterns, such as recurrent 
oxyhemoglobin desaturations, which are related to recurrent airway 
obstructions [12]. Moreover, SpO2 has demonstrated high diagnostic 
yield in previous pediatric OSA-related studies, making it a valuable tool 
for detecting OSA in children [10]. On the other hand, it is also essential 
to consider the ECG signal because of the strong interdependencies be
tween the cardiovascular and respiratory systems during apneic events 
[13]. These episodes have been connected to changes in the heart rate 
(HR) leading to characteristic bradycardia-tachycardia patterns [14,15]. 
Moreover, OSA has been linked to a higher risk of developing cardio
vascular complications that could persist and worsen into adulthood, 
especially when the condition is left untreated [1,3], which emphasizes 
the importance and usefulness of including ECG in OSA research.

A few previous studies have explored the analysis of cardiac signals 
using feature-engineering (FE) techniques such as photo
plethysmography and heart rate variability (HRV), among others 
[10,16]. Contrasting with these traditional approaches, DL methods can 
process the complexities of raw signals directly, eliminating the need for 
preprocessing and feature extraction and selection stages [17–19]. In 
this regard, we previously integrated nocturnal one-lead ECG signals 
with DL techniques using convolutional neural networks (CNN) to es
timate the presence and severity of pediatric OSA [11,20]. Results 
highlighted the effectiveness of CNN in automatically determining the 
presence of OSA and its severity in children using ECG. Similarly, pre
vious research has illustrated the usefulness of CNNs in assessing pedi
atric OSA severity based on SpO2 signals [21,22]. When taken together, 
these previous advancements advocate for a combined assessment of 
ECG and SpO2. In this regard, the present study introduces a novel and 
unexplored approach by integrating cardiac activity and oxygenation 
data. This methodology could provide crucial diagnostic information, 
offering a more comprehensive understanding of physiological re
sponses during respiratory stress. Furthermore, the joint analysis of both 
signals could reveal temporal relationships between desaturation events 
and cardiac responses, capturing dynamics that might remain unnoticed 
when the signals are analyzed separately, while also revealing suscep
tibility to cardiovascular morbidities.

Although advanced DL techniques have shown potential for pre
dicting pediatric OSA, their main limitation lies in their lack of 
explainability [23]. This limitation is particularly important in the 
medical field [24–26], where professionals need to comprehend the 
reasoning behind automated decisions to trust and adopt these models. 
In this regard, eXplainable Artificial Intelligence (XAI) approaches are 
crucial in enhancing the interpretability and transparency of advanced 

computational models [23], especially within the healthcare domain 
[24–26]. Specifically, we believe that the application of XAI is relevant 
when analyzing ECG and SpO2 together in the context of pediatric OSA. 
By discerning patterns in both signals, mainly those targeted by auto
mated algorithms, valuable insights could be gained regarding the 
assessment of pediatric OSA severity. Additionally, this approach may 
help identify relationships between the pathophysiological patterns of 
SpO2 desaturations and how the cardiovascular system responds to these 
events in relation to OSA disease [13]. Furthermore, it could uncover 
novel respiratory and cardiovascular risk factors linked to these signals 
in pediatric OSA. One widely used XAI technique for analyzing 
biomedical signals is SHapley Additive exPlanations (SHAP) [24]. In the 
context of sleep research, SHAP has proven effective in identifying 
physiological features associated with sleep stages and apneic events in 
adult and pediatric OSA [11,22,27–30]. However, no prior study has 
applied any XAI method to the combined analysis of ECG and SpO2 data. 
To streamline the reading of the following sections, a detailed list of the 
main acronyms and definitions used throughout the manuscript has 
been included in the Supplementary Material (Table S1 and Table S2).

This study hypothesizes that our proposal, based on integrated DL 
models, together with SHAP, would simplify pediatric OSA diagnosis 
and enhance interpretability. Accordingly, this study had two main 
objectives. First, we aimed to evaluate a DL approach based on a stacked 
generalization strategy that integrates CNNs fed with overnight SpO2 
and ECG recordings to estimate the AHI and establish pediatric OSA 
severity. Second, we wished to incorporate SHAP as an XAI method to 
enhance interpretability and identify qualitative and quantitative com
plementary patterns within SpO2 and ECG signals, and their relationship 
with pediatric OSA. Therefore, our study introduces two significant 
novelties: 

• Development of a novel DL regression approach based on a stacked 
ensemble of CNNs to directly estimate the AHI from the combination 
of overnight SpO2 and single-lead ECG recordings.

• Application of an XAI technique, specifically SHAP, to interpret the 
decisions made by the model and evaluate the joint and individual 
contributions of ECG and SpO2 signals to pediatric OSA estimation.

2. Subjects and signals

A total of 3,320 pediatric sleep studies involving children aged 0 to 
13 years comprised the study population. Three distinct databases were 
used for this study. The first was the Childhood Adenotonsillectomy 
Trial (CHAT), a publicly available database accessible upon request, 
which includes 1,609 valid ECG and SpO2 recordings from PSG studies 
conducted in children aged 5 to 9.9 years with symptoms of OSA [31]. 
The second database, the Pediatric Adenotonsillectomy Trial for Snoring 
(PATS), also publicly available upon request, contains 731 valid ECG 
and SpO2 recordings from PSG studies performed in children between 3 
and 12 years old [32]. CHAT and PATS are multicenter, randomized, 
and single-masked design studies conducted in compliance with the 
Declaration of Helsinki (CHAT clinical trial: NCT00560859; PATS clin
ical trial: NCT02562040) [31–35]. Written consent was obtained from 
children's caretakers, following the research protocols in Marcus et al. 
[33] for CHAT and Redline et al. [32] for PATS. Children aged 7 or older 
also gave their assent in both studies. Study recordings from both da
tabases were partitioned into three sets. The training set comprised 60 % 
of CHAT (n = 987) and 60 % of PATS (n = 426) and was used to train the 
model (ntrain = 1,413). The validation set consisted of 20 % of CHAT (n 
= 323) and 20 % of PATS (n = 152) and was used to adjust the optimal 
configuration of the model (nval = 475). Finally, the test set included 20 
% of CHAT (n = 299) and 20 % of PATS (n = 153) and was used to 
evaluate model performance. Each dataset (CHAT and PATS) was par
titioned independently, and it was conducted so that each subject was 
exclusively assigned to one of the sets, avoiding duplication. The input 
data was labeled with AHI values.
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Additionally, the study incorporated a private database from the 
Pediatric Sleep Unit at Comer Children's Hospital, University of Chicago 
(UofC), USA [36]. This dataset comprised 980 sleep studies of children 
aged 0 to 13 years who were referred to the pediatric sleep laboratory 
due to symptoms suggestive of clinically suspected OSA. The research 
protocol was approved by the University of Chicago (UofC) Ethics 
Committee (#11–0268-AM017, #09–115-B-AM031, and #IRB14- 
1241), and informed consent was obtained from the legal guardians of 
all participants. The database was de-identified and used exclusively for 
external validation of the model trained and validated with CHAT and 
PATS datasets, following the approach used in previous studies [11]. 
Consequently, all 980 SpO2 and ECG recordings from the UofC dataset 
were designated as the test set.

Sleep specialists scored PSG recordings from all databases according 
to the American Academy of Sleep Medicine (AASM) guidelines [37,38]. 
The criterion used to diagnose the presence and severity of pediatric 
OSA was the AHI. Based on AHI values, children were classified into one 
of the four frequently used categories: AHI < 1 e/h (no OSA), 1 ≤ AHI <
5 e/h (mild OSA), 5 ≤ AHI < 10 e/h (moderate OSA), and AHI ≥ 10 e/h 
(severe OSA). The demographic and clinical variables of the children 
included in the study are presented in Table 1.

