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Resumen

El uso de algoritmos de Machine Learning se ha consolidado en astronomia como una
herramienta esencial capaz de tratar los volimenes de datos que ésta genera. En este trabajo
se explora la aplicacion de métodos supervisados y no supervisados en la caracterizacion de
fuentes astronémicas por medio de catalogos multifrecuencias. Asi, se usaron DES, VISTA,
WISE y XMM-Newton como catalogos principales, ademés de SDSS y 2MASS en los datos
de validacion.

Se aplicaron técnicas de reduccion de dimensionalidad por medio de una PCA, junto a
métodos de clustering tales como Random Forest no supervisado y HDBSCAN para anali-
zar la capacidad de separar galaxias, cudsares y estrellas, usando tinicamente informaciéon
fotométrica y flujos en rayos X. Ademads, se implementaron modelos de regresién basados
en Random Forest para la prediccién de magnitudes en el infrarrojo medio y de parametros
fisicos derivados del ajuste de SEDs con CIGALE tales como la masa estelar, el SFR o la
fraccion de AGN.

Los resultados valoran la incorporacion de flujos en rayos X como una mejora sustancial
en la separacién de poblaciones a costa de la reduccién de estas mismas. Como remedio, se
anadio el uso de limites superiores, resultando en la introduccién de ruido. En regresion,
la magnitud K result6é clave para la prediccion en el infrarrojo medio y las propiedades
como la masa o la luminosidad estelar parecen responder bien a los métodos predictivos.
Este estudio confirma la utilidad de los métodos de Machine Learning en astronomia, a la
vez que sefiala sus limitaciones y posibles mejoras con datos méas profundos, numerosos y
modelos méas avanzados.

Palabras clave: Aprendizaje automatico, Cartografiados astronémicos, Nicleos Activos
de Galaxias, Galaxias, XMM-Newton, SDSS, DES, VISTA, WISE.

Abstract

The use of Machine Learning algorithms has become a consolidated and essential tool
in astronomy, capable of handling the large volumes of data generated. In this work, we
explore the application of supervised and unsupervised methods for the characterization
of astronomical sources through multiwavelength catalogs. The main datasets employed
were DES, VISTA, WISE, and XMM-Newton, complemented with SDSS and 2MASS for
validation.

Dimensionality reduction techniques were applied using PCA, combined with clustering
methods such as unsupervised Random Forest and HDBSCAN, to analyze the ability to
separate galaxies, quasars, and stars using only photometric information and X-ray fluxes.
In addition, Random Forest regression models were implemented to predict mid-infrared
magnitudes and physical parameters derived from SED fitting with CIGALE, such as stellar
mass, SFR, and AGN fraction.

The results highlight the inclusion of X-ray fluxes as a substantial improvement for source



separation, although at the cost of reduced sample size. As a solution, upper limits were
introduced, but these led to additional noise. For regression tasks, the K-band magnitude
proved to be key for mid-infrared predictions, while properties such as stellar mass and
luminosity showed good consistency with predictive models. This study confirms the use-
fulness of Machine Learning methods in astronomy, while also pointing out their limitations
and the potential for improvement with deeper, larger datasets and more advanced models.

Key words: Machine Learning, Astronomical Surveys, Active Galactic Nuclei, Galaxies,

XMM-Newton, SDSS, DES, VISTA, WISE.
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1. Introduccion

1.1. Motivacion

Las técnicas de Machine Learning (ML) se han convertido, a lo largo de la tltima década, en
una herramienta fundamental en la astronomia moderna. En un entorno donde es necesario
analizar una cantidad ingente de datos generados por telescopios, misiones y simulaciones,
cualidades como el tratamiento masivo de informacion son deseables e incluso necesarias.
Tradicionalmente, su contraparte algoritmica suele quedarse corta tratando con grandes
cantidades de datos complejos, generando un tiempo de computacion que los hace mucho
menos eficientes [1]. A diferencia de los algoritmos tradicionales, el aprendizaje automaético
se ve beneficiado por esta cualidad, poniendo un mayor énfasis en la calidad de los datos.
Estos han permitido clasificar eficientemente objetos celestes, detectar anomalias, e incluso
tratar de predecir eventos cosmicos. Por ejemplo, algunos algoritmos de ML han servido
como instrumento para identificar exoplanetas a partir de sus curvas de luz [2], han sido
usados en la clasificacién de galaxias [3] o han permitido generar filtros de ruido para
depurar ondas gravitacionales [4]. Teniendo en consideraciéon que la tendencia respecto al
volumen de datos astronémicos continia creciendo exponencialmente con proyectos como
el observatorio Vera C. Rubin' o el préximo gran observatorio de rayos-X NewAthena?, los
algoritmos de ML tienen por delante un ecosistema ideal que les beneficia en la exploracion
del cosmos.

Asi pues, la principal motivacion detras de este trabajo es la exploracion de las capacidades
de métodos de ML supervisados y no supervisados en la construccion y validacién de cata-
logos astronémicos. Sin embargo, los resultados y aplicaciones no deben estar restringidos
solo a ellos. Este estudio ademas pretende contribuir con sus resultados a otros campos
cientifico/técnicos con un entorno similar, tomando un caracter multidisciplinar.

1.2. Objetivos

Los objetivos pueden dividirse principalmente en dos puntos:

s Comprobar la fiabilidad de separar y delimitar fuentes astronémicas por medio de
flujos y magnitudes fotométricas. Auin cuando las observaciones espectroscopicas son
precisas y permiten obtener propiedades de los objetos astronémicos, consumen un
mayor tiempo de observacién que su contraparte fotométrica, generando en total
muchos menos datos. Ademas, los datos espectroscoépicos no siempre estan disponibles
para todas las fuentes. Asi pues, uno de los objetivos es desarrollar un método de
clustering que permita separar clases astronémicas sencillas (cudsares, estrellas y
galaxias) mediante la disposicién de un espacio que favorezca la separaciéon de grupos.

= Con métodos supervisados, estudiar la calidad de predicciéon de las magnitudes en
el infrarrojo medio (W1, W2 y W3) a partir de magnitudes y colores del infrarrojo
cercano y optico, ademas de los flujos en X. Estos permiten asegurar un método para

'https://rubinobservatory.org/es
Zhttps://www.cosmos.esa.int/web/athena#
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completar catalogos astronémicos donde puedan faltar datos en alguna de sus magni-
tudes. Ademas, aprovechar los algoritmos supervisados para ofrecer una alternativa a
los métodos de calculo de propiedades intrinsecas de galaxias tales como la masa es-
telar, el star formation rate (SFR) o la fracciéon de AGNs; los cuales tradicionalmente
se han calculado por medio de algoritmos basados en el ajuste de SEDs.

1.3. Distribuciones espectrales de energia (SEDs) de fuentes as-
tronémicas

Con el objetivo de caracterizar las propiedades de los objetos astrondmicos, existen dos
técnicas complementarias capaces de extraer informacién fundamental a partir de la luz
emitida por los objetos celestes. Estas son la fotometria y la espectroscopia

La fotometria es una técnica astronémica la cual mide el flujo o intensidad de energia que
emite un astro desde el cielo. La fotometria produce imagenes al someter a un instrumento
fotométrico, generalmente una CCD, a la exposicién de los fotones procedentes de distintas
fuentes astrondémicas en el cielo. A mas fotones incidan sobre una regién concreta, mayor
intensidad es generada en el mapa y por tanto, més intensa es una fuente [5].

Aun cuando la intensidad total o intensidad bolométrica es importante para caracterizar
fuentes mediante el flujo total de fotones, es mas comun realizar imagenes en distintas
bandas del espectro. Para ello se hace uso de los filtros, los cuales permiten limitar el nimero
de fotones a los pertenecientes a una banda conocida y por tanto limitar la capacidad
de intromisién de fuentes externas a las bandas de estudio. Los filtros ademés pueden
aportar informacion fisica cuya emision estd limitada a la sensibilidad de los instrumentos
de emisién. Por ejemplo, una caracteristica fundamental de los cuasares es la emision en
rayos X, asi pues un estudio en esta banda permitira delimitar mejor sus propiedades.

Para la medida de la intensidad en fotometria, por tradicion histérica, se expresan en térmi-
nos de magnitudes relativas m o absoluta M. Por nomenclatura, también puede asociarse
n_.n

a la magnitud en una banda el nombre del filtro, por ejemplo, la magnitud del filtro "g",
se denomina ¢ y su magnitud absoluta, G.

Para una magnitud m genérica, su expresion matematica puede definirse como:

F
m — Myt = —2,51og (F ) (1)
ref

Donde m,.s es la magnitud de referencia. Histéricamente, asociada al sistema VegaMAG,

donde el flujo de referencia es el flujo de la estrella Vega, aunque actualmente existen
sistemas basados en flujo como ABMAG y STMAG.

Las magnitudes relativas, como su nombre indica, reciben su nombre debido a su dependen-
cia del instrumento de medida y por tanto son relativas la posicion espacial de la medicion
[5]. Para asociar una medida absoluta a la fuente, se define la magnitud absoluta, por
medio del médulo de distancia:
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Figura 1: Imagenes multibanda referidas al mismo objetos astrondémico. Fuente:
https://bigthink.com/starts-with-a-bang/photometry-astronomy

p=m—M=5(logd—1) (2)

Donde el valor de la distancia permite recuperar el promedio de fotones perdidos debido a
la expansion esférica de la radiacién.

Las distintas bandas fotométricas a lo largo del espectro nos dan informaciéon sobre los
fenomenos fisicos asociados a las distintas estructuras internas de la fuente, ver Fig.1. Este
trabajo se fundamenta en aprovechar la gran cantidad de datos fotométricos disponibles
en regiones diferentes del espectro para una gran diversidad de fuentes astronémicas y
optimizar la informacién que se puede obtener a partir de ellos.

La espectroscopia es la segunda técnica de medida astronémica por excelencia. Consiste
en representar la intensidad de la radiacion medida en funcién de la longitud de onda a lo
largo de una banda en la imagen. Esta técnica permite generar un espectro caracteristico
el cual contiene propiedades fisico-quimicas. Por ejemplo, es posible medir la velocidad
de rotacion de una galaxia a partir del corrimiento al rojo de su espectro, ademas de la
metalicidad de su nucleo.

Fotometria y espectroscopia parten de una naturaleza similar: ambas toman mediciones
de fotones en bandas de longitud de ondas, sin embargo, la mayor diferencia radica en la
informacion que representan. La fotometria es capaz de dar una vision espacial gracias a
su intensidad asociada a sus dos coordenadas espaciales a costa de promediar los fotones
recibidos en la banda asociando un tnico valor de intensidad. La espectroscopia por el
contrario, pierde una dimension espacial para bidimensionalizar el espectro de intensidad
- longitudes de ondas.

Por supuesto, en términos practicos, la fotometria es una técnica menos costosa debido a
su menor tiempo de exposicién y por tanto, por su mayor nimero de datos disponibles.
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Figura 2: Ejemplo de componentes de las SEDs en AGNs. Fuente: [6]

Las SEDs o Spectral Energy Distribution son representaciones de la energia emiti-
da por las fuentes astronémicas a lo largo del espectro electromagnéticos. Estas permiten
caracterizar propiedades de los cuerpos astronémicos debido a la informacion que ellas
aportan de las propiedades fisicas y sus mecanismos de emision. En general, coincidiendo
mas adelante con la muestra de validacién escogida, las SEDs son sensibles a clases concre-
tas de cuerpos astronémicos: estrellas, galaxias y nicleos activos de galaxias(AGNs). Los
AGNs son fenémenos celestes altamente energéticos que se desencadenan en el centro de
las galaxias cuando el agujero negro supermasivo central (SMBH) acreta materia proce-
dente de sus proximidades de forma continua, afectando potencialmente a la evolucion de
la galaxia que lo hospeda.

A continuacién, se detallan algunas de las ventajas que las SEDs pueden aportar a cada
una de las clases astronémicas antes expuestas.

