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1. Introduction

The behavior of humic substances (HSs) in solution presents

certain similarities with other colloidal aggregates (Guetzloff and

Rice, 1994; Conte and Piccolo, 1999a). This similarity in physical

properties suggests that the organic material is dissolved in natural

waters and could be a chemical nanoreactor (Anderson et al., 1995;

Conte and Piccolo, 1999b; Vogel et al., 1999). The ability to
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important role in various chemical processes which occur in the
environment and provide a natural route of elimination of xenobi-
otic organic substrates environmental interest, such as pesticides
whose degradation has been demonstrated the effect of the pres-
ence of different colloidal aggregates (Arias et al., 2005; Astray
et al,, 2011a; Morales et al., 2012a) or in supramolecular systems
(Morales et al., 2012b) in previous studies and therefore the goal
of this research.

It is well known that humic substances represent a large por-
tion of organic matter in natural environments and soils (Kinni-
burgh et al., 1996). In fact, this group represent more than 85% of
the total pool of soil organic matter (Foth and Turk, 1972). These
compounds are anionic polyelectrolytes with a molecular weight
between 2 and 400 kDa (Steelink, 2002). These humic substances
are able to form complexes with organic and inorganic substrates
(Davies et al., 1998; Gu et al., 2011). In solution, these portions
of organic matter can form complexes with environmental pollu-
tants like heavy metals or persistent organic xenobiotics (Kungolos
et al., 2006; Bednar et al., 2007; Buffle et al., 2007; Liu et al., 2011;
Xi et al., 2012). It has been considered that the primary route of
elimination of organic xenobiotics such as pesticides, Polychlori-
nated Biphenyls (PCBs), Polycyclic aromatic hydrocarbons (PAHs)
and other substances is related to the microbial activity found in
the soil, neglecting the role played by the humic substances, but
the properties of humic acids (HAs) and catalytic capacity can be
assumed the need to consider other means of disposal (Moza
et al,, 1995; Yang et al., 2001; Singh et al., 2009).

In the literature, there are some studies reported the influence
of humic substances on the hydrolysis (the major transformation
pathway for numerous of pesticides or pharmaceuticals in the
environment) of agricultural xenobiotics (Kamiya et al., 1992; Lei
et al,, 2001), other pollutants (Perdue and Wolfe, 1982; Liu et al.,
2012) and diverse hydrophobic compounds (Sabadie, 1997; Georgi
et al., 2007, 2008) showing a high association for these compounds
by the HSs micellar aggregates.

On the other hand, the imidazole fungicide, Iprodione
(Scheme 1A), is widely used in agriculture as a contact pesticide
with plenty of adverse effects. Its use has been increased in recent
years due to the fact it is effective on different crops (fruits, vege-
tables, ornamental trees, scrubs and on lawns) affected by Botrytis
bunch rot, Brown rot, Botrytis allii, Sclerotinia sclerotiorum, Penicil-
lium expansum, Monilinia fructigena, Rhizoctonia solani, Alternaria
solani and other many fungal diseases in plants (Rosenberger and
Meyer, 1981; Osorio et al., 1994; Stepanovic et al., 2009; Hamada
et al., 2011; Angioni et al., 2012). It inhibits the germination of
the fungal spores and consequently it blocks the growth of the fun-
gal mycelium.

It is highly toxic to crustaceans, moderately toxic to fish and
slightly toxic to birds, but not toxic to bees or plants. It inhibits
the protein kinase interfering with the intracellular signals that
control many cellular functions. Since this pesticide is moder-
ately persistent in soil with a half-life time of 7-60 d depending
on the environmental conditions (Carmona et al., 2001). In plants,
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Scheme 1. Chemical structure of the main metabolite (B) from the degradation of
Iprodione (A).

it is quickly degraded once adsorbed by the roots with the forma-
tion of 3,5-dichloroaniline (Scheme 1B) as the main metabolite
(Athiel et al., 1995; Lindh et al., 2007). This metabolite generated
is highly nephrotoxic (Lo et al., 1990) and carcinogenic. In water,
it decomposes quicker under aerobic conditions than anaerobic.
Here we were prompted this issue, analyzing experimental ob-
served rate constants in terms of kinetic models. This model allows
us to obtain the kinetic coefficients of the catalytic process.