3. Methods

Fig. 1 summarizes an overview of the methodological workflow of 
this study. The present study implemented and evaluated an interpret
able stacked ensemble-based DL model using one channel SpO2 and ECG 
recordings (S1, …, Sn) to directly estimate the AHI per subject (y1, …, yn). 
The model was trained with minimally preprocessed ECG and SpO2 
signals, which were first used to feed independent CNNs to extract 
feature maps. The feature sequences extracted from these independent 
CNNs were then combined and fed into a higher-level model using a 
stacking strategy [39]. This approach enabled the model to combine 
features from both signals to generate the final AHI estimation while 
allowing appropriate sample rates for each signal. Finally, the SHAP 
method was applied to qualitatively and quantitatively assess the 
contribution of ECG and SpO2 to the model’s decision. SHAP is a post- 
hoc interpretability method that assigns importance values to each 
input of a predictive model, offering a clearer understanding of the 
decision-making process [23,40,41]. Additionally, SHAP was also used 
to identify the most relevant ECG and SpO2 regions on which the model 
was fixed to perform AHI estimation, facilitating the extraction of pat
terns associated with pediatric OSA.

3.1. ECG and SpO2 signals preprocessing

Following the guidelines established by the AASM, SpO2 and ECG-II 
lead data were collected from the CHAT, PATS, and UofC datasets 
[37,38]. To ensure consistency, all databases underwent uniform 

preprocessing. Nevertheless, the processing of the SpO2 signals was 
performed independently from the ECG signals, allowing for tailored 
handling of each signal type while maintaining overall uniformity in 
preprocessing. Consistent with previous works, raw ECG and SpO2 sig
nals were resampled at 100 Hz and 1 Hz, respectively [11,20,21,42–44]. 
No additional preprocessing steps were needed for the SpO2 signal 
beyond this resampling [21,22]. In contrast, the ECG underwent further 
preprocessing, based on prior studies, to enhance signal quality [11,20]. 
First, the continuous component was adjusted by removing the mean 
value within 30-second windows. Next, a band-pass linear-phase finite 
impulse response filter with cut-off frequencies of 0.5 Hz and 50 Hz was 
applied to minimize noise while preserving essential signal components, 
particularly those related to QRS complexes [45].

SpO2 and ECG recordings were standardized to a duration of eight 
hours, as this timeframe had previously demonstrated optimal perfor
mance in the validation set in previous research [11]. For signals with 
fewer samples, zero-padding was applied at the beginning of the 
recording. Conversely, for longer recordings, excess data were removed 
from the start of the signal, when children are more probably awake, 
following methodologies used in prior OSA studies that analyzed un
segmented cardiorespiratory signals [11,46–48].

Subsequently, ECG and SpO2 signals were preprocessed to match the 
input dimensions required by the DL-based model. SpO2 signals from 
each subject were divided into 20-minute segments. This segmentation 
strategy aligned with the methodology used in previous studies [21]. 
Various segment durations (5, 10, 20, 30, and 60 min) and overlaps (50 
% and 90 %) were evaluated to find the optimal segment duration [21]. 
The highest kappa was obtained using 20-minute non-overlapping seg
ments. This duration was consistent to capture desaturation clusters, 
which are typically 10 min long at least [49]. SpO2 signals were resized 
to match the input specifications of the corresponding CNN before being 
fed into the model, generating matrices composed of 24 segments, each 
representing 20 min (24 × 1,200 × 1 = 28,800 samples). This structure 
was optimized for block processing within CNNs embedded in time- 
distributed (TD) layers. Additionally, it facilitated the transfer of the 
optimal architecture, including pre-trained weights and layers, from a 
previously developed SpO2-based CNN model [21]. This model was 
optimized for estimating the number of events per segment and was 
integrated into the SpO2-CNN architecture developed in this study. 
Similarly, ECG signals were transformed into arrays of 48 segments, 
each lasting 10 min (48 × 60,000 × 1 = 2,880,000 samples). The se
lection of 10-minute duration was made because 10-minute segments 
were identified as optimal for training the previously developed CNN 
[20], as they effectively captured clusters of apneic events [49]. This 
structure allowed for the integration of overnight ECG recordings into 
the model, while ensuring they matched the 8-hour duration of the 
SpO2. Like SpO2, this format was also optimized for block processing 
within the TD layers of the CNN. Furthermore, it allowed the adaptation 
of the optimal architecture, along with its pre-trained weights and 

Table 1 
Demographic and clinical variables of the study population.

Training set (ntrain = 1,413) Validation set (nval = 475)

Variables CHAT Training set PATS Training set CHAT Validation set PATS Validation set CHAT Test set PATS Test set UofC Test set

Subjects (n) 987 (61.34) 426(58.28) 323 (20.07) 152 (20.79) 299 (18.58) 153 (20.93) 980 (100)
Age (years) 7.00 [2.00] 7.69 [0.00] 7.00 [2.00] 7.50 [0.00] 6.90 [2.00] 7.56 [0.00] 6.00 [6.00]
Males (n) 510 (51.67) 221(51.88) 164 (50.77) 71(46.71 %) 161 (53.85) 86 (56.21) 379 (38.67)
BMI (kg/m2) 17.31[5.93] 18.98 [0.0] 17.12[6.25] 18.37[0.00] 17.43[6.04] 17.95[0.00] 18.02[6.02]
AHI (e/h) 2.64 [4.78] 1.30 [2.30] 2.45 [4.77] 1.00 [2.10] 2.32 [5.11] 1.00 [2.60] 3.8 [7.78]
AHI < 1 e/h(1) (n) 212 (21.48) 163(38.26) 67 (20.74) 72 (47.37) 65 (21.74) 75 (49.02) 173 (17.65)
1 ≤ AHI < 5 e/h(2)(n) 487 (49.34) 190(44.60) 167 (51.70) 62 (40.79) 144 (48.16) 53 (34.64) 401 (40.92)
5 ≤ AHI < 10e/h(3)(n) 159 (16.11) 29 (6.81) 44 (13.62) 11 (7.24) 49 (16.39) 14 (9.15) 177 (18.06)
AHI ≥ 10 e/h(4) (n) 129 (13.07) 44 (10.33) 45 (13.93) 7 (4.61) 41 (13.71) 11 (7.19) 229 (23.37)

Data are presented as median [interquartile range] or n (%). BMI: body mass index; AHI: apnea-hypopnea index; e/h: events/hour; CHAT: Childhood Adeno
tonsillectomy Trial; PATS: Pediatric Adenotonsillectomy Trial for Snoring; UofC: University of Chicago.
AHI < 1 e/h(1): No OSA; 1 ≤ AHI < 5 e/h(2): mild OSA; 5 ≤ AHI < 10 e/h(3): moderate OSA; AHI ≥ 10 e/h(4): severe OSA.
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layers, from a previously developed ECG-based CNN approach into the 
ECG-CNN architecture implemented in this research [20]. A significant 
advantage of this implementation lies in its ability to process the ECG 

and SpO2 signals independently, without the need for a uniform sam
pling rate. This approach streamlines the workflow by allowing the use 
of data with varying temporal resolutions while ensuring effective 

Fig. 1. Proposed workflow for developing, validating, and explaining the DL-based model enabling prediction and interpretation of pediatric OSA severity using 
SpO2 and ECG recordings. Sn: subject n; yn: estimation of AHI in subject n.

Fig. 2. Overall scheme of the proposed regression DL model based on a stacked ensemble strategy. The input data consists of each subject's nocturnal ECG and SpO2 
recordings. The output (yn) corresponds to the AHI estimation per subject. CNN: convolutional neural network; ReLU: rectified linear unit activation; TD: time 
distributed; AHI: apnea hypopnea index; FFN: feed forward network; FFL: feed forward layer; nf: number of filters; ksize: kernel size; PF: stacking dropout layer 
probability; nn: FFL neuron counts; NFFL: Number of FFL; p: CNN dropout layer probability.
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integration of the signals at the final stage of processing.

