

Final Report
ECM3101

Title: ONLINE ENERGY MONITORING SYSTEM

Date of submission: 02/05/2013

Student Name: Pablo Trigo-López

Programme: ERASMUS

Student number: 620034340

Candidate number: 035376

Supervisor: Dr. Abel Nyamapfene

ii

List of figures

Figure.1 Low resistance current shunt [10]

Figure.2 Current Transformer [12]

Figure.3 Hall Effect principle [13]

Figure.4 Typical Transfer curve for a radiometric linear Hall Effect IC

Figure.5 Closed and Open loop Hall Effect sensors [14]

Figure.6 AC/AC adapter schematic

Figure.7 Arduino Ethernet without PoE [16]

Figure.8 Arduino IDE software

Figure.9 Cosm feed example [18]

Figure.10 Receiving and storing data diagram

Figure.11 Market Share for Top Servers Across All Domains. August 1995 – May

2012[19]

Figure.12 Apache 2.2 Installation Wizard

Figure.13 $_GET predefined variable example [22]

Figure.14 MySQL database [23]

Figure.15 PHPMyAdmin table structure example

Figure.16 Graphing data diagram

Figure.17 Highcharts example [26]

Figure.18 ACS712x05B breakout board and transfer function from the datasheet

Figure.19 ACS712x05B signal conditioning circuit

Figure.20 Current signal conditioning graphs (1A peak supposed)

Figure.21 Voltage signal conditioning

Figure.22 Voltage signal conditioning graphs

Figure.23 Power calculation subroutine flow diagram

Figure.24 Checking if the waveform is close to zero point.

Figure.25 Discrete high-pass filter design

Figure.26 Square values and summation

Figure.27 Determination of real Vrms value

Figure.28 Cosm code flow diagram

Figure.29 Receive and store real time data in database flow diagram

Figure.30 Store data from last day flow diagram

Figure.31 Fetch and display real time data flow diagram

Figure.32 Display data from last day flow diagram

Figure.33 Graph real time data flow diagram

Figure.34 Graph data from last day flow diagram

Figure.35 Main Arduino program flow diagram

Figure.36 Real Power Graph (real time)

Figure.37 Voltage graph (real time)

iii

List of tables

Table1. Hazard and risk assessment criteria

Table2. Risk Management

Table3. Strength and weakness of the main current sensing technologies

iv

Abstract

Nowadays reducing the energy consumption is fundamental either for environmental

(climate change) or economic reasons. Monitoring energy is the first step to achieve this

objective. With all the technology that we have at our reach, it is really disappointing that

there is not a product at every house to monitor the energy we use.

A fairly recent study by CenterPoint Energy Inc. and the Department of Energy

[1] found that 71% of customers reported changing their energy consumption as a result of

having access to energy data in their homes. Another energy-saving campaign [2]

conducted in Sabadell, Spain, reported savings of the 14.3% in the bill. Thus, it can be

deduced that it is something that clearly helps the user.

The main object of this project is designing a system capable of measuring the power

consumed by a device and send the data over the internet, plotting it in a friendly graph

that everyone can understand. Uploading it to the Internet is an easy way to catalogue the

energy consumption since the first moment you start measuring it. At the same time

information can be accessed from any fix or mobile browser instead of depending on a

specific one.

The main hardware used for this project was the Arduino Ethernet, responsible for

collecting the power data. As for the software, MySQL database was used for data logging

the energy consumption, PHP language was needed to send the data collected from the

Arduino board to the local web server that was implemented with Apache software and

JavaScript was used to design the friendly graphs.

The methodology followed in this project could be divided in three steps. First, design

a sensing system and program the code to capture the current and voltage with the Arduino

micro-processor. Second, implementing a method to send the data collected to an online

database. And finally and only if this was completely achieved, go further and design a

script to graph this data. Everything would be independent for third-party websites.

Managing your own website gives more freedom as the project does not depend in other

applications that may be outdated in a future.

The principal aim of the project of plotting a graph of the energy consumption over the

internet was successfully achieved. Besides, the sensing circuits for the current and the

voltage were theoretically designed and simulated.

Keywords: Energy monitoring – Arduino – Hall Effect sensor – Online Database – PHP –

JavaScript graphs

v

Table of contents

1. Introduction .. 1
2. Health and safety risk assessment .. 2
3. Background .. 3

4. Methodology .. 4
4.1 Measuring Power ... 4

4.1.1 Current sensing. Hall Effect sensor .. 5
4.1.2 Voltage sensing ... 9
4.1.3 Sampling current and voltage: Arduino Ethernet board without PoE 9

4.1.4 Power calculations .. 11
4.3 Receiving and storing the data ... 13

4.3.1 Apache local web-server ... 14
4.3.2 PHP: Hypertext Preprocessor ... 16

4.3.3 MySQL database PHPMyAdmin ... 17
4.4 Graphing the data ... 18

4.4.1 JavaScript ... 18

4.4.4 jQuery and Highcharts .. 19
5. Design .. 21

5.1 Measuring Power design .. 21
5.1.1 Current measurement design ... 21

5.1.2 Voltage measurement design .. 25
5.1.3 Power consumed. Software design ... 28

5.2 Receiving and storing data design ... 31
5.2.1 First attempt: Cosm website .. 31
5.2.2 Final decision: Storing data with PHP script .. 32

5.3 Graphing the data design ... 34
5.3.1 Data collecting and formatting .. 34

5.3.2 Graphing the data .. 36
5.4 Unifying all. The main program of the Arduino microcontroller 38

6. Results and discussion ... 38
6.1 Interface ... 39

7. Conclusions .. 40
7.1 Further work ... 40

References .. 41
Appendix A – Arduino code .. 43
Appendix B – PHP and JavaScript code ... 55

1

1. Introduction

With the recent tendency for green energy, more and more people are concerned about

how much energy they consume at their homes. To reduce your consume you have to be able

to monitor your energy consumption.

In this project a system capable of measuring the power consumed by a device was

designed. This system sends the data over the internet, plotting it in a friendly graph that

everyone can understand.

It is specially focused on the online feature implemented with a non-third-party

application what makes the system completely independent. The main aim is displaying useful

information about the energy consumed to the home-user.

The project consists of a micro-controller device (Arduino) connected to the local area

network (LAN) that is able to measure the amount of power being used and graph the data in

real-time in a personal website using a script developed with JavaScript. For the full

development of this system it knowledge of PHP as well as JavaScript were required.

The system for measuring the current and voltage was designed theoretically and

simulated, but for the experimental demonstration of this project a signal-generator simulating

current and voltage waveforms were used.

In the development of this project, instead of using an external web server a local web

server was used. Therefore, the website with the graphs could only be accessed by the devices

connected to the LAN.

This document will clarify how this system was implemented. First, a brief background on

the subject will be provided, followed by the methodology used in the project and the main

design of the system. Finally, in the last chapters, the main results and a brief conclusion will

be available to summarise the project.

2

2. Health and safety risk assessment

This project is related with the energy. Measuring the energy consumption requires direct

contact with the mains. Although they are other risks, they are less dangerous or its likelihood

is lower. Other risks could be producing a short circuit, a leakage current or inhaling gases

during possible soldering.

A risk assessment table was elaborated to take into account all the possible risks present in

the elaboration of this project. The following table 1 would be considered to evaluate each of

the actual risks, and table 2 shows the risk management.

Table1. Hazard and risk assessment criteria

 Risk Rating (RR)

 S
ev

er
it

y
 (

S
) 3 3 6 9

2 2 4 6

1 1 2 3

 1 2 3

 Likelihood (L)

Table2. Risk Management

Activity Hazards/Risks

Pre-control risk

rating
Control measures

Residual risk

rating

S L RR S L RR

Measuring power
Electric

shock
3 2 6

Use a low powered circuit that

simulates the main lines
1 1 1

Signal conditioning

for the micro-

controller

Short circuit.

Component

damage

2 2 4
Draw schematic circuit before

assembling the circuit.
2 1 2

Welding

Inhaling

noxious

gases

1 2 2
Avoid bringing your face close

to the welding
1 1 1

9 Unacceptable risk

4-6 Only if no other method viable and with high level controls

2-3 Acceptable if suitable controls

1 Acceptable, no further action required

Key: S = Severity rating

L= Likelihood of occurrence

RR = Risk Rating

3

3. Background

The idea of this project was inspired by several previous projects whose main aims were

to monitor the energy consumption within specified premises.

Cliff Jao and Xi Guo from Cornell University have already managed to monitor the

energy consumed by a specific device with their project “PowerBox” [3]. This “box” allows

the user to measure the amount of AC power being used by a device connected to the wall

socket. Data is graphed by a C# application. The math used by these students was taken into

account to develop this project.

In addition, another two students from Cornell University, Ken Bongort and Adam

McCann developed and interesting project called “XBee RF Smart Energy Compliant Power

Meter” [4]. This project completed Cliff Jao and Xi Guo work by adding RF communication

to the system, endowing the project with flexibility. This idea was initially taken into account

for this project, but due to lack of time it was not implemented in this project.

“PowerGoogle meter” [5] was also a source of inspiration. Regrettably this project was

retired on 2011. As they asserted in their website, “PowerMeter included key features like

visualizations of your energy usage, the ability share information with others, and

personalized recommendations to save energy”. The feature of sharing information with

others was considered for this project prompting into the online feature of this project.

And finally “openenergymonitor project” [6] was the main source of background

information. It is a project to develop open-source energy monitoring tools to help the user

relate to his use of energy. It uses the Arduino platform [7] that will be later explained. The

final data is uploaded into a third-party websited named as Cosm [8]. This project served as a

source of information about sensors and tips about programming code for the Arduino board.

Besides, Cosm website served as an intermediate step for the developing of this project:

before designing a personal website, data was uploaded to this site using specific libraries

provided by this website.

There are also available in the market products like “Kill A Watt” [9] whose main

function is displaying the power consumed in a LCD screen.

Considering all these previous works, this project tries to unite all of them, specially

focusing on the online feature but with a non third-party website that makes you completely

independent. Projects like [4-6] are extremely dependent on third-party applications. They

have a due date. If these third-party applications expire (like happened with [5] and therefore

with [4]) then the project becomes obsolete. Using your own server and developing your own

script to graph the data solves this problem.

4

4. Methodology

To achieve the main objectives of this project an elaborated methodology had to be

followed. A largely used methodology used in engineering consists in dividing a problem into

sub-problems. This methodology has great advantages:

 Solving little problems is easier than solving large ones.

 Each problem can constitute a specific task of the whole problem. This is an

effective way of organizing the work.

 Independent modules can be faced in different times or by parallelism.

Taking into account this methodology a modular design approach is to be adopted for this

project. It could be divided in three main modules or tasks:

 Measuring Power: Designing and programming a system to capture the current

and voltage level of a device or net. This implies researching for the best methods

to sense these electric magnitudes as well as investigating how to program an

effective, modular and reusable code to calculate the real power consumed with

the previously captured data.

 Receiving and storing data: Investigating and elaborating an accurate procedure

to send this data over the internet to be stored in a database.

 Graphing data: Developing successful scripts to graph the data stored in the

earlier mentioned database.

Each of these three major steps required a deep investigation that would be meticulously

explained in the following pages. The steps followed to reach the final result in each of the

tasks mentioned above would be clearly explained. As in any project, during its elaboration

some difficulties may have appeared. If that is the case, these problems will be cited and it

will be described how they were fruitfully solved.

This chapter is an outline of the design process, which led to the development of the final

system. However, specific details of the design will be further discussed in the Design chapter

(chapter 5).

4.1 Measuring Power

There are plenty of techniques to measure the power of a system. As it is known, in

general terms the power consumed by a system could be expressed like the product of the

voltage and the current flowing in a circuit in a specific lapse of time.

𝑃 𝑡 = 𝑣 𝑡 ∙ 𝑖(𝑡)
 (1)

5

In the case of an AC circuit, the magnitudes of this product are sinusoidal waves.

𝑣 𝑡 = 𝑉 ∙ cos(𝜔 ∙ 𝑡)
 (2)

𝑖 𝑡 = 𝐼 ∙ cos(𝜔 ∙ 𝑡 − 𝜃)
 (3)

Where ′ 𝑉 ′ and ′ 𝐼 ′ represent the module of the voltage and current respectively, ′𝜔′
represents the frequency, ′𝜃′ indicates a time delay between the two waves or a phase gap

and ‘t’ is the time.

