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We have performed Monte Carlo simulations to obtain the thermodynamic properties of fluids with two
kinds of hard-core plus attractive-tail or oscillatory potentials. One of them is the square-well potential with
small well width. The other is a model potential with oscillatory and decaying tail. Both model potentials are
suitable for modeling the effective potential arising in complex fluids and fluid mixtures with extremely-large-
size asymmetry, as is the case of the solvent-induced depletion interactions in colloidal dispersions. For the
former potential, the compressibility factor, the excess energy, the constant-volume excess heat capacity, and
the chemical potential have been obtained. For the second model potential only the first two of these quantities
have been obtained. The simulations cover the whole density range for the fluid phase and several tempera-
tures. These simulation data have been used to test the performance of a third-order thermodynamic perturba-
tion theory �TPT� recently developed by one of us �S. Zhou, Phys. Rev. E 74, 031119 �2006�� as compared
with the well-known second-order TPT based on the macroscopic compressibility approximation due to Barker
and Henderson. It is found that the first of these theories provides much better accuracy than the second one for
all thermodynamic properties analyzed for the two effective potential models.
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I. INTRODUCTION

Complex fluids, which are present in a variety of fields
such as soft-matter physics, biophysics, and colloid science,
have received much attention in past decades. The basic fea-
ture �1� of the complex fluids is the extremely large asym-
metry in size, charge, number of degrees of freedom, and
shape between the constituent particles. The multicomponent
character and the large asymmetry between the particles of
the different species in these mixtures make it cumbersome
to carry out the statistical thermodynamic treatment consid-
ering explicitly each species in the mixture. Instead, theoret-
ical investigation about the phase behavior of the complex
fluids often has to resort to a so-called effective single-
component macrofluid approximation. In the single-
component approximation, the large colloidal particles inter-
act with each other through an effective potential consisting
of a direct colloid-colloid interaction and a solvent-induced
potential. After obtaining the effective potential between col-
loidal particles in one way or another, the complex fluids can
be handled by means of statistical mechanics theory for a
single-component “atomic fluid.”

One of the subjects of more remarkable interest at present,
in the field of complex fluids, is the study of their phase
diagram �2–9�. To theoretically tackle this problem with suc-
cess, one needs a theory capable of providing reliable results
for the pressure and the chemical potential.

Two main features of the effective potential make it nec-
essary to revise the traditional liquid-state theory to adapt it

to deal with these effective potentials. One is that the effec-
tive potential is very short ranged, to an extent that depends
on the size asymmetry �10� of the particles in the original
complex fluid. The other is an oscillatory behavior arising
from the packing effect �11� of the solvent particles. For
long-ranged and monotonically decaying potential functions,
the traditional thermodynamic perturbation theories �TPTs�
are in general whole satisfactory. Among them, one of the
most outstanding is the well-known second-order TPT based
on the macroscopic compressibility approximation �MCA�
due to Barker and Henderson �12�. However, truncating the
perturbative expansion at second order may not provide
enough accuracy for near critical densities and/or low tem-
peratures, especially for short-ranged and/or discontinuous
tail potentials. Therefore, for the short-ranged square-well
�SW� potentials considered here, as well as for the potentials
with oscillatory tail in which we are also interested here, it is
worth analyzing to what extent the traditional second-order
MCA TPT is enough accurate. Recently, one of us �13� has
developed a third-order version of the TPT that, even at sec-
ond order, seems to provide better accuracy than the MCA
does. It has been also shown �14� that for conventional
atomic fluid potential the third-order TPT is more accurate
than the second-order MCA TPT �12�.

The aim of this paper is to analyze the relative perfor-
mance of these two theories for predicting the thermody-
namic properties of models of colloidal dispersions. To this
end, first we compare both theories with simulation data for
a number of thermodynamic properties of short-ranged
square-well fluids. Many authors have reported simulation
data for the equation of state and the excess energy of SW
fluids for different values of the reduced well width �, but
those including data for short ranges—say, ��1.2—are
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quite scarce �15–18�. Still more scarce are the simulation
data for the constant-volume excess heat capacity �19�, and
there seems to be an absolute lack of simulation data for
other thermodynamic properties such as the excess chemical
potential for these ranges. Therefore, we have performed
Monte Carlo simulations for short-ranged SW fluids with
two different values of � to determine the above-mentioned
and other derived thermodynamic properties. They are pre-
sented in the next section and further on used to test the
relative accuracies of the two perturbation theories we men-
tioned previously. We also have performed Monte Carlo
simulations for the presently proposed model potential with
oscillatory tail with three different sets of parameters which
are also presented in the next section and used in this paper
to test the reliability of the third-order TPT for obtaining the
thermodynamic properties of models of colloidal dispersions.

The organization of the present paper is as follows. In
Sec. II the short-ranged model potential and the oscillatory
tail model potential are presented. The description of the
Monte Carlo simulations is presented in the Sec. III in which
we also summarize the third-order TPT and the traditional
second-order MCA TPT. The simulation and theoretical re-
sults are presented in Sec. IV for the SW potential and in
Sec. V for the proposed model potential. A detailed compari-
son between simulation data and theoretical predictions is
also performed in these sections. Finally, we end the paper
summarizing the main conclusions arising from this work in
Sec. VI.

