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1. Introduction

In 1920, N. Wiener, based on Daniell’s interpretation of integral [7-9], defined in [25] an integral for
bounded and continuous functionals F' : Cx,[0,1] — R, where the notation Cx,[0,1] stands for the space
of continuous functions u : [0,1] — R with base point u(0) = x¢. In later papers [25-30], he connected
this notion to that of Brownian motion and he defined the so-called Wiener process. In posterior works, he
generalized these results defining a probability measure pix, on the measurable space (Cx, [0, 1], Bx, ), where
By, stands for the Borel o-algebra of Cx, [0, 1] endowed with the uniform convergence topology. This measure
is characterized by the following property: For each finite partition 7 = {t; < t5 < --- < t,} C (0,1] and
each family (Bi):c7 of Borel subsets of R, the identity
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_ n [T N
Pxq (WTl(Bt)teT) = / / Hpti—ti,l(fﬂialfi—l)ndlii, to =0, g = Xo, (1)
B, =1 i=1

By,
holds, where p;(z,y) is the heat kernel of R and 77 : Cy,[0,1] — R7 is the projector defined by
77 1 Cxy[0,1] — R7, 7w (u) := (u(t))ier-

At first, it seems there is no easy way to compute the integral of an arbitrary measurable functional
F : Cx,[0,1] — R. Nevertheless, Wiener proved in [25] an analogue of Jessen’s formula [15,23] for the
measure fix,. More explicitly, he proved that given a bounded and continuous functional on Cy,[0, 1] and a
partition 7 = {Tn},cn, Tn = {17 }izy of [0, 1] with mesh zero,

lim max [t — ¢t 4] =0,
n—oo 2<i<n

the integral of F' can be computed though finite dimensional integrals via

F(u) dpx,(u) = lim Fo(z1,29,...,2,) Hpt?*t%il (T4, 2i-1) H dx;,
Cx[0,1] R» 1=1 i=1

where the functions F), : R™ — R are defined by

Fo(z1,72, .. 20) = F(U(g, 4,,..))s

where U, 4, .. denotes the linear interpolation of the points x1, s, ..., z,, for each n € N. In [23], the
author generalized this formula to every L!-functional proving that for each F' € L'(Cx,[0,1], tix, ), there
exists a finite dimensional functional sequence (F},)nen € X, cn LY(R™, ) such that

/ Fdpx, = nli_{{.lo/Fn dpy, where duy = Hpt;"—tf;l(xiaxi—l)l—[dxi- (2)
Cx[0,1] R~ i=1 i=1

A similar discussion can be done for the category of Riemannian Manifolds. Given a compact connected
Riemannian manifold (M, g) (closed Riemannian manifold for short) of dimension m, we can construct,
analogously to the case of [0, 1], the measure space (Cx,(M), ux,). Here, the notation Cx,(M) denotes the
space of continuous curves 7 : [0,1] — M beginning at xo and px, the Wiener measure on Cy, (M), i.e.,
a measure satisfying an analogue of equation (1) for this setting (see section 2 for further details). Similar
versions of Jessen type formula have been developed for the category of Riemannian manifolds in [1]. In that
article, Andersson and Driver proved that given a bounded and continuous functional F': Cx, (M) — R, the
identity

/ Fdji, = lim. / Fo) dvy. (o) 3)

Cog (M) Hr, (M)

holds, where (Hy, (M), vr,) is a finite dimensional measure space based on the geometrical data of (M, g)
and T = {Tn},en s Tn = {ti'}i=1, is a partition of [0,1] with mesh zero. Roughly, Hr, (M) is the space
of piecewise geodesics paths in M, o : [0,1] — M, which change direction only at the partition points
T, = {t?}7 ;. The precise definition of the pair (Hr, (M), vr,) will be given in section 6.

After Andersson and Driver, several developments and generalizations have been done by several authors,
for instance this scheme has been generalized to heat kernels on vector bundles in [2,3] and further developed
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in [16-19]. This type of finite dimensional approximation of path integrals has a great impact in theoretical
physics and in particular are extremely useful for the Feynman path integral approach to quantum field
theory [10,11].

