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Resumen
El uso de algoritmos de Machine Learning se ha consolidado en astronomía como una
herramienta esencial capaz de tratar los volúmenes de datos que ésta genera. En este trabajo
se explora la aplicación de métodos supervisados y no supervisados en la caracterización de
fuentes astronómicas por medio de catálogos multifrecuencias. Así, se usaron DES, VISTA,
WISE y XMM-Newton como catálogos principales, además de SDSS y 2MASS en los datos
de validación.

Se aplicaron técnicas de reducción de dimensionalidad por medio de una PCA, junto a
métodos de clustering tales como Random Forest no supervisado y HDBSCAN para anali-
zar la capacidad de separar galaxias, cuásares y estrellas, usando únicamente información
fotométrica y flujos en rayos X. Además, se implementaron modelos de regresión basados
en Random Forest para la predicción de magnitudes en el infrarrojo medio y de parámetros
físicos derivados del ajuste de SEDs con CIGALE tales como la masa estelar, el SFR o la
fracción de AGN.

Los resultados valoran la incorporación de flujos en rayos X como una mejora sustancial
en la separación de poblaciones a costa de la reducción de estas mismas. Como remedio, se
añadió el uso de límites superiores, resultando en la introducción de ruido. En regresión,
la magnitud K resultó clave para la predicción en el infrarrojo medio y las propiedades
como la masa o la luminosidad estelar parecen responder bien a los métodos predictivos.
Este estudio confirma la utilidad de los métodos de Machine Learning en astronomía, a la
vez que señala sus limitaciones y posibles mejoras con datos más profundos, numerosos y
modelos más avanzados.

Palabras clave: Aprendizaje automático, Cartografiados astronómicos, Núcleos Activos
de Galaxias, Galaxias, XMM-Newton, SDSS, DES, VISTA, WISE.

Abstract
The use of Machine Learning algorithms has become a consolidated and essential tool
in astronomy, capable of handling the large volumes of data generated. In this work, we
explore the application of supervised and unsupervised methods for the characterization
of astronomical sources through multiwavelength catalogs. The main datasets employed
were DES, VISTA, WISE, and XMM-Newton, complemented with SDSS and 2MASS for
validation.

Dimensionality reduction techniques were applied using PCA, combined with clustering
methods such as unsupervised Random Forest and HDBSCAN, to analyze the ability to
separate galaxies, quasars, and stars using only photometric information and X-ray fluxes.
In addition, Random Forest regression models were implemented to predict mid-infrared
magnitudes and physical parameters derived from SED fitting with CIGALE, such as stellar
mass, SFR, and AGN fraction.

The results highlight the inclusion of X-ray fluxes as a substantial improvement for source
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separation, although at the cost of reduced sample size. As a solution, upper limits were
introduced, but these led to additional noise. For regression tasks, the K-band magnitude
proved to be key for mid-infrared predictions, while properties such as stellar mass and
luminosity showed good consistency with predictive models. This study confirms the use-
fulness of Machine Learning methods in astronomy, while also pointing out their limitations
and the potential for improvement with deeper, larger datasets and more advanced models.

Key words: Machine Learning, Astronomical Surveys, Active Galactic Nuclei, Galaxies,
XMM-Newton, SDSS, DES, VISTA, WISE.
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1. Introducción

1.1. Motivación
Las técnicas de Machine Learning (ML) se han convertido, a lo largo de la última década, en
una herramienta fundamental en la astronomía moderna. En un entorno donde es necesario
analizar una cantidad ingente de datos generados por telescopios, misiones y simulaciones,
cualidades como el tratamiento masivo de información son deseables e incluso necesarias.
Tradicionalmente, su contraparte algorítmica suele quedarse corta tratando con grandes
cantidades de datos complejos, generando un tiempo de computación que los hace mucho
menos eficientes [1]. A diferencia de los algoritmos tradicionales, el aprendizaje automático
se ve beneficiado por esta cualidad, poniendo un mayor énfasis en la calidad de los datos.
Estos han permitido clasificar eficientemente objetos celestes, detectar anomalías, e incluso
tratar de predecir eventos cósmicos. Por ejemplo, algunos algoritmos de ML han servido
como instrumento para identificar exoplanetas a partir de sus curvas de luz [2], han sido
usados en la clasificación de galaxias [3] o han permitido generar filtros de ruido para
depurar ondas gravitacionales [4]. Teniendo en consideración que la tendencia respecto al
volumen de datos astronómicos continúa creciendo exponencialmente con proyectos como
el observatorio Vera C. Rubin1 o el próximo gran observatorio de rayos-X NewAthena2, los
algoritmos de ML tienen por delante un ecosistema ideal que les beneficia en la exploración
del cosmos.

Así pues, la principal motivación detrás de este trabajo es la exploración de las capacidades
de métodos de ML supervisados y no supervisados en la construcción y validación de catá-
logos astronómicos. Sin embargo, los resultados y aplicaciones no deben estar restringidos
solo a ellos. Este estudio además pretende contribuir con sus resultados a otros campos
científico/técnicos con un entorno similar, tomando un carácter multidisciplinar.

1.2. Objetivos
Los objetivos pueden dividirse principalmente en dos puntos:

Comprobar la fiabilidad de separar y delimitar fuentes astronómicas por medio de
flujos y magnitudes fotométricas. Aún cuando las observaciones espectroscópicas son
precisas y permiten obtener propiedades de los objetos astronómicos, consumen un
mayor tiempo de observación que su contraparte fotométrica, generando en total
muchos menos datos. Además, los datos espectroscópicos no siempre están disponibles
para todas las fuentes. Así pues, uno de los objetivos es desarrollar un método de
clustering que permita separar clases astronómicas sencillas (cuásares, estrellas y
galaxias) mediante la disposición de un espacio que favorezca la separación de grupos.

Con métodos supervisados, estudiar la calidad de predicción de las magnitudes en
el infrarrojo medio (W1, W2 y W3) a partir de magnitudes y colores del infrarrojo
cercano y óptico, además de los flujos en X. Estos permiten asegurar un método para

1https://rubinobservatory.org/es
2https://www.cosmos.esa.int/web/athena#
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completar catálogos astronómicos donde puedan faltar datos en alguna de sus magni-
tudes. Además, aprovechar los algoritmos supervisados para ofrecer una alternativa a
los métodos de cálculo de propiedades intrínsecas de galaxias tales como la masa es-
telar, el star formation rate (SFR) o la fracción de AGNs, los cuales tradicionalmente
se han calculado por medio de algoritmos basados en el ajuste de SEDs.

1.3. Distribuciones espectrales de energía (SEDs) de fuentes as-
tronómicas

Con el objetivo de caracterizar las propiedades de los objetos astronómicos, existen dos
técnicas complementarias capaces de extraer información fundamental a partir de la luz
emitida por los objetos celestes. Estas son la fotometría y la espectroscopía

La fotometría es una técnica astronómica la cual mide el flujo o intensidad de energía que
emite un astro desde el cielo. La fotometría produce imágenes al someter a un instrumento
fotométrico, generalmente una CCD, a la exposición de los fotones procedentes de distintas
fuentes astronómicas en el cielo. A más fotones incidan sobre una región concreta, mayor
intensidad es generada en el mapa y por tanto, más intensa es una fuente [5].

Aún cuando la intensidad total o intensidad bolométrica es importante para caracterizar
fuentes mediante el flujo total de fotones, es más común realizar imágenes en distintas
bandas del espectro. Para ello se hace uso de los filtros, los cuales permiten limitar el número
de fotones a los pertenecientes a una banda conocida y por tanto limitar la capacidad
de intromisión de fuentes externas a las bandas de estudio. Los filtros además pueden
aportar información física cuya emisión está limitada a la sensibilidad de los instrumentos
de emisión. Por ejemplo, una característica fundamental de los cuásares es la emisión en
rayos X, así pues un estudio en esta banda permitirá delimitar mejor sus propiedades.

Para la medida de la intensidad en fotometría, por tradición histórica, se expresan en térmi-
nos de magnitudes relativas m o absoluta M . Por nomenclatura, también puede asociarse
a la magnitud en una banda el nombre del filtro, por ejemplo, la magnitud del filtro "g",
se denomina g y su magnitud absoluta, G.

Para una magnitud m genérica, su expresión matemática puede definirse como:

m−mref = −2,5 log

(
F

Fref

)
(1)

Donde mref es la magnitud de referencia. Históricamente, asociada al sistema VegaMAG,
donde el flujo de referencia es el flujo de la estrella Vega, aunque actualmente existen
sistemas basados en flujo como ABMAG y STMAG.

Las magnitudes relativas, como su nombre indica, reciben su nombre debido a su dependen-
cia del instrumento de medida y por tanto son relativas la posición espacial de la medición
[5]. Para asociar una medida absoluta a la fuente, se define la magnitud absoluta, por
medio del módulo de distancia:
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Figura 1: Imagenes multibanda referidas al mismo objetos astronómico. Fuente:
https://bigthink.com/starts-with-a-bang/photometry-astronomy

µ = m−M = 5 (log d− 1) (2)

Donde el valor de la distancia permite recuperar el promedio de fotones perdidos debido a
la expansión esférica de la radiación.

Las distintas bandas fotométricas a lo largo del espectro nos dan información sobre los
fenómenos físicos asociados a las distintas estructuras internas de la fuente, ver Fig.1. Este
trabajo se fundamenta en aprovechar la gran cantidad de datos fotométricos disponibles
en regiones diferentes del espectro para una gran diversidad de fuentes astronómicas y
optimizar la información que se puede obtener a partir de ellos.

La espectroscopía es la segunda técnica de medida astronómica por excelencia. Consiste
en representar la intensidad de la radiación medida en función de la longitud de onda a lo
largo de una banda en la imagen. Esta técnica permite generar un espectro característico
el cual contiene propiedades físico-químicas. Por ejemplo, es posible medir la velocidad
de rotación de una galaxia a partir del corrimiento al rojo de su espectro, además de la
metalicidad de su núcleo.

Fotometría y espectroscopia parten de una naturaleza similar: ambas toman mediciones
de fotones en bandas de longitud de ondas, sin embargo, la mayor diferencia radica en la
información que representan. La fotometría es capaz de dar una visión espacial gracias a
su intensidad asociada a sus dos coordenadas espaciales a costa de promediar los fotones
recibidos en la banda asociando un único valor de intensidad. La espectroscopia por el
contrario, pierde una dimensión espacial para bidimensionalizar el espectro de intensidad
- longitudes de ondas.

Por supuesto, en términos prácticos, la fotometría es una técnica menos costosa debido a
su menor tiempo de exposición y por tanto, por su mayor número de datos disponibles.
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Figura 2: Ejemplo de componentes de las SEDs en AGNs. Fuente: [6]

Las SEDs o Spectral Energy Distribution son representaciones de la energía emiti-
da por las fuentes astronómicas a lo largo del espectro electromagnéticos. Estas permiten
caracterizar propiedades de los cuerpos astronómicos debido a la información que ellas
aportan de las propiedades físicas y sus mecanismos de emisión. En general, coincidiendo
más adelante con la muestra de validación escogida, las SEDs son sensibles a clases concre-
tas de cuerpos astronómicos: estrellas, galaxias y núcleos activos de galaxias(AGNs). Los
AGNs son fenómenos celestes altamente energéticos que se desencadenan en el centro de
las galaxias cuando el agujero negro supermasivo central (SMBH) acreta materia proce-
dente de sus proximidades de forma continua, afectando potencialmente a la evolución de
la galaxia que lo hospeda.