II. MODEL POTENTIALS

The SW potential model

u�r� = �� , r � � ,

− � , � � r � �� ,

0, r � �� ,
� �1�

where � is the diameter of the particles, −� the potential
depth, and � the range or potential width in units of the
diameter �, is one of the most widely used in fluid theory.
This is because of its ability to describe, at least in a quali-
tative way, molecular interactions in a wide variety of fluids,
together with its great simplicity, which makes easier a the-
oretical treatment. Therefore, this model potential is often
used as a testbed to assess the performance of new theories.
On the other hand, among the systems most widely studied

in the last decade in the field of soft-matter physics are col-
loidal dispersions. These systems are characterized by short-
range interparticle interactions which are often modeled by
the square-well potential �20–27�. Another potential model
widely used is the hard-core Yukawa potential �28–32�.
However, a more detailed analysis of the behavior of the
colloidal suspensions requires more sophisticated potential
models.

In a colloidal dispersion, due to excluded volume effects,
depletion forces arise between the larger particles due to the
presence of the smaller ones. In the effective single-
component macrofluid approximation, the effect of the sol-
vent particles on the solute particles can be treated as an
excess potential of mean force acting on the latter kind of
particles �33�. The depletion potential can be obtained from
theory, from computer simulation, or from experiment. For a
real colloidal dispersion in the same situation, in addition to
a depletion potential, another potential due to the direct in-
teraction between the colloidal particles would be present.
For a simple model of colloidal dispersions consisting in a
binary mixture of hard spheres with diameters �1 �the solute�
and �2 �the solvent�, respectively, with �1	�2, in the low-
density limit of the smaller particles the depletion potential is
well described �34� by the Asakura-Oosawa �AO� potential
model �35�. This is a monotonically decreasing function for
separation distances 
 between the larger spheres in the
range 0�
��2 and zero for 
��2. This is confirmed by
experiment. At higher densities of the smaller particles, the
depletion potential departs from the AO model and is not
longer zero for 
��2, but exhibits a damped oscillatory
behavior. The asymptotic form of the depletion potential is
then �34�

�u�r� � −
A

r
exp�− a0r�cos�a1r − ��/1, r → � . �2�

Again, this behavior is confirmed by experiment �36�.
In the present paper, we propose a model potential retain-

ing the main features of these interactions—namely, hard-
core plus short-ranged decaying attraction plus long-range
damped oscillation—and is given by

uts�r� = �� , r/� � 1,

u�r� − u�rc�� , 1 � r/� � rc,

0, rc � r/� ,
� �3�

where

u�r�/� = �
� , r/� � 1,

��b + 1��r/� − 1�/�b − 1� − 1, b � r/� � 1,

�b exp�− �	 r

�
− b
�cos�ks	 r

�
− b
��	 r

b�

n

, b � r/� , � �4�
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where rc is the distance at which the potential is cut and
shifted and b, �, ks, n, and �b are parameters defining the
precise form of the potential and are connected with the sol-
vent bath properties by means of very complicated relation-
ships whose explicit mathematical form is beyond the scope
of the present paper. The part for b�r /��1 reflects the
depletion attraction �35� induced by the finite size of the
solvent particles, and the part for b�r /� reflects the packing
effect of the solvent particles. By properly choosing the pa-
rameters, the potential �3� and �4� not only mimics the shape
of the potential arising in depletion interactions, but also
other kinds of interactions, such as the effective interionic
pair potentials in some alkali metals �37� and alloys �38�.
The shape of the potential �3� and �4� is shown in Fig. 1 for
three combinations of the potential parameters.

III. MONTE CARLO SIMULATIONS AND
THERMODYNAMIC PERTURBATION THEORY

A. Monte Carlo simulations

We have performed Monte Carlo simulations in the ca-
nonical �NVT� ensemble for SW fluids with �=1.05 and re-
duced temperatures T*kT /�=0.50 and 0.80 and for �
=1.15 and reduced temperatures T*=0.68 and 0.90 The
range of reduced densities considered was *=0.1–1.0, with
step 0.1, where *=�3 and =N /V is the number density.

To obtain the compressibility factor Z= pV /NkT, the ex-
cess energy Uex /N�, and the constant-volume excess heat
capacity CV

ex /Nk, the system considered consisted of N
=500 particles, initially placed in a low-density fcc configu-
ration. Next, the particles were allowed to move while in-
creasing their diameters until the desired reduced density *

was achieved. Then the system was equilibrated at the de-
sired reduced temperature T* for Ne=2�104 cycles, each
cycle consisting in an attempted move per particle. The ac-
ceptance ratio was fixed at around 50%. The thermodynamic
properties were determined from averages performed over
the next Nc=106 cycles, with 100 partial averages from
which the statistical uncertainty was estimated as the stan-
dard deviation. Such a considerable number of cycles were

needed in order to obtain satisfactory accuracy for the
constant-volume excess heat capacity, which was determined
from the fluctuations of the energy in the canonical en-
semble, through the exact relationship CV= ��U2�
− �U�2� /kT2. If only the excess energy and the equation of
state were needed, a much lower number of cycles would
have been sufficient. Using the simulation data for g�r�, the
compressibility factor Z was obtained from the virial equa-
tion and the excess energy Uex /N� was determined from the
energy equation. The reduced pressure was obtained as p*

 p�3 /�=*T*Z. These quantities are listed in Tables I and
II.

