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 A B S T R A C T

In this note, we study the existence of traveling waves of a surface model in a non-newtonian 
fluid with odd viscosity. The proof relies on nonlinear bifurcation techniques.

. Introduction and main result

The motion of an incompressible fluid is described by the following non-linear system
𝜌
(

𝑢𝑡 + (𝑢 ⋅ ∇)𝑢
)

= ∇ ⋅  ,

𝜌𝑡 + ∇ ⋅ (𝑢𝜌) = 0,

∇ ⋅ 𝑢 = 0, 𝑤 (1)

here 𝑢(𝑡, 𝑥) ∶ [0, 𝑇 ]×𝛺 → R𝑑 , 𝜌(𝑡, 𝑥) ∶ [0, 𝑇 ]×𝛺 → R represent the velocity field and density of the fluid respectively and 𝑑 = 2, 3. 
oreover,   denotes the stress tensor that varies depending on the different properties of the fluid. For inviscid and newtonian 
luids, the stress tensor is given by

 𝑖
𝑗 = −𝑝𝛿𝑖𝑗 ,

nd system (1) reduces to the well-known Euler equations. For viscous newtonian fluids, the stress tensor has even symmetry and 
akes the form

 𝑖
𝑗 = −𝑝𝛿𝑖𝑗 +

(

𝜕𝑥𝑗 𝑢
𝑖 + 𝜕𝑥𝑖𝑢

𝑗
)

.

owever, in stark contrast to the classical scenario for viscous or inviscid newtonian fluids, there are classes of fluids with broken 
icroscopic time-reversal symmetry and parity, namely quantum fluids (magnetized plasmas or electron fluids) or classical fluid 
ystems (polyatomic gases). We refer the interested reader to [1] for a more detailed explanation and discussion. In two-dimensional 
luid systems where microscopic time reversal and parity are violated, the viscosity tensor includes a skew-symmetric component 
ften referred to as odd viscosity given by 

 𝑖
𝑗 = −𝑝𝛿𝑖𝑗 +

(

𝜕𝑥𝑖
(

𝑢𝑗
)⟂ +

(

𝜕𝑥𝑖
)⟂

𝑢𝑗
)

. (2)
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In two spatial dimensions, given a vector 𝑣 = (𝑣1(𝑥1, 𝑥2), 𝑣2(𝑥1, 𝑥2)) or the differential operator 𝜕𝑥𝑖 = (𝜕𝑥1 , 𝜕𝑥2 ), we denote by 
𝑣⟂ = (−𝑣2, 𝑣1) and (𝜕𝑥𝑖 )⟂ = (−𝜕𝑥2 , 𝜕𝑥1 ) the counterclockwise rotation of 𝑣 or 𝜕𝑥𝑖  by an angle of 𝜋∕2. Although in three dimensions, 
terms in the viscosity tensor with odd symmetry were known in the context of anisotropic fluids [2], Avron noticed that in two 
dimensions, odd viscosity and isotropy can hold at the same time, [3]. Despite the recently increasing interest of the mathematical 
and physical community in fluids with odd viscosity effects, there are not so many mathematical works considering this setting.

Recently, in [4], the authors establish a well-posedness theory in Sobolev spaces for a system of incompressible non-homogeneous 
fluids with odd viscosity given by (2). A well-posedness theory in Besov spaces was later proved in [5]. Remarkably, in this last 
paper the authors manage to prove the solution is asymptotically global in the sense that the lifespan grows as the density tends to 
homogeneity.

Recently, in [6], the authors obtained three new models for capillary–gravity surface waves with odd viscosity through a multi-
scale expansion in the steepness of the wave. The multi-scale expansion approach (cf. [7,8]) reduces the full system to a cascade of 
linear equations which can be closed up to some order of precision. The derived models in [6] consider effects of both gravity and 
surface tension forces generalizing those in [9,10]. One of the asymptotic models studies the unidirectional surface waves, given by 
the dispersive equation

2𝑓𝑡 + 𝛼0𝛬[𝑓𝑡] =
1
𝜀
{

𝑓𝑥 +[𝑓 ] + (𝛼0 − 𝛽)[𝑓𝑥𝑥]
}

+ [(𝛬𝑓 )2] − [[, 𝑓 ]][𝛬𝑓 ] + (𝛼0 − 𝛽)[[, 𝑓 ]]𝛬3𝑓, (3)

where 𝑓 ∶ [0, 𝑇 ] × T → R. Here 𝜀 is known as the steepness parameter and measures the ratio between the amplitude and the 
wavelength of the wave, 𝛼0 is linked to the Reynolds number and represents the ratio between gravity and odd viscosity forces. 
In this paper we assume this parameter to be strictly positive. Finally, 𝛽 is the Bond number comparing the gravity and capillary 
forces. Notice that (3) conserves the total mass of water for periodic domains and for waves that decay fast enough at infinity. 
Besides the derivation of the model (3) the authors in [6] showed the problem is locally well-posed in 𝐻3(R) for 𝛼0 > 0, without 
any assumption on 𝛽. Furthermore, for 0 < 𝛼0 = 𝛽, the problem admits a distributional solution in 𝐻1.5(R).

The main result provided is this manuscript shows the existence of traveling waves for Eq.  (3) and reads as follows:

Theorem 1.1.  Let 0 < 𝛼0 ≠ 𝛽 and 𝑚 ≥ 1. Then there exists an open interval 𝐼 ⊂ R containing 0, and a one-dimensional curve 𝑠 ↦ (𝑐𝑠, 𝜑𝑠)
with 𝑠 ∈ 𝐼 , such that

𝑓0(𝑥) = 𝜑𝑠(𝑥)

is an 𝑚-fold traveling wave solution to (3) with constant speed 𝑐𝑠.

Remark 1.2.  For 0 < 𝛼0 = 𝛽, one can mimic the proof of Theorem  1.1 and recover the same result. Notice that for 0 < 𝛼0 = 𝛽, 
the singular commutator term [[, 𝑓 ]]𝛬3𝑓 is not present, and there is no need to invoke the commutator Lemma  2.1 to show the 
analogue of Proposition  3.1.