Therefore, to measure the power of a system the voltage and the current must be

sensed. The following sections would explain the methods for doing it.

4.1.1 Current sensing. Hall Effect sensor

The three most common techniques to measure current are [10]:

 Low resistance current shunt

 The current transformer (CT)

 The Hall effect sensor

There is also a method used in industrial applications: The Rogowski coil method.

The basic operating principle of a Rogowski coil is to measure the primary current

through mutual inductance. Because Rogowski coil relies on measuring magnetic field, it

makes this type of current sensor susceptible to external magnetic field interference

comparing with the CT. Due to the conditions of the laboratory, where a breadboard will

be used; there would be a lot of interference that would make the Rogowski coil less

effective.

The low resistance current shunt requires inserting a small resistor through the main

power line, as figure 1 shows:

Fig.1 Low resistance current shunt [10]

Resistive sensing is very widely used, low-cost, and easily understood. It offers a

good accuracy and it is really simple and economic (the parasitic inductance is only

6

considered for high precision current measurement, not in this case). However, the

shortcomings are its insertion loss (heating and wasted power) and lack of isolation [11].

It is an “intrusive” technique since you have to manipulate the main power wire. Due to

its high risk (direct contact with main lines) this solution is completely ignored. For this

project it is desirable a non-contact sensor that protects the user.

The Current Transformer or CT is a transformer that converts the primary current into

a smaller secondary current. It is very common in house energy monitoring. The main

problem is that it can get saturated at high current. As Paul Emerald asserts, “Current

Transformers close out the last low-cost technology, and (as the term transformer should

imply) are only useful with alternating currents. Most low-cost current transformers are

designed for narrow frequency ranges, are more expensive than resistive or Hall-effect”

[11].

Fig.2 Current Transformer [12]

Thus, although they seem a good solution, they are limited to AC current and for a

good frequency response they are more expensive than Hall Effect sensors. For making

this project as much useful as it can be, DC measurement may also be considered. Hence,

the Hall Effect sensor will be studied before making the last decision.

Finally the Hall Effect sensor is a transducer that varies its output voltage in response

to changes in magnetic field. The Hall element is constructed from a thin sheet of

conductive material with output connections perpendicular to the direction of current

flow. When a magnetic field is applied, a voltage proportional to this field appears in the

output. Honeywell explains that “The voltage output is tiny (µV) and requires additional

electronics to achieve useful voltage levels. When the Hall element is combined with the

associated electronics, it forms a Hall Effect sensor” [13].

It can be used to sense current considering Faraday-Lenz law, as an electric current

generates a magnetic field around a conductor.

7

Fig.3 Hall Effect principle [13]

Figure 3 illustrates the basic principle of the Hall Effect. There is a thin sheet of

semiconducting material through which a current is passed. When a perpendicular

magnetic field is present, a Lorentz force is applied on the current. This force perturbs the

current distribution, resulting in a potential difference across the output. This voltage is

the Hall voltage (VH). The relation between the magnetic field and the current is shown

in equation (4)

𝑉𝐻 ∝ 𝐵 × 𝐼
 (4)

Integrated Hall Effect transducers

Making a Hall transducer out of silicon, using standard integrated circuit processing

techniques, allows one to build complete sensor systems in a chip. The addition of

electronics to the bare transducer allows sensor manufacturers to provide a very high

degree of functionality and value to the end user, for a modest price.

For sensing current Linear Hall-Effect Sensor ICs are the most appropriate. These

devices deliver an output signal which is a linear function of the magnetic flux density

passing perpendicularly through its Hall plate. An example of a transfer curve for a

ratiometric linear is illustrated in figure 4. It can be noted that at each extreme of its

range, the output saturates.

Fig.4 Typical Transfer curve for a radiometric linear Hall Effect IC

8

Between the Hall Effect IC, two different types can be distinguished: closed loop and

open loop

Fig.5 Closed and Open loop Hall Effect sensors [14]

Hence, after this brief description of the main methods used nowadays to sense

current, the following comparison table 3 is displayed to review all the information.

Table3. Strength and weakness of the main current sensing technologies

Current sensing

technology

Low resistance

 current shunt

Current

Transformer

Hall effect

Closed loop

Hall Effect

Open Loop

Relative cost Low High Medium High

Insertion Loss Yes Yes (AC) No No

Circuit isolation None Yes Yes Yes

External Power None None Yes Yes

Offset None None None Yes

Accuracy (Est.) >99% >95% >95% >95%

The reasons for using a particular sensor vary according to the application. In this

project, cost and performance are essential. From table 3 it can be deduced that the CT

has insertion loss and its relative cost is higher that the Hall Effect sensor. The Hall effect

sensor has the disadvantage that it does require an external power, but considering an

Arduino microcontroller is going to be used in this project (it includes a power supply)

this problem is solved. Therefore, a Hall Effect sensor would be considered for this

project.

Once a Hall Effect integrated circuit is selected, additional signal conditioning is

needed. This would be extensively explained in the consequent Design chapter 5.

9

4.1.2 Voltage sensing

There are several manners for sensing the voltage: a simple voltage divider, voltage

detectors, etc. Nonetheless, a few of them provide the isolation needed between the high

and low AC voltage of this project.

After a thorough research the best solution would be implementing an electrostatic

voltmeter. It is a device that does not require direct contact with the main lines. Trek

provides some useful documentation [15] to implement it. However, developing this

voltage sensor could be considered another full project due its complexion. Therefore, the

most optimal solution found after the electrostatic voltmeter was utilizing an AC/AC

converter that lowers the voltage level to the adequate level of the micro-controller device

(Arduino). The transformer in the adapter provides the isolation desired. It is not as good

as the first solution considered, but it is a good one.

Fig.6 AC/AC adapter schematic

Once an AC adaptor is selected, the following step is conditioning the output of the

AC power adapter so that it meets the input requirements of the micro-controller device

analog inputs. This would require additional electronics that would be explained in the

design chapter 5 of this document.

4.1.3 Sampling current and voltage: Arduino Ethernet board without PoE

After sensing the current and voltage levels with the previous sensors, the outputs of

these sensors have to be sampled by the micro-controller, converting them from analog to

digital signals in order to conduct the required operations with a micro-controller program

to obtain the real power consumed.

There are several micro-controllers available in the market. One of the most

economic and simplest is the Arduino. In fact, it is very common in house-energy

monitoring systems. Its core is an ATmega328 chip. In order to interface with the

environment this chip is integrated in a board called „Arduino Ethernet Board without

PoE‟. PoE refers to „Power over Ethernet‟. It is a technology that incorporates electrical

power to a standard LAN infrastructure. This allows a single cable to provide both data

10

connection and electrical power. This board lacks of it. There is plenty of documentation

about this board in the official page of Arduino project [16].

 Fig.7 Arduino Ethernet without PoE [16]

This board was chosen taking into account its popularity and simplicity. Moreover, it

contains everything this project need. The main features of this board that should be point

out are:

 It incorporates 6 analog inputs pins where the sensors output can be

connected to be sampled. These inputs are connected to an ADC that converts

the analog signals to digital.

 It is equipped with a RJ45 connection or Power over Ethernet ready Magnetic

Jack so it can be connected to a LAN.

 The chip in charge of managing the Ethernet connection is the W5100

TCP/IP Embedded Ethernet Controller. For more information about this chip

refer to [17].

To interface with this board the programmer can use the software provided by

Arduino official website
1
.

Arduino IDE software

The Arduino Integrated Development Environment (Arduino IDE) software provides

comprehensive facilities to computer programmers for software development. It consists

of a source code editor, build automation tool and a debugger.

 1. http://www.arduino.cc

http://www.arduino.cc/

11

Fig.8 Arduino IDE software

The software includes a text editor for writing code, a text console, a toolbar with

buttons for common functions, and some menus. It connects to the Arduino hardware (the

Ethernet Board in this case) to upload programs and communicate with them.

Intended for easing the programmer job, this software includes built-in functions

called „libraries‟. Common code that is subject to be reused is incorporated in these

libraries. Additional libraries can be found over the internet. Consequently, some libraries

may be used along this project: “If the wheel is already invented, there is no point in

inventing it again”. It can be improved, but the basics will remain.

4.1.4 Power calculations

Once the voltage and current signals are sampled by the micro-controller device, it is

time to calculate the instantaneous power that is being consumed by the device under test.

The power the company supply is known at complex power ‘S’. Complex power can

be expressed by the vectorial sum of the real power or active power ‘P’, plus the

imaginary power or reactive power ‘Q’

𝑆 = 𝑃 + 𝑗𝑄
 (5)

12

Real power is defined as the power used by a device to produce useful work. It is the

one the company bills home users for. Mathematically it is the definite integral of voltage,

‘v(t)’, times current, ‘i(t)’, as follows:

P =
1

T
 v t ∙ i t dt

 (6)

Which can be expressed in terms of the root-mean-square (RMS) values of the

current and the voltage, where ′𝜃′ is the gap phase between ‘v(t)’ and ‘i(t)’ signals.

𝑃 = 𝑉𝑅𝑀𝑆 ∙ 𝐼𝑅𝑀𝑆 ∙ cos(𝜃)
 (7)

Equally, the reactive power ‘Q’ that is the energy that flows back and forth in an

inductive or capacitive load can be written in a similar way:

𝑄 = 𝑉𝑅𝑀𝑆 ∙ 𝐼𝑅𝑀𝑆 ∙ sin(𝜃)
 (8)

As the complex power ‘S’ is the vectorial sum of ‘P’ and ‘Q’:

𝑆 = 𝑉𝑅𝑀𝑆 ∙ 𝐼𝑅𝑀𝑆
 (9)

Finally, the power factor ‘PF’ is a measure of efficiency. It is defined as:

𝑃𝐹 = cos 𝜃 =
P

 S

 (10)

For the common user, the valuable magnitudes are the real power ‘P’ and the power

factor ‘PF’. The voltage and current is extra information that can also be useful.

Hence, for calculating the power factor, considering (10), complex power ‘S’ and real

power ‘P’ have to be determined. The complex power can be calculated attending to (9).

It should be said that the RMS value is defined as the square root of the mean value of the

squares of the instantaneous values of a periodically varying quantity, averaged over one

complete cycle like (11) illustrates:

VRMS =
1

𝑇
 𝑣 𝑡 2 𝑑𝑡

 (11)

Moreover, the micro-controller device that sense the current and the voltage will be

working in the discrete time domain, instead of the continue time domain, as an ADC

13

(analog to digital converter) is the responsible of sensing these magnitudes. Therefore, the

equivalent discrete time equation for (11) would be (12)

VRMS =
1

𝑁
 𝑣 𝑛 2

N−1

n=0

 (12)

Where ‘N’ is the number of samples and ‘n’ the current sample. The same procedure

can be applied for the current.

With (12) and the equivalent equation for the current, the complex power ‘S’ can be

calculated using (9). To resolve the Power Factor ‘PF’ with the equation (10) the real

power ‘P’ must be estimated. This formula could be used:

P =
1

𝑁
 𝑣 𝑛 ∙ i(n)

N−1

n=0

 (13)

This concise theory should be enough to be able to develop a program for the micro-

controller device that calculates the real power ‘P’ and the power factor ‘PF’.

4.3 Receiving and storing the data

Once the desired magnitudes (Real Power, Power Factor, Current and Voltage) are

computed with the Arduino micro-controller they have to be graphed.

The first thought for doing this was directly drawing on a third-party application such

as Cosm
1
. This simplifies the process as the data is not required to be stored before

graphing it. It is directly sent to this website which manages the data storage by itself.

Figure 9 shows an example of the aspect of Cosm graphs.

Fig.9 Cosm feed example [18]

 1. http://www.cosm.com

http://www.cosm.com/

14

However this option was finally abandoned as it creates unnecessary ties with Cosm

website. The project could become obsolete if Cosm changed its API or disappeared, like

happened with Ken Bongort and Adam McCann project [4] after GooglePower meter

project [5] was abandoned. In fact, Cosm was initially called Pachube and after this major

change a lot of applications needed to be changed to make them useful again.