A continuación, se detallan algunas de las ventajas que las SEDs pueden aportar a cada
una de las clases astronómicas antes expuestas.

Estrellas:

• Gracias a la forma de la SED y la longitud de onda de emisión máxima puede
derivarse su temperatura, ajustando la emisión a la de un cuerpo negro. Además,
el estudio de sus líneas de emisión y absorción pueden derivar su composición
química.

• Combinando medidas de su luminosidad y temperatura puede obtenerse el radio
de la estrella.

• Aplicando modelos de evolución estelar, en combinación con otras medidas,
puede derivarse su estado evolutivo.

Galaxias:

• Las SEDs son capaces de revelar información sobre la formación estelar, su
población estelar, el polvo que contiene o incluso, la presencia de AGNs.
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• Analizar los SEDs permiten reconstruir procesos físicos que ocurren en las ga-
laxias, así como sus procesos evolutivos. Ejemplos de esto son las emisiones en
el infrarrojo que pueden inferir la presencia de polvo en las galaxias mientras
que emisiones importantes en el UV puede revelar nueva zonas de formación
estelar.

Núcleo Activos de Galaxias (AGNs)

• Las SEDs de los AGNs son más complejas que las galaxias o estrellas debido a la
contribución de los distintos componentes que lo forman: su disco de acreción,
el toroide de polvo o la galaxia huésped (ver Fig. 2).

• El big blue bump (UV-óptico) en las SEDs de los AGNs es una propiedad ca-
racterística atribuido a su disco de acreción, mientras que el continuo en el
infrarrojo se atribuye a emisión por parte del polvo el toroide.

• Su modelizado permite determinar las contribuciones de los AGNs a la lumino-
sidad total de la galaxia, y por tanto estimar la tasa de formación estelar y el
impacto del AGN sobre la galaxia huésped.

• Líneas de emisión, como la serie Balmer del Hidrógeno, pueden afectar a la
observación de colores y ayudar en la determinación de redshifts fotométricos.

• Los AGNs pueden clasificarse basados en las propiedades de sus SEDs, ayudando
a separar las propiedades observacionales de las evolutivas.

Aun cuando la forma más precisa y efectiva para clasificar fuentes astronómicas sigue
siendo mediante observaciones espectroscópicas, padece de ser un método observacional
más costoso que la fotometría. Así, de forma alternativa, mediante fotometría, pueden
construirse SEDs que abarquen vastas partes del espectro electromagnético, de forma que,
mediante ajustes de SEDs “clásicos”, permitan derivar propiedades fundamentales de los
objetos estudiados.

En este trabajo, tal y como se indicaron en los objetivos, se utilizan catálogos fotométricos
para analizar la factibilidad de separar las distintas fuentes astronómicas limitando el uso
únicamente de fotometría, además de comparar la eficiencia de los métodos clásicos de
ajustes de SEDs con la aplicación de técnicas de aprendizaje automático para la obtención
de propiedades claves de galaxias.
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2. Metodología
Este trabajo acoge dos metodologías complementarias, las cuales son reunidas en torno al
aprovechamiento de catálogos astronómicos.

En primer lugar, la aplicación de técnicas de ML no supervisado. Los catálogos as-
tronómicos utilizados contienen una gran cantidad de datos recogidos en sondeos a gran
escala. Estos incluyen medidas fotométricas, clasificación de objetos (en algunos casos) y
propiedades derivadas. El tratamiento efectivo de estos datos es esencial para responder las
preguntas astrofísicas que requieren de un acercamiento más robusto capaz de manejar su
volumen y complejidad. Para este labor se usaron técnicas de ML no supervisadas, es decir,
se buscaron estructuras en nuestros datos aplicando técnicas de clustering, las cuales no
necesitan etiquetación previa.

En segundo lugar, los métodos de ML supervisados. Estos son usados para tratar
patrones, clasificar fuentes y predecir propiedades físicas con los datos disponibles. Los
métodos supervisados son especialmente útiles cuando se dispone de una muestra de entre-
namiento la cual se conocen las propiedades a predecir o clasificar, permitiendo al modelo
adaptarse para tomar predicciones específicas, tal como el tipo de objeto o la estimación
del SFR o el redshift.

Integrar ambas aproximaciones, permiten construir un entorno de trabajo capaz de fomen-
tar la extracción de resultados científicos de manera óptima a partir de grandes muestras
de datos.

2.1. Selección de muestras
En este trabajo se han formado distintas muestras procedentes de diferentes catálogos foto-
métricos. Debido a su naturaleza astronómica, todos los catálogos utilizados son públicos.
Los catálogos resultantes han sido agrupados según las bandas fotométricas que contienen:

Catálogo principal: Combinación de cuatro catálogos de distintas bandas, rayos X:
XMM-Newton, infrarrojo cercano: VISTA-VHS, infrarrojo medio: ALLWISE y
visible: DES; y que incluye todas las fuentes detectadas en el infrarrojo y en el
óptico en una selección de campos observados por XMM-Newton [7]. Los
catálogos en distintas bandas se cross-correlacionaron usando la herramienta x-match
desarrollada durante el proyecto ARCHES3, la cual permite cross-correlacionar un
número arbitrario de catálogos mediante estadística bayesiana proporcionando proba-
bilidad de asociación y no asociación[8]. Esto permitió asociar medidas fotométricas
en varias bandas a fuentes únicas. Este catálogo incluye todas las fuentes detectadas
en el infrarrojo en campos seleccionados observados con XMM-Newton, por lo tanto
se trata de un catálogo heterogéneo pero representativo de los diferentes tipos de
fuentes astronómicas (estrellas, galaxias, AGNs,...). La descripción detallada tanto
de la cross-correlación como de la muestra resultante se puede encontrar en [9].

3http://www.arches-fp7.eu/arches/localhost_88/arches/index.html
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Catálogo de validación: Dado que la mayor parte de nuestro catálogo principal no
contiene identificaciones, se utilizó un catálogo fotométrico, con clases de fuentes as-
tronómicas determinadas a partir de espectroscopia óptica, en su mayoría procedente
del SDSS4, pero también de otros cartografiados espectroscópicos como WiggleZ5,
GAMA6, OzDES DR17, 2QZ8 y el 6dF Galaxy Survey9. Esta compilación de clasifi-
caciones de fuentes astronómicas forma parte del proyecto VEXAS [10], que busca
contrapartidas en otras longitudes de onda de fuentes infrarrojas. A diferencia del
catálogo principal, aquellos objetos en los que fotometría procedente de VISTA no
estuviese disponible, sus magnitudes son sustituidas por las de 2MASS.

Catálogos de galaxias: Varios catálogos compilados con el objetivo de determinar
las propiedades de las galaxias (SFR, masa estelar, etc), con o sin un AGN en sus
centros, mediante el ajuste de sus SEDs. Estos catálogos combinan fotometría en
el óptico de VST-ATLAS 10, CFHTLS 11 (CanadaFranceHawaii Telescope Legacy
Survey), COSMOS/Subaru Suprime-Cam 12, Dark Energy Survey (DES) y Pan-
STARRS1 13 (PS1) , VISTA en el infrarrojo cercano, Spitzer/IRAC 14 y Spitzer
MIPS 15 en el medio y Herschel/PACS 16 y Herschel/SPIRE en el lejano 17 .

A continuación, se describen las principales características de los catálogos utilizados para
construir las muestras de trabajo.

2.1.1. X-ray Multi-Mirror Mission - Catálogo XMM-Newton

También conocido como XMM, XMM-Newton es el gran observatorio de rayos-X de la
agencia espacial europea (ESA). Su funcionamiento, basado en la cuenta de fotones y el
funcionamiento simultáneo de todos sus instrumentos a bordo, permite la obtención de
imágenes (y su fotometría asociada), espectros y curvas de luz en una misma observación.
Además, debido a su amplio campo de visión de 30 arcmin (FoV), permite la detección
y estudio de entre 50-100 fuentes por observación. Todo esto ha permitido que, aunque
el área total observada hasta ahora sea de solo ∼1300 deg2 (ver Fig. 3), se construya el
mayor catálogo de fuentes de rayos-X con datos por encima de 5 KeV hasta la fecha: el

4https://sdss.org/
5https://wigglez.swin.edu.au/site/forward.html
6https://www.gama-survey.org/
7https://www.mso.anu.edu.au/ozdes/DR1
8https://www.2dfquasar.org/
9http://www.6dfgs.net/

10https://www.eso.org/public/teles-instr/paranal-observatory/surveytelescopes/vst/
surveys

11https://www.cfht.hawaii.edu/Science/CFHTLS
12https://hsc-release.mtk.nao.ac.jp/doc/index.php/s17a-wide-cosmos
13https://outerspace.stsci.edu/display/PANSTARRS
14https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac
15https://irsa.ipac.caltech.edu/data/SPITZER/docs/mips
16https://www.cosmos.esa.int/web/herschel/pacs-overview
17https://www.cosmos.esa.int/web/herschel/spire-overview
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Figura 3: Mapa de apuntados de XMM-Newton. Fuente: XMM-SSC

XMM-Newton Serendipitous Source Catalog18.

En particular, se ha utilizado el catálogo 4XMM, cuya decimocuarta versión (Data Release
14) fue publicada en julio de 2024. Este catálogo contiene un total de un poco más de un
millón de detecciones, correspondientes a alrededor de 700.000 fuentes únicas, cubriendo
energías entre 0.2 y 12 keV.

2.1.2. Dark Energy Survey - DES

El Dark Energy Survey19 es un proyecto internacional destinado a la investigación de la
expansión acelerada del Universo y el crecimiento de estructuras a gran escala. El catálogo
cubre datos profundos en el espectro visible e infrarrojo cercano en unos 5.000 deg2 de área
en el hemisferio sur del cielo (1/8 del cielo, ver Fig. 4), detectando más de 300 millones de
fuentes [11]. El telescopio utilizado es el Telescopio Blanco de 4 m (Cerro Tololo, Chile)
equipado con la Dark Energy Camera (DECam), una cámara de 570 megapíxeles.

Su catálogo fotométrico cubre el óptico y parte del infrarrojo cercano en las siguientes
bandas y con las siguientes magnitudes límite: g (475 nm; 24.3 mag), r (635 nm; 24.1
mag), i (775 nm; 23.3 mag), z (925 nm; 22.5), Y (1,000 nm; 21.2 mag).

En resumen, se trata de un cartografiado profundo en 5 bandas, cubriendo 1/8 del cielo,
con un alcance fotométrico mucho más profundo que SDSS o 2MASS, diseñado para una
cosmología de precisión.

