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1 INTRODUCTION 

The maritime industry stands at the forefront of global 
transportation, with its operational efficiency and 
reliability directly influencing international trade and 
economic stability [1]. However, as shipping 
operations grow increasingly complex, so do the 
challenges associated with maintaining the 
performance of critical systems under dynamic and 
often harsh operating conditions. These conditions 
include fluctuating weather patterns, such as high 
winds and rough seas, extreme temperatures that can 
affect machinery performance, and variability in cargo 
loads and fuel quality. Such factors not only introduce 
significant stress on shipboard systems but also 
demand robust solutions to ensure reliability and 
safety. This complexity is further amplified by the 
growing demand for sustainable practices, cost 

reduction, and compliance with stringent 
environmental regulations, compelling operators to 
adopt innovative maintenance strategies [2]. 

In recent years, advancements in data acquisition, 
real-time monitoring, and predictive analytics have 
laid the groundwork for a paradigm shift in maritime 
maintenance. Industry 4.0 principles [3] characterized 
by enhanced connectivity, data-driven decision-
making, and automation, have transformed the way 
systems are monitored and managed. Modern 
integrated automation systems (IAS) enable the 
recording of multivariable datasets with high-
frequency precision, offering unparalleled insights into 
the operational state of vessels [4]. Despite these 
technological strides, traditional monitoring 
techniques often fall short in addressing the challenges 
posed by highly correlated datasets, where the sheer 
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volume of information can obscure critical anomalies 
and delay corrective actions [5]. 

To bridge this gap, advanced statistical tools and 
multivariable analysis methods are becoming 
indispensable in predictive maintenance frameworks 
[6-8]. Some techniques such as time series are typically 
used. Concerning times series, it was applied on a 
research vessel at the Norwegian University of Science 
and Technology (NTNU). Relevant variables were 
selected, unnecessary information or noise was 
removed, and essential characteristics of the problem 
were extracted in order to reliably identify the vessel's 
behaviour [9]. In relation to partial least squares a 
statistical framework is developed to process the vast 
amounts of navigation data acquired by the on-board 
multi-sensor systems and an automatic reporting 
system is created to monitor fuel consumption [10].  

Among these, Hotelling’s T² control charts have 
emerged as a robust technique for detecting deviations 
in multivariate processes [11]. In [12] control of the 
condition of the oil in the gears of the vessels was 
analysed by means of Hotelling's T²  statistic or in [13] 
where the control of the machining process for 
industrial components manufactured on conventional 
lathe machines is monitored.   

However, their utility is often limited by their 
inability to pinpoint the specific variables responsible 
for detected anomalies [14]. This limitation is 
particularly critical in maritime systems, where 
understanding the root cause of deviations is essential 
for targeted maintenance and operational 
optimization. 

Unlike previous studies that have applied 
Hotelling’s T² control charts or multivariate analysis 
separately in maritime contexts [12], [14], this work 
introduces a novel integration of Hotelling’s T² charts 
with Mason-Young-Tracy (MYT) decomposition [15], 
to enhance interpretability and diagnostic precision in 
predictive maintenance systems. While Hotelling’s T² 
charts are effective for identifying deviations in 
multivariate data, they often fall short in isolating the 
variables responsible for such deviations [14], a gap 
directly addressed by the MYT methodology. To the 
best of our knowledge, this is the first time that such an 
integrated approach has been implemented and 
validated using real high-frequency operational data 
from an LNG tanker’s auxiliary boiler-turbine system. 
The proposed framework not only detects early-stage 
anomalies but also identifies their root causes with 
clarity, offering a scalable and interpretable solution 
that aligns with the growing need for data-driven, 
Industry 4.0-aligned maintenance strategies in the 
maritime industry [3], [10]. 

