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ABSTRACT

First and second order optimality conditions for optimal control problems over the
infinite time horizon subject to the Navier Stokes equations are derived. The cost
functional enhances temporal sparsity of the controls, which implies that the optimal
controls shut down in finite time. The problem formulation also includes explicit
constraints on the control which may be non-smooth and non-affine.
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1. Introduction

This paper concerns the following optimal control problem

p .
( ) u(t)Ganlolrna.a tel J(U),

where

1 Q
Tw) = 5 [ 1300 = yaOleoy dt + 5 [ IaOIaq e+ 5 [ @) a



I denotes the infinite horizon (0,00), o, § > 0 with ao + 5 > 0, yy is the solution of
the Navier-Stokes system

0
S Ay + (v V)Y +Vp=fotxeu inQ=0x1,

divy=0 inQ, y=0 onX=Ix1I, y(0) =ypin €,

(1)

and K is a closed, bounded, and convex subset of L7 (w) with o € [1,00]. Further
denotes a bounded domain in R? with a C® boundary I, and w is a subset of  with
positive Lebesgue measure. Assumptions on fy and y4 will be made below.

The specificities of this problem are the following: it is posed over the infinite time
horizon [0, o), it may contain a non-differential term for the control cost, and it allows
quite general explicit constraints on the control. Concerning the infinite time horizon,
observe that due to the energy conserving property of the Navier-Stokes nonlinearity,
the existence of feasible controls does not create a difficulty and the control problem
(P) is really on optimal control problem and not a stabilization problem in disguise.
But still, standard results from the analysis of optimality conditions for optimal con-
trol over finite horizons cannot directly be utilized here, since typically the dependence
of constants on the time horizon within a priori estimates, for the adjoint equation, for
instance, is not analyzed. The L' term with respect to time in the cost of the control
is sparsity promoting. As a consequence the control will shut off and be identically
zero, for all ¢ sufficiently large, if 8 # 0. To the best of our knowledge such a term has
not been considered for optimal control of Navier-Stokes equations before. Concerning
explicit constraints on vector valued controls, the existing literature almost exclusively
treats affine coordinate-wise constraints, whereas we allow integral constraints which
involve the Euclidean norm of the vector-valued controls. A second order analysis for
this kind of constraints has apparently not been carried out in the PDE-constrained
optimal control literature before. It can also be of use for vector-valued controls inde-
pendently of the Navier Stokes context.

On a technical level, the difficulties which need to be overcome include the following:
On the infinite time horizon the Aubin-Lions lemma does not hold. The resulting lack
of compactness necessitates to treat separately the long time behavior of the solutions
to the primal as well as the adjoint equations. Differently from the finite horizon case,
the transversality condition in the first order optimality system is more complicated to
specify. It amounts to characterizing the behavior of the adjoint state as time tends to
infinity. Within the derivation of second order necessary conditions the construction of
a sufficiently rich set of feasible directions approximating the optimal control, is quite
delicate. As we shall see it requires to take into consideration the geometry of the set
of admissible controls. Let us point out here, that our constraints are not of affine or
polygonal nature, rather we can think of them as to allow curved boundaries.

Let us mention some of the literature which is related to the contributions of this
paper. Optimal control for problems over an infinite time horizon has been investigated
by the authors of this paper for semilinear parabolic equations in [I4JI6], and in [5]
for bilinear control problems. The sparsifying effect for stabilization problems was first
pointed out [I1]. Differential from the PDE-context, infinite horizon optimal control for
ordinary differential equation has received much attention. Likely its analysis started
with Halkin’s work [22]. Much of the earlier work is described in [7]. More recent
contributions can be found for instance in [3] and [4].



Concerning optimal control of the Navier Stokes equations there is a vast literature;
see, for instance, the monographs [20] and [26] and the references there in. Thus, we
restrict ourselves to those publications which are directly concerned with the research
of our paper. Regarding second order analysis for Navier-Stokes control problems we
mention [§], [29], and [30]. In these references, the control constraints are of pointwise
type. In [21], first order conditions were derived for constraints of type |[u(t)||r2() < 7-
We are not aware of any result on infinite horizon open loop control for the Navier-
Stokes equations and second order conditions for constraints which are not of pointwise
type. New estimates involving the asymptotic behavior as ¢ — oo were necessary to
deal with the state and adjoint state equations; see Lemma and Theorem

We turn to a brief description of the results of this paper. Section 2 contains the
state space analysis of the 2-D Navier Stokes equation on the temporal interval [0, co)
in the setting which is relevant for the remainder of the paper. In particular this means
that the forcing function is admitted to be of low regularity only, so that the case 0 = 1
is included. The analysis of the optimal control problem and first formulations of first-
order necessary conditions are given in Section 3. Here we distinguish the cases whether
a, respectively [ are zero or not. In Section 4 we choose K the closed ball in L7 (w)
centered at zero with radius v > 0, and consider separately the cases 0 = 1, 0 = 2, and
o = 00. In these cases the vector norm on the control vectors is chosen as the Euclidean
norm in R2. More detailed first order conditions than in Section 3, as well as necessary
and sufficient second order conditions are given for these cases. The Appendix contains
the proofs for two technical lemmas from Section 2.

We mention that the second order analysis carried out in section [ for the cases
o0 =1 and o0 = 2 is new and its treatment is very different from the frequently studied
case 0 = co. Even, the case 0 = oo cannot be treated in the usual way due to the fact
that the control takes vector values and the constraints are not imposed separately on
each component of u(t), but on its Euclidean norm; see Theorem In the case of
semilinear parabolic equations on finite horizon and a scalar control, the case 0 = 1
was studied in [I5]. The proof of second order necessary conditions for o = 1 given in
section 4.2] is inspired by arguments used in [I0] and [I5] for finite horizon problems.
In [I0] we consider measure value controls. An extended cone was required to establish
the sufficient second order conditions. In [I5], the term promoting sparsity was not
present. The technique of proof for o = 2 is new and completely different.

Notation
We denote W{*(€) = W,*(Q) x Wy*(Q) for s € (1,00), endowed with the norm

o = ( / |Vy|8dx> - ( JI |Vyz|213dw)

As usual, for s = 2 we set H}(Q) = W(l)’2((2). We also consider the spaces

Iy llwee @) = VY]

H = closure of {¢ € CF(Q) : dive =0} in L*(Q) = L*(Q) x L*(Q),
W, () = {y e Wy* () : divy =0}, V =Wy(Q).



For r,s € (1,00) and 0 < T < oo we define the reflexive Banach spaces

0
Wia(0,7) = {y € L'(I;W.(@) : 57 € LT(1; W ()},
WrH0,T) ={y € L'(LEA(Q) N V) : %‘;’ € L'(I;H)},
with the norms
dy
I¥lw,..com = HyHL*"(I;Wé'S(Q)) + HEHLT'(I;WS,(Q)')y

y
1¥llw21 0 = I¥llLr@m2) + ||a||LT(I;H)-

Above s’ stands for the conjugate of s: s' = 5. If r = s = 2 we denote W(0,T) =
Wo5(0,T) and V21(0,T7) = W7'(0,T). In the case T = oo the notation (0,7 will
be replaced by I in the above spaces.

Now we consider the interpolation spaces By, (€2) = (W4 (Q)', W(Q))1_1 ., From
[T, Chap. I11/4.10.2] we know that W, 4(0,T") C C([0,T];Bs,(€2)) and the trace map-
ping y € W, 4(0,T) — y(0) € Bs,(Q) is surjective. If r = s = 2, then it is known
that B2 2(Q) = (V', V)1, = H. Hence, the embedding W(0,T) C C([0,7]; H) holds;
see [23, Page 22, Proposition 1-2.1] and [28 Page 143, Remark 3].

2. Analysis of the state equation

The aim of this section is to study the well-posedness of the following problem

0
%—uAy—i—(y-V)y—i—Vp:f in Q,

divy=0 inQ, y=0 on X, y(0) =yp in Q,

(2)

where v > 0, £ € LI([; W=1P(Q)) N LA (I; W~LP(Q)), and yo € B24(Q) + B, ().
The parameters p and g are fixed throughout this manuscript, and it is assumed that

<p<2andq>8 (3)

[OUN RSN

holds. All the results of this paper remain valid if we assume that p € [2,00) because
of the embedding W *(2) ¢ W{P(Q) for every s > p. For p < 2 we have that
L'(Q) ¢ W=12(Q), which is necessary to deal with the case where f = fy + y,u with
controls u € L>®°(I; L!(w)). We give the results for p < 2 to simplify the presentation
avoiding different cases depending on the value of p. Moreover, the analysis for p > 2
is simpler.

Now we introduce the following spaces:

Y = [L*(I; V) N L®(LH)] + [LYI; Wp(Q)) N LY W,(Q2))], Yo =H+ B, (),
YV =Wya(l) + Wy, (1) N Wy,(I), Vo = B24(22) + B, 4(Q),



and observe that J C Y and )y C Y. They are Banach spaces for the canonical
norms, for instance, for Y and ) we have

lylly = y:in}fryz Iyillzzovy + Iyilleem) + 1y2llzow, @) + 1y2llosw, @),

Iylly = _inf llyillw..c) + Iy2llw,,m + lyallw.,o-
The choice of these spaces is inspired by those chosen for measure-valued controls in
[12/13], adapted to the infinite horizon case which leads to the power 4 for the Sobolev
index in time in the above definitions of Y and ). They are sufficiently large such
that controls in L9(I; LY (w)) N L4(I; L} (w)) and quite general initial conditions are
admitted. Moreover they allow first and second order derivatives for the control to
state mapping for the choice ).

We note that for the finite horizon the continuous embedding W, ,(0,7) C
W, ,(0,7T) is fulfilled. Hence, we have the embedding of the trace spaces B, 4(Q2) C
B, 4(f2). Therefore, taking into account that the image space for the trace mappings
Yy € Wy (0, T) = y(0) € By, () is the same for any finite interval (0,T") as for I, the
continuity and surjectivity of the mapping y € W ,(I) "Wy ,,(I) = y(0) € B, 4(Q)
follows.

In order to define the notion of solution of , we need the following technical
lemma, whose proof is given in the Appendix.

Lemma 2.1. If (3) holds, the bilinear operators B : Y x Y — L?>(I;H Y(Q)) and
B:YxY — LYI;HYQ)) defined by B(y1,y2) = B(y1,y2) = (y1 - V)y2 are

continuous.

As usual, we can remove the pressure from the equation by using divergence
free test functions.

Definition 2.2. We say that y € W(I) + W ,(I) is a variational solution of if
for almost every t € I

d

(YO ¥)w, 0y w, @+ aly (). 9) + by (1), y(1). %)
= (£(1), %)y wiv @) T € Wi (), )
y(0) = yo,

2
Vy(e.t)s Vo) e = vy [ Tyile )V o) da.
i=1 /¢
b(y(t),y(t),¥) = (B(y(t),y®)), ¥)a-1 ) H(Q) = /Q[Y(t) Vly(t) - Vip du.
A distribution p in @ is called an associated pressure if the equation
dy :
a—uAy—l—(y-V)y—l—Vp:f in Q

is satisfied in the distribution sense. Then, (y,p) is called a solution of (2).



Given y satisfying , the pressure p is obtained by using De Rham’s theorem; see
[25, Lemma IV-1.4.1]. The next theorem is the main result of this section.

Theorem 2.3. Suppose that holds. Then, system has a unique solution (y,p) €
WD) + Wy (1) N Wap(D)] x [W=19(I: L) /) 1 W=1A(1: L(Q)/R)] for coery
yo € Yo and f € LY(I; W=LP(Q))NLA(I; W=LP(Q)), and there exists a nondecreasing
continuous function n, 4 : [0,00) — [0, 00) with 1y, 4(0) = 0 such that

130 < g (11 2o 1w, ) + IE i, ) + Ivolly ) (5)

where || - || denotes the norm in W (I) + Wy ,(I) N Wy ,(I). Furthermore, if yo € Vo,
then the regularity y € Y holds.

