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Abstract

Models in Software Engineering are considered as abstract representations of software systems. Models

highlight relevant details for a certain purpose, whereas irrelevant ones are hidden. Models are supposed to make

system comprehension easier by reducing complexity. Therefore, models should play a key role in education,

since they would ease the students’ learning process. Although these statements are widely accepted, to the

best of our knowledge, there is no empirical evidence that supports these hypotheses (beyond practitioners’

personal experience). This paper aims to contribute to fill this gap by performing an empirical study on how

well students understand entity-relationship database models as compared to SQL code. Several ER models

and their corresponding SQL code (more specifically, the DDL statements required to create such models) were

shown to a heterogeneous group of students, who answered different questions about the database systems

represented by these artifacts. Then, we analysed the correctness of the answers to check whether the ER

models really improved students’ comprehension.
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1 Introduction

Models in Software Engineering are said to be abstract representations of software systems that

highlight relevant details for a certain purpose, whereas irrelevant ones are hidden (Ludewig,

2003; Seidewitz, 2003; Kühne, 2006). Thus, models are supposed to improve system comprehen-

sion by means of reducing complexity.

If we accept the previous statements as true, models should be the main artifact in software

engineering education. If we can use models to highlight what we want to teach and to hide

what is irrelevant in each lecture, why students should be overloaded with other artifacts, which

include irrelevant details and increase complexity, instead of just using models focusing on the

proper abstraction level?

Nevertheless, to the best of our knowledge, there is little empirical evidence that supports the

previous hypotheses. These statements have been simply accepted by the software engineering

community without further evaluation. Empirical evidence supporting these statements does not

often go beyond practitioners’ personal experience.

Although the authors of this paper are fully convinced of the benefits of using models in

software engineering education as a mechanism to properly deal with the complexity of software

systems, the point of view of the students might be just the opposite. They could argue that

other software artifacts, such as plain source code, help them to understand software systems

better because they need to know, or they feel more comfortable knowing, the irrelevant details

hidden by the software models in order to fully understand how a software system works. If it

were so, we should discard the use of models when teaching to improve the learning process of

our students, since they are the target audience for our lectures. So, the question we would like

to answer is: Are models really easier to understand than code?

This paper aims to contribute to fill this gap by performing an empirical study on how well

students understand models as compared to plain code. In this paper, we will focus on database

models. The main reason for selecting database models is that it was the kind of model for which
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more students could participate in the experiments. Having a minimum number of students who

we could use as subjects under study is a mandatory requirement for carrying out empirical

studies. More specifically, we have analysed whether students understand Entity-Relationship

(ER) models (Chen, 1976; Elsmari & Navathe, 2010) better rather than its corresponding plain

SQL (Structured Query Language) code (ISO/IEC 9075-1, 2008; Gennick, 2010) (in order to be

precise, we would like to point out we used the Data Definition Language (DDL) of the SQL

standard).

The conclusions emerging from these empirical studies apply exclusively to database models.

Therefore, they do not provide a complete answer to the general question about whether software

models are easier to understand than code. Nevertheless, the conclusions presented in this paper

provide an interesting and useful contribution to the answer to this question for other kinds of

models. For instance, the results might be generalised somehow to the question about whether

UML (Unified Modelling Language) class diagrams are easier to understand than its plain Java

code counterpart.

To analyse empirically whether ER models are easier to understand than their equivalent SQL

code, we carried out two similar empirical experiments involving 45 students of a Computer Sci-

ence and Engineering degree. In each experiment, each student was provided with a description

of a database schema either as an ER model or an SQL code. Then, the students received a test

with several questions about the database schema. The students had to decide if each statement

was true or false. We collected all these tests and we marked them. Finally, we performed a

statistical analysis which allowed us to extract some conclusions. The results confirmed that ER

models are easier to understand than SQL code. This tendency seems to increase when the time

to answer the test decreases.

The rest of this paper describes how these experiments were carried out; it shows more detailed

results of the statistical analysis; and discusses these results. Prior to this, Section 2 comments on

related work we analysed in order to check there was not an enough number of these experiments
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already available in the literature and, therefore, these experiments can provide some value to

the community. Section 3 describes in detail how the empirical experiments were organised and

carried out. Section 4 explains the statistical analysis performed, comments on the main findings

emerging from such an analysis, discusses them, and it also analyses threats to validity for our

experiments. Finally, Section 5 summarises the article and outlines the next steps to be taken

with relation to this research topic.