The literature regarding the study of permanent progressive waves, as solitary and traveling waves, is a key area of interest. 
These waves, also known as steady waves, propagate without changing their shape over time. Given the significant complexity of 
the classical water wave problem, numerous approximate models have been studied since the early years. These models are formally 
derived through various scaling limits. Perhaps the canonical example is the so called Korteweg–de Vries (KdV) equation

𝑢𝑡 + 3(𝑢2)𝑥 + 𝑢𝑥𝑥𝑥 = 0,

to model propagation of surface water waves with small amplitudes and long wavelengths in a channel, [11,12]. The KdV equation 
includes the essential effects of nonlinearity and dispersion. The mathematical theory for the KdV equation is well-known, featuring 
a theory of well-posedness and a thorough understanding of the stability properties of solitary and traveling waves, [13–16]. 
Similarly, there have been other successful models where the existence of traveling waves have been extensively studied such as 
the Fornberg–Whitam equation [17]

𝑢𝑥𝑥𝑡 − 𝑢𝑡 +
9
2
𝑢𝑥𝑢𝑥𝑥 +

3
2
𝑢𝑢𝑥𝑥𝑥 −

3
2
𝑢𝑢𝑥 + 𝑢𝑥 = 0,

or the Camassa–Holm equation [18,19]

𝑢𝑡 − 𝑢𝑡𝑥𝑥 + 3𝑢𝑢𝑥 + 2𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥.

For the former, traveling wave solutions of kink-like and antikink-like type were recently investigated in [20] and the references 
therein. The latter, has been deeply analyze and all types of traveling waves solutions are classified such as peakons, cuspons, 
stumpons, and composite waves, cf. [21–23].

To the best of the author’s knowledge, Theorem  1.1 seems to be the first rigorous result regarding the existence of traveling 
waves solutions for fluids with odd viscosity effects.
2 
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Plan of the paper
In Section 2, we present the notation used throughout the article as well as some auxiliary results. In particular, we provide a 

commutator estimate for the Hilbert transform in Hölder spaces and recall basic tools in bifurcation theory. In Section 3 we introduce 
the formulation of the problem as well as the function spaces that will be used in order to implement the Crandall–Rabinowitz 
theorem. In Section 3.1 we study the spectral properties of the linearized operator and check such linear operator is a Fredholm 
operator of zero index. Finally, we also study the kernel and the range to verify the transversality condition. In Section 3.2, gathering 
the different results provided previously, we invoke the Crandall–Rabinowitz theorem to show the proof of Theorem  1.1.

2. Notation and auxiliary results

For a function 𝑓 ∈ T = R∕2𝜋Z with values in R, we define the Hölder norms as

‖𝑓‖𝐶0(T) = sup
𝑥∈T

|𝑓 |, ‖𝑓‖𝐶𝑘(T) = ‖𝑓‖𝐶0(T) +
𝑘
∑

𝓁=1

‖

‖

‖

𝜕𝓁𝑥𝑓
‖

‖

‖𝐶0(T)
, 𝑘 ∈ N,

‖𝑓‖𝐶𝛼 (T) = ‖𝑓‖𝐶0(T) + sup
𝑥1 ,𝑥2∈T,𝑥1≠𝑥2

|𝑓 (𝑥1) − 𝑓 (𝑥2)|
|𝑥1 − 𝑥2|𝛼

, 0 < 𝛼 < 1,

‖𝑓‖𝐶𝑘,𝛼 (T) = ‖𝑓‖𝐶𝑘−1(T) +
‖

‖

‖

𝜕𝑘𝑥𝑓
‖

‖

‖𝐶𝛼 (T)
, 𝑘 ∈ N, 0 < 𝛼 < 1.

The Banach space of continuous functions for which the above norms are finite will be denoted 𝐶𝑘(T;R) and 𝐶𝑘,𝛾 (T;R). The linear 
operator  refers to the Hilbert transform in the periodic setting and is given by 

[𝑓 ](𝑥) = 1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝑓 (𝑦)

tan
(

𝑥−𝑦
2

)𝑑𝑦, (4)

and 𝛬 = 𝜕𝑥 the Zygmund operator is defined as 

𝛬[𝑓 ](𝑥) = 1
4𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝑓 (𝑥) − 𝑓 (𝑥 − 𝑦)
sin2( 𝑦2 )

𝑑𝑦. (5)

Moreover, given an operator 𝖳, we define the commutator as [[𝖳, 𝑓 ]][𝑔] = 𝖳(𝑓𝑔) − 𝑓𝖳(𝑔).
We will denote with 𝐶 a positive generic constant that depends only on fixed parameters. Note also that this constant might 

differ from line to line.
Next, we show a commutator estimate for the Hilbert transform  in Hölder spaces. Similar commutator estimates to the one 

provided in this article can be found in [24, Lemma B.1] in the context of water waves or [25, Lemma 2.2] for the interface Stokes 
flow problem. However, to the best of the authors knowledge, the estimate provided here does not follow from the previous results.

Lemma 2.1.  Let 𝛼 ∈ (0, 1), 𝑎 ∈ 𝐶2,𝛼(T), 𝑏 ∈ 𝐶1,𝛼(T). Then, we have that 
‖

‖

[[, 𝑎]][𝑏′]‖
‖𝐶1,𝛼 (T) ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶1,𝛼 (T) . (6)

Proof.  In order to ease the notation, we denote by 𝛩(𝑥) ∶= [[, 𝑎]][𝑏′](𝑥). Using the definition of  in (4) we readily check that

𝛩(𝑥) = 1
2𝜋
p.v.∫

𝜋

−𝜋

(𝑎(𝑦) − 𝑎(𝑥))

tan
(

𝑥−𝑦
2

) 𝑏′(𝑦)𝑑𝑦 = − 1
2𝜋
p.v.∫

𝜋

−𝜋

(𝑎(𝑦) − 𝑎(𝑥))

tan
(

𝑥−𝑦
2

) (𝑏(𝑥) − 𝑏(𝑦))′ 𝑑𝑦.

Using integration by parts, we have that

𝛩(𝑥) = 1
2𝜋
p.v.∫

𝜋

−𝜋

(

𝑎′(𝑦)
tan( 𝑥−𝑦2 )

+
(𝑎(𝑦) − 𝑎(𝑥))
2 sin2( 𝑥−𝑦2 )

)

(𝑏(𝑥) − 𝑏(𝑦)) 𝑑𝑦.