The aim of this article is to establish a generalization of equation (3) for every integrable functional
F : Cx,(M) — R, not necessarily bounded and continuous in the vein of the analogous result (2) for the
classical Wiener measure proved in [23]. To obtain this result, we use a categorical point of view. We prove
that for 1 < p < oo, the space LP(Cx, (M), f1x,) is the colimit of certain diagram consisting on LP-spaces of
finite dimensional data associated with M.

This generalization and structural result has many applications in stochastic analysis. For instance, this
scheme allows to embed the notion of the Stratonovich stochastic integral

1
/ F(X0) 0 dX, € L2(Cuy (M), iy ).
0

in our approximation techniques, where X denotes the Wiener process on (Cx, (M), tix, ). Indeed, since the
Stratonovich stochastic integral is not, in general, a continuous and bounded functional, we cannot apply
the approximation (3) directly, but we can apply the techniques of this article.

The paper is organized as follows. In section two, we present the abstract results about colimits that
will be used throughout this article and we recall the definition and construction of the Wiener measure
on closed Riemannan manifolds. In section three, we prove that for 1 < p < oo, the space LP(Cx, (M), pix,)
is the colimit of a diagram consisting on LP-spaces of Cartesian products of a finite number of M-factors.
In section four, we derive a finite dimensional approximation formula of type (2) for integrable functionals
F € LYCx, (M), px,), via a particular realization of the colimit of the diagram defined in the preceding
section. In section five, we apply our approximation scheme to Stratonovich stochastic integrals. The end
of this article, section six, is devoted to recall Andersson and Driver’s scheme and to adapt the results
developed in sections three and four to their framework. In particular, we obtain a generalization of (3) for
every integrable functional.

It is convenient to remark that all the results obtained in this article can be easily adapted to the category
of Riemannian manifolds with boundary and to the case of continuous paths with fixed initial and end point,
the so-called Pinned Wiener spaces. See for instance [4] for the definition and construction of the Wiener
measure on these spaces.

2. Preliminaries

In this short section, we will recall some basic facts about colimits and the Wiener measure on Riemannian
manifolds that will be used through this article. It will be also useful to fix notation.

2.1. Basic notions regarding colimits

Let € be a fixed category and I a directed set. A diagram is a functor F' : I — €. It can be represented
as (X, @;j) for a family of objects indexed by I, {X; : i € I'}, and for each ¢ < j a morphism ¢;; : X; — X
such that ¢;; is the identity on X; and ¢;; = @, 0 ;; for each i < j < k. In general, we can consider
diagrams as functors F' : J — € indexed by a general category Jj, however, diagrams indexed by directed
sets are enough for our purposes. A cocone is a pair (X, ¢;) where X is an object of € and ¢; : X; — X
is a morphism of € such that ¢; = ¢; o ¢;; for every ¢ < j. The class of cocones of a given diagram forms
itself a category. A colimit of the diagram (Xj, ¢;;) is defined to be a cocone (L,1);) characterized by the
following universal property: For any cocone (X, ¢;), there exists a unique morphism ¢x : L — X making
the diagram of Fig. 1 commutative.
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Fig. 1. Diagram of the Universal Property.

The colimit of a given diagram can be also characterized as the initial object in the category of cocones.
The colimit of a given diagram does not necessarily exist, however if the colimit exists, it is unique up to
a unique isomorphism in the category of cocones. Any given isomorphism class of the colimit is called a
realization. The colimit of a given diagram (X;, ¢;;) is commonly denoted by L = h_n)l X;.

In this article, we will consider the category Ban whose objects are Banach spaces and whose morphisms
are linear isometries. The proof of the existence of the colimit for every diagram on Ban can be found in
[24, App. L] or in [5] and references therein.

Though this article, we will make use of the following simple Lemma.

Lemma 2.1. Let (X;, i) be a diagram on Ban. Then a cocone (X, ¢;) is a realization of the colimit of
(Xi, @i5) if and only if | J,c; ¢:(X;) is dense in X.