We establish two lemmas to carry out the proof of this theorem.

Lemma 2.4. Given g € L"(I; W™15(Q)) and yso € Bs,(Q) with 1 < 1,5 < o0,
there exists a unique solution (ys,ps) € W, s(I) x W=7 (I; L*(2) /R) of the following
equation

dys .
W_VAYS"FVPS—g m Q7 (6)

divys =0 inQ, ys=0 on 3, ys(0) =yso in Q.

Moreover, there exists a constant Cy s independent of (g,ys0) such that

Iyslw, .y < Crs (gl rw. ) + I¥solle, . ))- (7)

The reader is referred to [I3, Therem 2.5] for the proof of this result, where the
C3 regularity of I' is needed to use the maximal parabolic regularity for the Stokes
system. There the proof was made for finite horizon intervals (0,7"), but the same is
valid without changes for I. The only issue to take into account is that the maximal
parabolic regularity results used there are also valid for infinite horizon intervals; see
[18] or [19].

Lemma 2.5. Given (g,yno) € L2 (I;HY(Q)) x H, e;,e2 € Y, and vy > 0, the
system

0 .
% —vAyN +1(yn - V)yn +(e1-V)yn + (yv - V)ea + Vpy =g in Q,
divyy =0 inQ, yvn =0 on X, yn(0) =yno in
(8)
has a unique solution (yn,pn) € W(I) x W=L°(I; L2(Q)/R). Furthermore, there



exists a nondecreasing function ny : [0,00) — (0,00) such that

Iyl e + I~z < o (lleally ) (gl + Iynolla )
Iy liwin < vor (lealiv) (llgll 2wy + Iy vollee)) (9)
(1 + v+ letlly + lealy)nv(llealiy) + 1 (lglzairve) + Iy nollzee)-

In addition, if g € LY(I; H71()), e1,e2 € L¥(I;L*(2)), and yno € B24(Q), then the
regularity yn € Wa2(I) holds.

The proof is carried out in the Appendix.

Proof of Theorem[2.3. Using [13, Theorem 2.4] and arguing as in the proof of
Lemma we infer the existence and uniqueness of a solution (y,p) € [W(I) +
W, (D] xW=L4(T; LP(Q)/R) of (2]) as well as the estimate . To prove the additional
regularity under the assumption yg € )y we decompose ([2)) into the following two

systems
dys e
divys =0 in @, ys =0 on ¥, ys(0) =yso in Q,
0
% —VAYN + (YN - V)yn + (ys - V)yn + (yn - V)ys + Vpy

= —(ys - V)ys in@Q, (11)
divyy =0 in Q, yvn =0 on X, yny(0) = yno in £,

where yg = yno+¥so. From Lemma we infer the existence and uniqueness of a so-
lution (ys,ps) € [Wyp(I) x WH(I; LP(Q) /R)| N [Wa,(I) x WL4(I; LP(Q) /R)] and
the estimate @ holds with s = p, r = ¢ and also r = 4. For equation we observe
that the right hand side (ys-V)ys is an element of L?(I; H™1(f)), which follows from
Lemma [2.1} Then, applying Lemma [2.5| with g = 1 and e; = e2 = yg we get the exis-
tence and uniqueness of a solution (yy,pn) € W(I) x W=12(I; L?(2)/R) satisfying
the estimate (9). Looking at (L1)), we also deduce that py € W—12(I; L?(Q)/R); see
[25, Lemma IV-1.4.1]. Then, by interpolation we get that py € W~54(I; L2(Q)/R) N
W=L4(I; LP(Q)/R). Finally, using the embedding L?(Q2) C LP(Q2) we conclude that
py € WH(I; LP(Q)/R). Now, it is immediate to check that (y,p) = (yn + ys,pn +
ps) € (W) + W, (I) "Wy, (1)] x [W=H4(I; LP(Q)/R) N W—L4(T; LP(Q) /R)] solves
the equation . The uniqueness was established in [I3, Theorem 2.4].

Now we assume that yy € )y and prove that y € ). By Lemmawe get that (yg-
V)ys € LA(I;H1(Q)) and yg € L8(I; L*(Q)). Then, we infer from Lemma that
yN € Wy o(I). Hence, the regularity y = yn+ys € Wyo(I)+[Wyp(I)NWy,(I)] =Y
holds. O

We finish this section analyzing the differentiability of the mapping

G:LYLW PPQ)N LY I, WP(Q) — Y



associating to each element £ € LI(I; W—LP(Q))NLA(T; W—LP(Q)) the solution yp € Y
of ().

Theorem 2.6. The mapping G is of class C*°. Further, given f g ,g1,82 €
LYL;W=LP(Q)) N LY WEP(Q)) we have that zg = G'(f)g and zg g =
G"(f)(g1,82) are the unique solutions of the systems

0
5 —vAz+(ye- V)t (z-V)ye+ Va=g in Q.

divz=0 inQ, z=0 onX, z(0)=0 inQ,

and

0
5? —VvAz + (yf . V)Z + (Z : v)yf + vq = _(Zgz : V)Zgl - (Zgl : V)Zgz in Q,
divz=0 in@Q, z=0 onX, z(0)=0inQ,
(13)
respectively, where y¢ = G(f) and zg, = G'(f)g; fori=1,2.

Proof. Let us define the space W = L*(I; V') + Li(I; W, (2)") N L*(I; W, (22)") en-
dowed with the norm

[h[lw = mf{|[h[ L2 vy + [hellLazw, @) + IhellLagw,, @) - =h1 +ha}.

Thus, W is a Banach space. We also consider the operators Ay : V. — V' and
Aw : W,(Q) — W, ()’ given by

(Avy,z)v' v = 1// Vy :Vzdx, Vy,ze€V,
Q

(Awy, z)w,, () W, (@) = V/QVY 1 Vzdr, V(y,z) € Wp(§2) x Wy (Q).

Associated with these two continuous operators we define
A:Y — W, Ay = Avy: + Awya,

where y = y; +y2 with y; € Wyo(I) and y2 € W, ,(I) N Wy, (I). It is immediate
to check that Ay is independent of the chosen representation y = y; + yo, and it is
continuous. Now, we introduce the mapping

F Y x LYWy ()) N LA W, (Q)) — W x D,

Fly.f) = (% + Ay + B(y,y) — £.y(0) — yo>,
where yg € ) is the initial condition in . Recall that Y € C(I;))p) holds. Hence,
y €Y —y(0) € ) is a linear and continuous mapping. Moreover, Lemma implies
that y € ¥ — B(y,y) € LYI;H Y(Q)) C L*(I; V') C W is bilinear and continuous.
By definition of Wy 2(I) and W (1) N Wy, (1) we also have that % Y = Wisa
linear and continuous operator. All together this implies that F is a C'°°° mapping.



Given f € LI(I; Wy (Q)") N LY(I; W, (Q)'), we denote by y¢ € Y the solution of ().
Then, we have that

OF

@(yf,f) : y — W X yo,

OF 0z

Gy i)z = (5 +A42+B(y.2) + B(z,y;).2(0)) Vzey (14)

is a linear and continuous mapping. Actually, it is an isomorphism. Let us prove this.
Given an arbitrary element (g,zg) € W x )y, we set g = gy + gs and zg = zn¢ + 250
with gy € LYI; V'), gs € LI(I; Wy (Q)) N LA, Wy ()), zyo € W24(R), and
z50 € B, 4(2). Now, we show the existence and uniqueness of a solution z € ) of the
equation

0z .
5 tAz+B(yy,z) +Blz,ys) =gin (15)
z(0) = zo.
We decompose the system in two parts
0zg .
W_FAWZS*gSlnI, (16)
ZS(O) = 250,
and
0z N .
5 Avzy + B(ys,zn) + B(zn,yt) = gy — B(yt, zs) — B(zs,yr) in 1, (17)

zn(0) = znp in Q.

The existence and uniqueness of a solution zg € W ,(1) N Wy, (1) of follows
from Lemma In equation , we have that zng € B2 4(Q), yr € ), and from
Lemma [2.1| we get that the right hand side of the partial differential equation belongs
to LY(I; H-Y(Q)) N L2(I; H~1(9)). Hence, applying Lemma [2.5| with vy = 0 and e; =
ey = zg we infer the existence and uniqueness of a solution zy € Wy (). Now,
setting y = yny +ys € )V, we deduce that y is a solution of . The uniqueness
follows from Gronwall’s inequality.

Then, we apply the implicit function theorem to deduce the existence of a C*
mapping G : W, (Q) — Y such that F(G(f),f) = 0 for every function f €
LI(I; W, (Q)') N LA(I; W, (Q)"). Hence, G(f) = y¢ is the solution of (). Moreover, by
differentiation of the identity F(G(f),f) = 0 with respect to f, setting zg = DG(f)g
for g € LI(I; W=LP(Q)) N LA(I; WEP(Q2)), and using and De Rham’s theorem
equation follows. Differentiating twice the identity F(G(f),f) = 0 with respect to
f and setting z = D?G(f)(g1, g2), equation follows easily from the identity
0*F 0z
W(yf7f)(g17g2) = (E‘FAZ‘FB(vaZ)"‘B(Zan) +B(zg1,zg2)—|—B(zg2,zg1),z(0)>.



Observing that G : LY(I; W—P(Q))NLA(I; W—1P(Q)) — Y is given by G = GoR,,
where R, : LY(I; W= P(Q)) N LY T; W—1P(Q)) — Lq(I;Wp/(Q)/) N LA(I; Wp/(Q)’) is
the restriction operator, that is linear and continuous, the theorem follows. ]

3. Analysis of the optimal control problem (P)

In this section we study the control problem (P) associated with the state equation
. We recall that K is a convex, closed, and bounded subset of L7 (w). We keep
the assumptions made in section [2| and impose the following additional requirements:
0 € K C L (w) with o € [1,00] and

(a+ B >0)and (a>0if o < 2), (18)
K is weakly™ closed in L*(w) if o0 = o0, (19)
ya € LI LA(Q)) N I(1; LA(Q) and £y € LI W-2(Q)) 1 L1 (1, W-2(0), (20)

where ¢ and p satisfy . The space of controls will be specified as

U = L>®(I; L7 (w)) N LA(I; L*(w)) if B3 =0, (21)
U = L®(I;L°(w)) N LY(I; L*(w)) if a=0, (22)
U = L™(I;L°(w)) N L*(I; L*(w)) N L} (I; L*(w)) if >0 and g > 0. (23)

Let us observe that U C L%(I;L%(w)). Indeed, for the cases and the
embedding is obvious. Concerning , using and interpolation we get that
L®(I; L (w)) N LY(I; L% (w)) € L3(I; L3 (w)).

The set of feasible controls is defined by Up,q = {u € U : u(t) € K for a.a. t € I'}.

By using interpolation between Lebesgue spaces we get that U C LI(I; L (w)) C
LA(I; W~1P(Q)). Therefore, Theorem implies that the existence and uniqueness
of yu € Y and, hence, J(u) < oo for every u € U.

We point out that the assumption 0 € K is natural, in the sense that J(u) = oo for
every u € U,q if this assumption does not hold. Indeed, if J(u) < oo and u(t) € K for
almost all ¢ € I, then there exists a sequence of points {t}7, converging to oo such
that [|u(te)l|r2(w) — 0 and {u(ty)}72; C K. Since K is bounded and weakly* closed

in L7 (w) there exists a subsequence, denoted in the same way, such that u(t;) — v
in L?(w) and v € K. This together with the strong convergence of {u(t;)}32, to 0 in
L?(w) implies that v = 0 and, consequently, 0 € K.

As a first step we address the existence of an optimal control for (P).

Theorem 3.1. Problem (P) has at least one solution.