To determine the excess Helmholtz free energy Fex /NkT,
we have used two procedures. The first of them, labeled �1�
in Tables I and II, is thermodynamic integration along iso-
therms, according to the expression

Fex

NkT
= �

0



�Z − 1�
d�

�
. �5�

To this end, the simulation data for the compressibility factor
Z were fitted to a suitable polynomial in terms of *. The
second procedure, labeled �2� in the same tables, uses the
exact thermodynamic relationship

��ex =
Fex

NkT
+ Z − 1. �6�

For the excess chemical potential �ex we used the simulation
data obtained in the form described below.

Two different procedures were used to determine the ex-
cess chemical potential. The first of them, labeled �W� in
Tables I and II, was the Widom test particle insertion method
�39�. We took N=1372, Ne=2�104, and Nc=5�104. Statis-
tical uncertainty was determined as the standard deviation
from 100 partial calculations performed every 500 cycles,
each with Nt=107 trial insertions.

The second procedure, labeled �TI� in the tables, used the
exact thermodynamic relationship �40�

�� = ��0 + �
0

�

uexd�� + Z − Z0, �7�

where �=1 /kT, the subscript 0 refers to the hard-sphere fluid
with the same reduced density, and uex=Uex /N. In order to
apply the preceding equation, we performed MC NVT simu-
lations to obtain the excess energy Uex /N� for different val-
ues of �, from 0 to 1.6 for �=1.15 and from 0 to 2.0 for �
=1.05, along each of the isochors considered. The simula-
tions were carried out with N=500, Ne=2�104, and Nc=5
�104. The simulation data for �Uex /N� were fitted to a suit-
able polynomial in � for each of the densities considered,
from which the integration involved in Eq. �7� was carried
out. For Z0 we used the equation of state derived by Kolafa
et al. �41� by fitting their simulation data. This equation and
the simulation data in which it is based are considered the
most accurate available at present. The use of the Kolafa
equation for performing the thermodynamic integration of
the simulation data is justified to avoid any additional source
of error �although very small� in the “exact” data. However,
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FIG. 1. Shape of the potential model defined by Eqs. �3� and
�4�.
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the most simple, but still very accurate, Carnahan-Starling
�CS� equation �42� is completely satisfactory for theoretical
calculations. The chemical potential �0

ex for the hard-sphere
fluid was determined from thermodynamic integration of its
equation of state, Z0, using Eqs. �5� and �6�.

For fluids with the potential form �3� and �4�, we have
performed MC NVT simulations for three parameter sets: �a�
b=1.15, a=1.0, ks=12, n=3, and �b=0.5; �b� b=1.1, a
=0.55, ks=12, n=3, and �b=1.0; and �c� b=1.1, a=0.8, ks
=16, n=4, and �b=0.4. The shape of the potential for these
three sets of parameters is shown in Fig. 1. In all simulations
the cutoff distance was fixed at rc=4. The temperatures con-
sidered were T*=0.5, 0.8, and 1.1 for the first two sets and
T*=0.4, 0.7, and 1.0 for the third set. In all cases the density
range covered was *=0.1–0.9 with step 0.1. To obtain the
compressibility factor Z and the excess energy Uex /N�, from
the virial and the energy equations, respectively, we took N
=500, Ne=2�104, and Nc=5�104. Statistical uncertainty
was determined as the standard deviation from 100 partial
calculations. The reduced pressure p* was calculated from
the simulation data for Z in the form indicated before. The
excess Helmholtz free energy Fex /NkT was determined by
means of thermodynamic integration �TI� from Eq. �5�. The
results are shown in Tables III–V.

B. Thermodynamic perturbation theory

In the three-order TPT �13�, the excess Helmholtz free
energy Fex of the system is given by

Fex = Fex-ref + Fex-tail, Fex-tail = �
n=1

3

Fex-n, �8�

Fex-n =
1

n!
N2�� dr r2uper�r�� ��n−1�g�r,�,�

���n−1� �
�=0

, �9�

where N is the particle number, =N /V is the number den-
sity, and V is the volume occupied by the system. Fex-ref is an
excess Helmholtz free energy of a reference hard-sphere
fluid with a potential uref, and uper�r� is the perturbation part
of the whole potential u�r� given by

u�r� = uref�r� + uper�r� . �10�

In the present form of the third-order TPT �13�, uref�r� is
the hard-sphere potential given by

uref�r� = � , r � � ,

0, r � � . �11�

g�r ,� ,� is the radial distribution function �RDF� of the bulk
fluid with pair potential u�r ;�� given by

u�r;�� = uref�r� + �uper�r� . �12�

� ��n−1�g�r,�,�
���n−1� ��=0 is the �n−1�th derivative evaluated at �=0 of

g�r ,� ,� with respect to �, and � �0g�r,�,�
��0 ��=0=g�r ,0 ,� is

TABLE I. Simulation results for the SW fluid with �=1.05 �see explanations in the text�. The numbers
between parentheses are the statistical uncertainties in the last decimal place.

