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ABSTRACT: The competitiveness in maritime operations demands maintenance strategies that ensure high
reliability and availability at minimal cost. While predictive diagnostics have shown promise in detecting
deviations from optimal operating conditions, current methodologies often fail to effectively isolate and identify
the contributing process variables. This study introduces an enhanced predictive diagnostic approach that
integrates MYT (Mason, Young, Tracy) decomposition with traditional statistical monitoring techniques, such as
Hotelling's T? control charts. By applying this methodology to the auxiliary systems of a 284-meter LNG tanker,
we identified that the key variables driving process anomalies were Superheated Steam in Boiler 1 (Tn/h) and
Superheated Steam in Boiler 2 (Tn/h). These findings underscore the ability of the proposed method to detect
deviations before critical failures occur, providing ship operators with actionable insights to enable precise
maintenance scheduling, reduce operational costs, and prevent unscheduled downtime. The demonstrated
integration of MYT decomposition into predictive maintenance protocols highlights its potential to optimize
monitoring accuracy and decision-making in complex naval systems.

1 INTRODUCTION reduction, and compliance with  stringent

environmental regulations, compelling operators to

The maritime industry stands at the forefront of global
transportation, with its operational efficiency and
reliability directly influencing international trade and
economic stability [1]. However, as shipping
operations grow increasingly complex, so do the
challenges associated with  maintaining the
performance of critical systems under dynamic and
often harsh operating conditions. These conditions
include fluctuating weather patterns, such as high
winds and rough seas, extreme temperatures that can
affect machinery performance, and variability in cargo
loads and fuel quality. Such factors not only introduce
significant stress on shipboard systems but also
demand robust solutions to ensure reliability and
safety. This complexity is further amplified by the
growing demand for sustainable practices, cost

adopt innovative maintenance strategies [2].

In recent years, advancements in data acquisition,
real-time monitoring, and predictive analytics have
laid the groundwork for a paradigm shift in maritime
maintenance. Industry 4.0 principles [3] characterized
by enhanced connectivity, data-driven decision-
making, and automation, have transformed the way
systems are monitored and managed. Modern
integrated automation systems (IAS) enable the
recording of multivariable datasets with high-
frequency precision, offering unparalleled insights into
the operational state of vessels [4]. Despite these
technological strides, traditional monitoring
techniques often fall short in addressing the challenges
posed by highly correlated datasets, where the sheer
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volume of information can obscure critical anomalies
and delay corrective actions [5].

To bridge this gap, advanced statistical tools and
multivariable analysis methods are becoming
indispensable in predictive maintenance frameworks
[6-8]. Some techniques such as time series are typically
used. Concerning times series, it was applied on a
research vessel at the Norwegian University of Science
and Technology (NTNU). Relevant variables were
selected, unnecessary information or noise was
removed, and essential characteristics of the problem
were extracted in order to reliably identify the vessel's
behaviour [9]. In relation to partial least squares a
statistical framework is developed to process the vast
amounts of navigation data acquired by the on-board
multi-sensor systems and an automatic reporting
system is created to monitor fuel consumption [10].

Among these, Hotelling’s T? control charts have
emerged as a robust technique for detecting deviations
in multivariate processes [11]. In [12] control of the
condition of the oil in the gears of the vessels was
analysed by means of Hotelling's T?  statistic or in [13]
where the control of the machining process for
industrial components manufactured on conventional
lathe machines is monitored.

However, their utility is often limited by their
inability to pinpoint the specific variables responsible
for detected anomalies [14]. This limitation is
particularly critical in maritime systems, where
understanding the root cause of deviations is essential

for  targeted maintenance and  operational
optimization.
Unlike previous studies that have applied

Hotelling’s T? control charts or multivariate analysis
separately in maritime contexts [12], [14], this work
introduces a novel integration of Hotelling’s T? charts
with Mason-Young-Tracy (MYT) decomposition [15],
to enhance interpretability and diagnostic precision in
predictive maintenance systems. While Hotelling’s T2
charts are effective for identifying deviations in
multivariate data, they often fall short in isolating the
variables responsible for such deviations [14], a gap
directly addressed by the MYT methodology. To the
best of our knowledge, this is the first time that such an
integrated approach has been implemented and
validated using real high-frequency operational data
from an LNG tanker’s auxiliary boiler-turbine system.
The proposed framework not only detects early-stage
anomalies but also identifies their root causes with
clarity, offering a scalable and interpretable solution
that aligns with the growing need for data-driven,
Industry 4.0-aligned maintenance strategies in the
maritime industry [3], [10].