2.1.3. VISTA-VHS

El VISTA Hemisphere Survey (VHS) es un proyecto que tiene como objetivo observar de
forma uniforme, en la banda del infrarrojo cercano, el hemisferio sur, con la excepción
de algunas áreas seleccionadas para observaciones más profundas [12]. Se trata de un
mapeado amplio realizado con el telescopio VISTA (Visible and Infrared Survey Telescope
for Astronomy) en Cerro Paranal (Chile), usando cámara VIRCAM en el infrarrojo cercano.

El área total prevista es de ∼ 18,000 deg2 (ver Fig. 5) en varios filtros en el infrarrojo
18http://xmmssc.irap.omp.eu/cat.html
19https://www.darkenergysurvey.org/
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Figura 4: Mapa de cobertura de las misiones DES. Fuente: darkenergysurvey.org

Figura 5: Densidad de objetos (por grado al cuadrado) según la proyección de Mollweide para VHS DR5.
Fuente: NOIRLab

cercano. Los filtros usados en este trabajo y las magnitudes límite típicas para el VHS son:
J (1.25 µm; 20.2 mag), H (1.63 µm; 19.2 mag), Ks (2.15 µm; 18.1 mag).

2.1.4. WISE

La misión WISE (Wide-field Infrared Survey Explorer) fue un telescopio espacial de la
NASA lanzado en diciembre de 2009 con el objetivo de cartografiar todo el cielo en el
infrarrojo medio, en 4 bandas: W1: 3.4 µm; W2: 4.6 µm; W3: 12 µm y W4: 22 µm.

En este trabajo se usó el catálogo público AllWISE20, que contiene más de 700 millones de
fuentes detectadas en un muestreo de todo el cielo (all-sky, cobertura ∼41,253 deg2), con
una profundidad fotométrica (magnitudes límite) en cada banda de: W1: 16.5 mag; W2:
15.5 mag; W3: 11.2 mag; W4: 7.9 mag.

Para construir la muestra final multifrecuencia solo se tuvieron en consideración las
bandas W1, W2 y W3, es decir, las que tenían mayor profundidad fotométrica.

20https://wise2.ipac.caltech.edu/docs/release/allwise/
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2.1.5. Sloan Digital Sky Survey- SDSS

El SDSS21 es un proyecto de investigación iniciado en el año 2000 (con fases posteriores:
SDSS-I, II, III, IV y actualmente SDSS-V) con el objetivo de cartografiar una gran fracción
del cielo en el óptico. El instrumento principal es el telescopio de 2.5 m en Apache Point
Observatory (Nuevo México, EE. UU.). Su base de datos pública incluye fotometría y
espectroscopía para millones de estrellas, galaxias y AGNs.

El área fotométrica cubierta por el SDSS es de ∼14,555 deg2 (aproximadamente 1/3 del
cielo) en 5 filtros de banda ancha en las siguientes longitudes de onda y magnitudes límite
típicas: u (354 nm; 22 mag), g (477 nm; 22.2 mag), r (623 nm; 22.2 mag), i (763 nm; 21.3
mag), z (913 nm; 20.5 mag).

Para construir nuestra muestra de validación, aprovechamos la gran cantidad de fuentes
identificadas mediante espectroscopía en el SDSS, dividiéndolas en tres clases: estrellas,
galaxias y AGNs.

2.1.6. 2MASS

El proyecto 2MASS (1997-2001) fue el primero en realizar un mapa completo de todo el
cielo (∼41,253 deg2) en el infrarrojo cercano. Para ello usó dos telescopios gemelos de 1.3m
en Mt. Hopkins (Arizona, EE.UU.) y Cerro Tololo (Chile). La cobertura se realizó en tres
bandas fotométricas con las siguientes longitudes de onda y profundidad: J (1.25 µm; 15.8
mag), H (1.65 µm; 15.1 mag) y Ks (2.16 µm; 14.3 mag).

En resumen, el catálogo 2MASS22 contiene el primer mapa completo del cielo en el infra-
rrojo cercano (J, H, Ks), con cientos de millones de estrellas, galaxias y AGNs, sirviendo
de base para gran cantidad de estudios galácticos y extragalácticos.

2.2. Muestras finales multifrecuencia
En esta sección resumimos las características principales de las muestras utilizadas en este
trabajo. En la sección 3 se detallan las modificaciones realizadas a estas muestras para
poder aplicarles los métodos de ML seleccionados.

Catálogo principal: Compuesto por ∼ 370,000 fuentes infrarrojas en campos ob-
servados por XMM-Newton con fotometría en DES, VHS y WISE; filtros g, r, i, z,
J, H, Ks, W1, W2 y W3, ∼20,000 de ellas detectadas por XMM-Newton.

Catálogo de validación: Compuesto de ∼ 237,000 fuentes infrarrojas identifica-
das mediante espectroscopia óptica y con datos fotométricos en DES, VISTA/2MASS
y WISE: filtros g, r, i, z, J, H, Ks, W1, W2 y W3. De ellas, unas 5000 tienen además
datos en rayos-X.

21sdss.org
22https://irsa.ipac.caltech.edu/Missions/2mass.html
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Catálogos de galaxias: Se han utilizado varios catálogos de galaxias y AGNs,
basados en fuentes de rayos X y construidos a partir de observaciones multifrecuencia
en áreas determinadas del cielo a partir del cruce del catálogo COSMOS con VISTA.

2.3. Aprendizaje automático
Una distinción clave respecto al ML es la diferencia entre los métodos supervisado y no su-
pervisado. Los métodos supervisados aprenden de datos catalogados y entrenados a través
de un modelo, donde la variable predicha en la salida (por ejemplo, la clasificación de la
fuente astronómica) es conocida a priori. Esta aproximación es útil para tareas como la cla-
sificación de fuentes o la estimación del redshift de la galaxia. Los métodos no supervisados
son útiles para tareas donde los datos no están catalogados y buscan descubrir patrones
ocultos o grupos en los datos. A través del clustering pueden agruparse galaxias de tipos
similares o detectar fenómenos astronómicos inesperados (outliers). Ambos métodos son
muy potentes por sí mismos y su combinación permite explorar e interpretar el universo
más eficientemente.

Ambos métodos confían en la división de los datos en dos grupos principales:

Las características o features: son propias de los métodos tanto supervisados
como no supervisados, comprenden todos los datos necesarios para implementar el
método en los algoritmos supervisados, o para desarrollar el espacio de parámetros en
los algoritmos no supervisados. En nuestro caso se trata de las magnitudes y colores
derivados a partir de ellas.

Los objetivos o targets: esta distinción es propia de los métodos supervisados, y
comprenden aquellas propiedades de los objetos astronómicos que se quieren predecir
(masa estelar, SFR, etc) o su clasificación (estrella, galaxia o AGN).

Así pues, un algoritmo no supervisado solo depende de características mientras que uno
supervisado, necesita muestras de entrenamiento con características/clases a predecir co-
nocidas.

2.3.1. Reducción de la dimensionalidad

Tras la construcción del catálogo multibanda, surge la necesidad de reducir la cantidad de
variables involucradas. Esto no solo facilita la visualización y el análisis posterior, sino que
también permite descubrir patrones más claros dentro del conjunto de datos. A menudo,
cuando se trabaja con grandes dimensiones, se pierde perspectiva de la estructura global
del sistema, y los grupos naturales que podrían existir quedan difuminados o distorsionados
por el ruido o la redundancia entre variables.

La reducción de dimensionalidad tiene como objetivo transformar el espacio original en otro
de menor dimensión, procurando conservar la mayor parte de la información relevante. Esta
estrategia se engloba dentro del aprendizaje no supervisado, ya que actúa directamente
sobre los datos sin necesidad de contar con etiquetas previas.
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En este estudio se han explorado el método del Análisis de Componentes Principales
(PCA)

Otros enfoques, como los métodos de aprendizaje sobre variedades (por ejemplo, Locally
Linear Embedding), se han usado en trabajos previos, que utilizan una muestra similar a
las usadas en este, con resultados no concluyentes [7]. Estos métodos buscan modelar la
estructura geométrica de los datos cuando se sospecha que se encuentran distribuidos sobre
una superficie de dimensión inferior. Sin embargo, en este trabajo se ha optado por métodos
lineales que resultan más sencillos de interpretar y presentan una mayor estabilidad frente
al ruido en los datos.

Todas las técnicas mencionadas han sido implementadas utilizando bibliotecas científicas
en Python, concretamente Scikit-learn23 y AstroML24, ampliamente reconocidas en el
ámbito de la astronomía.

2.3.2. Análisis de Componentes Principales - PCA

El PCA es una técnica estadística que permite identificar las direcciones en las que los
datos presentan mayor variabilidad. A través de esta transformación lineal, se generan
nuevas variables, denominadas componentes principales, que son combinaciones lineales de
las variables originales y están ordenadas según la cantidad de varianza que explican.

La información esencial del sistema queda concentrada en la matriz de covarianza de los
datos, la cual es simétrica y definida positiva. Gracias a estas propiedades, es posible llevar
a cabo una diagonalización de dicha matriz: se encuentran una base ortonormal de vectores
propios (autovectores) y sus correspondientes valores propios (autovalores). Estos vectores
forman los ejes del nuevo sistema de referencia definido por la PCA, y los autovalores
indican la varianza explicada por cada uno de ellos. Así, los vectores propios con mayor
autovalor corresponden a los componentes que mejor capturan la estructura del sistema.

Además, el método permite extraer una matriz de transformación, la cual proyecta cual-
quier vector del espacio original al nuevo sistema de componentes principales. Matemáti-
camente, siendo x = (x1, x2, . . . , xn)

⊤ el vector de variables originales, la transformación
PCA se expresa como: +

z = W⊤ · x

donde W es la matriz de transformación y z = (z1, z2, . . . , zm)
⊤ representa el nuevo vector

de variables transformadas.

Desarrollando esta expresión por componentes:
23https://scikit-learn.org/stable/
24https://www.astroml.org/
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z1 = w11x1 + w21x2 + · · ·+ wn1xn

z2 = w12x1 + w22x2 + · · ·+ wn2xn

...
zm = w1mx1 + w2mx2 + · · ·+ wnmxn

Cada componente zi puede interpretarse como una combinación ponderada de las variables
originales, en la que los coeficientes wij indican la contribución relativa de cada variable xj

al componente zi.

2.4. Clustering
Los métodos de clustering o búsqueda de grupos permiten agrupar datos con características
similares, aun cuando el espacio de parámetro dificulte disceñir estas relaciones. Este tipo
de algoritmos se basan en un agrupamiento según la distancia relativa en el espacio y por
tanto definir una similitud a partir de ello.

2.4.1. Random Forest (Clustering) - URF

El algoritmo Random Forest (RF) es un método de aprendizaje por conjunto basado en
la construcción de un gran número de árboles de decisión. Cada uno de ellos es entrenado
usando una porción aleatoria de los datos (bootstrap), además de un subconjunto aleatorio
de features por cada división. Aún cuando su uso más común es en ML supervisado, cuenta
con una forma de ser usado en clustering.