3.2. Stacking-based DL architecture

Fig. 2 illustrates the proposed DL architecture developed for esti
mating the AHI per subject from ECG and SpO2 signals. The proposal is 
based on a stacking strategy, also known as stacked generalization, a 
machine-learning ensemble technique combining multiple models to 
enhance overall performance [39]. The core concept of stacking in
volves using the predictions from several base models as inputs to a 
higher-level model, referred to as the meta-model or blender, which 
aggregates them to generate the final prediction [39,50]. Following this 
strategy, our model processes nocturnal ECG and SpO2 signals inde
pendently before integrating the extracted features to identify patterns 
indicative of pediatric OSA. Specifically, the architecture consists of two 
parallel base CNN models, each designed to process distinct physiolog
ical signals (ECG-CNN and SpO2-CNN architectures, respectively, in 
Fig. 2). After independent feature extraction, the outputs from ECG-CNN 
and SpO2-CNN architectures are concatenated following the stacking 
strategy. Subsequently, these combined features are passed through a 
fusion module for further processing, ultimately generating the final AHI 
estimation.

ECG-CNN architecture was implemented using a cluster of TD layers, 
incorporating the previously presented CNN architecture (CNN-ECG in 
Fig. 2) from a hybrid convolutional and recurrent neural network 
trained using 8-hour ECG signals [11]. ECG-CNN module, composed of 
14 convolutional blocks, was optimized to extract relevant temporal and 
spatial patterns. Each of the blocks was encapsulated in TD layers, 
preserving the sequence format of the data as they were processed in the 
CNN-ECG layers. Within each CNN-ECG, a one-dimensional (1D) con
volutional layer was applied with a specific number of filters (nf) and a 
defined kernel size (ksize). This was followed by batch normalization, a 
rectified linear unit (ReLU) activation function, and a 1D max-pooling 
layer. Finally, a dropout layer with probability p was incorporated 
[17]. In parallel, the SpO2-CNN architecture was implemented using a 
clustering of TD layers, which consist of the previously presented CNN 
layers trained on 20-minute SpO2 signals (CNN-SpO2 in Fig. 2) [21]. This 
architecture, composed of 6 convolutional blocks, followed a similar 
structure to those in the related CNN-ECG module, but optimized for 
lower-resolution data. Each block was also encapsulated in TD layers, 
which preserved the sequential format of the data as it was processed 
through the CNN-SpO2 layers. Once the feature extraction processes 
were completed, the outputs from both the ECG-CNN and SpO2-CNN 
architectures were concatenated to combine information and create a 
unified feature representation, following a stacking strategy. This com
bined feature vector was processed through a fusion module to refine the 
learned patterns and identify relationships between the two physiolog
ical signals. The fusion module began with an initial dropout layer with 
probability PF to reduce overfitting, followed by several feed-forward 
layers (FFLs), where the number of layers is denoted as NFFL and each 
layer contains nn neurons. Each FFL was activated with a ReLU function 
to enhance feature abstraction [17]. Finally, a dense output layer with a 
linear activation function was implemented to estimate the AHI for each 
subject.

3.3. Training, optimization, and evaluation process

The proposed DL model was trained on an NVIDIA GeForce RTX 
4090 GPU and Keras 2.10.0 framework with TensorFlow-gpu 2.10.1 
backend. The He-normal method was utilized for weight initialization, 
and the adaptive moment estimation (Adam) optimizer was used with 
an initial learning rate of 1x10-4 [17]. The training process was con
ducted over 200 epochs with a batch size of 150 samples. Consistent 
with previous studies [17,20], the Huber loss function with a delta 
parameter (δ = 1.5) was used in the Adam optimization, chosen for its 
established robustness in regression tasks with large outliers. Finally, to 

prevent overfitting, early stopping was implemented based on validation 
loss monitoring.

The hyperparameters of each of the convolutional branches were 
optimized in previous studies, obtaining models with high performance 
[11,21]. Regarding the CNN-ECG module, the convolutional layers were 
structured as follows: blocks1-4 consisted of nf = 16 with ksize = 33; 
blocks5-8 involved nf = 32 with ksize = 17, blocks9-12 comprised nf = 64 
with ksize = 7, and blocks13-14 consisted of nf = 64, but with ksize = 3. A 
dropout layer was applied at the end of each module, with p = 0.1 for 
blocks1-12, and p = 0.4 for blocks13-14 [11]. In the CNN-SpO2 module, all 
convolutional layers were composed of nf = 64 with ksize = 5, and 
dropout layers comprised p = 0.1 [21]. At this stage, we tuned a set of 
hyperparameters from scratch. Following the application of the stacking 
strategy, the fusion module began with a dropout layer, where Pf was 
varied within the range {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} to determine the 
optimal setting. Afterward, a total of NFFL FFLs, each with a nn neurons, 
were incorporated and trained from scratch. The value of NFFL was 
varied in the range {0, 1, 2, 3}, while nn in each FFL was explored within 
the range {8, 16, 32, 64, 128} to determine the optimal performance 
configuration. We implemented a comprehensive fitting approach using 
the grid search technique to optimize the remaining hyperparameters in 
the fusion module after stacked generalization. This process involved 
evaluating every possible combination of hyperparameters within the 
specified search space. Finally, the performance of the algorithm was 
assessed to identify the optimal hyperparameter configuration. To this 
end, the four-class Cohen’s kappa coefficient (k) was used [51]. This 
metric was calculated for subject-wise classification of OSA severity 
within the validation set from CHAT and PATS. The architecture with 
the highest k was then selected as the optimal model.

3.4. Model interpretability using SHAP

To enhance the interpretability of our DL-based model, we applied 
XAI using SHAP, a post-hoc interpretability method founded on game 
theory and local explanations [23]. This method is based on the inte
gration of various explanation techniques, providing a unified approach 
to model interpretability [23,52]. SHAP assigns importance values 
(termed SHAP values) to each model input, turning its decision-making 
process more transparent. In our case, it assigns Shapley values for each 
sample of a signal [53]. These values measure the impact of individual 
signal samples while considering all possible interactions, providing a 
comprehensive understanding of their influence. The SHAP method 
builds an additive attribution model, where the sum of the Shapley 
values approximates the output of the model [23]. This approach en
sures that the model identifies relevant features during training and 
relies on appropriate inputs for inference.

In this study, we applied SHAP to interpret the decisions of the model 
based on ECG and SpO2 input signals. It evaluated both the joint and 
individual contributions of these signals for pediatric OSA estimation 
[53]. For this purpose, we utilized the DeepExplainer method to apply 
SHAP, as it offers visualization maps and is compatible with our data 
[53]. It is based on the Deep Learning Important Features (DeepLIFT) 
algorithm, which assigns attribution values to individual nodes in a 
neural network [54]. DeepExplainer enhances this approximation by 
aggregating per-node attributions across multiple background samples, 
ensuring that the sum of Shapley values accurately captures the differ
ence in model outputs between the background signals and the input 
being analyzed [52,53]. Specifically, we computed Shapley values for 
each ECG and SpO2 signal sample to gain a deeper understanding of the 
mechanisms of the model in recognizing respiratory event-related in
formation and identifying cardiorespiratory patterns associated with 
pediatric OSA [55]. Since our model processed ECG and SpO2 inde
pendently, we calculated Shapley values separately for each input. 
Particularly, Shapley values were assigned to each ECG and SpO2 sam
ple. In our architecture, the ECG and SpO2 signals were first processed 
independently and then fused through concatenation before the final 
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layers. This fusion step allowed the model to learn complex, non-linear 
relationships between both modalities. Therefore, any interdependence 
between ECG and SpO2 features was implicitly reflected in the Shapley 
values of the fused representations. Thus, this analysis allowed us to 
evaluate the joint and distinct contributions of ECG and SpO2 to the 
overall model performance, that is, how each signal influenced the AHI 
estimations. Finally, after computing the Shapley values for each ECG 
and SpO2 signal sample concerning the AHI estimation, we aggregated 
them at the subject level. Then, we summed the Shapley values of each 
signal separately and categorized them by OSA severities (no OSA, mild 
OSA, moderate OSA, and severe OSA).

3.5. Statistical analysis and diagnostic ability

To assess the performance of the proposed algorithm in diagnosing 
pediatric OSA, subjects were classified into one of the four severity 
categories based on their estimated AHI values. After categorizing the 
subjects, we calculated the confusion matrix, followed by the four-class 
accuracy (Acc4), and the k coefficient [51]. Finally, we evaluated the 
diagnostic effectiveness of the model by calculating several performance 
metrics, including specificity (Sp), sensitivity (Se), negative and positive 
predictive values (NPV and PPV), negative and positive likelihood ratios 
(LR- and LR+), as well as overall accuracy (Acc) for the different OSA 
severity thresholds, considering AHI values of 1, 5 and 10 e/h.