2 Related Work

First of all, before carrying out our empirical studies, we checked whether similar studies have

been carried out and reported in the literature. We found little work done in this area, and,

to the best of knowledge, no similar work has been done using students as the target audience

and with a educational purpose. This section comments on related work we have found in the

literature.

Several researchers have looked at the effect of models on database development. For example,

Batra et al. (1990) compared the users’ performance on the task of database design using the

ER model and the relational model. The design task was divided into various subtasks based on

the elements of the ER model (e.g., unary and binary relationships). For most of the tasks, the

ER model led to significantly more accurate results. Subjects also perceived the ER model to be

slightly easier to use. Later, they carried out a similar study but this time oriented to model user

views (Batra & Antony, 1994). The results the results allowed the conclusion that for novice

designers the entity-relationship model was the appropriate choice. The task of database design

was also investigated by Jarvenpaa & Machesky (1989), using the relational model and a binary

ER model. Again, performance was better with the ER model.

Later, Chan &Wei (1993) and Chan et al. (1994) tested experimentally that the database users’

performance in tasks such as data modelling, query writing and query comprehension was higher

when users worked at the conceptual level using ER models than when they worked at the logical
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level using SQL. The results showed that database users working at the conceptual level using

ER models and an entity-relationship query language known as KQL produced results a 15.4%

more accurate than users using SQL. Moreover, ER users produced these results in a 57.8% of

the time required by the users working with SQL. In another empirical study, Chan et al. (1997)

investigated the effect of entity-relationship versus relational models, and textual versus visual

query languages, on database users. This study was extended later, including Object-Oriented

models (Chan et al., 2005) and showing similar results.

All these studies seem to support our hypothesis. Nevertheless, they are mostly based on

database design and query, and they evaluate issues such as accuracy or development/design

time. In this paper, we have simply focused on comprehension, this is, we wanted to analyse

whether models are useful mechanisms to transfer knowledge. We were not interested at all on

how well or how fast students can produce models. Finally, we would like to highlight these

studies were carried out approximately 20 years ago. Therefore, it makes sense to repeat them

to check that which was true 20 years ago, it is still true, since students’ skills change over the

time.

Next sections describe how our empirical experiments were carried out and the results ob-

tained.

3 Description of the Experimentation Procedure

The experiments reported in this paper were built to test a hypothesis: Entity-Relationship (ER)

models are easier to understand than the corresponding SQL code. The procedure to check this

hypothesis was to provide students with descriptions of a database schema either as an ER

model or as SQL code. Then, we analysed statistically how these students understand each one

of them. As null hypothesis, we considered that the marks obtained with the ER model and the

SQL code are equally distributed. We test is against the following alternative hypothesis: the

distribution of the marks obtained with the ER model is larger than the one obtained with the
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SQL code. The experimentation procedure was comprised of the following steps:

(1) First of all, an ER model and its corresponding SQL code were created.

(2) Next, a set of questions to be answered as true or false were elaborated. These questions

should be answered based on just the syntactic structure of either the ER model or

the SQL code, i.e., no knowledge about the domain of the database schema had to be

required.

(3) Then, a set of students, carefully selected for representing a wide spectrum of student

types, was arranged to meet in specific dates. Half a group was given the ER model of

the database system and the other half of the group was given the SQL code counterpart.

(4) The students had several minutes - depending upon the database schema size and com-

plexity - to examine the ER model or the SQL code. A blank sheet of paper was given

to each student, just in case the student needed to do some sketching.

(5) After this period, the questions about the database schema were given to the students.

(6) Finally, the questionnaires were collected, marked and the results statistically analysed.

We repeated this process twice, carrying out two experiments. Next, we comment on relevant

issues that were taken into account in each step of this experimentation procedure.

3.1 Database Schema Selection

First, we looked for small to medium size database schemas with around 15-20 entities, where

each entity were involved in around 3-5 relationships. We opted for this size because it is large

enough for a database system not being considered trivial, and small enough to be handled by

students - our target - in a reasonable frame of time. Moreover, the number of relationships is

large enough to add some complexity to the understanding process, but small enough to not

make the understanding task an artificially complex challenge.