This study introduces an enhanced predictive
diagnostic framework that integrates Hotelling’s T?
control charts with Mason-Young-Tracy (MYT)
decomposition [15]. The MYT approach dissects
multivariable anomalies into their individual
components, enabling the precise identification of
variables contributing to deviations. By applying this
integrated methodology to the auxiliary boiler-turbine
system of a 284-meter LNG tanker, we demonstrate its
ability to detect early-stage anomalies, isolate their root
causes, and provide actionable insights for
maintenance planning.
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The proposed framework addresses key challenges
in modern maritime operations, including the need to
manage the complexity of multivariable datasets and
the imperative to optimize maintenance interventions.
This paper not only validates the efficacy of the
methodology through a real-world case study but also
highlights its broader implications for advancing
predictive maintenance protocols in the maritime
sector. In doing so, it underscores the critical role of
data-driven diagnostics in enhancing system
reliability, reducing operational costs, and supporting
the industry’s transition toward more sustainable and
efficient practices.

By bridging the gap between anomaly detection
and root cause analysis, this study represents a
significant contribution to the evolving field of
predictive maintenance in the maritime industry,
offering a blueprint for future research and practical
applications in complex naval systems.

The primary objective of this study is to apply the
MYT (Mason, Young, Tracy) decomposition technique
in conjunction with Hotelling's T? control charts to a
real-world maritime context, specifically on the
auxiliary boiler-turbine system of a 284-meter LNG
tanker. This research aims to evaluate the effectiveness
of the proposed methodology in detecting operational
deviations at an early stage and isolating the specific
variables responsible for these anomalies. By doing so,
the study seeks to demonstrate the practical
applicability of this integrated approach for enhancing
predictive =~ maintenance  protocols, = reducing
operational costs, and improving the reliability of
complex naval systems.

2 MATERIAL AND METHODS

The auxiliary boiler-turbine system of a 284-meter
LNG tanker serves as the foundation for this study,
designed to explore advanced predictive diagnostic
techniques in real-world maritime operations. This
system plays a critical role in maintaining the vessel's
operational efficiency, ensuring the continuous supply
of thermal and mechanical energy necessary for
propulsion and auxiliary functions. To achieve this,
key performance variables were monitored and
analyzed under carefully controlled conditions to
establish a robust framework for identifying deviations
from normal operations.

This section describes the ship's specifications, the
monitored variables, and the methodology employed
to create the Historical Database Set (HDS) as a
baseline for system behavior. The study's focus extends
beyond simple anomaly detection to understanding
the underlying causes of deviations using MYT
decomposition integrated with Hotelling's T? control
charts. This combined approach provides a powerful
diagnostic tool capable of isolating critical variables
responsible for process anomalies, offering actionable
insights for predictive maintenance.

2.1 System Description

The study was conducted on the auxiliary boiler-
turbine system of a 284-meter LNG tanker. The
characteristics of ship are listed in Table 1.



Table 1. Ship’s specifications.

Type of ship LNG Tanker
Length overall 284 m
Breadth extreme 425 m
Draught 114 m
Gross tonnage 98478 Tons
Net tonnage 27143 Tons

Six variables were monitored: shaft power (kW),
boiler superheated steam production (In/h for two
boilers), outlet temperature of superheated steam (in
both boilers, °C), and daily fuel consumption (m?3/day).
Data were collected using the ship’s integrated
automation system over two voyages, each lasting 12
days, under normal operational conditions: vessel
speed between 10 - 13.5, average engine room
temperature of 27-32°C and average ambient
temperature of 16 - 32°C. The voyages covered routes
from Malta to Trinidad. The process is show in figure 1.
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Figure 1. Process system.