* Z Uex /N� CV
ex /Nk p*

Fex /NkT
�1�

Fex /NkT
�2�

��ex

�TI�
��ex

�W�

T*=0.50

0.10 1.009�6� −0.241 0.879�5� 0.0505�2� 0.006 0.004 0.013 0.009

0.20 1.034�6� −0.481 1.57�2� 0.1034�4� 0.018 0.015 0.049 0.045

0.30 1.078�6� −0.724�1� 1.99�3� 0.1617�9� 0.040 0.036 0.114 0.112�1�
0.40 1.156�6� −0.970�1� 2.29�4� 0.231�1� 0.072 0.067 0.223 0.219�2�
0.50 1.281�7� −1.229�1� 2.54�6� 0.320�2� 0.120 0.117 0.398 0.388�3�
0.60 1.460�8� −1.510�1� 2.54�5� 0.438�2� 0.185 0.184 0.644 0.635�5�
0.70 1.71�1� −1.809�1� 2.62�7� 0.599�4� 0.27 0.27 0.98 0.98�1�
0.80 2.14�1� −2.151�1� 2.46�6� 0.856�4� 0.39 0.39 1.53 1.50�3�
0.90 2.89�1� −2.551�1� 2.33�6� 1.300�5� 0.57 0.54 2.43 2.37�5�
1.00 4.20�3� −3.021�2� 1.84�4� 2.10�2� 0.83 0.81 4.01

T*=0.80

0.10 1.146�3� −0.122 0.174 0.0917�2� 0.141 0.135 0.281 0.275

0.20 1.319�5� −0.260 0.339�1� 0.2110�8� 0.293 0.285 0.604 0.600

0.30 1.529�5� −0.415 0.488�2� 0.367�1� 0.461 0.453 0.982 0.988�1�
0.40 1.823�5� −0.593 0.629�4� 0.583�2� 0.651 0.644 1.467 1.464�1�
0.50 2.200�6� −0.799 0.742�6� 0.880�2� 0.872 0.868 2.068 2.055�2�
0.60 2.675�6� −1.038 0.833�9� 1.284�3� 1.131 1.128 2.803 2.811�4�
0.70 3.382�7� −1.319 0.94�1� 1.894�4� 1.441 1.441 3.823 3.811�7�
0.80 4.394�9� −1.656 0.95�1� 2.812�6� 1.819 1.813 5.207 5.20�2�
0.90 5.87�1� −2.062�1� 0.96�2� 4.223�7� 2.30 2.29 7.16 7.12�8�
1.00 8.28�2� −2.567�1� 0.89�2� 6.62�2� 2.93 2.91 10.19
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the RDF of the hard-sphere fluid with density  and diameter
�.

On the other hand, the excess Helmholtz free energy in
second-order MCA TPT �12� is given by

Fex = Fex-ref + Fex-tail = Fex-ref + N2�� dr r2uper�r�g�r,0,�

− N�2�� dr r2uper
2�r�g�r,0,�

1

�
	 �

�P



ref
. �13�

The RDF g�r ,� ,� was obtained by solving the Ornstein-
Zernike �OZ� integral equation theory �IET� approximating
the bridge function by an accurate expression for the hard-
sphere fluid developed by Malijevský and Labík �43�. This
approximation is based on the fact that we are interested in
the region � close to 0, where it is expected that the bridge
function will not be very different from that corresponding to
the reference hard-sphere fluid. The derivatives
� ��n−1�g�r,�,�

���n−1� ��=0 for n=1,2 ,3 were calculated numerically by
finite differences. Fex-ref and the compressibility 1

� � �
�P �ref of

the reference hard-sphere fluid are calculated by means of
the CS equation of state �42�. The Verlet-Weis expression for
g�r ,0 ,� �44� was used in Eq. �13�. The reader can consult
Ref. �13� for further details.

After determining Fex /NkT, the other thermodynamic
quantities are obtained by simple differentiation manipula-

tion. Thus, the reduced excess chemical potential ��ex is
given by

��ex = 	 ��*�Fex/NkT�
�*



T*

, �14�

from which the reduced pressure P*= P�3 /� immediately
follows:

P* = P�3/� = ��*T* − �f*T*, �15�

where ��=��ex+ln * and �f =Fex /NkT+ln *−1.
The reduced excess energy Uex /N� is obtained in the form

Uex/N� = − T*2� ��Fex/NkT�
T* �

*
, �16�

which in turn allows us to obtain the reduced constant-
volume excess heat capacity CV

ex /Nk:

CV
ex/Nk = � ��Uex/N��

�T* �
*

. �17�

IV. RESULTS FOR SHORT-RANGED SQUARE-WELL
FLUIDS

The results from the second-order MCA TPT and the
third-order TPT for the thermodynamic properties of short-

TABLE II. Simulation results for the SW fluid with �=1.15 �see explanations in the text�. The numbers
between parentheses are the statistical uncertainties in the last decimal place.