Proof. Firstly, we observe that 0 € U,q. Hence, the existence of a minimizing se-
quence {ug}p?, C U,q follows. From assumptions (18] i and and the fact
that J(uy) < J(0) we deduce that {u;}32, is bounded in L ). Then, by
taking a subsequence, we get that i, — u in L?(I; L?(w)). Let us prove that uis a
solution of (P).

10



Step 1. u € U,q. From Mazur’s Theorem we infer the existence of a convex com-
bination {v;}72, of the sequence {u;}?2, converging to @ strongly in L?(I;L?(w)).
Taking a subsequence we can assume that v (t) — () strongly in L?(w) for almost
every t € I. The convexity of K implies that vi(t) € K for every k and almost every
t € I.If o < 2, then we have that vi(t) — u(¢) strongly in L?(w) and, hence, the
closedness of K in L7 (w) implies that u(t) € K for almost every ¢ € I. If o > 2, then
for almost every ¢ € I there exists a subsequence of {v;}?°,, denoted in the same

way, such that vj(t) — v (or = if ¢ = 00) in L7(w). Since K is convex and closed
(or weakly™ closed if 0 = o0) we get that v € K. But o > 2, therefore vi(t) — v
in L?(w) as well. Combining this with the strong convergence vi(t) — u(t) in L% (w),
we obtain that u(t) = v € K. Since u satisfies the control constraint, we infer that
u € L*(I;L%(w)). It remains to prove that u € U. Actually the only thing that re-
mains to be proved is that a € L'(I; L%(w)) if 3 > 0. For every T' < oo, the continuous
embedding L?(0,7T;L?(w)) C L'(0,T;L?(w)) implies that uz — @ in L'(0, T; L?(w)).
This yields

u 1 -T.2 < l. 1 f 1 -T.2
122 0,7sme (wyy < liminf flugllzsorra(w))

1 1
< limi (T2 < —limi < — .
< hkn_1>£f Ikl 2 (rn2 @) < 3 liminf J(ug) < 5J(O)

k—o0

This implies that [[Q|z:(r,L2w)) < %J(O) < oo and, consequently, u € U.

Step 2. J(u) < liminfy_,o J(ug). Since {ug}32, C U,q we have that {u;}32, is
bounded in L*°(I; L (w)). We also have the boundedness of {u;}2 , in L2(I; L?(w)) C
L*(I;LY(w)). Hence, by interpolation we infer that {x,ux}3®, is bounded in
LY, LY Q) N LY LLY(Q)) C LYLW™LP(Q)) N LA(; W—LP(Q)). Applying The-
orem we deduce the boundedness of {yu,}po; in W) + Wy ,,(I) N Wy, (I).
Hence, taking a subsequence, denoted in the same way, we get yy, — ¥ in for some
y e WWU)+ W, ,(I) N Wy,(I). Let us fix T < oo arbitrarily. It is well known that
W (0,T) is compactly embedded in L?(0,T;L?(€2)). Moreover, applying [27, Theorem
IT1-2.1] to the spaces Wé’p(ﬂ) C L%(Q) ¢ W=LP(Q) we infer the compactness of the
embedding W, ,(0, T)N"W,(0,T) C L?(0,T;L?(f2)). Then, the convergence y,, — ¥
in L2(0,T;L%(0)) holds. Using these convergences, it is easy to pass to the limit in the
equation satisfied by (yu,,ux) to get that y is the state associated with u. Moreover,
Yu, = ¥ in L*(I; L*(Q)).

From the established convergences we infer

/ 95 = ya()l2a dt + 2 / ()20 dt + / 1a(t) e dt

Slikrggf 2/I||Yk(t) — ya(t)3e 0 dt+2/l||uk(t)”L2(w) dt+5/IHuk(t)HL2(w) dt)
= liminf J(u;) = inf (P).
k—oo

Thus we get that J(u) < inf (P), hence u is a solution of (P). O

Before analyzing the optimality conditions satisfied by a local minimizer of (P), we
address the issue of differentiability of J. To this end, we first introduce the map-
ping G : U — Y by yu = G(u) = G(fy + xwu), where G : LI(I; W=HP(Q)) N
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LYI;W~1P(Q)) — Y is the mapping introduced in section [2l It was shown in the
proof of Theoremﬂtha‘c Xou € LY, W=LP(Q)N LA, W—LP(Q)) for every u € U.
Hence, recalling the assumption on fy in , we have that G is well defined and
in view of Theorem it is of class C*°. Now, we decompose J into two functions:
J(u) = F(u) + 5j(u), where

) = Tl e = [ IOl + Tl o

Obviously, j is not differentiable, but it is Lipschitz, convex, and continuous in U.
Now, we analyze the differentiability of F'. To this end, let us introduce the space with
X = LI(I; W24(Q)) N WH([; LA(Q)).

Theorem 3.2. The functional F' : U — R is of class C* and its first and second
derivatives are given by the following expressions:

F'(u)v = /I/w(cpu + au)vdz dt, (24)
F'(u)v? = /I/Q {lzv]* + 2(zv - V)puzy } dzdt + oz/l/w |v|* dz dt, (25)

where z. = G'(u)v is the solution of with g replaced by x,v, and the function
Y, € V2 (I) N X is the adjoint state, the unique solution along with the pressure
7 € I = LY(; W14(Q))/R of

dp T _ i
—E — VALP - (yu : V)(P - (V(P) Yu + Vr = Yu—Ya 0 Q7 (26)

divp=0 inQ, =0 onX, limr . ||e(T)|lzy0) =0 in Q.

Moreover, there exists a constant C' depending of yu and a nondecreasing monotone
real value function 1 such that

(o, ™)llxx1 < Cllyu — YallLo(rL)) + "7<Hf0”LQ(I;Wp/(Q)/)

+ 1€l 2w, )y + [l L)) + ||YO||Y0> 1Yu = ¥all2 (2 ))- (27)

Proof. The C* differentiability of F' follows from Theorem [2.6] The formulas
and are consequences of , (13), and . We only need to prove that has
27)

a unique solution in X x II and ( holds. First, we fixed T" < oo and consider the
problems

T . . .
o VA — (yu V) — (V@) yu+ VT =yu —yq in Qp, (28)

divp=0 inQr, =0 on X7, (T)=0 in Q.

In [12, Theorem 3.2] it was proved that has a unique solution ¢, € V%1(0,T)
satistying [|or|lvz107) < n(llyullzorri@)lye — yallz20,7.12(0)), Where 1 is a non-
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decreasing monotone function. Then, using we get

lerlvarior) < Aol Lerw, @) + IEllsw,, @)

o o) + I¥ollo ) I3 = Vall e (29)
for a nondecreasing monotone function 7. Moreover, in [12) Lemma 4.9] it was proved
that ¢, belongs to the space Xp = L9(0,T; W24(Q)) N Wh4(0, T; L4(Q2)) and the
associated pressure 77 belongs to Il = L4(0,T; W14(Q))/R. Extending (¢, 7r)
by zero to @ we get that (¢p,mr) € X x II. Applying [I, Theorem III-4.10.2] with

Ey = L4(Q), By = W2?4(Q), and p = ¢, we get that X is continuously embedded in
C(I; (L*(€), W2’4(Q))1_;7q). We also have that

(L), W2H(Q)), 1, © (LH(Q), W (@)1 4 = W4 (Q) € C1(Q)

q

Therefore, we have that X C C(I;C*(Q)) and there exists a constant C; such
that |lellccr@) < Cillelx for every ¢ € X. Moreover, the embedding X7 C
C([0,T); CHQ)) is compact for every T < oo; see [2, Theorem 3].

Since yu € LI(I;L4(Q)), for every ¢ > 0 there exists T. € (0,00) such that

|y ull La(T.,00:L4(Q)) < - Moreover, from the maximal parabolic regularity of the Stokes
system we infer for every T > T

[z mr)Ix 1 = [[(7, 1) | X7 x11

< Cy (HYu =Yl zeo s @) + 1 (yu - V)erllorw@) + H(VSDT)TYuHLq(o,T;m(Q)))
< C2(Hyu — yallzsrna@) + 1(yu - V)erlor i) + 1(Ver) vallpsornw @)
1~ V)prlliar, sy + 1(V07) Vallpocr e )

<y (Hyu = YdllLagri@) + 2lerlleqonc @) llyullLaom 1)

+ 2lerlleqren@yIVallze sy )

<G (Hyu = Yall o) + 2||9"THC([0,TE];CI(Q))HYu”Lq(o,TE%L“(Q))>
+ 2C2Ce|[(¢p, 1) || x <11,

where Cs is independent of T'. Hence, it is enough to take ¢ < iCng to deduce that

1(pr, mr)l|x %11

<20 (HYu — Yallzarna) + 2llerllegorn.cr @) HyuHLq(o,TE;m(Q)))- (30)

Now, applying Lions Lemma [24, Lemma III-1.1] to the spaces X7, C
C([0,T]; CH()) c L*(0;T:;L*(Q)) and using (29), we deduce the existence of a
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constant C3 such that

lerlleqorc @) <

1
~ 8Ca|lyullLe(rLa())

- PrilXs + Cs Y 2(1L2
SCalyal ey Nerlxr + Callerlizuzia

|, mr)lxcrt + Ca (Ifollocriww, )
18l oty () + Il e + I¥0llva ) v = allzarnecay):

Inserting this inequality in we obtain

(e, 1) ||xx1m < 4Cs||yu — Yd|!La(1;L4(Q))+77(HfoHLq(I;wp,(Q)')

€l ecriw, @) + Il oo + 1¥0lv ) ¥ = Yall 2.

Then, we deduce the existence of a sequence {T}}7°, and a pair (¢, 7) € X x II such

that (o7, m7,) = (¢, ) in X x II. Moreover, (¢, ) satisfies inequality (27). It is easy
to pass to the limit in and to deduce that (¢, m) is a solution of (126]), except

for the identity limr o [|o(T)[|f3() = 0. To establish this equality we observe that
the regularity ¢ € V>!(I) follows from (29). Hence, we have that ¢ € L?(I; H*(Q2) N
H}(Q)) and %—f € L2(I;L%(2)). The fact that ¢ € L2(I; H}(9)) implies the existence
of a sequence {t}72, converging to oo such that limy o ||¢(tk) | 11(0) = 0. For every
T < t; the following relation holds

tk 8LP
le(T) ) = Nt 1) — 2/T / A‘P(ﬂfat)a(%t) dx dt

< ot liyor +2( [ 18000 a) ([ 15200 ar)

Taking limit as £ — oo we get

e ()0 < 2( /T |a@ ()12 at) * ( /T |58 g0y at)

This yields the desired identity: limz oo [|5o(T)||f11(0) = 0. n

Remark 3.3. Using Lemma we infer that the linear and quadratic forms F'(u)
and F"(u) can be extended to continuous forms on L?(I;L%(w)) by the same expres-

sions and .

The next lemma establishes some properties of the function j : L!(I; L?(w)) — R.

Lemma 3.4. (i) For the subdifferential j(u) we have the following characterization:
X € 9j(u) if and only if X € L®°(I;L?(w)) and

[A@®) |2 <1 for a.a. t € 1Y,

~u(w,t)
A = @ e

where I = {t € I : ||[u(t)||lrz(w) = 0} and If =T\ L.

for a.a. t € I, (31)
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(ii) For every u,v € L*(I;L%(w)) the directional derivative of j is given by

(u;v) = v 2 ; u(t)v z dt.
Py = [ VOt s [ e [uovoda. @

For the proof the reader is referred to [9]. Next we establish the first order optimality
conditions for a local minimizer of (P).

Theorem 3.5. Let @ be a local minimizer of (P) in U, then there exists A € 9j(1)
such that for almost every t € I the inequality

/(cp(:z:,t) + ati(z,t) + BA(z, 1)) (v(z) — a(z,t))dz >0 Vv e KNLi(w) (33)

holds, where { is the adjoint state associated to U.

