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ABSTRACT ARTICLE HISTORY

This article introduces a straightforward sieve-based approach for estimation Received 24 February 2025
and inference of regression parameters in panel data models with interactive Accepted 27 August 2025
fixed effects. The method'’s key assumption is that factor loadings can be KEYWORDS
decomposed into an unknown smooth function of individual characteristics Cross-sectional dependence;

plus an idiosyncratic error term. Our estimator offers advantages over existing large panels; principal
approaches by taking a simple partial least squares form, eliminating the need components; semiparametric
for iterative procedures or preliminary factor estimation. The limiting distri- factor models; sieve

bution exhibits a discontinuity that depends on how well our basis functions approximation
explain the factor loadings, as measured by the variance of the error factor
loadings. As a consequence, conventional “plug-in” methods using the esti-
mated asymptotic covariance can produce excessively conservative coverage
probabilities. We demonstrate that uniformly valid non conservative inference
can be achieved through the cross-sectional bootstrap method. Monte Carlo
simulations confirm the estimator’s strong performance in terms of mean
squared error and good coverage results for the bootstrap procedure. An
application to cross-country growth rates shows that higher consumption and
government spending are associated with lower growth. Contrary to existing
methods, we find that within OECD countries investment fosters growth,
whereas a higher investment price level reduces it.

1. Introduction

This article considers panel data models with interactive fixed effects, which are widely used to capture
unobserved heterogeneity and cross-sectional dependence (CSD). These models assume that the error
term, vj;, follows a latent factor structure of the form v;; = )J f+ + uir, where A; are individual-specific
factor loadings and f, are time-varying common factors. These models are particularly relevant when
latent global shocks (i.e., financial conditions, technology diffusion, or geopolitical events) affect all
individuals with heterogeneous intensities.

In macroeconomics, for instance, fluctuations in global trade or capital markets can induce strong
CSD in cross-country growth regressions (Chudik et al., 2017; Lu and Su, 2016). In finance, unobserved
risk or liquidity conditions affect asset returns beyond what is captured by standard pricing factors,
such as those in the Fama-French model (e.g., small market capitalization and book-to-market ratios)
(Bernanke, Boivin, and Eliasz, 2005; Fan, Ke, and Liao, 2021). Ignoring such latent structures can yield
biased and inconsistent estimators of the structural parameters.
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To address the endogeneity problem arising from the correlation between covariates and latent
components (i.e., f, and/or A;) in large panels (e.g., where both the cross-section, N, and the time
dimension, T, are large), the literature has evolved along two primary methodological paths: (i)
controlling for unobserved common factors f, while treating factor loadings A; as nuisance parameters,
and (ii) modeling loadings A; as smooth functions of some observed characteristics.

The first line of research includes influential approaches such as the common correlated effects
(CCE) estimator of Pesaran (2006), which addresses the presence of unobserved common factors
by augmenting the model with cross-sectional averages of both regressors and dependent variables.
Another prominent approach is the principal component (PC) estimator, introduced by Bai (2009)
and further refined by Moon and Weidner (2015, 2017). These PC-based techniques consistently
estimate both latent factors and loadings and recover structural parameters by solving a non convex
optimization problem. This first methodological strand has fostered the development of a rich and
widely applicable literature with numerous extensions (see Sarafidis and Wansbeek (2012), Chudik and
Pesaran (2015), Bai and Wang (2016), or Westerlund and Urbain (2015), among others). Despite their
popularity, a key drawback is the agnostic treatment of loadings, which may lead to a loss of estimation
efficiency, particularly in settings such as asset pricing, where firm-level attributes (such as size, leverage,
profitability, or industry classification) are often informative about factor exposure.

Motivated by this empirical insight, the second strand of the literature addresses the endogeneity
issue by modeling factor loadings A; as smooth functions of observable unit-level covariates. Notable
contributions include Connor and Linton (2007), Desai and Storey (2012), Ma, Linton, and Gao (2021),
and Cheng et al. (2024), who specify A; = g(Z;), where g(-) is an unknown smooth function and Z;
contains unit-level characteristics. However, this modeling approach imposes the restrictive assumption
that the entire variation in A; must be explained by Z;, which increases the risk of model misspecification.
To allow partial flexibility and mitigate the risk of misspecification, Fan, Liao, and Wang (2016) consider
a pure factor model and propose a more flexible framework that decomposes factor loading into a
systematic component and an idiosyncratic error, thatis, A; = g(Z;) + y;, where p, reflects the part of &;
that cannot be explained by Z;. They propose the projected Principal Component Analysis (projected-
PCA) method, which improves upon standard PCA by first projecting the data onto a sieve space defined
by the basis functions of covariates.

This article contributes to the literature by developing a tractable methodology that extends the
projected-PCA approach of Fan, Liao, and Wang (2016) to a more general panel data regression setting
in which the factor loadings are characterized by a semiparametric structure,

i =X A Ujt,
Ji iB A fet v i=1,...,N; t=1,...,T, (1)
i =g8Z)+vy
where y;; is the response variable of individual i at time ¢, Xj; is a Q-dimensional vector of covariates, 8 is
the Q-dimensional vector of parameters to be estimated, A; = (Aj1, . . ., ri) T andf, = (fi1,... ,ﬁK)T are

K-dimensional vectors of factor loadings and common factors, respectively, and u; is the idiosyncratic
error term which is assumed to have zero mean and to be independent of both covariates and factor
structure. Furthermore, Z; is a D-dimensional vector of additional covariates representing individual
characteristics, g(Z;) = (¢1(Z)), .. ., gK(Z,-))—r is a K-dimensional vector of unknown functions, and
vi=Wi-. vik) | is a K-dimensional vector of errors. Throughout the article, we assume that {y;}i<y
has zero mean and is independent of {Z;},<n, and the number of factors K is finite and does not depend
on the size of the cross-section N or the time dimension T.

Integrating all the information contained in (1), the resulting regression model can be written as
follows

yie=XyB+gZ) fi+vif +up, i=1...N; t=1,...,T )

Building upon the core idea of Fan, Liao, and Wang (2016), the innovation of this article lies in
developing a direct estimation procedure for B that relies on projecting the data onto the subspace
generated by the sieve basis functions of the covariates Z;. This orthogonal projection intends to
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“project away” the unobserved factor loadings to eliminate asymptotically the bias related to the loadings
and obtain consistent and asymptotically normal estimators of the B’s in (2) without the need for
computationally intensive procedures.