Using the change of variable 𝑦̃ = 𝑥 − 𝑦 and further manipulation yields

𝛩(𝑥) = 1
4𝜋
p.v.∫

𝜋

−𝜋

(

2𝑎′(𝑥 − 𝑦̃) sin( 𝑦̃2 ) cos(
𝑦̃
2 ) − (𝑎(𝑥) − 𝑎(𝑥 − 𝑦̃))

sin2( 𝑦̃2 )

)

(𝑏(𝑥) − 𝑏(𝑥 − 𝑦̃)) 𝑑𝑦̃.

From now on, we will just write 𝑦 instead of 𝑦̃. Taking into account that 
1

sin2(𝑦)
≤ 𝑔(|𝑦|) 1

𝑦2
, 0 < |𝑦| < 𝜋, |sin(𝑦) − 𝑦| ≤ 1

6
|𝑦|3, 𝑦 ∈ R, (7)

where 𝑔(|𝑦|) ∶ (0, 𝜋) → [0,∞) is a bounded function, we find that

|𝛩(𝑥)| ≤ 𝐶p.v.∫
𝜋

−𝜋

(

‖𝑎‖𝐶1(T) |𝑦| + |(𝑎(𝑥) − 𝑎(𝑥 − 𝑦))|

𝑦2

)

|(𝑏(𝑥) − 𝑏(𝑥 − 𝑦))|𝑔(|𝑦|)𝑑𝑦 + l.o.t

Therefore, since 𝑔(|𝑦|) is a bounded function and 
|𝑎(𝑥) − 𝑎(𝑥 − 𝑦)| ≤ |𝑦| 𝑎 , |𝑏(𝑥) − 𝑏(𝑥 − 𝑦)| ≤ |𝑦|𝛼 𝑏 , (8)
‖ ‖𝐶1(T) ‖ ‖𝐶𝛼 (T)

3 
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we have that 
‖𝛩‖𝐶0(T) ≤ 𝐶 ‖𝑎‖𝐶1(T) ‖𝑏‖𝐶𝛼 (T) p.v.∫

𝜋

−𝜋

1
|𝑦|1−𝛼

𝑔(|𝑦|)𝑑𝑦 ≤ 𝐶 ‖𝑎‖𝐶1(T) ‖𝑏‖𝐶𝛼 (T) . (9)

To compute the higher order norm, we first notice that

𝛩′(𝑥) = 1
4𝜋
p.v.∫

𝜋

−𝜋

(

2𝑎′′(𝑥 − 𝑦̃) sin( 𝑦̃2 ) cos(
𝑦̃
2 ) −

(

𝑎′(𝑥) − 𝑎′(𝑥 − 𝑦̃)
)

sin2( 𝑦̃2 )

)

(𝑏(𝑥) − 𝑏(𝑥 − 𝑦̃)) 𝑑𝑦̃

+ 1
4𝜋
p.v.∫

𝜋

−𝜋

(

2𝑎′(𝑥 − 𝑦̃) sin( 𝑦̃2 ) cos(
𝑦̃
2 ) − (𝑎(𝑥) − 𝑎(𝑥 − 𝑦̃))

sin2( 𝑦̃2 )

)

(

𝑏′(𝑥) − 𝑏′(𝑥 − 𝑦̃)
)

𝑑𝑦̃.

To compute the 𝐶𝛼 norm for 𝛩′(𝑥), it is convenient to introduce the difference notation
𝛥𝑦𝑓 (𝑥 + ℎ) ∶= 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 + ℎ − 𝑦), 𝛥𝑦𝑓 (𝑥) ∶= 𝑓 (𝑥) − 𝑓 (𝑥 − 𝑦).

Hence, calculating the Hölder difference for ℎ > 0 yields

𝛩′(𝑥 + ℎ) − 𝛩′(𝑥) = 1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

𝛥𝑦𝑏(𝑥 + ℎ)
(

2𝑎′′(𝑥 + ℎ − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

− 𝛥𝑦𝑏(𝑥)
(

2𝑎′′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦

+ 1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

𝛥𝑦𝑏
′(𝑥 + ℎ)

(

2𝑎′(𝑥 + ℎ − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎(𝑥 + ℎ)

)

− 𝛥𝑦𝑏
′(𝑥)

(

2𝑎′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎(𝑥)

)

]

𝑑𝑦 = 𝖨1 + 𝖨2. (10)

Adding and subtracting 𝛥𝑦𝑏(𝑥 + ℎ)
(

2𝑎′′(𝑥 − 𝑦) sin( 𝑦2 ) cos(
𝑦
2 ) − 𝛥𝑦𝑎′(𝑥)

)

 in 𝖨1 we find that 𝖨1 = 𝖨11 + 𝖨12 where

𝖨11 =
1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

𝛥𝑦𝑏(𝑥 + ℎ)
[

(

2𝑎′′(𝑥 + ℎ − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

−
(

2𝑎′′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦,

𝖨12 =
1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

2𝑎′′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
]

(

𝛥𝑦𝑏(𝑥 + ℎ) − 𝛥𝑦𝑏(𝑥)
)

𝑑𝑦.

Similarly, adding and subtracting 𝛥𝑦𝑏′(𝑥 + ℎ)
(

2𝑎′(𝑥 − 𝑦) sin( 𝑦2 ) cos(
𝑦
2 ) − 𝛥𝑦𝑎(𝑥)

)

 in 𝖨2 we find that 𝖨1 = 𝖨21 + 𝖨22 where

𝖨21 =
1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

𝛥𝑦𝑏
′(𝑥 + ℎ)

[

(

2𝑎′(𝑥 + ℎ − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎(𝑥 + ℎ)

)

−
(

2𝑎′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎(𝑥)

)

]

𝑑𝑦,

𝖨22 =
1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

2𝑎′(𝑥 − 𝑦) sin(
𝑦
2
) cos(

𝑦
2
) − 𝛥𝑦𝑎(𝑥)

]

(

𝛥𝑦𝑏
′(𝑥 + ℎ) − 𝛥𝑦𝑏

′(𝑥)
)

𝑑𝑦.

Thus

𝛩′(𝑥 + ℎ) − 𝛩′(𝑥) = 𝖨11 + 𝖨12 + 𝖨21 + 𝖨22.