» Estrellas:

o Gracias a la forma de la SED y la longitud de onda de emisiéon maxima puede
derivarse su temperatura, ajustando la emisién a la de un cuerpo negro. Ademas,
el estudio de sus lineas de emisién y absorcion pueden derivar su composicion
quimica.

o Combinando medidas de su luminosidad y temperatura puede obtenerse el radio
de la estrella.

e Aplicando modelos de evolucién estelar, en combinaciéon con otras medidas,
puede derivarse su estado evolutivo.

» Galaxias:

o Las SEDs son capaces de revelar informacion sobre la formacién estelar, su
poblacién estelar, el polvo que contiene o incluso, la presencia de AGNss.



Analizar los SEDs permiten reconstruir procesos fisicos que ocurren en las ga-
laxias, asi como sus procesos evolutivos. Ejemplos de esto son las emisiones en
el infrarrojo que pueden inferir la presencia de polvo en las galaxias mientras
que emisiones importantes en el UV puede revelar nueva zonas de formacion
estelar.

» Nicleo Activos de Galaxias (AGNs)

Las SEDs de los AGNs son méas complejas que las galaxias o estrellas debido a la
contribucion de los distintos componentes que lo forman: su disco de acrecion,
el toroide de polvo o la galaxia huésped (ver Fig. 2).

El big blue bump (UV-6ptico) en las SEDs de los AGNs es una propiedad ca-
racteristica atribuido a su disco de acrecién, mientras que el continuo en el
infrarrojo se atribuye a emisién por parte del polvo el toroide.

Su modelizado permite determinar las contribuciones de los AGNs a la lumino-
sidad total de la galaxia, y por tanto estimar la tasa de formacion estelar y el
impacto del AGN sobre la galaxia huésped.

Lineas de emision, como la serie Balmer del Hidréogeno, pueden afectar a la
observacion de colores y ayudar en la determinacion de redshifts fotométricos.

Los AGNs pueden clasificarse basados en las propiedades de sus SEDs, ayudando
a separar las propiedades observacionales de las evolutivas.

Aun cuando la forma mas precisa y efectiva para clasificar fuentes astrondémicas sigue
siendo mediante observaciones espectroscopicas, padece de ser un método observacional
mas costoso que la fotometria. Asi, de forma alternativa, mediante fotometria, pueden
construirse SEDs que abarquen vastas partes del espectro electromagnético, de forma que,
mediante ajustes de SEDs “clasicos”, permitan derivar propiedades fundamentales de los
objetos estudiados.

En este trabajo, tal y como se indicaron en los objetivos, se utilizan catélogos fotométricos
para analizar la factibilidad de separar las distintas fuentes astronémicas limitando el uso
unicamente de fotometria, ademas de comparar la eficiencia de los métodos clasicos de
ajustes de SEDs con la aplicacién de técnicas de aprendizaje automatico para la obtencion
de propiedades claves de galaxias.



2. Metodologia

Este trabajo acoge dos metodologias complementarias, las cuales son reunidas en torno al
aprovechamiento de catalogos astronémicos.

En primer lugar, la aplicacion de técnicas de ML no supervisado. Los catdlogos as-
tronémicos utilizados contienen una gran cantidad de datos recogidos en sondeos a gran
escala. Estos incluyen medidas fotométricas, clasificacién de objetos (en algunos casos) y
propiedades derivadas. El tratamiento efectivo de estos datos es esencial para responder las
preguntas astrofisicas que requieren de un acercamiento més robusto capaz de manejar su
volumen y complejidad. Para este labor se usaron técnicas de ML no supervisadas, es decir,
se buscaron estructuras en nuestros datos aplicando técnicas de clustering, las cuales no
necesitan etiquetacion previa.

En segundo lugar, los métodos de ML supervisados. Estos son usados para tratar
patrones, clasificar fuentes y predecir propiedades fisicas con los datos disponibles. Los
métodos supervisados son especialmente utiles cuando se dispone de una muestra de entre-
namiento la cual se conocen las propiedades a predecir o clasificar, permitiendo al modelo
adaptarse para tomar predicciones especificas, tal como el tipo de objeto o la estimacion
del SFR o el redshift.

Integrar ambas aproximaciones, permiten construir un entorno de trabajo capaz de fomen-
tar la extraccion de resultados cientificos de manera 6ptima a partir de grandes muestras
de datos.

2.1. Seleccién de muestras

En este trabajo se han formado distintas muestras procedentes de diferentes catalogos foto-
métricos. Debido a su naturaleza astronémica, todos los catdlogos utilizados son publicos.
Los catalogos resultantes han sido agrupados segiin las bandas fotométricas que contienen:

= Catalogo principal: Combinacién de cuatro catdlogos de distintas bandas, rayos X:
XMM-Newton, infrarrojo cercano: VISTA-VHS infrarrojo medio: ALLWISE y
visible: DES; y que incluye todas las fuentes detectadas en el infrarrojo y en el
6ptico en una seleccién de campos observados por XMM-Newton [7]. Los
catalogos en distintas bandas se cross-correlacionaron usando la herramienta x-match
desarrollada durante el proyecto ARCHES?, la cual permite cross-correlacionar un
numero arbitrario de catdlogos mediante estadistica bayesiana proporcionando proba-
bilidad de asociacién y no asociacién[8]. Esto permitié asociar medidas fotométricas
en varias bandas a fuentes tnicas. Este catalogo incluye todas las fuentes detectadas
en el infrarrojo en campos seleccionados observados con XMM-Newton, por lo tanto
se trata de un catdlogo heterogéneo pero representativo de los diferentes tipos de
fuentes astronémicas (estrellas, galaxias, AGNs,...). La descripcién detallada tanto
de la cross-correlaciéon como de la muestra resultante se puede encontrar en [9].

3http://www.arches-fp7.eu/arches/localhost_88/arches/index.html
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= Catalogo de validacién: Dado que la mayor parte de nuestro catalogo principal no
contiene identificaciones, se utilizé un catalogo fotométrico, con clases de fuentes as-
tronémicas determinadas a partir de espectroscopia éptica, en su mayoria procedente
del SDSS*, pero también de otros cartografiados espectroscépicos como WiggleZ?,
GAMAS, OzDES DR17, 2QZ8 y el 6dF Galaxy Survey”. Esta compilacién de clasifi-
caciones de fuentes astronémicas forma parte del proyecto VEXAS [10], que busca
contrapartidas en otras longitudes de onda de fuentes infrarrojas. A diferencia del
catalogo principal, aquellos objetos en los que fotometria procedente de VISTA no
estuviese disponible, sus magnitudes son sustituidas por las de 2MASS.

» Catalogos de galaxias: Varios catdlogos compilados con el objetivo de determinar
las propiedades de las galaxias (SFR, masa estelar, etc), con o sin un AGN en sus
centros, mediante el ajuste de sus SEDs. Estos catdlogos combinan fotometria en
el 6ptico de VST-ATLAS °, CFHTLS ! (CanadaFranceHawaii Telescope Legacy
Survey), COSMOS/Subaru Suprime-Cam 2, Dark Energy Survey (DES) y Pan-
STARRS1 * (PS1) , VISTA en el infrarrojo cercano, Spitzer/IRAC '* y Spitzer
MIPS ' en el medio y Herschel/PACS ¢ y Herschel/SPIRE en el lejano 7 .

A continuacioén, se describen las principales caracteristicas de los catalogos utilizados para
construir las muestras de trabajo.

2.1.1. X-ray Multi-Mirror Mission - Catialogo XMM-Newton

También conocido como XMM, XMM-Newton es el gran observatorio de rayos-X de la
agencia espacial europea (ESA). Su funcionamiento, basado en la cuenta de fotones y el
funcionamiento simultaneo de todos sus instrumentos a bordo, permite la obtenciéon de
imédgenes (y su fotometria asociada), espectros y curvas de luz en una misma observacién.
Ademas, debido a su amplio campo de visién de 30 arcmin (FoV), permite la deteccién
y estudio de entre 50-100 fuentes por observacion. Todo esto ha permitido que, aunque
el 4rea total observada hasta ahora sea de solo ~1300 deg? (ver Fig. 3), se construya el
mayor catalogo de fuentes de rayos-X con datos por encima de 5 KeV hasta la fecha: el

‘https://sdss.org/

Shttps://wigglez.swin.edu.au/site/forward.html

Shttps://www.gama-survey.org/

"https://www.mso.anu.edu.au/ozdes/DR1
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Onttps://www.eso.org/public/teles-instr/paranal-observatory/surveytelescopes/vst/
surveys
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Figura 3: Mapa de apuntados de XMM-Newton. Fuente: XMM-SSC

XMM-Newton Serendipitous Source Catalog'®.

En particular, se ha utilizado el catdlogo 4XMM, cuya decimocuarta versién (Data Release
14) fue publicada en julio de 2024. Este catdlogo contiene un total de un poco mas de un
millén de detecciones, correspondientes a alrededor de 700.000 fuentes tinicas, cubriendo
energias entre 0.2 y 12 keV.

2.1.2. Dark Energy Survey - DES

El Dark Energy Survey!'® es un proyecto internacional destinado a la investigacién de la
expansion acelerada del Universo y el crecimiento de estructuras a gran escala. El catdlogo
cubre datos profundos en el espectro visible e infrarrojo cercano en unos 5.000 deg? de 4rea
en el hemisferio sur del cielo (1/8 del cielo, ver Fig. 4), detectando més de 300 millones de
fuentes [11]. El telescopio utilizado es el Telescopio Blanco de 4 m (Cerro Tololo, Chile)
equipado con la Dark Energy Camera (DECam), una cdmara de 570 megapixeles.

Su catdlogo fotométrico cubre el 6ptico y parte del infrarrojo cercano en las siguientes
bandas y con las siguientes magnitudes limite: g (475 nm; 24.3 mag), r (635 nm; 24.1
mag), i (775 nm; 23.3 mag), z (925 nm; 22.5), Y (1,000 nm; 21.2 mag).

En resumen, se trata de un cartografiado profundo en 5 bandas, cubriendo 1/8 del cielo,
con un alcance fotométrico mucho mas profundo que SDSS o 2MASS, disenado para una
cosmologia de precision.

2.1.3. VISTA-VHS

El VISTA Hemisphere Survey (VHS) es un proyecto que tiene como objetivo observar de
forma uniforme, en la banda del infrarrojo cercano, el hemisferio sur, con la excepcion
de algunas areas seleccionadas para observaciones mas profundas [12]. Se trata de un
mapeado amplio realizado con el telescopio VISTA (Visible and Infrared Survey Telescope
for Astronomy) en Cerro Paranal (Chile), usando cAmara VIRCAM en el infrarrojo cercano.

El 4rea total prevista es de ~ 18,000 deg? (ver Fig. 5) en varios filtros en el infrarrojo

Bnttp://xmmssc.irap.omp.eu/cat.html
Yhttps://www.darkenergysurvey.org/
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Figura 4: Mapa de cobertura de las misiones DES. Fuente: darkenergysurvey.org
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Figura 5: Densidad de objetos (por grado al cuadrado) segin la proyeccién de Mollweide para VHS DR5.
Fuente: NOIRLab

cercano. Los filtros usados en este trabajo y las magnitudes limite tipicas para el VHS son:
J (1.25 pm; 20.2 mag), H (1.63 pm; 19.2 mag), Ks (2.15 pum; 18.1 mag).

2.1.4. WISE

La mision WISE (Wide-field Infrared Survey Explorer) fue un telescopio espacial de la
NASA lanzado en diciembre de 2009 con el objetivo de cartografiar todo el cielo en el
infrarrojo medio, en 4 bandas: W1: 3.4 um; W2: 4.6 um; W3: 12 pm y W4: 22 pm.

En este trabajo se usé el catdlogo ptiblico AIIWISE?Y, que contiene més de 700 millones de
fuentes detectadas en un muestreo de todo el cielo (all-sky, cobertura ~41,253 deg?), con
una profundidad fotométrica (magnitudes limite) en cada banda de: W1: 16.5 mag; W2:
15.5 mag; W3: 11.2 mag; W4: 7.9 mag.