The estimation procedure proposed in this article offers several advantages. First, it is based on a
simple OLS framework, which avoids the complexities of iterative procedures. Second, it does not require
prior knowledge of the number of common factors and does not require knowledge or assumptions
about them, making it robust to various specifications. In addition, the underlying limiting distribution
is centered at zero. Finally, the proposed estimator reaches the semiparametric efficiency bound under
certain conditions.

In deriving the asymptotic properties of the proposed estimator, we obtain a rate of convergence that
crucially depends on the persistence of the y; terms in the composite error. If the variance of these
idiosyncratic factor loadings is zero or approaches zero with a rate O(T~!), our estimator is v/NT-
consistent. Otherwise, the rate of convergence will be between +/NT and the worst case rate /N which
occurs if the variance of p; is of order O(1). Although we obtain asymptotic normality results for all
scenarios, it is true that the case of vanishing factor loadings is the one most favorable to our estimator
compared with existing approaches for dealing with interactive fixed effects.

The idiosyncratic factor loading term p; has also a profound impact on inference, as it introduces
a discontinuity in the limiting distribution when its variance is near the boundary. In this case, the
usual “plug-in” approaches would lead to valid but overly conservative inference. Similarly, ignoring
the idiosyncratic part leads to invalid inference in the case of persistent variance. To achieve uniformly
valid but non conservative inference, we resort to the cross-sectional bootstrap originally proposed by
Kapetanios (2008). In this way, by stacking the time observations we are able to mimic the asymptotic
distribution and conduct uniformly valid inference even in the presence of this type of discontinuities as
shown by Liao and Yang (2018) and Ferndndez-Val et al. (2022). The issue of uniformity is an important
topic for modeling panel data. Lu and Su (2023) consider a model with two-dimensional heterogeneity of
varying degrees in the slope parameters and are interested in uniformly valid inference. Kock (2016) and
Kock and Tang (2019) study uniform inference in high-dimensional panel regression contexts. Menzel
(2021) showed that uniform non conservative inference is impossible under general dependence in more
than one dimension. The novelty of our bootstrap procedure is that we resample cross-sectional units
after projecting the data, i.e., partialing-out the modeled part of the factor loadings.

Our model setup is closely related to the one in Zhang, Zhou, and Wang (2021); however, we want
to point out crucial distinctions. First and foremost, the main issue of interest in the above article
is efficiency and they propose a GLS-type estimator that under broadly general conditions is oracle
efficient. It is important to note that their asymptotic results require the consistency of the pooled OLS
estimator in a first step which is not the case in our model setup. Second, Zhang, Zhou, and Wang (2021)
assume that the factor loadings are fully explained by Z;, i.e., ; = 0. Unfortunately, in the presence of
error factor loadings, i.e., y; # 0, the statistical properties of standard estimators for § remain unclear.
Therefore, it is of interest to derive a new estimator to obtain consistency and asymptotic rates.

The rest of the article is organized as follows. In Section 2, we derive our projection-based interactive
fixed effects estimator. Section 3 states our assumptions and studies the asymptotic properties of the
proposed estimators. In Section 4, we validate the theoretical results in a simulation study. In Section 5,
we apply our method to the identification of the determinants of economic growth. Lu and Su (2016)
argued that the GDP growth rates per capita might not only be determined by observed factors but might
also be influenced by latent factors or shocks. Our projection-based interactive fixed effects estimator is
well-suited for such a setting. All proofs of the asymptotic results and further Monte Carlo results are
relegated to a Supplementary Material document.

2. Estimation procedure

To nonparametrically estimate the unknown function gi(-) without curse of dimensionality, it will be
assumed that for each k, where k =1, ..., K, g(-) is an additive function of the form
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D
g (Z)=> ga(Za), i=1...,N, k=1,.. K. (3)
d=1
For each k and d, the additive component gi;(-) can be approximated by the sieve method. We define

{¢1 (Zia)s - - -» Py (Zid)} as a set of basis functions (i.e., splines, Fourier series, wavelets), which spans a
dense linear space of the functional space for gi;(-). Then,

N
GdZia) = Y _ bika®j(Zia) + Rea(Zia), k=1,...,K, d=1,...,D, (4)
j=1
where, for j=1,...,]N, ¢j(:)’s are the sieve basis functions, bj’s are the sieve coefficients of the dth

additive component of gx(Z;) corresponding to the kth factor loading, Rx4(-) is a “remainder function”
that represents the approximation error, and Jy denotes the number of sieve terms which grows slowly
as N — oo.

As it is well-known in the literature, under some regularity condition of the functional class, the
approximation functions ¢;(-) have the property that, as Jy grows, there is a linear combination of
¢;(-) that can approximate g (-) arbitrarily well in the sense that the approximation error can be made
arbitrarily small. Therefore, for a given d =1, ..., D, the basic assumption for sieve approximation is
that sup, |Rkq(2)| — 0, as Jy — 00. In practice, an optimal choice for the smoothing parameter /i can
be based on cross-validation.

For the sake of simplicity, we take the same basis functions in (4) and, for each k <K, d < D and
i < N, let us define

T D
bk = (bl,kb cees b]N,kla N bl,kD> PN b]N,kD) S R]N 5

PZ)" = (@1(Zn)s s Py (Zi)s . $1(ZiD)s - . By (ZiD)) € RINP,

so the above equation can be rewritten as

D
&(Z) = (Z) b+ ) Rea(Zia). (5)
d=1
Let Z = (Z;r, .. ,ZZ—\';) be an N x D matrix whose ith element is a D-dimensional vector of random

variables as Z; = (Zi1,...,Zip) " and denote by Z its support. Let also G(Z) be an N x K matrix of
unknown functions, gx(Z;), ®(Z) = (¢(Z,), . .. ,¢(ZN))" be an N x JyD matrix of basis functions,
B=(by,...,bk) be an JyD x K matrix of sieve coefficients, and R(Z) be an N x K matrix with the
(i, k)th element Z§=1 Riq(Z;g). By considering (5) in matrix form, we obtain

G(Z) = ®(Z)B + R(Z), 6)
and substituting (6) into the matrix form of (2) leads to
i =X:B + OD)Bf, + RDf, + v,  t=1,...,T, @)

where the residual term consists of two parts: the sieve approximation error, R(Z)f ,, and the error term,
v;, that is an N x 1 vector such as v; = I'f, + u;, where I' = (y4,... ,)/N)T is an N x K matrix of
unknown loading coefficientsand u; = (uyy, . . ., unt) | isan N x 1vector of idiosyncratic errors. Finally,
X;isan N x Q matrix of covariates.