2.2 Data Purging and Historical Database Creation

To build the historical database (HDS), the n=77 of the
preliminary data base, estimated for the multivariate
process were monitored using Hotelling's T2 chart [16]
following the expression (1).

T2 =(X; =X s7(X-X) 1)

where:

Xiz(Xil;Xiz;...;Xip) preliminary data, X , is the
vector of sample means y S7!, the inverse of the
covariance matrix.

Depending on the circunstances, the T? statistic can
be described by three different probability functions:
the Beta, the F and the chi-square distributions. When
w0 are estimated, the Beta distribution is used in the
purging process of a Phase I operation, whereas the F
distribution is used in the development of the control
process in a Phase II operation. When p,0 are known,
the chi-square has applications in both Phase I and
Phase II operations [17].

During the purging process, the atypical
observations of the process, obtained in the generation
the preliminary database, were detected and
eliminated, in order to avoid possible errors in results.

In this case, with a mean and standard deviation u,o
estimated, for the calculation of the UCL (Upper
Control Limit), the  distribution of a=0.05, was used
in the process of purging outliers from those

observations that were outliers in the process. The level
of ot is typical value for this type of process.

The UCL was determined by the following
expression:

2
UCL = M B

n {u;g;(n—p—l)&} (2)

where:

n: Is the size of the data set, p: Number of variables,
Bloyp/2;(n-p-1)/2}, is the ath, quantile of the beta
distribution, B{p/2;(n-p-1)/2}

If the value of T? which was monitored for an
observation, exceeded the UCL, the observation was
removed from the preliminary database.

With the remaining observations, we calculated a
new vector of means and covariance matrix and again,
outliers, produced by errors in the measurements, were
detected and eliminated, this process was repeated,
until a homogeneous set of observations was obtained.
The final data set was the (HDS), from the normal
operation mode of the process, consisting of 54
samples.

The premilinary data base, consisting of 77 samples
is showed in Table 2. In Table 3, the detected outliers
are represented in each step until the HDS was
obtained.

Table 2. Part of Preliminary data base.

1-shaft power (kW)

2- superheated steam in Boiler 1 (Tn/h)

3- superheated steam in Boiler 2 (Tn/h)

4- outlet temperature of superheated steam in bolier 1 (°C)
5- outlet temperature of superheated steam in bolier 2 (°C)
6- daily fuel consumption (m3/day)

1 2 3 4 5 6

8009 259 25.6 514 510 162
8232 26.1 27.2 514 510 162
8085  28.5 28.4 514 510 162
8126  27.7 27.8 515 512 168
7841  27.5 27.5 515 512 168
7685  27.5 27.4 515 512 168
8622  28.8 28.8 515 512 168
8340 27.1 27.4 515 512 168
8469 264 26.6 515 512 168
8520 265 26.7 514 496 164
8286 273 27.6 514 496 164
8380 264 26.6 514 496 164
8287 264 26.7 514 499 168
8461 269 27.2 514 499 168
8358  26.8 27 514 499 168
8490 27 27.2 514 499 168

Table 3. Steps to get the HDS.

No. of observations UCL No. outliers detected
77 12.043 6
71 11.995 4
67 11.959 4
63 11.918 2
61 11.895 2
59 11.871 1
58 11.858 1
57 11.845 1
56 11.832 2
54 11.803 0
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2.3 Process Control and MYT decomposition application

In this step, it was tested to see if a new entry of data
generated a signal, with respect to the historical data
set (HDS). Considering a continuous steady-state
process where the observation vector are independent
and the parameters of the underlying normal
distribution are unknown and must be estimated. We
assume the process is being monitored by observing a
single vector of 23 new valid samples acquired after
having analyzed them according to the criteria of the
normal condition of the operation.