This study introduces an enhanced predictive 
diagnostic framework that integrates Hotelling’s T² 
control charts with Mason-Young-Tracy (MYT) 
decomposition [15]. The MYT approach dissects 
multivariable anomalies into their individual 
components, enabling the precise identification of 
variables contributing to deviations. By applying this 
integrated methodology to the auxiliary boiler-turbine 
system of a 284-meter LNG tanker, we demonstrate its 
ability to detect early-stage anomalies, isolate their root 
causes, and provide actionable insights for 
maintenance planning. 

The proposed framework addresses key challenges 
in modern maritime operations, including the need to 
manage the complexity of multivariable datasets and 
the imperative to optimize maintenance interventions. 
This paper not only validates the efficacy of the 
methodology through a real-world case study but also 
highlights its broader implications for advancing 
predictive maintenance protocols in the maritime 
sector. In doing so, it underscores the critical role of 
data-driven diagnostics in enhancing system 
reliability, reducing operational costs, and supporting 
the industry’s transition toward more sustainable and 
efficient practices. 

By bridging the gap between anomaly detection 
and root cause analysis, this study represents a 
significant contribution to the evolving field of 
predictive maintenance in the maritime industry, 
offering a blueprint for future research and practical 
applications in complex naval systems. 

The primary objective of this study is to apply the 
MYT (Mason, Young, Tracy) decomposition technique 
in conjunction with Hotelling's T² control charts to a 
real-world maritime context, specifically on the 
auxiliary boiler-turbine system of a 284-meter LNG 
tanker. This research aims to evaluate the effectiveness 
of the proposed methodology in detecting operational 
deviations at an early stage and isolating the specific 
variables responsible for these anomalies. By doing so, 
the study seeks to demonstrate the practical 
applicability of this integrated approach for enhancing 
predictive maintenance protocols, reducing 
operational costs, and improving the reliability of 
complex naval systems. 

2 MATERIAL AND METHODS 

The auxiliary boiler-turbine system of a 284-meter 
LNG tanker serves as the foundation for this study, 
designed to explore advanced predictive diagnostic 
techniques in real-world maritime operations. This 
system plays a critical role in maintaining the vessel's 
operational efficiency, ensuring the continuous supply 
of thermal and mechanical energy necessary for 
propulsion and auxiliary functions. To achieve this, 
key performance variables were monitored and 
analyzed under carefully controlled conditions to 
establish a robust framework for identifying deviations 
from normal operations. 

This section describes the ship's specifications, the 
monitored variables, and the methodology employed 
to create the Historical Database Set (HDS) as a 
baseline for system behavior. The study's focus extends 
beyond simple anomaly detection to understanding 
the underlying causes of deviations using MYT 
decomposition integrated with Hotelling's T² control 
charts. This combined approach provides a powerful 
diagnostic tool capable of isolating critical variables 
responsible for process anomalies, offering actionable 
insights for predictive maintenance. 

2.1 System Description 

The study was conducted on the auxiliary boiler-
turbine system of a 284-meter LNG tanker. The 
characteristics of ship are listed in Table 1. 
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Table 1. Ship’s specifications. 
Type of ship LNG Tanker 

Length overall 284 m 
Breadth extreme 42.5 m 
Draught 11.4 m 
Gross tonnage 98478 Tons 
Net tonnage 27143 Tons 

 
Six variables were monitored: shaft power (kW), 

boiler superheated steam production (Tn/h for two 
boilers), outlet temperature of superheated steam (in 
both boilers, °C), and daily fuel consumption (m³/day). 
Data were collected using the ship’s integrated 
automation system over two voyages, each lasting 12 
days, under normal operational conditions: vessel 
speed between 10 - 13.5, average engine room 
temperature of 27-32°C and average ambient 
temperature of 16 - 32°C. The voyages covered routes 
from Malta to Trinidad. The process is show in figure 1. 

 

Figure 1. Process system. 

2.2 Data Purging and Historical Database Creation 

To build the historical database (HDS), the n=77 of the 
preliminary data base, estimated for the multivariate 
process were monitored using Hotelling's T² chart [16] 
following the expression (1). 