Proof. Let us consider the case 5 > 0. Using and the convexity of j we get for
all u € Uyy

)< i I p(u = W) = J(@)
PN\O P

< /I/w<co+aa><u— &) da dt + A(j(w) — j(1)).

Setting J : U — R U {400} with

T(w) = /I / (@ + am)udzdt + Bj(u) + T, (u),

where Iy, is the indicator function of U,q, we infer from the above inequality that u is
a minimizer of 7 in U. We observe that due to the assumption and the definition
of U given by — the functional 7 is well defined and convex. Moreover, the only
term in the definition of 7 that is not continuous is Iy, ,. Therefore, from the calculus
with convex functions we obtain that 0 € 9J(u) = @ + au + pdj(u) + 0y, ().
Hence, the existence of A € dj(a) follows such that —(¢ + a1 + SA) € dIy,,, which
is equivalent to

/I / (@(2,1) + 0ti(@, £) + BX(x, 1)) (ulx, 1) — Gz, ) dedt >0 Yu e Unq.  (34)

The proof of for § = 0 is standard. Let us deduce from . Given v €
K N L%(w), we introduce the set

Bo={ter: /(¢(x,t) +an(z, 1) + A, 0)(v(r) — az, 1)) dz < 0}.

w

Let us prove that |Ey| = 0. For every integer k¥ > 1 we set E¥ = E, N (0,k) and
consider the function wy(z,t) = xgx(t)v(z) + (1 — xgx(t))u(z,t). Obviously we have
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that wy € U,q. Then, we get with

0< // (z,t) + ati(z,t) + X (z, b)) (Wi (z,t) — a(x,t)) dzdt
- /Ek /(Lp(x’ t) + au(z,t) + fA(z, 1)) (v(z) — a(z,t)) da dt.

By definition of Ey this is holds only if |[EX| = 0, hence |Ey| = limy o |E%| =0. O

The next theorem analyzes the sparsity properties for any local minimizer u of (P).

Theorem 3.6. Let (1,{p, \) satisfy the first order optimality condition (33) and as-
sume that B > 0. Then, the following expression for A holds
TTas i 1)) #0
_ 5 L2 (w ’
Aoty = T 1( Mez o) (@) (35)
—5¢(x,t) if [a()]Lew) = 0.

Moreover, the following sparsity property is fulfilled

if @ >0 then [[a(t)||2w) = 0 < @) lL2w) < B, (36)
— if @) 2wy < B = [a(t)|l2w) =0,
if =0 then { oWl > B = [0(t)|rege) # 0. (37)

Proof. The first equality in follows from the fact that A € 5{7 ) and ( . To
prove the second identity we observe that if [[U(t)||L>(.) = 0, then 1mphes

/ (@2, 8) + BAE 2))v(z)dz > 0 ¥v € K N LA(w),

which leads to @(t) + BA(t) = 0. We now prove and (37). For [|u(t)||pz2() = 0 we
combine and to infer

1. _
BHSO(t)HLZ(w) = [A®)[lL2w) <1,

which proves the left to right implication of and the second implication of
. To prove the remaining implications we proceed by contradiction. Assume that

[e(O)lL2w) < B (le®)]lL2w) < B if o= 0) and [[u(t)||L2() # 0. Then from and
we infer

/ (cfa(az,t) + o+ #]ﬁ(az,t}) (v(z) —a(z,t))dz >0 VYve KNnL?(w).
w [a(t) (L2 w)

This implies

a(z,t) = ProjK( ot o ep(a, t)), (38)



where Projg : L?(w) — KNL?(w) denotes the L?(w)-projection onto the convex and
closed subset K N L2(w). Since 0 € K, we have

g

ﬁt| 2(w S o+ ——
Il < e+ Eoieo

@)l

This is equivalent to ||@(t)[|L2(w) = allt(t)]|L2(@)+8, which contradicts our assumption.
O

4. Detailed Analysis for some special choices of K.

In this section we consider three different selections for K corresponding to o = 1, 2,
and oo. In each case we first deduce some properties from the first order optimality
analysis carried out in Section [3| and then we perform the second order analysis.

Second order sufficient optimality conditions are useful for several purposes, includ-
ing the proof of stability of optimal controls with respect to small perturbations in the
data of the control problem, error estimates for the numerical approximation, anal-
ysis of the convergence rate of the numerical algorithms, estimates of the difference
between finite and infinite time solutions.

4.1. Case o = 2.

Here we assume that K = B, the closed L?(w)-ball centered at zero with radius vy > 0.
As a consequence of the first order optimality conditions (33)) we get the following
result.

Theorem 4.1. Let (1,{, ) satisfy the first order optimality condition and as-
sume that a > 0. Then the following representation formula for u holds

_ . 1, 1
u(z,t) = —min {% E(H‘P(ﬂ”m(w) - 5)+}W

P(z,t). (39)
L2 (w)

Consequently, if w is an open subset of Q the reqularity property u € LI(I; W2 (w))N
W (I; L4(w)) holds.

Proof. According to (36), holds if [|@(t)|lr2w) < B. Let us study the case
() ll12@w) > B Once again applying we deduce that [[Q(t)[|p2) > 0 in this

case. First, let us assume that H [oz + m]_lcﬂt)! L2 (w) < ~. Then, from we
infer that
_ B 1
=—[a+-—>r t
00 =0t @) P

(le(®)lL2(w)y — B)- Inserting this in the

From here we deduce that Hﬁ(t)HLQ(w) = é
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above identity we obtain

|@(t)llL2(w) — B _
- - x,t) and
NEO AR

1P (1) |L2(w) —
«

e, ) = B o a0l <.

Hence, the identity holds. On the other hand, if H [OhLm] —19—0(15)’
. . _ _ Ca(;mt) . .
then implies that u(z,t) = Mol This yields

L2(0J) > ’y’

) B
+ 2(y) = T
12t lL2@w) = || [« + [a(t)][L2w)

.
ay+ 3

]_l‘p(’f)HLQ(w) >

and, consequently, W%%Fﬁ > . Then, once again (39)) holds. The regularity of

u follows from the regularity of @ established in Theorem [3.2] and the representation

formula . O

Now, we address the second order analysis. We consider local minimizers of (P) in
the L?(I; L?(w))-sense. More precisely, we say that i is an L?(I; L?(w)) local minimizer
if there exists ¢ > 0 such that

J(a) < J(u) Vu € Uyq such that ||u— a2 (rr2w)) < e

We observe that f with ¢ = 2 imply that U c LP(I;L?(w)) for every p €
2, 00]. Obviously we have that if @1 is an L?(I;L?(w)) local minimizer, then it is a
local minimizer in the U sense because | - [|1>(712(w)) < || - [lu. Of course, any global
minimizer is an L?(I; L%(w)) local minimizer. Moreover, we have the following result.

Lemma 4.2. The control u is an L*(I;L%(w)) local minimizer if and only it is an
LP(I;L2(w)) local minimizer for every p € (2,00).

Proof. From the inequality

p—2 2

lu— l_IHLP(I;L2(w)) < lu— ﬁHLToo(];Lz(w)) [u — ﬁ”iZ(];Lz(w)) < (27)% lu— ﬁH;([;m(w))

satisfied by every u € U,q, we infer that i is an L?(I; L?(w)) local minimizer if it is an
LP(I; L?(w)) local minimizer. We prove the converse by contradiction. Assume that @
is an L?(I; L%(w)) local minimizer, but it is not an LP(I; L?(w)) local minimizer. Then,
there exists a sequence {uy}3, C U,q converging to @ in LP(I; L?(w)) and such that
J(uy) < J(u) holds for every k. If a > 0, the boundedness of {u;}72; in L*(I; L?(w))
follows from the inequality J(uy) < J(u). If @ = 0, then this inequality implies the
boundedness of {u;}¢2; in L' (I; L?(w)). Combining this with the convergence uy — u
in LP(I;L?(w)), we deduce by interpolation that {ug}?2, is bounded in L?(I;L*(w))
and, consequently, uy — 1 in L?(I;L?(w)) holds in both cases. We prove that this
convergence is strong. By taking a subsequence, we deduce from the strong convergence
u; — @ in LP(I;L?*(w)) that [[ug(t)llLzw) — [[0(t)|lLe(,) for almost all ¢ € I. Using
these convergences - and Fatou’s Lemma if 3 > 0 - we infer

J(u) < liminf J(ug) < limsup J(ug) < J(a).

k—o0 k—o00
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From [I7, Lemma 5.2] we infer that [[ug|lz2(r12)) — l0llr2(r2w)) if @ > 0 and
Ikl ey — lalloyrrew)) if 8 > 0. Therefore, we deduce that uy — u in
L2(I;L2(w)) if @ > 0. If @ = 0, then implies that 8 > 0 and, consequently,
we have that w(t) = 0 for t > T*. From the convergences uy — u in LP(0,T*; L?(w))
and [|ugz(rr2w)) = 18l 21712 w)) we get

o) = Il ey = Hm llukllz e )
= lim ffugllz:ornew)) + MM [Jukllz e oz ()

= ||ﬁHL1(0,T*;L2(w)) + klgglo HukHLl(T*,oo;Lz(w))'
This implies that limg e [[Ug|| 117+ 00;L2(w)) = 0- Moreover, we have that

m flag =@l ze o7 p2(w)) + Hm [kl 2o+ 0oin2 @) g — 4l e (7200 = 0

= lim

k—o00
holds. Then we obtain by interpolation that limg oo |kl r2 (7% co:12(w)) = 0- We con-
clude that

Jm lug — |2 (rrew)) = Jim [ug, — |2 0,712 () + Jim k] 2 (7 oosL2(w)) = 0

Hence, independently of whether a > 0 or 0, we obtain that u; — @ in L*(I; L%(w)).
This contradicts the L?(I; L?(w)) local optimality of @1 and the fact that J(u) < J(1)
for every k. O

We define the Lagrange function:

LoUK I R L) = )+ 5 /I u(®)[a(t)|2, ., dt.

According to Theorem [3.2] and Lemma [3.4] £ has a partial directional derivative at
any point of U and in any direction v € U given by

oL
o) = [ [ eyt awvdsdr+ s [ vl d
U IJw 19

1

+ uvdxdt—i—fy/u(t)/uvdmdt
1 w

O
i la®)llrew) Jo
= /I+/(¢“+QU+BA)Vd$dt+/[o [/ cpuvd:c—i—ﬁHv(t)HLz(w)] dt

u

4 i /1 () /w av dz dt. (40)

If (1, @, A) satisfies the first order optimality condition , we define the associated
Lagrange multiplier by fi(t) = ||@(t) +at(t) + BA(t)||r2 (). We introduce the following
active constraint sets

I, ={tel:|Jult)l@w =~} and I ={te L, : a(t) > 0}.
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Let us observe that fi(t) = 0 if [[u(t)[|r>(,) < 7. Indeed, given e € (0,7) we define the
set I. = {t € I : |[a(t)| 2@y < v — €} For every v € B. we have that v +u(t) € B,
for t € I.. Hence, from we infer that

/(cp(t) +at+ BA(t)vdr >0 VveEB. and aa.tc .,

which implies that p(t) = 0 for almost all ¢ € I.. Since € > 0 is arbitrary this proves
our claim. As a consequence, the expression is reduced to

oL X
(i v) = / /(80 +ati+ BA)vdrd + / [/ Pvdr -+ Bv(Dlac | dt
ou I Jw Lo
+1/ ﬂ(t)/ﬁvdxdt W e U. (41)
Y JrE w

Lemma 4.3. With the above notation, the following properties hold:

1u< D) = —(@(t) + au(t) + BE) for tel, (42)

&, i v / / pvdr + BIv(Dllis|dt 20 W e U. (43)

If 8 > 0, then implies that X € L*(I; L?(w)).