* Z Uex /N� CV
ex /Nk p*

Fex /NkT
�1�

Fex /NkT
�2�

��ex

�TI�
��ex

�W�

T*=0.68

0.10 0.863�3� −0.457 0.994�7� 0.0587�2� −0.140 −0.143 −0.280 −0.285

0.20 0.761�3� −0.880 1.69�3� 0.1035�4� −0.269 −0.268 −0.507 −0.514�1�
0.30 0.695�3� −1.264�1� 2.08�3� 0.1418�6� −0.381 −0.378 −0.683 −0.692�2�
0.40 0.657�3� −1.629�2� 2.24�5� 0.1787�8� −0.473 −0.462 −0.805 −0.816�2�
0.50 0.662�4� −1.980�2� 2.10�5� 0.225�1� −0.549 −0.542 −0.880 −0.889�4�
0.60 0.725�5� −2.339�1� 2.01�4� 0.296�2� −0.607 −0.607 −0.882 −0.871�7�
0.70 0.895�6� −2.729�1� 1.68�4� 0.426�3� −0.640 −0.634 −0.739 −0.75�1�
0.80 1.285�8� −3.176�1� 1.38�3� 0.699�4� −0.632 −0.628 −0.343 −0.29�2�
0.90 2.19�1� −3.703�1� 0.97�1� 1.339�6� −0.55 −0.55 0.637 0.63�5�

T*=0.90

0.10 0.998�1� −0.327 0.360�1� 0.0898�1� −0.0188 −0.004 −0.006 −0.010

0.20 1.020�2� −0.648 0.620�4� 0.1836�4� −0.0133 0.003 0.023 0.016

0.30 1.072�2� −0.970 0.792�7� 0.2894�5� 0.00354 0.020 0.092 0.085�1�
0.40 1.161�3� −1.303 0.896�9� 0.418�1� 0.0339 0.060 0.221 0.208�1�
0.50 1.316�3� −1.654 0.895�9� 0.592�1� 0.0850 0.107 0.423 0.415�2�
0.60 1.572�4� −2.035 0.87�1� 0.849�2� 0.165 0.177 0.749 0.737�4�
0.70 1.995�4� −2.461 0.808�8� 1.257�3� 0.282 0.296 1.291 1.274�7�
0.80 2.746�5� −2.950 0.692�7� 1.977�4� 0.458 0.472 2.218 2.21�2�
0.90 4.133�9� −3.524 0.580�7� 3.348�7� 0.734 0.748 3.881 3.81�6�
1.00 7.01�3� −4.197 0.455�5� 6.31�3� 1.20 1.20 7.21
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ranged square well fluids are compared in Figs. 2–6 with the
simulation data of Tables I and II. Two facts emerge clearly
from these figures: �a� the third-order TPT provides excellent
agreement with simulation data, even at low temperatures,
for all the thermodynamic properties considered, but in some
cases for the constant volume excess heat capacity CV

ex /Nk,
and �b� the third-order TPT constitutes a strong improvement
over the second-order TPT-MCA

The fact that the second-order MCA TPT provides poorer
agreement with the simulation data for the excess energy as
the potential width � becomes shorter, as seen in Fig. 6, is
due to the fact that the relative importance of the higher-
order perturbative terms increases as the potential width is
reduced. Moreover, the MCA strongly underestimates the
magnitude of the second-order perturbative term of the
Helmholtz free energy, which is directly related to the corre-
sponding term of the excess energy, for short-ranged SW
potentials �45�.

Another drawback of the second-order MCA TPT, also
seen in Fig. 6, is that the predicted temperature dependence
of the excess energy is too small. This is reflected in the poor
prediction of the constant-volume excess heat capacity
shown in Fig. 3.

In contrast, the fact that the third-order TPT provides very
good agreement with the simulation data for the excess en-
ergy, even for short-ranged SW potentials, not only is due to
include the third-order perturbative term, but also implies
that the prediction of the second-order term by this theory is
good. Now, the temperature dependence of Uex /N� is more
accurately reproduced. As a consequence, this theory pre-
dicts values of CV

ex /Nk in much closer agreement with simu-
lation data than those from the second-order MCA TPT, as
seen in Fig. 3. However, to achieve complete accuracy with
simulation data for CV

ex /Nk, it would be necessary the incor-
poration of higher-order perturbative terms.

One might argue that we are comparing a second-order
TPT with a third-order one and that, if the Barker-Henderson

TABLE III. Simulation results for a fluid with the model poten-
tial �3� and �4� with the first parameter set.

