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Abstract

Temporal compound events (TCEs), such as the consecutive occurrence of two complementary extremes of the hydro-
logical spectrum (floods and droughts), exhibit a volatile hydrological cycle that exacerbate the challenges associated with
water resources management. This study makes use of bias-corrected climate models output from three modeling experi-
ments (CMIP6, CORDEX, and CORDEX-CORE), to examine moderate to extreme wet and dry events and their temporal
compounding over the Upper Jhelum Basin (UJB), under low, medium, and high emission scenarios for two future periods
(2040-2059 and 2080-2099). Standardized Precipitation Evapotranspiration Index (SPEI) is used to quantify the meteoro-
logical wet and dry events that are the main driver of the hydrologic floods and droughts. The two types of TCEs considered
in the current study are wet-to-dry (W-to-D) events and dry-to-wet (D-to-W) events in the adjacent month. Results indicate
that (1) under warming conditions, wet and dry events are expected to become more frequent and severe whereas duration of
the events exhibits distinct change signals depending on the specific location. (2) The basin is more prone to D-to-W TCEs
dominated in the southwest of the region, which was not found to be hotspot historically neither for dry nor for wet extreme
events. (3) CORDEX and CORDEX-CORE ensembles show varying climate change signals with no specific spatial pattern
whereas the CMIP6 ensemble shows stronger change signals and divides the region into two distinct parts, i.e., northeast
and southwest.
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Introduction

Climate change is predicted to accelerate the global
hydrological cycle and cause extreme events (floods and
droughts) with increasing frequency and severity, pushing
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the limits of society’s capacity to forecast and adapt to
these extreme events. It is expected that more severe
droughts, larger precipitation events, and more frequent
anomalous wet and dry spells will become the “new nor-
mal” for many ecosystems (Lewis et al. 2017; Senevi-
ratne et al. 2021). Further compounding (concurrent or
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consecutive occurrences of multiple weather and climate
drivers) of these extreme events across space or/and time
may provoke greater impacts than what would have been
caused by a single event, even when the individual con-
tributing variables are not extreme (Zscheischler et al.
2020). These extreme events have put a strain on society’s
ability to predict and adapt effectively to these extreme
phenomena.

The most important and commonly studied compound
events in hydro-climatology are those associated with pre-
cipitation and temperature. The occurrence of compound
events can be attributed to various factors, including exter-
nal influences (e.g., changes in regional warming), allied
strengthening of multiple extremes (e.g., land surface feed-
back), or conditional dependence (e.g., interplay between
antecedent soil moisture levels and preceding precipitation
in triggering floods and droughts).

The definition and classification of compound events
have garnered notable consideration over the past few dec-
ades. To aid the framing and development of new research
on compound events, Zscheischler et al. (2020) proposed
four distinct classes of compound events and their differ-
ent physical characteristics (modulators, drivers, hazards,
and impacts) that form a compound event. Such events can
occur in multiple ways due to the complex nature of the cli-
mate system, for example, “Preconditioned” events, where
pre-existing weather or climate conditions can intensify the
impact of hazard; “Multivariate” events, where the simul-
taneous occurrences of multiple drivers and/or hazards at
the same location result in greater impacts; “Temporal com-
pound” events, where impacts are due to the consecutive
occurrences of multiple hazards within a particular geo-
graphical region, and “Spatially compound” events, where
synchronized occurrences of individual hazards across mul-
tiple regions lead to an impact.

Compound events drivers and their additive impacts on
regional and global scales have been the subject of several
studies. For instance, the combinations of quasi-synchronous
extremes across multiple regions can lead to amplifying
effects on connected global systems (Raymond et al. 2020).
A severe drought that occurred concurrently in Asia, Bra-
zil, and Africa during 1876-1878 resulted in synchronous
crop failures in these regions, posing a threat to food secu-
rity (Singh et al. 2018). Other studies have examined the
increased probability of concurrent heatwaves and regional
droughts with changes in large-scale circulation modes
under warming scenarios (Kornhuber et al. 2020; Singh
et al. 2022) and the following synchronized crop failures
across major breadbasket regions of the world (Anderson
et al. 2019; Gaupp et al. 2020).

Temporal compound events (TCEs) can be of the same
type, such as multiple consecutive heatwaves (Baldwin
et al. 2019), droughts (Bastos et al. 2021; van der Wiel et al.
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2023), or consecutive heavy precipitation events (Fish et al.
2022; Kopp et al. 2021), or different hazards, for example,
simultaneous occurrence of heavy precipitation and wind
extremes (Messmer and Simmonds 2021; Owen et al. 2021),
compound flooding in coastal areas as a result of simultane-
ous occurrence of storm surge and heavy precipitation (Rid-
der et al. 2018; Zellou and Rahali 2019), a flood event at the
end of heatwave or drought (He and Sheffield 2020; Zhang
et al. 2021), simultaneous drought and heatwave (Sutanto
et al. 2020; Zscheischler and Fischer 2020), rain-on-snow
flood events due to concurrent occurrence of heavy precipi-
tation and snowmelt (Li et al. 2019; Lépez-Moreno et al.
2021), or epidemics followed by floods (Donges et al. 2016).