To obtain consistent estimators of B in (7) we propose a transformation that removes ¢ (Z)Bf, and
accounts for the error term, I'f,. A natural choice to remove ®(Z)Bf, in (7) is to define the following
projection matrix

Po2) ¥ (2 [dD(Z)ch(Z)]ﬂ o2)7. (8)
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Premultiplying both sides of (7) by Pg(Z) and assuming that (NT) ™! Zthl XtT [In — Pop(Z)] X, is
non singular, the following estimator for § is obtained,
1 < R
B=1—3XIy-Po@1X;,} — Y X, Iy —Po(2)]y, 9
B {NT;JN »(2)] X, NT;t[N o(2)]y, ©)

3. Asymptotic properties

In this section, we analyze the main asymptotic properties of the estimator. First, we introduce some
notation, definitions, and assumptions that will be necessary to derive the main results of this article.
Later, we present the main large sample properties of these estimators. All proofs of these results are
relegated to a Supplementary Material document.

3.1. Notation

Let n = NT. For two positive number sequences a,, and b, we say a, = O(b,,) or a, < by, (resp. a, < by)
if there exists C > 0 such that a,,/b, < C (resp. 1/C < a,, /b, < C) for all large n, and say a,, = O(b,) if
an/by — 0asn — o0o. We set X, and Y}, to be two sequences of random variables. Write X,, = O, (Y},) if
for Ve > 0, there exists C > 0 such that P(|X;,/Y,| < C) > 1 — € for all large n, and say X,, = 0,(Yy) if
X,/Yy — 0 in probability as n — co. We use plim to denote the probability limit. Further, for a real
matrix A, let [|[A||p = tr'/2(ATA) and ||A|, = A},{fx ATA) denote its Frobenius and spectral norms,
respectively. Let Amin (+) and Amax (-) denote the minimum and maximum eigenvalues of a square matrix,
respectively. For a vector v, let ||v|| denote its Euclidean norm.

3.2. Definitions and assumptions

Definition 3.1. A function h(-) is said to belong to the class of additive functions G, if : h(-) = Zgzl ha()
and hy(-) belongs to the Holder class of functions

{a: 1196 = WY 0] = Lis — 1]

for some L > 0, and for all s and t in the domain of hy(-), where r stands for the r-th derivative of the
real-valued function hy(-) and 0 < { < 1.

For any scalar or vector function ¢(z), we use the notation I1g[¢(z)] to denote the projection of ¢ (z)
onto the class of functions G. That is, [1g[¢(z)] is an element that belongs to G and is the closest function
to ¢(z) among all the functions in G. More specifically, we have

E{le(2) ~ Mg(e@)le() — Mg e ]
= inf E{l¢(2) ~h(@)lle() —h@]"|, (10)
where the infimum is in the sense that
E{le(2) ~ Mg (e@)le() — Mg (e ]
<E{lv@ - h@llp@ — h@1" |, (1)

for all h € G, where for square matrices A and B, A < B means that A — B is negative semidefinite.
Denote 0(z) = E[X;|Z = z] and m(z) is the projection of 6(z) onto G, i.e., m(z) = Eg[0(z)]. For

t=1,...,Twedefineé, =X, — m(Z),n(Z) =0(Z) — m(Z),and e; = X; — 0(Z), where &,, n(Z), and

e;are N x Q matrices. Also, the following conditions about the data generating process, basis functions,
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factor loadings, and sieve approximation are required to obtain the large sample properties of the
proposed estimator, 8.

Assumption 3.1. (Data generating process).

(i) 0(2), m(z), and n(z) are bounded functions in Z.
(ii) sup,. =z E (steﬂZ:z) <C, forsomeC>0,t=1,...,T.
(iii) Define Ve = plimy 1, o, ﬁ > & &,.V; is finite and positive definite.

Assumption 3.2. (Identification). Almost surely, T FTF=Ig.

Assumption 3.1 allows for correlation between X;; and Z; through 6(Z), m(Z), and n(Z). This
assumption is standard in semiparametric estimation techniques (see for example Assumption 2.1(ii)
in Ahmad, Leelahanon, and Li (2005)). Also, Assumption 3.2 is commonly used in the estimation of
factor models and enables to identify separately the factors F (see condition PC1 in Bai and Ng (2013)).
Although this assumption is frequently employed in the factor literature, this does not imply that the true
value of F must satisfy such a restriction. Indeed, when elements of F are randomly generated (e.g., from
a normal distribution), one cannot ensure that the above condition holds unless F is normalized after all
elements have been generated. Assumption 3.1 (iii) guarantees that (N T)~! Zthl X;r [IN — Po(Z)] X;
is asymptotically non singular.

Assumption 3.3. (Sieve basis functions).

(i) There are two positive constants, c,

/
min and Cma
N — o0),

such that, with probability approaching one (as

X

i < Amin (N—lcp(z)Tq>(z)> < Amax (N_lq)(Z)Td)(Z)) <o
(ii) max;j<jy i<n,d<p E[¢j(Zia)*] < oo.

As already pointed out in Fan, Liao, and Wang (2016), N"'®(Z) T®(Z) = N"' YN ¢ (Z) " ¢ (Z))
and ¢ (Z;) is of order JyD much smaller than N. Thus, condition (i) can follow from a strong law of
large numbers. This condition can be satisfied through proper normalizations of commonly used basis
functions.

The following set of conditions is concerned with the accuracy of the sieve approximation.

Assumption 3.4. (Accuracy of sieve approximation).

(i) Fork=1,...,K, gk(-) € Gandforq=1,...,Q my(-) € G, where my(-) is the qth column of m(-).

(ii) Fork=1,...,K,d=1,...,D,q9q=1,...,Qandi=1,...,N, and let r and ¢ be elements already
stated in Definition 3.1. The sieve coefficients {bj,kd}J]'il and {cj,qd}J]-il satisfy, for k =2(r +¢) >4 as
JN = o0,

2
IN
sup |gra(2) — Y biratj(2)| =0 (I5"),
ZEZd j=1
IN 2
sup |mga(2) — Y _ ciqadj(2)| =0 (I5"),
ZEZd j=1
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where myq(2) is the d-th additive element of my(z), Zg4 is the support of the d-th element of Z, and Jn
is the sieve dimension.
(iii) maxjkdb kd < 00 MaXjg4c ]qd < 0.

Asitis remarked in Fan, Liao, and Wang (2016), Assumption 3.4 (ii) is satisfied by the use of common
basis functions such as polynomial basis or B-splines. In particular, Lorentz (1986) and Chen (2007)
show that (i) implies (ii) in this particular case.

The next assumption refers to the error factor loadings y;, fori=1,...,N.

Assumption 3.5. (Error factor loadings).

