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Abstract
Temporal compound events (TCEs), such as the consecutive occurrence of two complementary extremes of the hydro-
logical spectrum (floods and droughts), exhibit a volatile hydrological cycle that exacerbate the challenges associated with 
water resources management. This study makes use of bias-corrected climate models output from three modeling experi-
ments (CMIP6, CORDEX, and CORDEX-CORE), to examine moderate to extreme wet and dry events and their temporal 
compounding over the Upper Jhelum Basin (UJB), under low, medium, and high emission scenarios for two future periods 
(2040–2059 and 2080–2099). Standardized Precipitation Evapotranspiration Index (SPEI) is used to quantify the meteoro-
logical wet and dry events that are the main driver of the hydrologic floods and droughts. The two types of TCEs considered 
in the current study are wet-to-dry (W-to-D) events and dry-to-wet (D-to-W) events in the adjacent month. Results indicate 
that (1) under warming conditions, wet and dry events are expected to become more frequent and severe whereas duration of 
the events exhibits distinct change signals depending on the specific location. (2) The basin is more prone to D-to-W TCEs 
dominated in the southwest of the region, which was not found to be hotspot historically neither for dry nor for wet extreme 
events. (3) CORDEX and CORDEX-CORE ensembles show varying climate change signals with no specific spatial pattern 
whereas the CMIP6 ensemble shows stronger change signals and divides the region into two distinct parts, i.e., northeast 
and southwest.
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Introduction

Climate change is predicted to accelerate the global 
hydrological cycle and cause extreme events (floods and 
droughts) with increasing frequency and severity, pushing 

the limits of society’s capacity to forecast and adapt to 
these extreme events. It is expected that more severe 
droughts, larger precipitation events, and more frequent 
anomalous wet and dry spells will become the “new nor-
mal” for many ecosystems (Lewis et al. 2017; Senevi-
ratne et al. 2021). Further compounding (concurrent or 
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consecutive occurrences of multiple weather and climate 
drivers) of these extreme events across space or/and time 
may provoke greater impacts than what would have been 
caused by a single event, even when the individual con-
tributing variables are not extreme (Zscheischler et al. 
2020). These extreme events have put a strain on society’s 
ability to predict and adapt effectively to these extreme 
phenomena.

The most important and commonly studied compound 
events in hydro-climatology are those associated with pre-
cipitation and temperature. The occurrence of compound 
events can be attributed to various factors, including exter-
nal influences (e.g., changes in regional warming), allied 
strengthening of multiple extremes (e.g., land surface feed-
back), or conditional dependence (e.g., interplay between 
antecedent soil moisture levels and preceding precipitation 
in triggering floods and droughts).

The definition and classification of compound events 
have garnered notable consideration over the past few dec-
ades. To aid the framing and development of new research 
on compound events, Zscheischler et al. (2020) proposed 
four distinct classes of compound events and their differ-
ent physical characteristics (modulators, drivers, hazards, 
and impacts) that form a compound event. Such events can 
occur in multiple ways due to the complex nature of the cli-
mate system, for example, “Preconditioned” events, where 
pre-existing weather or climate conditions can intensify the 
impact of hazard; “Multivariate” events, where the simul-
taneous occurrences of multiple drivers and/or hazards at 
the same location result in greater impacts; “Temporal com-
pound” events, where impacts are due to the consecutive 
occurrences of multiple hazards within a particular geo-
graphical region, and “Spatially compound” events, where 
synchronized occurrences of individual hazards across mul-
tiple regions lead to an impact.

Compound events drivers and their additive impacts on 
regional and global scales have been the subject of several 
studies. For instance, the combinations of quasi-synchronous 
extremes across multiple regions can lead to amplifying 
effects on connected global systems (Raymond et al. 2020). 
A severe drought that occurred concurrently in Asia, Bra-
zil, and Africa during 1876–1878 resulted in synchronous 
crop failures in these regions, posing a threat to food secu-
rity (Singh et al. 2018). Other studies have examined the 
increased probability of concurrent heatwaves and regional 
droughts with changes in large-scale circulation modes 
under warming scenarios (Kornhuber et al. 2020; Singh 
et al. 2022) and the following synchronized crop failures 
across major breadbasket regions of the world (Anderson 
et al. 2019; Gaupp et al. 2020).

Temporal compound events (TCEs) can be of the same 
type, such as multiple consecutive heatwaves (Baldwin 
et al. 2019), droughts (Bastos et al. 2021; van der Wiel et al. 

2023), or consecutive heavy precipitation events (Fish et al. 
2022; Kopp et al. 2021), or different hazards, for example, 
simultaneous occurrence of heavy precipitation and wind 
extremes (Messmer and Simmonds 2021; Owen et al. 2021), 
compound flooding in coastal areas as a result of simultane-
ous occurrence of storm surge and heavy precipitation (Rid-
der et al. 2018; Zellou and Rahali 2019), a flood event at the 
end of heatwave or drought (He and Sheffield 2020; Zhang 
et al. 2021), simultaneous drought and heatwave (Sutanto 
et al. 2020; Zscheischler and Fischer 2020), rain-on-snow 
flood events due to concurrent occurrence of heavy precipi-
tation and snowmelt (Li et al. 2019; López-Moreno et al. 
2021), or epidemics followed by floods (Donges et al. 2016).