4. Results

4.1. Optimal model configuration and ablation tests

The optimal model configuration was determined through an 
extensive search of all possible hyperparameter combinations. The 
chosen hyperparameters for the fusion model layers, based on the 
stacking strategy, included a dropout rate of Pf = 0.1. Fig. 3 illustrates 
the search space of the fusion module, along with k values obtained on 
the validation set for each specific hyperparameter. The fusion module 
consisted of 3 FFLs, with specific configurations: n1 = 16 for NFFL1 = 1, 
n2 = 32 for NFFL2 = 2, and n3 = 64 for NFFL3 = 3. This configuration 
yielded the highest k value (k = 0.501) on the validation set (CHAT and 
PATS). As a result, it was selected for model evaluation on the test sets 
from CHAT, PATS, and UofC.

Finally, several ablation tests were conducted to evaluate the impact 
of different architectural components on the performance of the model. 
Initially, the ECG-CNN and SpO2-CNN architectures were tested 

separately, with their outputs concatenated for direct AHI prediction, 
without the fusion model after the stacking strategy. This configuration 
resulted in a k = 0.4835 on the validation set, which was lower 
compared to the k = 0.5011 achieved by the proposed approach. Next, a 
single FFL was introduced after the ECG-CNN and SpO2-CNN architec
tures were concatenated, but this led to a slight decrease in performance, 
with a k of 0.4653. A subsequent variant, which included 2 FFLs 
following the concatenation, showed slight improvement, yielding a k of 
0.4991. Finally, the optimal proposed model, incorporating 3 FFLs after 
the stacking strategy, was trained and validated using the original 
training and validation sets from CHAT and PATS, as well as data from 
UofC (n = 587 for training and n = 197 for validation). This method
ology enabled the evaluation of the influence of UofC data on the per
formance of the model, resulting in a k = 0.4940 on the validation set 
from CHAT, PATS, and UofC. Despite testing various configurations in 
the ablation studies, none of them outperformed the optimal value of k 
= 0.5011, which was achieved with the optimal architecture. This un
derscores the significance of the selected architectural components. 
Simplifying the architecture by removing the FFLs did not result in any 
performance improvement, further reinforcing the robustness of the 
proposed approach.

4.2. Diagnostic performance of the DL-based proposal

Fig. 4 displays the confusion matrices obtained in the test sets after 
classifying OSA severity for each subject based on their estimated AHI. 
Additionally, the four-class classification metrics derived from the 
confusion matrices were k = 0.549 and Acc4 = 70.23 % in the CHAT test 
set, k = 0.457 and Acc4 = 64.05 % in the PATS test set, and k = 0.378 and 
Acc4 = 56.43 % in the UofC test set. The diagnostic performance of 
pediatric OSA severity in CHAT, PATS, and UofC test sets is shown in 
Table 2 based on the standard AHI severity thresholds of 1, 5, and 10 e/ 
h. The model demonstrated high Acc across all datasets, with the highest 
values obtained for the most severely affected children (AHI = 10 e/h), 
achieving Acc = 94.98 % in CHAT, Acc = 98.08 % in PATS, and Acc =
88.98 % in UofC. This result is particularly significant, as these children 
benefit the most from timely and accurate diagnosis. Se values remained 
consistently high across all thresholds and datasets, ranging from 80 % 
to 96 %, ensuring reliable detection of OSA at all severity levels. Sp 
values remained notably strong for moderate and severe OSA, with 
values ranging between 78 % and 98 % (96 % and 98 % for PATS and 
CHAT, respectively) for moderate OSA and between 90 % to 99 % for 
severe OSA. These results highlight the strong capability of the model in 

Fig. 3. Search space of the fusion module after the stacking strategy, as well as k values obtained in the validation set for each specific hyperparameter. The optimal 
values for the hyperparameters are indicated by red stars. FFL: feed forward layer; nn: FFL neuron counts; NFFL: Number of FFL.
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diagnosing clinically moderate-to-severe OSA. Significantly, the LR+

values for 10 e/h were 29.67 in CHAT, 64.55 in PATS, and 8.79 in UofC, 
further revealing significant diagnostic ability for severe OSA, especially 
in CHAT and PATS datasets.

4.3. Identification of ECG and SpO2 patterns using SHAP

Fig. 5 presents boxplots showing the sum of the Shapley values 
assigned to ECG signals (left) and SpO2 signals (right) for each subject 
across the four pediatric OSA severity groups. The results indicate that, 

for both ECG and SpO2 signals, the total sum of Shapley values increases 
with higher severity levels. This reveals that the model attributes higher 
importance to signal patterns in subjects with more severe disease, 
highlighting a relationship between OSA severity and the contribution 
of these signals to AHI estimation. Additionally, boxplots show that the 
overall sum of Shapley values is higher for SpO2 signals compared to 
ECG signals in moderate and severe OSA. However, for no OSA and mild 
OSA, the Shapley values are higher for ECG signals. This suggests that 
ECG contributes more to AHI estimation in these lower-severity cases, 
whereas SpO2 becomes more relevant as OSA severity increases.

Fig. 4. Confusion matrices of the DL-based model in CHAT, PATS, and UofC test sets. *1: no OSA (AHI < 1 e/h); 2: mild OSA (1 ≤ AHI < 5 e/h); 3: moderate OSA (5 
≤ AHI < 10 e/h); 4: severe OSA (AHI ≥ 10 e/h).

Table 2 
Diagnostic performance of the combined DL-based approach in the CHAT, PATS, and UofC test sets.

AHI threshold Test set Sp (%) Se (%) NPV (%) PPV (%) LR- LR+ Acc (%)

1 e/h CHAT 56.92 88.46 57.81 88.09 0.20 2.05 81.61
PATS 48.00 91.03 83.72 64.55 0.19 1.75 69.93
UofC 17.92 96.28 50.82 84.55 0.21 1.17 82.45

5 e/h CHAT 98.09 80.00 91.93 94.74 0.20 41.80 92.64
PATS 96.09 92.00 98.40 82.14 0.08 23.55 95.42
UofC 78.05 83.99 87.33 73.02 0.21 3.82 80.51

10 e/h CHAT 97.29 80.49 96.91 82.50 0.20 29.67 94.98
PATS 98.59 90.91 99.29 83.33 0.09 64.55 98.04
UofC 90.41 84.28 94.97 72.83 0.17 8.79 88.98

Sp (specificity); Se (sensitivity); NPV and PPV (negative and positive predictive value); LR− and LR+ (negative and positive likelihood ratio); AHI (apnea-hypopnea 
index); e/h (events per hour); CHAT (Childhood Adenotonsillectomy Trial); PATS (Pediatric Adenotonsillectomy Trial for Snoring); UofC (University of Chicago).

Fig. 5. Boxplots showing the sum of the Shapley values assigned to the ECG (left) and SpO2 (right) signals for each subject, grouped by pediatric OSA severity groups.
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Figs. 6-8 show examples of SHAP maps for SpO2 and ECG signals 
from different PSGs, with red-colored regions highlighting key patterns 
that contribute to accurate AHI estimation and blue-colored regions 
indicating patterns that reduce the AHI model prediction. Fig. 6 (a), 
Fig. 7 (a, b), and Fig. 8 (a) display zoomed-in views of key regions 
extracted from the SpO2 signals, while Fig. 6 (b, c), Fig. 7 (c, d, e), and 
Fig. 8 (b, c) present a zoom of relevant areas from the ECG signals. The 
annotations indicating the presence or absence of respiratory events, as 
obtained from the PSG, are shown in brown.