Proof. Suppose that (X, ¢;) defines a realization of the colimit of (Xj,¢;;). Consider the cocone (Y p;)
where

Y= Joi(Xi) C X,
iel

and where p; : X; — Y are the canonical inclusions. By the universal property there exists a unique isometry
vy : X — Y making the diagram of Fig. 1 commutative. It is straightforward to prove that the morphism
@y is in fact an isomorphism, hence | J,.; ¢i(X;) is dense in X. On the other hand, take a cocone (X, ¢;)
with (J;c; ¢:(X;) dense in X. For any other cocone (Y, p;), define the morphism ¢y : X — Y by

Yy o ¢ =p;, €L

Then it is easy to see that the morphism ¢y is the unique morphism making the diagram of Fig. 1 com-
mutative. Hence (X, ¢;) is a colimit. This concludes the proof. O

2.2. Wiener measure on Riemannian manifolds

Along this article, (M, g) denotes a compact connected Riemannian manifold (closed Riemannian man-
ifold for short) with a fixed base point xo € M. The notation Cx,(M) stands for the space of continuous
paths v € C([0,1], M) satisfying v(0) = x¢, Bx, for the Borel o-algebra of Cx,(M) with respect to the
uniform convergence topology given by the induced metric of M and pux, for the Wiener measure on M
with base point xg.
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We recall the definition of the measure space (Cx,(M), Bx,, ix,). Consider in (M, g) the measure y :
By — [0, +00] induced by the metric g, where By; denotes the Borel o-algebra of M. This measure is

du = \/det(gij)ij dxl VACERIVAN dl‘m

where m is the dimension of M and (g;;):; is the matrix of g in a local chart. For each closed Riemannian
manifold (M, g), there exists a heat kernel p;(z,y), for t > 0, z,y € M, i.e., the Schwartz kernel of the
selfadjoint operator e*® on L?(M, i), where A denotes the Laplace-Beltrami operator on (M, g). The proof

locally given by the expression

of the existence of this map can be found in [4,13]. A well-known consequence of the Kolmogorov extension
Theorem [31, Th. 6.1], is the existence of a probability measure

txy : B — [0, +00]

on (M1 B), where B denotes the Borel o-algebra of M%) with respect to the product topology, satisfying
the identity

_ ™ [T =
Hxq (WTl(Bt)tET\{O}) = / c / Hptj—tjfl(xj7 :I"j—l) H d/’b(‘rj)a To = X0, (4)
5 =1 j=1

By, tn

for each finite partition 7 = {0 = to < t; < --- < t,} C [0, 1] and each family of Borel subsets (B;);e7\ {01 C
Bps. Here and in the sequel, the notation w7 stands for the projector defined by

T - MO MT\{O}> 7rT(’)’t)te[o,l] = (’Yt)teT\{O}- (5)

Since (M, g) is compact, it is, in particular, stochastically complete (see for instance [13]), and therefore

/m@wﬂww=1

M

for each t > 0 and = € M. This fact implies that the measure py, is of probability, that is, iy, (M [0’1]) =1.

On the other hand, by [4, Cr. 2.19], the measure p, satisfies the identity iy, (Cg, (M)) = 1 for each o €
(0,1/2) where C¢ (M) stands for the subset of M%) consisting of Holder continuous paths v : [0,1] — M
of exponent o € (0, 1) satisfying v(0) = x¢. Therefore, since Cy, (M) is a Borel subset of Ml (see [12, Th.

10.28]) containing Cy (M) and since
BNCyxo(M):={BNCx,(M): B € B},

coincides with the Borel o-algebra By, (see [20, Prop. 2.2]), we can consider the restricted probability space
(Cxo (M), Bxys ix, ). The restricted measure iy, is called the Wiener measure of M with base point xg. The
proof of these facts can be found for instance in [4,13] and references therein.

3. Approximation scheme for the Wiener measure
In this section, we will prove that the spaces LP(Cx, (M), pix,), 1 < p < 00, are realizations of the colimit
of the diagram (LP(M7, u] ), 7%7). Let us start by defining the diagram (LP(M7, u] ), 7%-,). Consider

the directed set P consisting on partitions of [0, 1]

T={0=ty<ty < <tp}
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partially ordered by inclusion. For notational simplicity, we will use the notation M7 to denote

MT .= X M.
teT\{0}

For a partition 7 = {0 =ty < t; < --- < t,} in P, consider the probability space (M7, Q" Bar, pu,)
where ul—g is the measure defined by

n n
d/J’Z(—O = Hptiftifl(xtﬁxti,l) Hdﬂ($t1)> Zo = Xo,
i=1 =1

and @, Bar denotes the product o-algebra. For each pair of partitions 7,7 with 7 C 7", we obtain a
measurable projection map

mrr M7 — M7, mrr(@)ieror = (@) iem jo)-

We therefore obtain a diagram in the category of measure spaces, indexed by the directed set P. For each
pair of partitions 7,7’ with 7 C T’, we can consider the pullback operator

gt LPMT L) — LP(MT  yL), whp () == fomry.