To create the ER model and the corresponding SQL code, we decided we should base our

experiments on industrial case studies. Therefore, we asked some companies for help. We got
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different material from four Small-Medium Enterprises (SMEs), named Nuclenor 1, Predictia 2,

Semicrol 3 and Suomitech 4. Based on this material, we opted for using a database system of

a software for storing and managing information about the maintenance jobs performed in a

nuclear power plant. We selected this case study because of the following reasons:

(1) We were familiar the database because we had participated in its design;

(2) The database schema had the size we were looking for - neither too small to be considered

as trivial nor too large to be considered as artificially complex or unfeasible to be handled

by students.

(3) We assumed the domain was unfamiliar to the students. This would help us to avoid stu-

dents being able to answer some of the questions using the knowledge they had about the

domain. Therefore, an unknown domain would help to avoid some bias being introduced

into the experiments.

Based on the material provided by this company, we created an ERmodel and its corresponding

SQL counterpart. The database schema was initially too large, but it could be split up in two

separated and weakly related parts. These two parts would be used to carry out two separate

experiments. Thus, we wanted these parts to be weakly connected since it should help us to

avoid that some learning acquired during the first experiment could introduce some bias in the

second experiment. The first part of this database schema had 16 entities, 18 relationships and

one generalisation. The second part had 17 entities, 17 relationships, two generalisations and 4

weak entities. The code for the first part was 6 pages long and the second one was 4 pages long.

Since the experiment was about database schema comprehension, we tried to avoid making

the ER model and the corresponding SQL part more complex than strictly required. Therefore,

in the case of the ER model, we tried to avoid line crossing as much as possible and we tried

to group related entities in the same area of the model, taking care each model had a clear

1http://www.nuclenor.org/
2http://www.predictia.es/
3http://www.semicrol.es
4http://www.suomitech.com/
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entry point and it could be easily read. To create the SQL code, we directly generated it from a

relational model using SQL Server Rankins et al. (2010). For the ER to relational mapping, we

used the classical algorithm to transform an entity-relationship model into a relational one. More

specifically, we used the version of such an algorithm provided by Elsmari & Navathe (2010).

We used this version of the algorithm since this is the one taught to the students, and, therefore,

the one that students know best. Finally, we would like to point out we checked carefully that

all questions asked could be properly answered using both the ER model and the corresponding

SQL code.

Since this code was generated code, we cleaned it to make it more human-readable. For in-

stance, we placed constraints related to foreign keys inside the code block corresponding to the

creation of each table in order to keep grouped all code related to a same table. We also made

some names more meaningful to human beings and we formatted the code properly. It should

be noted that the SQL code is shown following this style to the students during the lectures, so

it should also be presented in such a way to the students during the experiment.

3.2 Elaboration of Questions

To analyse how the students understand SQL code or ER models, we developed a set of questions

about these artifacts. These questions had to be short questions that could be marked as true

or false, in order to avoid intermediate values which made the statistical analysis more complex.

To avoid students answering randomly, we required them to write a brief argumentation beside

the selected option that justified such a selection. So, if the justification was right, the answer

would be marked as right, otherwise it would be marked as wrong.

For both experiments, we created 15 questions about relationships between entities, 5 questions

about generalisations, 5 questions about attributes, 5 questions about weak entities - when these

weak entities were presented in the database schema - and 5 questions about if a set of data

could be inserted in the database schema or there would be some problems instead. We show
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some examples of these questions using the excerpt of the database schema depicted in Figure 1

(the corresponding SQL code is shown in Appendix A):

• About relationships between entities: A Procedure is related to exactly one Function

Machine.

• About generalisations: All Installations can have associated a PumpTestDefinition.

• About attributes: Each Procedure has an id, which is unique for each Procedure.

• About weak entities: Each PumpTestDefinition is identified by one Procedure and one

Functional Machine.

• About data insertion: To create a new PumpTestDefinition is enough with knowing the

id, rev, group, type, speed ref, desc press and press diff is enough to create .

We wanted to make the complete ER models, the corresponding SQL code and the question-

naires publicly available in order to allow replication of these experiments. However, due to legal

constraints and security issues, we cannot make this material public. Indeed, we and the students

were required to sign a confidentiality agreement. In case the reader is interested in replicating

these experiments, we encourage him or her to contact us, in order to check whether it would

be possible to sign an agreement between the reader and the company that provided us the case

study.

Finally, we selected randomly 20 questions for the first experiment and 30 for the second one.