(1) {y;}i<n is independent of {Z;};<N. Furthermore, conditionally on f,...,fy, {¥;}i<n is independent
of {gt}th and E(yy) =0fork=1,...,K.
(ii) max<k,i<nE [gk(Zi)z] < 00. Also, vy < 00 and

E(y; =
Jx Z| iyl = O(N),

where

VN = maxN 1ZVar(y,k)
i<N

(iii) For some § > 2,

§
1
max E|y,

<oo, g=1,...,Q. (12)
i<N;k<K

T
Z E sthfkt| r
t:l

Note that in Assumption 3.5 (ii) we assume cross-sectional dependence of the error factor loadings.
To show the consistency of the proposed estimator for simplicity, we can assume the independence of the
factor loadings y;x from the random part of the covariates, Z;, but we do not need to impose a restrictive
i.i.d. assumption.

Through the article, some regularity conditions about weak dependence and stationarity are assumed
on the factors and the idiosyncratic terms. In particular, we impose strong mixing conditions. Let F°
and F2° denote the o -algebras generated by {(§,,f,, u;) : t <0} and {(&,,f,, u;) : t > T}, respectively.
Define the mixing coefficient

oa(T) = sup |P(A)P(B) — P(AB)|.
AeFO  BeFP

Assumption 3.6. (Data generating process).
(i) {&, us. f,)i<r is strictly stationary, {u;}i<T is independent of {Z;,y;,&.f,}i<ny<T and E(u) = 0 for

alli<N,t<T.
(ii) For some § > 2,

maxE|§itqu,-t|6<oo, i=1,...,N; ¢q=1,...,Q, (13)
t<

max max E =Ms<oo, i=1,...,N; =1,...,Q. 14
naxmax |Eitgfucl® 5 q Q (14)

(iii) Strong mixing: a(k) < ak™F, where a is a positive constant and T > &
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(iv) Weak dependence: there is C > 0 so that

N
max E(ujuiy)| < C,
may ZIJ (uitjp)|

T T
NDT'Y YN Ewaug)| < G,

N N
i=1 j=1 t=1 s=1

Lj

N N T T
?;%((NT)_I Z Z Z Z |Cov (ujruys, ujsuys)| < C.

=1 I'=1 t=1 s=1

Assumption 3.6 is standard in factor analysis (Bai, 2003; Stock and Watson, 2002; Fan, Liao, and
Wang, 2016). Part (i) is standard in partially linear models (Ahmad, Leelahanon, and Li, 2005; Hardle,
Liang, and Gao, 2000). The independence assumption between u; and {Z;, &,} can be relaxed by allowing
for conditional independence. Part (iii) is a strong mixing condition for the weak temporal dependence
of {&;, us,f,}, whereas (iv) imposes weak cross-sectional dependence in {u;;}i<n :<7. This condition is
usually satisfied when the covariance matrix of the error term u;; is sufficiently sparse under the strong
mixing condition and it is commonly imposed for high-dimensional factor analysis.

3.3. Limiting theory

A very intuitive idea of the asymptotic behavior of our estimator can be obtained by plugging (2) in (9)
that yields

-1
B-B= {Z X/ Mo (Z>xt} > X[ Mo (Z)(Af, + u),
t t
where Mg (Z) = In — Po(Z) and A = G(Z) + T. As the reader can see from the above expression, there
is a direct dependence of B on the unobserved factor loadings through (N T)~! > X;'—M »(Z)Af,. Nev-
ertheless, using (1) and given that it can be proved that (NT)! ZtXtTMq; (Z)G(Z)f, = 0p(1/+/NT)
(see the proof of Theorem 3.1 in the Supplementary Material document), we have that

1
) 15)
VNT
In this situation, we can conclude that the limiting distribution of B-B only depends on idiosyncratic
terms (related to both the error term and the approximation error of the basis functions to the factor

loadings). Under Assumptions 3.1-3.6, it is also possible to show (see Appendix A of the Supplementary
Material document for a related proof) that, as both N and T tend to infinity,

E—ﬂ:OP(l/«/z\I_T)+OP(\/W).

The interesting feature of this asymptotic bound is that the rate of convergence of B can be slower
than +/NT depending on the behavior of vy (i.e., the variance of the error factor loadings). In order
to clarify this, we further take a look at the asymptotic distribution of our estimator. The previous
result on the consistency and the convergence rate is based on weak dependence in the error term and
idiosyncratic factor loadings. To show asymptotic normality, we have to impose the stronger condition
of cross-sectional independence while still allowing for weak dependence in the time dimension.

-1
B-8= [Z X! Mo (Z>Xt] Y X[ Mo(2)(Tf, +u) + 0, (
t t

Assumption 3.7. {u;, y;},_ are independent and non identically distributed random variables across i.

i<N
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Then, the asymptotic distribution of the projection-based interactive fixed effects estimator B is
provided in the following theorem.

Theorem 3.1. (Limiting distribution). Let vy ~ T~V for ¢ > 0. Under assumptions 3.1-3.7 and if it is
further assumed that, for k > 4 and o € (%, %), Jn ~ N€ and T/N’“Q_1 — 0, as both N and T tend to
infinity, then for ¥ € [0, 1),

INTPB -5 N (0, V;VFV;) . (16)
Under the same set of assumptions, if 0 =1
INT@ -5 N (0.7 (7 + W) 7)), (17)
and finally, if & > 1
VNT(B - B) £>N(0, V;Vﬁgl), (18)
where
~ def 1«
Ve = plimy, 1 o0 15 Z E[E, (19)

~ 1
Vr déf limy 700 — Z Z |:Vik7/ik'ﬁ Z E (gitftk| F) E (sixfsk’
t,s

i=1 k<K;k'<K

r)T} , (20)

T
S def . 1
Va S limy roo oo ZZE(&?utuIsm. (21)

Note that ¢ is a parameter that reflects the strength of the relationship between A; and Z; through
the variance of y;. Thus, when ¢ ~ 0 the relationship is weak whereas when ¥ 3> 0 this relationship
becomes stronger.

The proof of Theorem 3.1 is provided in Appendix B.1 in the Supplementary Material document.
The key component of the proof is following the Frisch-Waugh Theorem to partial-out the effect of the
latent factors and corresponding loadings. We want to highlight that the relative rate requirements of N
and T crucially depend on the smoothness parameter, k. In particular, if « = 4 we have the requirement
that T/N tends to zero regardless of the choice for the sieve dimension ¢. The constraints in the rates
of growth imposed on N and T are similar to other assumptions used in similar literature such as in
Ahmad, Leelahanon, and Li (2005). Note that Assumption 3.7 is introduced for the sake of simplicity. It
is indeed used for the application of the corresponding central limit theorems (CLT) in the proof but it
could be relaxed at the cost of a much cumbersome proof.