( ) ( )2 1T X ´  S X   −= − −i iX X  (1) 

where: 

( )1 2; ; ;= i i i iPX X X X  preliminary data, X , is the 
vector of sample means y 1  −S , the inverse of the 
covariance matrix. 

Depending on the circunstances, the T² statistic can 
be described by three different probability functions: 
the Beta, the F and the chi-square distributions. When 
µ,σ are estimated, the Beta distribution is used in the 
purging process of a Phase I operation, whereas the F 
distribution is used in the development of the control 
process in a Phase II operation. When µ,σ are known, 
the chi-square has applications in both Phase I and 
Phase II operations [17]. 

During the purging process, the atypical 
observations of the process, obtained in the generation 
the preliminary database, were detected and 
eliminated, in order to avoid possible errors in results. 

In this case, with a mean and standard deviation µ,σ 
estimated, for the calculation of the UCL (Upper 
Control Limit), the β distribution of α=0.05, was used 
in the process of purging outliers from those 

observations that were outliers in the process. The level 
of α is typical value for this type of process.  

The UCL was determined by the following 
expression: 

( )
( )
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where: 
n: Is the size of the data set, p: Number of variables, 
β{α;p/2;(n-p-1)/2}, is the αth, quantile of the beta 
distribution, β{p/2;(n-p-1)/2} 

If the value of T², which was monitored for an 
observation, exceeded the UCL, the observation was 
removed from the preliminary database. 

With the remaining observations, we calculated a 
new vector of means and covariance matrix and again, 
outliers, produced by errors in the measurements, were 
detected and eliminated, this process was repeated, 
until a homogeneous set of observations was obtained. 
The final data set was the (HDS), from the normal 
operation mode of the process, consisting of 54 
samples. 

The premilinary data base, consisting of 77 samples 
is showed in Table 2. In Table 3, the detected outliers 
are represented in each step until the HDS was 
obtained. 

Table 2. Part of Preliminary data base. 
1-shaft power (kW) 
2- superheated steam in Boiler 1 (Tn/h) 
3- superheated steam in Boiler 2 (Tn/h) 
4- outlet temperature of superheated steam in bolier 1 (°C) 
5- outlet temperature of superheated steam in bolier 2 (°C) 
6- daily fuel consumption (m³/day) 

1 2 3 4 5 6 

8009 25.9 25.6 514 510 162 
8232 26.1 27.2 514 510 162 
8085 28.5 28.4 514 510 162 
8126 27.7 27.8 515 512 168 
7841 27.5 27.5 515 512 168 
7685 27.5 27.4 515 512 168 
8622 28.8 28.8 515 512 168 
8340 27.1 27.4 515 512 168 
8469 26.4 26.6 515 512 168 
8520 26.5 26.7 514 496 164 
8286 27.3 27.6 514 496 164 
8380 26.4 26.6 514 496 164 
8287 26.4 26.7 514 499 168 
8461 26.9 27.2 514 499 168 
8358 26.8 27 514 499 168 
8490 27 27.2 514 499 168 

 
Table 3. Steps to get the HDS. 
No. of observations UCL No. outliers detected 

77 12.043 6 
71 11.995 4 
67 11.959 4 
63 11.918 2 
61 11.895 2 
59 11.871 1 
58 11.858 1 
57 11.845 1 
56 11.832 2 
54 11.803 0 
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2.3 Process Control and MYT decomposition application 

In this step, it was tested to see if a new entry of data 
generated a signal, with respect to the historical data 
set (HDS). Considering a continuous steady-state 
process where the observation vector are independent 
and the parameters of the underlying normal 
distribution are unknown and must be estimated. We 
assume the process is being monitored by observing a 
single vector of 23 new valid samples acquired after 
having analyzed them according to the criteria of the 
normal condition of the operation. 

The T² values, for the new data input, were 
calculated, following the expression (3). 