Since each 777 is measure-preserving, the pullback 7%, is an isometry for each 7 C 7’. By func-
toriality of the pullback, we obtain a diagram in Ban indexed by the directed set P, where all arrow
directions are now swapped, as the pullback is contravariant. This diagram will be subsequently denoted by
(LP(MT i), ).

It will be proved that the cocone (LP(Cx, (M), tix, ), 1), where ¢ are the morphisms defined by

o7 LP(MT ] ) — LP(Cuy (M), pixy), &7 (f) 1= f 0 7Tl (a):

defines a realization of the colimit of (LP(M7, u] ), w5,). The following Lemma will be useful for this
purpose.

Lemma 3.1. Let 1 < p < oo, then the subspace Jrcp d7(LP (M7, p] ) is dense in LP(Cxo (M), pix,)-
Proof. As we have recalled in section 2.2, the following equality of o-algebras
By, = BN Cx, (M), (6)

holds. By definition, the product o-algebra B is generated by the cylinder sets and therefore by (6), it follows
that

By, = 0(R), R:={m7 (Boier : (Bier C B, T C (0,1] finite} N Cy, (M).

Since (Cx, (M), pix,) has finite measure, by [6, Lem. 3.4.6], the subspace Span{xr: R € R}, where xr
denoted the characteristic function of R, is dense in LP (Cx, (M), pix, ). From the inclusion

{xp:ReR}C |J ¢r(P(M7,ul)),
Tep

it follows that Jyep o7 (LP(M7, p] ) is dense in LP (Cx, (M), pix, ). This concludes the proof. O
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Finally, we prove the main result of this section.

Theorem 3.2. Let 1 < p < oo, then the cocone (LP(Cx,(M), pix,), ¢T) defines a realization of the colimit of
(LP(MTvl‘[’Z(;%W’;’T’)'

Proof. By Lemma 3.1, the subspace

U or(@P (M7, uL,)) € L (Cuy (M), ix,)
TeP

is dense in LP(Cx,(M), pix,). Therefore, we can apply Lemma 2.1 to (LP(Cx, (M), tix, ), 1) obtaining the
result. O

4. Derivation of the limit formula

In this section, we will prove that the integral of a given integrable functional can be expressed as the
limit of finite dimensional integrals. To relate the colimit structure obtained in the last section with the
integration procedure, we have to provide a particular realization of the colimit of the directed system
(LP(MT, MIO), 77 ). To define this realization, we need the following definition.

An element (f7)7ep € Xyep (M7, MIO) is said to be co-Cauchy if for each € > 0, there exists R € P
such that

777 (fr) = frolle <e, forall T, 7" € P with R CT C T

For notational simplicity we denote L? = LP(Cx,(M), jix,) and Lt = LP(M 7 pu] ).
We define the space £(LP(M 7, pu] ) by

M7 ul) = {(r)rer € X LXMT,1ll) : (fr)rep is co-Cauchy | / ~, (7)
TeP

where we relate (f7)7ep ~ (97)7ep if
lim | fr = g7z = 0.
We define in £(LP(M7, 1] )) the norm
I(fr)Teple = lm| frllLs -
All the limits involved are considered as limits of nets. For further considerations, it is imperative to obtain
the completeness of the space £(LP(M7, MIO)), which is not obvious from the definition. For this reason,
we identify it directly with LP(Cx, (M), ix,) via the following result.
Theorem 4.1. The following spaces are isometrically isomorphic for 1 < p < oo
S(LP(MT, 1)) 22 LP(Coeg (M), i, )-

Proof. Let us prove that the map

Ty SLPMT 1)) = LP(Coo (M) pixo), - (fr)7ep = limor(f7)
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defines an isometric isomorphism. The map J, is well defined since the net (¢7(f7))7ep converges in
LP(Cx, (M), pix, ), & fact that follows from the identity

lo7(fr) — o (frlee = (o7 o 77 ) (f7) — b7 (f1)l| L0
=17 (fr) = frllee,, TCT

and the co-Cauchy property. It is easily seen that J, is an isometry since
135 (fr)7eplles = imér(fr)lee =lUmlfrlles = (fr)7erlle.