The reason for this variation was the students did the first quicker than we initially planned and

we wanted to analyse how they reason under certain time pressure. More details about this issue

will be given in Subsection 3.4.

3.3 Selection of the Students

A key step when carrying out our experiments was the selection of the subjects under study.

Since we wanted to analyse the influence of models on the students’ learning process, our subjects

had to be students.
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To gather the subjects for our experiments, we disseminated a call for participation between

the students of the second and fourth years of the Computer Science and Engineering degree,

which is a five years degree. To motivate them and to ensure they did their best during the

experiments, we did the following actions:

(1) The students were required to sign a commitment and confidentiality contract - the

confidentiality part was required by the companies that provided us the case studies.

By signing the contract, each student agreed to attend the experiments prepared to do

his/her best, using exclusively his/her skills and knowledge.

(2) We agreed to give the students some extra points toward the final mark in one of the

following subjects: Data Structures, Database Systems, Advanced Database Systems and

Software Engineering II - these are the subjects the authors of this paper are currently

teaching. The final mark of each one of these subjects is in the range between 0 and 10.

Each student was granted a minimum 0.15 extra points in one of these subjects by simply

participating in these experiments. In addition, each student could obtain a maximum

of 0.5 points depending on the number of correct answers. Therefore, each student can

obtain between 0.15 and 0.5 points to be added to his or her final mark in one of the

mentioned subjects.

We would like to point out the participation in these experiments was offered to the stu-

dents as an extra activity that was complementary to their academic duties. All students were

free to participate in these experiments and they could also withdraw at any time without any

consequence on their final marks. Thus, any student could obtain the maximum score in the

subjects previously listed without having to participate in these experiments. Nevertheless, in-

spired by Hanenberg (2010), we decided we had to compensate our students for their effort in

order to ensure they would do their best. Hanenberg, in his experiments, paid their students in

function of both the quantity and the quality of the work done. Due to financial issues, we could

not pay our students with money, so we decided to compensate them with some extra points in



August 19, 2011 13:38 Computer Science Education jcse2011

12 Taylor & Francis and I.T. Consultant

their final marks depending upon both the quality and the quantity of the work done.

The participating students learn about ER models and SQL in the spring semester of the

second year, in a Database Systems course. They have an optional course, in which not all

students enroll, about Database Design and Administration in the fall semester of the third year

and another optional course on Advanced Database Systems in the spring semester of the fourth

course.

After disseminating the call for participation, 22 second-year students and 33 fourth-year

students registered to participate in the experiments. Finally, due to several reasons, as health

problems or schedule incompatibilities, some of these students did not attend the experiments,

thereby reducing the number of participants to 45, 20 from the second year and 25 from the

fourth year. Twenty-three (23) of the students used ER models and the other 22 SQL code. More

specifically, 10 second-year students used ER models and the other 10 SQL code. From the 25

fourth-year students 13 of them used ER models and the other 12 SQL code.

We classified these students according to their academic performance into the following levels:

outstanding, good, normal, bad and very bad. For this classification we used an objective indicator,

their academic marks, and a subjective indicator, the impression we had as their teachers about

the commitment and skills of each student. Then, we distributed them into two groups randomly,

but ensuring both groups were balanced in number of students from each and also balanced

in number of students of each academic level. This is, both groups had the same number of

outstanding second-year students, good second-year students, normal second-year students, and

so on. One of these groups would do the experiments using the ER description of the database

schema and the other one would use the SQL code.

3.4 Execution of the Experiment

Once the students were classified and selected, we found the gap, after a quick but complex poll,

in the students’ schedule to carry out these experiments. These experiments took place outside
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the lecture time. The students were not told about the structure or contents of the experiments

thereby reducing bias in the results.

The initial intention was that they did not have enough time to answer all the questions

comfortably. The reason for this is that we wanted to check whether the students were able to

provide a proper answer to one question in a reasonable time frame. There is no doubt that

having enough time, most of them would be able to provide satisfactory answers to most of the

questions, either using the ER model or the SQL code.

In the first experiment, the students had 15 minutes to review either the ER model or the

SQL code. Then, they received a test with 20 short questions and they had 30 minutes to answer

them. Most of the students finished before this time elapsed. Thus, in the second experiment,

they had 10 minutes for the review, the number of questions were 30 and they had 20 minutes

to answer this group of questions. Only two students finished within the specified time.

Finally, we collected all the tests, marked them and analysed the results statistically to check

whether our initial hypothesis held. The next section describes the results of the statistical

analysis carried out.