A quantification of the TCEs is imperative for assess-
ing the risk of associated potential impacts, both in past
and future climate scenarios. A number of above studies
have focused primarily on the concurrent occurrence of
compound events, but a limited number have examined the
consecutive occurrence of contrasting hydrological extremes
(i.e., wet and dry extreme events). It has been observed
that an increase in floods is normally accompanied by a
decrease in droughts due to more rainfall. Conversely, a
reduced rainfall is typically associated with an increase in
droughts (Gudmundsson et al. 2021). However, some models
project that both the frequency and severity of hydrologi-
cal extremes may increase simultaneously, a phenomenon
known as acceleration of the terrestrial component of the
hydrological cycle (Kreibich et al. 2022).

In this context, we have specifically considered TCEs
for a situation where two contrasting extremes, namely wet
and dry events, occur consecutively at the same location (as
a subset of the broader compound events definition). The
consecutive occurrence of these extreme events can exac-
erbate adverse impacts resulting from individual hazards
alone, as recently witnessed in Pakistan, 2022 (Wang et al.
2023), Queensland-Australia, 2010 (Beard et al. 2011), UK,
2012 (Parry et al. 2013), India, 2016 (Roxy et al. 2017),
and Japan, 2018 (Wang et al. 2019). The effects of com-
pound wet and dry extreme events have also been studied
under current and warming climate conditions. For instance,
Visser-Quinn et al. (2019) and Zhao et al. (2020) identi-
fied geographical hotspots for spatio-temporally concurrent
floods and droughts in the UK and Hanjiang River Basin,
China, respectively. Other examples include the analysis
of rapid transitions of wet-dry extreme events in mainland
China (Qiao et al. 2022), in Upper Jhelum Basin-Pakistan
(Ansari and Grossi 2022), and in southeast Australia (Hol-
gate et al. 2023).

In general, the impacts of temporal compounding of wet
and dry events seem to be mostly related to rapid changes in
vulnerability. A dry event may cause increases in the vulner-
ability of people, crops, or livestock, which causes impacts
of a subsequent or co-occurring wet event to be worse than
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from a wet event that is not preceded by a dry event. This
depends on initial vulnerability and the speed of commu-
nity recovery, as impacts and change in vulnerability vary
across different groups. In the agriculture and livestock sec-
tor, the additive impacts of such temporal compound events,
especially in low- and lower-middle-income countries, often
worsen outcomes. For example, droughts can weaken live-
stock, increasing vulnerability to subsequent floods, as seen
in Queensland in 2019 when many cattle died (Cowan et al.
2022). Vegetation and crop yield are also affected by con-
secutive dry-to-wet events, impacting crop size and yield
based on soil and growth stages (Gao et al. 2019; McCarthy
et al. 2021). Furthermore, these events degrade water qual-
ity and foster conditions for disease. Pollutants accumulated
during dry periods are washed into rivers during floods, rais-
ing phosphorus levels and potentially causing fish mortality
and water eutrophication (Laudon et al. 2005; Mishra et al.
2021; Wurtsbaugh et al. 2019).

It is therefore important to analyze the temporal com-
pounding of extreme wet and dry events in a changing envi-
ronment to comprehensively assess their consequences on
water-dependent sectors and develop effective adaptation
strategies, including the development of improved reservoir
operation protocols and agricultural planning.

The present study builds upon Ansari et al. (2023), which
shows a comprehensive present-climate evaluation of raw
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and bias-corrected climate model simulations regarding the
temporal aspects and multivariate dependency of essential
climatic variables, and main characteristics of moderate to
extreme wet and dry events in the UJB. The UJB is located
at the foothills of Western Himalaya, one of the mountain-
ous ranges most affected by climate change. The region has
already witnessed an increase in extreme hydro-meteoro-
logical events in the last few decades (Pachauri et al. 2014),
and hence, the projection of these events cannot be left apart
in the development of the climate change adaptation strat-
egy for the region. Here, we examine the projected changes
in moderate to extreme wet and dry events and their com-
pounding in temporal dimension over UJB using climate
models output from three modeling experiments (CMIP6,
CORDEX, and CORDEX-CORE), bias corrected with
three different BC methods under low, medium, and high
emission scenarios for two future periods (2040-2059 and
2080-2099). Specifically, the present study aims to examine:

— The projected changes in the characteristics of wet and
dry events (i.e., duration, severity, and frequency) and in
the probability of TCE:s.