Finally, we prove that J, is onto. Let f € LP(Cx,(M), pix,) and take D = {t;};enuqo}, to = 0, a dense
countable subset of [0, 1]. Define the sequence of partitions P = {P,, },en by

Prn:i={ti}iy, mneN.

Clearly P, C Ppt1, n € N and UneN P, = D. It is easily seen using the same techniques of the proof of
Lemma 3.1, that |, ey ¢p, (LP(M7, pZr)) is dense in LP(Cx, (M), pix, ). Hence there exists a sequence

(fn)nen, [fn € L”(MPN",MQV”) for some N,, € N,

such that

lim ¢7’Nn (fn) = f in LP(CXO(M)vﬂxo)'

n—oo

Take a strictly increasing sequence (M, )n,en € N such that N, < M,,,n € N. Then, in particular, Py, C
P, and

P
Gn == Ty oy, (fa) € LP(MPr0 uB2n) me N,
Define the sequence

if My, <n< My

T (9n)
Fy)n ’ F, = Pt P
(Falnen { 0 if n < M,

then

(Fa)nenw € X LP(MP,ply) and lim ¢p, (F) = f in LP(Cx, (M), pix, ).
neN nee

Define the associated net (F7)7recp by

Fro= 75 7(Fn) Py CT but Pupr ¢ T
0 else

Finally, we have that (Fr)7epr € Xgycp LP(MT,,uIO) and limy ¢7(Fyr) = f, which implies that
J,(Fr)1ep = f. This concludes the proof. O

It is appropriate to note the following in accordance with the proof of Theorem 4.1. One is tempted to
think that in order to prove the surjectivity of J,, for each f € L?(Cx,, fix, ), it is sufficient to use Lemma 2.1,
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TT!

LP(MT, ul ) LM ulh

P P

LLP(MT, 1))

b7 by
3,

LP(Cox, (M), i, )

Fig. 2. Diagram of the Universal Property II.

choosing a sequence (fr)7r € Urcp ¢ (LP(MT, ul—o)) such that lim7 ¢7(f7r) = f. Nonetheless, it must be
observed that the sequence (f7)7 is not necessarily contained in the Cartesian product X.p LP (M7, u] )
which makes things a bit more involved.
: . R , R T T
We define the morphisms g : LP(M™, j1,5 ) — L(LP(M 7, py,)), R € P, through

(8)

0 else

VR(fR) = (97)TeP, 97 = { mer(fr) HRCT

By Theorem 4.1, the space £(LP(MT, u] )) is a Banach space and therefore the pair (£(LP(M 7, 1] ), vr)
defines a cocone. The colimit of (LP(M7, u] ), 7%,) will be identified with (S(LP(M7, ] )), ¥r).

Theorem 4.2. The cocone (£(LP(MT, ] ), ) defines another realization of the colimit of (LP(MT, u] ),

Proof. Since the colimit is unique up to a unique isomorphism on the category of cocones, it is enough to
prove that (£(LP(MT, ,ul;)), ) is isomorphic to (LP(Cx, (M), pix, ), ¢7) in the category of cocones. By the
proof of Theorem 4.1, the map

jp : S(LP(MTal/J;J)) — Lp(cxo (M)7#’x0)7 (fT)TGP = 1171,11 d)T(fT)

is an isometric isomorphism. To prove that it defines an isomorphism of cocones, we need to verify the
commutativity of the diagram of Fig. 2 for each 7 € P. Take fr € LP(MT,,uZ;O), then by a simple
computation we obtain

or(fr) T CQ

(Tp o) (f7) = ﬁgl hg, hg:= {0 olse

and thus (3, o ¥7)(f7) = ¢7(fr). Hence the diagram of Fig. 2 commutes and the proof is concluded. O

Here in after, as a direct consequence of Theorem 4.2, we can and we shall denote £(LP(M7, u] ) =
lig LP(MT, pf).