The T? values, for the new data input, were
calculated, following the expression (3).

T2 (X, -X) §7(%-X) G)

where X isthe vector of sample meansand S the
inverse of the covariance matrix, obtained from the
HDS and X; ., the mnew data entry.
X; =(Xi1;Xi2;...;Xi ' . Here, the T? statistic [18]
follows the F distribution. For the calculation of the
UCL (Upper Control Limit), the F distribution of
a=0.05, for Type II errors, was used [18]. The level of a
can be variable, making more or less strict the method.
The chosen alpha level is normally used in industrial
processes. The UCL is computed as:

p(n+1)(n-1
UCL = {%—(p))} F{a;p;(n—p)} @)

Where p, is the number of variables, n, is the size of the
HDS and F{e;p;(n-p)} , is the ath, quantile of F{p;(n-p)}.

The values of T2 which exceeded the UCL, were
declared as signals and this concluded that the
observation was out of rank with respect to the mode
of normal operation of the process.

Once the T? statistical detected samples which were
out of rank in the process from normal operating
conditions, the MYT decomposition was used [19, 20]to
identify the variables with more weight, responsible
for state out of rank for each sample.

“u_ 1

The general decomposition for “p” variables of the
Hotelling’s T2 statistic, follow the equation:

2 2 2 2 2 2 2 P2
T =T"+T,; +T3.1,2 +T4.1,2,3 +"'+TP.1,,.,,P71 =T, Zj:ﬁ-jﬂ.l,———,j (5)

The final T2 value, T, is Hotelling’s statistic for
the first variable. It reduces to the square of the
univariate t statistic for the initial variable:

= \2
e Dax) ©)
Si

where, )_(1 and S: is the mean and standard deviation
of variable Xi.

The statistic sz_ly_“’p,l is the p" component of the
vector Xi adjusted by the estimates of the mean and
standard deviation of the conditional distribution of X»p
given Xi, Xz, ..., Xp1. It is given by
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)

where:

),

Xp is the sample mean of n observations on the pth

variable,
b, = S;ol(Sxx is a (p-1) — dimensional vector estimating

the regression coefficients of the pt variable regressed
on the first p-1 variables,

2 2 & o
Spi...p1=S% —SxxS

XX SxX
S S
and S _[ xx XZX ]
SxX SX
3 RESULTS

T2 values were calculated according to Eq. (3), for
each one of the 23 new observations, and they were
monitored in a control chart, according to Fig. 2 with a
upper control limit previously calculated, according to
the expression Eq. (4), valued in UCL = 15.4833, with
a=0.05., to detect changes significant in the normal
operation condition.

The control chart shows that in the observation 5,
there is a value, over the UCL, which indicates, that in
that interval of time, the process had a deviation from
its normal operation mode.

This situation does not mean that the process was
failing, but that at that moment it deviated from its
normal operating conditions. But if such a negative
trend is repeated over time, it would be an indication
of the need to take corrective maintenance action to
restore process operability.

340 -
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200
180
160

T2 Values
B
3

| UCL=15.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Figure 2. Control Chart.

In the next stage, it was identified which were the
variables that had produced the state out of rank of
each observation.

Through MYT decomposition technique, each T2
value was decomposed for each one of the signals to
detect, which was the variable which had contributed
most strongly to the state out of rank of process, the
unconditional terms was calculated following Eq. (6),
and the conditional terms were calculated following
Eq. (7), the decomposition is listed in Table 4. It shows
that the variables (2 and 3) Superheated steam in Boiler
1 (Tn/h) and Superheated steam in Boiler 2 (Tn/h),
caused the state out of rank of process.



Table 4. MYT Decomposition.
No. Observation No. Variable Variable

5 2 Superheated steam in Boiler 1
(Tn/h)
3 Superheated steam in Boiler 2
(Tn/h)
The wvariables related to superheated steam

production in both boilers serve as key indicators of the
system's thermal and energy performance. These
variables are fundamentally connected to the
equilibrium between energy demand and the system’s
capacity to fulfill that demand wunder normal
operational conditions.