Proof. From the above comments and the definition of i we get that both sides of
are zero if t ¢ IT. Let us prove the identity for t € If. Using we obtain

A(t) = lle(t) + ot + BA®) L) = 1vseu§ /—(<P(t) + ot + BA(t))v dz

<

/ —(@(t) + au+ BA(t))u(t) do < iu(t)llﬁ(t)llm(w) = [i(t).

2=

Since Schwartz’s inequality is satisfied as an equality we deduce the existence of a
constant ¢(t) such that u(t) = ¢(t)(@(t) + au(t) + FA(t)). Inserting this identity in the
above inequalities we infer

c(t _ _ < _
-0 [ 1)+ an + S0P do = (1)
Y Jw
This implies that —@ﬂ(t) = 1 and, hence, holds. The equality in is an
immediate consequence of and . The inequality in follows from and
and Schwarz’s inequality. O

As a consequence of the above lemma we further obtain the following complemen-
tarity condition.
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Corollary 4.4. Let u € U,y satisfy . Then (a, @, A, i) satisfy

Bz, 1) + ati(z, 1) + BA, ) + }Yn(t)u(a:,t) ~0, ae. inQ,

() > 0, [[a®)le) < v AOUBE 1) —7) = 0 ae. in 1.

Remark 4.5. From Remark and Lemma the expressions given by and
(43) can be extended to continuous mappings

oL

3u( i) : L*(I;L*(w)) N LY(I; L?(w)) — R.

In the case where 8 = 0, then they can be extended to L*(I;L*(w)).

In order to formulate the second order conditions for optimality we introduce the
cone of critical directions as follows:

Ca={veS:J(av)=0 and / u(t)v(t)de <0ift € I}
where S = L2(I; LQ(w)) N LY ;L% (w)) if B> 0 and S = L?(I;L%(w)) otherwise. Let
us observe that [ u(t)v(t)dz = 0ift € I and v € C Indeed, from the condition

[ uat)v(t)dz <0 1ft € I, and (42)) we deduce that [ [@(t)+au(t )—h@’j\(t)]v(t) dz >0
for t € 1. Now, using that

0=J'(ua / /cp—l—auﬂ-ﬁ)\}vdxdt—l—/ [/wg_o(t)v(t) dx+,3||v(t)||1,z(w)} dt

and we infer that [ [@+ ot + BA]vdz = 0 in I. Taking into account again ,
the desired identity follows.

We also provide the following formal definition for every v € L?(I; L2(w))

1 / 2 / uv 2 )
— v|“dxr — ————dx dt if u#0,
j"(u;vQ) = /I.T Hu(t)HLZ(w) |: w| | ( w Hu(t)||L2(w) ) i|
0

ifu=0.

This does not mean that j has second order directional derivatives in any direction v.
For some directions v the second derivative exists and it is given by the above formula,
but for some others the above integral is infinity. In any case, since the integrand for
variable ¢ is non negative, the integral is always defined. Now, we set Vv € L?(I; L?(w))

9*L , 1
oz (W v?) = F(w)v? + 85" (w;v?) + 5 /I:U(t”V(t)H%?(w) dt, (44)
where F”(u)v? was given in (25).

Theorem 4.6. If © is an L?(I;L%(w )) local minimizer of (P), then the following

second order condition holds: gu§ (@, 1;v%) > 0 for all v € Cy.
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Proof. The proof follows the lines of the [16, Theorem 3.2]. There are only some
differences in the case 8 > 0, that we analyze here. Let € > 0 be such that J achieves its
minimum value in the set U,qN B (1) at . First we take v € CaNL*>(I; L?(w)) C U,
the assumption L>(I; L2(w)) will be removed later. We define for every integer k > 1

o 0= E <O <7 or 0. [a0)e) <
v(z,t) otherwise.

Though the definition of vy is slightly different from the one given in [16, Theorem

3.2] to deal with the case § = 0. Arguing as in [16] we get that for k& big enough there

exists ap > 0 sufficiently small such that the function

2
Or (o, +ag) — U, di(p) = \/1 - %Hvkﬂiz(w)ﬁ + pvi

enjoys the following properties: ¢, (p) € Uaq and ||¢r(p) =22 (1;12(0)) < € Vp € [0, ).
Even more, it is immediate to check that ||¢x(p) — @[z (r;2(w)) < € for every p > 0
small enough. Now, we define ¢y, : (—ayg, +ax) — R by ¢¥r(p) = J(ér(p)). For every
p > 0 small enough it is easy to check that [[a(?)||r2) < Z if Pk ()2 (w) < + and
consequently vi(t) = 0 there if in addition ||t(?)||g2() > 0. Hence, one can verify that
Yy, is twice continuously differentiable in an interval [0, pg] for pg > 0 small enough.

We have that ;,(0) = J(a) < 9(p) for every p € [0,ax). Let us compute 15, (0)

wg(O):J/(ﬁ;vk):/+/(¢+aﬁ+5)\)vkdxdt+/ (@i + Bl VellLe )] dt.
T Jw I3

By definition vi(x,t) = v(x,t) holds for t € I, and for t € I3. Further, the fact that
v € Cy implies that J'(1; vi) = J'(1;v) = 0, hence ¢} (0) = 0. Together with the fact
that vy, achieves the minimum in [0, aj) at 0 this implies that «/(0) > 0. Then, we

get with and
0 <95 (0) = J"(¢x(0))1,(0)* + J'(61(0))#1(0) = F"(@)vi + 85" (@; v7)

_ o L[ L,
= F'(@)vi + 85" (6 vi) + 5 /ﬁ #(t)HVk(t)||%2(w) dt = W(UML;V%)-

~

We know pass to the limit in the above inequality as k — oco. To this end, we observe
that applying Lebesgue’s dominated convergence theorem the convergence v — v
in LP(I;L?(w)) holds for every p € [2,00). Then Theorems and implies that
F’(@)vi — F’"(1)v2. Moreover, the convergence of the third term of %(ﬁ, fi;v2) is
immediate. Finally, it is obvious that j”(@;v?) > j”(@;v2). All together this yields
that &£ (a, fi; v?) > 0.

To remove the assumption v € L% (I; L%(w)) one can proceed as at the end of the
proof of [16], Theorem 3.2]. O

For the property ¢ (p) € Ua,q the definition of ¢y, as non-affine function is essential.
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It reflects the fact that the constraint ||t(Z)||gz2(.) < 7 is not of affine structure as well.

Theorem 4.7. Assume that o > 0 and (u, @, N) satisfies the first order optimality
condition . We also suppose that the second order condition %(ﬁ, i v2) >0 for
all v € Cq \ {0} holds. Then, there exist ¢ > 0 and k > 0 such that

K ~ . ~
J(a) + §||Ul - UH%z(I;Lz(M)) < J(u) Vu € Uy with ||u -4 r2rr2wy) <& (45)

Proof. The proof of the theorem when 8 = 0 is the same as the proof of [16, Theorem
3.3]. Here we concentrate again on the case 8 > 0 and provide the necessary changes.
We argue by contradiction and assume that does not hold. Then, for every integer
k > 1 there exists a control uy € U,q such that

) 1 1 s
P = llak —ullrau) < ¢ and J(we) < J(@) + o llup = llze g2 w))- (46)

We define v, = é(uk —1). Since ||Vi||z2(r12(w)) = 1 for every k, taking a subsequence,

we can assume that vy — v in L?(I; L?(w)).
According to there exists 7" < oo such that [|@(t)||r2) < B for all t > T™.
Then, implies that u(t) =0 for t > T™*.

We split the proof into four steps.

Step I - If {wg}2, C Uaq converges to u in L*(I;L?(w)), then yw, — ¥ in Y and
Pw, — @ in X. Indeed, since {wy,}32; C U,q, then it is bounded in L>(I;L*(w)).
Hence, we have that wy, — @ in LP(I; L?(w)) for every p € [2,00). Therefore, applying
Theorem [2.6 we get that yw, = G(wy) = G(fo + xowWi) = G(fo+ xwtt) = G(1) = y in
Y. Since Y is continuously embedded in L?(I;L*(Q)) N L?(I; L%(92)) we deduce from
Theorem [3.2] that ¢, — @ in X.

Step II - v € Cy. For every 0 < T' < oo the continuous embedding L?(0; T; L?(w)) C
LY(0,T; L?(w)) implies that v, — v in L'(0, T; L?(w)) and, hence, v € L*(0, T; L?(w))
for all T finite. On the other hand, from , the convexity of j, and the mean value
theorem we get

J(wvy) < =

1 1
< Pl g vy — — = F(a)v, (47)

where up, = u+ 60y (uy — ) for some 65 € (0,1). The convergence F'(uy, )vy — F'(0)v
follows from Step I and the expression for F’ in . As a consequence we deduce
the existence of a constant C' > 0 such that j'(u;vg) < C for every k. Using that
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I} C [0,7*] we deduce from that for 7% <T < o0

T
v gwdt</ v 2wdt—j a;v // dx dt
| ol Vit e 9 T

T
§C+/ [VE(®) 12w dt < C + VT
0
This leads
T T
/ Hv(t)HLQ(w) dt < likminf/ Hvk(t)HLQ(w) dt <C+VT* VT >T".
T* — 00 T*

Thus, the regularity v € L'(I;L?(w)) holds Using (34)), the fact that a(t) = 0 if
t ¢ L, that XA € L*(I;L%(w)) (Lemma , and that f[f Avdzdt < j'(;v) we

deduce
OS/ /(cp+au+65\)vkdxdt—>/ /(Lp—i—ozu—i—ﬁi)vdxdtﬁf(u;v).
7 Jw I Jw

Next we prove the contrary inequality. Since {v;}32, converges weakly to v in
L2(I; L2(w)) N LY(0; T; L%(w)) for every T < oo we have

7 Jw I3n[o,17

< liminf{/ /S\Vk dwdt—i—/ Vi (t)]|L2 dt} < liminf j(a; vg).
IF Jw I3N[0,T7]

k—o0 k—o0

Taking the supremum on 7" we deduce that j'(@; v) < lim 1ka—>oo j'(@; vg). Using this
fact and (7)) we infer j'(@; v) < liminfy_,o /(05 vi) < F’( )v, which is equivalent
to J'(u;v) = F'(u)v + 8j5'(w;v) < 0. Thus, we have J’(u v) = 0. To conclude that
v € Cy we need to check the inequality [ w(t)v(t)dt <0 for t € I,. This proof is the
same as in [16, Theorem 3.3].

Step III - 8u2 L (@, X; v?) < 0. Applying Egoroff’s Theorem we deduce that for every
§ € (0,7™) there exists a measurable set I5 C (0,7™) such that [[ux—1l| Lo (7,;12(0)) = 0
as k — oo and |I5| > T — 6. Now, for every integer [ > 1 we define

Isg={t € Is:[|u(?)[|L2(w) = } js(u / [a(t) [ (w) dt, Jsi(u) = /1 [a(t)[L2(w) dt.
We also set gs;(u) = j(u) — jsi(u),

@mmzanMM+;£ﬁmwwm@®

~

and define Ls;(u, i) as above replacing js by js;. Denoting by Bs;(u) the ball in
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L>°(I5;; L2(w)) centered at @ and radius 5, we have for ¢ € Is;

_ _ 1 1 1 _
()l 2 80 pe — () = 8Ol = 7 — 5 = 5 Y0 € By(a).

We denote by ks; an integer such that u, € Bs;(u) for all & > k.