We will just bound the first two integrals 𝖨11, 𝖨12. The remaining terms 𝖨21, 𝖨22 can be estimated in a similar fashion. Let us start with 
𝖨12. We write

𝖨12 =
1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

𝑎′′(𝑥 − 𝑦)𝑦 cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
]

(

𝛥𝑦𝑏(𝑥 + ℎ) − 𝛥𝑦𝑏(𝑥)
)

𝑑𝑦

− 1
4𝜋
p.v.∫

𝜋

−𝜋

1
sin2( 𝑦2 )

[

𝑎′′(𝑥 − 𝑦)
(

sin(
𝑦
2
) −

𝑦
2

)

cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
]

(

𝛥𝑦𝑏(𝑥 + ℎ) − 𝛥𝑦𝑏(𝑥)
)

𝑑𝑦.

We just bound the first integral above, since using (7) the later is even easier to control and the same estimate follows. To that 
purpose we first notice that

𝛥𝑦𝑎
′ = 𝑦∫

1

0
𝑎′′(𝜆𝑥 + (1 − 𝜆)(𝑥 − 𝑦)) 𝑑𝜆,

and hence

|𝑎′′(𝑥 − 𝑦)𝑦 cos(
𝑦
) − 𝛥𝑦𝑎

′(𝑥)| ≤ |(1 − cos(
𝑦
))||𝑦|

1
|

(

𝑎′′(𝜆𝑥 + (1 − 𝜆)(𝑥 − 𝑦) − 𝑎′′(𝑥 − 𝑦))
)

| 𝑑𝜆

2 2 ∫0
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≤ 𝐶|𝑦|1+𝛼 ‖
‖

𝑎′‖
‖𝐶1,𝛼 (T) ≤ 𝐶|𝑦|1+𝛼 ‖𝑎‖𝐶2,𝛼 (T) . (11)

Thus, combining (7),(8) together with (11) we infer that 

𝖨12 ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶𝛼 (T) ℎ
𝛼p.v.∫

𝜋

−𝜋

1
|𝑦|1−𝛼

𝑑𝑦 ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶𝛼 (T) ℎ
𝛼 . (12)

Next, let us bound 𝖨11. We split the integral as

𝖨11 =
1
4𝜋
p.v.∫

2|ℎ|

−2|ℎ|
[…] 𝑑𝑦 + 1

4𝜋
p.v.∫(−𝜋,−2|ℎ|)∪(2|ℎ|,𝜋)

[…] 𝑑𝑦 ∶= 𝖩𝑖𝑛 + 𝖩𝑜𝑢𝑡.

Again we can add and subtract 𝑦2  and write

𝖩𝑖𝑛 =
1
4𝜋
p.v.∫

2|ℎ|

−2|ℎ|

1
sin2( 𝑦2 )

𝛥𝑦𝑏(𝑥 + ℎ)
[

(

𝑎′′(𝑥 + ℎ − 𝑦)𝑦 cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

−
(

𝑎′′(𝑥 − 𝑦)𝑦 cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦

+ 1
4𝜋
p.v.∫

2|ℎ|

−2|ℎ|

1
sin2( 𝑦2 )

𝛥𝑦𝑏(𝑥 + ℎ)
[

(

𝑎′′(𝑥 + ℎ − 𝑦)
(

sin(
𝑦
2
) − 𝑦

)

cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

−
(

𝑎′′(𝑥 − 𝑦)
(

sin(
𝑦
2
) − 𝑦

)

cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦.

Similarly as before, using (7) the second integral above less singular easier to control. Therefore, using (7)–(8) and writing again 

𝛥𝑦𝑎
′(𝑥) = 𝑦∫

1

0
𝑎′′(𝜆𝑥 + (1 − 𝜆)(𝑥 − 𝑦)) 𝑑𝜆, 𝛥𝑦𝑎

′(𝑥 + ℎ) = 𝑦∫

1

0
𝑎′′(𝜆(𝑥 + ℎ) + (1 − 𝜆)(𝑥 + ℎ − 𝑦)) 𝑑𝜆, (13)

we readily check that

𝖩𝑖𝑛 ≤ 𝐶 ‖𝑏‖𝐶𝛼 (T) ‖𝑎‖𝐶2(T) p.v.∫
2|ℎ|

−2|ℎ|

|𝑦|1+𝛼

𝑦2
𝑑𝑦 ≤ 𝐶 ‖𝑏‖𝐶𝛼 (T) ‖𝑎‖𝐶2(T) p.v.∫

2|ℎ|

−2|ℎ|

1
𝑦1−𝛼

𝑑𝑦

≤ 𝐶 ‖𝑏‖𝐶𝛼 (T) ‖𝑎‖𝐶2(T) ℎ
𝛼 . (14)

To bound the outer part 𝖩𝑜𝑢𝑡, we perform a similar estimate. First, we add and subtract 𝑦2  and write

𝖩𝑜𝑢𝑡 =
1
4𝜋 ∫(−𝜋,−2|ℎ|)∪(2|ℎ|,𝜋)

1
sin2( 𝑦2 )

𝛥𝑦𝑏(𝑥 + ℎ)
[

(

𝑎′′(𝑥 + ℎ − 𝑦)𝑦 cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

−
(

𝑎′′(𝑥 − 𝑦)𝑦 cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦

+ 1
4𝜋 ∫(−𝜋,−2|ℎ|)∪(2|ℎ|,𝜋)

1
sin2( 𝑦2 )

𝛥𝑦𝑏(𝑥 + ℎ)
[

(

𝑎′′(𝑥 + ℎ − 𝑦)
(

sin(
𝑦
2
) − 𝑦

)

cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥 + ℎ)
)

−
(

𝑎′′(𝑥 − 𝑦)
(

sin(
𝑦
2
) − 𝑦

)

cos(
𝑦
2
) − 𝛥𝑦𝑎

′(𝑥)
)

]

𝑑𝑦.