En el método no supervisado, RF no cuenta con etiquetas reales para entrenar. En su
lugar, se genera un conjunto de datos artificiales imitando su distribución marginal pero
eliminando las correlaciones entre variables. A continuación, se toma un algoritmo RF de
clasificación binaria para distinguir entre el conjunto de datos reales y los sintéticos. Así,
la clave del método es el hecho de que RF intente discriminar ambos conjuntos mediante
sus árboles de decisión. Entre los árboles, puede capturarse la estructura interna y las
relaciones presente en los datos originales.

Como resultado, se obtiene una matriz de proximidad entre pares de observaciones: se
evalúa la fracción de árboles en los que ambas poblaciones terminan en la misma hoja. Si
hay una mayor proporción, existe una alta proximidad entre ellos indica que los puntos
comparten características similares según el criterio de árboles. A partir de esta matriz
puede construirse una matriz de distancia a partir de:

Dij =
√

1− Pij (3)

donde (Dij) es la distancia entre los objetos i y j, y Pij, su proximidad media. Debido a
que la probabilidad de Pii = 1, la matriz de distancia tiene además, una diagonal nula.
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Este método es muy usado para la identificación de datos anómalos, tal y como se usa
en [13]. En este trabajo se utilizará unicamente para construir una matriz de distancia.
Esta matriz permitirá adoptar de una mejor métrica al método de separación de grupos
en clustering.

2.4.2. HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
[14, 15, 16] es un algoritmo no supervisado basado en DBSCAN (Density-based Spatial
Clustering of Applications with Noise) [17, 18].

DBSCAN es un algoritmo de clustering basado en densidad, es decir, permite encontrar
clusters a partir de sobre-densidades de puntos en el espacio de parámetros. DBSCAN
requiere dos hiperparámetros principales: eps, el cual define la distancia máxima entre dos
puntos para ser considerado parte del mismo grupo, y min_samples, cuyo valor define cual
es la densidad mínima a partir de la cual, un conjunto de puntos pueda ser considerado
denso.

El algoritmo define tres clases de puntos, esenciales para determinar grupos:

Puntos núcleos: Es un punto el cual se encuentra con una densidad cuyo valor es
al menos min_samples en una hiperesfera de radio eps.

Punto de borde: Es un punto el cual está rodeado de puntos a la distancia eps,
pero no es en sí un punto núcleo (no satisface la condición de densidad).

Punto de ruido: Aquellos puntos que ni son puntos núcleos ni puntos de borde.

A partir de esta clasificación, se definen cada grupos a partir de delimitar aquellos puntos
núcleos delimitados por puntos bordes. Finalmente se crea un grupo de ruido para los
puntos de sobrantes.

HDBSCAN es una evolución de este algoritmo. Este, en vez de contar con un radio fijo
eps, cuenta con un radio creciente. Esto es debido a que los grupos al disminuir el valor
de eps hace que los grupos o se dividan en grupos más pequeños o se mantengan iguales.
Así, haciendo un barrido creciente, se buscan aquellos grupos que persistan más a lo largo
del proceso, siendo considerado los grupos óptimo [19].

2.5. Regresión
El punto clave de los algoritmos de regresión es obtener predicciones de una o varios
objetivos a partir de las características o predictores.

Su mayor diferencia con los métodos algorítmicos clásico reside en que los métodos de ML
de regresión puede realizar predicciones de uno o más targets mucho más rápidas, además
de adaptarse mejor a las relaciones subyacentes de los grupos de datos.

En especial, en este trabajo se ha usado el método de RF de regresión.
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Figura 6: Imagen del proceso de separación entre puntos núcleos, borde y ruido. Fuente: [19]

2.5.1. Random Forest (Regresión)

La aplicación de RF en regresión sigue la misma lógica que el RF no supervisado: se
construyen el conjunto de árboles de decisión a partir de muestras bootstrap de los datos
originales, pero en lugar de definir una matriz de distancia, cada árbol genera una predicción
numérica para el objetivo. La predicción final del modelo se obtiene a partir de un promedio
de las predicciones individuales de todos los árboles.

A diferencia de los métodos paramétricos, los cuales buscan obtener una única ecuación que
describa la relación entre predictores y respuesta, los modelos basados en árboles dividen el
espacio de parámetros en regiones más sencillas, permitiendo captar mejor las estructuras
no lineales de los datos.

En especial, es importante denotar el uso del bagging, el cual es clave en su funcionamiento:
si cada árbol es entrenado con una muestra distinta de los datos y se introduce una carácter
aleatorio en la selección de los predictores permite reducir la correlación entre los árboles,
disminuyendo la varianza del modelo. De este modo el modelo es capaz de equilibrar el
sesgo (desviación de las predicciones del modelo con los datos reales) con la varianza
(permitiendo evitar el overfitting o sobreadaptación a los datos de entrenamiento [20].
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Figura 7: Predicción de objetivo por medio de árboles de decisión en un problema de regresión. Fuente:
[20]

A lo largo de este trabajo, para evaluar el rendimiento de estos algoritmos, se usan los
estadísticos usuales en este tipo de análisis:

σNMAD. Es una métrica de la dispersión, muy usada en la astronomía para evaluar
la precisión de predicciones. Su expresión es:

σNMAD = 1,4826×mediana (|∆z −mediana(∆z)|) (4)

Donde ∆z es la desviación entre el valor predicho y el valor real Es una desviación
resistente a los valores anómalos debido a contar con la mediana en vez de la media.

Fracción de valores anómalos η(%): Es una métrica que permite calcular el
porcentaje de objetos astronómicos los cuales se desvían de la predicción esperada.
Se define según la expresión:

η =
N

(
|∆z|

1+zreal
> 0,15

)
Ntot

(5)

2.6. Ranking de características
Algunos métodos como la PCA o el RF cuenta con mecanismos integrados capaces de
señalar las características que son más importantes para el sistema. En el caso de la PCA,
por ejemplo, se utiliza la varianza explicada como medida: aquellas variables que apor-
tan mayor varianza en los componentes principales son aquellas que mejor representan la
información del sistema, y por tanto son más relevantes para este.

Random Forest supervisado usa un sistema distinto. Mediante el MDI (Mean Decrease
Impurity) es capaz de cuantificar cuanto contribuye una característica a mejorar la pureza
de los nodos entre los árboles de decisión que componen un modelo.

Esta impureza refleja cuan heterogéneo es un nodo. Si una rama en la que se ha variado
una característica se mantiene más o menos constante, indica como esa característica es
menos importante para la rama. Estas ramas además son ponderadas por el número de
observaciones que caen en el mismo nodo, dando la importancia a aquellas ramas que mejor
expliquen el total de los datos.

Como resultado se obtiene un valor numérico: cuanto mayor es el MDI de una variable,
mayor es su relevancia en el modelo, ya que indica que contribuye más a separar las clases
o mejorar la predicción en los árboles.
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Así, gracias a estos indicadores se pueden ordenar las características según su importancia,
permitiendo descartar aquellas que aporten menos al sistema.
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3. Resultados
Una vez hecha la presentación de cada uno de los catálogos y los métodos que se han
utilizado, es momento de presentar los resultados:

3.1. Muestra final
3.1.1. Crosscorrelación de catálogos.

Partiendo del Catálogo Principal descrito en la sección 2.2, la primera acción tomada
ha sido actualizar el catálogo de 3XMM al 4XMM-DR14, su última versión pública. Para
ello, mediante el uso de la herramienta de correlación entre catálogos de TOPCAT25 se han
localizado las coordenadas del 3XMM y las del catálogo del 4XMM, correlacionandolas con
una distancia menor a 1 arcosegundo.

Una vez realizada esta actualización, el catálogo resultante contiene unas 800.000 fuentes
con datos fotométricos en DES, VISTA-VHS y WISE, incluyendo probabilidades de aso-
ciación y no asociación entre las contrapartidas multifrecuencia. De esas 800.000, tan solo
unas 20.000 han sido detectadas por XMM-Newton.

A continuación, se hizo un filtrado en calidad, seleccionando solo las asociaciones con
una probabilidad superior a 2 sigmas, ya sea entre tres (DES, VHS y WISE) o cuatro
catálogos (DES, VHS, WISE y XMM). Así se han obtenido dos muestras importantes para
los trabajos posteriores:

Muestra Completa (MC):catalogue_with_DES_VHS_AllWISE.fits, con 361727
objetos con fotometría disponible del óptico al infrarrojo medio.

Muestra X (MX): catalogue_with_DES_VHS_AllWISE_4XMM.fits , con 15410 ob-
jetos con además flujos en rayos X.

Para evaluar los métodos de clustering, se ha seguido el siguiente enfoque:

1. Aplicar técnicas de clustering solo usando datos del óptico al MIR aplicados a la MC.

2. Usando la sub-muestra MX, comprobar si la separación de fuentes mejora con la
adición de datos en rayos-X.

3. Debido a que los métodos de ML tienden tendencia a mejorar con respecto a un
aumento significativo de la población del catálogo, se han estimado límites superiores
para las fuentes no detectadas en X en la MC para comprobar de nuevo si mejoraba
la separación.

Una vez extraídas las muestras para su estudio, es necesario comprobar si estas son repre-
sentativas de sus catálogos. En primer lugar, se comprobó si la muestra MX es representa-
tiva del catálogo 4XMM-DR14 del cual viene su crosscorrelación con el catálogo MC. Para
ello se enfrentaron en un histograma, el flujo total en X (0.2-12 keV; flux_8) de ambos
catálogos. La figura 8a es su resultado.

25https://www.star.bris.ac.uk/~mbt/topcat/
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Puede observarse como la distribución de flujos de la muestra MX se separa de la del
catálogo completo para flujos menores de flux_8 = 2e-14 erg cm−2 s−1. Este hecho implica
que el catálogo MX reproduce bien el catálogo 4XMM-DR14 a partir de ese umbral. Esto
era esperado, ya que los campos observados por XMM-Newton utilizados para construir el
catálogo principal no incluyen las observaciones más profundas y además, al los catálogos
multifrecuencia utilizados, especialmente en el MIR, no tendrían una profundidad suficiente
para detectar las fuentes de rayos-X más débiles.

Además, se comprobó si la MC y la MX representan poblaciones de objetos similares. Para
ello, se tomaron tres magnitudes en cada banda para comprobar si al cruzar con el catálogo
de 4XMM ha producido un sesgo. Así, se obtuvieron las figuras 8b, 8c, 8d. Para el óptico
y el MIR, vemos el mismo efecto: las fuentes detectadas en rayos-X (MX) son ligeramente
más brillantes, en promedio, en estas bandas que la muestra total (MC). En cambio, la
banda Ks muestra menor desviación, probablemente debido a su naturaleza más estable
frente a la extinción y su relevancia en objetos de tipo AGN.

(a) Histograma flujo total en X entre catálogo
4XMM,DR14 y MX.

(b) Histograma magnitud g catálogo MC, 4XMM - no
4XMM.