The kinetic coefficients were obtained in order to determine
and model the kinetic behavior in colloidal suspensions. These
experiments also carried out because the major part of the organic
matter present in soils is humic substances, and also because they
are present in some conditions in the natural waters. The aim of
this work is to analyze the effect of humic acids, one of these humic
substances, “like-micelles” aggregates upon the stability of Iprodi-
one (IP) to evaluate if the presence of large amount of organic mat-
ter can modify the efficiency of hydrolysis IP decomposition
pathway.

2. Materials and methods
2.1. Reagents

All reagents were of the maximum commercially available pur-
ity and none required further purification. 3-(3,5-dichlorophenyl)-
N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide  (Iprodione)
was obtained from Sigma-Aldrich (Steinheim, Germany). Sodium
hydroxide and acetonitrile were Panreac reagents (Barcelona,
Spain). All aqueous solutions were prepared by weight using dou-
ble-distilled water. HAs used in the present study were isolated
from soil using the method described elsewhere (Methods of Soil
Analysis, 1999). The composition of these HAs used was deter-
mined by CNH elemental analysis using a Fisons EA-1108 elemen-
tal analyzer.

2.2. Kinetic measurements and data analysis

Reactions were monitored through the first-order basic hydro-
lysis of IP using a Varian Cary 50 Bio spectrophotometer with the
observation cell thermostated at 25.0 £0.1°C. All kinetic tests
were conducted under pseudo first-order conditions ([IP]<[OH™]).
In each instance, it was observed that the final spectrum of the
product of the reaction coincided with one obtained in pure water,
guaranteeing that the presence of HSs micelles would not alter the
product of the reaction.

To monitor the alkaline hydrolysis, the reactions were mea-
sured at 248 nm and because HAs absorb in the UV-vis region,
the spectrum of HAs in absence of reaction was used as blank. As
an example, Fig. 1 shows the increase in absorption caused by
the decomposition of IP and the products formation along in time
in humic substances aggregates. Nonlinear regression was carried
out using a commercial package Profit 6.2 supplied by
QuantumSoft.

The rate equation to measure the disappearance of IP is the
following:

—— % = ky[IP],[OH ], = kops[IP],
= Kobs ([IP]o — [products}) (1)

where [IP] is the concentration of IP and k,, and k.5 are the bimo-
lecular rate and the pseudo-first rate constants, respectively, for the
basic hydrolysis of IP.

Integrating Eq. (1) and expressing the concentration in terms of
absorbance Eq. (2) can be obtained being A, Ag and A, the absor-
bance at times zero, t, and infinity, respectively.
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Fig. 1. Spectrograms showing the basic hydrolysis of Iprodione in HSs colloidal
aggregates. [HAs]=0.02gL™"; [IP]=5x 107> M; [OH"]=4.2 x 1074 M; T=25°C;
/=248 nm.

Ar = Aoexp(—Kopst) 4+ Ace (1 — exXp(—Kobst)) (2)

As an example, in Supplementary Information, Fig. S1 shows a
typical kinetic run for the basic hydrolysis of IP in the presence
of HAs as well as the fitting of the experimental data to Eq. (2)
and therefore, ks values can be calculated.

Fig. 2 shows the influence of [OH ™| on kg5 in water pure and in
HAs concentration respectively. As can be observed a linear depen-
dence between the pseudo-first order rate constant and [OH™] was
obtained. The intercept in these linear regressions is due to the
consumption of hydroxyl ions by the humic acids. To minimize
the possible consumption of NaOH by the humic substances, for
each concentration of humic acid the influence of NaOH concentra-
tion on the basic hydrolysis of IP was investigated to obtain the
apparent rate constant (k,pp).

3. Results and discussion

The basic hydrolysis of IP has been analyzed in the presence of
HSs micellar aggregates. Pseudo-first order conditions were kept in
all experiments where IP concentration was kept in all of
experiments and equal to 5.0 x 107> M, and sodium hydroxide
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Fig. 2. Influence of the pseudo-first order rate constant, kqps, on the basic hydrolysis
of Iprodione in water pure (®) and in the presence of HAs (O). [HAs] =0.013 gL ;
[IP]=5 x 107> M; T=25°C; /=248 nm.

concentration was varied between 0 and 3.33 x 1073 M, respec-
tively. IP concentration was chosen to optimize the change in
absorbance with time during the kinetic process. NaOH concentra-
tions were chosen to obtain a suitable half-life time to monitor the
reaction. HAs concentration was varied between 0 and 67 mg L.

An inhibition, 2-fold, was found in the IP degradation represent-
ing an increase of half-life time of this xenobiotic. This inhibition is
due to the association of the humic substances to the IP. Taking
into account that the HAs in water solution are micelle-like aggre-
gates, these kinetic results have been rationalized in terms of
micellar pseudophase model (Astray et al., 2011b,c).