— The uncertainty associated with different bias correction
(BC) methods and approaches in the climate change sig-
nal of such events characteristics and TCEs.
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Fig. 1 Geographical location and topography of the Upper Jhelum basin, along with location of sub-basins (black polygons), Mangla dam (filled
green triangle), glaciers (filled white polygons with blue boundaries), and the line of control (yellow highlighted dashed line)
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Characteristics of the study area

The proposed framework is implemented in the source
region of the Jhelum River, known as the Upper Jhelum
Basin (UJB), which is geographically located between lati-
tudes 33°00' N and 35°12' N, and longitudes 73°07' E and
75°40" E (Fig. 1). The basin drains the foothills of the west-
ern Himalaya and Pir-Panjal mountains and feeds the sec-
ond largest reservoir of Pakistan, the “Mangla Reservoir.”
The landscape of the basin is characterized by extreme
topographical variations, 223-6201 m above sea level
(masl) within a 33,467 km? expanse. Approximately 73%
(24,431 km?) of the UJB area lies below its mean elevation
(2353 masl). Approximately 0.75% (252 km?) of the basin is
covered by perennial glaciers in the north of the basin (Con-
sortium and Inventory 2017). Grass, forest, and agriculture
are the three major land use—land cover types dominating
over high-, mid-, and low-elevation areas respectively. Per-
manent snow and ice cover a negligible area in the northwest
of the basin, whereas a small patch of barren land exists over
the densely grassy mountains of the western Himalaya and
Pir Panjal. The urban settlement covers a small portion of
the basin, concentrated in the Kashmir valley (Ansari et al.
2024).

The hydro-climatology in the UJB is characterized by
two distinct precipitation regimes: Indian Summer Monsoon
and westerlies. The effect and contribution of both precipita-
tion regimes vary spatially, as well as temporally (Ul Has-
son et al. 2016). The monsoon precipitation system brings
precipitation as rain and is dominant in southern parts of
the basin. The strength of the Monsoon system decreases
progressively northward towards the foothills of the West-
ern Himalayas, where the influence of westerlies is more
pronounced (Archer and Fowler 2008) which brings pre-
cipitation as snow. The basin average annual precipitation
and temperature are about 1150 mm year™! and 13.2 °C,
respectively (Ansari and Grossi 2022).

Data and methods

Definition of extreme wet-dry events and their
characteristics

A multivariate drought index named SPEI (Vicente-Serrano
et al. 2010) is utilized to define wet and dry events. The SPEI
is computed using a 30-day accumulation period of climatic
water balance (precipitation minus potential evapotranspira-
tion) at a daily time step. The potential evapotranspiration is
calculated using the Hargreaves-Samani method (Hargreaves
and Samani 1985) based on daily maximum and minimum
temperature. The extraterrestrial radiation required in this
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method is computed based on the latitude of each grid cell
and the day of the year. For detailed procedure and equations
for the SPEI calculations, readers are encouraged to refer
to the studies by Vicente-Serrano et al. (2010) and Ansari
et al. (2023).

Monthly SPEI series (aggregation of daily SPEI series)
is used to identify moderate to extreme wet and dry events
as positive (SPEI > 1) and negative (SPEI < — 1) values that
persist for a minimum of 2 months consecutively, respec-
tively. These choices about accumulation period, monthly
time series, and minimum length of events are motivated by
our focus on floods and short-term droughts. Such events are
not clearly associated with long-term SPEI due to the aver-
aging effect of accumulated precipitation and temperature
over extended periods, which can overshadow the signals
of extreme precipitation and temperature events occurring
over shorter durations. Our approach allows for a more accu-
rate identification of wet and dry events, which serve as the
primary drivers of hydrological floods and droughts. The
thresholds used to define these extreme events are commonly
employed in previous research works (Svoboda et al. 2012).
Although this SPEI threshold (+ 1) is used to define moder-
ate wet and dry events, which may not have extreme impacts
when they occur individually, their combined impact can
be more severe than the sum of their individual effects. For
instance, a dry event can increase the vulnerability of people,
crops, or livestock, making the consequences of a subse-
quent or co-occurring wet event worse than if the wet event
had occurred on its own. Additionally, this threshold cap-
tures events ranging from moderate to severe and extreme,
ensuring sufficient sampling of events during the study
period for further analysis. Duration, severity, and absolute
frequency are used to characterize these wet and dry events.
The duration of wet (WD) and dry (DD) events is defined as
the length of time (months) in which the SPEI value is con-
secutively above 1 or below — 1, respectively. The severity of
wet (WS) and dry (DS) events is the cumulative value of the
SPEI during the whole duration of the event. The absolute
frequency of wet (WF) and dry (DF) events is the total num-
ber of occurrences in a given time frame. As both duration
and severity are calculated for each event, the median value
across all the identified events is considered a single index.

Temporally compound events and event coincidence
analysis

TCEs, which are defined as consecutive occurrence of two
contrary powerful states (here wet and dry events) in the
adjacent months, include D-to-W events and W-to-D events.
Hence, the minimum duration of a TCE is 2 months. D-to-W
TCE is defined as a dry event (SPEI; < — 1) suddenly termi-
nated by a wet event (SPEI,;, ; > 1) in the following month.
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On the other hand, a W-to-D TCE is defined as a wet event
(SPEIL > 1) abruptly changes into a dry event (SPEI,, ; < —1)
in the subsequent month.