* Z Uex /N� p* Fex /NkT

T*=0.5

0.10 1.08�2� −0.161 0.0539�8� 0.09

0.20 1.19�2� −0.329�1� 0.119�2� 0.17

0.30 1.31�2� −0.511�1� 0.196�3� 0.27

0.40 1.50�2� −0.708�1� 0.300�4� 0.38

0.50 1.78�3� −0.923�2� 0.446�7� 0.53

0.60 2.12�3� −1.159�2� 0.64�1� 0.70

0.70 2.61�4� −1.433�2� 0.91�1� 0.90

0.80 3.33�5� −1.732�2� 1.33�2� 1.16

0.90 4.68�7� −2.093�2� 2.11�3� 1.51

T*=0.8

0.10 1.171�8� −0.090 0.0937�6� 0.162

0.20 1.40�1� −0.194 0.223�2� 0.34

0.30 1.65�2� −0.314 0.395�4� 0.55

0.40 2.03�1� −0.454 0.649�5� 0.79

0.50 2.49�2� −0.620 0.996�7� 1.06

0.60 3.12�2� −0.815�1� 1.499�9� 1.39

0.70 4.04�3� −1.044�1� 2.26�2� 1.78

0.80 5.18�3� −1.313�2� 3.313�2� 2.26

0.90 6.80�5� −1.645�2� 4.893�3� 2.84

T*=1.1

0.10 1.207�5� −0.0651 0.1328�6� 0.204

0.20 1.44�1� −0.143 0.318�2� 0.42

0.30 1.79�1� −0.237 0.591�4� 0.66

0.40 2.25�1� −0.350 0.992�6� 0.95

0.50 2.81�2� −0.485 1.545�9� 1.28

0.60 3.53�2� −0.652 2.33�1� 1.67

0.70 4.56�2� −0.854�1� 3.51�2� 2.14

0.80 6.04�3� −1.107�2� 5.31�3� 2.71

0.90 8.04�4� −1.426�2� 7.96�4� 3.41

TABLE IV. Simulation results for a fluid with the model poten-
tial �3� and �4� with the second parameter set.

* Z Uex /N� p* Fex /NkT

T*=0.5

0.10 1.12�2� −0.226 0.0558�9� 0.102

0.20 1.31�2� −0.452�1� 0.131�2� 0.235

0.30 1.53�2� −0.686�1� 0.230�3� 0.400

0.40 1.92�3� −0.932�1� 0.385�6� 0.604

0.50 2.37�3� −1.201�2� 0.593�8� 0.858

0.60 3.19�4� −1.496�2� 0.96�1� 1.18

0.70 4.25�7� −1.816�3� 1.49�2� 1.58

0.80 5.52�8� −2.145�3� 2.21�3� 2.10

0.90 7.5�1� −2.519�3� 3.39�5� 2.7

T*=0.8

0.10 1.225�8� −0.131 0.0980�6� 0.212

0.20 1.55�2� −0.271 0.248�3� 0.457

0.30 1.87�2� −0.425 0.449�3� 0.74

0.40 2.40�2� −0.591 0.768�8� 1.06

0.50 3.16�2� −0.770�1� 1.263�8� 1.45

0.60 4.03�3� −0.962�1� 1.94�1� 1.91

0.70 5.41�3� −1.178�2� 3.03�2� 2.48

0.80 7.07�5� −1.411�3� 4.52�3� 3.17

0.90 9.39�7� −1.699�4� 6.76�5� 4.02

T*=1.1

0.10 1.256�5� −0.091 0.1382�6� 0.2440

0.20 1.565�9� −0.189 0.344�2� 0.5130

0.30 2.00�1� −0.298 0.658�5� 0.817

0.40 2.57�2� −0.416 1.130�8� 1.17

0.50 3.3130 −0.541 1.82�1� 1.58

0.60 4.34�2� −0.673�1� 2.86�1� 2.06

0.70 5.76�2� −0.817�2� 4.44�2� 2.63

0.80 7.62�3� −0.989�2� 6.71�3� 3.31

0.90 10.05�5� −1.191�3� 9.95�5� 4.13
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perturbation theory were extended to third or higher order,
the differences between the two theories would be reduced.
Such an extension is possible, because the procedure devel-
oped by Barker and Henderson to obtain the second-order
perturbative contribution to the free energy in the macro-
scopic compressibility approximation was generalized
�46,47� to higher-order terms and the resulting infinite per-
turbative series was summed up to obtain a closed expression
for the excess Helmholtz free energy. However, the differ-
ence between the results obtained in this way and those re-
sulting from the perturbative series truncated at the level of
the second-order term are nearly negligible. On the other
hand, instead of the macroscopic compressibility approxima-
tion we could have used the local compressibility approxi-
mation �LCA� �12� for the second-order term in the Barker-
Henderson TPT. However, at least for SW fluids, the
difference between the two approximations is small �19,45�.