Therefore, it is definitely better storing the desired data computed with Arduino

micro-controller in a database to graph it afterwards. This way the system is completely

independent. A PHP script will be the intermediate between the Arduino code and the

database. This script will be in command of receiving the data from the Arduino and push

it to the database.

Fig.10 Receiving and storing data diagram

A server able to run a PHP script is required for developing this structure. Similarly,

a database with database administrator software is needed. The following sections of this

document would try to briefly introduce the reader to these concepts. It is not the

intention of this document exposing a deep explanation of each of them but providing a

general idea to understand this project. For more information access the official

homepage of each concept provided in the reference section.

4.3.1 Apache local web-server

A server is a node that belongs to a net and is able to provide services to other nodes

called clients. In most cases, the server is a physical computer (a computer hardware

system) that serves other computers connected to the same net. There are two main ways

of owing a server: buying a hosting to a dedicated company or use your own computer as

a server. This last option was selected for the development of this project. It is an

opportunity to learn about server managing and it is also more economic.

In order to set up a web-server (a computer that helps to deliver web content that can

be accessed through the Internet) a web-server software program is needed. There is

15

plenty of software designed for this purpose. The following figure 11 shows the market

share for top servers across all domains in the last 17 years [19]

Fig.11 Market Share for Top Servers Across All Domains.

August 1995 - May 2012 [19]

The most common one is „Apache HTTP server’. According to The Apache Software

Foundation “The Apache HTTP Server Project is an effort to develop and maintain an

open-source HTTP server for modern operating systems including UNIX and Windows

NT. The goal of this project is to provide a secure, efficient and extensible server that

provides HTTP services in sync with the current HTTP standards” [20]

To run a local server (use your own computer as the server) the network domain

should be „localhost‟ or the IP of your computer in the LAN as shown in figure 12.

Fig.12 Apache 2.2 Installation Wizard

16

This server supports PHP that is needed for the progress of the project as well as

providing HTTP services. HTTP functions as a request-response protocol in the client-

server model [21]. Arduino micro-controller, for example, may be the client and the PHP

script running on the computer hosting may be the server. The client (Arduino) submits

an HTTP request message to the server (PHP script) and afterward the server response to

the client. With this it would be possible to send data from the Arduino to the server.

4.3.2 PHP: Hypertext Preprocessor

According to the official webpage of PHP, “PHP is a widely-used general-purpose

scripting language that is especially suited for Web development and can be embedded

into HTML” [22]. It is one of the most common programming languages for web pages. It

is a server-side scripting (that is why the server must have a PHP interpreter). PHP code

is interpreted by the web-server that generates the resulting webpage. Its ancestor is the C

programming language.

PHP has hundreds of functions and predefined variables. These functions are well

documented on the PHP site. Nonetheless, it would be extremely suitable explaining one

of these predefined variables which is essential for the development of this project.

This predefined variable is the $_GET variable. It consists of an associative array of

variables passed to the current PHP script via the URL parameters.

Fig.13 $_GET predefined variable example [22]

Figure 13 shows how this variable works. It is capable of capturing the data written as

an URL parameter („name‟ in the example). Thanks to this variable the data could be

received by the PHP script. The code of the client (Arduino micro-controller) would be in

charge of making the HTTP request including as URL parameters the variables that

contain the real power, power factor, current and voltage values.

17

4.3.3 MySQL database PHPMyAdmin

Once PHP has collected the data from the Arduino, this data has to be stored in a

database. A database is just an organized collection of data. As occurred with the web-

server software, there are several database management systems (software system

designed to allow the definition, creation, querying, update, and administration of

databases) such as MySQL, PostgreSQL, Microsoft SQL Server, Microsoft

Access, SQLite, etc. Nevertheless, the popular choice for web applications is MySQL [23].

In addition, it is under a GNU General Public License, a free software license. Therefore,

MySQL will be used in this project.

Fig.14 MySQL database [23]

Managing this database from a browser requires extra software. Once more a full

variety of tools is available in the market [24]. The chosen one for this project was

PHPMyAdmin. It is a free and open source tool written in PHP. It is capable of handling

the administration of MySQL using a web browser. This fact simplifies the managing of

the database. This tool can perform several tasks. For instance, creating and deleting

databases, tables, fields or rows. It can execute SQL statements as well as managing users

and permissions. All from a web interface as figure 15 illustrates.

Fig.15 PHPMyAdmin table structure example

The procedure to insert data into this database is appealing to SQL statements. SQL is

a special programming language designed for managing data held in a database system.

The PHP script will conduct this task subsequent to collecting the data from the Arduino

micro-controller.

18

4.4 Graphing the data

At this point the data required (real power, power factor, current and voltage mean

values) would be already stored in the MySQL database. The following step is graphing it

so common users can understand it better. Here is when JavaScript enters into scene. This

section will introduce the reader to this programming language. Nonetheless, it will be a

plain and brief introduction. More information is accessible in the reference section.

Figure 16 shows the procedure for the accomplishment of the task described before:

Fig.16 Graphing data diagram

Once more a PHP script will be the one who pulls the data from the database. This

PHP script has the function of preparing the data in a specific style so the JavaScript can

understand it. The graph will be implemented with JavaScript libraries (jQuery and

Highcharts) that simplify the programming to the developer. The concept of library was

already introduced, but to remind it to the reader, it is a cluster of functions for common

tasks that has a well-defined interface making the programmer job easier. In the following

sections of this chapter all this will be clarify.

It could be interesting for the reader to pinpoint that the PHP script runs in the local

web-server previously installed, but the JavaScript is able to run in the client-side:

JavaScript support is built right into all the major web browser, so as long as the user has

a updated web browser, it will run without problems.

4.4.1 JavaScript

It is not the intention of this document to deepen in the JavaScript language.

Therefore, only a basic and essential introduction will be provided for the reader.

19

JavaScript is an interpreted programming language used to make web pages

interactive. Its syntax was influenced by the language C. It runs on the client‟s computer

so these scripts are able to interact with the user and alter the document content that is

being displayed. It is a scripting language; this is a lightweight programming language.

JavaScript is also an interpreted language, so no particular program is required to create

code. Any plain text editor is sufficient.

As it was mentioned before, all the major web browsers available in the market

support JavaScript. The advantage of using JavaScript is that supports client-side

scripting. It is able to run after the webpage has already loaded. This feature is essential

for this project. The graphs will be in a webpage that will only be loaded once. After that,

JavaScript will be in charge of updating the series of the graphs without the need of

reloading the website.

4.4.4 jQuery and Highcharts

In the introduction of the „3.4 Graphing data‟ section it was mentioned that the graphs

will be implemented making use of JavaScript libraries. These free libraries are jQuery

and Highcharts.

The best manner to explain jQuery is resorting to the official website who defines it

like “a fast, small, and feature-rich JavaScript library. It makes things like HTML

document traversal and manipulation, event handling, animation, and Ajax much simpler

with an easy-to-use API that works across a multitude of browsers. With a combination of

versatility and extensibility, jQuery has changed the way that millions of people write

JavaScript” [25]. In other words, jQuery provides a cluster of functions or routines to

perform ordinary tasks. Programmers used jQuery to avoid developing by themselves

basic tasks since they are already included and tested in this library. Basically, it makes

the programmer job simpler.

jQuery is just a means to use Highcharts. Highcharts is the real useful library for this

project but its foundation is jQuery. That is why it is previously explained in this

document.

Highcharts, as its developers affirm, “is a charting library written in pure JavaScript,

offering intuitive, interactive charts to your web site or web application” [26]. This library

is ideal to create web applications in any language (PHP for instance) and then integrate

graphs with jQuery JavaScript framework. Highcharts consists in a script encapsulated in

just one file called „highcharts.js‟. There are other existing libraries that fulfill this

purpose such as jqPlot
1
, FlotCharts

2
, JpGraph

3
, GoogleCharts

4
, etc. But none of them are

so versatile and well-designed. Highcharts has the friendliest interface for the user.

 1. http://www.jqplot.com/

 2. http://www.flotcharts.org/

3. http://jpgraph.net/

4. https://developers.google.com/chart/?hl=en

http://www.jqplot.com/
http://www.flotcharts.org/
http://jpgraph.net/
https://developers.google.com/chart/?hl=en

20

The official Highcharts website provides a complete API documentation to elaborate

your own graphs or charts. Just with a simple code detailed graphs can be displayed in the

website. The next figure 17 shows an example, although not all the code is displayed.

Fig.17 Highcharts example [26]

The script at the right of the image is written in a separate file with the .js extension.

Then this file is called from the html website.

With these tools multiple graphs for the data required (real power, power factor,

current and voltage mean values) could be elaborated.

21

5. Design

This chapter will describe the design evolution of the project. The very last methodology

chapter 4 smoothed the way to understand the design of each module of the project. Now this

chapter will be divided in the three main tasks that have to be designed to reach the final aim

of the project: measuring the power, receiving and storing the data and finally graphing it.

Finally all these tasks will be united in a unique program to reach the final aim of the project.

Some tasks of this project require of programming code. The code will not be exposed in

this chapter but in the Appendix A and B. By the contrary, each code will be explained by a

flow diagram. However, some code snippets may be added for better understanding of the

design.

5.1 Measuring Power design

The first task to determine the power is designing how to sense the current and

voltage. This was studied in the methodology chapter 4. The next step is conditioning the

output signals of the sensors used. The following section will describe all the steps

conducted in this area.

5.1.1 Current measurement design

The final sensor selected is the linear Hall Effect sensor ACS712 x05B [27].

Fig.18 ACS712x05B breakout board and transfer function from its datasheet [27]

It has a range of ±5A and a typical sensitivity of 185mV/A. Figure 18 displays that

the ACS712 outputs an analog voltage output signal that varies linearly with sensed

current. The output voltage presents an offset of 2.5V. Therefore, when no current is

sensed, the sensor outputs 2.5V. This occurs when the supply is 5VDC. The Arduino

board can supply that required voltage.

The Arduino analog inputs must meet an important requirement: the input voltage has

to be a positive voltage between 0V and the ADC reference voltage (5V in this case). The

output of this sensor meets this requirement (it is always positive and below 5V), but

22

considering its sensitivity (185mV/A), the output variation is very weak. It requires

amplification. So the step required for the signal conditioning is scaling up the output of

the sensor thus a major range of the ADC is exploited. This can be easily achieved with

operational amplifiers (op-amp)

As the output contains a DC component, a common non-inverting configuration of an

op-amp cannot be used, as it would amplify this DC offset. The best solution would be a

differential amplifier that only amplifies the difference between its input terminals.

However, this solution would not meet the input requirements of the Arduino, as it would

swing between positive and negative values. Retaking the idea of the non-inverting

amplifier, it could be designed so it only amplifies AC components adding some

capacitors. This way the only signal amplified would be the AC signal. Again, this

implies negative values of the signal. A DC bias should be added to make this signal

move around this bias point. If an op-amp is said to be biased, this means that, for no

incoming signal or no sensor excitation, the output voltage will rest at the biased voltage.

So the steps required for the signal conditioning are:

1) Amplifying the AC signal of the sensor output. An AC-coupled non-

inverting amplifier would be in charge of this. An AC-coupled op-amp only

amplifies signals which change with time, so the 2.5V offset of the sensor

output will not be amplified.

2) Biasing the op-amp output. This must be done applying a DC offset at the

input of the op-amp. Since the op-amp output reflects the voltages present at

the input, bias voltage can be applied at the input, and allow the negative

feedback around the amplifier to bring the output to the voltage desired. This

can be done replacing any ground in the circuit with the bias voltage (except if

it the ground is only connected to a capacitor or if the ground is not connected

in some way to the input of the op-amp)

3) Designing the biasing circuit. This can be easily done with a simple voltage

divider. However, for reducing power consumption and give even more

accurate gain and offset values, a voltage follower biasing will be used (with

an op-amp). This way the impedance the biasing op-amp will present to the

rest of the circuit will be infinitesimal compared to any other method.