Specifically, in Fig. 6 (a), the model has shown fixation in regions 
with clusters of apneic events, where successive > 3 % desaturations in 
the SpO2 signal are observed, as well as SpO2 drops of 2 %. Fig. 6 (b) 
shows the same time region for the ECG, highlighting in green the area 
shown in Fig. 6 (c), which also coincides with the time interval linked to 
D3 (SpO2 desaturations > 3 %) in Fig. 6 (a). Finally, in Fig. 6 (c), it is 
observed how SHAP visualization identifies the QRS complexes of 
different beats encompassing long PQ, and areas comprising long TP 
segments. Particularly, blue-colored QRS complexes (negative Shapley 
values) suggested morphologically normal cardiac patterns that drove 
the model toward lower AHI estimates, whereas red-colored QRS com
plexes (positive Shapley values) represented abnormal waveform 

patterns associated with more severe OSA, leading the model to predict 
higher AHI values. Fig. 7 (a) and Fig. 7 (c) show a region of SpO2 and 
ECG signals, respectively, referring to a subject with the presence of 
apneic events. Fig. 7 (a) shows how the model focuses its attention 
mainly on the region marked in green, containing a cluster of higher 
than 3 % SpO2 desaturations. Fig. 7 (b) corresponds to a zoom of the 
region marked in green in Fig. 7 (a), referring to SpO2. In this case, it can 
be seen how SHAP maps highlight SpO2 drops higher than 3 % (D3) and 
SpO2 drops of 2 % (D2). Fig. 7 (d) corresponds to the first zoomed-in 
region marked in green in Fig. 7 (c), referring to ECG. In this case, the 
SHAP visualization emphasizes the delayed response of the regions 
when these events occur, as well as the areas between events. Fig. 7 (e) 
corresponds to the second ECG zoomed-in region marked in green in 
Fig. 7 (c). Here, the SHAP map highlights regions associated with HR 
variations, revealing a bradycardia-tachycardia pattern. Additionally, 
the P and T waves are distinctly identified in red color. Fig. 8 (a) and 
Fig. 8 (b) present SpO2 and ECG regions, respectively, corresponding to a 
subject experiencing apneic events. In Fig. 8 (a), the model focuses on a 
cluster of higher than 3 % SpO2 desaturations and offers a detailed 
visualization of how SHAP emphasizes SpO2 drops over 3 % (D). Fig. 8
(c) corresponds to the ECG zoomed-in region marked in green in Fig. 8

Fig. 6. SHAP visualizations of some representative findings in SpO2 and ECG signals from the CHAT dataset corresponding to a child with mild OSA. Fig. 6 (a) and 
Fig. 6 (b) show the map of the same ECG and SpO2 regions. Fig. 6 (c) is a zoom of the ECG area marked in green in Fig. 6 (b). Areas with SpO2 desaturations over 3% 
are marked with D3, while areas with SpO2 desaturation of 2% are marked with D2. QRS: ECG QRS complex. TP and PQ indicate intervals between T-P and P-Q 
waves of the ECG. The color bar indicates the Shapley values linked to each ECG and SpO2 sample. Blue-colored areas show patterns that lower the AHI estimation, 
while red-colored regions indicate patterns that contribute to accurate AHI estimation.
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(b), highlighting areas where the model identifies T waves and abnormal 
TP intervals, despite the absence of annotations indicating respiratory 
events. The SHAP map in this region emphasizes QRS complexes across 
different beats, showing variations in their amplitude and duration.

Additional examples with visualization details are provided in 

Section 2 of the supplementary material (Figs. S1–S3). Fig. S1 (a) il
lustrates that the model does not focus on isolated regions with SpO2 
desaturations over 3 %, where respiratory events are assumed not to 
occur. Similarly, Fig. S1 (b) demonstrates how, in the ECG signal, the 
model does not highlight the region corresponding to the SpO2 

Fig. 7. SHAP visualizations of some representative findings in SpO2 and ECG signals from the CHAT dataset corresponding to a child with moderate OSA. Fig. 7 (a) 
and Fig. 7 (c) show the map of the same ECG and SpO2 regions. Fig. 7 (b) is a SpO2 zoom of the area marked in green in Fig. 7 (a) referring to a cluster of SpO2 
desaturations. Areas with SpO2 desaturation of over 3% are marked with D3, while areas with oxygen desaturation of 2% are marked with D2. Fig. 7 (d) and Fig. 7 (e) 
are ECG zooms of the areas marked in blue in Fig. 7 (c). P and T: P and T waves of the ECG. Zones of changes in heart rate (HR) increase and decrease (↑HR and ↓HR) 
are indicated in green. The color bar indicates the Shapley values linked to each ECG and SpO2 sample. Blue-colored areas show patterns that lower the AHI 
estimation, while red-colored regions indicate patterns that contribute to accurate AHI estimation.

Fig. 8. SHAP maps of some representative findings in SpO2 and ECG signals from the CHAT dataset corresponding to a child with severe OSA. Fig. 8 (a) and Fig. 8 (b) 
show the map of the same ECG and SpO2 regions. Fig. 8 (a) is a SpO2 region indicating an area with a cluster of SpO2 desaturations. Areas with SpO2 desaturation of 
over 3% are marked with D. Fig. 8 (c) is a zoom of the ECG area marked in green in Fig. 8 (b). T: ECG T wave. TP indicates intervals between T-P waves of the ECG. 
The color bar indicates the Shapley values linked to each ECG and SpO2 sample. Blue-colored areas show patterns that lower the AHI estimation, while red-colored 
regions indicate patterns that contribute to accurate AHI estimation.
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desaturation event in Fig. S1 (a), even though it is not associated with an 
apneic event. Figs. S2 (a, b) present SHAP visualizations related to SpO2 
and ECG signals, respectively, in cases where the model made incorrect 
predictions, with specific regions highlighted in green. Due to the 
overlap between signal segments associated with apneic events and the 
presence of artifacts, the model cannot identify clear patterns that 
distinguish event from non-event zones. Instead, it primarily detects 
noise, which prevents it from accurately recognizing event occurrences. 
As a result, the model does not find key patterns in certain regions, ul
timately leading to an underestimation of the AHI. In Fig. S3, the SHAP 
method detects regions in both SpO2 and ECG signals that exhibit sig
nificant patterns, even though no respiratory events are assumed to 
occur. The identification of relevant features in non-event regions causes 
the model to overestimate the AHI. Specifically, in Fig. S3 (b), the model 
recognizes areas of SpO2 desaturation. Similarly, in Fig. S3 (d), SHAP 
detects ECG variations in the amplitude of the QRS complex as well as 
changes in TP segment durations.

5. Discussion

This study presents an innovative and explainable DL approach that 
integrates ECG and SpO2 data to directly estimate the AHI for each pa
tient, enabling the assessment of pediatric OSA severity. Notably, this is 
the first study to develop an interpretable DL-based model combining 
ECG and SpO2 to clarify how predictions are made and to identify key 
SpO2 and ECG patterns contributing to the decisions of the model. Using 
SHAP analysis, we have uncovered significant patterns related to both 
respiratory and cardiac activity by using full overnight SpO2 and ECG 
signals, offering valuable insights into their role in pediatric OSA 
severity estimations. This approach enables the direct use of ECG and 
SpO2 signals from nocturnal PSG recordings to estimate AHI and OSA 
severity, effectively reducing both the time and cost associated with 
traditional diagnostic methods. Furthermore, the combined DL model 
processes these signals through ECG-CNN and SpO2-CNN architectures 
and the subsequent fusion module after the stacking strategy, while also 
capturing the temporal distribution of respiratory events throughout the 
night.