In HAs dispersions the loci of a reaction could be located inside
the HAs aggregate or in the bulk solvent. The nature of our HAs
aggregates, like the interior of a micelle, formed by the hydropho-
bic portion of these humic acids is not fully well understood. The
center of the HAs aggregates would be similar to liquid hydrocar-
bons, and then the water could penetrate the aggregates. Being this
part of the hydrocarbon chains of HAs from the hydrophilic groups
exposed to the water (Astray et al., 2010). So, the fact that a clear
inhibition was observed increasing HAs concentration could in-
volve that: (i) The hydrolysis rate in the dispersed phase is signif-
icantly slower than in the continuous phase (water). This decrease
in the reactivity of the system must compensate a possible “con-
centration effect” of the reactants in the dispersed phase. (ii) The
hydrolysis of IP is completely inhibited by the OH™ exclusion from
the surface of the aggregate. The first point, the most likely, since
knowing that the surface charge of HSs is negative, so simple elec-
trostatic considerations allow us to postulate that the role played
by the dispersed phase is to compartmentalize the reagents pre-
venting the contact between IP and OH™. This second point shown
in the Scheme 2 would justify the kinetic results obtained. A third
possibility would be given by the fact that the negatively charged
groups on the surface of the dispersed phase (i.e.: phenolates
among others) may act as nucleophiles on IP, having a new reac-
tion pathway. However there is no kinetic evidence that involves
this third way.

Hence, taking into account all these considerations, Scheme 2
shows the mechanism of the basic hydrolysis reaction of IP in
terms of the two-pseudophase model formed by HAs micellar
aggregates and water. KI¥ and K" are the inclusion constants be-
tween micellar and water phases for the IP and hydroxyl ions,
respectively, and k,, and k,, the basic hydrolysis rate constants in
the micellar phase and water phase. Due to the electrostatic con-
siderations the hydroxyl ions concentration in the micellar pseudo-
phase must be very low owing to the anionic character of the
micellar head group and therefore the reaction rate contribution
of micellar reaction pathway is negligible. According to this
pseudophase model, where [IP}ita1 = [P}y + [IP]m, and K" = [IP],,/
([IP]w [HAs]) and [OH ]totat = [OH Jw + [OH ]m ~ [OH " ]w, the fol-
lowing rate equation can be obtained:

v=— % = ky[IP],,[OH ], + kn[IP],,[OH ],
_ S+ kelOH
= KulIP O s = 7 L Pl )

Comparing Eq. (3) with Eq. (1) kops can be deduced as Eq. (4):

— kW [OH7 ]total

= = Kapp [OH™ 4
1+ KP[HASs] pp[OH Jiotal (4)

obs

where k,pp, is the apparent rate constant obtained from fitting the
experimental data.

As we can see in Supplementary Fig. 2 and Table 1, the value of
the pseudo-first order rate constant (kops) and the apparent bimo-
lecular rate constant (kapp) respectively, decrease on increasing the



J. Morales et al./Chemosphere 92 (2013) 1536-1541

Ro:
oo

T
-

H N

R

1539

K =0

+ (_OH)m 7§Z> Products

A
K =0 = [‘OH] =0
m
HAs micellar aggregates
Water
OH
Ki
kw
% (’OH) ——> Products
w
w

Scheme 2. Pseudophase model upon the basic hydrolysis of Iprodione in humic aggregates.

Table 1

Influence of [HAs] upon the apparent bimolecular rate
constant for the basic hydrolysis of Iprodione in the
presence  of humic acids. [IP]=5x10"°M;
[OH]=8.33 x 107* M; T=25°C; /=248 nm.

10 [HAs]/g L ! Kapp/M 157!
0 32.61
0.50 31.75
1.67 29.90
3.00 28.73

10.00 26.34

13.34 25.54

20.00 2494

30.00 22.32

40.00 20.18

50.00 18.50

66.67 16.30

HAs concentration. Hence, the presence of these HSs inhibits the
basic hydrolysis of IP.

Ky

=1+ K'[HAs] (3)

Kapp
Moreover, the values of the inclusion constants for IP as well as
the rate constants in pure water (k,) were obtained by a non-linear
fitting of Eq. (5) to the experimental results and are shown in the
Table 2.
In order to determine the activation parameters of the system,
we have evaluated the influence of the temperature on the rate

Table 2

Inclusion constants and second order rate constants for the basic hydrolysis of
Iprodione and other pesticides in HSs colloidal aggregates. Kf’ is equivalent to KI-CF,
K*F, KM and K for the respective pesticides.