The final biased AC-coupled non-inverting amplifier is displayed in the following

figure:

23

Fig.19 ACS712x05B signal conditioning circuit

Figure 19 shows the complete signal conditioning circuit. This circuit consists in two

sub circuits. The first one is the voltage follower biasing circuit. This circuit has the aim

of generating a DC voltage bias. It is an op-amp configured like a follower, so the output

impedance is nearly zero, avoiding interfering with the next stage. The follower is fed

with a voltage divider and a capacitor. These components together generate a low pass

filter with a cutoff frequency of around 3Hz, like equation (14) shows. Capacitor C2

presents low impedance to high frequencies as well.

𝑓1−𝑐𝑢𝑡−𝑜𝑓𝑓 =
1

2 ∙ 𝜋 ∙
𝑅1 ∙ 𝑅2
𝑅1 + 𝑅2 ∙ 𝐶1

=
1

2 ∙ 𝜋 ∙
10𝐾 ∙ 10𝐾

10𝐾 + 10𝐾 ∙ 10𝑢𝐹
= 3.18𝐻𝑧

 (14)

The second stage is the AC-coupled non-inverting amplifier whose gain is defined by

equation (15):

𝐺 = 1 +
𝑅4

𝑅5
 = 1 +

10𝐾

1𝑘3
 = 1 +

10000

1300
 ≈ 8.7

 (15)

The capacitors C4 and C2 are the ones who provide AC coupling. The cut-frequency

of the filter that forms with the resistors follows the expression (16):

𝑓2−𝑐𝑢𝑡−𝑜𝑓𝑓 =
1

2 ∙ 𝜋 ∙ 𝑅3 ∙ 𝐶3
=

1

2 ∙ 𝜋 ∙ 𝑅5 ∙ 𝐶4

 (16)

24

The value of these components was chosen hence the cut-off frequency were around

10Hz. A certain value for the resistors was fixed so the capacitors value could be found

out.

10𝐻𝑧 =
1

2 ∙ 𝜋 ∙ 1300 ∙ 𝐶3
→ 𝐶3 =

1

2 ∙ 𝜋 ∙ 1300 ∙ 10
= 12.25𝑢𝐹

 (17)

The standard value of 22uF was chosen. This superior value ensures even a smaller

cut-off frequency (5.56Hz).

With this circuit the output signal of the Hall Effect sensor is correctly conditioned to

meet the Arduino input requirements. For instance, supposing a current with a peak of 1A

wanted to be measured (for larger currents the gain of the non-inverting op-amp stage

should be reduced to meet the Arduino input requirements) the maximum value the sensor

would output with a sensitivity of 185mV/A would be 185mV plus the 2.5V of the offset.

The signal conditioning will produce an AC signal whose peak would worth 1.61V and

would swing around the Vbias added (2.5V in this case). Figure 20 shows the initial Hall

Effect sensor output signal (yellow), the amplified signal if the offset voltage was not

added (blue), and the final conditioned signal with the voltage bias added (red) so the

Arduino input requirements are met.

Fig.20 Current signal conditioning graphs (1A peak supposed)

The resolution of the system for 1A peak current range would be approximately:

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑅𝑎𝑛𝑔𝑒

𝐴𝐷𝐶 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

2𝐴

210
= 1.95𝑚𝐴

 (18)

25

Current calibration constant

The current is measured using a Hall Effect sensor that converts the current into a

voltage. This voltage is then conditioned and measured by the analog input of the

processor, who outputs a count ‘C’ between 0 and 1024. Therefore, a calibration constant

has to multiply this count to display the real value of the current sensed in the graph. The

input voltage to the processor has an offset added to it, but this will be removed by a

software filter that will be explained in following sections, so it can be ignored when

calculating the calibration constant.

The output ‘V1’ of the Hall Effect sensor will be:

𝑉1 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑒𝑎𝑘 −𝑣𝑎𝑙𝑢𝑒 = 0.185 𝑉
𝐴 ∙ 𝐼𝑝𝑘

 (19)

This voltage ‘V1’ is then amplified 8.7 times. See equation (15)

𝑉2 = 8.7 ∙ 𝑉1 = 8.7 ∙ 0.185 𝑉
𝐴 ∙ 𝐼𝑝𝑘

 (20)

Then the ADC transforms this ‘V2’ value into a count ‘C’.

𝐶 =
1024

5
𝑉2 =

1024

5
∙ 8.7 ∙ 0.185 𝑉

𝐴 ∙ 𝐼𝑝𝑘 = 329.62 ∙ 𝐼𝑝𝑘

 (21)

Working with RMS values:

𝐶 = 329.62 ∙ 𝐼𝑅𝑀𝑆 ∙ 2 = 466.15 ∙ 𝐼𝑅𝑀𝑆
 (22)

Hence, the calibration constant ‘Ical’ needed is:

𝐼𝑅𝑀𝑆 =
1

466.15
∙ 𝐶 → 𝐼𝑐𝑎𝑙 =

1

466.15

 (23)

5.1.2 Voltage measurement design

This section will cover briefly the electronics required to interface an AC power

adaptor with the Arduino micro-controller. The methodology chapter 4 explained the

reason for selecting this solution.

 The AC power adapter chosen was a 9VRMS adaptor. The output signal from the AC

voltage adapter is a near-sinusoidal waveform. So the signal peak should value ±12.7V.

The Arduino analog inputs must be between 0V and 5VDC as it was explained before

in the current measurement design section. The signal conditioning has to convert the

output of the adapter to a waveform that has a positive peak that is less than 5V and a

negative peak that is more than 0V. So the steps required are:

26

 Scaling down the waveform. This can be done using a simple voltage divider

at the output terminals of the adaptor.

 Adding an offset to avoid negative values. The offset or DC bias can be

added using an external voltage source. In fact, the Arduino has a 5V voltage

supply.

Here is the designed circuit:

Fig.21 Voltage signal conditioning

Resistors ‘R2’ and ‘R1’ form the voltage divider and resistors ‘R3’ and ‘R4’ provide

the voltage offset (2.5V). Capacitor ‘C1’ derives high frequency components of the AC

signal to the ground. It is a low-pass filter. ‘R1’ and ‘R2’ were chosen so the output peak

value would be within the limits of the Arduino analog input. For an AC adapter with a

9VRMS output the voltage divider provides a peak value of:

𝑣𝑜𝑢𝑡
𝑝𝑒𝑎𝑘 =

𝑅1

𝑅1 + 𝑅2
∙ 𝑣𝑖𝑛

𝑝𝑒𝑎𝑘 =
10𝑘

10𝑘 + 100𝑘
∙ 12.7 =

1

11
∙ 12.7 = 1.15𝑉

 (24)

‘R3’ and ‘R4’ form another voltage divider. As they have identical values, the middle

point between them has a voltage of 2.5V respect ‘Arduino GND’. Higher resistors were

used to reduce energy consumption.

27

The resultant waveform of the circuit has a peak of 2.5V ± 1.15V. This satisfies the

Arduino analog input voltage requirements and leaves a security room to prevent over or

under voltage.

The next figure shows a schematic of the voltage signal conditioning:

Fig.22 Voltage signal conditioning graphs

The resolution of the system for 230VRMS voltage would be around:

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑅𝑎𝑛𝑔𝑒

𝐴𝐷𝐶 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

230 ∙ 2 ∙ 2

210
= 635𝑚𝑉

 (25)

Voltage calibration constant

The internal ADC converter of the Arduino micro-controller outputs a count between

0 and 1024 (2
10

). So to display the real RMS value of the voltage measured, this count has

to be multiplied by a voltage calibration constant ‘Vcal’.

The output ‘V1’ of the 9VRMS AC adapter used connected to a 230VRMS device will

be:

𝑉1 = 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ∙ 𝐼𝑛𝑝𝑢𝑡𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑅𝑀𝑆 =
9𝑉𝑅𝑀𝑆

230𝑉𝑅𝑀𝑆
∙ 𝑉

 (26)

This voltage ‘V1’ is then scaled down by a ratio of
1

11
 . See equation (23)

𝑉2 =
1

11
∙ 𝑉1 =

1

11
∙

9

230
∙ 𝑉

 (27)

28

Then the ADC transforms this ‘V2’ value into a count ‘C’

𝐶 =
1024

5
𝑉2 =

1024

5
∙

1

11
∙

9

230
∙ 𝑉 = 0.728 ∙ 𝑉

 (28)

Hence, the calibration constant ‘Vcal’ needed is:

𝑉 = 1.37 ∙ 𝐶 → 𝑉𝑐𝑎𝑙 = 1.37
 (29)

5.1.3 Power consumed. Software design

Now that the current and the voltage signals are ready to be sampled by the Arduino

micro-controller it is time to estimate the power consumed by the under test device. A

library from “openenergymonitor” project [6] (mentioned in the background chapter) was

used to achieve this duty. It was slightly modified to satisfy the needs of this specific

project. The code of this library is attached in the Appendix A, but some snippets will be

explained in this section to understand its function.

The main idea is implementing the mathematical formulas explained in the „power

calculations‟ section of the methodology chapter 4 in an Arduino code.

The procedure to estimate the power consumed ‘P’ is simple: it consists in applying

the equation (10)

P =
1

𝑁
 𝑣 𝑛 ∙ i(n)

N−1

0

 (10)

First, a certain amount of samples ‘N’ of a certain number of wavelengths of the

signals of the analog channels are captured. These samples would be ‘v(n)’ and ‘i(n)’ in

equation (10). For each sample ‘n’, the instantaneous power is estimated. Then all the

instantaneous powers are summed and finally this value is divided by the number of

samples ‘N’ taken.

The main flow of the code that implements this method is displayed below in figure

23. Again remark that this code comes from a library of “openenergymonitor” project [6].

It is accessible in the net for everybody as it is open source code.

29

Fig.23 Power calculation subroutine flow diagram

Some snippets will be explained in the following lines to ease the comprehension of

this flow diagram, but the main code is displayed in Appendix A (page 50)

First of all, the program starts scanning the voltage waveform. The program is stuck a

while loop until one of the samples captured is next to zero crossing value. When this

takes place the program carries on. Figure 24 illustrates this procedure.

nnn vvv
2 2

nv

nnn ivP nP

ninv

30

 while(loop==true) //the while loop...
 {
 startV = analogRead(inPinV); //using the voltage waveform

if ((startV < 550) && (startV > 440)) loop = false;//check its

within range
 if ((millis()-start)>timeout) loop = false;
 }

Fig.24 Checking if the waveform is close to zero point.

The method to detect the zero cross point consists in verifying that the analog value

of the sample is around the value 512. This is because the Arduino micro-controller has

an internal 10-bit ADC, therefore the analog values are encoded between 0 and 1023. The

input signal applied to the analog channel swings between 0 and 5V, so the ADC will

assign 0 to 0V and 1023 to 5V. The mid value is 2.5V that correspond approximately with

512.

As the input signals have a DC bias of 2.5V (see previous „voltage measurement

design‟ section) the waveform oscillates around this value. Therefore, the zero point

corresponds with 2.5V. This DC value has to be removed. Normally, DC components are

filtered before sampling the signal, but in this case a software high-pass filter was applied.

Figure 25 shows this.

//--

// B) Apply digital high pass filters to remove 2.5V DC offset

(centered on 0V).

 //--
 filteredV = 0.996*(lastFilteredV+sampleV-lastSampleV);
 filteredI = 0.996*(lastFilteredI+sampleI-lastSampleI);

Fig.25 Discrete high-pass filter design

The theory behind this snippet is available in the net [28]. The value ‘0.996’ is a

constant. The higher this constant is the narrower the stop band of the filter will be.

The calculations of the root-mean-square values (needed to estimate the real power)

are conducted in two steps. First the square values and the summation are calculated. In

the following snippet the corresponding lines in charge of this task have been highlighted

in colors to establish the relationship with the equation (14)

//--

// C) Root-mean-square method voltage

//--

 sqV= filteredV * filteredV; //1) square voltage values
 sumV += sqV; //2) sum

Fig.26 Square values and summation

31

VRMS =
1

𝑁
 𝑣 𝑛 2

N−1

n=0

 (28)

Finally to calculate the root-mean-square values of the voltage and the current the

calibration constant explained in previous sections has to be applied. This calibration

constant has to be defined by the user in function of the sensor used. Again some parts of

the code has been highlighted in colours to establish the relationship with the theoretical

equation (15)

 double V_RATIO = VCAL *((SUPPLYVOLTAGE/1000.0) / 1023.0); //
 Vrms = V_RATIO * sqrt(sumV / numberOfSamples);

Fig.27 Determination of real Vrms value

VRMS = Vratio ∙
1

𝑁
 𝑣 𝑛 2

N−1

n=0

 (29)

In the preceding snippet it can be seen a ‘SUPPLYVOLTAGE’ variable. This is

because the real supply voltage of the ADC converter is measured for precise calculation

[29].