To investigate the statistical interdependence of wet-dry
events and their significance, the present study employs
Event Coincidence Analysis (ECA, Donges et al. (2016)).
ECA is a novel statistical method that enables the characteri-
zation of lagged and time-varying relationships between two
events by using a time lag parameter (t) within a temporal
tolerance window (AT). The trigger coincidence rate (r) for
both types of TCEs is calculated as:

Ny [Ny
P=W(AT, 1) = NLD ,Z:‘ G l; 1[0,AT]<(IIW -7) - tjD>]

’ Ny N,
M=PAT )= o ) 0| 1[0”(([? —7) - th)
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where O is the Heaviside function

1x>0
@(x):={0x<0

and 1jy o7y(+) is the indicator function of the specified time
window [0,AT]:

[ lifxe[0,AT]
lpan @) := { 0if x ¢ [0, AT]

Ny and Ny, denote the total number of wet and dry events
with their timing of the event tl.W and tl.D respectively. Here,
we choose 7=1, as this represents the rapid transition of
two contrasting events in adjacent months. In addition, an
analytical significance test (p-value < 0.05) is carried out to
evaluate the robustness of the statistical relationship between
wet and dry events with the null hypothesis that the consecu-
tive occurrence of wet and dry events is randomly distributed
as the result of Poisson processes.

Climate models output and bias correction

In the present study, we use all available Regional Climate
Models (RCM) output of the CORDEX and CORDEX-
CORE initiative for the south Asian domain (denoted as
WAS) under all available emission scenarios (i.e., represent-
ative concentration pathways (RCPs)). These simulations
were produced by dynamically downscaling the CMIP5
Global Climate Models (GCMs), with a horizontal spatial
resolution of 0.44° and 0.22° on rotated grids (approximately
50 km and 25 km), respectively (Giorgi et al. 2009; Jones
2010; Teichmann et al. 2021). Additionally, 2 GCMs of the
CMIP6 experiment are also considered that are available at a
similar resolution to the CORDEX simulations (Eyring et al.

2015). The emission scenarios used in the CMIP6 experi-
ment are shared socio-economic pathways (SSPs) which
are different from CORDEX and CORDEX-CORE RCMs,
simulations as these RCM simulations are driven by CMIP5
models. RCPs and SSPs provide different scenarios includ-
ing different evolutions of greenhouse gas (GHG) emissions,
climate policies, and socio-economic development. While
RCPs focus purely on radiative forcing and GHG emissions,
SSPs provide a more holistic view of possible futures, incor-
porating socio-economic conditions like population growth,
economic development, and the effectiveness of climate pol-
icies. Although there are some differences between SSPs
and RCPs, the chosen emission scenarios approximate the
same level of aggregated radiative forcing (Tebaldi et al.
2021). The emission scenarios (RCP2.6/SSP126, RCP4.5/
SSP545, and RCP8.5/SSP585) range from a mitigation sce-
nario involving rapid and substantial reductions in global
greenhouse gas emissions, with global temperature rise
limited to approximately 1.5-2 °C (RCP2.6/SSP126), to a
high emission scenario where emissions continue to grow,
leading to a temperature increase exceeding 4 °C (RCP8.5/
SSP585) by the end of the century (O’Neill et al. 2014; Van
Vuuren et al. 2011). In total, the present study utilized 28
climate model simulations. Figure 2 presents the climate
models and scenarios employed in this study. For detailed
description of the used climate models, their spatial resolu-
tion, contributing modeling center, and driving GCM can be
found in Ansari et al. (2023).

Climate models are the main tool to project future cli-
mate. Nevertheless, these models are often subject to sys-
tematic biases resulting from inaccurate representation of
physical processes. BC is typically applied as a post pro-
cessing step to overcome this issue, especially for thresh-
old-based derived indices. The present study employed
two univariate (Empirical Quantile Mapping (EQM) and
Quantile Delta Mapping (QDM)) and one multivariate
(Multivariate Bias Correction with N-dimensional prob-
ability density function transform (MBCn)) BC meth-
ods to reduce the biases in climate model simulations,
using W5ES as reference dataset. The W5ES is a global
dataset with spatial resolution of 0.5° at daily time step
for a period of 1979-2016. This dataset was developed
by combining the WATer and global CHange (WATCH)
Forcing Data methodology applied to ERAS reanalysis
data (WFDES) v1.0 (Cucchi et al. 2020; Weedon et al.
2014) over land with ERAS5 (Hersbach et al. 2020) over
the ocean. EQM is an empirical method, in which a trans-
fer function is calibrated on the training period to align
all quantiles of the model empirical distribution with the
corresponding reference distribution (Déqué 2007). Out-
of-sample values are adjusted through constant extrapola-
tion. Additionally, the adjusted wet-day threshold and fre-
quency adaptation techniques suggested by Theme8l et al.
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Fig.2 Climate model simulations and emission scenarios used in the present study