Para construir la muestra final multifrecuencia solo se tuvieron en consideracion las
bandas W1, W2 y W3, es decir, las que tenian mayor profundidad fotométrica.

20nttps://wise2.ipac.caltech.edu/docs/release/allwise/
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2.1.5. Sloan Digital Sky Survey- SDSS

El SDSS?! es un proyecto de investigacién iniciado en el afio 2000 (con fases posteriores:
SDSS-I, 11, II1, IV y actualmente SDSS-V) con el objetivo de cartografiar una gran fracciéon
del cielo en el 6ptico. El instrumento principal es el telescopio de 2.5 m en Apache Point
Observatory (Nuevo México, EE. UU.). Su base de datos publica incluye fotometria y
espectroscopia para millones de estrellas, galaxias y AGNs.

El drea fotométrica cubierta por el SDSS es de ~14,555 deg? (aproximadamente 1/3 del
cielo) en 5 filtros de banda ancha en las siguientes longitudes de onda y magnitudes limite
tipicas: u (354 nm; 22 mag), g (477 nm; 22.2 mag), r (623 nm; 22.2 mag), i (763 nm; 21.3
mag), z (913 nm; 20.5 mag).

Para construir nuestra muestra de validacién, aprovechamos la gran cantidad de fuentes
identificadas mediante espectroscopia en el SDSS, dividiéndolas en tres clases: estrellas,
galaxias y AGNs.

2.1.6. 2MASS

El proyecto 2MASS (1997-2001) fue el primero en realizar un mapa completo de todo el
cielo (~41,253 deg?) en el infrarrojo cercano. Para ello usé dos telescopios gemelos de 1.3m
en Mt. Hopkins (Arizona, EE.UU.) y Cerro Tololo (Chile). La cobertura se realizé en tres
bandas fotométricas con las siguientes longitudes de onda y profundidad: J (1.25 pm; 15.8
mag), H (1.65 um; 15.1 mag) y Ks (2.16 um; 14.3 mag).

En resumen, el catalogo 2MASS?? contiene el primer mapa completo del cielo en el infra-
rrojo cercano (J, H, Ks), con cientos de millones de estrellas, galaxias y AGNs, sirviendo
de base para gran cantidad de estudios galacticos y extragalacticos.

2.2. Muestras finales multifrecuencia

En esta seccion resumimos las caracteristicas principales de las muestras utilizadas en este
trabajo. En la seccion 3 se detallan las modificaciones realizadas a estas muestras para
poder aplicarles los métodos de ML seleccionados.

s Catalogo principal: Compuesto por ~ 370,000 fuentes infrarrojas en campos ob-
servados por XMM-Newton con fotometria en DES, VHS y WISE; filtros g, 1, i, z,
J, H, Ks, W1, W2 y W3, ~20,000 de ellas detectadas por XMM-Newton.

= Catalogo de validacion: Compuesto de ~ 237,000 fuentes infrarrojas identifica-
das mediante espectroscopia éptica y con datos fotométricos en DES, VISTA /2MASS
y WISE: filtros g, 1, 1, z, J, H, Ks, W1, W2 y W3. De ellas, unas 5000 tienen ademas

datos en rayos-X.

2lgdss. org
2?https://irsa.ipac.caltech.edu/Missions/2mass.html
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» Catalogos de galaxias: Se han utilizado varios catdlogos de galaxias y AGNs,
basados en fuentes de rayos X y construidos a partir de observaciones multifrecuencia
en areas determinadas del cielo a partir del cruce del catalogo COSMOS con VISTA.

2.3. Aprendizaje automatico

Una distincién clave respecto al ML es la diferencia entre los métodos supervisado y no su-
pervisado. Los métodos supervisados aprenden de datos catalogados y entrenados a través
de un modelo, donde la variable predicha en la salida (por ejemplo, la clasificacién de la
fuente astronémica) es conocida a priori. Esta aproximacién es 1til para tareas como la cla-
sificacion de fuentes o la estimacion del redshift de la galaxia. Los métodos no supervisados
son utiles para tareas donde los datos no estan catalogados y buscan descubrir patrones
ocultos o grupos en los datos. A través del clustering pueden agruparse galaxias de tipos
similares o detectar fenémenos astronémicos inesperados (outliers). Ambos métodos son
muy potentes por si mismos y su combinacién permite explorar e interpretar el universo
mas eficientemente.

Ambos métodos confian en la divisién de los datos en dos grupos principales:

= Las caracteristicas o features: son propias de los métodos tanto supervisados
como no supervisados, comprenden todos los datos necesarios para implementar el
método en los algoritmos supervisados, o para desarrollar el espacio de parametros en
los algoritmos no supervisados. En nuestro caso se trata de las magnitudes y colores
derivados a partir de ellas.

= Los objetivos o targets: esta distincién es propia de los métodos supervisados, y
comprenden aquellas propiedades de los objetos astronémicos que se quieren predecir
(masa estelar, SFR, etc) o su clasificacion (estrella, galaxia o AGN).

Asi pues, un algoritmo no supervisado solo depende de caracteristicas mientras que uno
supervisado, necesita muestras de entrenamiento con caracteristicas/clases a predecir co-
nocidas.

2.3.1. Reduccién de la dimensionalidad

Tras la construccion del catdlogo multibanda, surge la necesidad de reducir la cantidad de
variables involucradas. Esto no solo facilita la visualizacion y el analisis posterior, sino que
también permite descubrir patrones mas claros dentro del conjunto de datos. A menudo,
cuando se trabaja con grandes dimensiones, se pierde perspectiva de la estructura global
del sistema, y los grupos naturales que podrian existir quedan difuminados o distorsionados
por el ruido o la redundancia entre variables.

La reduccion de dimensionalidad tiene como objetivo transformar el espacio original en otro
de menor dimensién, procurando conservar la mayor parte de la informacién relevante. Esta
estrategia se engloba dentro del aprendizaje no supervisado, ya que actta directamente
sobre los datos sin necesidad de contar con etiquetas previas.
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En este estudio se han explorado el método del Analisis de Componentes Principales
(PCA)

Otros enfoques, como los métodos de aprendizaje sobre variedades (por ejemplo, Locally
Linear Embedding), se han usado en trabajos previos, que utilizan una muestra similar a
las usadas en este, con resultados no concluyentes [7]. Estos métodos buscan modelar la
estructura geométrica de los datos cuando se sospecha que se encuentran distribuidos sobre
una superficie de dimension inferior. Sin embargo, en este trabajo se ha optado por métodos
lineales que resultan mas sencillos de interpretar y presentan una mayor estabilidad frente
al ruido en los datos.

Todas las técnicas mencionadas han sido implementadas utilizando bibliotecas cientificas
en Python, concretamente Scikit-learn?® y AstroML?!, ampliamente reconocidas en el
ambito de la astronomia.

2.3.2. Analisis de Componentes Principales - PCA

El PCA es una técnica estadistica que permite identificar las direcciones en las que los
datos presentan mayor variabilidad. A través de esta transformacion lineal, se generan
nuevas variables, denominadas componentes principales, que son combinaciones lineales de
las variables originales y estan ordenadas segin la cantidad de varianza que explican.

La informacion esencial del sistema queda concentrada en la matriz de covarianza de los
datos, la cual es simétrica y definida positiva. Gracias a estas propiedades, es posible llevar
a cabo una diagonalizacion de dicha matriz: se encuentran una base ortonormal de vectores
propios (autovectores) y sus correspondientes valores propios (autovalores). Estos vectores
forman los ejes del nuevo sistema de referencia definido por la PCA, y los autovalores
indican la varianza explicada por cada uno de ellos. Asi, los vectores propios con mayor
autovalor corresponden a los componentes que mejor capturan la estructura del sistema.

Ademas, el método permite extraer una matriz de transformacion, la cual proyecta cual-
quier vector del espacio original al nuevo sistema de componentes principales. Matemati-
camente, siendo x = (z1,29,...,7,)" el vector de variables originales, la transformacién
PCA se expresa como: +

z=W'. x

T

donde W es la matriz de transformacién y z = (21, 22, ..., 2,,) ' representa el nuevo vector

de variables transformadas.

Desarrollando esta expresion por componentes:

2nttps://scikit-learn.org/stable/
24nttps://www.astroml.org/
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Z1 = W1T1 + Wik + -+ + W1 Ty

Z9 = W12X1 + WXy + + -+ + Wpoky,

Zm = WimT1 + WomTo + + -+ + Wpm Ty

Cada componente z; puede interpretarse como una combinaciéon ponderada de las variables
originales, en la que los coeficientes w;; indican la contribucién relativa de cada variable x;
al componente z;.

2.4. Clustering

Los métodos de clustering o biisqueda de grupos permiten agrupar datos con caracteristicas
similares, aun cuando el espacio de parametro dificulte discenir estas relaciones. Este tipo
de algoritmos se basan en un agrupamiento segin la distancia relativa en el espacio y por
tanto definir una similitud a partir de ello.

2.4.1. Random Forest (Clustering) - URF

El algoritmo Random Forest (RF) es un método de aprendizaje por conjunto basado en
la construcciéon de un gran niimero de arboles de decisiéon. Cada uno de ellos es entrenado
usando una porcién aleatoria de los datos (bootstrap), ademas de un subconjunto aleatorio
de features por cada divisién. Atin cuando su uso mas comun es en ML supervisado, cuenta
con una forma de ser usado en clustering.

En el método no supervisado, RF no cuenta con etiquetas reales para entrenar. En su
lugar, se genera un conjunto de datos artificiales imitando su distribuciéon marginal pero
eliminando las correlaciones entre variables. A continuaciéon, se toma un algoritmo RF de
clasificacion binaria para distinguir entre el conjunto de datos reales y los sintéticos. Asi,
la clave del método es el hecho de que RF intente discriminar ambos conjuntos mediante
sus arboles de decisién. Entre los arboles, puede capturarse la estructura interna y las
relaciones presente en los datos originales.

Como resultado, se obtiene una matriz de proximidad entre pares de observaciones: se
evalta la fraccion de arboles en los que ambas poblaciones terminan en la misma hoja. Si
hay una mayor proporcién, existe una alta proximidad entre ellos indica que los puntos
comparten caracteristicas similares segun el criterio de arboles. A partir de esta matriz
puede construirse una matriz de distancia a partir de:

Dij = /1= P (3)

donde (D;;) es la distancia entre los objetos i y j, y Pi;, su proximidad media. Debido a
que la probabilidad de P; = 1, la matriz de distancia tiene ademés, una diagonal nula.
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Este método es muy usado para la identificacion de datos andémalos, tal y como se usa
en [13]. En este trabajo se utilizard unicamente para construir una matriz de distancia.
Esta matriz permitira adoptar de una mejor métrica al método de separacion de grupos
en clustering.

2.4.2. HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
[14, 15, 16] es un algoritmo no supervisado basado en DBSCAN (Density-based Spatial
Clustering of Applications with Noise) [17, 18].

DBSCAN es un algoritmo de clustering basado en densidad, es decir, permite encontrar
clusters a partir de sobre-densidades de puntos en el espacio de parametros. DBSCAN
requiere dos hiperpardmetros principales: eps, el cual define la distancia méxima entre dos
puntos para ser considerado parte del mismo grupo, y min_samples, cuyo valor define cual
es la densidad minima a partir de la cual, un conjunto de puntos pueda ser considerado
denso.

El algoritmo define tres clases de puntos, esenciales para determinar grupos:

= Puntos niicleos: Es un punto el cual se encuentra con una densidad cuyo valor es
al menos min_samples en una hiperesfera de radio eps.

= Punto de borde: Es un punto el cual estda rodeado de puntos a la distancia eps,
pero no es en si un punto nicleo (no satisface la condicién de densidad).