( ) ( )2 1T X ´  S X      −= − −i iX X  (3) 

where X  is the vector of sample means and 1  −S  the 
inverse of the covariance matrix, obtained from the 
HDS and iX , the new data entry. 

( )1 2; ; ';= i i i ipX X X X . Here, the T² statistic [18] 
follows the F distribution. For the calculation of the 
UCL (Upper Control Limit), the F distribution of 
α=0.05, for Type II errors, was used [18]. The level of α 
can be variable, making more or less strict the method. 
The chosen alpha level is normally used in industrial 
processes. The UCL is computed as: 

( )( )
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Where p, is the number of variables, n, is the size of the 
HDS and F{;p;(n-p)} , is the αth, quantile of F{p;(n-p)}. 

The values of T² which exceeded the UCL, were 
declared as signals and this concluded that the 
observation was out of rank with respect to the mode 
of normal operation of the process. 

Once the T² statistical detected samples which were 
out of rank in the process from normal operating 
conditions, the MYT decomposition was used [19, 20]to 
identify the variables with more weight, responsible 
for state out of rank for each sample. 

The general decomposition for “p” variables of the 
Hotelling´s T² statistic, follow the equation: 

12 2 2 2 2 2 2 2
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The final 2T  value, 2
1T , is Hotelling´s statistic for 

the first variable. It reduces to the square of the 
univariate t statistic for the initial variable: 
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2

1 12
1 2

1
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=

X
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S
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where, 1X  and S1 is the mean and standard deviation 
of variable X1. 

The statistic 2
.1, , 1 −P PT  is the pth component of the 

vector Xi adjusted by the estimates of the mean and 
standard deviation of the conditional distribution of XP 
given X1, X2, …, Xp-1. It is given by 
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PX  is the sample mean of n observations on the pth 
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3 RESULTS 

T²  values were calculated according to Eq. (3), for 
each one of the 23 new observations, and they were 
monitored in a control chart, according to Fig. 2 with a 
upper control limit previously calculated, according to 
the expression Eq. (4), valued in UCL = 15.4833, with 
α=0.05., to detect changes significant in the normal 
operation condition.  

The control chart shows that in the observation 5, 
there is a value, over the UCL, which indicates, that in 
that interval of time, the process had a deviation from 
its normal operation mode. 

This situation does not mean that the process was 
failing, but that at that moment it deviated from its 
normal operating conditions. But if such a negative 
trend is repeated over time, it would be an indication 
of the need to take corrective maintenance action to 
restore process operability. 

 

Figure 2. Control Chart. 

In the next stage, it was identified which were the 
variables that had produced the state out of rank of 
each observation. 

Through MYT decomposition technique, each T²  
value was decomposed for each one of the signals to 
detect, which was the variable which had contributed 
most strongly to the state out of rank of process, the 
unconditional terms was calculated following Eq. (6), 
and the conditional terms were calculated following 
Eq. (7), the decomposition is listed in Table 4. It shows 
that the variables (2 and 3) Superheated steam in Boiler 
1 (Tn/h) and Superheated steam in Boiler 2 (Tn/h), 
caused the state out of rank of process. 
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Table 4. MYT Decomposition. 
No. Observation No. Variable Variable 

5 2 Superheated steam in Boiler 1 
(Tn/h) 

 3 Superheated steam in Boiler 2 
(Tn/h) 

 
The variables related to superheated steam 

production in both boilers serve as key indicators of the 
system's thermal and energy performance. These 
variables are fundamentally connected to the 
equilibrium between energy demand and the system’s 
capacity to fulfill that demand under normal 
operational conditions. 

Simultaneous deviations in both variables often 
point to a potential interdependence or imbalance in 
the coordinated operation of the boilers, which can 
compromise the system's ability to maintain stable 
performance. Superheated steam production plays a 
critical role in energy transfer to the turbine system, 
and any deviation from established production limits 
can lead to efficiency losses and destabilization of the 
overall system. 