As a rather direct application of the isometric property of J,, we obtain our integral limit approximation.
Indeed, if F' € LP(Cx,(M), pix, ), there exists an element (fr)rep € hﬂ LT‘(MT,;LZ:O) such that ||F||» =
I(f7)7|le. Therefore, we have
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[P duy =t [ 157

Cxo (M) MT

Furthermore, if we take into account that given F' € L'(Cx, (M), tix,), we can write it as F = F* — F~
with F*, F~ positive and F*, F~ € L'(Cyx, (M), j1x, ), then we get the following result.

Theorem 4.3. Let F' € L (Cx, (M), pix, ), then there exists (f7)7ep € Xqep L' (M7, pil ) such that

| P i =t [ frau,

Cp (M) MT
5. Stratonovich stochastic integral

In this section, we will apply the developed theory to a particular example, the Stratonovich stochastic
integral. Our approach can be used to get a finite dimensional approximation scheme for this type of
integrals, in contrast to the Andersson and Driver’s framework [1] that only can be used if the involved
functional is bounded and continuous.

Let us firstly recall briefly some basic facts about stochastic integration. Let (X,Y) = ({ Xt }+e0,17, 1Yt }ef0,1])
be a pair of bounded R-valued semimartingales defined in the probability space (€, F,u). Then, the
Stratonovich integral of X with respect to Y is defined by the relation

" Xy 4+ Xin
/Xt OdYt = lim Z%(}ft? —}/75;171) € L2(Q,‘LL)

where T = {Tptnen, Tn = {7}, is a fixed partition with mesh zero of [0, 1]. It is related to the It6
stochastic integral by the relation

1 1
/XtodYt:/Xt Y, + [X,Y),
0 0

where [X,Y]; denotes the covariation of the processes (X,Y) and dY; denotes the 1t6 differential. In the
case in which (X,Y) = ({Xi}iep,1), {Ye}tep,1)) are bounded R¥-valued semimartingales, we define

1 N 1
/XtodYt ::Z/X;'odyj.
0

=17

It is worth to mention that the usual definition of the Stratonovich integral is under convergence in probabil-
ity [21, Th. 26, Ch. V]. Since we will deal with semimartingales defined on compact manifolds, we only need
the definition for bounded ones, in which case, the convergence in probability implies the L?-convergence
as a consequence of Vitali’s convergence Theorem.

It must be taken into account that if (M, g) is a closed Riemannian manifold embedded in the Euclidean
space RY, by [14, Pr. 3.2.1], the M-valued stochastic process X = {X;}c[0,1] defined by the coordinate
functionals of (Cx, (M), fix,), defines a R¥-valued bounded semimartingale. This implies by [14, Pr. 1.2.7,
(i)] that {f(X¢)}ieo,1) is a real valued semimartingale for each f € C°°(M). Therefore the Stratonovich
stochastic integral of f(X) with respect to X, where f € C**(M,RY), f = (f1, f2, ..., fn), is well defined.

The main result of this section is the following. It establishes which is exactly the preimage of the
functional f01 f(Xt)odX € L?(Cxy (M), 1, ) via the identification J : ling L2(MT p ) = L2(Cxo (M), pixo)-
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Theorem 5.1. Let (M, g) be a closed Riemannian manifold embedded in the Euclidean space RN, f €
C®(M,RY), f = (f1, fas-s ), and {Xi}iep0,1) the M-valued semimartingale defined by the coordinate
functionals of (Cx, (M), pix,). Then

N n 1
D j(xt,) 2;( ¢ 1)(%_%71) :/f(Xt)odXt,
j=1i=1 Tep 0

where T ={0=ty <t1 <- - <tn} cmdxtl.:(m%i,--~,:cg)€MCRN.