It is immediate that Ls;(u, i) is of class C? with respect to u in By, (@). Since
b (8) ) < 7 = [8(8) g2 for ¢ € I, we get L{ug, 1) — £(1,7) < J(ug) — J().
Now, using , the fact that £ = L5;+ gs,, the inequality ggl(ﬁ; up—u) < g5 (uy) —
g5, (1), a second order Taylor expansion, and we obtain for every k > ks

; oL
5712 > L(uy, 1) — L(u, i) = Bgs,(ug) — Bgsi () + 81?[ (&, i) (wy, — @)
10%Ls, , _ OL 192Ls, )
5 : i —u)? > =Z(a, i sy, YA _ e
2 8112 (uek,'u) (U.k u) — 811 (u7 M)(Uk u) + 2 au2 (uekalu)(uk u)
19%Lsy ~ )
= 2 ou? (uak’lu’)(uk - 11)2.

Dividing the above inequality by % we infer 8;ﬁ§" (ug,, 1)vi < % Below we will prove

that

Ly, 0L _
(‘3u27 (m, a)v?* < hkrgg.}f W(ugk,u)vz <0. (48)

Using this fact and observing that f’;ﬁg’l (@, j1)v? increases when [ — oo, we infer

that agff (@, ii;v?) < 0. The same argument applies as § — 0 monotonically, hence
am(ﬁ, fi;v?) < 0 as desired. It remains to prove the first inequality of (48). In view

ou?
of the weak convergence v; — v in L?(I; L?(w)), the strong convergence uy, — 1 in
LP(I5; L2(w)) for every p € [2,00], and the expression for the second derivative of the

Lagrange function, it is obvious that the only delicate point is to prove that

//(Z-V)cpzdxdtg liminf//(zk-V)kazkdxdt
IJw k—oo Jr1Jw

with z, = G'(ug,)vi, z = G'(0)v, and ¢y, the adjoint state associated to ug,. The
boundedness of {v;}?2, in L?(I; L*(w)) implies that {zj}°, is bounded in W (I) by
a constant C. The same constant applies to z. From Step I we know that Yu,, =Y
in Y and 5, — @ in X C C(I;C*(2)). Then, from Lemma it is easy to infer
that zx — z in W(I). As a consequence we have that z; — z in L%(0,T;L?(f2)) for
every T < oo. According to , for every n > 0 there exists T;, < oo such that
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@ (t)|lHx () < n for all t > T;,. Using these facts we obtain for all T > T,

//(Z-V)c,_ozdxdt hm/ /zk V)@, de$dt+/ /z V)pzdx dt
1J9

gliminf// Zf - chgkzkdxdt+hmsup/ ||z (¢ )||L4 e, ()10 dt
T

k—o0 k—o0

4 / 120612000 |6 ety At < linn inf / / (21 - V)epp, 2 da dt
T k—oo 1J0
+ V@ limsup /T 220 At 20, — Pllerony
—00

+ (tmsup [ (Ol dt+ [ 1Ol ) sup 120y

k—o0

gli]?inf// zj, - V)pg, z dz dt + C'n.
—00

Since 7 can be selected arbitrarily small, the desired inequality follows.

Step IV - Final contradiction. Arguing as in the proof of [16, Theorem 3.3] we infer
that v = 0 and then gfﬁ(ﬁ, fi; v?) > a > 0, which contradicts Step III. ]

4.2. Case o =1.

Here we assume that K is the L' (w)-ball centered at zero and radius v, i.e. we choose
K as B, = {v € L*(w) : |[v[lL1() < 7} We recall that U C L*(I;L*(w)); see the
comments after (21))—(23)). Here, we also consider local minimizers in the L*(I; L*(w))
sense.

First, in the analysis of this case we introduce the Lagrange multiplier associated
with the control constraint. If u € U is a local minimizer of (P), then we infer from
that, for almost all ¢t € I, u(t) is a global minimizer of the optimization problem

min J(v) = / (@(t) + au(t) + BA®))vde + Is. (v).

veU

Then, we have that 0 € 07 (u(t)) = @(t) + au(t) + SA(t) + OIg, (u(t)). Hence, the
existence of a Lagrange multiplier follows

p(t) € 0Is, (u(t)) such that @(t) + au(t) + BA(t) + p(t) = 0. (49)

In the rest of this section, except if some other thing is indicated, (¢, A, ) will
denote functions satisfying (49)), where u € U,qg, A € dj(u) and @ € VZ(I) N X is
the adjoint state associated with u; see Theorem

Arguing as in [15, Corollary 3.1] and replacing sign(u(z,t)) and sign(p(x,t)) by
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, respectively, we deduce the following properties:

a(z, t)p(x,t) = |a(z, t)||p(z, t)| for a.a. (z,t) € w x I,

)1 < then a(t) =0in w ae. in I, (50)
Dl = and () £ 0 im

then supp(a(t)) C {z € w: [p(z,t)| = [|2()[|lL>(w) }-

Lemma 4.8. Under the above notations, we have that @, x € L*(I;L>(w)) holds.
Furthermore, if 5 > 0 then X also enjoys the L>°(1; L>°(w)) regularity.

Proof. First we assume that 8 = 0. Observe that the first relation of implies
that |au(z,t) + p(x, t)| = aju(x, t)| + |p(z, t)|. We deduce from that a|a(z,t)| +
|z, t)] < |@(z,t)]. Since ¢ € L>*([;L*>(w)), this inequality proves that u,f €
L>®(I; L (w)) as well.

If 8 > 0, then we know the existence of T* < oo such that u(t) = 0 for t > T*.
This along with the second relation of ( 1mphes that @(t) =0 for t > T™ too. We
prove that ||| (1L~ (w)) < M for every M > = f[ J., pudz dt. If this is not the case
for one of these constants M we define

v A)
|Eum| |z, )|XEM(m,t),

Ey ={(z,t) € wx (0,T7) : |p(x,t)] > M} and v(zx,t) =

Then, we have that v € U,q and

//p,udxdt<7M§7 u\dxdt://uvdxdt,
I w ’EM‘ E]y[ I w

which contradicts (34). Using again we infer that A € L°°([;L>®(w)) if 5> 0. O
From Lemma [£.§ we get the following representation for f.

Lemma 4.9. If a(x,t) # 0, then fu(w,t) = [|ia(t) ||~ ) facery; holds.

Proof. 1t |fa(t)||L~() = 0, then the equality obviously holds. Let us consider the
case |[(t)|| L (w) 75 0. Then [[a()||;1(q) = . by the second equation (50). From the
first relation of (50) and the assumption that u(z,t) # 0 we deduce the existence of
a constant c(x, t) such that @(x,t) = c(x,t)u(x,t). Inserting this identity in the first
equality of and using the third statement of (50) we obtain c(z,t)|u(z,t)|* =

2z, 8)][0(, 1)] = | (t) |~ ()8, 1)) Hence, c(z,t) = EOIE= and the statement
of the lemma follows. O

Next we address the second order analysis of the control problem (P). To this end
we introduce the function

mvwweR,mwz/wewuzf () + 3(z) da,
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and the critical cone
Ca={veS:J(a;v)=0 and ¢'(u(t);v(t)) <0 for a.a. t € I,}

where I, = {t € I : g(a(t)) = v} and S = L*([;L*(w)) N LY(I;L?*(w)) if 8 > 0 or
S = L*(I; L*(w)) if B = 0. We also denote I" = {t € I, : fu(t) # 0}.

Let us observe that

! V) = U(x)V$ x \AW4 X u,v l(JJ
dtosv) = [ s [ V@l wverte, 6y

where wl = {z € w: u(z) # 0} and W) = w\ W
Lemma 4.10. The following properties hold:

1 - Ifv e Cq then g'(a(t), v(t)) = 0 holds for almost all t € I

2 - Let v € S satisfy ¢’ (u(t); v(t)) = 0 for almost all t € If. Then, J'(a;v) = 0 if
and only if the following two conditions are fulfilled:

Hl]‘(t)HL‘X’(w)’V<m7t)‘ = ﬂ(l’,t)V(.’L',t) fO?" a.a. (.’E,t) S wg(t) X Ly )

0 if |8(t)|L2w) < B,
= t 2(w) - ; 7
v(z,1) _Hvﬂgww,w if |@() 2w = B,

for a.a. (x,t) € w x I.

Proof. Let us prove the first statement. From the identity
0=J'(a;v) = /I.T /w[c,b + ot + BA]vdz dt + /I,‘j [/w e(t)v(t)dz + Bllv(t)||Le(w) | dt
and the fact that

J [ etmaz s vl a2 [ 18 lelellvhe i 2o

a

due to , we deduce that the first integral in J'(a;v) is < 0. Then, using and
B0) we get

/E/w.u(x,t)v(:c,t) dxdt:/lj/wu(x,t)v(x,t)dxdt>0_
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This inequality and Lemma [4.9] yield

0§/ /[L(x,t)v(x,t)dxdt
I Jw

= [[(t) |~ )/i /+ Sg& (z, t)d:cdt—i—/w /w a(z, t)v(z,t)dzdt

G(t)

u(xt
o ! t)dz dt t)| dx dt
()¢ /1/ (e ds +/w/w0 (e, 1)] de

a(t) a(t)

— A0 1~ / @) v (1) de dt < 0.

~

Since g'(a(t); v(t)) dz < 0 for almost all ¢ € I and its integral in I is zero, the first
statement of the lemma follows.

To prove the second statement we use , , Lemma and the assumption
g (u(t); v(t)) =0 to infer

) == [ [ ptmovnasars [ ( / B(1)v(t) da + BIv(1) 1o )

:// oz, t)v(z,t)dedt — // v(z,t)dxdt
ey at)

i (t)

+/IO ( e(t)v(t) dx+6\|V(t)lle(w)) dt

B B ua(z,t) _
_—/I;r /w+ H'u(t)HLw(w)]ﬁ(az,t)|v(m’t)dxdt_/I;r /wg p(x, t)yv(z,t)dedt

(t)

+/IO (L@(t)v(t)dx+BHV(t)IILz(w)) dt

Since the integrands in the last two integrals are nonnegative, the identity J'(u;v) = 0
holds if and only if the following equalities are fulfilled

1) e o) v (@, 8)] = f(a, E)v (1) for aua. (w,8) € Wy x I,

/Lp() () d 4 BIV(E) e = 0 for aua. (,1) € w x 12,

Since [|@(t)|lr2() < B in I3, the second identity is equivalent to the equality for v
written in the second statement of the lemma. O

The next theorem states the results concerning the second order analysis.

Theorem 4.11. Let 0 be a local solution of (P) in the L?>(I;L?(w)) sense. Then,
the inequality J"(;v?) > 0 holds for all v € Cg. Conversely, if u € U,q satisfies
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the first order optimality conditions and the second order condition J"(i;v?) > 0
Vv € Cq \ {0}, then there exist k > 0 and € > 0 such that

_ R _ _
J(U) + 5”11 - u”QLQ([;LQ(w)) < J(U) Yu € Uad N Bg(ll), (52)

where Be(1) = {u € L*(I; L*(w)) : lu — 0l 2(1,ne2(w)) < €}-

Proof. The proof of the sufficient second order conditions is almost the same as the
one of Theorem replacing when necessary £ and Ls; by J and Js;. For the proof of
the necessary conditions we follow [15, Theorem 5.1]. However, changes are necessary
to deal with the infinite horizon, the non differentiable term in the cost functional,
and the fact that the controls are vector rather than scalar functions.

Let v be an element of Cy N L°°(I; L (w)) € U. We will prove that J”(i)v? > 0.
Later, we will remove the assumption v € L>(I; L(w)). Set

Y(i’t) if x & wg(t)
h(z,t) ={ [|u(z,?)] and a(t) = / h(z,t)u(z,t)dz.
0 otherwise, @
Thus, we have ¢'(u(t); v(t)) )+ f (z,t)| dzx; see

For every integer £ > 1 we put
h(z,t) if [h(z,t)| <k,

Pub(w ) ={  h(1)
()

= / Py(h(z,t))u(z,t) dz,

otherwise,

t) — t
h(e.0) = Pu(h(e, o)) + =g,
0 if v — & < [a(®)llLiw) <7
- . 1
Vi t) = 0 if 0 < [Ja(t)l|r2(w) < 7
hk(‘ra t) + V($a t)Xwg(t) (:E) if ||ﬁ(t)HL1(w) =7
v(z,t) otherwise,

where Xwg(t)(a:) takes the value 1 if x € wg(t) and 0 otherwise. We observe that P
denotes the radial projection in R? onto the ball {r € R? : |r| < k}.