(2012) and Wilcke et al. (2013) are used to adjust the
model’s overestimation of the frequency of wet and dry
days, respectively. QDM is a trend-preserving empirical
method, consists of three steps: (i) trends removal from
each quantile of the model projections, (ii) application
of empirical quantile mapping to the detrended series,
and (iii) addition of the removed projected future trends
to the bias-corrected quantiles (Cannon et al. 2015). The
MBCn method not only adjusts the individual univariate
features of each variable but also their multivariate inter-
dependence simultaneously. It uses randomly generated
orthogonal matrices to partially decorrelate the climate
variables prior to QDM application on each of variables
separately to adjust the marginal distributions. The pro-
cess is repeated iteratively until the model data distribu-
tion converges to that of the reference data distribution
(Cannon 2018). This convergence is verified on the basis
of the energy distance score (Rizzo and Székely 2016).
The univariate BC methods are employed through two dif-
ferent approaches: (1) the component-wise approach (CW), in
which each climatic variable involved in SPEI calculation is
individually subjected to the BC, and (2) the direct approach
(D), in which the uncorrected SPEI is directly subjected to
BC. All BC methods are calibrated in the historical period
(1986-2005) and applied in two future periods (2040-2059
and 2080-2099). All considered BC methods presume that
the biases present in climate model simulations are constant
over time and apply the same calibrated transfer function to
the projected climate, which could result in modification of
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the original model change signals for non-trend-preserving
BC methods (here EQM). The selection of these BC methods
is based on Ansari et al. (2023) which evaluate the perfor-
mance of various BC methods (uni- and multivariate) and
BC approaches (direct and component-wise) in terms of uni-
variate indices related to temporal aspects of the essential
climate variables used for SPEI calculation, their multivariate
dependency, and biases in the SPEI-derived indices during
the historical period (1986-2005).

Results

Future changes in Standardized Precipitation
Evapotranspiration Index indices

The spatial distribution of climate change signals of SPEI
indices relative to the baseline period (1986-2005), for
the multi-model raw and bias-corrected ensembles, sepa-
rately for CMIP6 (2 simulations), CORDEX (17 simula-
tions), and CORDEX-CORE (9 simulations) are shown in
Figs. S1-S6. The climate change signals are calculated for
the near (2040-2059) and far (2080-2099) future periods
under low, medium, and high emission scenarios. Results
show contrasting climate change signals for both BC
approaches with the direct correction introducing a larger
modification of the original (raw) change signals espe-
cially for severity and frequency indices. This modification
by the direct approach is usually towards positive change
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signals. Further, given a particular approach, BC methods
present similar climate change signals regardless of SPEI
indices, emission scenarios, and time period.

Regarding climate model experiments, CORDEX and
CORDEX-CORE (WAS44 and WAS22, respectively)
ensemble present opposite sign climate change signals for
duration indices (duration of dry and wet events) with no
specific spatial pattern whereas the change signals from
CMIP6 ensemble divide the region into two distinct parts,
i.e., northeast (which host foothills of western Himalaya)
and southwest (relatively plain region with dominance of
monsoon precipitation system). These results regarding
the spatial patterns hold for most of the SPEI indices,
emission scenarios, and time segments. For instance, dry
event indices (i.e., duration, severity, and frequency of dry
events) and frequency of wet events show negative and
positive climate change signals in northeast and southwest
regions, respectively, under high emission scenarios. Dif-
ferences between the different ensembles also exist for
the spatial distribution of the changes in severity indices
(severity of dry and wet events). For instance, under the
high emission scenarios, the CMIP6 ensemble projected
an increase in the severity of wet events over most parts
of the basin and mixed signals are found for the severity
of dry events. Conversely, WAS44 and WAS22 ensembles
projected an increase in the severity of dry events over
the whole basin and mixed change signals for wet ones.

The climate change signals for regionally averaged SPEI
indices for all individual climate simulations are summa-
rized in Figs. 3 and 4. Overall, climate models from all con-
sidered experiments present larger spread for wet indices
compared to dry indices. The spread is usually determined
by WAS-44 climate models for most of the SPEI indices
under considered BC methods, time segments, and emis-
sion scenarios which could be due to the largest number
of simulations. However, there are exceptions for CMIP6
and WAS-22, especially for the duration and severity indi-
ces (particularly for the duration and severity of dry events,
DD and DS) under different BC methods. The reduction in
model spread is evident after BC under the component-wise
approach and the multivariate method, whereas the modifi-
cation of the signals by the direct approach leads to a slight
increase in climate model spread. These findings are consist-
ent with all considered time periods and emission scenarios.

Temporal compound events

Next, we examine the spatial distribution of probability of
temporally compound events (D-to-W and W-to-D, see the
“Data and methods” section) and their statistical significance
for the historical (according to W5ES) and projected future
climate, for the raw and bias-corrected climate models out-
put for the near (2040-2059) and far (2080-2099) future

periods under low (RCP26/SSP1-2.6), moderate (RCP45/
SSP2-4.5), and high (RCP85/SSP5-8.5) emission scenarios.

Figure 5 shows that the probability of D-to-W TCEs
is particularly high (reaching up to 60%) in southwest of
the basin, a monsoon-dominated region, and statistically
significant over 23.33% of the domain (with p-value less
than 0.05). On the other hand, non-statistically signifi-
cant results (at the 5% significance level) are observed for
W-to-D TCEs, without any discernible pattern of occur-
rence during the historical period (Fig. S7). Interestingly,
the southwest of the basin, which is not a hotspot for either
dry or wet events separately (Ansari et al. 2023), exhibits
a high probability (up to 60%) of D-to-W TCEs during the
historical period, i.e., of enhanced compound events. The
northeast part of the basin, which host foothills of west-
ern Himalayas (under westerlies precipitation pattern),
is found to be least effected by TCEs despite its higher
susceptibility towards wet and dry moderate to extreme
events, characterized by higher severity and duration
(Ansari et al. 2023).