Proof. Since M is compact and embedded in RY, the process X = {Xt}te[o,l] is, in particular, a bounded
R¥-valued semimartingale and its Stratonovich integral is defined in the usual manner by

1 N 1
/f(Xt)odXt =Z/fj(Xt)odXt
0 =1y
N n
[i(Xep) + i (Xep ) ;
= lim (X - X ),
szxo);; 2 iy = Xep.)

for every partition @ = {Q,, }nen, Qn = {tI'}7, with mesh zero of [0, 1] satisfying ¢t{j = 0 for each n € N.
This limit can be expressed as a convergence of nets via

1 N n

(X1) + f(X o
[roxgoax, —ip 3 PEIE IS ) 0 g ),
0

j=1i=1

where T = {0 = tg < t; < --- < t,}. The limit is understood in L?-convergence. On the other hand, we
define the maps F- : M7 — R, j € {1,2,..., N}, by

j n - fl(xti) + f'(xti— ) j 1
F%(Xti)izl = Z : 5 ’ - (mgz - xii,l)a
=1

where 7 = {0 = tp < t1 < -+ < t,} and x, = (x%,x%, ;7). Then, by the boundedness of each
Fy., it follows that Fi € L?*(M7,p] ) and by the definition of the morphisms ¢ : L2 (M7, pul ) —
L?(Cxy (M), j1x, ), We obtain

n
; FilXe) + fi(Xei o)) oy :
or(ppy =3 PRI ) g )
i=1
Therefore, if we prove that (Fy)rep € limy L2(M7, u] ) for each j € {1,2,...,N}, by the definition of J;
and the linearity of ¢, we will deduce

N N 4
> Fr =lim}  o7(Fy)
J=1 Tep J=t
N n
:h%—nzz : 2] : (Xgi_Xgi—l)

j=11i=1
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1
/f Xt OdXt,
0

obtaining the required result. Finally, we prove that, indeed, (F%)Tep € lim L2(MT7MIO) for each j €
{1,2,..., N}. Since each ¢ is an isometric isomorphism, we have

Im%r (FR) = Filloe. = l(é7 0 mrr) (FR) — o7 (P72
= llor(F) — o7(FF)22 RCT.
The convergence of {QST(FJ )}7ep (that is justified by the existence of the integral fo (X;) 0dXy) together

with the last identity, implies the co-Cauchy property for (FT)Tep Hence (FT)Tep € lim L2(MT,uxO)
and the proof is concluded. O

As a direct consequence of the preceding result and the isometric property of Jo, we deduce the following
finite dimensional approximation under the same hypothesis of Theorem 5.1,

1

2
/ /f(Xt)OdXt duxo—hm/ sz] Xt +2fj(xt’ 1)(x{;zg'ifl) du .

1:=1
Cao (M) 10 M7 [I=

where T ={0 =1ty <t; <--- < t,}. Finally, it is convenient to remark that all the considerations made in
this section can be adapted easily to the cover the [t6 stochastic integration.

6. Approximation scheme for the geometric framework

In this final section, we will give an approximation scheme based in the geometric measure introduced
by Andersson and Driver in [1]. Up to here, we have proved that the spaces LP(Cx, (M), fix,), 1 < p < 00,
define a realization of the colimit of the diagram (LP(M7, u;),W}T,), where the measures /LIO are given
by

d'uzo = Hpti_tifl(xti’l,ti—l)Hdu(xti)7 T= {O =t <ty <--- < tn}'

=1

Moreover, we have provided a particular realization, hAl LP(MT, ,uzo), of the colimit that allows to stablish
a finite dimensional approximation result for integrable functionals.

However, observe that this approximation scheme does not follow the philosophy of Andersson and Driver
approach materialized in equation (3). For this reason, in this section, we adapt our scheme to cover the
measure considered by Andersson and Driven in [1]. We start recalling some facts and definitions of [1].
Through this section, the notation Co(R™) stands for the space of continuous paths v : [0,1] — R™ such
that v(0) = 0.

6.1. Piecewise linear path space
Consider H(R™) C Co(R™) the subspace consisting on finite energy paths
HR™) :={v € Co(R™) : « is absolutely continuous and Fgm(y) < oo},

where the energy functional is defined by
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Egn () := / ()7 (s)) ds.
0

For each partition T = {0 =tg < t; < --- < t, = 1}, the space of piecewise linear paths on R with respect
to T, subsequently denoted by H7(R™), is defined through

Hr(R™) :={y € Co(R™) :  is linear for ¢ ¢ T }.
Clearly H7(R™) is linearly isomorphic to R™*7 | where