Simultaneous deviations in both variables often
point to a potential interdependence or imbalance in
the coordinated operation of the boilers, which can
compromise the system's ability to maintain stable
performance. Superheated steam production plays a
critical role in energy transfer to the turbine system,
and any deviation from established production limits
can lead to efficiency losses and destabilization of the
overall system.

The proposed method proved effective in detecting
observations that deviated from the normal process
conditions. For the ship’s engineers, identifying that
the process was out of rank provided an early warning,
enabling them to remain vigilant and prepared to
address significant changes in the system.

Additionally,  the  application of MYT
decomposition facilitated the identification of the
specific variables causing the deviation—namely,
superheated steam production in Boiler 1 (Tn/h) and
Boiler 2 (Tn/h). This insight was instrumental for the
ship’s engineers, as it allowed them to focus on
correcting the deviations and restoring the process to
its normal operating conditions.

Traditional monitoring methods operate on a
fundamentally different principle: they rely on
univariate thresholds and detect anomalies only after a
specific variable exceeds its acceptable range. In such
reactive systems, no early warning is available, and the
failure must occur—or be imminent—before any
corrective action can be triggered. Conversely, the
methodology proposed here identifies multivariate
deviations before any individual variable breaches its
limits, enabling earlier detection and diagnosis. This
predictive capability underscores the utility and
effectiveness of the MYT-enhanced Hotelling’s T?

approach, offering significant advantages over
conventional techniques in managing complex
systems.

4 CONCLUSIONS

This study has demonstrated the effectiveness of
integrating MYT decomposition with Hotelling T?
control charts for advanced monitoring of naval
systems. This methodology not only enabled the early
detection of deviations in the operational performance
of the boiler-turbine system of a 284-meter LNG tanker
but also precisely identified the variables responsible
for these anomalies, providing a robust framework for
predictive maintenance. The combination of advanced
statistical tools and multivariable decomposition

techniques offers significant advantages for managing
complex systems, including early anomaly detection,
which allows deviations to be identified before they
manifest as critical failures, providing sufficient time to
implement corrective actions. Moreover, the MYT
decomposition highlighted the variables with the
greatest impact on the out-of-range state, facilitating a
more focused and efficient diagnosis and enabling
resource optimization by prioritizing maintenance
interventions based on the responsible variables,
thereby reducing the need for generalized inspections
and minimizing operational costs.

The ability to identify specific deviations in key
variables, such as superheated steam production in
both boilers, demonstrates the practical value of this
approach in the maritime industry, underscoring the
importance of integrating advanced monitoring tools
into maintenance protocols, especially in systems
where operating conditions are dynamic and failures
can have significant consequences. Additionally, the
proposed approach supports the transition toward
more proactive, data-driven maintenance strategies,
aligning with Industry 4.0 objectives and promoting
greater reliability and operational efficiency in ships.

Advancing the current state of knowledge, this
work operationalizes an integrated diagnostic
approach that not only detects anomalies but also
explains them in a multivariate context. The
application of MYT decomposition within the
maritime domain—particularly in combination with
Hotelling’s T? control charts and using real onboard
datasets—has not been previously demonstrated in
such a comprehensive manner. By bridging the
interpretability gap in multivariable monitoring, this
contribution offers a methodological innovation with
immediate  applicability = for  condition-based
maintenance strategies, reinforcing the novelty and
practical value of the proposed framework in
enhancing reliability and operational intelligence in the
maritime sector.

This work validates the utility of MYT
decomposition as a complementary tool to traditional
techniques in multivariable monitoring of maritime
systems. The findings highlight its potential to
optimize decision-making, reduce operational costs,
and enhance the reliability of vessels in a highly
competitive environment. In conclusion, the proposed
methodology represents a significant advancement in
monitoring and predictive maintenance strategies for
naval systems. Its ability to manage the complexity of
multivariable data and provide accurate diagnostics
positions it as a key tool for improving operational
efficiency in the modern maritime industry.
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