= Punto de ruido: Aquellos puntos que ni son puntos nticleos ni puntos de borde.

A partir de esta clasificacién, se definen cada grupos a partir de delimitar aquellos puntos
nicleos delimitados por puntos bordes. Finalmente se crea un grupo de ruido para los
puntos de sobrantes.

HDBSCAN es una evolucion de este algoritmo. Este, en vez de contar con un radio fijo
eps, cuenta con un radio creciente. Esto es debido a que los grupos al disminuir el valor
de eps hace que los grupos o se dividan en grupos mas pequenos o se mantengan iguales.
Asi, haciendo un barrido creciente, se buscan aquellos grupos que persistan mas a lo largo
del proceso, siendo considerado los grupos éptimo [19].

2.5. Regresion

El punto clave de los algoritmos de regresiéon es obtener predicciones de una o varios
objetivos a partir de las caracteristicas o predictores.

Su mayor diferencia con los métodos algoritmicos clasico reside en que los métodos de ML
de regresion puede realizar predicciones de uno o mas targets mucho mas rapidas, ademas
de adaptarse mejor a las relaciones subyacentes de los grupos de datos.

En especial, en este trabajo se ha usado el método de RF de regresion.
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Figura 6: Imagen del proceso de separacién entre puntos niicleos, borde y ruido. Fuente: [19]

2.5.1. Random Forest (Regresién)

La aplicaciéon de RF en regresién sigue la misma légica que el RF no supervisado: se
construyen el conjunto de arboles de decisién a partir de muestras bootstrap de los datos
originales, pero en lugar de definir una matriz de distancia, cada arbol genera una prediccion
numérica para el objetivo. La prediccion final del modelo se obtiene a partir de un promedio
de las predicciones individuales de todos los arboles.

A diferencia de los métodos paramétricos, los cuales buscan obtener una tinica ecuacion que
describa la relaciéon entre predictores y respuesta, los modelos basados en arboles dividen el
espacio de parametros en regiones mas sencillas, permitiendo captar mejor las estructuras
no lineales de los datos.

En especial, es importante denotar el uso del bagging, el cual es clave en su funcionamiento:
si cada arbol es entrenado con una muestra distinta de los datos y se introduce una caracter
aleatorio en la seleccion de los predictores permite reducir la correlacién entre los arboles,
disminuyendo la varianza del modelo. De este modo el modelo es capaz de equilibrar el
sesgo (desviacién de las predicciones del modelo con los datos reales) con la varianza
(permitiendo evitar el overfitting o sobreadaptacion a los datos de entrenamiento [20].
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Figura 7: Prediccién de objetivo por medio de arboles de decisién en un problema de regresién. Fuente:
[20]

A lo largo de este trabajo, para evaluar el rendimiento de estos algoritmos, se usan los
estadisticos usuales en este tipo de analisis:

= onMaD- ES una métrica de la dispersion, muy usada en la astronomia para evaluar
la precision de predicciones. Su expresion es:

oxmap = 1,4826 x mediana (|Az — mediana(Az)|) (4)

Donde Az es la desviacion entre el valor predicho y el valor real Es una desviacién
resistente a los valores anémalos debido a contar con la mediana en vez de la media.

» Fraccién de valores anémalos 1( %): Es una métrica que permite calcular el
porcentaje de objetos astrondmicos los cuales se desvian de la prediccién esperada.
Se define segin la expresion:

N( LIS 0,15)

1+2zreal

n= (5)

2.6. Ranking de caracteristicas

Algunos métodos como la PCA o el RF cuenta con mecanismos integrados capaces de
senalar las caracteristicas que son mas importantes para el sistema. En el caso de la PCA,
por ejemplo, se utiliza la varianza explicada como medida: aquellas variables que apor-
tan mayor varianza en los componentes principales son aquellas que mejor representan la
informacion del sistema, y por tanto son mas relevantes para este.

Random Forest supervisado usa un sistema distinto. Mediante el MDI (Mean Decrease
Impurity) es capaz de cuantificar cuanto contribuye una caracteristica a mejorar la pureza
de los nodos entre los arboles de decision que componen un modelo.

Esta impureza refleja cuan heterogéneo es un nodo. Si una rama en la que se ha variado
una caracteristica se mantiene mas o menos constante, indica como esa caracteristica es
menos importante para la rama. Estas ramas ademéas son ponderadas por el nimero de
observaciones que caen en el mismo nodo, dando la importancia a aquellas ramas que mejor
expliquen el total de los datos.

Como resultado se obtiene un valor numérico: cuanto mayor es el MDI de una variable,
mayor es su relevancia en el modelo, ya que indica que contribuye mas a separar las clases
o mejorar la prediccién en los arboles.
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Asi, gracias a estos indicadores se pueden ordenar las caracteristicas segin su importancia,
permitiendo descartar aquellas que aporten menos al sistema.
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3. Resultados

Una vez hecha la presentacion de cada uno de los catalogos y los métodos que se han
utilizado, es momento de presentar los resultados:

3.1. Muestra final
3.1.1. Crosscorrelacion de catalogos.

Partiendo del Catalogo Principal descrito en la seccion 2.2, la primera accién tomada
ha sido actualizar el catalogo de 3XMM al 4XMM-DR14, su ultima version publica. Para
ello, mediante el uso de la herramienta de correlacién entre catdlogos de TOPCAT?® se han
localizado las coordenadas del 3XMM vy las del catalogo del 4XMM, correlacionandolas con
una distancia menor a 1 arcosegundo.

Una vez realizada esta actualizacion, el catdlogo resultante contiene unas 800.000 fuentes
con datos fotométricos en DES, VISTA-VHS y WISE, incluyendo probabilidades de aso-
ciacién y no asociacién entre las contrapartidas multifrecuencia. De esas 800.000, tan solo
unas 20.000 han sido detectadas por XMM-Newton.

A continuacién, se hizo un filtrado en calidad, seleccionando solo las asociaciones con
una probabilidad superior a 2 sigmas, ya sea entre tres (DES, VHS y WISE) o cuatro
catdlogos (DES, VHS, WISE y XMM). Asi se han obtenido dos muestras importantes para
los trabajos posteriores:

» Muestra Completa (MC):catalogue_with_DES_VHS_A11WISE.fits, con 361727
objetos con fotometria disponible del éptico al infrarrojo medio.

» Muestra X (MX): catalogue_with_DES_VHS_A11WISE_4XMM.fits, con 15410 ob-
jetos con ademas flujos en rayos X.

Para evaluar los métodos de clustering, se ha seguido el siguiente enfoque:
1. Aplicar técnicas de clustering solo usando datos del éptico al MIR aplicados a la MC.

2. Usando la sub-muestra MX, comprobar si la separacion de fuentes mejora con la
adicion de datos en rayos-X.

3. Debido a que los métodos de ML tienden tendencia a mejorar con respecto a un
aumento significativo de la poblacién del catdlogo, se han estimado limites superiores
para las fuentes no detectadas en X en la MC para comprobar de nuevo si mejoraba
la separacion.

Una vez extraidas las muestras para su estudio, es necesario comprobar si estas son repre-
sentativas de sus catalogos. En primer lugar, se comprobo si la muestra MX es representa-
tiva del catdlogo 4XMM-DR14 del cual viene su crosscorrelacién con el catdlogo MC. Para
ello se enfrentaron en un histograma, el flujo total en X (0.2-12 keV; flux_8) de ambos
catalogos. La figura 8a es su resultado.

25https://www.star.bris.ac.uk/~mbt/topcat/
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Puede observarse como la distribucién de flujos de la muestra MX se separa de la del
catdlogo completo para flujos menores de fluz 8 = 2e-14 erg cm ™2 s~1. Este hecho implica
que el catalogo MX reproduce bien el catdlogo 4XMM-DR14 a partir de ese umbral. Esto
era esperado, ya que los campos observados por XMM-Newton utilizados para construir el
catalogo principal no incluyen las observaciones mas profundas y ademas, al los catalogos
multifrecuencia utilizados, especialmente en el MIR, no tendrian una profundidad suficiente
para detectar las fuentes de rayos-X mas débiles.

Ademas, se comprobd si la MC y la MX representan poblaciones de objetos similares. Para
ello, se tomaron tres magnitudes en cada banda para comprobar si al cruzar con el catalogo
de 4XMM ha producido un sesgo. Asi, se obtuvieron las figuras 8b, 8c, 8d. Para el éptico
y el MIR, vemos el mismo efecto: las fuentes detectadas en rayos-X (MX) son ligeramente
mas brillantes, en promedio, en estas bandas que la muestra total (MC). En cambio, la
banda Ks muestra menor desviacion, probablemente debido a su naturaleza mas estable
frente a la extincion y su relevancia en objetos de tipo AGN.

Representacion catalogo 4XMM DR 14 - muestra MX Representacién MC 4XMM - no 4XMK
0.12 : : - : R
0101 . |
.10} M4xMM DR14 SLIM| nMC HXMM
. MC - no 4XMM
MX 0.08} H
008} ] |
0.06F B 0061 i [
0.04F ___77 , 0.041 | |
0.02[ | i ] 0.02f - [
i el [,
0 2e-14 de-14 6e-14 Be-14 1.0e-13 12 14 16 18 20 22 24 26 28 30
flux_8 [erg/cm»2/s) gmag
(a) Histograma flujo total en X entre catdlogo (b) Histograma magnitud g catdlogo MC, 4XMM - no
4XMM,DR14 y MX. 4XMM.
Representacion MC 4XMM - no 4XMM Representacion MC 4XMM - no 4XMM
0157 MC - 42MM 1 1 MC - 43MM
MMC - no 4XMM - MMC - no 4XMM
[ 0151
010t 1 |
0101
0.051 1
| 0051
1] L | 0 | i
6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18
Ksmag W2mag
(c) Histograma magnitud Ks catdlogo MC, 4XMM - no (d) Histograma magnitud W2 catalogo MC, 4XMM - no
4XMM 4XMM

Figura 8: Histogramas comparativos para comprobar la representatividad de la muestra. Los catalogos MX
con el catalogo 4XMM DR14 y los datos en X de MC con los de no X de MC
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3.1.2. Limites superiores

Atn cuando la poblacién de MX es lo suficientemente representativa de la poblacion total a
estudiar, su tamano, mucho menor que la MC, podria afectar a la eficiencia de los métodos
de ML a aplicar. Sin embargo, es posible ampliar el tamano de la muestra hasta un 2000 %
estimando los flujos en rayos-X de las fuentes no detectadas mediante el calculo de sus
correspondientes limites superiores.

En un primer momento, se aposté por el uso de FLIX [21] en el calculo de limites superiores.
Esta herramienta permite adoptar limites superiores dependiendo la posicion del cielo
mediante un calculo basado en modelos empiricos. Sin embargo, debido a que el volumen
de datos necesarios para completar el catdlogo era inmenso y que servicio se encontraba
unicamente en web, impidieron que este pudiera ser usado para completar el catdlogo.

Asi, se llegd a la segunda opcion: seleccionar aquellos valores presentes en el catalogo
fotométrico que no se encuentran en el catalogo de MX. Asi, se le asigna un flujo limite
superior buscando aquellos flujos de MX que estén dentro del radio de 5 arco minutos. Este
hecho parte de la base de que cualquiera de esos valores fotométricos habrian obtenido
un flujo si este fuera mayor al valor detectado. Como no ha sido asi, el valor debe ser
estrictamente menor.

Esta técnica ha permitido completar el catdlogo MX con datos artificiales los cuales han
sido ademds marcados con una etiqueta booleana la cual distingue aquellos objetos que
pertenecen a 4XMM (y por tanto no es un limite superior) o no pertenecen a este catalogo.
Los métodos de ML contaran con esta etiqueta como una de sus caracteristicas.

Conviene senalar que, si bien esta ampliacién incrementa notablemente el volumen de datos
disponibles, en algunos métodos puede actuar como un foco localizado de ruido, lo cual
debe tenerse en cuenta en los analisis posteriores.