5.1. Configuration of the combined DL approach

To date, the architecture proposed in the present study has not been 
explored in either adult or pediatric OSA populations. Regarding the 
architecture selection, it is noteworthy that two separate CNNs are used 
for each signal (ECG-CNN and SpO2-CNN architectures), ensuring that 
each signal is processed in a specific way. Thus, the proposed stacking- 
based multimodal architecture was designed to capture the distinct 
temporal characteristics of each physiological signal while ensuring 
computational efficiency [17]. It is important to note that by processing 
each signal separately, the model preserves the original sampling rates 
from the ECG and SpO2, as well as their physiological integrity, avoiding 
distortions that could arise from resampling or signal alignment. The 
independent feature extraction enables each branch to learn modality- 
specific temporal patterns, such as QRS complexes in ECG or desatura
tion events in SpO2, while the subsequent feature-level fusion allows the 
model to integrate complementary information and model inter-signal 
relationships without increasing architectural and computational 
complexity. Additional blocks of CNNs could be useful after the stacking 
strategy if the concatenated features required further hierarchical 
refinement [17]. However, in this case, the concatenated representa
tions already contain well-processed features, which are effectively 
leveraged by a fusion module to model interactions between ECG and 
SpO2 signals. Compared to including more complex architectures like 
transformers or RNNs, the stacking-based module of CNNs combined 
with a fusion module offers a trade-off between performance and 
computational efficiency [56,57]. While RNNs excel at capturing long- 
term temporal dependencies, these dependencies are already learned 

within the independent ECG-CNN and SpO2-CNN architectures [17,57]. 
Moreover, the stacking strategy, which concatenates CNN output fea
tures, inherently removes the temporal relationships, making the in
clusion of RNNs unnecessary [17,50]. Finally, this DL approach is highly 
and easily adaptable and scalable. If additional biomedical signals or 
clinical variables were to be introduced in future studies, independent 
CNNs could be incorporated seamlessly, concatenating their outputs for 
further processing.

5.2. SHAP explainability and ECG-SpO2 interpretation

This study introduces an innovative approach by integrating, for the 
first time, a DL-based model with an XAI method for the analysis of 
nocturnal SpO2 and ECG signals to detect OSA. To the best of our 
knowledge, only four previous studies have explored the use of XAI 
techniques for pediatric OSA diagnosis based on cardiorespiratory sig
nals [11,22,27,58]. One of these studies used a DL model with an 
attention mechanism using SpO2 signals [22], while another study 
applied a DL approach with Gradient-weighted Class Activation Map
ping (Grad-CAM) on SpO2 and AF signals [27]. Consistent with this 
study, their models primarily focused on regions exhibiting over 3 % 
SpO2 desaturation. In another study, authors combined FE techniques 
along with SHAP using categorical data, including desaturation index, 
HR-derived variables, and demographic information [58]. Finally, our 
previous study proposed a DL-based approach using Grad-CAM with 
ECG signals, aligning with this study in its focus on regions associated 
with cardiac rhythm changes, as well as its specific attention to P waves, 
T waves, and QRS complexes [11].

Fig. 5 shows how Shapley values increase with OSA severity for both 
ECG and SpO2, indicating higher model importance for signal patterns in 
severe cases. ECG dominates at lower severity levels, while SpO2 be
comes more influential as severity increases, reflecting meaningful 
physiological interactions between respiratory and cardiac systems. This 
supports the notion that SpO2 desaturations are accompanied by cardiac 
responses, consistent with prior evidence [13,14,59].

Another advantage of SHAP lies in its ability to provide quantitative, 
interpretable insights into model decisions. As shown in Table 2, model 
Acc improves with OSA severity, indicating that SHAP contributions are 
more reliable for severe cases, as these children would benefit most from 
accurate and objective diagnosis and treatment. Importantly, unlike 
methods such as Grad-CAM [23,40], SHAP provides both qualitative and 
quantitative interpretability, enhancing confidence in the reasoning of 
the model.

By focusing on specific aspects of OSA cases, the model effectively 
uses desaturation and hypoxemia patterns in the SpO2 signal for AHI 
prediction, which reflects the physiological response to apneic events, 
where repeated drops in oxygen levels serve as key indicators [1,60]. As 
illustrated in Fig. 8 (a), severe cases exhibit higher Shapley values and 
denser red regions, consistent with recurrent oxygen desaturations. 
Fig. 7 (a) demonstrates how the model distinguishes OSA-related SpO2 
drops from artifacts, prioritizing pathophysiological ranges. In this 
sense, cyclical SpO2 desaturations are closely linked to respiratory 
obstruction events and their severity, especially in children with severe 
OSA [12]. In children with mild and moderate OSA (Figs. 6 and 7), 
desaturation patterns remain relevant but less pronounced. Variations in 
amplitude and duration of these desaturations are shown in Fig. 6 (a), 
Fig. 7 (b), and Fig. 8 (a). Those phenomena provide insight into oxygen 
reduction and recovery times, which may reflect pulmonary functional 
reserve and the extent of obstruction [59]. Additionally, signal frag
mentation and fast oscillations may be associated with ventilatory 
instability and cardiovascular strain [59], while prolonged recovery 
after hypoxemia may suggest impaired compensatory capacity. More
over, severe and recurrent SpO2 desaturations, measured through hyp
oxic burden, have been linked to metabolic disturbances and an 
increased risk of cardiovascular complications in pediatric OSA [59] and 
increased mortality in adults [61].
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In addition, the model also identifies synchronized patterns between 
SpO2 and ECG signals. As shown in Fig. 7 (c) and Fig. 7 (d), it focuses on 
ECG regions that coincide with clusters of apneic events, capturing their 
temporal dynamics rather than isolated features. Furthermore, attention 
to P and T waves and their intervals during respiratory events, as 
illustrated in Fig. 6 (c), Fig. 7 (e), and Fig. 8 (c), indicates its ability to 
recognize changes in atrial and ventricular repolarization, which could 
be linked to ventilation and respiratory effort [62]. These findings are 
consistent with evidence of P-wave and QT interval dispersion in pedi
atric OSA, especially in severe cases [63]. A prolongation in P wave 
duration could point to a delay in atrial conduction, a mechanism linked 
to atrial fibrillation in adult OSA [63]. Likewise, alterations in the T 
wave or ST segment, together with increased QT interval dispersion, 
reflect repolarization abnormalities associated with ventricular ar
rhythmias and elevated cardiovascular risk. These alterations have also 
been reported in severe pediatric OSA [59,62]. Alterations in QRS 
complexes duration and/or amplitude, as seen in Fig. 6 (c) and Fig. 8 (d), 
may reflect ventricular alterations that may lead to ventricular hyper
trophy or even changes in ventricular geometry, both conditions of 
cardiovascular risk in pediatric OSA [3,64]. Moreover, the model’s focus 
on such regions, as shown in Fig. 7 (e), suggests that it captures physi
ologically meaningful bradycardia–tachycardia patterns typical of 
apneic events [3].

Other interesting findings are shown in Figs. S1-S3 in the supple
mentary material. Fig. S1 (a) shows that the model disregards isolated 
desaturations unrelated to apneic events, distinguishing sleep-phase 
changes from pathological patterns [65]. This could explain why ECG 
contributes more than SpO2 in distinguishing mild and no OSA, as subtle 
cardiovascular variations may precede desaturations. Conversely, 
Fig. S3 (b) shows SHAP highlighting SpO2 desaturations that may not 
have been annotated by specialists or that could be linked to other pa
thologies, such as chronic obstructive pulmonary disease (COPD) [66]. 
Fig. S1 (b) and Fig. S3 (d) highlight ECG areas without annotated apneic 
events but with distinctive patterns, suggesting that the model could be 
using additional cardiac information to improve OSA detection. Overall, 
these results demonstrate that SHAP captures well-known cardiorespi
ratory patterns and associations between ECG and SpO2. By learning 
such representations, the model may contribute to identifying children 
at elevated cardiovascular risk, expanding its potential clinical utility 
[1].

Finally, to evaluate the reliability of SHAP, we conducted a quanti
tative analysis comparing ECG and SpO2 Shapley values during the 
presence and absence of annotated apneic events across OSA severities 
(see Fig. S4 and Fig. S5 of the supplementary material). For both ECG 
and SpO2 signals, Shapley values were consistently higher in regions 
containing apneic events and near zero in non-event regions, indicating 
higher model feature relevance during physiological disturbances. Sta
tistical analysis using the Mann–Whitney U test confirmed statistically 
significant differences between event and non-event occurrences across 
all severities in both signals (p-value < 0.01). These findings suggest that 
SHAP captures physiologically meaningful patterns rather than random 
fluctuations, reinforcing their validity and potential clinical relevance.