Remark 3.1. As we can observe from (15) and Theorem 3.1 the asymptotic distribution of ﬁ depends
on interplay of two leading terms,

D X[ Mo DTS, + ) X[ Mo(Z)u.
t t

The term (NT) ™! ZtXtTM & (Z)Tf, arises from the cross-sectional estimation, and it shows a rate
of order O, (N -1/ ZM) and the term (NT)~! ZtX,TMq>(Z)ut which has a leading term of order
O ((N )~V 2) (see Proof of Theorem 3.1 (iii) of the Supplementary Material). Indeed, the interaction
between these two leading terms affects crucially the resulting rate of convergence of the limiting
distribution. As it can be observed in Theorem 3.1, this rate is affected by the behavior of vy. This term
reflects the strength of the relationship between the A;’s and the Z;’s. When a relevant part of the variation
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of the loading coefficients A, is explained by Z; (that is vy is close to zero) the observed characteristics
capture almost all fluctuations of B — B, leading to a faster rate of convergence V/NT. On the other hand,
if vy is far from zero, then the fluctuations of  — 8 can be explained mostly by cross-sectional variation,
and therefore time series regression is not relevant to help to remove the correlation between loading
coeflicients and covariates when estimating the f’s. In this case, the limiting distribution is determined
by a cross-sectional CLT and hence the rate of convergence is slower (note that for vy = O(1) the rate

is +/N).

Remark 3.2. From Theorem 3.1 it is also possible to identify specifications under which our estimator
might outperform the PCA or the CCE estimators. If A; = g(Z;) 4+ y; and vy & 0 our estimator appears
as more efficient as the others. If we further assume that the latent factor loadings can be completely
explained by the nonparametric functions, i.e., I' = 0 as in Zhang, Zhou, and Wang (2021), and given the
idiosyncratic error terms are i.i.d. with Var(u;;) = o2, our estimator is semiparametrically efficient in the
sense that the inverse of the asymptotic variance of v/NT (ﬁ — B) equals the semiparametric efficiency
bound. From the result of Chamberlain (1992) the semiparametric efficiency bound for the inverse of
the asymptotic variance of an estimator of f is

o = infgeq E {[Xi — g(Z)] Var (u) ™ [Xi — g(Z0] " }. (22)

Under the i.i.d. Assumption, (22) can be rewritten as
1. T
o= — infyeg E{ [Xu — g20] [Xu — g(2)]" |
1
= — E{(Xi — m(z)) X = m(Z)]" |
o

1 T
= 0__2E=§itEit .

Note that the inverse of the last expression coincides with the asymptotic variance of /N T(B — B)
when the error terms are uncorrelated and homoskedastic. Then, § is a semiparametrically efficient
estimator under these assumptions.

Remark 3.3. It is possible to estimate the latent factors and loading coeflicients from the regression
residuals using the Projected-PCA method of Fan, Liao, and Wang (2016). Let y, =y, — X, and
Y= y>- - -»y7). Now the matrix of factors F and G(Z) can be recovered from the projected matrix
of residuals P (Z)Y. The asymptotic properties and the resulting convergence rates remain unaffected
by the need to estimate the regression coefficients in a first step. We provide details on the estimation of
the latent factors and loadings in Section C of the Supplementary Material document.

3.4. Uniformly valid inference via the cross-sectional bootstrap

The results of Theorem 3.1 have important implications for conducting inference on the estimated
regression parameters. In particular, since the variance of the idiosyncratic part of the factor loadings
decides which of the two terms will be the leading one, it will ultimately determine the convergence
rate of our estimator. As a consequence, the asymptotic distribution of /B — B has a discontinuity when
the variance of the factor loadings is close to the boundary. In financial econometrics studies, this issue
is often circumvented by assuming weak heterogeneity as a default setting (Connor and Linton, 2007;
Connor, Hagmann, and Linton, 2012a). However, recent studies such as Fan, Liao, and Wang (2016)
find empirical evidence for the case of strong heterogeneity. Further, usual plug-in approaches based
on estimated asymptotic covariance matrices will lead to misleading conclusions if vy = O(T™1), as
they provide confidence intervals that are too wide because the asymptotic covariance matrix is over-
estimated, and the coverage probabilities will be too conservative (Liao and Yang, 2018; Ferndndez-Val
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etal., 2022). Similarly, simply ignoring the cross-sectional term will lead to under-coverage in the strong
heterogeneity case.

Uniformly valid inference for panel data models is an important topic beyond the specifics of our
model setup. For instance, Lu and Su (2023) observe a similar issue in a panel model with two-
dimensional heterogeneity in the regression parameters. In their case, the issue is caused by the level
of temporal and cross-sectional heterogeneity in the slope coefficients.

Fortunately, the uniformity issue can be solved by using the cross-sectional bootstrap proposed by
Kapetanios (2008). Besides achieving uniformly valid inference, the approach is both intuitive and easy
to implement. The basic idea is to sample with replacement cross-sectional units while keeping the
entire time series of the sampled individual units unchanged. By doing this, the resampling scheme
directly mimics the cross-sectional variations in I', regardless of the underlying level of heterogeneity.
The consequence is a uniformly valid inference. This is in direct contrast to Andrews (2000), who found
that the usual bootstrap will lead to inconsistency when a parameter is on the boundary of the support.
The reason why this problem does not occur in our case is that we do not explicitly model the variance
of the idiosyncratic factor loadings as a parameter, i.e., it does not appear in the loss function of our least
squares problem.

A crucial assumption for the bootstrap validity is that the data is cross-sectionally independent.
In fact, Menzel (2021) showed that uniform non conservative inference is impossible under general
dependence in more than one dimension. Recently, De Vos and Stauskas (2024) studied the theoretical
properties of the cross-sectional bootstrap for the CCE approach of Pesaran (2006) and proposed a bias-
correction procedure in the asymptotic regime N/T — p < co. The uniform validity of the bootstrap
procedure in settings similar to ours was recently shown in Liao and Yang (2018) and Fernandez-Val
et al. (2022). The specific aspect of our procedure is that we only resample cross-sectional units after
projecting the data, i.e., removing the effect of Z; on the factor loadings.

As a positive side effect, the cross-sectional bootstrap is able to keep the dependence in the time
dimension. Therefore, the inference is also robust toward serial dependence in the idiosyncratic error
term and in the latent factors. In the following, we summarize the steps of the cross-sectional bootstrap
procedure.

Step 1: Choose a confidence level «, and the number of bootstrap samples, B.