The power calculation follows a similar procedure. Consequently, there is no point in

showing more snippets as the code is available in the Appendix A.

5.2 Receiving and storing data design

Once the data is captured by the Arduino code, it has to be graphed. The first attempt

was to directly graph it. Nevertheless, the final design first store the data, and the graph it.

The advantages of this design will be cited in the following lines.

5.2.1 First attempt: Cosm website

As it was mentioned in the methodology chapter 4, the first try was to directly send

the data stored in Arduino code variables into Cosm website, removing the intermediate

step of storing the data in a database. The initial step to achieve this is creating a Cosm

account.

32

The main code was elaborated using Cosm website examples. The following figure

shows the diagram flow of the Arduino program. The full code is available in the

Appendix A (page 43)

Fig.28 Cosm code flow diagram

In this diagram it can be perceived that this code calls the power calculation

subroutine explained in figure 23. It can also be observed the lack of code to graph the

data. This is because once the data is received by the Cosm feed, the own website graphs

it by itself.

5.2.2 Final decision: Storing data with PHP script

 However, as it was explained in the methodology chapter 4, this is not the best

solution. Seeking independency is one of the aims of this project. Consequently, the

option of storing the data in a local web-server and graph it later was finally developed.

There will be two methods of visualizing the data: the first one is in real time and the

second one is the last day data. Therefore, two scripts are needed to store the data. One is

in charge of storing the real time data, while the other only stores the data at the end of

the day. It gathers all the data from the last day and stores it in other table.

33

Next diagram shows the flow of the PHP script that store the data in real time:

Fig.29 Receive and store real time data in database flow diagram

The PHP script for this diagram flow is available in Appendix B (page 55)

The script that stores the data from the last day is executed just once a day. This is

done by a programmed task in the local server that is in charge of running this PHP script

every day at midnight. The data is stored in the database 7 days. Then it is deleted to

leave free space. Another programmed task is in charge of this. The PHP script code that

is executed by this programmed task is in Appendix B (page 65), as well as the .bat files

in charge of this duty.

Next diagram shows the flow of the PHP script in charge of storing the data from the

last day. Code is available in Appendix B (page 56)

34

Fig.30 Store data from last day flow diagram

5.3 Graphing the data design

5.3.1 Data collecting and formatting

Once the data is in the database, a PHP script is in charge of pulling it from the

database and gives it the correct format to be understandable later by the JavaScript that

graphs it. As there will be two kinds of graphs (real time and last day graphs) each of

them requires different formatting and different data. Therefore, two PHP scripts are

needed.

35

Real time data collecting

Figure 31 shows the flow of this script:

Fig.31 Fetch and display real time data flow diagram

This flow diagram shows that the data is encoded in JSON
1
 format. JSON is a

lightweight data-interchange format [30]. It displays the data in a format that is easy to

read by humans and also easy to parse and generate to machines.

The data was formatted in this way thinking in the following step of the project:

making the graphs. This would make easier the adding of points in the graphs using

Highcharts. The code is available in Appendix B (page 57)

 1. JavaScript Object Notation

36

Last day data

In this case the data of the last day is displayed in a graph. The data stored by the

PHP script explained in figure 30 is formatted and displayed by this PHP script. Figure

32 shows the flow of the script. The code is available in Appendix B (page 58)

Figure 32 shows the diagram flow of the script that selects the data and format it so it

can be later understood by jQuery.

Fig.32 Display data from last day flow diagram

The code is available in Appendix B (page 58)

5.3.2 Graphing the data

Two types of modes for visualizing the data are available: real time and last day

graphs.

Real time graph:

37

Once the data is encoded it is ready to be added to the graph. Here is the diagram

flow of the JavaScript in charge of this duty. The code is in Appendix B (page 58)

Fig.33 Graph real time data flow diagram

For requesting the data a function is programmed. This function loads the PHP script

that displays the data to capture it and add a new point in the graph. Every certain period

of time the script “reloads”, requesting new data to update the graph in real time. This

update period should match the sampling time of the Arduino micro-controller main

program.

Last day graph:

The flow of the program is really similar to the last one explained. The main

difference is that it is only executed when the user want to visualize these kind of graphs.

Fig.34 Graph data from last day flow diagram

The code for this flow diagram is in Appendix B (page 62)

38

5.4 Unifying all. The main program of the Arduino microcontroller

Finally all comes together as shown in the next diagram. The code is available in

Appendix A (page 46)

Fig.35 Main Arduino program flow diagram

6. Results and discussion

Results are shown in a dedicated website. The main features offered by this website are:

 Simplicity: the user is not saturated by a lot of text or options to choose. There

are just the graphs wanted and one option to choose between the modes of

monitoring available.

 User friendly interface: graphs that combine perfectly utility with a modern

style.

 Clarity of data representation: clear graphs that allow selecting points to know

its exact value and time.

39

The website offers two main modes of monitoring the consumption: real-time

consumption or last day consumption. There are four graphs available: real power, voltage,

current and power factor.

6.1 Interface

Data is updated automatically without the need of refreshing the website thanks to

JavaScript.

Fig.36 Real Power graph (real time)

Fig.37 Voltage graph (real time)

The current and power factor graphs have exactly the same format as well as the last day

graphs. The only difference of these last ones is that they show data from the last day and they

do not refresh by themselves. The user is the one who refresh the website.

40

7. Conclusions

In general, it can be said that the main aim of this project was reached. A complete system

for online monitoring of the energy consumption was finally completed. Along all the

researching and designing process several difficulties have been encountered but they have

been overcome with perseverance and thoroughness.

A good solution for sensing the power was designed. The power consumption was

captured correctly connecting a Hall Effect sensor and step-down transformer to the Arduino

micro-controller. Afterwards, the data from the sensors was processed by the micro-controller

to calculate the desired variables. Next the data was stored in a database using PHP scripts to

be later given a correct format by another script so it can be properly graphed using JavaScript

(jQuery). The final result is a simple website that displays real time graphs as well as last day

consumption graphs.

7.1 Further work

Nonetheless, as any project it is always open for new improvements. A further work could

be designing a system to measure the current and voltage with non-contact sensors. The actual

risk of manipulating high voltages should be lessened. Measuring the current with non-contact

sensors was, in fact, achieved. However, for sensing the voltage a converter was needed. This

requires direct contact with the electric wires. Although it provides isolation due to its

magnetic nature, better solutions should be found to enhance the whole system. For instance,

the electrostatic voltmeter mentioned in chapter 4 (4.1.2 voltage sensing) could be the most

optimum solution.

Besides, the perfect solution would be using wireless connection to send the data from the

micro-controller to the server database, instead of using an Ethernet connection. This manner,

the server is not required to be next to the sensors. This idea was considered at the beginning,

but it was not implemented due to lack of time considering its complexity.

In addition, another further work could be designing printed circuit boards (PCBs) for the

signal conditioning circuits. The next step would be integrating all the pieces needed in this

project in an electromagnetically shielded housing.

41

References

[1] US. Department of Energy [Online], Available:

http://apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=580, last accessed

1/04/2013.

[2] Manage energy (2010) “Smart-metering domestic energy saving” [Online], Available:

http://www.managenergy.net/resources/1416, last accessed 1/02/2013.

[3] Cliff Jao and Xi Juo (2008) “PowerBox: The safe AC Power Meter” [Online], Available:

https://courses.cit.cornell.edu/ee476/FinalProjects/s2008/cj72_xg37/cj72_xg37/index.htm

l, last accessed 1/04/2013.

[4] Ken Bongort and Adam McCann (2011) “XBee RF Smart Energy Compliant Power

Meter”, [Online], Available:

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pm

eter/index.html, last accessed 1/04/2013.

[5] Google (2011) “Google Power Meter: A Google.org Project” [Online], Available:

http://www.google.com/powermeter/about/, last accessed 1/04/2013.

[6] Open Energy Monitor [Online], Available: http://openenergymonitor.org/emon/, last

accessed 1/04/2013.

[7] Arduino homepage [Online], Available: http://arduino.cc/, last accessed 1/04/2013.

[8] Cosm homepage[Online], Available: http://cosm.com/, last accessed 1/04/2013.

[9] P3 International, “Kill A Watt” [Online], Available:

http://www.p3international.com/products/special/p4400/p4400-ce.html, last accessed

1/04/2013.

[10] William Koon from Analog Devices, Inc “Current sensing for energy metering”, [Online],

Available: http://www.analog.com/static/imported-

files/tech_articles/16174506155607IIC_Paper.pdf, last accessed 2/04/2013.

[11] Paul Emerald, “Non-Intrusive Hall-Effect Current-Sensing Techniques Provide Safe,

Reliable Detection and Protection for Power Electronics”, [Online PDF], Available:

http://www.allegromicro.com/~/media/Files/Technical-Documents/STP98-1-Non-

Intrusive-Hall-Effect-Current-Sensing-Techniques.ashx, last accessed: 2/04/2013.

[12] “CT Selection guide” [Online], Available: http://www.littelfuse.com/products/relays-

controls-and-systems/protection-relays/protection-relay-pages/ct-selection-guide.aspx,

last accessed 2/04/2013.

[13] Honeywell, “Hall Effect sensing and application” [Online PDF], Available:

http://sensing.honeywell.com/index.PHP?ci_id=47847, last accessed 2/04/2013.

[14] ABB, “Current sensors Voltage Sensors” [Online PDF], Available:

http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/178528477d112c9bc12578c

70042fa4e/$file/1sbc140152c0203%20-%20cat%20capteurs-br.pdf, last accessed

2/04/2013.

[15] Dr, Maciej A. Noras, “Non-contact surface charge/voltage measurements Fieldmeter and

voltmeter methods” [Online], Available: http://www.trekinc.com/pdf/3002-field-

voltmeter.pdf, last accessed 14/04/2013.

[16] Arduino Project, “ArduinoBoardEthernet” [Online], Available:

http://arduino.cc/en/Main/ArduinoBoardEthernet, last accessed 3/04/2013.

http://apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=580
http://www.managenergy.net/resources/1416
https://courses.cit.cornell.edu/ee476/FinalProjects/s2008/cj72_xg37/cj72_xg37/index.html
https://courses.cit.cornell.edu/ee476/FinalProjects/s2008/cj72_xg37/cj72_xg37/index.html
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/index.html
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/index.html
http://www.google.com/powermeter/about/
http://openenergymonitor.org/emon/
http://arduino.cc/
http://cosm.com/
http://www.p3international.com/products/special/p4400/p4400-ce.html
http://www.analog.com/static/imported-files/tech_articles/16174506155607IIC_Paper.pdf
http://www.analog.com/static/imported-files/tech_articles/16174506155607IIC_Paper.pdf
http://www.allegromicro.com/~/media/Files/Technical-Documents/STP98-1-Non-Intrusive-Hall-Effect-Current-Sensing-Techniques.ashx
http://www.allegromicro.com/~/media/Files/Technical-Documents/STP98-1-Non-Intrusive-Hall-Effect-Current-Sensing-Techniques.ashx
http://www.littelfuse.com/products/relays-controls-and-systems/protection-relays/protection-relay-pages/ct-selection-guide.aspx
http://www.littelfuse.com/products/relays-controls-and-systems/protection-relays/protection-relay-pages/ct-selection-guide.aspx
http://sensing.honeywell.com/index.php?ci_id=47847
http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/178528477d112c9bc12578c70042fa4e/$file/1sbc140152c0203%20-%20cat%20capteurs-br.pdf
http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/178528477d112c9bc12578c70042fa4e/$file/1sbc140152c0203%20-%20cat%20capteurs-br.pdf
http://www.trekinc.com/pdf/3002-field-voltmeter.pdf
http://www.trekinc.com/pdf/3002-field-voltmeter.pdf
http://arduino.cc/en/Main/ArduinoBoardEthernet

42

[17] WIZnet, “I W5100”, [Online], Available:

http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7

&cate3=26&pid=1011, last accessed 3/04/2013.