4 Statistical Analysis of Results

This section describes the statistical analysis performed with the gathered data. It also discusses

threats to validity.

4.1 Statistical Analysis

Once we processed the results of the tests, we analysed them to provide some statistical evidence

about whether ER models are easier to understand than SQL code.

As already commented, a total of 45 students participated in these experiments. They were

divided randomly in two balanced groups. We selected these two samples independently and

using convenience sampling (Wohlin et al., 1999).
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First of all, we did a descriptive analysis of the data, whose results are shown in Table 1

and depicted in Figure 2. This table shows what was the lowest mark for the ER and SQL

experiments, the value for the first quartile, the median, the mean, the value for the third

quartile and the standard deviation. It can be observed that the students who worked with the

ER models got higher marks than those who worked with SQL code. Particularly, the median

value1 of the first ones is 6.78 (not a bad mark) while it is 5.17 for the second ones (just pass).

Therefore, it seems that ER models are easier to understand than SQL code.

To confirm this phenomenon happens independently of which year of the degree the students

are in, we have also done the previous descriptive analysis separately for the students in the

second year and in the fourth year. The results are shown in Table 2 and illustrated in Figure 3.

It can be can observed that in both kinds of students (second-year students and fourth-year

students), the marks obtained when students work with the ER model are higher than those

obtained when they work with the SQL code. It should also be noticed that the marks are

higher for fourth-year students than for second-year students. Particularly, we can observe that

the median mark for the SQL code is pass (5.42) for the fourth-year students and just below

pass (4.92) for the second-year ones. The reason for this might be that second year students

were recently taught about SQL, so they were more used to dealing with SQL code than the

fourth-year students. Therefore, this phenomenon might indicate that skills developed on ER

models remain longer in time than skills related to SQL code management.

Finally, we analysed the results of the two experiments separately. The reason for this is that

the students were more constrained in time in the second experiment. Therefore, we wanted to

analyse how they reason under certain time pressure. Table 3 shows the descriptive statistics for

each experiment separately. These statistics are graphically depicted in the boxplots of Figure 4.

It can be noticed that in both cases ER marks are higher than SQL marks, but this difference

is clearly higher in the second experiment. Therefore, this seems to confirm our hypothesis about

1We would like to point out we refer to the median instead of the mean because as the distribution of the data is unknown
we prefer to refer to a robust measure of centrality.
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ER models being easier to understand than SQL code when the time is constrained. Moreover,

the deviation in the first experiment is clearly higher than in the SQL case. This might mean

that whereas the average student understands ER models well, there are more variations in the

SQL case.

In the second experiment, the standard deviation for the ER models grows higher than in

the SQL case. An explanation for this might be that, in the first case, without the time being

limited, some students finished earlier than the other students, but the number of right and

wrong answers of each student was similar at the end. In the second experiment, we suppose

outstanding students were able to complete a larger part of the test in the frame time, whereas

the other students complete smaller parts of the test. However, in the SQL case, the standard

deviation is lower than in the first experiment. This might mean that outstanding students were

not able to take a noticeable advantage to the other students when dealing with SQL code, i.e.,

reasoning quickly on SQL code seems to be difficult to any kind of student, from an outstanding

student to very bad student. Indeed, we would like to highlight that the third quartile for the

SQL code is below the first quartile for the ER model, showing clearly how students using the

ER model beat the students using the SQL code. Moreover, it should be noticed that the best

mark for the SQL code is approximately the median value for the students using the ER model.

This means that the most outstanding student dealing with the SQL code performed more or

less equally than an average student using the ER model.

To check whether there is a significant difference between the understanding of ER models and

SQL code we formulated it as a hypothesis that we could check with a hypothesis test. Thus,

our null hypothesis was:

H0 : The marks obtained with the ER model and the SQL code are equally distributed.

And we will test it against the alternative hypothesis:

Ha : The distribution of the marks obtained with the ER model is larger than the one obtained

with the SQL code.
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Denoting by Fm the distribution function corresponding to the ER model and by Fc the one

corresponding to the SQL code, we can rewrite these hypothesis as:

H0 : Fm(x) = Fc(x) for all x.

Ha : Fm(x) ≤ Fc(x) where the strict inequality occurs for at least one x.

Note that this alternative hypothesis denotes that the marks for the ER models tend to be

larger than the marks observed for the SQL code.