Using the pointwise convergence Py(h(z,t))u(z,t) — h(z,t)u(z,t) almost every-
where in w x I and that |Pg(h(z,t))u(z,t)] < |v(z,t)|, we deduce with Lebesgue’s
Theorem that limg_,o ax(t) = ( ) for almost all ¢ € I. Therefore, we have that
vi(z,t) — v(z,t) for almost all (z,t) € w x I. Moreover, we have

2 _
[bi(2, )] < iz O+ ZlIviie ey lat, o)

30



and consequently
2 _
|vi(z,t)] < |v(z,t)| + gHVHLOO(I;Ll(w))]u(x,t)\ for a.a. (z,t) € w x I.
Once again, since v,u € U we obtain with Lebesgue’s Theorem that vy — v in S.

Let us prove that J'(@; vi) = 0. To this end, we apply Lemma [4.10L Given t € I,
taking into account that g(u(t)) = [|a(t)||lr: () = v We get with 5

:/+ Py(h(z,t))a(z, t)dz+(t)_ak(t)/ a:t|dx+/ v(z,1)|dz

g "J;r(f) a(t)
=0 iftel’
=al(t +/ v(z,t)|dz = ¢ (a(t); v(t { . v
0+ [ Ivolde=d@evO{ 2o e

a(t)

where we used that v € Cy in the last step.
We observe that vy (z,t) = v(z,t) for (z,t) € (w0 Wyt X IF)U(wxIY). Since v € Cy, it
satisfies the conditions of Lemma 2 and vy, does it as well, and thus J'(a; vi) = 0.

Take pg > 0 satisfying pg (k + %||v||Lx(I;L1(w))) < m Then, we have for each
fixed k and Vp € (0, p)

=

la( (@) 2
p(|Px(h(z, t)] + | ———= |) p(k+ ;HVHLw(I;Ll(w))) <
Using this estimate we get that [[a(t) +pvi(t)|| 1) < vif g(a(t)) =vand 0 < p < pg:

[a(t) + pvi(t)lL: (w)

_ u(z,t) a(t) — ax(t) . ol i
_/m’ O+ p[ Pl 0) g i+ = +p/%| (1)
- 4 - u(z,t)  a(t) —ag(t) N i i
‘/w:m DI+ p[Pylia(e ) g+ ] d +p/wgm| (z,8)|d
a(t) —ag(t),
flu(%t)l] d:c+/m |v(x,t)|dg:}

a(t)

In the case v — § < [[a(t ML @) < 7, we have that vi(t) = 0 and, consequently,
190 + va®ll oy = 1860 s < - 1 [868) sy < 7 . then we get

_ 1
a(t) + pvi(t)|lLr@w) <7 — z + IVl L (rLwy) <7

Using the local optimality of @, the fact that @ + pvy € U,q, that vi vanishes as
[a(t)||L2(w) € (0,%), and J'(W; vi) = 0, making a Taylor expansion we get for every
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p < pr small enough

2 2
OSﬂﬁ+mw—J®FwJ®ww+%JWﬁ+%ww@Z%Jwﬁ+%wW%

Dividing the above inequality by p?/2 and taking p — 0 we obtain that J”(u; vZ) > 0.
Since v — v in S, we pass to the limit as kK — co and conclude that J”(i)v? > 0.
Finally, we take v € Cy arbitrary and set vi(z,t) = vt for every k > 1.

I+ v et o)
Then, we have

1
1 V)L

o B 1 . —0 ifteld,
o (0 V6l0) = T o] 20 Er

J' (@ v) J'(@;v) =0 and

Therefore, v, € Cg N L>®(I;LY(w)) and v; — v in S is satisfied. Hence, we get
J"(@)v? = limy 00 J” (W) v: > 0, which concludes the proof. O

4.3. Case o = oo.

In this case, we take K = B, = {v € L®(w) : [[v|p~@) < 7} We observe that
U C L*(I;L?(w)). Indeed, if a = 0, then implies that U = L*>®([;L*(w)) N
LY(I; L%(w)). Since L>®(I;L>®(w)) € L*®(I;L?(w)), we deduce by interpolation that
U C L*(I;L?(w)).

From the optimality conditions (33) we infer the following properties of any local
minimizer .

Lemma 4.12. Let u € U,q satisfy . Then, the following properties hold

{ if [a(x, )] <y = @(x,t) + au(z,t) + fA(z,t) =

0,
= _ N _ P a pY 53
if @(z,t) + au(z,t) + fA(x,t) # 0 = u(z,t) = —’ylgggizﬁg’gigggg (53)

Proof. Let us observe that is equivalent to
(@, t) + at(w, t) + BA(z, )] - [§ — 0w, )] > 0 & € R* with [¢] <.
We recall that |-| stands for the Euclidean norm in R?. This inequality implies (53). O

We define ji(x,t) = |@(z,t) + ati(z,t) + SA(z,t)|. We consider the following sets
where the constraint is active:

Ay ={(z,t) ewx I:|u(z,t)| =~} and AT ={(z,t) € A, : a(z,t) # 0}.
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Corollary 4.13. Let i € U,y satisfy . Then (@, p, A, 1) satisfy a.e. in w x I
< 1
370—1—051714—6)\—1—;[“71:0, /1207 |ﬁ|§’77 ﬂ(|ﬁ’_7)20 (54)

Moreover, we have that ||fi||pe(rL~w)) < |@llr~@n=@w) and, if 3 > 0, then A€
L>°(I; L (w)) holds as well.

Proof. The first part of the corollary is a straightforward consequence of Lemma [1.12]
From we get for (z,t) € AT

0= (@(z,t) + au(x,t) + BA(x,t) + iuﬁ(w, t))a(z,t)

ez, t)a(x,t) + ay? + BA(z, t)a(x, t) + vji(z, t).

We observe that A(z,t)u(x,t) = 0ift € Ig(t) and A(z, t)u(z,t) = %

In any case, we have that A(z,t)i(z,t) > 0 for almost all (z,t) € w x I. Using this
property in the above identity we obtain for (z,t) € AT

otherwise.

0 < i, 1) < a7 + BA(e, )z, 1) + iz, 1) = —@(e, )8 1) < [BlE~gipm o))
which proves the estimate for fi. Now, the boundedness of A follows from . O

In order to carry out the second order analysis, we define the cone of critical direc-
tions for u € U,q satisfying as follows

Ca={veS:J(a;v)=0 and u(z,t) v(z,t) <0if |[a(z,t)| =7},

where S = L?(I; L?(w)) N LY([; L?(w)) if 8 > 0 and S = L?(I;L?(w)) if 3 = 0. We
also consider the Lagrange function £ : U x L*°([; L*°(w)) — R defined by

L(u,p) =J(u)+ 217 /1/ p(z, t)a(z, )| dz dt.

The Lagrangian £ enjoys the following properties.

Lemma 4.14. Let u and i be as above. Then, we have

oL, [ =0 ifB=0,

%(umuvv) { >0 Zf,B >0, Vv e Sv (55)
oL, _

a—u(u,u7v) =0 VveC-Clg, (56)
u(z,t)v(xz,t) =0  for a.a. (x,t) € Ai and Vv € Cy. (57)
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Proof. From , , , and we get Vv € U

aﬁ(u,,a;v):/ (go+au+55\)vdxdt+/
au A;r

13

[/WSO(t)v(t) da +BHV(t)HL2(w)} dat
+ 1 /A;r pavdzdt = /13 [/wﬂ_o(t)v(t) dx +,8||V(t)||1,2(w)} dt. (58)

v

Now, we observe that the mapping v e U — gg( ,f;v) € R can be extended to a

continuous functional on S.

If B =0, then implies that @ = 0 in w x IJ and the fist identity of follows.
If 8 > 0 then and along with Schwarz’s inequality implies the inequality of
(55). Now, we prove ad (57)). Given v € Cg, since A € 9j(u) and v € Cy we get

0=J'(a // (@ +atu+ BA)vdzdt.

But and the fact that u(x,t)v(z,t) < 0 if |u(z,t)| = ~ imply that (@(x,t) +
at(z,t) + fA(z,t))v(z,t) > 0 for almost all (z,t) € w x I. Combining this with the
above inequality and Corollary we infer that %ﬂ(:v, tua(z,t)yv(z,t) = —(@(z,t) +
au(x,t) + BA(z,t))v(z,t) = 0 ae. in w x I. This implies that a(x,t)v(z,t) = 0 if
fi(z,t) # 0. Using once again (24), (31), and we deduce

0=J'(a /ﬁ/ cp—l—au%—ﬁ)\)vdxdt—l—/ [/w(,_o(t)v(t)dx+5||V(t)||1,z(w) dt

-/ [ / P()v() da + BIv(D)ec] .
This identity and yield (56). O

Now, we establish the second order necessary optimality conditions.

Theorem 4.15. Let u be a local solution of (P) in the L?(I;L?(w)) sense. Then, the
inequality %(ﬁ,ﬂ; v2) > 0 holds for all v € Cy.

Proof. Let us take v € Cy N L>®(I; L?(w)). It was established in the proof of Lemma
[4.14] that

/18 {/wg_o(t)v(t) dz + B||v(t)||re(w | dt = 0.

Using this inequality, , and we get for almost all ¢ € I3

BIvB)lL2w) = = / e(t)v(t)dz < [lo(t) (L2 @ V() L2 w) < BV lLew)

This yields Bv(z,t) = —@(z,t)||v(t)|lL2(,) for almost every t € I3. Since v €
L>®(I;L2(w)) and ¢ € L>®(I; L>®(R2)), we infer that v € L>®°(I3; L>=(w)).
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. 1 Y
For every integer k > - and 0 < pp < mln{kQ, T Mmag, } we define the

Lo (w))

function ¢y, : [0, px] — S by

1
ﬁ(x7t) 1f7_% < ‘ﬁ(l’,t)’ <7,
u(x,t) if 0 < [la(t)|lp2(w) and [v(z,t)| > F,
_ 1
br(p) = u(z,t) if 8>0and 0 < [[u(t)]|rew) < o

\/1 PP o) 4 pv(e,t) i fa(e,0)] = v and [v(z, 0] < k,

u(x,t) + pv(z,t) otherwise.

It is immediate that |¢r(p)| < |v(z,t)| + |a(x,t)|, hence ¢i(p) € S and ¢y is well
defined. Moreover, ¢;(0) = u and, using that u(z,t)v(z,t) < 0 if |a(z,t)] = v, we
get that ¢x(p) € U,q for every [0, px]. Therefore, the function ¢y : [0,pr] — R,
defined by i (p) = J(ék(p)), has a local minimum at 0 and ¢;,(0) = J'(u; ¢,(0)) =

0 by definition of ¢; and the fact that J'(ua;v) = 0. Consequently, we have that
0 < ¥0) = J”( :¢1.(0)2) 4+ J'(@; ¢/ (0)). We observe that ¢, (0) — v in S and
#7(0) — —?‘V‘ ty 4, as k — oo. Then, we obtain with

! !/ — 1 2
Jim J'(w; 6(0)) = J'(w; ?\V\ uxa,)
1 I L[
=—-—= (@ +au+ pA)ulv| dedt = — alv|* dz dt.
v J At Y JA*

Therefore, we have

1 0*L
< i " N (N, - =<2 — 4. i v2).
0% Jim () = sty 4 [ vl drat = S5 )

Finally we remove the assumption v € Cy N L®(I; L2(w)). Given v € Cy we define

v(z,t)

for k> 1.
1+ £V e (w)

vi(x,t) =

Then we have that {v;}2°, C CqNL>®(I;L?(w)) and v, — v in S. Then, it is easy to
pass to the limit in the inequality %(ﬁ, fi;v2) > 0 and to get the desired result. [

The proof of the next theorem is analogous to the one of Theorem [4.7] with obvious
changes.