Regarding future projections, the spatial patterns of
projected probability of TCEs are consistent with those
of the historical period, revealing the southwest part of the
basin as a hotspot for D-to-W TCEs. However, there are
some discrepancies among the climate model ensembles.
CORDEX ensembles (WAS-44 and WAS-22) indicate a
slight decrease in the probability of D-to-W TCEs by the
end of the century particularly under the lowest emission
scenario, whereas the CMIP6 ensemble shows an increase
in probability of D-to-W TCEs by the end of century under
all emission scenarios and time periods. Further, the prob-
abilities of D-to-W TCE:s are found to be statistically sig-
nificant with medium to high models’ agreement (i.e.,
number of models agreeing on the statistical significance
of the TCEs).

The three raw climate model ensembles show decreasing
probabilities of D-to-W TCEs relative to the baseline period
under all emission scenarios and time segments. This is
especially true for CORDEX and CORDEX-CORE ensem-
bles with also lower models’ agreement in terms of statis-
tically significant probabilities. Conversely, the southwest
of the basin is a hotspot for the D-to-W TCEs for the raw
CMIP6 ensemble with medium models’ agreement. Overall,
none of the BC methods under both approaches preserves
the raw climate change signals except for CMIP6 ensemble
which show a slight preservation of raw climate change sig-
nals in terms of spatial patterns. In general, BC modifies the
probabilities of the raw models by increasing the probability
of D-to-W TCEs and model agreement, for both future peri-
ods and all emission scenarios. Similar to SPEI indices, the
BC methods under the direct approach (i.e., D-EQM and
D-QDM) present similar climate change signals whereas the
climate change signals projected by MBCn are somewhat
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Fig.5 Probability of temporal compound dry-to-wet events (%), in
the historical reference dataset (19862005, first row, left), along-
side the digital elevation model of the area in meters above sea
level (first row, right) and future projected probabilities for the near
future (2040-2059) and far future (2080-2099) under low (RCP2.6/
SSP126), medium (RCP4.5/SSP545), and high (RCPS8.5/SSP585)
emission scenarios. These projections are based on the multi-model
ensemble mean raw ensembles (second row) and bias-corrected
ensembles, for two bias correction approaches and three bias cor-
rection methods (rest of the rows). In the projections, the different
shapes denote the percentage of ensemble members with statistically
significant probability at the 5% level. The highlighted grid boxes in
the first row are utilized for further analyses in Fig. 6

Discussion and conclusions

This study examines future climate projections for extreme
wet-dry events, as well as their temporal compounding using
climate models output from three modeling experiments
(CMIP6, CORDEX, and CORDEX-CORE) bias corrected
by two univariate BC methods (i.e., EQM and QDM) under
two bias correction approaches (component-wise-CW and
direct-D) and a multivariate BC method (N-dimensions-
MBCn). The wet and dry events are characterized using
SPEI-derived indices (namely duration, severity, and fre-
quency) and climate change signals are estimated for the
near future (2040-2059) and far future (2080-2099) with
respect to the baseline period (1986-2005). The present
study also focuses on temporal compounding of these
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contrasting events, both in historical future climate contexts,
as the consecutive occurrence of wet and dry events chal-
lenges water resources management and can be particularly
impactful.

Future projections of the individual wet and dry extreme
events (in terms of duration, severity, frequency) show
varying climate change signals for all SPEI indices under
all considered BC methods, BC approaches, emission sce-
narios, and time segments. Specifically, the frequency and
severity of wet and dry events are projected to increase,
which is expected under warming conditions and was
reported by previous literature. For instance, Panday et al.
(2015) and Sanjay et al. (2017) reported that there will be
a rise in the frequency and intensity of extreme rainfall
events across the Himalayan—Tibetan Plateau mountains
during the twenty-first century, especially during the mon-
soon season. Another study indicates that droughts are
expected to be more frequent, severe, and widespread over
the mainland India during the latter half of the twenty-first
century, while increase in flood events are projected for the
major Himalayan River basins such as Indus, Ganga, and
Brahmaputra (Mujumdar et al. 2020).