For testing these hypothesis we used the two-sample permutation test, see Higgins (2003), a

non-parametric test which does not require assumptions, such as happens for example in the

t-test. The obtained p-value is 3.942 · 10−5. Therefore, we can reject the null hypothesis. We

have also done the test separately for the students in the second and fourth year, obtaining

respectively a p-value of 0.006245 and of 0.000651. Although these two p-values are higher than

the previous one (the sample sizes are smaller) they are well below the intended level. Finally,

we applied this test to the first and the second experiment individually, obtaining a p-value of

0.002293 and 1.474 · 10−5 respectively.

Thus, we can reject the null hypothesis in both cases and and we can state the ER models

are easier to understand than the corresponding SQL code at level of significance smaller than

0.01. The differences between the medians of the ER models and the SQL code is 1.73 for the

general case, 1.76 for the second-year students, 1.67 for the fourth-year students, 1.07 for the

first experiment and 2.49 for the second one. So, students seem to be able to reason better using

the ER models rather than the SQL code, at least around 1.7 out 10 better in the general case.

Nevertheless, this value can vary from 1.0 without time limitations to 2.5 under certain time

constraints.

In the next subsection, we comment on threats to validity for the results of our experiments.



August 19, 2011 13:38 Computer Science Education jcse2011

Computer Science Education 17

4.2 Threats to Validity

The reader could argue the reason for the differences between the results for the ER models

and the SQL code might be that the students working the ER models had higher skills than

the students working with the SQL code. We would like to remind the reader that the groups

were balanced in number of students of each year and academic performance. Moreover, these

students were assigned randomly to each group. For instance, four outstanding second-year

students enrolled in the experiments. So, we selected two of them randomly for the ER group.

Consequently, the other two were assigned to the SQL group. Therefore, the groups should have

a similar performance.

Other argument against these results could say these differences are a consequence of the

kind of questions asked, i.e., a different kind of questions should provide different results. In

this respect, we would like to comment that we had focused on the kind of questions students

had often to deal with during a lecture. Moreover, we tried to include in the tests questions

which should be more easily answered using an ER model and questions which should be more

easily answered using the corresponding SQL code. We assume questions about relationships

between entities should be more easily answered using ER models, since relationships between

entities are more explicit in these models. On the other hand, questions related to primary keys

or constraints for inserting a data tuple into a table should be more easily answered using the

SQL code counterpart.

For instance, in Figure 1, PumpTestDefinition is a weak entity whose primary key is the union of

the primary keys of the entities that identify it, i.e., Procedure and Functional Machine. In addition,

Functional Machine is a child entity that inherits its primary key from its parent entity, Installation.

Thus, to find the primary key of the PumpTestDefinition entity, we need to examine three entities.

In the SQL case, to know such a primary key, it is enough with looking at the code of the

PumpTestDefinition table.

It could also be argued the results obtained in this paper apply exclusively to the case study we
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have used, i.e., the reader could say the more precise conclusion for this paper should be the ER

model of our the electrical power plant is easier to understand than its corresponding SQL code.

Other case studies with different peculiarities might provide different results. We would like to

comment that, although it would have been desirable to carry out a large set of experiments to

check this hypothesis, this was not feasible at all. Performing this kind of experiments requires

a large set of resources. First of all, we needed to find students who volunteered to perform

these experiments. Then, we had to find a gap in the students schedules - they were enrolled

in different courses with different timetables and each one of them had his/her own external

duties to address. In addition, we had to book a room in our building for carrying out these

experiments - large rooms are often not available. Finally, we had to prepare the material for

the experiment, which also consumed a considerable effort and amount of time. Therefore, due

to the available resources we were limited to two experiments..

Obviously, two experiments are not enough to confirm or reject this hypothesis with total

confidence, i.e., these experiments cannot be used as a proof or a refutation for the hypothesis

being tested. As the hypothesis turned out to be confirmed by the experiment, the experiment

can be considered as empirical evidence about the veracity of such a hypothesis. Moreover, the

previous empirical experiments reported in the Section 2 should not be neglected and, together

with the results presented in this paper, be considered as a corpus of empirical evidence about

the better understanding of the ER models as compared to their corresponding SQL code.

Finally, we would like to mention that if the experiment had rejected the hypothesis, we would

have found a situation where the hypothesis does not hold and more research would be required

to determine the circumstances under which models are not easier to understand than code. But

it would not be a proof of the negation of the hypothesis being tested, i.e., we could not conclude

that SQL code is easier to understand than ER models.