A quantification of the TCEs is imperative for assess-
ing the risk of associated potential impacts, both in past 
and future climate scenarios. A number of above studies 
have focused primarily on the concurrent occurrence of 
compound events, but a limited number have examined the 
consecutive occurrence of contrasting hydrological extremes 
(i.e., wet and dry extreme events). It has been observed 
that an increase in floods is normally accompanied by a 
decrease in droughts due to more rainfall. Conversely, a 
reduced rainfall is typically associated with an increase in 
droughts (Gudmundsson et al. 2021). However, some models 
project that both the frequency and severity of hydrologi-
cal extremes may increase simultaneously, a phenomenon 
known as acceleration of the terrestrial component of the 
hydrological cycle (Kreibich et al. 2022).

In this context, we have specifically considered TCEs 
for a situation where two contrasting extremes, namely wet 
and dry events, occur consecutively at the same location (as 
a subset of the broader compound events definition). The 
consecutive occurrence of these extreme events can exac-
erbate adverse impacts resulting from individual hazards 
alone, as recently witnessed in Pakistan, 2022 (Wang et al. 
2023), Queensland-Australia, 2010 (Beard et al. 2011), UK, 
2012 (Parry et al. 2013), India, 2016 (Roxy et al. 2017), 
and Japan, 2018 (Wang et al. 2019). The effects of com-
pound wet and dry extreme events have also been studied 
under current and warming climate conditions. For instance, 
Visser-Quinn et al. (2019) and Zhao et al. (2020) identi-
fied geographical hotspots for spatio-temporally concurrent 
floods and droughts in the UK and Hanjiang River Basin, 
China, respectively. Other examples include the analysis 
of rapid transitions of wet-dry extreme events in mainland 
China (Qiao et al. 2022), in Upper Jhelum Basin-Pakistan 
(Ansari and Grossi 2022), and in southeast Australia (Hol-
gate et al. 2023).

In general, the impacts of temporal compounding of wet 
and dry events seem to be mostly related to rapid changes in 
vulnerability. A dry event may cause increases in the vulner-
ability of people, crops, or livestock, which causes impacts 
of a subsequent or co-occurring wet event to be worse than 



Regional Environmental Change (2025) 25:33	 Page 3 of 16  33

from a wet event that is not preceded by a dry event. This 
depends on initial vulnerability and the speed of commu-
nity recovery, as impacts and change in vulnerability vary 
across different groups. In the agriculture and livestock sec-
tor, the additive impacts of such temporal compound events, 
especially in low- and lower-middle-income countries, often 
worsen outcomes. For example, droughts can weaken live-
stock, increasing vulnerability to subsequent floods, as seen 
in Queensland in 2019 when many cattle died (Cowan et al. 
2022). Vegetation and crop yield are also affected by con-
secutive dry-to-wet events, impacting crop size and yield 
based on soil and growth stages (Gao et al. 2019; McCarthy 
et al. 2021). Furthermore, these events degrade water qual-
ity and foster conditions for disease. Pollutants accumulated 
during dry periods are washed into rivers during floods, rais-
ing phosphorus levels and potentially causing fish mortality 
and water eutrophication (Laudon et al. 2005; Mishra et al. 
2021; Wurtsbaugh et al. 2019).

It is therefore important to analyze the temporal com-
pounding of extreme wet and dry events in a changing envi-
ronment to comprehensively assess their consequences on 
water-dependent sectors and develop effective adaptation 
strategies, including the development of improved reservoir 
operation protocols and agricultural planning.

The present study builds upon Ansari et al. (2023), which 
shows a comprehensive present-climate evaluation of raw 

and bias-corrected climate model simulations regarding the 
temporal aspects and multivariate dependency of essential 
climatic variables, and main characteristics of moderate to 
extreme wet and dry events in the UJB. The UJB is located 
at the foothills of Western Himalaya, one of the mountain-
ous ranges most affected by climate change. The region has 
already witnessed an increase in extreme hydro-meteoro-
logical events in the last few decades (Pachauri et al. 2014), 
and hence, the projection of these events cannot be left apart 
in the development of the climate change adaptation strat-
egy for the region. Here, we examine the projected changes 
in moderate to extreme wet and dry events and their com-
pounding in temporal dimension over UJB using climate 
models output from three modeling experiments (CMIP6, 
CORDEX, and CORDEX-CORE), bias corrected with 
three different BC methods under low, medium, and high 
emission scenarios for two future periods (2040–2059 and 
2080–2099). Specifically, the present study aims to examine:

–	 The projected changes in the characteristics of wet and 
dry events (i.e., duration, severity, and frequency) and in 
the probability of TCEs.

–	 The uncertainty associated with different bias correction 
(BC) methods and approaches in the climate change sig-
nal of such events characteristics and TCEs.