[18] Cosm, “Power Consumed Feed” [Online], Available: https://cosm.com/feeds/13743, last

accessed 10/04/2013.

[19] Netcraft, “May 2012 Web Server Survey” [Online], Available:

http://news.netcraft.com/archives/2012/05/02/may-2012-web-server-survey.html, last

accessed 14/04/2013.

[20] The Apache Software Foundation, “Apache HTTP Server Project” [Online], Available:

http://httpd.apache.org/, last accessed 3/04/2013.

[21] Wikipedia, “Client-server model”, [Online], Available:

http://en.wikipedia.org/wiki/Client-server, last accessed 4/04/2013.

[22] PHP Homepage [Online], Available: http://PHP.net/, last accessed 14/04/2013.

[23] MySQL Homepage [Online], Available: http://www.mysql.com/ last accessed 4/04/2013.

[24] Wikipedia, “Comparison of database tools” [Online], Available:

http://en.wikipedia.org/wiki/Comparison_of_database_tools, last accessed 4/04/2013

[25] jQuery [Online], Available: http://jquery.com/, last accessed 4/04/2013

[26] Highcharts [Online], Available: http://www.highcharts.com/, last accessed 4/04/2013

[27] Allegro MicroSystems, Inc. [Online], Available:

http://datasheet.elcodis.com/pdf2/84/73/847398/acs712.pdf , last accessed 24/04/2013

[28] Wikipedia, “High-pass filter” [Online], Available: http://en.wikipedia.org/wiki/High-

pass_filter#Discrete-time_realization, last accessed 7/04/2013

[29] “Making accurate ADC readings on the Arduino” [Online], Available:

http://hacking.majenko.co.uk/node/57, last accessed 7/04/2013

[30] JSON [Online], Available: http://www.json.org, last accessed 5/04/2013

http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7&cate3=26&pid=1011
http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7&cate3=26&pid=1011
https://cosm.com/feeds/13743
http://news.netcraft.com/archives/2012/05/02/may-2012-web-server-survey.html
http://httpd.apache.org/
http://en.wikipedia.org/wiki/Client-server
http://php.net/
http://www.mysql.com/
http://en.wikipedia.org/wiki/Comparison_of_database_tools
http://jquery.com/
http://www.highcharts.com/
http://datasheet.elcodis.com/pdf2/84/73/847398/acs712.pdf
http://en.wikipedia.org/wiki/High-pass_filter#Discrete-time_realization
http://en.wikipedia.org/wiki/High-pass_filter#Discrete-time_realization
http://hacking.majenko.co.uk/node/57
http://www.json.org/

43

Appendix A – Arduino code

Cosm program (flow diagram in figure 28)

This is the main code for Arduino micro-controller using Cosm.com to graph the data

#include <SPI.h>

#include <Ethernet.h>

#include <HttpClient.h>

#include <EnergyLib.h> // Include Energy library. It includes functions to simplify the

power calculations

#include <Cosm.h>

PowerMonitor PowerBox; // Create an instance of the class PowerMonitor (EnergyLib)

#define API_KEY "b2T9CblnPKbIAr_a8lahylZ4eI6SAKw5OUplS1duVVFyST0g" // Cosm

API key. Needed to connect to Cosm.com

#define FEED_ID 104737 // Cosm feed ID. Change it if you change your feed.

// MAC address for the Ethernet board

byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0xB6, 0x8E };

unsigned long lastConnectionTime = 0; // last time connected to Cosm

const unsigned long connectionInterval = 15000; // delay between connecting to Cosm in

milliseconds (15secs)

// Initialize the Cosm library. Define the string for our datastream ID

char data0[] = "Energy";

char data1[] = "Voltage";

char data2[] = "Current";

char data3[] = "PowerFactor";

CosmDatastream datastreams[] = {

 CosmDatastream(data0, strlen(data0), DATASTREAM_FLOAT),

 CosmDatastream(data1, strlen(data1), DATASTREAM_FLOAT),

 CosmDatastream(data2, strlen(data2), DATASTREAM_FLOAT),

 CosmDatastream(data3, strlen(data3), DATASTREAM_FLOAT),

};

// Wrap the datastream into a feed

CosmFeed feed(FEED_ID, datastreams, 4 /* number of datastreams */);

//Initialize an instance of Cosmclient and ethernetClient classes.

EthernetClient client;

CosmClient cosmclient(client);

//Initialize network, start serial communication, define input sensors pins and calibration

44

void setup()

{
 Serial.begin(9600);

 Serial.println("Cosm Sensor Client Example");

 Serial.println("==========================");

 Serial.println("Initializing network");

 while (Ethernet.begin(mac) != 1) {

 Serial.println("Error getting IP address via DHCP, trying again...");

 delay(15000);

 }

 Serial.println("Network initialized");

 Serial.println();

 PowerBox.Vcalibrate(A0, 155.5, 1.7); // Voltage: input pin, calibration, phase_shift

 PowerBox.Icalibrate(A1, 3.53); // Current: input pin, calibration.

}

//Main program. Calculate power and upload the data to Cosm.com

void loop()

{
 if (millis() - lastConnectionTime > connectionInterval) {

 PowerBox.calcVI(20,2000); // Calculate all. No.of half wavelengths (crossings),

time-out

 //PowerBox.serialprint(); // Print out all variables

 PowerBox.DataToUpload();

 sendData(PowerBox.dataToBeUploaded); // send data to Cosm

 getData(); // read the datastream back from Cosm

 lastConnectionTime = millis(); // update connection time so we wait before connecting

again

 }

}

// send the supplied value to Cosm, printing some debug information as we go

void sendData(double theData[]) {

 datastreams[0].setFloat(theData[0]);

 datastreams[1].setFloat(theData[1]);

 datastreams[2].setFloat(theData[2]);

 datastreams[3].setFloat(theData[3]);

 Serial.print("Power ");

 Serial.println(datastreams[0].getFloat());

 Serial.print("Vrms ");

 Serial.println(datastreams[1].getFloat());

45

 Serial.print("Irms ");

 Serial.println(datastreams[2].getFloat());

 Serial.print("PowerFactor ");

 Serial.println(datastreams[3].getFloat());

 Serial.println("Uploading to Cosm");

 int ret = cosmclient.put(feed, API_KEY);

 Serial.print("PUT return code: ");

 Serial.println(ret);

 Serial.println();

}

// get the value of the datastream from Cosm, printing out the value we received

void getData() {

 Serial.println("Reading data from Cosm");

 int ret = cosmclient.get(feed, API_KEY);

 Serial.print("GET return code: ");

 Serial.println(ret);

 if (ret > 0) {

 Serial.print("Datastream0 is: ");

 Serial.println(feed[0]);

 Serial.print("Power value is: ");

 Serial.println(feed[0].getFloat());

 Serial.print("Datastream1 is: ");

 Serial.println(feed[1]);

 Serial.print("Vrms value is: ");

 Serial.println(feed[1].getFloat());

 Serial.print("Datastream2 is: ");

 Serial.println(feed[2]);

 Serial.print("Irms value is: ");

 Serial.println(feed[2].getFloat());

 Serial.print("Datastream3 is: ");

 Serial.println(feed[3]);

 Serial.print("PowerFactor value is: ");

 Serial.println(feed[3].getFloat());

 }

 Serial.println();

}

46

Main program (flow diagram in figure 35)

This is the final version of the main code of the Arduino micro-controller. It sends the

data to a database instead of using Cosm.com

//* Pablo Trigo-López

//

// Sketch that measures the power consumption of a device

// and store the data in a server. Later this data is plotted in a graph

//

//*

 #include <SPI.h>

 #include <Ethernet.h>

 #include "EnergyLib.h" // Include Energy library. It includes functions to simplify the

program. It is an open-source library.

 PowerMonitor PowerBox; // Create an instance of the class PowerMonitor of Energylib.h

 //Ethernet configurations

 byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0xB6, 0x8E }; // Ethernet board MAC

 byte ip[] = {144,173,31,2 }; // Local ip direction

 byte server[] = {144,173,31,97}; // Server ip direction

 EthernetClient client; // Create an instance of the class EthernetClient

 //Pines definition. For more information see the ethernet board datasheet

 const int inV = A0; //Voltage input sensor pin.

 const int inA = A1; //Current input sensor pin

 //Constants to control the frequency of data storage.

 unsigned long lastConnectionTime = 0; // Last time connected to the server

 const unsigned long connectionInterval = 55000; // Delay between connecting to the server

in milliseconds (55 secs)

 //General Configuration. Serial and ethernet connection. Calibration.

 void setup()

 {
 Serial.begin(9600); //Start Serial connection

 Serial.println("PowerBox Client Demostration");

 Serial.println("============================");

 Ethernet.begin(mac, ip); //Start the Ethernet connection

 delay(1000); //Give the Ethernet shield a second to initialize

 PowerBox.Vcalibrate(inV, 1.84, 1.7); // Voltage: input pin, calibration, phase_shift

 PowerBox.Icalibrate(inA, 0.3); // Current: input pin, calibration.

 }

47

 //Main program. Required data is calculated and sent to the server database

 void loop()

 {
 if (millis() - lastConnectionTime > connectionInterval)

 {
 PowerBox.calcVI(20,2000); // Calculate all. No.of half wavelengths (crossings), time-out

 PowerBox.serialprint(); // Print out all variables

 PowerBox.DataToUpload(); // Load data in arrays

 sendData(PowerBox.dataToBeUploaded); //Store the data in the database

 lastConnectionTime = millis(); // Update connection time so we wait before connecting

again

 }

 }

 void sendData(double theData[]) {

 Serial.println("Connecting...");

 // If you get a connection, report back via serial:

 if (client.connect(server,80)) {

 // Make a HTTP request:

 client.print("GET /arduino/getData.PHP?rp="); // Send data using GET method

 client.print(theData[0]); //RealPower

 client.print("&vrms=");

 client.print(theData[1]); //Vrms

 client.print("&irms=");

 client.print(theData[2]); //Irms

 client.print("&pf=");

 client.print(theData[3]); //PowerFactor

 client.println(" HTTP/1.0");

 client.println("User-Agent: Arduino 1.0");

 client.println();

 Serial.println("Sucessful connection. Data stored");

 }

 else

 {
 Serial.println("Connection failed");

 }
 // if the server's disconnected, stop the client:

 if (client.connected()) {}

 else

 {
 Serial.println("Disconnected");

 }
 client.stop();

 client.flush();

 }

48

EnergyLib.h (Class PowerMonitor)

This is the library used to calculate the data (real power, current, voltage, etc). It was

obtained by slightly modifying EmonLib.h. This library is available at:

https://github.com/openenergymonitor/EmonLib. This code was not written by the author

of this project. It was just slightly modified from the EmonLib

Libraries are formed by two files (.h and .cpp). The .h extension file is the header that

contains definitions for the library. Basically is a list of everything the library contains. The

.cpp extension file is the source code of the library, the real code.