(c) Histograma magnitud Ks catálogo MC, 4XMM - no
4XMM

(d) Histograma magnitud W2 catálogo MC, 4XMM - no
4XMM

Figura 8: Histogramas comparativos para comprobar la representatividad de la muestra. Los catálogos MX
con el catálogo 4XMM DR14 y los datos en X de MC con los de no X de MC
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3.1.2. Límites superiores

Aún cuando la población de MX es lo suficientemente representativa de la población total a
estudiar, su tamaño, mucho menor que la MC, podría afectar a la eficiencia de los métodos
de ML a aplicar. Sin embargo, es posible ampliar el tamaño de la muestra hasta un 2000%
estimando los flujos en rayos-X de las fuentes no detectadas mediante el cálculo de sus
correspondientes límites superiores.

En un primer momento, se apostó por el uso de FLIX [21] en el cálculo de límites superiores.
Esta herramienta permite adoptar límites superiores dependiendo la posición del cielo
mediante un cálculo basado en modelos empíricos. Sin embargo, debido a que el volumen
de datos necesarios para completar el catálogo era inmenso y que servicio se encontraba
únicamente en web, impidieron que este pudiera ser usado para completar el catálogo.

Así, se llegó a la segunda opción: seleccionar aquellos valores presentes en el catálogo
fotométrico que no se encuentran en el catálogo de MX. Así, se le asigna un flujo límite
superior buscando aquellos flujos de MX que estén dentro del radio de 5 arco minutos. Este
hecho parte de la base de que cualquiera de esos valores fotométricos habrían obtenido
un flujo si este fuera mayor al valor detectado. Como no ha sido así, el valor debe ser
estrictamente menor.

Esta técnica ha permitido completar el catálogo MX con datos artificiales los cuales han
sido además marcados con una etiqueta booleana la cual distingue aquellos objetos que
pertenecen a 4XMM (y por tanto no es un límite superior) o no pertenecen a este catálogo.
Los métodos de ML contarán con esta etiqueta como una de sus características.

Conviene señalar que, si bien esta ampliación incrementa notablemente el volumen de datos
disponibles, en algunos métodos puede actuar como un foco localizado de ruido, lo cual
debe tenerse en cuenta en los análisis posteriores.

En la tabla 1, se indica un resumen de las características de cada catálogo generado.

Catálogo Condición Número de datos Composición de datos

MC P (A ∩ B ∩ C) > 2σ 361727 Fotométricos:
g, r, i, z, J, H, K, W1, W2, W3

MX P (A ∩ B ∩ C ∩D) > 2σ 15410

Fotométricos:
g, r, i, z, J, H, K, W1, W2, W3

4XMM
Banda soft (1,2,3), Banda hard (4,5), Flujo total (8)

MX + UL P (A ∩ B ∩ C ∩D) > 2σ + UL 361727

Fotométricos:
g, r, i, z, J, H, K, W1, W2, W3
4XMM + Límite superior:

Banda soft (1,2,3), Banda hard (4,5), Flujo total (8)
is_4XMM

Tabla 1: Resumen de las características de los catálogos utilizados. Fuente: Propio

3.1.3. Cálculo de colores

El cálculo de colores constituye un proceso fundamental para permitir una separación más
nítidas de grupos en el espacio de parámetros, y, al mismo tiempo, de otorgar a la PCA
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un significado físico más interpretable.

Aunque estas características no formen parte intrínsecamente de los catálogos originales,
se han calculado de manera externa mediante una función debido a los numerosos métodos
que se benefician de su inclusión.

Para ello la función realiza todas las combinaciones únicas de diferencia entre magnitudes
fotométricas, resaltando contrastes en bandas específicas, además de permitir una mayor
separación entre poblaciones de objetos.

3.1.4. Datos de validación

Siguiendo la necesidad de datos de validación que corroboren los grupos sintéticos creados
en el apartado de ML no supervisado, es necesario unos datos de validación alineados con
los catálogos que se han usado.

A partir de esta muestra se han definido dos archivos de validación.

Validación de muestra completa: (VMC): VEXAS_DES_VISTA_WISE_mags_zclass.fits.
Muestra extraida de los catálogos multi-frecuencia de VEXAS [22], que incluyen foto-
metría procedente de DES, VISTA y WISE. Seleccionamos aquellas fuentes con dis-
tancias (redshifts) y clasificaciones procedentes de espectroscopía óptica, obteniendo
una muestra de 336020 fuentes, que constituyen nuestra muestra de validación para
el catálogo MC.

Validación de muestra con X (VMX):VEXAS_DES_VISTA_WISE_mags_zclass_XMM.fits
es una submuestra de la anterior cruzada con 4XMM. Contiene 4614 datos y pretende
actuar como validación para el catálogo MX.

Las distribuciones de redshifs de los objetos en estas muestras de validación están repre-
sentadas en la Fig. 9.

(a) Distribución en redshift de la muestra VMC - según
la clase QSOs y Galaxias

(b) Distribución en redshift de la muestra VMX - según
la clase QSOs y Galaxias

Figura 9: Gráficas de representatividad en redshift para las muestras de validación VMC y VMX
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Además, se comprobó la representatividad de los datos de validación, para ello, al igual que
en las figuras 8b, 8c, 8d, se obtuvieron los histogramas correspondientes 10a, 10b y 10c. Los
datos de validación tienen una tendencia a representar mejor aquellos datos más brillantes,
generando una discordancia entre datos de validación y la MC. Esto se debe probablemente
a que sólo forman parte de la VMC aquellas fuentes con espectroscopía óptica, generalmente
no disponible para las fuentes más débiles/lejanas. Se muestra también la distribución de
redshift para las muestras VMC y VMX 10.

(a) Histograma magnitud g catálogo MC - VMC (b) Histograma magnitud Ks catálogo MC - VMC

(c) Histograma magnitud W2 catálogo MC - VMC

Figura 10: Gráficas de representatividad entre los catálogos MC y su validación asociada VMC. Fuente:
Propio
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3.2. Clasificación de fuentes - Clustering
Una vez reunidos y limpiados los catálogos, además de asegurar unos datos de validación
compatibles, se ha abordado el primer objetivo impuesto: Comprobar la posibilidad de
identificar clases astronómicas usando únicamente datos fotométricos y/o flujos en X.

Por ello se seguirá el siguiente flujo de trabajo. En primer lugar se trabajará con la MC,
identificando la geometría que adoptan los datos en el espacio de vectores PCs y por
último, se tratará de aplicar los métodos de clustering para tratar de observar estructuras.
Así mismo, a continuación, se tomará una aproximación parecida para MX y para MX+UL.
Comprobaremos la geometría en el espacio de PCs además de la eficacia de las técnicas de
clustering.

Los tres catálogos serán procesados por los siguientes bloques, que diferirán entre ellos por
el número de datos:

1. Reducción de dimensional (PCA): En este paso, reduciremos la dimensiona-
lidad del catálogo a sus ejes principales. Este permite observar grupos visuales y
contrastarlos con los marcadores de los datos de validación.

2. Cálculo de la matriz de distancias (URF/HDBSCAN) Los métodos de cluste-
ring necesitan definir una métrica que permita calcular distancias dentro del espacio
de parámetros. Para el catálogo MX, el cual es menos poblado, se puede definir con
URF una matriz de distancias adaptada al espacio de parámetros. Sin embargo, esto
no es extrapolable a los catálogos más poblados como MC o MX+UL (matriz de
distancias n× n). Por ello, se usó en estos casos HDBSCAN, que calcula por si solo
la matriz de distancia por medio de una métrica euclidiana.

3. Determinación de los grupos sintéticos (HDBSCAN): HDBSCAN determina
por medio de la matriz de distancia grupos de sobre-densidades. Así genera grupos
delimitados los cuales son contrastados con la validación.

4. Validación: Los datos de validación cuentan con clases corroboradas espectroscópi-
camente. Esto permite aplicar los grupos sintéticos al espacio de validación y tratar
de predecir cual sería el el grupo asignado. Para ello una matriz de contingencia será
crucial para este hecho.

Este flujo de trabajo queda resumido en la figura 11
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Figura 11: Esquema del flujo de trabajo desarrollado para el apartado de métodos no supervisados. Fuente:
Propio

3.2.1. Exploración del catálogo MC

Este apartado tiene como objetivo aplicar el flujo de trabajo a los datos principales. Por
ello, desarrollando la PCA obtenemos la figura 12.

Figura 12: Representación del catálogo MC en espacio de PCA. La gran cantidad de datos dificulta observar
grupos distinguibles. Fuente: Propio.

Una vez visualizado los datos, introducimos la lista de magnitudes y colores en el HDBS-
CAN tratando de identificar nuevos grupos. Como resultados se obtiene la figura 13
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Figura 13: Representación delas predicciones de HDBSCAN para el catálogo MC en espacio de PCA. Los
grupos no son representativos de la estructura interna. Fuente: Propio.

Una vez obtenido los grupos sintéticos, se aplican a los datos de validación, obteniendo
las figura 21a. La figura 21b es la representación de los datos marcados con los datos de
validación.

(a) Representación 3D de los grupos sintéticos aplicados
a los datos de validación en espacio PC para la muestra
de validación VMC

(b) Representación de las clases reales pertenecientes a
los datos de validación en el espacio PC para la muestra
de validación VMC

Figura 14: Resultados obtenidos al comparar los grupos sintéticos en el espacio de datos de validación con
las clases reales. Fuente: Propio

Así pues, puede construirse la siguiente tabla de contingencia 2 para asociar los grupos
sintéticos a los reales.
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Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Estrellas 53364 5621 (10.53 %) 123 (0.23 %) 227 (0.43 %) 404 (0.76 %) 27 (0.05 %) 46854 (87.82 %) 108 (0.20 %)
QSO 21716 21220 (97.71 %) 0 (0.00 %) 0 (0.00 %) 2 (0.01 %) 0 (0.00 %) 494 (2.28 %) 0 (0.00 %)
Galaxias 162626 36210 (22.27 %) 0 (0.00 %) 0 (0.00 %) 4 (0.00 %) 0 (0.00 %) 126411 (77.73 %) 1 (0.00 %)

TOTAL 237706 63051 (26.53 %) 123 (0.05 %) 227 (0.10 %) 410 (0.17 %) 27 (0.01 %) 173759 (73.10 %) 109 (0.05 %)

Tabla 2: Tabla de contingencia para los datos de MC para un min_cluster_size=120

Se puede observar que la separación obtenida no es muy efectiva. Por ello, en el siguiente
apartado intentaremos comprobar la eficiencia con el grupo MX, para explorar si la inclu-
sión de información en rayos-X mejora la separación entre los distintos tipos de fuentes.

3.2.2. Exploración magnitudes vs magnitudes y colores - Catálogo MX

Una vez obtenidos los resultados para la muestra completa, cabe preguntarse si añadir los
flujos en X permite mejorar la delimitación de los clusters y la separación entre tipos. Como
la MX cuenta con un número significativamente menor de datos, además nos permitirá
comparar si los grupos de datos se separan mejor con o sin la adición de colores mediante.
Por último, los datos de MX permitirán además usar el RF no supervisado para calcular
la matriz de distancia y por tanto, obtener una métrica más adaptada al espacio de los
datos.