Step 2: Regress yji; and Xj, on ®(Z), and obtain residuals, y, def [INn — Po(Z)]y, and X, def Iy —

Py (Z)X;fort=1,...,T.
A T oTe -1 T oT.

Step 3: Calculate § = (thl X, Xt> D1 Xy

Step4: For b=1,...,B, draw a sample of N cross-sectional units with replacement while keeping the
unit’s entire time series unchanged. Denote the resulting matrices of regressors and vectors of
dependent variables by Xz)t and yj, ,, respectively.

. . ~% T ok o -1 T T ok
Step 5: Obtain the bootstrap estimate 8, = (thl X, Xb,t) D1 Xpt Vo
Step 6: Calculate the (1 — «)-confidence interval for the j-th component of s

CLy(B)) = B; £ duj»
where gy j is the (1 — )-quantile of the bootstrap distribution of ’73\: i~ ﬁ‘ Or, more generally,
for v e RQ,
Cl(v"B) =v"B % qa,
where gq , is the (1 — «)-quantile of the bootstrap distribution of ’VT (/ﬁ\: — ﬁ) ‘

For the bootstrap validity, we need to assume the existence of a consistent estimator of the variance
T
of v'B.
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Assumption 3.8. Denote Vg, = limy, - o Var[v NTﬁvT(E —B)Lifv €l0,1) and Vg, =limn, 1 00

Var[\/NTvT(/ﬁ\ — B)), if ® = 1. There exists a consistent estimator Vg, ,, satisfying V_i/z - Vﬂ_i/nz =
0,(1).
P

The following theorem provides the bootstrap validity, uniformly over settings with varying degrees
of variability in the idiosyncratic factor loadings.

Theorem 3.2. (Bootstrap Validity). Let {Pr:T > 1} CP be sequences of probability laws. Let the
conditions of our Theorem 3.1 hold uniformly over these sequences. Further assume that u; and y; are
cross-sectionally independent. Then we have, uniformly for all {Pt : T > 1} C ‘P, and for a confidence level
1 —a,

Py (vT,B c CIO,(VT,B)) S1-a

The proof of Theorem 3.2 can be found in Appendix B.2 in the Supplementary Material document.
An essential part of the proof is to show that the asymptotic expansion of the bootstrap version of the
estimator is identical to that of the original estimator.

4. Numerical studies

In this section, we evaluate the finite-sample performance of our estimator in a simulation study. We
are interested both in the estimation accuracy of the parameter vector, 8, and the empirical coverage
probabilities of the cross-sectional bootstrap procedure. Throughout the study, we fix the number
of factors, K = 3, the dimension of the time-invariant variable is set to D =2, and the dimension
of covariates is set to Q =2. The true regression coeflicients are f = (2, —1)T. The time-invariant
variables are generated by i.i.d. Z;; ~ U[—1, 1]. The covariates are generated by setting Xit; = agft +

2(/81(Z), ..., /g (Z1) " by + Titg, where migg ~ N(0, 1) iid., ajgk ~ U[—0.5,0.5] and by ~ U[—1, 1].
We generate the latent factors, (fii,...,fkr), as MA(oco) processes with algebraic decay and under
independence across factors for all k. The factor loadings are set to Ay = gk(Z;) + vix, where g1 (z) =
sin(2z1)> + cos(z%),gz(z) =— tan(z%) + 2cos(z + 1) and g3(2) = zg — sin(3z7).

Finally, for the idiosyncratic error term, we consider the case of i.i.d. standard normal u;; as well as
the case of weak temporal dependence, in which (u;1,. .., u;T) are generated from a MA(oo) process
with algebraic decay parameter. To be precise, we set u;; = Z;’il 57%¢;+_s with i.i.d. standard normal
innovations, e; s, for all i. We use the same M A (co) process for the generation of the the latent factors. For
the idiosyncratic part of the factor loadings, we consider four settings. First, in the strong heterogeneity
case generate y; ~ N(0,0.5) (i.e., vy = O(1)). Second, we consider the special case vy = 0. Third, we
consider the weak factor case in which lint =O(TV2) (e, vy = O(T™H). Finally, we generate the
factor loadings under the setting that the nonparametric functions have no explanatory power, g(-) =0,
but vy = O(1). Throughout this numerical study, we rely on B-spline basis functions and we select
Jn = [N'/31.5]. For each setting 500, Monte Carlo runs are conducted.

We compare the performance of our projection-based interactive fixed effects (P-IFE) estimator for 8
with the principal component-based interactive fixed effects (PC-IFE) estimator of Bai (2009) in the i.i.d.
case and with a bias-corrected version of the same estimator (bc-PC-IFE) in the serially dependent case.
For these comparisons, we rely on the R package phtt (Bada and Liebl, 2014). The number of factors is
selected according to the PCI1 criterion in Bai and Ng (2002). As performance measures, we consider the
root mean square error (RMSE). The simulation results under Gaussian disturbances for different values
of vy, N,and T are reported in Table 1. The RMSE of our P-IFE can be effectively reduced with increasing
sample size. For the strong heterogeneity case, we observe an advantage of the PC-IFE for small and
medium samples. For N = 500, this advantage is reversed and the P-IFE has a higher accuracy. In the
other two settings for vy, we can see that the P-IFE outperforms its competitors in almost all cases. The
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Table 1. RMSE of the P-IFE estimator and the PC-IFE estimator under i.i.d. Gaussian error terms.

B1 B,
N N T P-IFE PC-IFE P-IFE PC-IFE
w=0() 50 10 0.0670 0.0582 0.0690 0.0605
100 10 0.0440 0.0437 0.0449 0.0446
50 50 0.0385 0.0234 0.0399 0.0254
100 50 0.0278 0.0195 0.0282 0.0204
200 100 0.0161 0.0142 0.0171 0.0139
500 100 0.0100 0.0117 0.0100 0.0118
vy =0 50 10 0.0401 0.0569 0.0452 0.0581
100 10 0.0286 0.0438 0.0292 0.0436
50 50 0.0205 0.0249 0.0196 0.0243
100 50 0.0124 0.0208 0.0138 0.0210
200 100 0.0065 0.0148 0.0065 0.0138
500 100 0.0038 0.0136 0.0039 0.0139
vy = O(T71) 50 10 0.0468 0.0585 0.0458 0.0538
100 10 0.0319 0.0380 0.0308 0.0381
50 50 0.0193 0.0197 0.0200 0.0196
100 50 0.0139 0.0150 0.0138 0.0154
200 100 0.0065 0.0078 0.0066 0.0077
500 100 0.0039 0.0058 0.0041 0.0057
w=0() 50 10 0.0646 0.0493 0.0708 0.0568
g()=0 100 10 0.0456 0.0349 0.0429 0.0349
50 50 0.0417 0.0184 0.0402 0.0189
100 50 0.0289 0.0127 0.0271 0.0125
200 100 0.0169 0.0064 0.0168 0.0062
500 100 0.0099 0.0038 0.0101 0.0038

outperformance is best visible for settings with large sample sizes in the case of vy = 0. In particular, for
N = 500 the RMSE of our P-IFE is less than a third of that of the PC-IFE. As expected, the performance
of the P-IFE is worse than the PC-IFE if the effect of the nonparametric functions on the factor loadings
is absent, g(z) = 0.