Fig. 1   Geographical location and topography of the Upper Jhelum basin, along with location of sub-basins (black polygons), Mangla dam (filled 
green triangle), glaciers (filled white polygons with blue boundaries), and the line of control (yellow highlighted dashed line)
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Characteristics of the study area

The proposed framework is implemented in the source 
region of the Jhelum River, known as the Upper Jhelum 
Basin (UJB), which is geographically located between lati-
tudes 33°00′ N and 35°12′ N, and longitudes 73°07′ E and 
75°40′ E (Fig. 1). The basin drains the foothills of the west-
ern Himalaya and Pir-Panjal mountains and feeds the sec-
ond largest reservoir of Pakistan, the “Mangla Reservoir.” 
The landscape of the basin is characterized by extreme 
topographical variations, 223–6201  m above sea level 
(masl) within a 33,467 km2 expanse. Approximately 73% 
(24,431 km2) of the UJB area lies below its mean elevation 
(2353 masl). Approximately 0.75% (252 km2) of the basin is 
covered by perennial glaciers in the north of the basin (Con-
sortium and Inventory 2017). Grass, forest, and agriculture 
are the three major land use–land cover types dominating 
over high-, mid-, and low-elevation areas respectively. Per-
manent snow and ice cover a negligible area in the northwest 
of the basin, whereas a small patch of barren land exists over 
the densely grassy mountains of the western Himalaya and 
Pir Panjal. The urban settlement covers a small portion of 
the basin, concentrated in the Kashmir valley (Ansari et al. 
2024).

The hydro-climatology in the UJB is characterized by 
two distinct precipitation regimes: Indian Summer Monsoon 
and westerlies. The effect and contribution of both precipita-
tion regimes vary spatially, as well as temporally (Ul Has-
son et al. 2016). The monsoon precipitation system brings 
precipitation as rain and is dominant in southern parts of 
the basin. The strength of the Monsoon system decreases 
progressively northward towards the foothills of the West-
ern Himalayas, where the influence of westerlies is more 
pronounced (Archer and Fowler 2008) which brings pre-
cipitation as snow. The basin average annual precipitation 
and temperature are about 1150 mm year−1 and 13.2 °C, 
respectively (Ansari and Grossi 2022).

Data and methods

Definition of extreme wet‑dry events and their 
characteristics

A multivariate drought index named SPEI (Vicente-Serrano 
et al. 2010) is utilized to define wet and dry events. The SPEI 
is computed using a 30-day accumulation period of climatic 
water balance (precipitation minus potential evapotranspira-
tion) at a daily time step. The potential evapotranspiration is 
calculated using the Hargreaves-Samani method (Hargreaves 
and Samani 1985) based on daily maximum and minimum 
temperature. The extraterrestrial radiation required in this 

method is computed based on the latitude of each grid cell 
and the day of the year. For detailed procedure and equations 
for the SPEI calculations, readers are encouraged to refer 
to the studies by Vicente-Serrano et al. (2010) and Ansari 
et al. (2023).

Monthly SPEI series (aggregation of daily SPEI series) 
is used to identify moderate to extreme wet and dry events 
as positive (SPEI ≥ 1) and negative (SPEI ≤ − 1) values that 
persist for a minimum of 2 months consecutively, respec-
tively. These choices about accumulation period, monthly 
time series, and minimum length of events are motivated by 
our focus on floods and short-term droughts. Such events are 
not clearly associated with long-term SPEI due to the aver-
aging effect of accumulated precipitation and temperature 
over extended periods, which can overshadow the signals 
of extreme precipitation and temperature events occurring 
over shorter durations. Our approach allows for a more accu-
rate identification of wet and dry events, which serve as the 
primary drivers of hydrological floods and droughts. The 
thresholds used to define these extreme events are commonly 
employed in previous research works (Svoboda et al. 2012). 
Although this SPEI threshold (± 1) is used to define moder-
ate wet and dry events, which may not have extreme impacts 
when they occur individually, their combined impact can 
be more severe than the sum of their individual effects. For 
instance, a dry event can increase the vulnerability of people, 
crops, or livestock, making the consequences of a subse-
quent or co-occurring wet event worse than if the wet event 
had occurred on its own. Additionally, this threshold cap-
tures events ranging from moderate to severe and extreme, 
ensuring sufficient sampling of events during the study 
period for further analysis. Duration, severity, and absolute 
frequency are used to characterize these wet and dry events. 
The duration of wet (WD) and dry (DD) events is defined as 
the length of time (months) in which the SPEI value is con-
secutively above 1 or below − 1, respectively. The severity of 
wet (WS) and dry (DS) events is the cumulative value of the 
SPEI during the whole duration of the event. The absolute 
frequency of wet (WF) and dry (DF) events is the total num-
ber of occurrences in a given time frame. As both duration 
and severity are calculated for each event, the median value 
across all the identified events is considered a single index.

Temporally compound events and event coincidence 
analysis

TCEs, which are defined as consecutive occurrence of two 
contrary powerful states (here wet and dry events) in the 
adjacent months, include D-to-W events and W-to-D events. 
Hence, the minimum duration of a TCE is 2 months. D-to-W 
TCE is defined as a dry event (SPEIi ≤ − 1) suddenly termi-
nated by a wet event (SPEIi+1 ≥ 1) in the following month. 
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On the other hand, a W-to-D TCE is defined as a wet event 
(SPEIi ≥ 1) abruptly changes into a dry event (SPEIi+1 ≤ − 1) 
in the subsequent month.

To investigate the statistical interdependence of wet-dry 
events and their significance, the present study employs 
Event Coincidence Analysis (ECA, Donges et al. (2016)). 
ECA is a novel statistical method that enables the characteri-
zation of lagged and time-varying relationships between two 
events by using a time lag parameter (τ) within a temporal 
tolerance window (ΔT). The trigger coincidence rate (r) for 
both types of TCEs is calculated as:

where Θ is the Heaviside function

and 1[0,ΔT](·) is the indicator function of the specified time 
window [0,ΔT]:

NW and ND denote the total number of wet and dry events 
with their timing of the event tW

i
 and tD

i
 respectively. Here, 

we choose τ = 1, as this represents the rapid transition of 
two contrasting events in adjacent months. In addition, an 
analytical significance test (p-value < 0.05) is carried out to 
evaluate the robustness of the statistical relationship between 
wet and dry events with the null hypothesis that the consecu-
tive occurrence of wet and dry events is randomly distributed 
as the result of Poisson processes.