Como resultados, en primer lugar como comparación en el espacio PC obtenemos las figuras
15b 15a

(a) Representación 3D de PCA si no se añade como ca-
racterísticas el color

(b) Representación 3D de PCA si se añade como carac-
terísticas el color

Figura 15: Inspección visual de diferencia entre añadir o no colores al cálculo de grupos. La PCA ha sido
calculada para 7 PCs los cuales acumulan 0.995 y 0.940 de varianza acumulada respectivamente. Fuente:
Propio

Desarrollando el flujo de trabajo, obtenemos los siguientes grupos de las figuras 16a y 16b.
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(a) Representación 3D de los grupos generados por
HDBSCAN sin colores para un min_cluster_size =
120.

(b) Representación 3D de los grupos generados por
HDBSCAN con colores para un min_cluster_size =
400.

Figura 16: Diferencia de los grupos generado por HBDSCAN para el catálogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Si aplicamos la detección de grupos a los datos de validación en el espacio sin colores,
obtenemos las figuras 17a y 17b.

(a) Representación 3D de la clase de los datos de valida-
ción para una PCA sin colores.

(b) Representación 3D de la predicción de grupos de
HBSCAN para los datos de validación para una PCA
sin colores.

Figura 17: Diferencia de los grupos generado por HBDSCAN para el catálogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Hacemos lo mismo para el espacio con colores, obteniendo las figuras 18a y 18a.
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(a) Representación 3D de la clase de los datos de valida-
ción para una PCA con colores.

(b) Representación 3D de la predicción de grupos de
HBSCAN para los datos de validación para una PCA
con colores.

Figura 18: Diferencia de los grupos generado por HBDSCAN para el catálogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Donde la diferencia de grupos es notable. Al compararlo con el grupo de validación obte-
nemos, a modo de resumen, las tablas 3 y 4.

Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3
Estrellas 143 10 (6.99 %) 1 (0.70 %) 19 (13.29 %) 6 (4.20 %) 107 (74.83 %)
QSO 2533 881 (34.78 %) 1562 (61.67 %) 0 (0.00 %) 82 (3.24 %) 8 (0.32 %)
Galaxias 1937 745 (38.46 %) 38 (1.96 %) 7 (0.36 %) 531 (27.41 %) 616 (31.80 %)

TOTAL 4613 1636 (35.46 %) 1601 (34.71 %) 26 (0.56 %) 619 (13.42 %) 731 (15.85 %)

Tabla 3: Tabla de contingencia para el catálogo MX sin colores. Fuente: propio

Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Estrellas 143 3 (2.10 %) 40 (27.97 %) 58 (40.56 %) 24 (16.78 %) 14 (9.79 %) 4 (2.80 %)
QSO 2533 8 (0.32 %) 141 (5.57 %) 311 (12.28 %) 404 (15.95 %) 1336 (52.74 %) 333 (13.15 %)
Galaxias 1937 19 (0.98 %) 191 (9.86 %) 356 (18.38 %) 218 (11.25 %) 1032 (53.28 %) 121 (6.25 %)

TOTAL 4613 30 (0.65 %) 372 (8.06 %) 725 (15.72 %) 646 (14.00 %) 2382 (51.64 %) 458 (9.93 %)

Tabla 4: Tabla de contingencia para el catálogo MX con colores. Fuente: propio.

En el apartado 4, se discuten estos resultados en más detalle, pero cabe resaltar que añadir
los colores constituye una mejora sustancial en la formación de grupos para HDBSCAN y
su separación en la PCA.
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3.2.3. Exploración de influencia de límites superiores MX+UL

Una vez explorado los datos de MX, es momento de preguntarse si añadir datos de menor
calidad mejora sustancialmente los resultados. Sin embargo, el aumento de la población
hace inviable el uso del URF al cálculo de matrices de distancia del orden de n2.

En primer lugar, se obtendrán la representación en espacio PCA, la cual puede verse en la
figura 19.

Figura 19: Representación en 3D de PCA para el catálogo MX+UL. Puede apreciarse como al añadir los
límites superiores, limitan la visibilidad de los grupos de la figura 15b. Fuente: Propio.

Una vez visualizados los datos, introducimos la lista de magnitudes, colores y flujos en
HDBSCAN tratando de identificar nuevos grupos. Como resultados se obtiene la figura 20.

Figura 20: Representación delas predicciones de HDBSCAN para el catálogo MX+UL en espacio de PCA
para un min_cluster_size=120 Los grupos no son representativos de la estructura interna. Fuente: Propio.
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Una vez obtenido los grupos sintéticos, se aplican a los datos de validación, obteniendo
las figura 21a. La figura 21b es la representación de los datos marcados con los datos de
validación.

(a) Representación 3D de los grupos sintéticos aplicados
a los datos de validación en espacio PC.

(b) Representación de las clases reales pertenecientes a
los datos de validación en el espacio PC.

Figura 21: Resultados obtenidos al comparar los grupos sintéticos en el espacio de datos de validación con
las clases reales. Fuente: Propio.

Así pues, puede construirse la siguiente tabla de contingencia 5 para asociar los grupos
sintéticos a los reales.

Clase Total Ruido (-1) Cluster 1 Cluster 3
Estrellas 143 45 (31.47 %) 1 (0.70 %) 97 (67.83 %)
QSO 2533 2503 (98.82 %) 0 (0.00 %) 30 (1.18 %)
Galaxias 1938 1110 (57.28 %) 0 (0.00 %) 828 (42.72 %)

TOTAL 4614 3658 (79.29 %) 1 (0.02 %) 955 (20.69 %)

Tabla 5: Tabla de contingencia para el catálogo MX+UL
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3.3. Propiedades de galaxia - Regresión
Este apartado permite aprovechar los catálogos desarrollados durante el apartado 3.1 con
el objetivo de explorar métodos para completar datos faltantes a partir del resto de la
muestra y para obtener características físicas de los objetos.

Por ello se dividirá en dos partes:

Predecir W1, W2 y W3 (magnitudes de infrarrojo medio) a partir de las magnitudes
del infrarrojo cercano, óptico y/o flujos en X

Predecir el SFR, la masa estelar, la fracción de AGN, la luminosidad del AGN, y la
luminosidad estelar a partir de magnitudes fotométricas, usando como comparación
los obtenidos mediante ajuste ”clásico” de SEDs, específicamente mediante CIGALE26.

3.3.1. Predicción de magnitudes W1, W2 y W3

En primer lugar se exploró la estructura general de los datos de MX y MX+UL mediante la
aplicación de RF. Este hecho es importante debido a los resultados obtenidos en el apartado
anterior, donde se abría la posibilidad a que los datos sintéticos de límites superiores
generasen dispersión y, por tanto, ruido a los resultados.

Así, se obtienen las imágenes 22a 22b.

(a) Generación de predicciones W1, W2, W3 con catá-
logo 4XMM

(b) Generación de predicciones W1,W2,W3 con catálogo
4XMM con datos sintéticos de límites superiores.

Figura 22: Predicciones W1, W2, W3 para catálogo con MX y MX + UL, los colores indican el error
relativo con respecto al valor teórico. Fuente: Propio

Debido a que las predicciones de RF entrelazadas también representan la correlación entre
sus variables dependientes, se optó por desarrollar tres modelos por separado en el cálculo
de W1, W2, W3. Así, se elimina la dependencia del modelo de optar con datos de las otras

26https://cigale.lam.fr/
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dos magnitudes a la hora de predecir la tercera. Para el catálogo MX obtenemos las figuras
23a 23b 23c.

(a) Generación W1 para catálogo 4XMM (b) Generación W2 para catálogo 4XMM

(c) Generación W3 para catálogo 4XMM

Figura 23: Representación de predicciones de W1, W2 y W3 respecto a real para el catálogo MX. Fuente:
Propio
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(a) Generación W1 para catálogo MX + UL (b) Generación W2 para catálogo MX + UL

(c) Generación W3 para catálogo MX + UL

Figura 24: Representación de predicciones de W1, W2 y W3 respecto a real para el catálogo MX + UL.
Fuente: Propio

Además de las figuras 24a 24b 24c para el catálogo con límites superiores.

En la tabla 6 se detalla la importancia, estimada mediante RF, de las variables principales
utilizadas; y en la tabla 7 se resumen los parámetros estadísticos de cada modelo.

MX MX + UL
Rango Característica Importancia Rango Característica Importancia (MDI)
1 Kmag 0.7290 1 Kmag 0.8647
2 Jmag 0.0689 2 Jmag-Kmag 0.0184
3 gmag 0.0396 3 gmag-rmag 0.0155
4 flux_8 0.0162 4 imag-zmag 0.0107
5 flux_4_5 0.0140 5 zmag 0.0073
6 gmag-rmag 0.0133 6 rmag-zmag 0.0069
7 Hmag 0.0106 7 zmag-Kmag 0.0069
8 Jmag-Kmag 0.0088 8 rmag-imag 0.0063
9 Hmag-Kmag 0.0081 9 gmag-imag 0.0055
10 zmag-Kmag 0.0079 10 Hmag 0.0050
11 imag-zmag 0.0067 11 Jmag 0.0036
12 gmag-imag 0.0066 12 flux_1_2_3 0.0035
13 zmag 0.0060 13 flux_4_5 0.0030
14 flux_1_2_3 0.0054 14 flux_8 0.0029
15 rmag 0.0049 15 zmag-Jmag 0.0027

Tabla 6: Top 15 características más importantes para el cálculo de W1, W2, W3 para cada catálogo.
Fuente: Propio
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MX MX+UL
Magnitud RMSE R2 σNMAD η ( %) RMSE R2 σNMAD η ( %)
W1 0.3116 0.966 0.0152 0.11 0.2050 0.974 0.0078 0.01
W2 0.4650 0.908 0.0238 0.17 0.3136 0.937 0.0132 0.05
W3 0.4895 0.722 0.0313 0.80 0.3244 0.549 0.0227 0.08

Tabla 7: Parámetros estadísticos comparativos para cada magnitud en los modelos MX y MX+UL. Fuente:
Propio
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3.4. Modelización de SEDs
En esta sección se evalúa un método alternativo para la estimación de parámetros claves
en galaxias y AGNs. Tradicionalmente, estas propiedades son obtenidas mediante el ajuste
de las SEDs a varios modelos de emisión correspondientes a las diferentes componentes
esperadas: emisión estelar, emisión del posible AGN y de las regiones de formación estelar,
incluyendo además los efectos de la extinción. En especial, CIGALE es el código referencia
para este hecho.

Nuestro objetivo es usar los resultados de la aplicación de CIGALE a las muestra de ga-
laxias y AGNs descrita en la sección 2.2, procedente de [23], para construir muestras de
entrenamiento y validación a las que poder aplicar algoritmos de ML supervisado.

Para ello se toman como features magnitudes fotométricas, que mediante un RF mul-
tivariable permiten obtener la tasa de formación estelar (SFR), la fracción de AGN, la
luminosidad estelar y la luminosidad del AGN.