Regarding TCEs, the observed probabilities of dry-to-
wet (D-to-W) and wet-to-dry (W-to-D) TCEs are found to
be high up to 60% and 30%, respectively. The probability
of D-to-W TCEs is projected to increase from 60 to 80%
(for specific grid boxes and model simulations) whereas
the probability of W-to-D TCEs approximately remains
unchanged under warming conditions. This low to moder-
ate increment in the D-to-W TCEs under anticipated future
conditions is in agreement with Gu et al. (2022), who found
a clearer increment in the fraction of TCEs (number of TCEs
to total flood events) in the tropical regions, followed by arid,
temperate, cold regions, and polar zone (note that low- and
high-altitude areas of UJB lie in the temperate and polar cli-
mate regions, respectively). Conversely, Zhang et al.( 2021)
found a decrease in the probability of such TCEs in the trop-
ics albeit with increased frequency of heavy rainfall events.
A global study conducted by Zhang et al. (2021) highlighted
the spatial hotspots for the compound drought and extreme
rainfall events under a warming world. According to that
study, 66% of CMIPS models showed a decreased future
probability of such TCEs in the second half of the century
(2051-2100) over the southern Asia (SAS) under the worst-
case scenario, i.e., RCP8.5. Another global study found
a historical (1950-2016) probability of 21.6% and 20.7%
for drought-pluvial seesaw with 3-month lag period over
SAS for the boreal spring—summer and fall-winter, respec-
tively (He and Sheffield 2020). The differences among these
studies could be due to the varying methodological frame-
work, such as the threshold to define wet and dry extreme
events (e.g., low vs. high), the choice of the index (e.g.,
variables involved in the calculation of the index and their
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Fig. 6 Probability of temporal compound dry-to-wet events (%), spa-
tially averaged over ten grid boxes highlighted in Fig. 5, for the near
future (2040-2059) and far future (2080-2099) under low (RCP2.6/
SSP126), medium (RCP4.5/SSP545), and high (RCP8.5/SSP585)
emission scenarios. The probabilities are calculated from the raw
(first box in each panel) and bias corrected climate model output
(remaining boxes), with individual model results depicted in colored

interdependency), the lag time (which indicates the rapid-
ness of event alteration), and the temporal window interval
(which indicates the uncertain onset of extreme events). Due
to the distinct methodological frameworks employed in each
study, which are tailored to specific sectors and objectives,
direct comparisons between the outcomes of this research
and those of previous studies cannot be made. Nonetheless,
our findings are consistent with the overall conclusions of
these earlier studies, demonstrating that dry events are fre-
quently associated with a rise in subsequent extreme wet
events.

In terms of spatial extent, in the present work, about 23%
of the total study region has experienced statistically signifi-
cant (p <0.05) probability of D-to-W TCEs during the his-
torical period and it is projected to increase for most of the
considered datasets, emission scenarios, and time segments
after BC. Although D-to-W TCEs affect the small propor-
tion of the basin, we identify the spatial hotspots, located in
the southwest of the basin where precipitation is dominated
by the monsoon system, which was not found to be a hot-
spot neither for dry nor for wet events separately (Ansari
et al. 2023). Although the seasonality of TCE:s is beyond the
scope of the current study, it is more likely that the D-to-W
TCEs will occur during summer season because the hotspot

CMIP6 ® CORDEX e

MBCn
D-EQM
D-QDM

CW-QDM | _ _______T

CORDEX-CORE

dots (CMIP6 in red, CORDEX in green, CORDEX-CORE in blue)
within each box. Each box indicates the interquartile model spread
and whiskers expand to the full range of probability of temporal com-
pound event. Red horizontal lines depict the probability of temporal
compound events in the baseline period (1986-2005) according to the
observations

region usually receives heavy precipitation during summer
season under monsoon system (Ansari et al. 2022; Archer
and Fowler 2008; Azmat 2015; Mahmood 2013). Depending
on the BC method, datasets, emission scenarios, and time
segments, a negligible to large increase in most of the (indi-
vidual) wet and dry events indices is expected in this hotspot
in the anticipated future. Particularly, the CMIP6 ensemble
presents strong climate change signals (either positive or
negative) under the strong emission scenario with a clear
pattern of occurrence and the southwest of the basin stands
out as a hotspot for the more frequent wet and dry extreme
events with an increase in frequency of wet and dry events
up to eight events relative to the baseline period, respec-
tively. In contrast, the northeast part of the basin which hosts
foothills of western Himalayas (under westerlies precipita-
tion pattern) is found to be less affected by TCEs despite its
higher susceptibility towards wet and dry events with higher
severity and duration during the historical period (Ansari
et al. 2023). The increase in TCEs may also become appar-
ent in areas with projected decline in the extreme dry and/or
wet events (Gu et al. 2022; Zhang et al. 2021). For instance,
Zhang et al. (2021) found that 27 —41% of the global land
area in Northern China and Southern Africa is expected
to encounter less drought events but experience high
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probabilities of successive drought-flood events. In contrast,
4 —13% of the world’s landmass, including regions such as
Southern Africa, Australia, Northern Mexico, southwestern
US, and Southwest coast of South America, are expected to
suffer from higher probability of droughts followed by floods
but a lower frequency of heavy rainfall, which shows that
heavy rainfall is likely to be more frequent at the drought
termination, despite a decrease in the overall frequency of
heavy rainfall events.

In contrast to D-to-W TCEs, the W-to-D TCEs are found
to be less apparent without specific pattern of occurrence
in the historical period as well as in future climate condi-
tions, in line with previous studies (e.g., Qiao et al. (2022)
in China).