Climate models output and bias correction

In the present study, we use all available Regional Climate 
Models (RCM) output of the CORDEX and CORDEX-
CORE initiative for the south Asian domain (denoted as 
WAS) under all available emission scenarios (i.e., represent-
ative concentration pathways (RCPs)). These simulations 
were produced by dynamically downscaling the CMIP5 
Global Climate Models (GCMs), with a horizontal spatial 
resolution of 0.44° and 0.22° on rotated grids (approximately 
50 km and 25 km), respectively (Giorgi et al. 2009; Jones 
2010; Teichmann et al. 2021). Additionally, 2 GCMs of the 
CMIP6 experiment are also considered that are available at a 
similar resolution to the CORDEX simulations (Eyring et al. 
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2015). The emission scenarios used in the CMIP6 experi-
ment are shared socio-economic pathways (SSPs) which 
are different from CORDEX and CORDEX-CORE RCMs, 
simulations as these RCM simulations are driven by CMIP5 
models. RCPs and SSPs provide different scenarios includ-
ing different evolutions of greenhouse gas (GHG) emissions, 
climate policies, and socio-economic development. While 
RCPs focus purely on radiative forcing and GHG emissions, 
SSPs provide a more holistic view of possible futures, incor-
porating socio-economic conditions like population growth, 
economic development, and the effectiveness of climate pol-
icies. Although there are some differences between SSPs 
and RCPs, the chosen emission scenarios approximate the 
same level of aggregated radiative forcing (Tebaldi et al. 
2021). The emission scenarios (RCP2.6/SSP126, RCP4.5/
SSP545, and RCP8.5/SSP585) range from a mitigation sce-
nario involving rapid and substantial reductions in global 
greenhouse gas emissions, with global temperature rise 
limited to approximately 1.5–2 °C (RCP2.6/SSP126), to a 
high emission scenario where emissions continue to grow, 
leading to a temperature increase exceeding 4 °C (RCP8.5/
SSP585) by the end of the century (O’Neill et al. 2014; Van 
Vuuren et al. 2011). In total, the present study utilized 28 
climate model simulations. Figure 2 presents the climate 
models and scenarios employed in this study. For detailed 
description of the used climate models, their spatial resolu-
tion, contributing modeling center, and driving GCM can be 
found in Ansari et al. (2023).

Climate models are the main tool to project future cli-
mate. Nevertheless, these models are often subject to sys-
tematic biases resulting from inaccurate representation of 
physical processes. BC is typically applied as a post pro-
cessing step to overcome this issue, especially for thresh-
old-based derived indices. The present study employed 
two univariate (Empirical Quantile Mapping (EQM) and 
Quantile Delta Mapping (QDM)) and one multivariate 
(Multivariate Bias Correction with N-dimensional prob-
ability density function transform (MBCn)) BC meth-
ods to reduce the biases in climate model simulations, 
using W5E5 as reference dataset. The W5E5 is a global 
dataset with spatial resolution of 0.5° at daily time step 
for a period of 1979–2016. This dataset was developed 
by combining the WATer and global CHange (WATCH) 
Forcing Data methodology applied to ERA5 reanalysis 
data (WFDE5) v1.0 (Cucchi et al. 2020; Weedon et al. 
2014) over land with ERA5 (Hersbach et al. 2020) over 
the ocean. EQM is an empirical method, in which a trans-
fer function is calibrated on the training period to align 
all quantiles of the model empirical distribution with the 
corresponding reference distribution (Déqué 2007). Out-
of-sample values are adjusted through constant extrapola-
tion. Additionally, the adjusted wet-day threshold and fre-
quency adaptation techniques suggested by Themeßl et al. 
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(2012) and Wilcke et al. (2013) are used to adjust the 
model’s overestimation of the frequency of wet and dry 
days, respectively. QDM is a trend-preserving empirical 
method, consists of three steps: (i) trends removal from 
each quantile of the model projections, (ii) application 
of empirical quantile mapping to the detrended series, 
and (iii) addition of the removed projected future trends 
to the bias-corrected quantiles (Cannon et al. 2015). The 
MBCn method not only adjusts the individual univariate 
features of each variable but also their multivariate inter-
dependence simultaneously. It uses randomly generated 
orthogonal matrices to partially decorrelate the climate 
variables prior to QDM application on each of variables 
separately to adjust the marginal distributions. The pro-
cess is repeated iteratively until the model data distribu-
tion converges to that of the reference data distribution 
(Cannon 2018). This convergence is verified on the basis 
of the energy distance score (Rizzo and Székely 2016).

The univariate BC methods are employed through two dif-
ferent approaches: (1) the component-wise approach (CW), in 
which each climatic variable involved in SPEI calculation is 
individually subjected to the BC, and (2) the direct approach 
(D), in which the uncorrected SPEI is directly subjected to 
BC. All BC methods are calibrated in the historical period 
(1986–2005) and applied in two future periods (2040–2059 
and 2080–2099). All considered BC methods presume that 
the biases present in climate model simulations are constant 
over time and apply the same calibrated transfer function to 
the projected climate, which could result in modification of 

the original model change signals for non-trend-preserving 
BC methods (here EQM). The selection of these BC methods 
is based on Ansari et al. (2023) which evaluate the perfor-
mance of various BC methods (uni- and multivariate) and 
BC approaches (direct and component-wise) in terms of uni-
variate indices related to temporal aspects of the essential 
climate variables used for SPEI calculation, their multivariate 
dependency, and biases in the SPEI-derived indices during 
the historical period (1986–2005).