Pesticide Effect KP(Lg™) kw M7tshy k(M 'sTh)

Carbofuran No effect 1.10£0.10 1.16

3-keto-Carbofuran Inhibition 5%1 190+ 10 210

3-Hydroxy- Inhibition 10+1 3.10+£0.10 2.80
carbofuran

Iprodione Inhibition 14+1 31.30+£0.10 336

constant in the basic hydrolysis of IP. For these experimental seri-
als, it was carried out keeping the sodium hydroxide and IP con-
centration, respectively equal to [OH"]=5.00x 107*M and
[IP]=833x10°M, and varying the temperature between
T=15°C and T =30 °C. These experimental data have been fitted
to the Arrhenius equation, Eq. (6). The settings of the experimental
data to these equations have been satisfactory (R > 0.99).

k=A- et (6)

The Eq. (6) can be readily linearized which were adjusted exper-
imental data. Thus, a value of 68.40 k] mol~! was found for the
activation energy. Table 3 shows the values of the rate constants
obtained for each temperature tested.

So as to confirm the pseudophase model in these microhetero-
geneous media, the apparent rate constants were theoretically cal-
culated for the IP. Fig. 3 shows the good correlation between the
experimental results with those calculated from Eq. (4). These re-
sults help us to understand the role of organic matter in soils upon
the stability and persistence of the pesticide investigated in this
work.

As quote above, these kinetic results imply a large increase of IP
half-life time, due to the effect of the total inhibition inside the HSs
aggregates. As we can see, the pseudophase model predicts satis-
factorily the kinetic behavior of this xenobiotic in humic aggre-
gates. This model represents a useful tool for a quantitative
analysis of these kinetic measurements.

As can be observed in Table 2, the inclusion constant of IP
calculated in humic acids is relatively higher than other reactions
studied by us in other pesticides (Morales et al., 2012c), and

Table 3
Values of the activation parameters at different temperatures according to the

Arrhenius equation in basic media. [IP]=8.33 x 107> M; [OH ]=5.00 x 1074 M;
2 =248 nm.
T/°C kjs~'M™! T k! Ink
15 7.80 x 1073 347 x 1073 —4.854
20 1.04 x 1072 3.41x 1073 —4.566
25 1.65 x 1072 335x 103 —-4.104
30 3.23 x 1072 330 x 1073 —3.433
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Fig. 3. Experimental rate constant, k.p, (exp), and calculated rate constant, kapp
(calc), for the basic hydrolysis of Iprodione in the presence of humic substances
colloidal aggregates. Dotted and short dashed lines represent the 95% confidence
band and the 95% prediction band, respectively.
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Fig. 4. Inclusion constants for different pesticides in HSs aggregates as a function of
logP coefficient.

probably could be explained in terms of hydrogen bonding of IP
with the phenolate and carboxylate groups in the interface of the
HSs micellar aggregates. Finally, according to the results observed
in Fig. 4 and comparing these experimental data we could affirm
that hydrophobicity of the HAs core is the main force of interaction
between these natural colloidal aggregates and the pesticide
studied.

4. Conclusions

Natural colloidal aggregates were used to provide new insights
in the reactivity of pesticides IP, which is widely used as fungicide
in agriculture, on the basis of a pseudophase model. Due to the tox-
icology and high stability of this compounds in soils, finding of new
catalytic elimination pathways, is an important issue. HAs are col-
loid dispersions in water, and their influence on chemical reactivity
can be rationalized considering that this humic substance type are
micelle-like colloids. In this way, it should be noted that their pres-
ence of in restricted media implies an inhibition of the basic hydro-
lysis of IP (2-fold) in the presence of humic acids. This inhibition

also represents an increase of half-life time of IP of approximately
100%.

Finally this behavior has been compared with the correspond-
ing one in the same natural colloidal aggregates in the presence
of other substances with different behavior according electrostatic
and hydrophilic/hydrophobic considerations. As quote above, the
binding constant of IP calculated in these humic substances is rel-
atively higher than other pesticides studied previously in our re-
search group. Differences in inhibition behavior between the
carbofuran family of pesticides and Iprodione would be attributed
to their differences in hydrophobicity and, hence, differences in
their penetrability inside HAs aggregate core. This fact is definitely
probed attending the linear relationship observed between binding
constant of different xenobiotics and their hydrophobicity mea-
sured in terms of logP value.
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