/*

 EnergyLib.h - Library created by Pablo Trigo modifying EmonLib.h

 (Created by Trystan Lea, April 27 2010) GNU GPL

*/

#ifndef EnergyLib_h

#define EnergyLib_h

#if defined(ARDUINO) && ARDUINO >= 100

#include "Arduino.h"

#else

#include "WProgram.h"

#endif

class PowerMonitor

{
 public:

 //--

 // Declare sensors pins and calibration

 //--

 void Vcalibrate(int _inPinV, double _VCAL, double _PHASECAL);

 void Icalibrate(int _inPinI, double _ICAL);

 //--

 // Calculate power, print results, prepare the data to be uploaded

 //and store data in the database

 //--

 void calcVI(int crossings, int timeout);

 void serialprint();

 void DataToUpload();

 //--

 // Function to read real ADC convertor high level

 //--

https://github.com/openenergymonitor/EmonLib

49

 long readVcc();

 //--

 // Useful value variables

 //--

 double realPower,

 apparentPower,

 powerFactor,

 Vrms,

 Irms;

 //--

 // Variable declaration for Collect data and prepare it to be uploaded

 //--

 double dataToBeUploaded[4];

 private:

 //Set Voltage and current input pins

 int inPinV;

 int inPinI;

 //Calibration coeficients

 //These need to be set in order to obtain accurate results

 double VCAL;

 double ICAL;

 double PHASECAL;

 //--

 // Variable declaration for Power calculation procedure

 //--

 int lastSampleV,sampleV; //sample_ holds the raw analog read value, lastSample_ holds

the last sample

 int lastSampleI,sampleI;

 double lastFilteredV,filteredV; //Filtered_ is the raw analog value minus the DC offset

 double lastFilteredI, filteredI;

 double phaseShiftedV; //Holds the calibrated phase shifted voltage.

 double sqV,sumV,sqI,sumI,instP,sumP; //sq = squared, sum = Sum, inst = instantaneous

 int startV; //Instantaneous voltage at start of sample window.

 boolean lastVCross, checkVCross; //Used to measure number of times threshold is crossed.

 int crossCount;

};#endif

50

EnergyLib.cpp (Includes PowerCalculations subroutine. Flow diagram in figure 23)

The .cpp extension file is the source code of the library, the real code. Here it is the

PowerCalculation subroutine.

/*

 EnergyLib.cpp - Library modified by Pablo Trigo using EmonLib.cpp

 (Created by Trystan Lea, April 27 2010)

 GNU GPL

*/

//#include "WProgram.h" un-comment for use on older versions of Arduino IDE

#include "EnergyLib.h"

#if defined(ARDUINO) && ARDUINO >= 100

#include "Arduino.h"

#else

#include "WProgram.h"

#endif

//--

// Sets the pins to be used for voltage and current sensors. Introduce

// the adecuaquate calibration constant.

//--

void PowerMonitor::Vcalibrate(int _inPinV, double _VCAL, double _PHASECAL)

{
 inPinV = _inPinV;

 VCAL = _VCAL;

 PHASECAL = _PHASECAL;

}

void PowerMonitor::Icalibrate(int _inPinI, double _ICAL)

{
 inPinI = _inPinI;

 ICAL = _ICAL;

}

//--

// POWER CALCULATIONS

// Calculates realPower,apparentPower,powerFactor,Vrms,Irms,kwh increment

// From a sample window of the mains AC voltage and current.

// The Sample window length is defined by the number of half wavelengths or crossings we

choose to measure.

//--

void PowerMonitor::calcVI(int crossings, int timeout)

{
 int SUPPLYVOLTAGE = readVcc();

 int crossCount = 0; //Used to measure number of times threshold is crossed.

51

 int numberOfSamples = 0; //This is now incremented

 //--

 // 1) Waits for the waveform to be close to 'zero' (500 adc) part in sin curve.

 //--

 boolean loop=true; //an indicator to exit the while loop

 unsigned long start = millis();//millis()-start makes sure it doesnt get stuck in the loop if there

is an error.

 while(loop==true) //the while loop...

 {
 startV = analogRead(inPinV);//using the voltage waveform

 if ((startV < 550) && (startV > 440)) loop = false; //check its within range

 if ((millis()-start)>timeout) loop = false;

 }

 //--

 // 2) Main measurment loop

 //--

 start = millis();

 while ((crossCount < crossings) && ((millis()-start)<timeout))

 {
 numberOfSamples++; //Count number of times looped.

 lastSampleV=sampleV; //Used for digital high pass filter

 lastSampleI=sampleI; //Used for digital high pass filter

 lastFilteredV = filteredV; //Used for offset removal

 lastFilteredI = filteredI; //Used for offset removal

 //--

 // A) Read in raw voltage and current samples

 //--

 sampleV = analogRead(inPinV); //Read in raw voltage signal

 sampleI = analogRead(inPinI); //Read in raw current signal

 //--

 // B) Apply digital high pass filters to remove 2.5V DC offset (centered on 0V).

 //--

 filteredV = 0.996*(lastFilteredV+sampleV-lastSampleV);

 filteredI = 0.996*(lastFilteredI+sampleI-lastSampleI);

 //--

 // C) Root-mean-square method voltage

 //--

 sqV= filteredV * filteredV; //1) square voltage values

52

 sumV += sqV; //2) sum

 //--

 // D) Root-mean-square method current

 //--

 sqI = filteredI * filteredI; //1) square current values

 sumI += sqI; //2) sum

 //--

 // E) Phase calibration

 //--

 phaseShiftedV = lastFilteredV + PHASECAL * (filteredV - lastFilteredV);

 //--

 // F) Instantaneous power calc

 //--

 instP = phaseShiftedV * filteredI; //Instantaneous Power

 sumP +=instP; //Sum

 //--

 // G) Find the number of times the voltage has crossed the initial voltage

 // - every 2 crosses we will have sampled 1 wavelength

 // - so this method allows us to sample an integer number of half wavelengths which

increases accuracy

 //--

 lastVCross = checkVCross;

 if (sampleV > startV) checkVCross = true;

 else checkVCross = false;

 if (numberOfSamples==1) lastVCross = checkVCross;

 if (lastVCross != checkVCross) crossCount++;

 }

 //--

 // 3) Post loop calculations

 //--

 //Calculation of the root of the mean of the voltage and current squared (rms)

 //Calibration coeficients applied.

 double V_RATIO = VCAL *((SUPPLYVOLTAGE/1000.0) / 1023.0);

 Vrms = V_RATIO * sqrt(sumV / numberOfSamples);

 double I_RATIO = ICAL *((SUPPLYVOLTAGE/1000.0) / 1023.0);

 Irms = I_RATIO * sqrt(sumI / numberOfSamples);

 //Calculation power values

 realPower = V_RATIO * I_RATIO * sumP / numberOfSamples;

53

 apparentPower = Vrms * Irms;

 powerFactor=realPower / apparentPower;

 //Reset accumulators

 sumV = 0;

 sumI = 0;

 sumP = 0;

//--

}

void PowerMonitor::serialprint()

{
 Serial.print(" RealPower: ");

 Serial.println(realPower);

 Serial.print(" Vrms: ");

 Serial.println(Vrms);

 Serial.print(" Irms: ");

 Serial.println(Irms);

 Serial.print(" PowerFactor: ");

 Serial.println(powerFactor);

 Serial.print(" FilteredV: ");

 Serial.println(filteredV);

 delay(100);

}

void PowerMonitor::DataToUpload()

{
 dataToBeUploaded[0]=realPower;

 dataToBeUploaded[1]=Vrms;

 dataToBeUploaded[2]=Irms;

 dataToBeUploaded[3]=powerFactor;

}

//Measuring the real Vcc suply of the ADC converter for precise calculations

long PowerMonitor::readVcc() {

 long result;

 #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined

(__AVR_ATmega328P__)

 ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);

 #elif defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) ||

defined(__AVR_ATmega2560__)

 ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);

 #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) ||

defined(__AVR_ATtiny84__)

 ADMUX = _BV(MUX5) | _BV(MUX0);

54

 #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) ||

defined(__AVR_ATtiny85__)

 ADMUX = _BV(MUX3) | _BV(MUX2);

 #endif

 delay(2); // Wait for Vref to settle

 ADCSRA |= _BV(ADSC); // Convert

 while (bit_is_set(ADCSRA,ADSC));

 result = ADCL;

 result |= ADCH<<8;

 result = 1126400L / result; //1100mV*1024 ADC steps

http://openenergymonitor.org/emon/node/1186

 return result;

}

55

Appendix B – PHP and JavaScript code

Config.php script (Connecting to the database)

This PHP script is the essential code to connect to the database. It would be included in

every PHP script.

<?PHP

//Database data

$host = "localhost";

$db = "test";

$user = "root";

$pass = "*****";

//Establish a connection

$conn = new PDO("mysql:host=$host;dbname=$db",$user,$pass);

?>

GetData.php script (Receiving the data. Flow diagram in figure 29)

This PHP script captures the real time data from the Arduino and store it in the database.

<?PHP

include("config.php");

//Getting the data from the arduino

$RealPower = $_GET["rp"];

$Vrms = $_GET["vrms"];

$Irms = $_GET["irms"];

$PowerFactor = $_GET["pf"];

//Preparing the sql query

$sql = "INSERT INTO energy(RealPower, Vrms, Irms, PowerFactor) VALUES (:realpower,

:vrms, :irms, :powerfactor)";

// Prepares and stores the SQL statement in query

$query = $conn->prepare($sql);

//Safe method to pass parameters and reject SQL injections.

$query->bindParam(':realpower', $RealPower);

$query->bindParam(':vrms', $Vrms);

$query->bindParam(':irms', $Irms);

$query->bindParam(':powerfactor', $PowerFactor);

//Executing the query

 if($query->execute()){

 //good

}else{

 echo "Error executing the query";

}

?>

56

getData1day.php script (flow diagram in figure 30)

This script selects all the data from the previous day and stores it in other table reducing

the number of points.

<?php

/*This script is executed by a programmed task of the local server. It is executed every day at

midnight

to store the data from one day */

//Include the file to connect to the database

include("config.php");

//Preparing the SQL query. Selecting all the data from the previous day (-1 DAY)

$sql = "SELECT Time,RealPower,Vrms,Irms,PowerFactor FROM energy WHERE

(DATE(Time) = DATE_ADD(CURDATE(),INTERVAL -1 DAY))";

//Storing the SQL statement in $query

$query = $conn->prepare($sql);

//Executing the query

if($query->execute()){

 //fetch the data in an array

 $results = $query->fetchALL(PDO::FETCH_ASSOC);

 //Organize the data in differente arrays

 foreach($results as $result){

 $time[] = $result['Time'];

 $realPower[] = $result['RealPower'];

 $vrms[] = $result['Vrms'];

 $irms[] = $result['Irms'];

 $powerFactor[] = $result['PowerFactor'];

 }

}else{

 echo "Error executing the query 1";

}

//Storing points every 10 minutes instead of every minute.

$timeMean = get10min($time,10);

$realpowerMean = get10min($realPower, 10);

$vrmsMean = get10min($vrms, 10);

$irmsMean = get10min($irms, 10);

$powerfactorMean = get10min($powerFactor, 10);

$completeMean=array($timeMean,$realpowerMean,$vrmsMean,$irmsMean,$powerfactorM

ean);

//Inserting the last day values in the table energy1day

 for($i=0;$i<=count($completeMean)-1;$i=$i+1){

 $sql = "INSERT INTO energy1day(Time,RealPower,Vrms,Irms,PowerFactor) VALUES

(:time,:realpower,:vrms,:irms,:powerfactor)";

 // Prepares and stores the SQL statement in query

 $query = $conn->prepare($sql);

57

 //Safe method to pass parameters and reject SQL injections.

 $query->bindParam(':time', $completeMean[0][$i]);

 $query->bindParam(':realpower', $completeMean[1][$i]);

 $query->bindParam(':vrms', $completeMean[2][$i]);

 $query->bindParam(':irms', $completeMean[3][$i]);

 $query->bindParam(':powerfactor', $completeMean[4][$i]);

 //Executing the query

 if($query->execute()){

 }else{

 echo "Error executing the query";

 }

}

//Function to get points every 10 minutes instead of 1 minute.

function get10min($data, $minutes){

 for($cont=0; $cont< count($data); $cont=$cont+$minutes){

 $mean[] = $data[$cont];

 }

 return $mean;

}

?>

DisplayDataRT.php script (Data collecting and formatting. Flow diagram in figure 31)

This PHP script pulls back the data from the database and prepare it in a specific format

to be graphed later.

<?php

header('Content-Type: application/json');

include("config.php");

//Preparing the sql query for selecting the data. It only selects the last row stored.