Once again we just bound the former integral, being the later less singular. On the one hand, we find that 
|𝑎′′(𝑥 + ℎ − 𝑦)𝑦 cos(

𝑦
2
) − 𝑎′′(𝑥 − 𝑦)𝑦 cos(

𝑦
2
)| ≤ ‖𝑎‖𝐶2,𝛼 (T) |𝑦|ℎ

𝛼 . (15)

On the other hand, recalling (13), we can write

𝛥𝑦𝑎
′(𝑥) − 𝛥𝑦𝑎

′(𝑥 + ℎ) = 𝑦∫

1

0

(

𝑎′′(𝜆𝑥 + (1 − 𝜆)(𝑥 − 𝑦)) − 𝑎′′(𝜆(𝑥 + ℎ) + (1 − 𝜆)(𝑥 + ℎ − 𝑦))
)

𝑑𝜆,

and hence 
|𝛥𝑦𝑎

′(𝑥) − 𝛥𝑦𝑎
′(𝑥 + ℎ)| ≤ |𝑦| ‖𝑎‖𝐶2,𝛼 (T) ℎ

𝛼 . (16)

Combining (15)–(16) together with (7)–(8) we conclude that 

𝖩𝑜𝑢𝑡 ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶𝛼 (T) ℎ
𝛼
∫(−𝜋,−2|ℎ|)∪(2|ℎ|,𝜋)

1
|𝑦|1−𝛼

𝑑𝑦 ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶𝛼 (T) ℎ
𝛼 . (17)

Therefore, collecting estimates (12), (14) and (17) we have shown that 
|𝖨11 + 𝖨12| ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶𝛼 (T) ℎ

𝛼 . (18)

Repeating the same estimates for 𝖨21 + 𝖨22 one can readily check that 

|𝖨 + 𝖨 | ≤ 𝐶 𝑎 𝑏 ℎ𝛼 . (19)
21 22 ‖ ‖𝐶1,𝛼 (T) ‖ ‖𝐶1,𝛼 (T)

5 
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Therefore, this concludes that

|𝛩′(𝑥 + ℎ) − 𝛩′(𝑥)| ≤ 𝐶 ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶1,𝛼 (T) ℎ
𝛼 ,

and thus together with (9) we have shown that

‖𝛩‖𝐶1,𝛼 (T) ≤ ‖𝑎‖𝐶2,𝛼 (T) ‖𝑏‖𝐶1,𝛼 (T) ,

proving the desired result. □

Remark 2.2 (Sharpened Commutator Estimate). The commutator bound in Lemma  2.1 can in fact be sharpened. Indeed, for 0 < 𝛼 < 1
and any 𝑎, 𝑏 ∈ 𝐶1,𝛼(T) one has 

‖

‖

[[, 𝑎]][𝑏′]‖
‖𝐶1,𝛼 (T) ≤ 𝐶 ‖𝑎‖𝐶1,𝛼 (T) ‖𝑏‖𝐶1,𝛼 (T) . (20)

The key observation is that, by differentiating under the integral in the periodic representation of the commutator and then 
integrating by parts, one arrives at 

𝛩′(𝑥) = − 𝑎′(𝑥)𝑏′(𝑥) + 𝑏′(𝑥)𝑎′(𝑥) − 1
2𝜋

p.v.∫
𝜋

−𝜋

𝑎(𝑥 − 𝑦) − 𝑎(𝑥)
2 sin2(𝑦∕2)

(

𝑏′(𝑥 − 𝑦) − 𝑏′(𝑥)
)

𝑑𝑦. (21)

The first two terms are controlled using the algebra property of Hölder spaces together with the boundedness of  on 𝐶𝛼 , which 
yields

‖

‖

𝑎′(𝑥)𝑏′(𝑥) + 𝑏′(𝑥)𝑎′(𝑥)‖
‖𝐶𝛼 ≤ 𝐶 ‖𝑎‖𝐶1,𝛼 ‖𝑏‖𝐶1,𝛼 .

For the singular integral term in (21), one may rewrite it as

− 1
2𝜋 ∫

𝜋

−𝜋

𝑎(𝑥 − 𝑦) − 𝑎(𝑥) − 𝑎′(𝑥) 𝑦
2 sin2(𝑦∕2)

(

𝑏′(𝑥 − 𝑦) − 𝑏′(𝑥)
)

𝑑𝑦 −
𝑎′(𝑥)
2𝜋 ∫

𝜋

−𝜋

𝑦
2 sin2(𝑦∕2)

(

𝑏′(𝑥 − 𝑦) − 𝑏′(𝑥)
)

𝑑𝑦,

and then follow the same lines of the proof of Lemma  2.1 to obtain the improved commutator estimate (20).
We refrain from stating this sharper bound as a separate lemma, since the weaker version in Lemma  2.1 already suffices for our 

purposes, and keeping the stronger estimate in the form of a remark helps maintain the clarity and flow of the exposition.

To conclude this section, we recall the Crandall–Rabinowitz Theorem which is a fundamental tool in bifurcation theory that will 
be used to provide the main result of this article. To that purpose, let us first recall the following definition: 

Definition 2.3 (Fredholm Operator). Let 𝑋 and 𝑌  be two Banach spaces. A continuous linear mapping 𝑇 ∶ 𝑋 → 𝑌  is a Fredholm 
operator if it fulfills the following properties,
(1) dim Ker 𝑇 < ∞,
(2) Im 𝑇  is closed in 𝑌 ,
(3) codim Im 𝑇 < ∞.

The integer dim Ker 𝑇 − codim Im 𝑇  is called the Fredholm index of 𝑇 .

Next, we shall discuss the index persistence through compact perturbations, cf. [26,27]. 

Proposition 2.4.  The index of a Fredholm operator remains unchanged under compact perturbations.

Now, we recall the classical Crandall–Rabinowitz Theorem whose proof can be found in [28].

Theorem 2.5 (Crandall–Rabinowitz Theorem). Let 𝑋, 𝑌  be two Banach spaces, 𝑉  be a neighborhood of 0 in 𝑋 and 𝐹 ∶ R × 𝑉 → 𝑌  be a 
function with the properties,
(1) 𝐹 (𝜆, 0) = 0 for all 𝜆 ∈ R.
(2) The partial derivatives 𝜕𝜆𝐹 , 𝜕𝑓𝐹  and 𝜕𝜆𝜕𝑓𝐹  exist and are continuous.
(3) The operator 𝜕𝑓𝐹 (𝜆0, 0) is Fredholm of zero index and Ker(𝐹𝑓 (𝜆0, 0)) = ⟨𝑓0⟩ is one-dimensional.
(4) Transversality assumption: 𝜕𝜆𝜕𝑓𝐹 (𝜆0, 0)𝑓0 ∉ Im(𝜕𝑓𝐹 (𝜆0, 0)).