The results for serially dependent error terms are displayed in Table 2. Again, we can observe that the
PC-IFE outperforms the P-IFE in the vy = O(1) case for small and medium sample sizes. Also similar
to the i.i.d. case, the P-TFE has the lower RMSE in all settings for vy = 0 and vy = O(T~!), whereas the
RMSE is higher in the case of no explanatory power of the nonparametric functions. As a robustness
check, we also consider ¢-distributed error terms in the Supplementary Material document. See Table
Al for the results. We also consider a more complicated additional data-generating process with a larger
number of factors, K = 10. The results are displayed in Table A2 for i.i.d. errors and Table A3 for serially
correlated errors. The most notable difference to the results of the first DGP is that the P-IFE outperforms
the PC-IFE even in the strong heterogeneity case for settings with a small time dimension, T = 10. Again,
the P-IFE dominates in all settings for vy = 0 and vy = O(T™1).

In the following, we look at the performance of the cross-sectional bootstrap procedure and show
its validity in finite samples. As a comparison, we look at the empirical coverage of the PC-IFE
estimator. By Corollary 1 in Bai (2009), under the assumption of i.i.d. error terms, ~/NT (’ﬁ\PC_IFE -

8) 5 N(0,02D "), where D= plim(NT)~! SN2 Z, Z;=MpX; — 1/N Y}, MpXpay, My =
Iy —FF" /T and aj = kiT (ATA)"!A. We construct confidence intervals based on the asymptotic
distribution with an estimated covariance matrix based on estimated factors and factor loadings.

Table 3 shows that the empirical coverage of our cross-sectional bootstrap procedure approaches the
nominal coverage level as N and T increase. As is often the case, we can observe slight under-coverage
in small samples. However, the issue becomes virtually absent in settings with the largest sample size.
We want to highlight that these findings hold for all settings for the variance of the idiosyncratic factor
loadings, vn. We have thus provided evidence for the uniform validity of the bootstrap procedure in
finite samples. In the Supplementary Material document, we show that the cross-sectional bootstrap
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Table 2. RMSE of the P-IFE estimator and the bias-corrected PC-IFE estimator under serially dependent Gaussian error terms (MA(c0)).

B1 B>
N N T P-IFE bc-PC-IFE P-IFE bc-PC-IFE
w=0() 50 10 0.0704 0.0629 0.0648 0.0626
100 10 0.0438 0.0423 0.0463 0.0442
50 50 0.0403 0.0252 0.0412 0.0252
100 50 0.0286 0.0189 0.0285 0.0201
200 100 0.0160 0.0124 0.0165 0.0126
500 100 0.0102 0.0112 0.0101 0.0114
vy =0 50 10 0.0444 0.0604 0.0435 0.0586
100 10 0.0297 0.0456 0.0288 0.0451
50 50 0.0196 0.0261 0.0202 0.0262
100 50 0.0124 0.0211 0.0132 0.0218
200 100 0.0064 0.0152 0.0063 0.0151
500 100 0.0040 0.0131 0.0040 0.0134
vy = O(T71) 50 10 0.0463 0.0578 0.0455 0.0560
100 10 0.0324 0.0374 0.0286 0.0365
50 50 0.0199 0.0191 0.0204 0.0190
100 50 0.0138 0.0157 0.0136 0.0153
200 100 0.0065 0.0083 0.0070 0.0087
500 100 0.0040 0.0066 0.0040 0.0063
w=0() 50 10 0.0682 0.0505 0.0673 0.0525
g()=0 100 10 0.0455 0.0365 0.0475 0.0364
50 50 0.0405 0.0191 0.0428 0.0194
100 50 0.0274 0.0134 0.0272 0.0140
200 100 0.0171 0.0069 0.0154 0.0070
500 100 0.0105 0.0045 0.0102 0.0042

Table 3. Empirical coverage of the cross-sectional bootstrap confidence intervals vs. empirical coverage of the asymptotic confidence
intervals of Bai (2009) for variable Xj.

P-IFE PC-IFE
N N T 90% 95% 99% 90% 95% 99%
w=0() 50 10 0.856 0.902 0.966 0.846 0.898 0974
100 10 0.856 0932 0.982 0.836 0.902 0.970
50 50 0.880 0922 0.984 0.810 0.870 0.950
100 50 0.860 0922 0978 0.726 0.804 0914
200 100 0.858 0932 0.982 0.636 0702 0.820
500 100 0.900 0.956 0.982 0514 0.580 0678
=0 50 10 0.852 0.920 0972 0.846 0.900 0.958
100 10 0.842 0912 0972 0.782 0.858 0.948
50 50 0.858 0916 0.982 0.808 0.882 0.948
100 50 0.872 0.940 0.980 0.750 0.824 0916
200 100 0.888 0.958 0.992 0.630 0.708 0.816
500 100 0.880 0.948 0.990 0.494 0.556 0.656
w=0Th 50 10 0.902 0.946 0978 0.79 0.898 0.960
100 10 0.880 0932 0.982 0.812 0.886 0.950
50 50 0.840 0910 0.976 0816 0.880 0.952
100 50 0.878 0932 0.984 0.766 0.858 0.930
200 100 0.902 0.944 0.988 0.750 0.838 0938
500 100 0.882 0.950 0.990 0.662 0.740 0.850

procedure is also robust toward t-distributed errors and serially correlated error terms. See Tables A4
and A5. Our uniform bootstrap procedure naturally adapts to the data, particularly to potential serial
dependence and a varying degree of heterogeneity in the factor loadings.

Looking at the coverage of the asymptotic distribution of the PC-IFE estimator, we can observe under-
coverage in all settings. Moreover, the coverage does not improve with increasing sample size. On the
contrary, the coverage is worst for the setting with N = 500 and T = 100.
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Table 4. Summary statistics and data sources of dependent and independent variables.