$sql = "SELECT UNIX_TIMESTAMP(Time),RealPower,Vrms,Irms,PowerFactor FROM

energy ORDER BY id DESC LIMIT 1";

// Prepares and stores the SQL statement in query

$query = $conn->prepare($sql);

//Executing the query

if($query->execute()){

 //fetch the data in an array

 $data=$query->fetch(PDO::FETCH_NUM);

 //Preparing the data in separate arrays

 $powerArray=array($data[0]*1000,$data[1]);

 $vrmsArray=array($data[0]*1000,$data[2]);

 $irmsArray=array($data[0]*1000,$data[3]);

 $powerfactorArray=array($data[0]*1000,$data[4]);

 $completeArray=array($powerArray,$vrmsArray,$irmsArray,$powerfactorArray);

58

 //Encoding into json format. This is needed to use the data with highcharts script

 $jsonResult=json_encode($completeArray);

 //Deleting the double quotes from the json strings and printing them.

 //This is necessary due the method used to graph the data with highcharts.

 echo str_replace('"', '', $jsonResult);

 //echo $jsonResult;

}else{

 echo "Error executing the query";

}

?>

DisplayData1day.php script (Data collecting and formatting. Flow diagram in figure 32)

<?php

//Making the code suitable for all the graphs

$type = $_GET["type"];

$validParams = array('RealPower', 'Vrms', 'Irms', 'PowerFactor');

if(!in_array($type, $validParams)){

 die('Error!');

}

include("config.php");

//Selecting just the last day data

$sql = "SELECT * FROM energy1day WHERE (DATE(Time) =

DATE_ADD(CURDATE(),INTERVAL -1 DAY))";

// Prepares and stores the SQL statement in query

$query = $conn->prepare($sql);

//Executes the query

if($query->execute()){

 //Fetch the data in an array

 $results = $query->fetchAll(PDO::FETCH_ASSOC);

 //Show the data in a correct format

 foreach($results as $result){

 $uts=strtotime($result['Time']);//convert Time to Unix Timestamp

 $date=date("l, F j, Y H:i:s",$uts);

 echo $date. "\t" . $result[$type]. "\n";

 }

}

?>

GraphRT.js JavaScript (Graphing the data. Flow diagram in figure 33)

This JavaScript is in charge of requesting the data from the displayData PHP script and

graph it using Highcharts.

59

$(document).ready(function() {

/**

 * Request data from the server, add it to the graph and set a timeout to request again

 */

 function requestData() {

 $.ajax({

 url: '/arduino/displayDataRT.php',

 success: function(point) {

 var series1 = chart1.series[0];

 //point contains the data of displayData.php

 var shift1 = series1.data.length > 20; // shift if the series is longer than 20

 var series2 = chart2.series[0],

 shift2 = series2.data.length > 20; // shift if the series is longer than 20

 var series3 = chart3.series[0],

 shift3 = series3.data.length > 20; // shift if the series is longer than 20

 var series4 = chart4.series[0],

 shift4 = series4.data.length > 20; // shift if the series is longer than 20

 // add the point in each graph

 chart1.series[0].addPoint(point[0], true, shift1); //point[0] contains time and

RealPower

 chart2.series[0].addPoint(point[1], true, shift2); //point[1] contains time and Vrms

 chart3.series[0].addPoint(point[2], true, shift3); //point[2] contains time and Irms

 chart4.series[0].addPoint(point[3], true, shift4); //point[3] contains time and

PowerFactor

 // call it again after 55 secs

 setTimeout(requestData, 55*1000);

 },
 cache: false

 });

 }
 requestData();

 //Default settings for all the graphs.

 var defaultOptions={

 chart: {

 defaultSeriesType: 'line',

 },
 xAxis: {

 type: 'datetime',

 tickPixelInterval: 100,

 minRange: 1200*1000 //20 minutes

 },
 yAxis: {

 minPadding: 0.2,

 maxPadding: 0.2,

 title:{

60

 margin:50

 }

 }

 };

 //Specific settings for the RealPower graph

 var chartPowerOptions={

 chart: {

 renderTo: 'RealPower',

 defaultSeriesType: 'area'

 },
 title: {

 text: 'Real Power'

 },

 yAxis: {

 title: {

 text: 'Watios (W)'

 }

 },
 series: [{

 name: 'Real Power',

 data: []

 }]

 };
 //Specific settings for the Voltage graph

 var chartVrmsOptions={

 chart: {

 renderTo: 'Voltage'

 },
 title: {

 text: 'Vrms (Voltage)'

 },
 yAxis: {

 title: {

 text: 'Volts (V)'

 }

 },
 series: [{

 name: 'Voltage',

 data: []

 }]

 };
 //Specific settings for the Current graph

 var chartIrmsOptions={

 chart: {

61

 renderTo: 'Current'

 },
 title: {

 text: 'Irms (Current) '

 },
 yAxis: {

 title: {

 text: 'Amperes (A)'

 }

 },
 series: [{

 name: 'Current',

 data: []

 }]

 };
 //Specific settings for the PowerFactor graph

 var chartPFactorOptions={

 chart: {

 renderTo: 'PowerFactor'

 },
 title: {

 text: 'PowerFactor'

 },
 yAxis: {

 title: {

 text: 'PowerFactor',

 }

 },
 series: [{

 name: 'PowerFactor',

 data: []

 }]

 };

//Extending the specific options: Adding the defaultoptions to every specific options

 chartPowerOptions = jQuery.extend(true, {}, defaultOptions, chartPowerOptions);

 chartVrmsOptions = jQuery.extend(true, {}, defaultOptions, chartVrmsOptions);

 chartIrmsOptions = jQuery.extend(true, {}, defaultOptions, chartIrmsOptions);

 chartPFactorOptions = jQuery.extend(true, {}, defaultOptions, chartPFactorOptions);

//Creating the graphs

 var chart1 = new Highcharts.Chart(chartPowerOptions); //RealPower graph

 var chart2 = new Highcharts.Chart(chartVrmsOptions); //Voltage graph

 var chart3 = new Highcharts.Chart(chartIrmsOptions); //Current graph

 var chart4 = new Highcharts.Chart(chartPFactorOptions); //PowerFactor graph

});

62

Graph1day.js JavaScript (Graphing the data. Flow diagram in figure 34)

This JavaScript is in charge of requesting the data from the displayData1day PHP script

and graph it using Highcharts to obtain the last day graphs.

 var chart;

 $(document).ready(function() {

 //Options for the graph style. Highcharts code

 var options = {

 chart: {

 defaultSeriesType: 'line'

 },
 title: {

 },
 xAxis: {

 type: 'datetime',

 minRange: 3600*24*1000, //24 hours

 },
 yAxis: {

 minPadding: 0.2,

 maxPadding: 0.2,

 title: {

 margin:50

 },

 },
 tooltip: {

 formatter: function() {

 return Highcharts.dateFormat('%a, %b %e, %H:%M:%S', this.x)+'
'+

this.series.name +': '+''+Highcharts.numberFormat(this.y,

2)+'';

 }

 },
 series: [{

 name: ''

 }]

 }
 //Calling the functiong "graph" for each variable.

 graph('RealPower');

 graph('Vrms');

 graph('Irms');

 graph('PowerFactor');

 //Function Graph

 // Load data asynchronously using jQuery. On success, add the data

 // to the options and initiate the chart.

 // This data is obtained by exporting a GA custom report to TSV.

 // http://api.jquery.com/jQuery.get/

63

 function graph(type){

 jQuery.get('displayData1day.php?type=' + type, null, function(tsv) {

 var lines = [];

 traffic = [];

 try {
 // split the data return into lines and parse them

 tsv = tsv.split(/\n/g);

 jQuery.each(tsv, function(i, line) {

 line = line.split(/\t/);

 date = Date.parse(line[0] +' UTC');

 traffic.push([

 date,

 parseInt(line[1].replace(',', ''), 10)

]);

 });
 } catch (e) { }

 //Adding the data to the graph, setting some graph options and creating the graph

 options.series[0].data = traffic;

 options.chart.renderTo = type;

 options.chart.defaultSeriesType = getChartType(type); //Selecting the chart type

 options.title.text = getTitle(type); //Selecting the title of the graph

 options.yAxis.title.text= getTitleYAxis(type); //Selecting the title of the Y Axis

 options.series[0].name = type; //Selecting the name of the series

 chart = new Highcharts.Chart(options); //Creating the graph

 });

 }

 //Function to determine the title of each graph

 function getTitle(type){

 switch (type){

 case "RealPower":

 return "Real Power";

 case "Vrms":

 return "Vrms (Voltage)";

 case "Irms":

 return "Irms (Current)";

 case "PowerFactor":

 return "Power Factor";

 default:
 return "";

 }

 }
 //Function to determine the title of the Y Axis of each graph

 function getTitleYAxis(type){

 switch (type){

 case "RealPower":

64

 return "Watios (W)";

 case "Vrms":

 return "Volts (V)";

 case "Irms":

 return "Amperes (A)";

 case "PowerFactor":

 return "PowerFactor";

 default:
 return " ";

 }

 }
 //Function to determine the type of the chart of each graph

 function getChartType(type){

 switch (type){

 case "RealPower":

 return "area";

 case "Vrms":

 return "line";

 case "Irms":

 return "line";

 case "PowerFactor":

 return "line";

 default:
 return " ";

 }

 }

});

IndexRT.php file (Website)

This code is the main website that shows all the real time graphs.

<html>

<head>

<title>Highcharts example Real Time</title>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></script>

<script src="http://code.highcharts.com/highcharts.js"></script>

<script type="text/javascript" src="js/themes/gray.js"></script>

<script type="text/javascript" src="/arduino/graphRT.js"></script>

</head>

<body bgcolor="#C0C0C0">

<center><img src="/images/logo.png" alt="Energy" width="656" height="98"

usemap="#planetmap"><center></p>

65

<map name="planetmap">

<area shape="realtime" coords="120,70,205,83" href="indexRT.php" alt="Real Time">

<area shape="lastday" coords="240,70,323,83" href="/arduino/index1day.php" alt="Last

day"></map>

<div id="RealPower" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="Voltage" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="Current" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="PowerFactor" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

</body>

</html>

Index1day.php file (Website)

This code is the main website that shows all the last day graphs.

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Highcharts Last day example</title>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></script>

<script src="http://code.highcharts.com/highcharts.js"></script>

<script type="text/javascript" src="../js/themes/gray.js"></script>

<script type="text/javascript" src="/arduino/graph1day.js"></script>

</head>

<body bgcolor="#C0C0C0">

<center><img src="/images/logo.png" alt="Energy" width="656" height="98"

usemap="#planetmap"><center></p>

<map name="planetmap">

<area shape="realtime" coords="120,70,205,83" href="../indexRT.php" alt="Real Time">

<area shape="lastday" coords="240,70,323,83" href="/arduino/index1day.php" alt="Last

day"></map>

<div id="RealPower" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="Vrms" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="Irms" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

<div id="PowerFactor" style="min-width: 400px; height: 400px; margin: 0 auto"></div>

</body>

</html>

delete7days.php script

This PHP script is executed by a programmed task every 7 days to delete all the data from

the last 7 days. This is done to leave free space in the database after a while.

66

<?php

/* This script is executed by a programmed task of the local server every 7 days.

It deletes all the data stored in the last 7 days to make space*/

//Include the file to connect to the database

include("config.php");

//Preparing the first SQL query.

$sql = "DELETE * FROM energy";

//Storing the SQL statement in $query

$query = $conn->prepare($sql);

//Executing the query

if($query->execute()){

 console.log('Energy table data deleted')

 }

}else{

 echo "Error executing the 1st query";

}

//Preparing the second SQL query.

$sql = "DELETE * FROM energy1day";

//Storing the SQL statement in $query

$query = $conn->prepare($sql);

//Executing the query

if($query->execute()){

 console.log('Energy1day table data deleted')

 }

}else{

 echo "Error executing the 2nd query";

}

?>

Task1day.bat script (for the every day programmed task)

This file is need to program the task that runs every day at midnight. It executes the

„getData1day‟ PHP script that stores the data at the end of the day in other table (script from

the flow diagram of figure 30)

@ECHO OFF

C:\Server\PHP\php.exe -f "C:\Server\WEB\arduino\getData1day.php"

Task7days.bat script (for the 7 day programmed task)

This file is needed to program the task that runs every 7 days. It executes the

„delete7days‟ PHP script that deletes the data of the database.

@ECHO OFF

C:\Server\PHP\php.exe -f "C:\Server\WEB\arduino\delete7days.php"