In Figs. 2–6 it seems that the relative accuracy of the
third-order TPT increases as the well width decreases, and

this becomes more apparent in Fig. 3. However, it is to be
noted that, from recent simulations �48�, the reduced critical
temperatures for �=1.05 and for �=1.15 are T

c
*=0.366 and

T
c
*�0.57, respectively. Therefore, the lowest reduced tem-

perature considered for �=1.05 is more supercritical than
that for �=1.15, and the same is true for the highest tempera-
tures considered in the two cases. This explains what at first
sight may appear quite surprising. It is worth mentioning
here that the liquid-vapor coexistence becomes mestastable
with respect to solid-gas coexistence for � of the order of
1.25 or lower �48�.

The fact that the third-order TPT accurately predicts the
pressure and the chemical potential for short-ranged SW flu-
ids suggests that it might be useful for predicting the liquid-
vapor coexistence. For the reasons just pointed out, it is dif-
ficult to obtain reliable simulation data for the coexistence
curve below �=1.25. Therefore, we have considered two in-
termediate ranges—namely, �=1.25 and �=1.375.

In the third-order TPT, the coexistence curve is obtained
by equating chemical potentials and pressures in both phases
at a given temperature. These quantities are easily deter-
mined from the total free energy. The solution of the equi-

TABLE V. Simulation results for a fluid with the model poten-
tial �3� and �4� with the third parameter set.

* Z Uex /N� p* Fex /NkT

T*=0.4

0.10 1.06�2� −0.153 0.042�1� 0.051

0.20 1.12�2� −0.311�1� 0.089�2� 0.111

0.30 1.24�3� −0.475�1� 0.149�3� 0.182

0.40 1.38�3� −0.648�2� 0.222�5� 0.265

0.50 1.55�4� −0.834�2� 0.310�7� 0.367

0.60 1.82�3� −1.039�2� 0.436�8� 0.495

0.70 2.34�4� −1.275�2� 0.66�1� 0.657

0.80 2.87�6� −1.538�2� 0.92�2� 0.866

0.90 3.72�8� −1.850�2� 1.34�3� 1.13

T*=0.7

0.10 1.157�9� −0.068 0.0810�6� 0.1145

0.20 1.42�2� −0.147 0.201�2� 0.303

0.30 1.70�2� −0.242 0.357�3� 0.527

0.40 2.02�2� −0.352 0.565�6� 0.775

0.50 2.48�2� −0.484 0.868�7� 1.05

0.60 3.13�2� −0.643�1� 1.32�1� 1.37

0.70 4.06�3� −0.835�1� 1.99�2� 1.76

0.80 5.31�4� −1.064�1� 2.97�2� 2.25

0.90 7.11�5� −1.352�2� 4.48�3� 2.86

T*=1.0

0.10 1.207�6� −0.046 0.1207�6� 0.2036

0.20 1.46�1� −0.103 0.291�2� 0.420

0.30 1.79�1� −0.173 0.538�4� 0.664

0.40 2.21�2� −0.259 0.885�6� 0.948

0.50 2.83�2� −0.365 1.415�9� 1.28

0.60 3.60�2� −0.497 2.16�1� 1.68

0.70 4.68�2� −0.664�1� 3.28�2� 2.16

0.80 6.20�3� −0.869�1� 4.96�3� 2.74

0.90 8.37�4� −1.137�2� 7.53�3� 3.47
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FIG. 2. Excess chemical potential for the square-well fluids con-
sidered. Points: simulation data from Tables I and II. Squares and
solid circles, nearly indistinguishable from each other at the scale of
the figure, correspond to TI and W procedures, respectively. Dashed
curves: Barker-Henderson second-order MCA TPT. Solid curves:
Zhou third-order TPT.
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librium conditions corresponds to a double-tangent construc-
tion on the curve of the free energy per unit volume versus
the density. To this end, the free energy curve is obtained
numerically at different temperatures. As the numerical
implementation of the third-order TPT involves the calcula-
tion of g�r ,� ,� corresponding to the pair potential u�r ;��
given by Eq. �12�, then one might think that a problem would
be the possible breakdown of the code when the considered
temperature is below the critical temperature. Such a prob-
lem actually does not arises because, to obtain numerically
the derivatives ���n−1�g�r ,� ,� /���n−1���=0 with n=1,2 ,3,
involved in Eq. �9�, one only needs to calculate the values of
g�r ,� ,� for �=0, ��� , �2��, where �� is a small
quantity—for example, 0.005. For such small values of �,
u�r ;�� is very close to the hard-sphere potential or, equiva-
lently, very close to the infinite-temperature limit. Therefore,
the calculations of the perturbative terms are performed at a
temperature that is always much higher than the critical tem-
perature of the true potential u�r�. This is exactly why we
can use the hard-sphere bridge function for the potential
u�r ;�� when � is very small, as we mentioned before. From
another viewpoint, solving the OZ integral equation for
u�r ;�� at temperature T is actually equivalent to solving the
OZ integral equation for u�r� at temperature T /�. When � is
sufficiently small, the equivalent temperature T /� for the

potential u�r� is sufficiently high and always higher than the
critical temperature of the potential u�r�.