5.3. Diagnostic ability and comparison with previous studies

To the best of our knowledge, no prior studies have directly used 
SpO2 and ECG data to estimate OSA presence and severity in children. 
Therefore, the present approach emphasizes comparing the results ob
tained in this study concerning previous research that evaluated SpO2 
and ECG independently.

Considering the diagnostic ability, as illustrated in the confusion 
matrices (see Fig. 4) and diagnostic metrics (see Table 2), the model 
achieved higher performance in the CHAT and PATS datasets compared 
to UofC. Nevertheless, the results in UofC remain noteworthy consid
ering that the optimal stacking-based CNN model was trained and 
optimized exclusively using CHAT and PATS data. Moreover, substantial 

variability exists in PSG scoring among sleep technologists, which could 
have influenced the external evaluation of our DL approach across the 
UofC independent dataset.

Beyond this factor, other specific differences may help explain the 
observed variation in diagnostic performance. The mean AHI values 
were 5.16 e/h for CHAT, 3.32 e/h for PATS, and 9.30 e/h for UofC. 
Likewise, interquartile ranges differed, being 2.32 [5.11] in CHAT, 1.0 
[2.60] in PATS, and 3.8 [7.76] in UofC. Thus, information reflects het
erogeneity in disease severity distributions. Participant age also varied 
across datasets. CHAT included children aged 5–10 years, PATS 
included subjects aged 3–12 years, and UofC encompassed a broader 
range from 0 to 13 years. Additionally, the sampling frequencies of ECG 
and SpO2 signals differed considerably. In CHAT, ECG ranged from 
50–512 Hz and SpO2 from 1–512 Hz. In PATS, ECG was 128 Hz and SpO2 
ranged from 10–200 Hz. In UofC, ECG ranged from 200–500 Hz and 
SpO2 from 25–500 Hz. These variations are consistent with prior 
research reporting differences in diagnostic performance when sleep 
datasets differ in their clinical and technical characteristics [67].

To facilitate comparison with previous research, Table 3 provides an 
exhaustive comparative overview of prior studies that focused on SpO2 
and ECG for estimating the presence and severity of pediatric OSA, 
alongside the findings of the current study 
[11,15,16,20–22,36,58,68–74]. By comparing the studies based on DL 
techniques, Vaquerizo-Villar et al. developed a CNN using SpO2 to es
timate apneic events within 20-minute segments [21]. The present study 
analyzed 3,320 children, while Vaquerizo-Villar et al. used a slightly 
smaller dataset comprising 3,196 subjects. Notably, their datasets were 
used for both model validation and testing, whereas this study used the 
UofC database exclusively for external validation, enhancing robustness 
and generalizability. The present approach achieved a higher k4 value 
(0.549 vs. 0.515) in CHAT. When comparing the results with the UofC 
database, the k4 value was slightly lower (0.378 vs. 0.422). However, 
this study evaluated a different test dataset (n = 980 vs. n = 392), 
implementing a more extensive validation process. Finally, the previous 
study lacked interpretability.

In another study, Mortazavi et al. developed a CNN-RNN model using 
SpO2 signals to estimate also apneic events in 20-minute segments [22]. 
Their study analyzed 844 PSGs from the CHAT database, whereas this 
study used 3,320 PSGs from three different databases. Moreover, their 
use of CHAT for training, validation, and testing limited the generaliz
ability of their findings. Additionally, Mortazavi et al. incorporated an 
attention mechanism into their model to enhance interpretability. While 
attention-based methods can highlight relevant features within the input 
data, the present approach, integrated with SHAP, offers a more 
comprehensive interpretation of the decisions made by the model. SHAP 
not only identifies the most influential features contributing to a given 
prediction but also quantifies their impact, allowing for a deeper un
derstanding of how SpO2 and ECG signals in our study contribute to the 
AHI estimation. This level of interpretability enhances clinical applica
bility by providing more transparent insight.

In the context of ECG analysis, various studies have explored both 
conventional and advanced FE methods to assess pediatric OSA severity 
using cardiac signals beyond ECG. However, the most relevant com
parison is with studies utilizing DL approaches, as previous research has 
demonstrated the superiority of DL over traditional FE techniques when 
using ECG for pediatric OSA diagnosis [11,20]. In an earlier study, we 
developed a CNN model to assess pediatric OSA severity using ECG 
signals from the same CHAT database [20]. The present approach ob
tained a higher k4 value (0.549 vs. 0.373). Notably, the previous study 
lacked interpretability. In a more recent study [11], we used a CNN-RNN 
model to assess pediatric OSA severity using ECG signals. This approach 
outperformed the previous model, achieving a k4 of 0.549 vs. 0.410 in 
CHAT and a k4 of 0.378 vs. 0.335 in UofC. This study also improves 
robustness and generalizability by incorporating the public PATS data
base. Regarding model interpretability, the previous study implemented 
Grad-CAM to provide a localized and visual representation of the ECG 
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regions influencing model decisions. However, relying solely on Grad- 
CAM and ECG signals restricts the depth of interpretability. In 
contrast, this study incorporates SHAP, which quantifies the precise 
contribution of both ECG and SpO2 signals to the predictions. This 

approach enables the explanation of individual predictions and offers a 
comprehensive analysis of overall model behavior, leveraging the 
complementary information provided by both physiological signals.

Table 3 
State-of-the-art studies on using cardiorespiratory signals to establish pediatric OSA severity.

Study Signal ML approach/Validation/Model/ 
XAI

#Total children/ #Test set AHI (events/ 
hour)

Se 
(%)

Sp (%) LR+ Acc 
(%)

Hornero et al. (2017) 
[36]

SpO2 FE/-/MLP/- 4191/3602 1 84.0 53.2 1.79 75.2
5 68.2 87.2 5.32 81.7
10 68.7 94.1 11.64 90.2

Calderón et al. (2020) 
[72]

SpO2 (ODI) FE / 15-fold-cv / LR, AdaBoost / − 453/453 CHAT 5 62.0 96.0 − 79.0

Xu et al. (2019) [68] SpO2 (ODI) FE/External validation/ MLP 
regression / − /-

432 1 95.3 19.1 1.18 79.6
5 77.8 80.5 3.99 79.4
10 73.5 92.7 10.07 88.2

Vaquerizo-Villar et al. 
(2021) [21]

SpO2 DL/Holdout/CNN/- 3,196/312 CHAT 1 71.2 81.8 3.92 77.6
5 83.7 100.0 N.D 97.4
10 83.9 99.3 117.8 97.8

3,196/392 UofC 1 90.8 36.4 1.43 80.1
5 76.0 88.6 6.68 83.9
10 79.5 95.8 18.90 92.3

3,196/231 BUH 1 88.8 53.2 1.90 79.2
5 61.1 93.7 9.72 83.5
10 65.0 96.9 20.69 91.3

Mortazavi et al. (2024) 
[22]*

SpO2 DL/3-fold-cv /CNN-RNN/Attention 844/253 CHAT 1 96.3 61.3 2.7 86.5
5 77.8 97.2 29.9 93.3
10 76.6 98.8 65.0 96.2

Shouldice et al. (2004) 
[15]

RRa FE/Loo cv /QDA /- 50/25 1 85.7 81.80 4.7 84.0

Gil et al. (2010) [74] PPG a FE/-/QDA / − 21/21 >18 OSA 
<5 No OSA

87.5 71.40 3.1 80.0

Lázaro et al. (2014) 
[73]

PPG a FE/loo cv/LDA/- 21/21 >18 OSA 
<5 No OSA

100.0 71.40 3.5 86.7

Garde et al. (2019) [71] SpO2 (ODI) + PRV 
(Spectral)

FE/loo-cv/LR (binary classification 
for each threshold)/-

207 1 5 80.0 65.0 75.0 N.D
10 85.0 79.0 82.0 N.D

82.0 91.0 89.0 N.D
Martín-Montero et al. 