If 𝑍 is any complement of Ker(𝜕𝑓𝐹 (𝜆0, 0)) in 𝑋, then there is a neighborhood 𝑈 of (𝜆0, 0) in R×𝑋, an interval (−𝑎, 𝑎), and two continuous 
functions 𝛷 ∶ (−𝑎, 𝑎) → R, 𝛽 ∶ (−𝑎, 𝑎) → 𝑍 such that 𝛷(0) = 𝜆0 and 𝛽(0) = 0 and

𝐹−1(0) ∩ 𝑈 = {(𝛷(𝑠), 𝑠𝑓0 + 𝑠𝛽(𝑠)) ∶ |𝑠| < 𝑎} ∪ {(𝜆, 0) ∶ (𝜆, 0) ∈ 𝑈}.

In this context, we will say that 𝜆  is an eigenvalue of 𝐹 .
0

6 
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3. Formulation of the problem

We shall look for traveling waves for 𝑓 and hence find 𝜑 such that
𝑓 (𝑡, 𝑥) = 𝜑(𝑥 − 𝑐𝑡),

for some speed 𝑐 ∈ R. Hence, the equation reduces to
𝐹 [𝑐, 𝜑](𝜉) = 0, 𝑥 ∈ [−𝜋, 𝜋],

where

𝐹 [𝑐, 𝜑](𝜉) = 2𝑐𝜑′(𝜉) + 𝑐𝛼0𝛬[𝜑′](𝜉) + 1
𝜀
{

𝜑′(𝜉) +[𝜑](𝜉) + (𝛼0 − 𝛽)[𝜑′′](𝜉)
}

+[(𝛬𝜑)2](𝜉)

− [[, 𝜑]][𝛬𝜑](𝜉) + (𝛼0 − 𝛽)[[, 𝜑]][𝛬3𝜑](𝜉)

= 2𝑐𝜑′(𝜉) + (𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)[𝜑′′](𝜉) + 1

𝜀
{

𝜑′(𝜉) +[𝜑](𝜉)
}

+[(𝜑′)2](𝜉)

− [[, 𝜑]][𝜑′](𝜉) − (𝛼0 − 𝛽)[[, 𝜑]][𝜑′′′](𝜉). (22)

Hence, note that we have the following line of trivial solutions:
𝐹 [𝑐, 0] = 0, more generally 𝐹 [𝑐, 𝑎] = 0,∀𝑎 ∈ R.

Define also the functional spaces

𝑋 ∶=

{

𝑓 ∈ 𝐶3,𝛼([0, 2𝜋],R), 𝑓 (𝜉) =
∑

𝑘≥1
𝑓𝑘 cos(𝑘𝜉) with norm ‖𝑓‖𝑋 = ‖𝑓‖𝐶3,𝛼

}

,

𝑌 ∶=

{

𝑓 ∈ 𝐶1,𝛼([0, 2𝜋],R), 𝑓 (𝜉) =
∑

𝑘≥1
𝑓𝑘 sin(𝑘𝜉) with norm ‖𝑓‖𝑌 = ‖𝑓‖𝐶1,𝛼

}

.

3.1. The linearized operator: spectral properties and transversality condition

The first result shows that the operator 𝐹  defined in (22) is well-defined and has the desired regularity. More precisely: 

Proposition 3.1.  The operator 𝐹 ∶ R ×𝑋 → 𝑌  given in (22) is well-defined and 𝒞 1(R ×𝑋 → 𝑌 ).

Proof.  Let us start checking that 𝐹  is well-defined. First of all, let us check the symmetry in the spaces. That is, if 𝜑(−𝜉) = 𝜑(𝜉), 
then

𝐹 [𝑐, 𝜑](−𝜉) = −𝐹 [𝑐, 𝜑](𝜉).

Indeed, it is straightforward to check that
𝜑′(−𝜉) = −𝜑′(𝜉), 𝜑′′(−𝜉) = 𝜑′′(𝜉), 𝜑′′′(−𝜉) = −𝜑′′′(𝜉).

Furthermore, note that

[𝜑′′](−𝜉) = 1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝜑′′(𝑦)

tan
(

−𝜉−𝑦
2

)𝑑𝑦 = − 1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝜑′′(−𝑦)

tan
(

𝜉−𝑦
2

)𝑑𝑦 = −[𝜑′′](𝜉).

We can check, in a similar way, that the symmetry property is satisfied by the remaining integral terms.
Let us move next to the regularity properties for the operator 𝐹 . We first notice that

[ℎ](𝜉) =
∑

𝑘≥1
ℎ𝑘

1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

cos(𝑘𝑦)

tan
(

𝜉−𝑦
2

)𝑑𝑦

= −
∑

𝑘≥1
ℎ𝑘

1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

cos(𝑘(𝜉 − 𝑧))

tan
(

𝑧
2

) 𝑑𝑧

=
∑

𝑘≥1
ℎ𝑘

1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

sin(𝑘𝜉) sin(𝑘𝑧) − cos(𝑘𝜉) cos(𝑘𝑧)

tan
(

𝑧
2

) 𝑑𝑧

=
∑

𝑘≥1
ℎ𝑘 sin(𝑘𝜉)

1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

sin(𝑘𝑦)

tan
(

𝑦
2

)𝑑𝑦

=
∑

𝑘≥1
ℎ𝑘 sin(𝑘𝜉),
7 
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and as a consequence we have in particular that  ∶ 𝑋 → 𝑌 . Furthermore, it is easy to check that the first three terms in (22) are 
easily bounded by 

‖2𝑐𝜑′(𝜉) + (𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)[𝜑′′](𝜉) + 1

𝜀
{

𝜑′(𝜉) +[𝜑](𝜉)
}

)‖𝑌 ≤ 𝐶‖𝜑‖𝑋 . (23)

Similarly, using the fact that  ∶ 𝑋 → 𝑌  and the Banach Algebra property for 𝑌  yields 
‖[(𝜑′)2](𝜉) + [[, 𝜑]][𝜑′](𝜉)‖𝑌 ≤ 𝐶‖𝜑‖2𝑋 . (24)