Results

Future changes in Standardized Precipitation 
Evapotranspiration Index indices

The spatial distribution of climate change signals of SPEI 
indices relative to the baseline period (1986–2005), for 
the multi-model raw and bias-corrected ensembles, sepa-
rately for CMIP6 (2 simulations), CORDEX (17 simula-
tions), and CORDEX-CORE (9 simulations) are shown in 
Figs. S1–S6. The climate change signals are calculated for 
the near (2040–2059) and far (2080–2099) future periods 
under low, medium, and high emission scenarios. Results 
show contrasting climate change signals for both BC 
approaches with the direct correction introducing a larger 
modification of the original (raw) change signals espe-
cially for severity and frequency indices. This modification 
by the direct approach is usually towards positive change 

Fig. 2   Climate model simulations and emission scenarios used in the present study
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signals. Further, given a particular approach, BC methods 
present similar climate change signals regardless of SPEI 
indices, emission scenarios, and time period.

Regarding climate model experiments, CORDEX and 
CORDEX-CORE (WAS44 and WAS22, respectively) 
ensemble present opposite sign climate change signals for 
duration indices (duration of dry and wet events) with no 
specific spatial pattern whereas the change signals from 
CMIP6 ensemble divide the region into two distinct parts, 
i.e., northeast (which host foothills of western Himalaya) 
and southwest (relatively plain region with dominance of 
monsoon precipitation system). These results regarding 
the spatial patterns hold for most of the SPEI indices, 
emission scenarios, and time segments. For instance, dry 
event indices (i.e., duration, severity, and frequency of dry 
events) and frequency of wet events show negative and 
positive climate change signals in northeast and southwest 
regions, respectively, under high emission scenarios. Dif-
ferences between the different ensembles also exist for 
the spatial distribution of the changes in severity indices 
(severity of dry and wet events). For instance, under the 
high emission scenarios, the CMIP6 ensemble projected 
an increase in the severity of wet events over most parts 
of the basin and mixed signals are found for the severity 
of dry events. Conversely, WAS44 and WAS22 ensembles 
projected an increase in the severity of dry events over 
the whole basin and mixed change signals for wet ones.

The climate change signals for regionally averaged SPEI 
indices for all individual climate simulations are summa-
rized in Figs. 3 and 4. Overall, climate models from all con-
sidered experiments present larger spread for wet indices 
compared to dry indices. The spread is usually determined 
by WAS-44 climate models for most of the SPEI indices 
under considered BC methods, time segments, and emis-
sion scenarios which could be due to the largest number 
of simulations. However, there are exceptions for CMIP6 
and WAS-22, especially for the duration and severity indi-
ces (particularly for the duration and severity of dry events, 
DD and DS) under different BC methods. The reduction in 
model spread is evident after BC under the component-wise 
approach and the multivariate method, whereas the modifi-
cation of the signals by the direct approach leads to a slight 
increase in climate model spread. These findings are consist-
ent with all considered time periods and emission scenarios.

Temporal compound events

Next, we examine the spatial distribution of probability of 
temporally compound events (D-to-W and W-to-D, see the 
“Data and methods” section) and their statistical significance 
for the historical (according to W5E5) and projected future 
climate, for the raw and bias-corrected climate models out-
put for the near (2040–2059) and far (2080–2099) future 

periods under low (RCP26/SSP1–2.6), moderate (RCP45/
SSP2–4.5), and high (RCP85/SSP5–8.5) emission scenarios.

Figure 5 shows that the probability of D-to-W TCEs 
is particularly high (reaching up to 60%) in southwest of 
the basin, a monsoon-dominated region, and statistically 
significant over 23.33% of the domain (with p-value less 
than 0.05). On the other hand, non-statistically signifi-
cant results (at the 5% significance level) are observed for 
W-to-D TCEs, without any discernible pattern of occur-
rence during the historical period (Fig. S7). Interestingly, 
the southwest of the basin, which is not a hotspot for either 
dry or wet events separately (Ansari et al. 2023), exhibits 
a high probability (up to 60%) of D-to-W TCEs during the 
historical period, i.e., of enhanced compound events. The 
northeast part of the basin, which host foothills of west-
ern Himalayas (under westerlies precipitation pattern), 
is found to be least effected by TCEs despite its higher 
susceptibility towards wet and dry moderate to extreme 
events, characterized by higher severity and duration 
(Ansari et al. 2023).

Regarding future projections, the spatial patterns of 
projected probability of TCEs are consistent with those 
of the historical period, revealing the southwest part of the 
basin as a hotspot for D-to-W TCEs. However, there are 
some discrepancies among the climate model ensembles. 
CORDEX ensembles (WAS-44 and WAS-22) indicate a 
slight decrease in the probability of D-to-W TCEs by the 
end of the century particularly under the lowest emission 
scenario, whereas the CMIP6 ensemble shows an increase 
in probability of D-to-W TCEs by the end of century under 
all emission scenarios and time periods. Further, the prob-
abilities of D-to-W TCEs are found to be statistically sig-
nificant with medium to high models’ agreement (i.e., 
number of models agreeing on the statistical significance 
of the TCEs).