3.4.1. Datos y construcción del dataset

Los datos utilizados provienen de una cross-correlación previa al trabajo entre los ca-
tálogos COSMOS y UltraVISTA[23]. Estos están repartidos en dos subcatálogos, uno que
agrupa a las galaxias, y otro que agrupa a las galaxias con detección en X propia de AGNs.
El primer paso fue combinar ambos subcatálogos ya que estos representaban parte de un
catálogo más grande. Así, de su unión se obtiene el catálogo COSMOS_UltraVISTA_Merged.
En la figura 25 se representa la distribución del redshift normalizada para los catálogos
COSMOS_ULtraVISTA_gals y COSMOS_UltraVISTA_XrayAGN.

Figura 25: Distribución normalizada del redshift de los dos catálogos de galaxias usados para las SEDs.
Fuente: Propio

3.4.2. Preprocesamiento

Durante la limpieza de datos del catálogo surgieron dos problemas importantes: En primer
lugar, las magnitudes fotométricas estaban divididas según el instrumento que la midió,
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y por tanto varios instrumentos podían medir la misma magnitud; además como segundo
problema, de carácter más técnico, en lugar de valores ”vacíos”/NaN, algunas magnitudes
fotométricas marcaban la ausencia de medida con un valor “placeholder” de −9999. Estos
dos incidentes consiguieron ser subsanados siguiendo los pasos detallados en el Apéndice
A.

3.4.3. Aplicación del Random Forest

Una vez preparado el catálogo limpio, se aplicó el modelo de Random Forest para la
predicción de los cinco parámetros de interés. Además de las predicciones, el algoritmo
proporciona un ranking de importancia de features, que permite identificar los filtros
fotométricos que contribuyen más significativamente a la estimación de cada parámetro.
Los resultados se presentan en el conjunto de figuras 26 y el ranking en la figura 27.

36



(a) Predicción de SFR para catálogo combinado de Cos-
mos_Ultravista

(b) Predicción de M⋆ para catálogo combinado de Cos-
mos_Ultravista

(c) Predicción de fracción AGN para catálogo combinado
de Cosmos_Ultravista

(d) Predicción de luminosidad estelar para catálogo com-
binado de Cosmos_Ultravista

(e) Predicción de luminosidad AGN para catálogo combinado de Cos-
mos_Ultravista

Figura 26: Representación de predicciones para SFR, M⋆, fracción AGN, luminosidad estelar y luminosidad
del AGN respecto a los valores reales en el catálogo 4XMM+UL. Fuente: propio.
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Figura 27: Ranking de importancia para las magnitudes en orden decreciente. Fuente: Propio

Finalmente los resultados están recogidos en la tabla 8 a modo de tabla de resumen de
resultados.

Propiedad Target RMSE R2 σNMAD η ( %)
SFR [M⊙ yr−1] bayes.sfh.sfr_1 1,37× 101 0.679 1,48× 100 47.09
Masa estelar M⋆ [M⊙] bayes.stellar.m_star_1 2,34× 1010 0.883 1,53× 109 25.82
Fracción AGN bayes.agn.fracAGN_1 9,97× 10−2 0.613 5,59× 10−2 60.98
Luminosidad estelar [W] bayes.stellar.lum_1 3,56× 1037 0.782 5,57× 1036 40.49
Luminosidad AGN [W] bayes.agn.luminosity_1 2,49× 1037 0.642 1,38× 1036 55.29

Tabla 8: Métricas de predicción obtenidas con Random Forest para los cinco targets seleccionados de
CIGALE. Fuente: propio.
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4. Discusión
En este apartado se analizan los resultados del apartado 3.

4.1. Muestra final
4.1.1. Datos de validación

Uno de los elementos más sensibles en el apartado de clustering es el número y la naturaleza
de los datos de validación. El número de datos de validación depende de los catálogos con
los que se han cruzado, ya que como máximo se podrán obtener un número de datos
completos igual a la población del catálogo más pequeño.

Esto tiene una relevancia significativa tanto para el catálogo de entrenamiento como el
de validación. Un catálogo menos poblado reduce significativamente el desempeño de los
métodos de Machine Learning: gran parte de las estructuras que puedan existir pueden
detectarse como outliers o incluso ser incluidas en estructuras distintas debido a no contar
con la suficiente densidad. A cambio, añadir más catálogos en diferentes bandas permi-
te una mayor profundidad, separando mejor las clases. Al final es una cuestión pura de
compromiso.

Sin embargo, la naturaleza de los datos es fundamental para el estudio de los catálogos.
Esto puede verse con el contenido de la población de VMX. Debido a que los mayores
emisores de rayos-X son los QSO, al cruzar los catálogos fotométricos con 4XMM sesgan
la población a favor de un mayor número de galaxias y sobre todo QSO. Esto se distingue
con el contenido de la población: aun cuando VMC cuenta con unos 237000 datos (53 354
estrellas, 21 716 QSO y 162 626 galaxias) VMX cuenta con 4613 de los cuales son 143
estrellas, 2533 QSO y 1937 galaxias. Así pues, constituye una bajada en la población de
estrellas desde el 22.44 % al 3.10 % sesgando los resultados según la clase.

Este sesgo abre la posibilidad de realizar estudios específicos a la clase favorecida, así pues,
un estudio de AGNs estará muy favorecido por datos fotométricos con los que además se
cuentan con flujos en rayos-X.

Esto pone un compromiso fundamental en astronomía, tal y como se demostrará en apar-
tados posteriores: aumentar la profundidad y calidad de la muestra implica necesariamente
reducir la variedad de esta misma.

4.2. Clustering
El apartado de clustering ha permitido estudiar a través de una reducción de variables
las estructuras internas de los distintos catálogos disponibles para el estudio. Además,
mediante el uso del mismo método de clustering para los tres catálogos ha permitido
estudiar mejoras sustanciales en dos apartados claves: separación de clases astronómicas y
la mejora en delimitación de grupos sintéticos.
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4.2.1. Exploración catálogo MC

Este apartado ha consistido en la exploración de un catálogo puramente fotométrico, sin
contar con los flujos en rayos X. Los datos han sido adaptados al espacio PCA, quedando
limitado en una forma de dos lóbulos principales. Sin embargo, el gran número de datos,
y, sobre todo la profundidad, ha impedido observar claramente estructuras internas más
relevantes (Figura 12)

Al acudir a los datos de validación, parte de la estructura interna parece aflorar. Uno de los
lóbulos, el diagonal, cuenta con similitud con el lóbulo marcado por las estrellas mientras
el segundo lóbulo, parece ser una combinación tanto de cuásares como de galaxias.

El uso de HDBSCAN, junto a una métrica euclidiana en el espacio (la cual debería ser
favorecida por la linealidad que aplica la PCA), no ha conseguido separar adecuadamente
los datos, generando un grupo central el cual abarca la mayoría de los datos y varios
subgrupos de poca relevancia (Figuras 13, 21a). Esta disposición coincide con los resultados
de [7], donde sus grupos sintéticos generados por GMM se repartían de una forma muy
similar.

Los resultados, sin embargo, no son inesperados: la selección de magnitudes para MC solo
cuenta con datos en el espectro visible e infrarrojo, bandas espectrales en las que las clases
espectroscópicas que proporcionan la validación no son tan relevantes. Así pues, puede
existir una distinción asignando cada lóbulo a las clases estrellas (diagonal) y galaxias/QSO.

Así, es lógico preguntarse si es posible mejorar esta separación entre las clases añadiendo
nuevas características por medio de las bandas. Una propuesta podría ser el redshift que
permite delimitar una clara separación entre estrellas y galaxias/quasares, mientras que la
adición del flujo en X debería mostrar una mejor separación entre estrellas y, sobre todo
galaxias y QSO, como se analiza en el siguiente apartado.

Debido a que uno de los objetivos es distinguir grupos de objetos astronómicos únicamente
con datos fotométricos, descartando el redshift el cual tiene un origen espectroscópico, la
implementación del catálogo de 4XMM queda completamente justificada.

4.2.2. Exploración magnitudes vs magnitudes y colores - Catálogo MX

Las diferencias entre los datos de los catálogos MC y MX son evidentes: el catálogo MC
cuenta con 20 veces más datos a cambio de una mayor profundidad del catálogo MX. Esta
diferencia radica en la disminución sustancial de los tiempos de computación permitiendo
la oportunidad de aplicar URF para el cálculo de la matriz de distancias.

Así se obtienen las imágenes 15a y 15b. Se ha decidido hacer el estudio de colores con
el catálogo MX debido a la claridad que muestran los sondeos iniciales. El aumento de
la profundidad permiten observar estructuras internas más diferenciadas que además son
favorecidas por la adición de colores fotométricos.

Si se comparan con los datos de MC, los dos lóbulos parecen separarse de mejor manera,
mostrando las poblaciones de estrellas, QSO y galaxias aún más separadas. Al comparar
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con los datos de validación, sobre todo en el grupo con colores, los dos lóbulos son divididos
en tres grupos. Uno poco poblado que es el de las estrellas (debido principalmente al sesgo
del cruce con 4XMM), un grupo de galaxias y un cúmulo esférico de cuásares.

Las tablas de contingencia 3,4, revela un hecho sorprendente. El grupo que no cuenta con
colores agrupa más de la mitad de los cuásares en el cluster 0, un clúster 1 constituido casi
únicamente con estrellas, y un clúster 2 y 3 mixtos. Es importante resaltar que la disminu-
ción sustancial de los datos de validación puede afectar a estos porcentajes ya que existe
un sesgo que beneficia sobre todo a los QSO. En cuanto a la tabla con colores, en primer
lugar hay que indicar que ha sido necesario subir el parámetro min_cluster_size=300
indicando que la adición de colores provoca una dispersión mayor entre los datos. Además,
gran parte de los datos detectados por el ruido parecen ser obviados por HDBSCAN re-
duciendo su población en un 35 %. Sin embargo, las tendencias parecen retroceder a los
resultados obtenidos por MX, un clúster central que acumula gran parte de los datos (en
este caso clúster 3) y grupos satélites con poca aportación con las clases espectroscópicas.

Así, el siguiente paso es tomar un catálogo más poblado con la misma profundidad. Por
ello se optó por la técnica de límites superiores.

4.2.3. Exploración de influencia de límites superiores MX+UL

La adición de límites superiores ha permitido aumentar la población del catálogo en X a los
mismos números que el catálogo MC. En un primer momento se apostó por FLIX para este
hecho, sin embargo, los tiempos de espera de cada límite superior la hizo una herramienta
inviable para el número de datos a completar.

Así es como se llegó a la segunda solución, la cual es una aproximación menos realista, pero
que sirve bien para demostrar la influencia en los métodos con catálogos con límites supe-
riores. Así se obtuvieron la figura 19. Esta imagen permite ver cómo este catálogo recupera
la forma de dos lóbulos centrales propia del catálogo MC adquiriendo, en consecuencia, los
problemas derivados.