En la tabla 1, se indica un resumen de las caracteristicas de cada catdlogo generado.

Catalogo Condicién Numero de datos Composicién de datos
Fotométricos:
MC P(ANnBNC) > 20 361727 o v iz J H K, W1, W2, W3
Fotométricos:
; - g, 1, i,z J, H K, W1, W2, W3
MX P(ANBNCND) > 20 15410 AXMM

Banda soft (1,2,3), Banda hard (4,5), Flujo total (8)
Fotométricos:
e 1 i, 2, J, H, K, W1, W2, W3
MX + UL | PANBNCND)>20+UL 361727 4XMM + Limite superior:
Banda soft (1,2,3), Banda hard (4,5), Flujo total (8)
is_ 4XMM

Tabla 1: Resumen de las caracteristicas de los catdlogos utilizados. Fuente: Propio

3.1.3. CAlculo de colores

El calculo de colores constituye un proceso fundamental para permitir una separacién mas
nitidas de grupos en el espacio de pardmetros, y, al mismo tiempo, de otorgar a la PCA
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un significado fisico mas interpretable.

Aunque estas caracteristicas no formen parte intrinsecamente de los catdlogos originales,
se han calculado de manera externa mediante una funcién debido a los numerosos métodos
que se benefician de su inclusién.

Para ello la funcion realiza todas las combinaciones tnicas de diferencia entre magnitudes
fotométricas, resaltando contrastes en bandas especificas, ademas de permitir una mayor
separacion entre poblaciones de objetos.

3.1.4. Datos de validacion

Siguiendo la necesidad de datos de validacion que corroboren los grupos sintéticos creados
en el apartado de ML no supervisado, es necesario unos datos de validacion alineados con
los catalogos que se han usado.

A partir de esta muestra se han definido dos archivos de validacién.

» Validacién de muestra completa: (VMC): VEXAS_DES_VISTA_WISE mags_zclass.fits.
Muestra extraida de los catalogos multi-frecuencia de VEXAS [22], que incluyen foto-
metria procedente de DES, VISTA y WISE. Seleccionamos aquellas fuentes con dis-
tancias (redshifts) y clasificaciones procedentes de espectroscopia éptica, obteniendo
una muestra de 336020 fuentes, que constituyen nuestra muestra de validacién para
el catalogo MC.

» Validacién de muestra con X (VMX):VEXAS_DES_VISTA_WISE mags_zclass_XMM.fits
es una submuestra de la anterior cruzada con 4XMM. Contiene 4614 datos y pretende
actuar como validacién para el catalogo MX.

Las distribuciones de redshifs de los objetos en estas muestras de validacién estan repre-
sentadas en la Fig. 9.

Distribucidn del redshift segln la clase para VMC Distribucién del redshift segun la clase para VMX

0.3 0.3
AGNs AGNs
N Galaxias I N Galaxias
0.2r 1 0.2}
01r 1 01r
0 |HH||||||||||II|||.._. 0 HH—||||_|_||||||I_|....
0 1 2 3 4 0 1 2 3 4
Z_spec Z_spec
(a) Distribucién en redshift de la muestra VMC - segin (b) Distribucién en redshift de la muestra VMX - segin
la clase QSOs y Galaxias la clase QSOs y Galaxias

Figura 9: Graficas de representatividad en redshift para las muestras de validacion VMC y VMX
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Ademas, se comprob¢ la representatividad de los datos de validacion, para ello, al igual que
en las figuras 8b, 8c, 8d, se obtuvieron los histogramas correspondientes 10a, 10b y 10c. Los
datos de validacion tienen una tendencia a representar mejor aquellos datos méas brillantes,
generando una discordancia entre datos de validacion y la MC. Esto se debe probablemente
a que solo forman parte de la VMC aquellas fuentes con espectroscopia optica, generalmente
no disponible para las fuentes més débiles/lejanas. Se muestra también la distribucién de
redshift para las muestras VMC y VMX 10.

Representacion MC - VMC Representacion MC - VMC

0.10

0.08

0.06

0.04

0.02

0
12 14 16 18 20 22 24 26 28 30 0 11 12 13 14 15 16 17 18 19 20
gmag Ksmag

(a) Histograma magnitud g catdlogo MC - VMC (b) Histograma magnitud Ks catalogo MC - VMC

Representacion MC - VMC

0.10

0.08

0.06

0.04

0.02

12 13 14 15 16 17 18
W2mag

(c) Histograma magnitud W2 catdlogo MC - VMC

Figura 10: Gréficas de representatividad entre los catdlogos MC y su validacién asociada VMC. Fuente:
Propio
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3.2. Clasificacion de fuentes - Clustering

Una vez reunidos y limpiados los catdlogos, ademas de asegurar unos datos de validacion
compatibles, se ha abordado el primer objetivo impuesto: Comprobar la posibilidad de
identificar clases astronémicas usando tinicamente datos fotométricos y/o flujos en X.

Por ello se seguira el siguiente flujo de trabajo. En primer lugar se trabajara con la MC,
identificando la geometria que adoptan los datos en el espacio de vectores PCs y por
ultimo, se tratara de aplicar los métodos de clustering para tratar de observar estructuras.
Asi mismo, a continuacién, se tomara una aproximacién parecida para MX y para MX+UL.
Comprobaremos la geometria en el espacio de PCs ademas de la eficacia de las técnicas de
clustering.

Los tres catalogos seran procesados por los siguientes bloques, que diferiran entre ellos por
el nimero de datos:

1. Reduccién de dimensional (PCA): En este paso, reduciremos la dimensiona~
lidad del catalogo a sus ejes principales. Este permite observar grupos visuales y
contrastarlos con los marcadores de los datos de validacion.

2. Calculo de la matriz de distancias (URF/HDBSCAN) Los métodos de cluste-
ring necesitan definir una métrica que permita calcular distancias dentro del espacio
de parametros. Para el catdlogo MX, el cual es menos poblado, se puede definir con
URF una matriz de distancias adaptada al espacio de parametros. Sin embargo, esto
no es extrapolable a los catdlogos mas poblados como MC o MX+UL (matriz de
distancias n x n). Por ello, se us6 en estos casos HDBSCAN, que calcula por si solo
la matriz de distancia por medio de una métrica euclidiana.

3. Determinacién de los grupos sintéticos (HDBSCAN): HDBSCAN determina
por medio de la matriz de distancia grupos de sobre-densidades. Asi genera grupos
delimitados los cuales son contrastados con la validacion.

4. Validacién: Los datos de validacién cuentan con clases corroboradas espectroscopi-
camente. Esto permite aplicar los grupos sintéticos al espacio de validacién y tratar
de predecir cual seria el el grupo asignado. Para ello una matriz de contingencia seréa
crucial para este hecho.

Este flujo de trabajo queda resumido en la figura 11
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PCA [RF - No supervi uuu} [ HBDSCAN ]7
MX
Catélogo —' Comparacién con Resuitados
validacion
MCMC+UL
HDBSCAN
FCA (Métrica Euclediana) HEDSCAN

REDUCCION DE CALCULO MATRIZ DETERMINACION

DE GRUPOS
DIMENSIONALIDAD DE DISTANCIAS SINTETICOS

VALIDACION

Figura 11: Esquema del flujo de trabajo desarrollado para el apartado de métodos no supervisados. Fuente:
Propio

3.2.1. Exploracion del catialogo MC

Este apartado tiene como objetivo aplicar el flujo de trabajo a los datos principales. Por
ello, desarrollando la PCA obtenemos la figura 12.

PCA 3D: PC1 vs PC2 vs PC3 (Catalogo MC) con colores

20-10.0

Figura 12: Representacion del catialogo MC en espacio de PCA. La gran cantidad de datos dificulta observar
grupos distinguibles. Fuente: Propio.

Una vez visualizado los datos, introducimos la lista de magnitudes y colores en el HDBS-
CAN tratando de identificar nuevos grupos. Como resultados se obtiene la figura 13
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HDBSCAN en espacio PCA (PC1-PC3) - MC

+a40mEP>O

Cluster

75
Cluster 0 (N=465)
Cluster 1 (N=1795)
Cluster 2 (N=8360)
Cluster 3 (N=474)
Cluster 4 (N=286200)
Cluster 5 (N=1555)
Ruido (-1) (N=37171)

Figura 13: Representacién delas predicciones de HDBSCAN para el catdlogo MC en espacio de PCA. Los
grupos no son representativos de la estructura interna. Fuente: Propio.

Una vez obtenido los grupos sintéticos, se aplican a los datos de validacién, obteniendo
las figura 21a. La figura 21b es la representacion de los datos marcados con los datos de

validacién.

HDBSCAN en validacién (PC1-PC3)

Cluster

Cluster 0 (N=123)

Cluster 1 (N=227) 1
Cluster 2 (N=410)
Cluster 3 (N=27)
Cluster 4 (N=173759)
Cluster 5 (N=109)
Ruido (-1) (N=63051)
10.0+vv

¢ <oEP>O

(a) Representacién 3D de los grupos sintéticos aplicados
a los datos de validacién en espacio PC para la muestra
de validacién VMC

VALIDACION: clases reales, color (PC1-PC3)

® Estrellas (N=44921)
4 QSO (N=18349)
m  Galaxias (N=136730) 10 ¢

20 —20

(b) Representacién de las clases reales pertenecientes a
los datos de validacién en el espacio PC para la muestra
de validacién VMC

Figura 14: Resultados obtenidos al comparar los grupos sintéticos en el espacio de datos de validacién con

las clases reales. Fuente: Propio

Asi pues, puede construirse la siguiente tabla de contingencia 2 para asociar los grupos

sintéticos a los reales.



Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Estrellass 53364 5621 (10.53%) 123 (0.23%) 227 (0.43%) 404 (0.76%) 27 (0.05%) 46854 (87.82%) 108 (0.20%)
QSO 21716 21220 (97.71%) 0 (0.00%) 0 (0.00%) 2(001%) 0 (0.00%) 494 (2.28%) 0 (0.00%)
Galaxias 162626 36210 (22.27 %) 0 (0.00%) 0 (0.00%) 4(0.00%)  0(0.00%) 126411 (77.73%) 1 (0.00 %)

TOTAL 237706 63051 (26.53%) 123 (0.05%) 227 (0.10%) 410 (0.17%) 27 (0.01%) 173759 (73.10%) 109 (0.05 %)

Tabla 2: Tabla de contingencia para los datos de MC para un min_cluster_size=120

Se puede observar que la separacion obtenida no es muy efectiva. Por ello, en el siguiente
apartado intentaremos comprobar la eficiencia con el grupo MX, para explorar si la inclu-
sion de informacién en rayos-X mejora la separacion entre los distintos tipos de fuentes.

3.2.2. Exploracion magnitudes vs magnitudes y colores - Catalogo MX

Una vez obtenidos los resultados para la muestra completa, cabe preguntarse si anadir los
flujos en X permite mejorar la delimitacion de los clusters y la separacién entre tipos. Como
la MX cuenta con un numero significativamente menor de datos, ademéas nos permitira
comparar si los grupos de datos se separan mejor con o sin la adicion de colores mediante.
Por ultimo, los datos de MX permitiran ademés usar el RF no supervisado para calcular
la matriz de distancia y por tanto, obtener una métrica mas adaptada al espacio de los
datos.