August 19, 2011 13:38 Computer Science Education jcse2011

Computer Science Education 19

5 Conclusions and Future Work

This article has reported the result obtained after carrying out two empirical experiments about

whether students understand better ER models rather than SQL code. The results showed a

better performance of ER models as compared to SQL code, mainly when the time to reason

was limited. Moreover, the capacity to reason on ER models seems to remain longer in time

than the same capacity on SQL code.

The final goal of this study was to provide some empirical evidence about whether models are

really easier to understand than plain code. Although we have limited the analysis to ER models

and SQL code, we are convinced that similar results would have been obtained using other pairs

of model/code, as UML class diagrams and plain Java code. According to the obtained results,

we claim models should have a key role in computer science education, since they would help to

ease the students learning process. This key role should also be extended to professional software

development, because if models are easier to understand, it is reasonable to think they should also

be easier - and faster - to construct and manage. Therefore, models should be the key artifacts

in the software development process. Consequently, the teaching of model-driven techniques for

model management and transformation, such as graph-based model transformation Rozenberg

(1997), would be clearly justified.

Before concluding the paper, we would like to highlight that Carver et al. (2003) presented an

empirical study which concludes that the results obtained from empirical studies using students

as subjects can be extrapolated to professional developers and software engineers. Therefore,

although this work has used students, its results can also be applied to professional developers,

more or less.

After this experience, we will repeat these experiments with different students and different

case studies in order to confirm whether similar results are obtained. We will also carry out

similar experiments using other kinds of models, such as UML class diagrams, state machines

or Petri nets. We are also planning to do a more detailed analysis in order to know what kind
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of questions are more easily answered using ER models and for which ones to use SQL code is

more adequate.

A reasonable doubt is whether the better performance of ER models is simply due to the fact

of the models being visual. Therefore, to create a visual notation for SQL code would be enough

to achieve a level of comprehension similar to EER models. We will explore this issue by creating

a visual notation for SQL and comparing EER models and SQL code depicted using this visual

notation. Another interesting experiment would be to create a textual notation for EER models

and compare it against textual SQL code. Both experiments would give important clues about

whether comprehension is improved because EER models are more abstract or simply because

they are visual, or maybe because of both issues at the same time.
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Appendix A: SQL (DDL) code

CREATE TABLE [ dbo ] . [ i n s t a l l a t i o n ] (

[ i n s t a l l a t i o n i d ] char (10) NOT NULL,

[ i n s t a l l a t i o n t yp e ] char (10) NOT NULL

CHECK ( [ i n s t a l l a t i o n t y p e ] IN ( ’FUNCTIONALMACHINE’ , ’SYSTEM’ ) ) ,

[ i n s t a l l a t i o n d e s c ] char (255) NOT NULL,

CONSTRAINT [PK INSTALLATION] PRIMARY KEY CLUSTERED

( [ i n s t a l l a t i o n i d ] ASC, [ i n s t a l l a t i o n t i p o ] ASC)

) −− i n s t a l l a t i o n

CREATE TABLE [ dbo ] . [ system ] (

[ i n s t a l l a t i o n i d ] char (10) NOT NULL,

[ i n s t a l l a t i o n t i p o ] char (10) NOT NULL,

[ system synonim ] char ( 5 ) NULL,

[ system creat ionDate ] date NOT NULL,

[ system updateDate ] date NOT NULL,

[ system de le teDate ] date NULL,

CONSTRAINT [ PK system ] PRIMARY KEY CLUSTERED

( [ i n s t a l l a t i o n i d ] ASC, [ i n s t a l l a t i o n t y p e ] ASC) ) ,

CONSTRAINT [ FK in s ta l l a t i on sy s t em ]

FOREIGN KEY( [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t y p e ] )

REFERENCES [ dbo ] . [ i n s t a l l a t i o n ] [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t yp e ] )

) −− system
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CREATE TABLE [ dbo ] . [ f un c t i ona l mach in e ] (

[ i n s t a l l a t i o n i d ] char (10) NOT NULL,

[ i n s t a l l a t i o n t yp e ] char (10) NOT NULL,

[ funmach creationDate ] date NOT NULL,

[ funmach updateDate ] date NOT NULL,

[ funmach deleteDate ] date NULL,

CONSTRAINT [PK FUNCTIONAL MACHINE] PRIMARY KEY CLUSTERED

( [ i n s t a l l a t i o n i d ] ASC, [ i n s t a l l a t i o n t y p e ] ASC) ,