Theorem 4.16. If o > 0 and u € Uy satisﬁes the first order optimality conditions
o 0L (a,i;v2) > 0 Vv € Cy\ {0}, then there exist k > 0

and € > 0 such that

_ R _ _
T@) + Sl = 0 g < J0) Yu € Una 1 Be(u) (59)
where B.(a) = {u € L*(I; L?(w)) : ||lu — Q|2 (112w < €}-
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5. Appendix

Proof of Lemma |2.1|. First, we analyze the bilinear form B. Let y1,y2 € Y and
(Yim,yiw) € [L2(I; V)NL®(I; H)] x [L9(I; W, (2))NLA(1; W,(9))] be elements such
that y; = yi m +y:;w for i = 1,2. Then, we are going to prove estimates for the terms

B(yvm,y2.1), By, y2w), B(yiw,ya.u), and B(y1w,y2w). Given 9 € H}(Q),
we observe that

2
(B(y1,¥2), ¥)u-1(0) H:(Q) = Z /QYL'L'(xvt)azin,j(:Eat)'l/’j(x) d.
ij—1

To deduce the estimates we will use the Gagliardo inequality

1y ll©@) < Crllyllga e 1Yy ) ¥r € (2,00) and Yy € Hg(Q); (60)

see [6, page 313]. Now, we proceed in four steps.

Step 1.- Using that divy; g = 0, we know that

/ (yom - V)youlth de = — / (Yo - V)Plyen dr. (61)
Q Q

Then, from Schwarz’s inequality and with r = 4 it follows

1

</I‘<B(YI,H(t)7YQ,H(t)),’lﬁ>|2 dt>; _ </I|<B(y1,H(t),w),m,H(tmz dt)

1

< ( 11Ol Iy Ol dt) .

1

<} (/I||Y1,H(t)\|L2(Q)HYLH(t)HHg(Q)HyQ,H(t)HLZ(Q)HyQ,H(t)HHg(Q) dt) [K7215% ey

< CZHYI,HHEoo(];m(Q)) ||YI,HHi2(1;Hé(Q)) HY2,H||zoc([;L2(Q)) |’y2,H||%2([;Hé(Q)) ||'¢’||H(1)(Q)
Ci
< 7<||Y1,H|\Loo(1;m(m) + ||y1,H||L2(I;H})(Q)))

X <HY2,HHL°°(I;L2(Q)) + HY2,HHL2(1;H5(Q))) 1% |12 (02)- (62)
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Step 2.- Using Holder’s inequality and with r = 2p’ = % we get

(/ |<B<y1,H<t>,y2,W<t>>,Wdt);

1

< (IO 0 11 o 720 O By )

< C2p' </I Hyl,H(t)|’Ii(Q)||y1,H(t)||I;iI})(Q)||y2,W(t)H%Vévp(Q) dt) ||¢”H5(Q)
< CQP'Hyl,HHZOO(];LQ(Q))Hyl,H”EQ(];Hé(Q))”y27W”L2P'(I;Wé’p(Q))H¢HH5(Q)'

Taking into account that 4 < 2p’ < 8 < ¢, we get from above by interpolation between
L* and L? and Young’s inequality that

1

(/1 !(B(yLH(t),m,w(t))ﬂl))!Qdt) < C(HYLH||L°°(I;L2(Q)) + HY1,HHL2(I;H5(9))>
X <||y2,W||L4(I;Wé’P(Q)) + ||YQ,W||L<1(I;W3"’(Q))> [ llE - (63)

Step 3.- Using again Holder’s inequality and with r = 4 we obtain

(/I|<B(Y1,W(t),y27H(t))71j)>|2 dt>

1

< </I!!yl,w(t)\\i4(g)H.Y2,H(t)||%4(g) dt) IS

<C} (/I HY1,W(t)H%V5w(Q)HY2,H(75)||L2(Q)||Y2,H(t)\|H5(Q) dt) 1%l (@)
< 042Hy1,WHL4(I;Wé’p(Q))HyQ,HHEm([;[ﬂ(Q))HyQ,HHIE-Ié(Q)Hd)HH})(Q)

< CElyiwl psrwie o) (HY2,HHLoc(1;L2(Q)) + HYQ,HHH})(Q)) Il (64)

Step 4.- Using again the property , Holder’s inequality, the embedding
WP (Q) € L4(Q), and the fact that p > 4 we obtain

2

(/1|<B(Y1’W(t)’Y27W(t))7¢)|2dt)

< ([1ysvlm bvanlEeodt) 9l

< C<||y1,W||L4(I;Wé’P(Q)) + HyQ,WHL‘l(I;Wé”’(Q))) ¥l () (65)
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Finally, adding the estimates — we obtain

1B(y1,y2)lz:qm-1 (o) < C(”yl,HHL‘X’(I;L?(Q)) + Iyvmll e my @) + Hyl,WHLq(I;Wé'p(Q)))
X <HY2,HHL°°(1;L2(Q)) + lvo.mll L2 my ) + HY2,WHLq(1;Wé=P(Q))>' (66)

Taking the infimum on the right hand side of the above inequality among all functions
(yimsyiw) € [LA(I;HE(Q)) N L0, T;L2(Q))] x LU0, T; WP (Q)) satisfying that
Yi =YiH +Yiw, t= 1,2, we conclude

IB(y1,y2)l 21 ) < C'llyillyllyzlly.

Now we turn to the estimates for B. First, we point out that ) is continuously embed-
ding in L8(I; L*(€2)). Indeed, since W(Q) € L*(Q) for every p > %, we deduce that
W, ,,(I) C LI(I; L)) and Wy, (1) C L4(I;L4(Q)). Then, recalling that 4 < 8 < ¢,
we infer by interpolation that W, ,(1)N"'Wy (1) C L8(I1;L*(12)), the embedding being
continuous.

Let us prove that Wy o(I) C LS(I L4(Q
out that Wyo(I) C C(I; (H™Y(Q), H}(Q)

that HYHC(I;(H—l(Q),H})(Q))%A) < Cillyllw, .o

)) holds as well. For this purpose we point
)s ) and there exists a constant C; such
47
(1)

ee [I, Th. I11-4.10.2]. Using that
(H1(Q), H(Q)s 4 € (W H(Q), Wa(Q))s , = Wa'(Q) € LY(Q),
we infer that Wyo(I) C C(I;L*(2)) and ||yHCg4(Q)) C’2||y||W42 for some
60

constant Cy. Now, using Gagliardo’s inequality (60) with » = 4, we get for every
y € W472(I )

||Y||L8(I;L4(Q)) < ||y||é’([;L4(Q))||y||E4(Q)

< C4HY”(EJ([;L4(Q))HYHEoo([;Lz(Q))HYHE’Z;H(I)(Q)) < C5”Y”W4,2(I)

All together this implies that ) = Wy (1) + [Wy,(I) N Wy, (I)] C L8(I;L4(Q))
with continuous embedding. Then, we have for all y1,y2 € Y

1

(1800 v2(0).0 |4dt) (/ (B 0.8) v )

< ( [ 11092001 dt) Il
< iy s ime o 2l sy Il < Clyilylyaly @@, ©7)

which proves the continuity of B. O

Proof of Lemma [2.5. For every T < oo the existence and uniqueness of a solution
(yn,pn) € W(0,T) x W=12(0,T; L?(2)/R) of (§) in Q7 = Q x (0, T) was proved in
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[13, Proposition 2.7]. Additionally the estimates

Iyl oz + 15~ ras@y < nv(lleally ) (gl + llynollLa )
||YN||W(0,T) < V077]2v(||e2”Y)(||g”L2(I;V’) + ||YNOHL2(Q)>
(1 + v+ flewlly + llealv)mv(lealiy) + 1 (llgllzavn + Iyaoluao)-

are deduced from the same result, where a explicit definition of 1y was given. Hence,
taking the supremum on T @D follows and the first part of the lemma is proved.

It remains to prove that, under the additional regularity of the data of the equation
@D, the solution belongs to Wy 2(I). First, we show the existence of T' € (0, 00) such
that yny € Wy 2(0,T). To this end we apply the fixed point Schauder’s theorem as
follows. Fixed T' < oo we define the mapping F : L8(I; L*(Q)) — L8(I;L*()) such
that F'(z) = yzX[o,r], Where y is the solution of the equation

0
a—i—mwwzgz in Q,

divy =0 inQ, y=0 on X, y(0) =yno in £,

with gz = g— X0, [(z- V)z+(z- V)ea + (e1- V)z]. Let us prove that F' is well defined.
From (]@ and using the regularity of g, e;, and ey we deduce that

HgZ”L“(l;H*I(Q)) = (HgHL‘*(I;H*l(Q))

+ 11zl s 0, @) 2l s 0,710 () + llerl| s (ra)) + ||e2HL8(1;L4(Q))])-

Using this regularity for g, and the fact that yno € B2 4(Q2), we infer from Lemma
that y, € Wy 2(I) and the following estimate holds

1Vallw. ) < Ca2(ll8allLs(rm-1 () + 1y nollB,. (@) (68)

Taking s = £ and 6 = 2 in [2, Theorem 3], we get that W4 2(0,T) is compactly embed-
ded in L3(0, T; (H™'(2), H}(2))= 1) € L3(0, T; H2(Q)) € L¥(0, T; L*(R2)). Therefore,
the mapping F' is well defined and compact for every T < oo. It was established in
the proof of Lemma that Wyo(I) C C(I;L*(Q)) with continuous embedding. If
2]l s (1,4 (@) < 1, then we have with

¥zl 0,14 ) < TElyallemis) < CT8|yallw, .

< CCaT5(|Igell o1 () + [y NollB, L ()

< 00y 2T <||g”L4(I;H*1(Q)) + 1+ [letll s + llezll s + HYNOHBM(Q))-
Now, selecting T sufficiently small we infer that F applies the unit ball of
L8(0, T; L*(Q2)) into itself. Hence, Schauder’s Theorem implies the existence of a fixed
point for F. Of course this fixed point belongs to Wy 2(0,7") and solves the equa-

tion @ in the interval (0,7). Since y is the unique solution of this equation in any
interval (0,7) we conclude that this fixed point is precisely the restriction of yy to
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(0,T). There are two possibilities: either yn € Wy o([) or there exists a maximal time
T < oo such that yny € Wy 2(0,T) for every T' < T* and limr 7~ [|[yn|lw, ,(0,7) = 0©-
Let us prove that the second option can not occur. We know that there exists a con-
stant C' independent of 7" such that [|y|lc(o,r;L4@)) < Clyllw,.,0,7); see [1, Theorem
T11-4.10.2].

From the first part of the proof we have that yny € Y. By using Gagliardo’s in-
equality with r = 4 we obtain that Y is continuously embedded in L*(Q). Hence,
given € > 0 we can select T, < T™ such that

/ HYN(t)||%4(Q) dt < e.

€

Let us denote Co = ||g||z+(7;-1(0)) + Helu%s(l§L4(Q)) + [le2||3 L)) and set e =
[2CCy 9]t Then, for every T € (T, T*) we infer from Lemma [2.4] that

lynllw, .01 < IyNlIw,.0m) + 1yNIw, 17
< HYNHW“(O,TE) + C'4,2(00 + HYN(TE)HB2,4(9) + HyNH%S(TE,T;L‘*(Q)))
< lynllw,.01) + Ca2(Co + [y n(T2) 1B, ) + Iy Nlleqomns @ YNl mine )

1
< llynllw, .01 + Ci2(Co + lyn(To)lB,.(0) + §||YN”W4,2(0,T),

which proves that 7% = oo and yny € Wy o(I). O
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