Variable Description Mean Median Min Max Data
Growth Annual GDP growth per capita 2.96 2.54 -67.29 141.63 PWT
Young Age dependency ratio 54.13 49.92 14.92 107.40 WDI
Fert Fertility rate 3.23 2.69 1.09 7.7 WDI
Life Life expectancy 68.30 71.21 26.17 84.36 WDI
Pop Population growth 1.70 1.51 -6.54 19.14 PWT
Invpri Price level of investment 0.54 0.50 0.01 7.98 PWT
Con Consumption share 0.64 0.65 0.09 1.56 PWT
Gov Government consumption share 0.17 0.17 0.01 0.75 PWT
Inv Investment share 0.22 0.22 0.00 0.92 PWT

o

(=1

0.1

T T T 1 T T
1990 1995 2000 2005 2010 2015 2020

Figure 1. Time series of average annual real GDP growth rate per capita (solid line) and time series of 5% and 95%-quantiles (dashed
lines).

5. Determinants of economic growth

The aim of this section is to show the performance of our estimator in empirical analysis. More precisely,
we will apply our estimator in the analysis of the determinants of economic growth. We refer to Durlauf,
Johnson, and Temple (2005) for a comprehensive review of the growth literature. While many studies
focus on a cross-sectional analysis (see for instance Barro (1991)), there are also numerous studies
employing a panel data approach with country-specific fixed effects (Acemoglu et al., 2019; Islam,
1995). However, Lu and Su (2016) argue that economic growth rates might not be solely determined
by observable regressors, but could also be influenced by latent factors or shocks. Our projection-based
interactive fixed effect estimator is well suited as it is flexible enough to model such latent factors.

The yearly data on GDP growth rates and the country-specific characteristics are obtained from
the Penn World Table (PWT) and the World Bank World Development Indicators (WDI). Our sample
contains 129 countries in a period from 1991-2019, N = 129 and T = 29. Countries with incomplete
data availability or which did not exist yet in 1991 are excluded from our analysis. Our dependent variable
is the real GDP growth rate per capita. The set of regressors is identical to the regressors in Lu and Su
(2016). Summary statistics of all dependent and independent variables can be found in Table 4. Figure
1 shows the time series of the mean growth rates, averaged over all countries in our sample. We also
visualize the time series of the cross-sectional 5% and 95%-quantiles of the growth rates in the same
figure. For the time-invariant characteristics used for modeling the systematic part of the factor loadings,
we take the longitude and latitude of the respective country’.

We first fit our projection-based interactive fixed effects model using the complete sample of N = 129
countries. To be consistent with the simulation section, we use B-spline basis functions with Jy =
[N'/31.5]. The estimation results can be found in Table 5. We report the estimated coefficients and
the 95% confidence interval based on the cross-sectional bootstrap with 1000 bootstrap iterations. As

'Data obtained from developers.google.com/public-data/docs/canonical/countries_csv.
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Table 5. Estimation results for the P-IFE and the PC-IFE based on the whole sample. *,** ,*** indicate the significance at 5%, 1% and
0.1% level.

P-IFE PC-IFE
Estimate 95%-Cl Estimate 95%-Cl
Con -0.0508** [-0.0841,-0.0188] -0.0518*** [-0.0757,-0.0279]
Gov -0.0697* [-0.1374,-0.0125] —0.1389*** [-0.1830, -0.0948]
Inv 0.0129 [-0.0420, 0.0592] 0.0503** [0.0178, 0.0828]
Invpri 0.0076 [-0.0101,0.0240] 0.0067 [-0.0042, 0.0176]
Young 0.0007* [0.0001, 0.0014] 0.0009*** [0.0005, 0.0013]
Fert -0.0080 [-0.0182,0.0025] -0.0158*** [-0.0223,-0.0093]
Life 0.0001 [-0.0008, 0.0010] 0.0000 [-0.0006, 0.0006]
Pop -0.0046 [-0.6075, 0.7627] -0.2226 [-0.4696, 0.0244]

Table 6. Estimation results for the P-IFE and the PC-IFE based on OECD sample. *,** *** indicate the significance at 5%, 1% and 0.1%
level.

P-IFE PC-IFE
Estimate 95%-Cl Estimate 95%-Cl

Con -0.1078*** [-0.1685, —0.0447] -0.0725%** [-0.1048, -0.0402]
Gov -0.0343 [-0.1859, 0.0713] 0.0110 [-0.0413, 0.0633]
Inv 0.1142% [0.0117,0.2226] 0.0405 [-0.0105, 0.0915]
Invpri -0.0550%* [-0.0939, —0.0097] -0.0082 [-0.0242, 0.0078]
Young 0.0011 [-0.0001, 0.0021] 0.0008 [-0.0001,0.0017]
Fert -0.0086 [-0.0289, 0.0081] -0.0206* [-0.0369, —-0.0043]
Life -0.0004 [-0.0031, 0.0012] -0.0025%** [-0.0038, -0.0012]
Pop -0.8195 [-1.6591,0.2194] 0.3263 [-0.1794, 0.8320]

a comparison, we also report the estimated coefficients and confidence intervals following the PC-
IFE approach of Bai (2009). We obtain negative significant coefficients for consumption share and
government consumption share and a positive significant coeflicient for the age dependency ratio at
the 5% confidence level. These results are similar to the estimation based on the PC-IFE. However,
investment share and fertility rate also become significant for the PC-IFE. The remaining variables are
insignificant for both estimation procedures.

We now restrict our analysis to the subset of countries that are members of the OECD (Organisation
for Economic Cooperation and Development). See Table 6 for the estimation results. Similar to the
previous results, both approaches find a negative significant effect on the consumption share. However,
our P-IFE identifies a positive effect on investment share and a negative effect on the investment price
level. Both variables are insignificant for the PC-IFE approach. Moreover, PC-IFE additionally finds
significant effects on the fertility rate and life expectancy.

6. Conclusions

In this article, a new estimator for the regression parameters in a panel data model with interactive fixed
effects has been proposed. The main novelty of this approach is that factor loadings are approximated
through nonparametric additive functions, and it is then possible to partial out the interactive effects.
Therefore, the new estimator adopts the well-known partial least squares form, and there is no need
to use iterative estimation techniques to compute it. It turns out that the limiting distribution of the
estimator has a discontinuity when the variance of the idiosyncratic parameter of the factor loading
approximation is near the boundaries. The discontinuity makes the usual “plug-in” inference based
on the estimated asymptotic covariance matrix problematic since it can lead to either over- or under-
coveraging probabilities. We show that non conservative uniformly valid inference can be achieved by
cross-sectional bootstrap. A Monte Carlo study indicates good performance in terms of mean squared
error and bootstrap coverage. We apply our methodology to analyze the determinants of growth rates
in OECD countries.
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