CONSTRAINT [ FK in s ta l l a t i on func t i ona l mach in e ]

FOREIGN KEY( [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t y p e ] )

REFERENCES [ dbo ] . [ i n s t a l l a t i o n ] ( [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t y p e ] ) ,

) −− functional machine

CREATE TABLE [ dbo ] . [ procedure ] (

[ p roc edu r e i d ] char (20) NOT NULL,

[ p rocedure rev ] char ( 3 ) NOT NULL,

[ p rocedure desc ] varchar (200) NOT NULL,

CONSTRAINT [PKPROCEDURE] PRIMARY KEY CLUSTERED

( [ p roc edu r e i d ] ASC, [ p rocedure rev ] ASC)

) −− procedure

CREATE TABLE [ dbo ] . [ PumpTestDefinition ] (

[ i n s t a l l a t i o n i d ] char (10) NOT NULL,

[ i n s t a l a c i o n t yp e ] char (10) NOT NULL,

[ proc ID ] char (20) NOT NULL,

[ p r o c r e v ] char ( 3 ) NOT null ,

[ pump type ] char ( 1 ) NOT NULL check ( [ pump type ] in ( ’A ’ , ’B ’ , ’G ’ ) ) ,

[ pump group ] char ( 1 ) NULL check ( [ pump group ] in ( ’A ’ , ’B ’ ) ) ,

[ pump speed re f ] decimal ( 10 , 2 ) NULL,

[ pump desc press ] decimal ( 10 , 2 ) NULL,

[ pump pre s s d i f f ] decimal ( 10 , 2 ) NULL,

CONSTRAINT [PK PUMP TEST DEFINITION] PRIMARY KEY CLUSTERED

( [ i n s t a l l a t i o n i d ] ASC, [ i n s t a l l a t i o n t y p e ] ASC,

[ proc ID ] ASC, [ p r o c r e v ] ASC) ,

CONSTRAINT [ FK PumpTestDefinit ion FunctionalMachine ]

FOREIGN KEY( [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t y p e ] )

REFERENCES [ dbo ] . [ f un c t i ona l mach in e ]

( [ i n s t a l l a t i o n i d ] , [ i n s t a l l a t i o n t y p e ] ) ,

CONSTRAINT [ FK PumpTestDefinition Procedure ]

FOREIGN KEY( [ proc ID ] , [ p r oc r e v ] )
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REFERENCES [ dbo ] . [ procedure ] ( [ p roc edu r e i d ] , [ p rocedure rev ] ) ,

) −− PumpTestDefinition
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Figure 1. Excerpt of the database schema used for the experiments

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
ER model 3.889 5.778 6.778 6.696 7.472 8.889 1.297
SQL code 2.611 4.361 5.167 4.970 5.722 6.333 1.070

Table 1. Descriptive statistics for the ER model and the SQL code.
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Figure 2. Boxplots of the ER model (left) and the SQL code (right)

Second-year students
Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

ER model 3.889 5.778 6.111 6.289 6.722 8.889 1.475
SQL code 2.611 3.917 4.917 4.533 5.167 5.944 1.151

Fourth-year students
ER model 5.444 5.833 7.111 7.009 7.500 8.889 1.100
SQL code 3.667 4.819 5.417 5.333 6.167 6.333 0.885

Table 2. Descriptive statistics separated according students’ degree year.
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Figure 3. Boxplots corresponding to second-year (left) and fourth-year (right) students.
Inside each graph, boxplots for the ER model (left) and the SQL code (right).

First Experiment (20 questions/30 minutes)
Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

ER model 6.667 7.778 8.333 8.188 8.889 9.444 0.7532
SQL code 3.889 6.667 7.500 7.121 8.333 8.889 1.4612

Second Experiment (30 questions/20 minutes)
ER model 2.667 4.083 5.333 5.439 6.583 8.667 1.812
SQL code 1.333 2.000 2.667 2.952 3.667 5.667 1.107

Table 3. Descriptive statistics separated by experiment.
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Figure 4. Boxplots corresponding to first (left) and second (right) experiment.
Inside each graph, boxplots for the ER model (left) and the SQL code (right).