(2021) [70]
HRV a FE/-/MLP/ − 1738/757 CHAT, UofC 1 76.3 38.30 1.2 63.4

5 62.5 84.20 4.0 81.0
10 66.7 91.60 7.9 89.3

Martín-Montero et al. 
(2021) [69]

HRV a FE/-/LDA/ − 1738/757 CHAT, UofC 1 85.5 35.38 1.3 74.6
5 64.4 93.78 10.4 85.0
10 53.7 97.67 23.1 91.6

Ye et al. (2023) [58] SpO2 (ODI) + HR FE/Holdout/XGBoost/SHAP 3,139/628 1 90.3 100.0 N.D 90.4
5 82.1 93.8 N.D 85.7
10 84.8 92.1 N.D 89.8

Martín-Montero et al. 
(2023) [16]

HRV a FE/Holdout/LSBoost/ LIME 1610/296 CHAT 1 90.8 23.40 1.2 80.1
5 66.7 61.17 1.7 63.2
10 40.0 92.03 5.0 84.1

García-Vicente et al. 
(2023) [20]

ECG DL/Holdout/CNN/- 1610/299 CHAT 1 84.2 46.15 1.6 75.9
5 76.7 91.39 8.9 87.0
10 53.7 98.06 27.7 92.0

García-Vicente et al. 
(2025) [11]

ECG DL/Holdout/CNN-RNN/Grad-CAM 2,655/299 CHAT 1 89.7 46.2 1.7 80.3
5 72.2 93.8 11.6 87.3
10 58.8 97.7 25.2 92.3

2,655/64 CFS (external 
validation)

1 83.3 42.5 1.45 57.8
5 66.7 100.0 N.D 98.4
10 66.7 100.0 N.D 98.4

2,655/981 UofC (external 
validation)

1 88.5 33.0 1.3 78.7
5 66.3 89.2 6.1 79.7
10 63.8 95.9 15.5 88.4

This model ECG þ SpO2 DL/Holdout/Stacked ensemble 
CNNs/SHAP

3,320/299 CHAT 1 88.5 56.9 2.1 81.6
5 80.0 98.1 41.8 92.6
10 80.5 97.3 29.7 95.0

3,320/153 PATS 1 91.0 48.0 1.8 69.9
5 92.0 96.1 23.6 95.4
10 90.9 98.6 64.6 98.0

3,320/980 UofC 
(external validation)

1 96.3 17.9 1.2 82.5
5 84.0 78.1 3.8 80.5
10 84.3 90.4 8.8 89.0

RR: the period between two R peaks; PPG: photoplethysmography; HRV and PRV: heart and pulse rate variability; ECG: electrocardiogram; AHI: apnea-hypopnea 
index; OSA: obstructive sleep apnea; Se: sensitivity; LR+: positive likelihood ratio. N.D: Not defined; FE: Feature engineering; MLP: Multilayer perceptron; cv: cross 
validation: Loo: leave one out; QDA and LDA: quadratic and linear discriminative analysis; LR: linear regression; ODI: Oxygen Desaturation Index; AdaBoost: Adaptive 
Boosting; XGBoost: Extreme Gradient Boosting. a Derived features from cardiac signals. *The results of Mortazavi et al. (2024) are obtained as the mean value of the 
metrics obtained in the different folds.
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5.4. Limitations and future work

This study has several limitations that should be noted. First, we used 
three databases to develop and evaluate our model. Particularly, we 
used the CHAT and PATS datasets for model development and internal 
validation, and the UofC dataset for external validation. In this sense, the 
use of UofC to externally evaluate our proposal and the differences in 
signal sampling rate values, age range, and AHI distribution may have 
resulted in a lower diagnostic performance in this dataset. Thus, alter
native strategies could be implemented to enhance the generalizability 
of our approach. Nonetheless, the DL model showed a higher diagnostic 
ability than the models previously proposed, in all the datasets. More
over, the databases were annotated by different specialists, which may 
represent a limitation in terms of consistent model learning and its 
generalizability, particularly in the UofC database. This likely contrib
uted to reduced Acc in the UofC external validation. However, this di
versity also enhances objectivity by minimizing potential bias from any 
single annotator. In this sense, while these datasets provided valuable 
insights regarding pediatric OSA, prospective testing of the model in a 
broader range of databases, as well as real-world home-based studies, 
would be advantageous to evaluate its performance across various 
contexts and populations. Additionally, further validation in specific 
pediatric populations, such as individuals with Down syndrome or those 
with complex medical conditions who are also at high risk for OSA, 
could provide more targeted insights and improve the clinical applica
bility of the model.

With respect to the design of the model, future works may explore 
unifying both signals into a single input representation processed 
through 2D convolutional architectures, thereby enabling the model to 
better capture long-range and inter-segment temporal dependencies. 
However, these extensions should be carefully evaluated, considering 
their computational cost and scalability to ensure that the model re
mains efficient and practical for large-scale clinical datasets. Regarding 
the stacking-based DL approach, it could serve as a basis for future 
research. In this context, additional models could be integrated along
side databases containing other variables representing cardiorespiratory 
risk factors, such as hypertension, obesity, and genetic predisposition, to 
estimate both OSA and related comorbidities. Furthermore, while SHAP 
proved useful for interpreting the model and identifying ECG and SpO2 
patterns, future work should explore complementary XAI methods to 
improve the explainability, reliability, and generalizability in complex 
physiological contexts.

Our proposal has been validated in a laboratory setting, and the next 
phase will focus on testing the system with prospectively collected 
home-based data and in real clinical environments to evaluate its per
formance, integration into sleep unit workflows, and comparison with 
the PSG gold standard. A key step toward clinical deployment will be 
creating a user-friendly interface that presents SHAP outputs in a format 
aligned with medical workflows. This interface will display the auto
matic diagnosis (estimated AHI), protocol-based recommendations, and 
model annotations over the ECG and SpO2 signals. Integrating these 
elements into a desktop application, with the option to export clinical 
reports, will help ensure that model interpretability supports practical 
diagnostic use and strengthens clinician confidence in AI-assisted pedi
atric OSA screening. In addition to technical and clinical validation, the 
future deployment of the proposed system will also require careful 
attention to ethical aspects related to data collection and patient pro
tection. For potential clinical implementation, signal acquisition pro
cedures would be designed to ensure complete safety for participants. 
Informed consent would be obtained from all newly recruited subjects 
for the use of their clinical, pulse oximetry, and ECG data. Recruitment 
would follow the ethical principles of the Declaration of Helsinki and the 
Council of Europe’s Resolution on Human Rights and Biomedicine 
(CETS No. 195, 2005). All collected data would be anonymized, and 
researchers would not have access to identifiable patient information to 
guarantee privacy. Data processing would comply with the European 

General Data Protection Regulation (GDPR, EU 2016/679). These future 
steps would be guided by a data management plan based on the FAIR 
principles (Findable, Accessible, Interoperable, and Reusable), ensuring 
secure storage, controlled access, full traceability, and ethically 
compliant data reuse within the scientific community.

6. Conclusion

As far as we know, this is the first study to explore an interpretable 
model that uses a stacking strategy combining CNNs with SpO2 and ECG 
input signals to directly predict AHI and assess OSA severity in children. 
Our approach has demonstrated improved diagnostic ability than pre
vious studies, particularly in severe OSA. This is crucial as that popu
lation is closely linked to increased cardiovascular risk and other 
complications, such as impaired cognitive function. Furthermore, XAI 
results offered both visual and quantitative insights, identifying well- 
known respiratory and cardiac patterns related to OSA. Our quantita
tive XAI findings emphasized the distinct contributions of SpO2 and ECG 
signals in diagnosing OSA. ECG appears to be more critical for identi
fying healthy populations and mild OSA, whereas SpO2 assumes a pri
mary role in detecting moderate and severe OSA. These findings suggest 
that the ECG may identify subtle cardiovascular variations that SpO2 
alone does not detect, especially in children with fewer respiratory 
events. Moreover, this distinction highlights the complementary nature 
of these signals, ultimately enhancing the model performance across 
varying OSA severity levels. In conclusion, an interpretable DL tool 
combining SpO2 and ECG data emerges as a promising alternative to 
PSG, offering a fast, reliable, and objective diagnosis of OSA in children. 
Furthermore, the incorporation of XAI techniques increases model trust 
and supports clinical adoption by providing both quantitative and visual 
explanations of the model decisions.
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