The three raw climate model ensembles show decreasing 
probabilities of D-to-W TCEs relative to the baseline period 
under all emission scenarios and time segments. This is 
especially true for CORDEX and CORDEX-CORE ensem-
bles with also lower models’ agreement in terms of statis-
tically significant probabilities. Conversely, the southwest 
of the basin is a hotspot for the D-to-W TCEs for the raw 
CMIP6 ensemble with medium models’ agreement. Overall, 
none of the BC methods under both approaches preserves 
the raw climate change signals except for CMIP6 ensemble 
which show a slight preservation of raw climate change sig-
nals in terms of spatial patterns. In general, BC modifies the 
probabilities of the raw models by increasing the probability 
of D-to-W TCEs and model agreement, for both future peri-
ods and all emission scenarios. Similar to SPEI indices, the 
BC methods under the direct approach (i.e., D-EQM and 
D-QDM) present similar climate change signals whereas the 
climate change signals projected by MBCn are somewhat 
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Fig. 3   Absolute climate change signals of spatially averaged SPEI-
derived dry indices (duration: upper row; severity: middle row; fre-
quency: lower row) over the Upper Jhelum Basin for the near future 
(2040–2059) and far future (2080–2099) with respect to baseline 
period (1986–2005) under low (RCP2.6/SSP126), medium (RCP4.5/
SSP545), and high (RCP8.5/SSP585) emission scenarios. The indices 

are calculated from both raw and bias-corrected climate model out-
put, with individual model results depicted in colored dots (CMIP6 in 
red, CORDEX in green, CORDEX-CORE in blue) within each box, 
which indicates the interquartile model spread. The whiskers extend 
to the full range of change signals, while the red horizontal lines indi-
cate no change from the baseline period
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similar to those projected by BC methods under the compo-
nent-wise approach (i.e., CW-EQM and CW-QDM).

The climate change signals for the regionally averaged 
probabilities of D-to-W TCEs for each individual climate 
simulation are depicted in Fig. 6. Similar to SPEI indices, 
a reduction in model spread is found after BC under the 

component-wise approach and the multivariate method, 
whereas the direct approach increases climate model spread 
by increasing the probability of TCEs. These findings are 
consistent for all considered time periods and emission 
scenarios.

Fig. 4   Same as Fig. 2 but for SPEI-derived wet indices
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Discussion and conclusions

This study examines future climate projections for extreme 
wet-dry events, as well as their temporal compounding using 
climate models output from three modeling experiments 
(CMIP6, CORDEX, and CORDEX-CORE) bias corrected 
by two univariate BC methods (i.e., EQM and QDM) under 
two bias correction approaches (component-wise-CW and 
direct-D) and a multivariate BC method (N-dimensions-
MBCn). The wet and dry events are characterized using 
SPEI-derived indices (namely duration, severity, and fre-
quency) and climate change signals are estimated for the 
near future (2040–2059) and far future (2080–2099) with 
respect to the baseline period (1986–2005). The present 
study also focuses on temporal compounding of these 

contrasting events, both in historical future climate contexts, 
as the consecutive occurrence of wet and dry events chal-
lenges water resources management and can be particularly 
impactful.

Future projections of the individual wet and dry extreme 
events (in terms of duration, severity, frequency) show 
varying climate change signals for all SPEI indices under 
all considered BC methods, BC approaches, emission sce-
narios, and time segments. Specifically, the frequency and 
severity of wet and dry events are projected to increase, 
which is expected under warming conditions and was 
reported by previous literature. For instance, Panday et al. 
(2015) and Sanjay et al. (2017) reported that there will be 
a rise in the frequency and intensity of extreme rainfall 
events across the Himalayan–Tibetan Plateau mountains 
during the twenty-first century, especially during the mon-
soon season. Another study indicates that droughts are 
expected to be more frequent, severe, and widespread over 
the mainland India during the latter half of the twenty-first 
century, while increase in flood events are projected for the 
major Himalayan River basins such as Indus, Ganga, and 
Brahmaputra (Mujumdar et al. 2020).

Regarding TCEs, the observed probabilities of dry-to-
wet (D-to-W) and wet-to-dry (W-to-D) TCEs are found to 
be high up to 60% and 30%, respectively. The probability 
of D-to-W TCEs is projected to increase from 60 to 80% 
(for specific grid boxes and model simulations) whereas 
the probability of W-to-D TCEs approximately remains 
unchanged under warming conditions. This low to moder-
ate increment in the D-to-W TCEs under anticipated future 
conditions is in agreement with Gu et al. (2022), who found 
a clearer increment in the fraction of TCEs (number of TCEs 
to total flood events) in the tropical regions, followed by arid, 
temperate, cold regions, and polar zone (note that low- and 
high-altitude areas of UJB lie in the temperate and polar cli-
mate regions, respectively). Conversely, Zhang et al.( 2021) 
found a decrease in the probability of such TCEs in the trop-
ics albeit with increased frequency of heavy rainfall events. 
A global study conducted by Zhang et al. (2021) highlighted 
the spatial hotspots for the compound drought and extreme 
rainfall events under a warming world. According to that 
study, 66% of CMIP5 models showed a decreased future 
probability of such TCEs in the second half of the century 
(2051–2100) over the southern Asia (SAS) under the worst-
case scenario, i.e., RCP8.5. Another global study found 
a historical (1950–2016) probability of 21.6% and 20.7% 
for drought-pluvial seesaw with 3-month lag period over 
SAS for the boreal spring–summer and fall-winter, respec-
tively (He and Sheffield 2020). The differences among these 
studies could be due to the varying methodological frame-
work, such as the threshold to define wet and dry extreme 
events (e.g., low vs. high), the choice of the index (e.g., 
variables involved in the calculation of the index and their 