Explaining the patterns of TCEs from a physical perspec-
tive is challenging due to the inherent complexity of indi-
vidual types of events. In general, these events are usually
a consequence of the intricate interplay between the local
climate system, variability in large-scale circulation patterns,
and even climate change. However, different sequences are
driven by different physical processes and may exhibit con-
trasting responses to global warming. Specifically, D-to-
W TCEs are usually associated with the disturbed energy
budget and can be attributed to the impacts of global warm-
ing. As the climate continues to warm, increased evapotran-
spiration rates resulting from higher temperatures can lead
to an elevated risk and frequency of drought conditions.
Concurrently, the likelihood of localized heavy precipita-
tion events leading to flooding is expected to rise in response
to increased atmospheric instability and promote convec-
tive development due to increased evapotranspiration rates
(Fowler et al. 2021; He and Sheffield 2020). Further abrupt
transition from dry to wet extreme events may also be influ-
enced by significant changes in large-scale thermodynam-
ics, circulation shifts, and land-sea atmospheric feedbacks
(Deng et al. 2020). In contrast, recurrent arrivals of tropical
intraseasonal oscillations and meandering of subtropical
jets may dynamically facilitate back-to-back occurrences of
W-to-D TCEs and are common in coastal regions, includ-
ing western Japan, northwest Australia, and southeast China
(Chen et al. 2020; Liao et al. 2021; Wang et al. 2019). This
is also evident from our study which shows non-significant
probability of occurrence for W-to-D TCEs. Major tropical
cyclones have the capability to cause destructive flooding
and can result in prolonged periods of excessive heat that
offset reduced ambient temperature, through the lagged
(days to weeks) effects of tropical cyclones released dia-
batic heating on the strengthening of an upper-level anticy-
clone and stabilization of the atmospheric layer (Hart et al.
2007; McTaggart-Cowan et al. 2007; Parker et al. 2013).
Increasingly uneven intraseasonal distribution of precipita-
tion may also result in W-to-D TCEs via triggering a chain
of process, i.e., a rapid swing from flash flood to drought
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first (Chen 2020; Pendergrass and Knutti 2018) and drought-
fueled heatwaves afterward (Miralles et al. 2014). Further
compelling scientific evidence of human interventions and
land use changes such as increased human water consump-
tion, urbanization, agricultural practices, and levee and dam
construction could exacerbate the extreme drought and flood
risk hazard (He et al. 2017; Munoz et al. 2018; Villarini and
Strong 2014; Yang et al. 2013).

In the context of BC, none of the BC methods under both
approaches retains the change signal of the raw counter-
parts for SPEI indices and TCEs except for CMIP6 ensemble
where all BC methods show a slight preservation of raw
climate change signals for the D-to-W TCE:s in terms of spa-
tial patterns. The probability and its statistical significance
increased remarkably after all BC methods. Further, the BC
methods under direct approach (i.e., D-EQM and D-QDM)
modify to a larger extent the raw signals compared to MBCn
whose signals are somewhat similar to those projected by
BC methods under component-wise approach (i.e., CW-
EQM and CW-QDM), especially for SPEI indices.

The comparable performance of the direct and component-
wise approaches is evident in evaluation experiments with
slightly better for direct approach (Ansari et al. 2023). How-
ever, remarkable differences in the climate change signals
are found between both approaches with the direct correction
introducing a greater modification of the original change sig-
nals especially for the SPEI indices, consistent with previous
literature (Casanueva et al. 2018; Chen et al. 2021).

The similar climate change signals projected by MBCn
and CW-QDM is primarily attributed by construction as
MBCn uses QDM to adjust the marginal distributions of
the individual variables and associated with the ability of
univariate quantile mapping methods to implicitly adjust
the joint probability distribution in a multivariate context
(Casanueva et al. 2019). The small difference between the
projected climate change signals by these two BC methods
shows that the use of a multivariate BC method may not offer
significant advantages over univariate BC methods. Ansari
et al. (2023) also found little added value of multivariate
BC methods during the evaluation step which may be due to
the weak daily correlation between the considered variables
(i.e., precipitation and temperature) in this region. Further,
the present study found no remarkable difference between
trend-preserving, i.e., QDM, and non-trend-preserving, i.e.,
EQM, under both approaches. Nevertheless, the absence of
clear difference between these two BC methods in this study
does not negate the potential benefits of trend-preserving BC
over non-trend-preserving BC methods.

To summarize, it is anticipated that moderate to extreme
wet and dry events will become more frequent and severe,
with an increase in the frequency and severity up to eight
events and 2.50 SPEI units relative to baseline period,
respectively, by the end of the century. The duration of
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extreme wet and dry events exhibits distinct change signals
depending on the location. Further results indicate that the
UJB is more prone to D-to-W TCEs than to W-to-D TCEs
and identify the monsoon-dominated region located in the
southwest of the basin as the hotspot for the D-to-W TCE:s.
Our results confirm the crucial importance of incorporating
risk management strategies for potential TCEs into disaster
risk reduction policies at the identified hotspots. The find-
ings are of utmost relevance to a diverse group of decision-
makers, including those responsible for managing dams and
water resources. However, there remain several unanswered
questions which need to be further explored. For instance,
the characteristics of compound events such as severity,
duration, spatial extent and seasonality and the possible
physical mechanisms associated with them.
Supplementary information.
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