Como resultados, en primer lugar como comparacion en el espacio PC obtenemos las figuras
15b 15a

PCA 3D: PC1 vs PC2 vs PC3 (Catalogo 4XMM) sin colores PCA 3D: PC1 vs PC2 vs PC3 (Catalogo 4XMM) con colores

(a) Representacién 3D de PCA si no se afiade como ca- (b) Representacién 3D de PCA si se afiade como carac-
racteristicas el color teristicas el color

Figura 15: Inspeccién visual de diferencia entre afiadir o no colores al cdlculo de grupos. La PCA ha sido
calculada para 7 PCs los cuales acumulan 0.995 y 0.940 de varianza acumulada respectivamente. Fuente:
Propio

Desarrollando el flujo de trabajo, obtenemos los siguientes grupos de las figuras 16a y 16b.
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Grupos localizados por HBSCAN en base (PC1-PC3) - no colores Grupos localizados por HDBSCAN en base (PC1-PC3) - colores

o Cluster 0 (N=352)
s Cluster 1 (N=419) 4
Cluster 2 (N=155) 3
o Cluster 3 (N=530) .
Ruido (-1) (N=7300)

Cluster

Cluster 1 (N=1328)
Cluster 2 (N=1118)
Cluster 3 (N=3026)
Cluster 4 (N=688) [
Ruido (-1) (N=1809)

10.07+v-v

(a) Representacién 3D de los grupos generados por (b) Representaciéon 3D de los grupos generados por

HDBSCAN sin colores para un min_cluster_size = HDBSCAN con colores para un min_cluster_size =
120. 400.

Figura 16: Diferencia de los grupos generado por HBDSCAN para el catdlogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Si aplicamos la deteccién de grupos a los datos de validacion en el espacio sin colores,
obtenemos las figuras 17a y 17b.

VALIDACION: clases reales, no colores (PC1-PC3)

Validacién: clusters HDBSCAN (PC1-PC3) - no colores

2 3
1 N 2
0 . 1
p . o
0 2
-1 PC3
1 o
_2 7
- E
-3
_3 1

5

Ruido (-1) (N=1636)

Cluster 0 (N=1601) 0
Cluster 1 (N=26)

Cluster 2 (N=619)

Cluster 3 (N=731)

® Estrellas (N=143)
A QSO (N=2533)
B Galaxias (N=1937) 0

o m>oe

-1

(b) Representacién 3D de la prediccién de grupos de

(a) Representacién 3D de la clase de los datos de valida- HBSCAN para los datos de validacién para una PCA
cién para una PCA sin colores. sin colores.

Figura 17: Diferencia de los grupos generado por HBDSCAN para el catdlogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Hacemos lo mismo para el espacio con colores, obteniendo las figuras 18a y 18a.
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VALIDACION: clases reales, color (PC1-PC3)

.o Validacién: clusters HDBSCAN (PC1-PC3) - colores

Ruido (-1) (N=30)
Cluster 0 (N=372)
Cluster 1 (N=725)
Cluster 2 (N=646) 5
Cluster 3 (N=2382) 0.0

.
-10.0

® Estrellas (N=143)
A QSO (N=2533)

& H > e

0.0 Cluster 4 (N=458) 5.0

B Galaxias (N=1937) 2.5 50, -8
(b) Representacién 3D de la prediccién de grupos de
(a) Representacién 3D de la clase de los datos de valida- HBSCAN para los datos de validacién para una PCA
cién para una PCA con colores. con colores.

Figura 18: Diferencia de los grupos generado por HBDSCAN para el catdlogo 4XMM. El ruido detectado
por HBSCAN ha sido ocultado para mejorar la claridad de los grupos. Fuente: propio

Donde la diferencia de grupos es notable. Al compararlo con el grupo de validacién obte-
nemos, a modo de resumen, las tablas 3 y 4.

Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3
Estrellas 143 10 (6.99 %) 1(0.70%) 19 (13.29%) 6 (420%) 107 (74.83%)
QSO 9533 881 (34.78%) 1562 (61 67%) 0 (0.00%) 82 (3.24%) 8 (0.32%)
Galaxias 1937 745 (38.46 %) 38 (1.96%)  7(0.36%) 531 (27.41%) 616 (31.80 %)
TOTAL 4613 1636 (35.46 %) 1601 (34.71%) 26 (0.56%) 619 (13.42%) 731 (15.85%)

Tabla 3: Tabla de contingencia para el catalogo MX sin colores. Fuente: propio

Clase Total Ruido (-1) Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Estrellas 143 3(210%) 40 (27.97%) 58 (40.56 %) 24 (16.78 %) 14 (9.79 %) 4 (2.80%)
QSO 2533 8(0.32%) 141 (5.57%) 311 (12.28%) 404 (15.95%) 1336 (52.74%) 333 (13.15%)

Galaxias 1937 19 (0.98 %) 191 (9.86 %) 356 (18.38 %) 218 (11.25%) 1032 (53.28 %) 121 (6.25 %)
TOTAL 4613 30 (0.65%) 372 (8.06%) 725 (15.72%) 646 (14.00%) 2382 (51.64%) 458 (9.93%)

Tabla 4: Tabla de contingencia para el catalogo MX con colores. Fuente: propio.

En el apartado 4, se discuten estos resultados en mas detalle, pero cabe resaltar que anadir
los colores constituye una mejora sustancial en la formacién de grupos para HDBSCAN y
su separacion en la PCA.
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3.2.3. Exploracién de influencia de limites superiores MX+UL

Una vez explorado los datos de MX, es momento de preguntarse si anadir datos de menor
calidad mejora sustancialmente los resultados. Sin embargo, el aumento de la poblacion
hace inviable el uso del URF al célculo de matrices de distancia del orden de n?.

En primer lugar, se obtendran la representacion en espacio PCA, la cual puede verse en la
figura 19.

PCA 3D: PC1 vs PC2 vs PC3 (Catalogo MX + UL) con colores

20 —10.0

Figura 19: Representacién en 3D de PCA para el catdlogo MX+UL. Puede apreciarse como al anadir los
limites superiores, limitan la visibilidad de los grupos de la figura 15b. Fuente: Propio.

Una vez visualizados los datos, introducimos la lista de magnitudes, colores y flujos en
HDBSCAN tratando de identificar nuevos grupos. Como resultados se obtiene la figura 20.

HDBSCAN en espacio PCA (PC1-PC3) - MX+UL

Cluster 0 (N=426)
Cluster 1 (N=8140)
Cluster 2 (N=1543)

Cluster 3 (N=244473)
Cluster 4 (N=1234) 0
15 Ruido (-1) (N=105911)

|
S
<eomreo

Figura 20: Representacién delas predicciones de HDBSCAN para el catdlogo MX+UL en espacio de PCA
paraunmin_cluster_size=120 Los grupos no son representativos de la estructura interna. Fuente: Propio.
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Una vez obtenido los grupos sintéticos, se aplican a los datos de validacién, obteniendo
las figura 21a. La figura 21b es la representacion de los datos marcados con los datos de
validacion.

VALIDACION: clases reales, color (PC1-PC3)

HDBSCAN en validacién (PC1-PC3) - MX+UL

Cluster

P
15 .

10 ! —;-5\’\\
1s 210.0

_10 5PC2 @ Estrellas (N=143)

-5 e Cluster 1 (N=1) =
pc1 © 5 A Cluster 3 (N=955) A QSO (N=2533)

. Ruido (1) (N=3658) ®  Galaxias (N=1937) 50,
(a) Representacién 3D de los grupos sintéticos aplicados (b) Representacién de las clases reales pertenecientes a
a los datos de validacién en espacio PC. los datos de validacién en el espacio PC.

Figura 21: Resultados obtenidos al comparar los grupos sintéticos en el espacio de datos de validacién con
las clases reales. Fuente: Propio.

Asi pues, puede construirse la siguiente tabla de contingencia 5 para asociar los grupos
sintéticos a los reales.

Clase Total Ruido (-1) Cluster 1 Cluster 3
Estrellas 143 45 (31.47%) 1 (0.70 %) 97 (67.83%)
QSO 2533 2503 (98.82%) 0 (0.00%) 30 (1.18%)

Galaxias 1938 1110 (57.28%) 0 (0.00%) 828 (42.72%)
TOTAL 4614 3658 (79.29%) 1 (0.02%) 955 (20.69%)

Tabla 5: Tabla de contingencia para el catdlogo MX+UL

30



3.3. Propiedades de galaxia - Regresion

Este apartado permite aprovechar los catalogos desarrollados durante el apartado 3.1 con
el objetivo de explorar métodos para completar datos faltantes a partir del resto de la
muestra y para obtener caracteristicas fisicas de los objetos.

Por ello se dividira en dos partes:

» Predecir W1, W2 y W3 (magnitudes de infrarrojo medio) a partir de las magnitudes
del infrarrojo cercano, 6ptico y/o flujos en X

= Predecir el SFR, la masa estelar, la fracciéon de AGN, la luminosidad del AGN, y la
luminosidad estelar a partir de magnitudes fotométricas, usando como comparacion
los obtenidos mediante ajuste "clasico” de SEDs, especificamente mediante CIGALE?®.

3.3.1. Prediccién de magnitudes W1, W2 y W3

En primer lugar se exploro la estructura general de los datos de MX y MX+UL mediante la
aplicacion de RF'. Este hecho es importante debido a los resultados obtenidos en el apartado
anterior, donde se abria la posibilidad a que los datos sintéticos de limites superiores
generasen dispersion y, por tanto, ruido a los resultados.

Asi, se obtienen las imagenes 22a 22b.

Real vs Predicho, 4XMM + UL 3D

Real vs Predicho, 4XMM 3D
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logo 4XMM 4XMM con datos sintéticos de limites superiores.

Figura 22: Predicciones W1, W2, W3 para catdlogo con MX y MX + UL, los colores indican el error
relativo con respecto al valor tedrico. Fuente: Propio

Debido a que las predicciones de RF entrelazadas también representan la correlacion entre
sus variables dependientes, se optd por desarrollar tres modelos por separado en el calculo
de W1, W2, W3. Asi, se elimina la dependencia del modelo de optar con datos de las otras

26nttps://cigale.lam.fr/
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dos magnitudes a la hora de predecir la tercera. Para el catalogo MX obtenemos las figuras
23a 23b 23c.

4XMM - Pred W1mag | R2=0.966 | 0_NMAD=0.0152 | n=0.11%
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Figura 23: Representacion de predicciones de W1, W2 y W3 respecto a real para el catdlogo MX. Fuente:
Propio

32



4XMM - Pred Wlmag | R2=0.974 | 0 NMAD=0.0078 | n=0.01% 4XMM - Pred W2mag | R?=0.937 | 0_NMAD=0.0132 | n=0.05%
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Figura 24: Representacion de predicciones de W1, W2 y W3 respecto a real para el catalogo MX + UL.
Fuente: Propio

Ademas de las figuras 24a 24b 24c para el catalogo con limites superiores.

En la tabla 6 se detalla la importancia, estimada mediante RF, de las variables principales
utilizadas; y en la tabla 7 se resumen los parametros estadisticos de cada modelo.

MX MX + UL
Rango Caracteristica Importancia | Rango Caracteristica Importancia (MDI)
1 Kmag 0.7290 1 Kmag 0.8647
2 Jmag 0.0689 2 Jmag-Kmag 0.0184
3 gmag 0.0396 3 gmag-rmag 0.0155
4 flux_ 8 0.0162 4 imag-zmag 0.0107
5 flux_ 4 5 0.0140 5 zmag 0.0073
6 gmag-rmag 0.0133 6 rmag-zmag 0.0069
7 Hmag 0.0106 7 zmag-Kmag 0.0069
8 Jmag-Kmag 0.0088 8 rmag-imag 0.0063
9 Hmag-Kmag 0.0081 9 gmag-imag 0.0055
10 zmag-Kmag 0.0079 10 Hmag 0.0050
11 imag-zmag 0.0067 11 Jmag 0.0036
12 gmag-imag 0.0066 12 flux 1 2 3 0.0035
13 zmag 0.0060 13 flux_4 5 0.0030
14 flux_ 1 2 3 0.0054 14 flux_8 0.0029
15 rmag 0.0049 15 zmag-Jmag 0.0027

Tabla 6: Top 15 caracteristicas més importantes para el calculo de W1, W2, W3 para cada catalogo.
Fuente: Propio
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MX MX+UL
Magnitud RMSE R? oxuap 7 (%) | RMSE R?  oxuap 71 (%)
W1 0.3116 0.966 0.0152 0.11 0.2050 0.974 0.0078 0.01
W2 0.4650 0.908 0.0238 0.17 0.3136 0.937 0.0132 0.05
W3 0.4895 0.722 0.0313 0.80 0.3244 0.549 0.0227 0.08

Tabla 7: Parametros estadisticos comparativos para cada magnitud en los modelos MX y MX+UL. Fuente:

Propio
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3.4. Modelizacion de SEDs

En esta seccién se evaltia un método alternativo para la estimacion de parametros claves
en galaxias y AGNs. Tradicionalmente, estas propiedades son obtenidas mediante el ajuste
de las SEDs a varios modelos de emision correspondientes a las diferentes componentes
esperadas: emision estelar, emisién del posible AGN y de las regiones de formacién estelar,
incluyendo ademas los efectos de la extincion. En especial, CIGALE es el codigo referencia
para este hecho.