Al aplicar HDBSCAN, en la figura 20, los grupos divididos parecen formar sublóbulos de
tamaños no despreciables. Sin embargo, en la tabla 5, algunos de los clusters sintéticos
no aparecen, debido principalmente a la diferencia de tamaño poblacional entre datos de
entrenamiento y validación. Este hecho abre la posibilidad de estudiar en el futuro cómo
afectan el cálculo de límites superiores en la validación, pero por límite de tiempo esta
opción no ha podido ser explorada.

4.2.4. Métodos de clustering: Aplicación de resultados.

Aunque los resultados en los métodos de clustering no han resultado concluyentes, estos
abren la puerta a ser implementados junto a técnicas híbridas, donde la identificación de
grupos basados en similitudes entre los datos permitan combinarse con técnicas de ML
supervisado mejorando sus clasificaciones o predicciones. Estas técnicas híbridas ya han
sido probadas obteniendo buenos resultados [24]
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4.3. Propiedades de galaxia - Regresión
4.3.1. Predicción de magnitudes W1, W2 y W3

Tal y como se indicó en los objetivos de este trabajo, la predicción de las magnitudes que
conforman la banda infrarroja media, permite afinar una herramienta capaz de completar la
falta de estas magnitudes. Además, al compartir la misma estructura que las construcciones
de modelos con los datos de SEDs permite desarrollar una familiaridad con este proceso,
resultando más sencillo afinar los métodos o comprender sus resultados.

Así, se desarrollaron tres modelos basados en RF supervisado para cada una de las mag-
nitudes W1, W2 y W3, obteniendo resultados, tanto para el catálogo de MX como el de
MX+UL. Estos modelos han sido representados por un diagrama predicción-real. Este per-
mite asociar la calidad del modelo a la búsqueda de su relación lineal 1:1. Así, métricas
como el R2, el cual mide la linealidad de los datos, toman una importante relevancia, ya
que cuanto más cercano esté este valor a 1, más lineal será esta relación. Además, la adición
del RMSE, permite medir la dispersión de los datos, reflejando si el modelo cuenta con una
mayor varianza.

Adicionalmente, se han calculado dos parámetros claves: σNMAD el cual representa la des-
viación media normalizada, la cual permite concretar un valor de varianza resistente a
datos anómalos. Además, se introduce el valor η que indica el porcentaje respecto al total
de datos anómalos.

Como consecuencia, la tabla 7 indica que los modelos para W1 y W2 mantienen una
relación lineal, no tanto como W3 la cual parece necesitar en su modelo más características.
La adición de límites superiores ha reducido la fracción de datos anómalos, añadiendo una
relación más lineal que empeora para W3.

También, gracias a los indicadores de feature_importance, permite hacer un ranking de
importancia de características en cada modelo (Figura 6). Así se demuestra que la carac-
terística más importante para ambos modelos es la magnitud K, la cual es la magnitud
más cercana al infrarrojo medio. A continuación se presentan la magnitud J y g. Sin em-
bargo, las magnitudes propias parecen perder importancia al añadir los límites superiores,
haciendo que algunos colores en estas bandas dominen más que incluso las magnitudes.

4.4. Modelización de SEDs
La modelización de SEDs por medio de RF supervisado ha seguido la misma estructura
que en el apartado anterior. Sin embargo, debido a la necesidad del uso de CIGALE para
validar las predicciones, se ha optado por tomar catálogos usados en otros trabajos.

Así, se tomaron los mismos datos que en el trabajo de [23], donde se realiza el análisis con
CIGALE para un cross-match de COSMOS-ULTRAVISTA. Contando con sus resultados, se
han incorporado como predictores cada una de las magnitudes explicadas en el apartado de
Metodología, obteniendo las figuras 26. Entre los resultados, el mejor modelo es el de masa
estelar, el cual obtiene una mejor linealidad y una menor población de datos anómalos. A

42



continuación mejora la luminosidad estelar (la cual está relacionada con la masa debido al
Mass to Light ratio), y después el SFR, la fracción de AGN y la fracción de luminosidad
del AGN.

Los resultados, sin embargo, no son del todo satisfactorios. Al usarse un modelo conjunto
de los cinco objetivos se han obtenido resultados menos lineales que en la predicción de
magnitudes en el infrarrojo medio. Sin embargo, los buenos resultados en la función de
masa y luminosidad estelar abre la puerta a mejora con las características que podrían
delimitar mejor los demás targets.

Además, se realizó el mismo proceso para cada catálogo por separado, obteniendo la tabla
9. La mejora en la unión de catálogos es evidente, en general el catálogo de AGNs es muy
inferior en población al de galaxias. Este hecho hace que las métricas de galaxia dominen
en los resultados. Sin embargo, añadir el de AGN mejora consistentemente las métricas de
Fracción de AGN y Luminosidad AGN.

Propiedad Target AGN+Galaxias AGN Galaxias
RMSE R2 η ( %) RMSE R2 η ( %) RMSE R2 η ( %)

SFR [M⊙ yr−1] bayes.sfh.sfr_1 1,37× 101 0.679 47.09 4,49× 101 0.115 75.33 1,37× 101 0.650 46.50
Masa estelar M⋆ [M⊙] bayes.stellar.m_star_1 2,34× 1010 0.883 25.82 1,86× 1011 0.326 65.67 2,06× 1010 0.896 26.59
Fracción AGN bayes.agn.fracAGN_1 9,97× 10−2 0.613 60.98 1,82× 10−1 0.279 78.00 9,91× 10−2 0.606 60.97
Luminosidad estelar [W] bayes.stellar.lum_1 3,56× 1037 0.782 40.49 1,68× 1038 0.204 76.00 3,60× 1037 0.752 40.39
Luminosidad AGN [W] bayes.agn.luminosity_1 2,49× 1037 0.642 55.29 1,84× 1038 0.200 66.67 2,66× 1037 0.513 55.50

Tabla 9: Resumen de métricas de predicción para los cinco targets seleccionados de CIGALE, evaluados en
los tres datasets: AGN+Galaxias, AGN y Galaxias. Fuente: propio.
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5. Conclusiones
Una vez terminada la discusión, a modo de resumen se expondrá las conclusiones de cada
uno de los objetivos.

Gracias al estudio de los catálogos con diferentes bandas, se ha demostrado que un
aumento de la población de catálogos sin una mejora en la profundidad, impide que
los grupos sean fácilmente separables en los métodos de clustering.

La adición de flujos en X ha mejorado sustancialmente la separación en los datos
de validación. Aun cuando el método de HDBSCAN parece mejorar con esto, los
resultados no pueden ser declarado como suficientes debido al sesgo interno obtenido
del cruce de los datos con 4XMM resultando en una bajada sustancial de la población
de los datos de validación.

Una solución al problema del tamaño poblacional ha sido añadir nuevos datos en X
por medio de la técnica de límites superiores. Este hecho sin embargo, ha resultado
contraproducente, la adición de límites superiores han añadido ruido a la represen-
tación dificultando la mejora que añadía los datos en X.

La predicción de magnitudes de infrarrojo medio está dominada por el valor de
la magnitud K del infrarrojo cercano. La adición de límites superiores en rayos-X
mejoran las predicciones, aun cuando W3 parece exhibir un comportamiento menos
lineal.

Los métodos de predicción basado en los resultados de CIGALE han permitido una
aproximación lineal y más rápida del cálculo tradicional de características propias de
galaxias y AGNs. La adición de métodos más refinados como redes neuronales pueden
permitir una mejora de los modelos que pueden coexistir con los ya tradicionales.

5.1. Trabajo futuro
Teniendo en cuenta que cada uno de los apartados recorre campos del ML muy diferentes
entre sí, no se ha podido realizar un estudio exhaustivo de cada uno de estos objetivos. Sin
embargo, este trabajo ha permitido realizar un estudio global relacionando campos de ML
en principio separados.

En los métodos de clustering, la mejora de la adición de flujos en rayos-X es evidente.
Añadir características como el redshift podría mejorar aún más la separación de los grupos,
además del uso de métodos de clustering combinados con algoritmos de clasificación.

En predicción, los modelos obtenidos permiten demostrar una buena relación entre modelo-
real, aún cuando esta puede mejorarse con técnicas que, además, pueden ser más interpre-
tativas que RF. Un aumento del número y la calidad de los datos además deben refinar
el modelo, disminuyendo la población de datos anómalos. Parece que la técnica de límites
superiores puede ser refinada aún más, con lo que aplicando una estimación más rigurosa,
debería presentar resultados más refinados.
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En las predicciones de SEDs, por falta de tiempo solo ha podido estudiarse un único
catálogo. Asociando nuevos catálogos donde se ha usado CIGALE, además de incrementar
significativamente el tamaño de las muestras, puede abrir una puerta a la comparación de
resultados según el catálogo.

Finalmente, en un futuro próximo se prevé preparar para publicar en GitHub el código
desarrollado a lo largo de este trabajo, con el objetivo de facilitar su consulta y posible
reutilización.
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A. Limpieza de dataset COSMOS-VISTA

Para la limpieza del catálogo se siguieron los siguientes pasos.

1. Se sustituyeron por NaN todos los valores anómalos, definidos como aquellos que
comprenden el intervalo −100 < m < 100. De este modo se eliminan tanto los
placeholders como valores de magnitud físicamente inconsistentes.

2. Para cada filtro fotométrico observado por varias cámaras, se aplicó un criterio je-
rárquico:

Si todas las cámaras tenían valores distintos de NaN, se seleccionó la cámara con
menor número de NaNs entre las candidatas.

Si coexistían cámaras con y sin valores, se priorizó aquella con menor porcentaje
de NaNs .

Si todas las cámaras carecían de datos, la magnitud correspondiente se marcó
como NaN.

3. Finalmente, se identificaron los filtros con mayor proporción de NaNs, que fueron
descartados del análisis. La Tabla 10 recoge el porcentaje de valores ausentes por
filtro, ordenados a lo largo del espectro.

Columna NaNs Columna NaNs
Features Features

SPIRE250 91.39 % R 0.85 %
SPIRE350 91.36 % I 0.70 %
SPIRE500 91.35 % Z 0.62 %
Ks 20.64 % PACS_red 0.33 %
H 20.43 % MIPS24 0.29 %
J 20.31 % PACS_green 0.27 %
U 9.12 % IRAC4 0.16 %
G 3.04 % IRAC2 0.00 %
IRAC3 1.84 % IRAC1 0.00 %

Targets

bayes.sfh.sfr_1 0.06 % bayes.stellar.m_star_1 0.06 %
bayes.agn.fracAGN_1 0.06 % bayes.stellar.lum_1 0.06 %
bayes.agn.luminosity_1 0.06 %

Tabla 10: Porcentaje de datos vacíos por columna en Merged_catalog_final.csv. El número total de
filas es N = 296,893. En rojo, las columnas que se han optado por eliminarse para aumentar la población
de los datos. Fuente: propio
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Este procedimiento permitió optimizar a la vez el tamaño de la muestra final y la cobertura
multi-longitud de onda, identificando aquellos filtros que solo están disponibles para un
número muy limitado de fuentes. Así pues, se descartaron las magnitudes SPIRE cuya baja
cobertura reducía significativamente el tamaño del catálogo.
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