The results for the liquid-vapor coexistence obtained from
the third-order TPT and those from the Barker-Henderson
second-order TPT in the MCA are compared in Fig. 7 with
the simulation data �49–51�. We have included for compari-
son the results from the self-consistent OZ approximation
�SCOZA�, recently extended to SW fluids �52�, although it
belongs to a different class of theories. The figure shows that
the third-order TPT compares favorably with the other two
theories.

V. RESULTS FOR THE OSCILLATORY POTENTIAL
MODEL

In Figs. 8–10, the results from the two perturbation theo-
ries for the thermodynamic properties of fluids with interpar-
ticle interactions obeying to the oscillatory potential �3� and
�4� are compared with the simulation data from Tables III–V.
The same conclusions can be drawn about the relative per-
formance of both perturbation theories. Now, the superior
quality of the third-order TPT over the second-order MCA
TPT is particularly noteworthy for the excess energy, as
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FIG. 3. Constant-volume excess heat capacity for square-well
fluids. Points: simulation data from Tables I and II. The curves have
the same meaning as in Fig. 2.
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shown in Fig. 10. In this figure stands out a quality also
present, but less clearly, in Fig. 6 for the excess energy of the
SW fluid—namely, the fact that the third-order TPT clearly
differentiates the energy of isotherms with temperatures
close to each other. In contrast, the second-order MCA TPT
does not. This is because, as pointed before, in the latter
theory the second-order term in the energy, from which de-
pends the variation with temperature of the excess energy,
Uex /N�, is usually very small.

In the previous section we have pointed out that the third-
order TPT seems accurate enough so as to provide reliable
estimates of the liquid-vapor coexistence. Thus, we have
used it to estimate the critical temperatures for the three sets
of parameters considered for the oscillatory potential �3� and
�4�. They are T

c
*=0.3365, 0.3692, and 0.2989 for sets I, II,

and III, respectively. Therefore, the lowest temperature con-
sidered in the simulations and the theoretical calculations for
each of the three sets is higher than, but close to, the critical
temperature.

However, it is to be noted that, among the three sets of
parameters considered, the third-order TPT, in combination
with a first-order TPT �53� for the solid phase, only predicts
a stable liquid phase for set II. For the two other sets of
parameters, the liquid-vapor coexistence is metastable with
respect to the solid-gas coexistence.
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It has been shown �54–56� that in models of colloidal
fluids with short-range attractive and weak long-range repul-
sive competing interactions, a microphase separation can
take place, with large stabilized clusters, at temperatures be-
low the critical temperature, preventing gas-liquid separa-
tion. This situation is not present in the states we have stud-
ied for the oscillatory potential, because all the temperatures
considered are supercritical. In any case, with the sets of

parameters considered it is not expected that a stable mi-
crophase separation will occur even at subcritical tempera-
tures, because the repulsive interactions, apart from the hard
core, are not enough weak nor long ranged. Moreover, the
long-range oscillatory tail of the potential hinders the forma-
tion of such microphases.

VI. CONCLUSIONS

In the preceding sections we have provided compelling
evidence of the great accuracy of the third-order thermody-
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namic perturbation theory �13�, summarized in Sec. III, for
most of the thermodynamic properties considered. In fact,
this theory is much more accurate than the second-order
Barker-Henderson perturbation theory in the MCA.

The reasons why the performance of the third-order TPT
is superior to that of the Barker-Henderson �BH� second-
order TPT are quite obvious: on the one hand, the BH per-
turbation theory predicts values for the second-order pertur-
bative term in the energy that are too small in magnitude,
especially for short-ranged potentials, as shown in Ref. �45�,
whereas the second-order term in the third-order TPT is
much more accurate �13�. This is due to the fact that, in the
latter, the second-order term is associated with the first-order
derivative of the radial distribution function g�r ,� ,� evalu-
ated at �=0, as required rigorously by the TPT, whereas in
the BH second-order TPT the same term is evaluated from
the RDF g�r ,0 ,� of the reference fluid, which is a more
crude approximation. On the other hand, the third-order TPT
includes an additional term, and it is known that higher-order
terms become increasingly important with decreasing poten-
tial range, temperature, and density. In contrast, adding
higher-order terms to the BH TPT in the MCA does not
result in any significant improvement, as they are nearly neg-
ligible.

From the preceding considerations, we can conclude that
the performance of the third-order perturbation theory devel-
oped by one of us �13,14� in predicting the thermodynamic
properties of fluids with short-ranged and oscillatory poten-
tials is very satisfactory. This makes it particularly suitable to
deal with complex fluids and colloidal suspensions. A re-
markable fact is that the theory is particularly accurate for
the pressure and the excess chemical potential, two quantities
that play an essential role in studying phase transitions.

For the constant-volume excess heat capacity CV
ex /Nk in-

stead, the third-order TPT is still insufficient to provide
enough accuracy at very low temperatures and higher-order
terms would be needed.
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