Nuestro objetivo es usar los resultados de la aplicacién de CIGALE a las muestra de ga-
laxias y AGNs descrita en la seccién 2.2, procedente de [23], para construir muestras de
entrenamiento y validacion a las que poder aplicar algoritmos de ML supervisado.

Para ello se toman como features magnitudes fotométricas, que mediante un RF mul-
tivariable permiten obtener la tasa de formacién estelar (SFR), la fraccién de AGN, la
luminosidad estelar y la luminosidad del AGN.

3.4.1. Datos y construccién del dataset

Los datos utilizados provienen de una cross-correlaciéon previa al trabajo entre los ca-
talogos COSMOS y UltraVISTA[23]. Estos estdn repartidos en dos subcatdlogos, uno que
agrupa a las galaxias, y otro que agrupa a las galaxias con detecciéon en X propia de AGNs.
El primer paso fue combinar ambos subcatalogos ya que estos representaban parte de un
catalogo més grande. Asi, de su unién se obtiene el catdlogo COSMOS_UltraVISTA Merged.
En la figura 25 se representa la distribucién del redshift normalizada para los catalogos
COSMOS_ULtraVISTA_gals y COSMOS_UltraVISTA_XrayAGN.

Distribucion de redshift para los catalogos SEDs

013/ Il COSMOS_UltraVISTA_gals

Ncosmos_uitravISTA XrayAGN
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Figura 25: Distribucion normalizada del redshift de los dos catdlogos de galaxias usados para las SEDs.
Fuente: Propio

3.4.2. Preprocesamiento

Durante la limpieza de datos del catalogo surgieron dos problemas importantes: En primer
lugar, las magnitudes fotométricas estaban divididas segiin el instrumento que la midio,
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y por tanto varios instrumentos podian medir la misma magnitud; ademas como segundo
problema, de cardcter més técnico, en lugar de valores "vacios”/NaN, algunas magnitudes
fotométricas marcaban la ausencia de medida con un valor “placeholder” de —9999. Estos
dos incidentes consiguieron ser subsanados siguiendo los pasos detallados en el Apéndice

A.

3.4.3. Aplicacién del Random Forest

Una vez preparado el catalogo limpio, se aplic6 el modelo de Random Forest para la
prediccién de los cinco parametros de interés. Ademas de las predicciones, el algoritmo
proporciona un ranking de importancia de features, que permite identificar los filtros
fotométricos que contribuyen mas significativamente a la estimacion de cada parametro.
Los resultados se presentan en el conjunto de figuras 26 y el ranking en la figura 27.
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Figura 26: Representacion de predicciones para SFR, M,, fraccion AGN, luminosidad estelar y luminosidad
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del AGN respecto a los valores reales en el catdlogo 4XMM+UL. Fuente: propio.
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Top features — RF multi-salida
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Figura 27: Ranking de importancia para las magnitudes en orden decreciente. Fuente: Propio

Finalmente los resultados estan recogidos en la tabla 8 a modo de tabla de resumen de
resultados.

Propiedad Target RMSE R? ONMAD n (%)
SFR Mg yr—!] bayes.sfth.sfr 1 1,37 x 10Y  0.679 1,48 x 10°  47.09
Masa estelar M* [Mg] bayes.stellar.m_star 1 2,34 x 101 0.883 1,53 x 10°  25.82
Fracciéon AGN bayes.agn.fracAGN_1 9,97 x 1072 0.613 5,59 x 1072 60.98
Luminosidad estelar [W] bayes.stellar.lum 1 3,56 x 1037 0.782 5,57 x 10%6  40.49

Luminosidad AGN [W]  bayes.agn.luminosity 1 2,49 x 1037 0.642 1,38 x 10%®  55.29

Tabla 8: Métricas de prediccién obtenidas con Random Forest para los cinco targets seleccionados de
CIGALE. Fuente: propio.
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4. Discusion

En este apartado se analizan los resultados del apartado 3.

4.1. Muestra final
4.1.1. Datos de validaciéon

Uno de los elementos mas sensibles en el apartado de clustering es el nimero y la naturaleza
de los datos de validacién. El nimero de datos de validacion depende de los catalogos con
los que se han cruzado, ya que como maximo se podran obtener un ntmero de datos
completos igual a la poblacion del catdlogo més pequetio.

Esto tiene una relevancia significativa tanto para el catdlogo de entrenamiento como el
de validacién. Un catdlogo menos poblado reduce significativamente el desempenio de los
métodos de Machine Learning: gran parte de las estructuras que puedan existir pueden
detectarse como outliers o incluso ser incluidas en estructuras distintas debido a no contar
con la suficiente densidad. A cambio, anadir mas catdlogos en diferentes bandas permi-
te una mayor profundidad, separando mejor las clases. Al final es una cuestion pura de
CcOmMpromiso.

Sin embargo, la naturaleza de los datos es fundamental para el estudio de los catdlogos.
Esto puede verse con el contenido de la poblacion de VMX. Debido a que los mayores
emisores de rayos-X son los QSO, al cruzar los catalogos fotométricos con 4XMM sesgan
la poblacién a favor de un mayor niimero de galaxias y sobre todo QSO. Esto se distingue
con el contenido de la poblacion: aun cuando VMC cuenta con unos 237000 datos (53 354
estrellas, 21 716 QSO y 162 626 galaxias) VMX cuenta con 4613 de los cuales son 143
estrellas, 2533 QSO y 1937 galaxias. Asi pues, constituye una bajada en la poblacion de
estrellas desde el 22.44 % al 3.10 % sesgando los resultados segtn la clase.

Este sesgo abre la posibilidad de realizar estudios especificos a la clase favorecida, asi pues,
un estudio de AGNs estard muy favorecido por datos fotométricos con los que ademas se
cuentan con flujos en rayos-X.

Esto pone un compromiso fundamental en astronomia, tal y como se demostrara en apar-
tados posteriores: aumentar la profundidad y calidad de la muestra implica necesariamente
reducir la variedad de esta misma.

4.2. Clustering

El apartado de clustering ha permitido estudiar a través de una reduccion de variables
las estructuras internas de los distintos catalogos disponibles para el estudio. Ademas,
mediante el uso del mismo método de clustering para los tres catalogos ha permitido
estudiar mejoras sustanciales en dos apartados claves: separacion de clases astronémicas y
la mejora en delimitacién de grupos sintéticos.
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4.2.1. Exploracion catalogo MC

Este apartado ha consistido en la exploracion de un catalogo puramente fotométrico, sin
contar con los flujos en rayos X. Los datos han sido adaptados al espacio PCA, quedando
limitado en una forma de dos lobulos principales. Sin embargo, el gran ntimero de datos,
y, sobre todo la profundidad, ha impedido observar claramente estructuras internas mas
relevantes (Figura 12)

Al acudir a los datos de validacion, parte de la estructura interna parece aflorar. Uno de los
l6bulos, el diagonal, cuenta con similitud con el l6bulo marcado por las estrellas mientras
el segundo lobulo, parece ser una combinacién tanto de cuasares como de galaxias.

El uso de HDBSCAN;, junto a una métrica euclidiana en el espacio (la cual deberfa ser
favorecida por la linealidad que aplica la PCA), no ha conseguido separar adecuadamente
los datos, generando un grupo central el cual abarca la mayoria de los datos y varios
subgrupos de poca relevancia (Figuras 13, 21a). Esta disposicién coincide con los resultados
de [7], donde sus grupos sintéticos generados por GMM se repartian de una forma muy
similar.

Los resultados, sin embargo, no son inesperados: la seleccion de magnitudes para MC solo
cuenta con datos en el espectro visible e infrarrojo, bandas espectrales en las que las clases
espectroscopicas que proporcionan la validacién no son tan relevantes. Asi pues, puede
existir una distincién asignando cada l6bulo a las clases estrellas (diagonal) y galaxias/QSO.

Asi, es logico preguntarse si es posible mejorar esta separacién entre las clases anadiendo
nuevas caracteristicas por medio de las bandas. Una propuesta podria ser el redshift que
permite delimitar una clara separacién entre estrellas y galaxias/quasares, mientras que la
adicion del flujo en X deberia mostrar una mejor separacion entre estrellas y, sobre todo
galaxias y QSO, como se analiza en el siguiente apartado.

Debido a que uno de los objetivos es distinguir grupos de objetos astronémicos tinicamente
con datos fotométricos, descartando el redshift el cual tiene un origen espectroscépico, la
implementacion del catalogo de 4XMM queda completamente justificada.

4.2.2. Exploracion magnitudes vs magnitudes y colores - Catalogo MX

Las diferencias entre los datos de los catalogos MC y MX son evidentes: el catalogo MC
cuenta con 20 veces més datos a cambio de una mayor profundidad del catalogo MX. Esta
diferencia radica en la disminucién sustancial de los tiempos de computacién permitiendo
la oportunidad de aplicar URF para el calculo de la matriz de distancias.

Asi se obtienen las imégenes 15a y 15b. Se ha decidido hacer el estudio de colores con
el catdlogo MX debido a la claridad que muestran los sondeos iniciales. El aumento de
la profundidad permiten observar estructuras internas mas diferenciadas que ademas son
favorecidas por la adicién de colores fotométricos.

Si se comparan con los datos de MC, los dos l6bulos parecen separarse de mejor manera,
mostrando las poblaciones de estrellas, QSO y galaxias atin mas separadas. Al comparar
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con los datos de validacion, sobre todo en el grupo con colores, los dos 16bulos son divididos
en tres grupos. Uno poco poblado que es el de las estrellas (debido principalmente al sesgo
del cruce con 4XMM), un grupo de galaxias y un cumulo esférico de cuésares.

Las tablas de contingencia 3,4, revela un hecho sorprendente. El grupo que no cuenta con
colores agrupa mas de la mitad de los cuasares en el cluster 0, un clister 1 constituido casi
unicamente con estrellas, y un claster 2 y 3 mixtos. Es importante resaltar que la disminu-
cién sustancial de los datos de validacion puede afectar a estos porcentajes ya que existe
un sesgo que beneficia sobre todo a los QSO. En cuanto a la tabla con colores, en primer
lugar hay que indicar que ha sido necesario subir el pardmetro min_cluster_size=300
indicando que la adiciéon de colores provoca una dispersiéon mayor entre los datos. Ademas,
gran parte de los datos detectados por el ruido parecen ser obviados por HDBSCAN re-
duciendo su poblacién en un 35 %. Sin embargo, las tendencias parecen retroceder a los
resultados obtenidos por MX, un cluster central que acumula gran parte de los datos (en
este caso clister 3) y grupos satélites con poca aportacion con las clases espectroscépicas.

Asi, el siguiente paso es tomar un catalogo mas poblado con la misma profundidad. Por
ello se optd por la técnica de limites superiores.

4.2.3. Exploracion de influencia de limites superiores MX+UL

La adicién de limites superiores ha permitido aumentar la poblacién del catalogo en X a los
mismos nimeros que el catalogo MC. En un primer momento se aposté por FLIX para este
hecho, sin embargo, los tiempos de espera de cada limite superior la hizo una herramienta
inviable para el nimero de datos a completar.