In order to bound the commutator term (𝛼0 − 𝛽)[[, 𝜑]][𝜑′′′](𝜉) we make use of estimate (6) derived in Lemma  2.1. Indeed, taking 
𝑎 = 𝜑 and 𝑏 = 𝜑′′ in Lemma  2.1 we have that 

‖

‖

[[, 𝜑]][𝜑′′′](𝜉)‖
‖𝐶1,𝛼 ≤ 𝐶 ‖𝜑‖𝐶2,𝛼 ‖

‖

𝜑′′
‖

‖𝐶1,𝛼 ≤ 𝐶 ‖𝜑‖2𝑋 . (25)

Altogether, we have show as claimed that 𝐹 ∶ R×𝑋 → 𝑌  given in (22) is well-defined. Next, let us demonstrate that 𝐹 ∈ 𝒞 1(R×𝑋 →
𝑌 ). To do so, it is enough to observe that 

‖𝜕𝜑𝐹 [𝑐, 𝜑1]ℎ − 𝜕𝜑𝐹 [𝑐, 𝜑2]ℎ‖𝑌 ≤ 𝐶‖ℎ‖𝑋‖𝜑1 − 𝜑2‖𝑋 , (26)

where

𝜕𝜑𝐹 [𝑐, 𝜑]ℎ = 2𝑐ℎ′ + (𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)[ℎ′′] + 1

𝜀
{

ℎ′ +[ℎ]
}

+ 2[𝜑′ℎ′] − [[, ℎ]][𝜑′]

− [[, 𝜑]][ℎ′] − (𝛼0 − 𝛽)[[, ℎ]][𝜑′′′] − (𝛼0 − 𝛽)[[, 𝜑]][ℎ′′′],

denotes the Gateaux derivative. Indeed, using again the Banach Algebra property we find that
‖2[(𝜑1 − 𝜑2)′ℎ′]‖𝑌 ≤ 𝐶 ‖

‖

(𝜑1 − 𝜑2)′‖‖𝑌 ‖

‖

ℎ′‖
‖𝑌 ≤ 𝐶 ‖

‖

𝜑1 − 𝜑2
‖

‖𝑋 ‖ℎ‖𝑋 .

Similarly, it easy to check that
‖[[, ℎ]][(𝜑1 − 𝜑2)′]‖𝑌 + ‖[[, (𝜑1 − 𝜑2)]][ℎ′]‖𝑌 ≤ 𝐶 ‖

‖

𝜑1 − 𝜑2
‖

‖𝑋 ‖ℎ‖𝑋 .

To conclude, we invoke Lemma  2.1 with 𝑎 = ℎ and 𝑏 = (𝜑1 − 𝜑2)′′ and 𝑎 = 𝜑1 − 𝜑2 and 𝑏 = ℎ′′ respectively to find that
‖[[, ℎ]][(𝜑1 − 𝜑2)′′′]‖𝑌 ≤ 𝐶 ‖ℎ‖𝐶2,𝛼 ‖

‖

(𝜑1 − 𝜑2)′′‖‖𝐶1,𝛼 ≤ 𝐶 ‖ℎ‖𝑋 ‖

‖

𝜑1 − 𝜑2
‖

‖𝑋 ,

‖[[, (𝜑1 − 𝜑2)]][ℎ′′′]‖𝑌 ≤ 𝐶 ‖

‖

𝜑1 − 𝜑2
‖

‖𝐶2,𝛼 ‖
‖

ℎ′′‖
‖𝐶1,𝛼 ≤ 𝐶 ‖ℎ‖𝑋 ‖

‖

𝜑1 − 𝜑2
‖

‖𝑋 ,

which shows estimate (26). Hence, we can conclude that the Gateaux derivative is continuous (indeed, it is Lipschitz) and then we 
can ensure the existence and continuity of the Fréchet derivative. □

In the following, we analyze the linearized operator at the trivial solution (𝑐, 0) given by 

𝜕𝜑𝐹 [𝑐, 0]ℎ(𝜉) = 2𝑐ℎ′(𝜉) + (𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)[ℎ′′](𝜉) + 1

𝜀
{

ℎ′(𝜉) +[ℎ](𝜉)
}

. (27)

More precisely, we study the Fredholm index of the operator (27). 

Proposition 3.2.  For 𝑐 ≠ 0, the operator 𝜕𝜑𝐹 [𝑐, 0] is Fredholm of zero index.

Proof.  Since the coefficient 𝑐𝛼0 + 𝛼0−𝛽
𝜀 ≠ 0 we have that

𝜕𝜑𝐹 [𝑐, 0]ℎ(𝜉) = ℎ(𝜉) +ℎ(𝜉),

where

ℎ(𝜉) = (𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)[ℎ′′](𝜉), ℎ(𝜉) = 2𝑐ℎ′ + 1

𝜀
{

ℎ′(𝜉) +[ℎ]
}

.

The principal part of the linear operator ℎ is an isomorphism from 𝑋 to 𝑌  and thus has zero index. Indeed, this follows by noticing 
that for ℎ ∈ 𝑋 we have that

ℎ(𝜉) = −(𝑐𝛼0 +
𝛼0 − 𝛽

𝜀
)
∑

𝑘≥1
ℎ𝑘𝑘

2 sin(𝑘𝑥).

Moreover, for

𝑍 ∶=

{

𝑓 ∈ 𝐶2,𝛼([0, 2𝜋],R), 𝑓 (𝜉) =
∑

𝑘≥1
𝑓𝑘 sin(𝑘𝜉) with norm ‖𝑓‖𝑍 = ‖𝑓‖𝐶2,𝛼

}

,

the operator ℎ ∶ 𝑋 → 𝑍 is continuous. Therefore, the embedding 𝑍 ↪ 𝑌  is compact thus by Proposition  2.4, we conclude that 
(27) is Fredholm of zero index. □

The following result describes the kernel and range of the linearized operator. 
8 
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Proposition 3.3.  If ℎ(𝑥) =
∑

𝑘≥1
ℎ𝑘 cos(𝑘𝑥), we have that 

𝜕𝜑𝐹 [𝑐, 0]ℎ(𝑥) =
∑

𝑘≥1
ℎ𝑘 sin(𝑘𝑥)

{

−(2𝑐 + 1
𝜀
)𝑘 + 1

𝜀
− (𝑐𝛼0 +

𝛼0 − 𝛽
𝜀

)𝑘2
}

. (28)

Hence, for

𝑐𝑘 = 1
𝜀

(

1 − 𝑘 − (𝛼0 − 𝛽)𝑘2

𝑘(2 + 𝛼0𝑘)

)

, 𝑘 ≥ 1

we have that the kernel and the range of the linearized operator can be described as follows
Ker[𝜕𝜑𝐹 [𝑐𝑘, 0]] = ⟨cos(𝑘𝑥)⟩,

𝑌 ∕Img[𝜕𝜑𝐹 [𝑐𝑘, 0]] = ⟨sin(𝑘𝑥)⟩.