Fig. 5   Probability of temporal compound dry-to-wet events (%), in 
the historical reference dataset (1986–2005, first row, left), along-
side the digital elevation model of the area in meters above sea 
level (first row, right) and future projected probabilities for the near 
future (2040–2059) and far future (2080–2099) under low (RCP2.6/
SSP126), medium (RCP4.5/SSP545), and high (RCP8.5/SSP585) 
emission scenarios. These projections are based on the multi-model 
ensemble mean raw ensembles (second row) and bias-corrected 
ensembles, for two bias correction approaches and three bias cor-
rection methods (rest of the rows). In the projections, the different 
shapes denote the percentage of ensemble members with statistically 
significant probability at the 5% level. The highlighted grid boxes in 
the first row are utilized for further analyses in Fig. 6
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interdependency), the lag time (which indicates the rapid-
ness of event alteration), and the temporal window interval 
(which indicates the uncertain onset of extreme events). Due 
to the distinct methodological frameworks employed in each 
study, which are tailored to specific sectors and objectives, 
direct comparisons between the outcomes of this research 
and those of previous studies cannot be made. Nonetheless, 
our findings are consistent with the overall conclusions of 
these earlier studies, demonstrating that dry events are fre-
quently associated with a rise in subsequent extreme wet 
events.

In terms of spatial extent, in the present work, about 23% 
of the total study region has experienced statistically signifi-
cant (p < 0.05) probability of D-to-W TCEs during the his-
torical period and it is projected to increase for most of the 
considered datasets, emission scenarios, and time segments 
after BC. Although D-to-W TCEs affect the small propor-
tion of the basin, we identify the spatial hotspots, located in 
the southwest of the basin where precipitation is dominated 
by the monsoon system, which was not found to be a hot-
spot neither for dry nor for wet events separately (Ansari 
et al. 2023). Although the seasonality of TCEs is beyond the 
scope of the current study, it is more likely that the D-to-W 
TCEs will occur during summer season because the hotspot 

region usually receives heavy precipitation during summer 
season under monsoon system (Ansari et al. 2022; Archer 
and Fowler 2008; Azmat 2015; Mahmood 2013). Depending 
on the BC method, datasets, emission scenarios, and time 
segments, a negligible to large increase in most of the (indi-
vidual) wet and dry events indices is expected in this hotspot 
in the anticipated future. Particularly, the CMIP6 ensemble 
presents strong climate change signals (either positive or 
negative) under the strong emission scenario with a clear 
pattern of occurrence and the southwest of the basin stands 
out as a hotspot for the more frequent wet and dry extreme 
events with an increase in frequency of wet and dry events 
up to eight events relative to the baseline period, respec-
tively. In contrast, the northeast part of the basin which hosts 
foothills of western Himalayas (under westerlies precipita-
tion pattern) is found to be less affected by TCEs despite its 
higher susceptibility towards wet and dry events with higher 
severity and duration during the historical period (Ansari 
et al. 2023). The increase in TCEs may also become appar-
ent in areas with projected decline in the extreme dry and/or 
wet events (Gu et al. 2022; Zhang et al. 2021). For instance, 
Zhang et al. (2021) found that 27 − 41% of the global land 
area in Northern China and Southern Africa is expected 
to encounter less drought events but experience high 

Fig. 6   Probability of temporal compound dry-to-wet events (%), spa-
tially averaged over ten grid boxes highlighted in Fig. 5, for the near 
future (2040–2059) and far future (2080–2099) under low (RCP2.6/
SSP126), medium (RCP4.5/SSP545), and high (RCP8.5/SSP585) 
emission scenarios. The probabilities are calculated from the raw 
(first box in each panel) and bias  corrected climate model output 
(remaining boxes), with individual model results depicted in colored 

dots (CMIP6 in red, CORDEX in green, CORDEX-CORE in blue) 
within each box. Each box indicates the interquartile model spread 
and whiskers expand to the full range of probability of temporal com-
pound event. Red horizontal lines depict the probability of temporal 
compound events in the baseline period (1986–2005) according to the 
observations
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probabilities of successive drought-flood events. In contrast, 
4 − 13% of the world’s landmass, including regions such as 
Southern Africa, Australia, Northern Mexico, southwestern 
US, and Southwest coast of South America, are expected to 
suffer from higher probability of droughts followed by floods 
but a lower frequency of heavy rainfall, which shows that 
heavy rainfall is likely to be more frequent at the drought 
termination, despite a decrease in the overall frequency of 
heavy rainfall events.

In contrast to D-to-W TCEs, the W-to-D TCEs are found 
to be less apparent without specific pattern of occurrence 
in the historical period as well as in future climate condi-
tions, in line with previous studies (e.g., Qiao et al. (2022) 
in China).