The proposed method proved effective in detecting 
observations that deviated from the normal process 
conditions. For the ship’s engineers, identifying that 
the process was out of rank provided an early warning, 
enabling them to remain vigilant and prepared to 
address significant changes in the system. 

Additionally, the application of MYT 
decomposition facilitated the identification of the 
specific variables causing the deviation—namely, 
superheated steam production in Boiler 1 (Tn/h) and 
Boiler 2 (Tn/h). This insight was instrumental for the 
ship’s engineers, as it allowed them to focus on 
correcting the deviations and restoring the process to 
its normal operating conditions. 

Traditional monitoring methods operate on a 
fundamentally different principle: they rely on 
univariate thresholds and detect anomalies only after a 
specific variable exceeds its acceptable range. In such 
reactive systems, no early warning is available, and the 
failure must occur—or be imminent—before any 
corrective action can be triggered. Conversely, the 
methodology proposed here identifies multivariate 
deviations before any individual variable breaches its 
limits, enabling earlier detection and diagnosis. This 
predictive capability underscores the utility and 
effectiveness of the MYT-enhanced Hotelling’s T² 
approach, offering significant advantages over 
conventional techniques in managing complex 
systems. 

4 CONCLUSIONS 

This study has demonstrated the effectiveness of 
integrating MYT decomposition with Hotelling T² 
control charts for advanced monitoring of naval 
systems. This methodology not only enabled the early 
detection of deviations in the operational performance 
of the boiler-turbine system of a 284-meter LNG tanker 
but also precisely identified the variables responsible 
for these anomalies, providing a robust framework for 
predictive maintenance. The combination of advanced 
statistical tools and multivariable decomposition 

techniques offers significant advantages for managing 
complex systems, including early anomaly detection, 
which allows deviations to be identified before they 
manifest as critical failures, providing sufficient time to 
implement corrective actions. Moreover, the MYT 
decomposition highlighted the variables with the 
greatest impact on the out-of-range state, facilitating a 
more focused and efficient diagnosis and enabling 
resource optimization by prioritizing maintenance 
interventions based on the responsible variables, 
thereby reducing the need for generalized inspections 
and minimizing operational costs. 

The ability to identify specific deviations in key 
variables, such as superheated steam production in 
both boilers, demonstrates the practical value of this 
approach in the maritime industry, underscoring the 
importance of integrating advanced monitoring tools 
into maintenance protocols, especially in systems 
where operating conditions are dynamic and failures 
can have significant consequences. Additionally, the 
proposed approach supports the transition toward 
more proactive, data-driven maintenance strategies, 
aligning with Industry 4.0 objectives and promoting 
greater reliability and operational efficiency in ships. 

Advancing the current state of knowledge, this 
work operationalizes an integrated diagnostic 
approach that not only detects anomalies but also 
explains them in a multivariate context. The 
application of MYT decomposition within the 
maritime domain—particularly in combination with 
Hotelling’s T² control charts and using real onboard 
datasets—has not been previously demonstrated in 
such a comprehensive manner. By bridging the 
interpretability gap in multivariable monitoring, this 
contribution offers a methodological innovation with 
immediate applicability for condition-based 
maintenance strategies, reinforcing the novelty and 
practical value of the proposed framework in 
enhancing reliability and operational intelligence in the 
maritime sector. 

This work validates the utility of MYT 
decomposition as a complementary tool to traditional 
techniques in multivariable monitoring of maritime 
systems. The findings highlight its potential to 
optimize decision-making, reduce operational costs, 
and enhance the reliability of vessels in a highly 
competitive environment. In conclusion, the proposed 
methodology represents a significant advancement in 
monitoring and predictive maintenance strategies for 
naval systems. Its ability to manage the complexity of 
multivariable data and provide accurate diagnostics 
positions it as a key tool for improving operational 
efficiency in the modern maritime industry. 
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