Moreover, the transversal condition is satisfied, i.e. for ℎ0 ∈ Ker[𝜕𝜑𝐹 [𝑐𝑘, 0]], we find that
𝜕𝑐𝜕𝜑𝐹 [𝑐𝑘, 0]ℎ0 ∉ Im[𝜕𝜑𝐹 [𝑐𝑘, 0]].

Proof.  Let us first show how to obtain expression (28). For ℎ(𝑥) =
∑

𝑘≥1
ℎ𝑘 cos(𝑘𝑥) we find that

ℎ′(𝜉) = −
∑

𝑘≥1
ℎ𝑘𝑘 sin(𝑘𝑥), [ℎ′′](𝜉) = −

∑

𝑘≥1
ℎ𝑘𝑘

2 sin(𝑘𝑥), [ℎ](𝜉) =
∑

𝑘≥1
ℎ𝑘 sin(𝑘𝜉).

Thus, recalling (27) and the previous identities we infer that (28) holds. From the expression of the linearized operator in Fourier 
series (28), it is clear that the kernel of 𝜕𝜑𝐹 [𝑐𝑘, 0] is generated by

⟨cos(𝑘𝑥)⟩.

Moreover, since the linearized operator is Fredholm of zero index, one has that the codimension of the range is one dimensional 
and thus we can ensure that

𝑌 ∕Img[𝜕𝜑𝐹 [𝑐𝑘, 0]] = ⟨sin(𝑘𝑥)⟩.

Finally, to check the transversal condition we have to differentiate the linear operator with respect to the parameter 𝑐 obtaining
𝜕2(𝜑,𝑐)𝐹 [𝑐, 0]ℎ(𝑥) =

∑

𝑘≥1
ℎ𝑘 sin(𝑘𝑥)

{

−2𝑘 − 𝛼0𝑘
2} .

Next, we evaluate it at the generator of the kernel:
𝜕2(𝜑,𝑐)𝐹 [𝑐𝑘⋆ , 0] cos(𝑘⋆𝑥) = sin(𝑘⋆𝑥)

{

−2𝑘⋆ − 𝛼0𝑘
2
⋆
}

.

for 𝑘⋆ ≥ 1. Since 𝛼0 > 0 we find that
𝜕2(𝜑,𝑐)𝐹 [𝑐𝑘⋆ , 0] cos(𝑘⋆𝑥) ∉ Img[𝜕𝜑𝐹 [𝑐𝑘⋆ , 0]],

and hence the transversal condition is satisfied. □

3.2. Proof of Theorem  1.1

Fix 𝑚 ≥ 1. In order to prove Theorem  1.1, let us introduce the symmetry 𝑚 in the spaces. For that, let us define

𝑋𝑚 ∶=

{

𝑓 ∈ 𝐶3,𝛼([0, 2𝜋],R), 𝑓 (𝜉) =
∑

𝑘≥1
𝑓𝑘 cos(𝑚𝑘𝜉) with norm ‖𝑓‖𝑋𝑚

= ‖𝑓‖𝐶3,𝛼

}

,

𝑌𝑚 ∶=

{

𝑓 ∈ 𝐶1,𝛼([0, 2𝜋],R), 𝑓 (𝜉) =
∑

𝑘≥1
𝑓𝑘 sin(𝑚𝑘𝜉) with norm ‖𝑓‖𝑌𝑚 = ‖𝑓‖𝐶1,𝛼

}

,

for any 𝑚 ≥ 1. In order to check that
𝐹 ∶ R ×𝑋𝑚 → 𝑌𝑚,

is well-defined we can use Proposition  3.1 but it remains to check the m-fold symmetry property. For that purpose, we have to 
check that if

𝜑(𝜉 + 2𝜋
𝑚

) = 𝜑(𝜉),

then

𝐹 [𝑐, 𝜑](𝜉 + 2𝜋 ) = 𝐹 [𝑐, 𝜑](𝜉).

𝑚

9 
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Note that is 𝜑 has the m-fold symmetry property, then all the derivatives also enjoy the same symmetry. Now, let us check the 
Hilbert term:

[𝜑′′](𝜉 + 2𝜋∕𝑚) = 1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝜑′′(𝑦)

tan
(

𝜉−𝑦+2𝜋∕𝑚
2

)𝑑𝑦 = 1
2𝜋

𝑝.𝑣.∫

𝜋

−𝜋

𝜑′′(𝑦 + 2𝜋∕𝑚)

tan
(

𝜉−𝑦+2𝜋∕𝑚−2𝜋∕𝑚
2

)𝑑𝑦

= [𝜑′′](𝜉).

Similar argument works for the other integral terms. Following Proposition  3.2 the linear operator is a Fredholm operator of zero 
index, and Proposition  3.3 gives us the expression of the linear operator in Fourier series:

𝜕𝜑𝐹 [𝑐𝑚, 0]ℎ(𝑥) =
∑

𝑘≥1
ℎ𝑘 sin(𝑚𝑘𝑥)

{

−(2𝑐𝑚 + 1
𝜀
)𝑘𝑚 + 1

𝜀
− (𝑐𝑚𝛼0 +

𝛼0 − 𝛽
𝜀

)(𝑘𝑚)2
}

.

Hence Proposition  3.3 gives us the one dimensionality of the kernel, which is now generated by 𝑘 = 1:

⟨cos(𝑚𝑥)⟩,

as well as the one co-dimensionality of the range. Finally, the transversal condition is satisfied in Proposition  3.3. Hence, 
Crandall–Rabinowitz theorem can be applied obtaining the main result of this paper.
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