Explaining the patterns of TCEs from a physical perspec-
tive is challenging due to the inherent complexity of indi-
vidual types of events. In general, these events are usually 
a consequence of the intricate interplay between the local 
climate system, variability in large-scale circulation patterns, 
and even climate change. However, different sequences are 
driven by different physical processes and may exhibit con-
trasting responses to global warming. Specifically, D-to-
W TCEs are usually associated with the disturbed energy 
budget and can be attributed to the impacts of global warm-
ing. As the climate continues to warm, increased evapotran-
spiration rates resulting from higher temperatures can lead 
to an elevated risk and frequency of drought conditions. 
Concurrently, the likelihood of localized heavy precipita-
tion events leading to flooding is expected to rise in response 
to increased atmospheric instability and promote convec-
tive development due to increased evapotranspiration rates 
(Fowler et al. 2021; He and Sheffield 2020). Further abrupt 
transition from dry to wet extreme events may also be influ-
enced by significant changes in large-scale thermodynam-
ics, circulation shifts, and land-sea atmospheric feedbacks 
(Deng et al. 2020). In contrast, recurrent arrivals of tropical 
intraseasonal oscillations and meandering of subtropical 
jets may dynamically facilitate back-to-back occurrences of 
W-to-D TCEs and are common in coastal regions, includ-
ing western Japan, northwest Australia, and southeast China 
(Chen et al. 2020; Liao et al. 2021; Wang et al. 2019). This 
is also evident from our study which shows non-significant 
probability of occurrence for W-to-D TCEs. Major tropical 
cyclones have the capability to cause destructive flooding 
and can result in prolonged periods of excessive heat that 
offset reduced ambient temperature, through the lagged 
(days to weeks) effects of tropical cyclones released dia-
batic heating on the strengthening of an upper-level anticy-
clone and stabilization of the atmospheric layer (Hart et al. 
2007; McTaggart-Cowan et al. 2007; Parker et al. 2013). 
Increasingly uneven intraseasonal distribution of precipita-
tion may also result in W-to-D TCEs via triggering a chain 
of process, i.e., a rapid swing from flash flood to drought 

first (Chen 2020; Pendergrass and Knutti 2018) and drought-
fueled heatwaves afterward (Miralles et al. 2014). Further 
compelling scientific evidence of human interventions and 
land use changes such as increased human water consump-
tion, urbanization, agricultural practices, and levee and dam 
construction could exacerbate the extreme drought and flood 
risk hazard (He et al. 2017; Munoz et al. 2018; Villarini and 
Strong 2014; Yang et al. 2013).

In the context of BC, none of the BC methods under both 
approaches retains the change signal of the raw counter-
parts for SPEI indices and TCEs except for CMIP6 ensemble 
where all BC methods show a slight preservation of raw 
climate change signals for the D-to-W TCEs in terms of spa-
tial patterns. The probability and its statistical significance 
increased remarkably after all BC methods. Further, the BC 
methods under direct approach (i.e., D-EQM and D-QDM) 
modify to a larger extent the raw signals compared to MBCn 
whose signals are somewhat similar to those projected by 
BC methods under component-wise approach (i.e., CW-
EQM and CW-QDM), especially for SPEI indices.

The comparable performance of the direct and component-
wise approaches is evident in evaluation experiments with 
slightly better for direct approach (Ansari et al. 2023). How-
ever, remarkable differences in the climate change signals 
are found between both approaches with the direct correction 
introducing a greater modification of the original change sig-
nals especially for the SPEI indices, consistent with previous 
literature (Casanueva et al. 2018; Chen et al. 2021).

The similar climate change signals projected by MBCn 
and CW-QDM is primarily attributed by construction as 
MBCn uses QDM to adjust the marginal distributions of 
the individual variables and associated with the ability of 
univariate quantile mapping methods to implicitly adjust 
the joint probability distribution in a multivariate context 
(Casanueva et al. 2019). The small difference between the 
projected climate change signals by these two BC methods 
shows that the use of a multivariate BC method may not offer 
significant advantages over univariate BC methods. Ansari 
et al. (2023) also found little added value of multivariate 
BC methods during the evaluation step which may be due to 
the weak daily correlation between the considered variables 
(i.e., precipitation and temperature) in this region. Further, 
the present study found no remarkable difference between 
trend-preserving, i.e., QDM, and non-trend-preserving, i.e., 
EQM, under both approaches. Nevertheless, the absence of 
clear difference between these two BC methods in this study 
does not negate the potential benefits of trend-preserving BC 
over non-trend-preserving BC methods.

To summarize, it is anticipated that moderate to extreme 
wet and dry events will become more frequent and severe, 
with an increase in the frequency and severity up to eight 
events and 2.50 SPEI units relative to baseline period, 
respectively, by the end of the century. The duration of 
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extreme wet and dry events exhibits distinct change signals 
depending on the location. Further results indicate that the 
UJB is more prone to D-to-W TCEs than to W-to-D TCEs 
and identify the monsoon-dominated region located in the 
southwest of the basin as the hotspot for the D-to-W TCEs. 
Our results confirm the crucial importance of incorporating 
risk management strategies for potential TCEs into disaster 
risk reduction policies at the identified hotspots. The find-
ings are of utmost relevance to a diverse group of decision-
makers, including those responsible for managing dams and 
water resources. However, there remain several unanswered 
questions which need to be further explored. For instance, 
the characteristics of compound events such as severity, 
duration, spatial extent and seasonality and the possible 
physical mechanisms associated with them.
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