Asi es como se llego a la segunda solucién, la cual es una aproximaciéon menos realista, pero
que sirve bien para demostrar la influencia en los métodos con catalogos con limites supe-
riores. Asi se obtuvieron la figura 19. Esta imagen permite ver como este catalogo recupera
la forma de dos l6bulos centrales propia del catalogo MC adquiriendo, en consecuencia, los
problemas derivados.

Al aplicar HDBSCAN, en la figura 20, los grupos divididos parecen formar sublébulos de
tamanos no despreciables. Sin embargo, en la tabla 5, algunos de los clusters sintéticos
no aparecen, debido principalmente a la diferencia de tamano poblacional entre datos de
entrenamiento y validacion. Este hecho abre la posibilidad de estudiar en el futuro como
afectan el calculo de limites superiores en la validacion, pero por limite de tiempo esta
opcion no ha podido ser explorada.

4.2.4. Meétodos de clustering: Aplicacion de resultados.

Aunque los resultados en los métodos de clustering no han resultado concluyentes, estos
abren la puerta a ser implementados junto a técnicas hibridas, donde la identificacién de
grupos basados en similitudes entre los datos permitan combinarse con técnicas de ML
supervisado mejorando sus clasificaciones o predicciones. Estas técnicas hibridas ya han
sido probadas obteniendo buenos resultados [24]
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4.3. Propiedades de galaxia - Regresion
4.3.1. Predicciéon de magnitudes W1, W2 y W3

Tal y como se indic6 en los objetivos de este trabajo, la prediccion de las magnitudes que
conforman la banda infrarroja media, permite afinar una herramienta capaz de completar la
falta de estas magnitudes. Ademas, al compartir la misma estructura que las construcciones
de modelos con los datos de SEDs permite desarrollar una familiaridad con este proceso,
resultando mas sencillo afinar los métodos o comprender sus resultados.

Asi, se desarrollaron tres modelos basados en RF supervisado para cada una de las mag-
nitudes W1, W2 y W3, obteniendo resultados, tanto para el catdlogo de MX como el de
MX+UL. Estos modelos han sido representados por un diagrama prediccién-real. Este per-
mite asociar la calidad del modelo a la bisqueda de su relacién lineal 1:1. Asi, métricas
como el R?, el cual mide la linealidad de los datos, toman una importante relevancia, ya
que cuanto mas cercano esté este valor a 1, mas lineal sera esta relacion. Ademas, la adicion
del RMSE, permite medir la dispersion de los datos, reflejando si el modelo cuenta con una
mayor varianza.

Adicionalmente, se han calculado dos parametros claves: oyyrap €l cual representa la des-
viaciéon media normalizada, la cual permite concretar un valor de varianza resistente a
datos anémalos. Ademas, se introduce el valor 1 que indica el porcentaje respecto al total
de datos anémalos.

Como consecuencia, la tabla 7 indica que los modelos para W1 y W2 mantienen una
relacién lineal, no tanto como W3 la cual parece necesitar en su modelo mas caracteristicas.
La adicién de limites superiores ha reducido la fraccién de datos anémalos, anadiendo una
relacion mas lineal que empeora para W3.

También, gracias a los indicadores de feature_importance, permite hacer un ranking de
importancia de caracteristicas en cada modelo (Figura 6). Asi se demuestra que la carac-
teristica mas importante para ambos modelos es la magnitud K, la cual es la magnitud
mas cercana al infrarrojo medio. A continuacion se presentan la magnitud J y g. Sin em-
bargo, las magnitudes propias parecen perder importancia al anadir los limites superiores,
haciendo que algunos colores en estas bandas dominen mas que incluso las magnitudes.

4.4. Modelizacion de SEDs

La modelizacién de SEDs por medio de RF supervisado ha seguido la misma estructura
que en el apartado anterior. Sin embargo, debido a la necesidad del uso de CIGALE para
validar las predicciones, se ha optado por tomar catalogos usados en otros trabajos.

Asi, se tomaron los mismos datos que en el trabajo de [23], donde se realiza el andlisis con
CIGALE para un cross-match de COSMOS-ULTRAVISTA. Contando con sus resultados, se
han incorporado como predictores cada una de las magnitudes explicadas en el apartado de
Metodologia, obteniendo las figuras 26. Entre los resultados, el mejor modelo es el de masa
estelar, el cual obtiene una mejor linealidad y una menor poblacién de datos anémalos. A
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continuaciéon mejora la luminosidad estelar (la cual estd relacionada con la masa debido al
Mass to Light ratio), y después el SFR, la fraccién de AGN y la fraccién de luminosidad
del AGN.

Los resultados, sin embargo, no son del todo satisfactorios. Al usarse un modelo conjunto
de los cinco objetivos se han obtenido resultados menos lineales que en la prediccién de
magnitudes en el infrarrojo medio. Sin embargo, los buenos resultados en la funcién de
masa y luminosidad estelar abre la puerta a mejora con las caracteristicas que podrian
delimitar mejor los demas targets.

Ademas, se realizé el mismo proceso para cada catalogo por separado, obteniendo la tabla
9. La mejora en la unién de catalogos es evidente, en general el catalogo de AGNs es muy
inferior en poblacién al de galaxias. Este hecho hace que las métricas de galaxia dominen
en los resultados. Sin embargo, anadir el de AGN mejora consistentemente las métricas de
Fracciéon de AGN y Luminosidad AGN.

. AGN-+Galaxias AGN Galaxias
Propiedad Target
RMSE R (%) RMSE R* (%) RMSE R (%)
SFR Mg yr™!] bayes.sth.sfr 1 1,37 x 10" 0.679 47.09 449 x 10" 0.115 75.33 1,37 x 10' 0.650 46.50
Masa estelar M* [Mg] bayes.stellar.m_star 1 234 x 101 0.883 25.82 1,86 x 10! 0.326 65.67 2,06 x 101® 0.896 26.59
Fraccion AGN bayes.agn.fracAGN_1 9,97 x 107 0.613 60.98 1,82x 10~' 0.279 78.00 9,91 x 1072 0.606 60.97
Luminosidad estelar [W] bayes.stellar.Jum_ 1 3,56 x 1037 0.782 40.49 1,68 x 10% 0.204 76.00 3,60 x 103" 0.752 40.39

Luminosidad AGN [W]  bayes.agn.luminosity_1 2,49 x 107 0.642 55.29 1,84 x 10°® 0.200 66.67 2,66 x 10°" 0.513 55.50

Tabla 9: Resumen de métricas de prediccién para los cinco targets seleccionados de CIGALE, evaluados en
los tres datasets: AGN+Galaxias, AGN y Galaxias. Fuente: propio.
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5. Conclusiones

Una vez terminada la discusion, a modo de resumen se expondra las conclusiones de cada
uno de los objetivos.

= Gracias al estudio de los catdlogos con diferentes bandas, se ha demostrado que un
aumento de la poblacién de catdlogos sin una mejora en la profundidad, impide que
los grupos sean facilmente separables en los métodos de clustering.

» La adicién de flujos en X ha mejorado sustancialmente la separacion en los datos
de validacion. Aun cuando el método de HDBSCAN parece mejorar con esto, los
resultados no pueden ser declarado como suficientes debido al sesgo interno obtenido
del cruce de los datos con 4XMM resultando en una bajada sustancial de la poblacién
de los datos de validacion.

= Una solucién al problema del tamano poblacional ha sido anadir nuevos datos en X
por medio de la técnica de limites superiores. Este hecho sin embargo, ha resultado
contraproducente, la adicion de limites superiores han anadido ruido a la represen-
tacion dificultando la mejora que anadia los datos en X.

= La prediccién de magnitudes de infrarrojo medio estd dominada por el valor de
la magnitud K del infrarrojo cercano. La adicién de limites superiores en rayos-X
mejoran las predicciones, aun cuando W3 parece exhibir un comportamiento menos
lineal.

= Los métodos de prediccion basado en los resultados de CIGALE han permitido una
aproximacion lineal y mas rapida del calculo tradicional de caracteristicas propias de
galaxias y AGNs. La adicion de métodos mas refinados como redes neuronales pueden
permitir una mejora de los modelos que pueden coexistir con los ya tradicionales.

5.1. Trabajo futuro

Teniendo en cuenta que cada uno de los apartados recorre campos del ML muy diferentes
entre si, no se ha podido realizar un estudio exhaustivo de cada uno de estos objetivos. Sin
embargo, este trabajo ha permitido realizar un estudio global relacionando campos de ML
en principio separados.

En los métodos de clustering, la mejora de la adicién de flujos en rayos-X es evidente.
Anadir caracteristicas como el redshift podria mejorar aiin mas la separacién de los grupos,
ademas del uso de métodos de clustering combinados con algoritmos de clasificacion.

En prediccién, los modelos obtenidos permiten demostrar una buena relacion entre modelo-
real, aiin cuando esta puede mejorarse con técnicas que, ademas, pueden ser mas interpre-
tativas que RF. Un aumento del nimero y la calidad de los datos ademas deben refinar
el modelo, disminuyendo la poblacién de datos anémalos. Parece que la técnica de limites
superiores puede ser refinada atin mas, con lo que aplicando una estimacion mas rigurosa,
deberia presentar resultados mas refinados.
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En las predicciones de SEDs, por falta de tiempo solo ha podido estudiarse un tnico
catalogo. Asociando nuevos catalogos donde se ha usado CIGALE, ademds de incrementar
significativamente el tamano de las muestras, puede abrir una puerta a la comparacién de
resultados segun el catalogo.

Finalmente, en un futuro préximo se prevé preparar para publicar en GitHub el codigo
desarrollado a lo largo de este trabajo, con el objetivo de facilitar su consulta y posible
reutilizacion.
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A. Limpieza de dataset COSMOS-VISTA

Para la limpieza del catdlogo se siguieron los siguientes pasos.

1. Se sustituyeron por NaN todos los valores anémalos, definidos como aquellos que
comprenden el intervalo —100 < m < 100. De este modo se eliminan tanto los
placeholders como valores de magnitud fisicamente inconsistentes.

2. Para cada filtro fotométrico observado por varias camaras, se aplico un criterio je-
rarquico:
= Si todas las camaras tenian valores distintos de NaN, se selecciond la caAmara con

menor numero de NaNs entre las candidatas.

= Si coexistian caAmaras con y sin valores, se prioriz6 aquella con menor porcentaje
de NaNs .

= Si todas las cdmaras carecian de datos, la magnitud correspondiente se marcé
como NaN.

3. Finalmente, se identificaron los filtros con mayor proporcién de NaNs, que fueron
descartados del andlisis. La Tabla 10 recoge el porcentaje de valores ausentes por
filtro, ordenados a lo largo del espectro.

Columna NalNs ‘ Columna NalNs
Features Features

SPIRE250 91.39% | R 0.85%
SPIRE350 91.36% | 1 0.70%
SPIRE500 91.35% | Z 0.62%
Ks 20.64% | PACS red 0.33%
H 20.43 % | MIPS24 0.29%
J 20.31% | PACS_green 0.27%
U 9.12% | IRAC4 0.16 %
G 3.04% | IRAC2 0.00%
IRAC3 1.84% | IRAC1 0.00%
Targets

bayes.sth.sfr 1 0.06 % | bayes.stellarm_star 1  0.06%
bayes.agn.fracAGN 1 0.06 % | bayes.stellar.Jlum_ 1 0.06 %

bayes.agn.luminosity 1 0.06 %

Tabla 10: Porcentaje de datos vacios por columna en Merged_catalog_final.csv. El nimero total de
filas es NV = 296,893. En rojo, las columnas que se han optado por eliminarse para aumentar la poblacién
de los datos. Fuente: propio
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Este procedimiento permitié optimizar a la vez el tamano de la muestra final y la cobertura
multi-longitud de onda, identificando aquellos filtros que solo estan disponibles para un
nimero muy limitado de fuentes. Asi pues, se descartaron las magnitudes SPIRE cuya baja
cobertura reducia significativamente el tamafio del catalogo.
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