R™* T = X Rm7
teT\{0}

via the linear isomorphism

7 : Hr(R™) — R™ T T (y) = (v(t1), (), ..o Y(tn))-

Since H7(R™) is linear, it follows that T, Hy(R™) ~ Hy(R™) for each v € Hyr(R™). We introduce the
Riemannian metric on Hy(R™), hy € T(T*H7(R™) @ T*H1(R™)), defined by

hr(u,v) := /(u’(s),v/(s» ds, w,v€T,Hr(R™), v Hr(R™),
0

and its corresponding volume form Vol € T'(A™*" T H7(R™)) determinated by

Volp, (w1, Uz, ..oy Umxn) 1= \/det(hT(ui,uj)ij),

where {u1,u2, ..., umxn} C TyH7r(R™) is an oriented basis and v € Hy(R™). Finally, we introduce a Borel
measure p7 on Hy(R™). As usual, when we deal with a measure associated with a Riemannian structure, we
choose the Borel g-algebra associated with the topology induced by the corresponding Riemannian metric.
Along this section, this will be done several times without specifying it again.

Definition 6.1. For each partition 7 = {0 = tp < t1 < -+ < t, = 1} of [0,1], we denote by ps the Borel
measure on Hy(R™) defined by the density

1 1
duyr = ——e ——FERrm ¢ Voly,.- .
HT ( /_27T)m" Xp{ 2 R } h1

6.2. Piecewise geodesic path space

Now, we define the curved analogue of the measure space (H7(R™), u7). Let (M, g) be a closed Rieman-
nian manifold of dimension m. Consider H(M) C Cx,(M) to be the Hilbert manifold of finite energy paths,
defined by

H(M) = {y € Cx, (M) : 7 is absolutely continuous and E(y) < oo}

where the energy functional E is given through
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BE(y) = /9(7’(5)77’(5)) ds.
0

Recall that v € Cx, (M) is said to be absolutely continuous if fo~ is absolutely continuous for all f € C>*(M).
The tangent space T, H (M) to H(M) at v can be identified with the space of absolutely continuous vector
fields X : [0,1] — T'M along ~ such that X (0) = 0 and G (X, X) < oo where

GH(X, X) :_O/Ig<%t(t),%t(t)> dt.

As usual, we denote

O o e x 0y,

where //¢(v) @ TxeM — T,x,)M denotes the parallel translation along ~ relative to the Levy-Civita
covariant derivative V.
Let T={0=1ty <t; <---<t, =1} be a partition of [0, 1]. We define the subspace of H(M),

Hr(M):={y € HM)NC*([0,1]\T, M) : Vy/(t)/dt =0 for t ¢ T},

consisting on piecewise geodesic paths in H (M) which change directions only at the partition points. The
space Hy (M) is a finite dimensional submanifold of H(M) of dimension n x m. For v € Hyr (M), the tangent
space Ty H7 (M) can be identified with elements X € 7', H (M) satisfying the Jacobi equations on [0, 1]\7".
In other words, X € T, H(M) is in T,,Hy (M) if and only if

() = R(/(8), X ()7 (1),
where R is the curvature tensor of V. We can give to Hy(M) a Riemannian structure introducing the
T-metric. The T-metric gy € T(T*H7(M) @ T*H7(M)) is defined by

n

VX(ti-1+) VY (ti—1+
gT(X,Y) _Zg< (dt - )a (dt - )>Alt? X7Y€T’YHT(M)3
=1

for each v € Hy (M), where the notation VX (t;_1+)/dt is a shorthand of lim;;, , VX (¢)/dt. We denote
by Vol,, € T(A™*™T Hy(M)) the volume form associated to gr. It is determinated by

Voly, (X1, X, e, Xynn) = \/det(g7(Xi, X)),
where {X1, X, ..., Xsnxn} C TyH7 (M) is an oriented basis and v € Hy(M).

Definition 6.2. For each partition 7 = {0 =ty < t1 < --- < t,, = 1} of [0,1], we denote by vy the Borel
measure on Hy (M) defined by the density

1 1
—— ¢ ——F >Vol,.. .
(V2m)mn Xp{ 2 } o

This measure spaces (Hy (M), By, vr), where By stands for the Borel o-algebra of Hy (M), will be the

dvy =

finite dimensional candidates for the approximation scheme.
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6.3. Cartan’s development map

In general, it is not quite easy to deal with the manifold Hy(M). Due to this fact, we will identify this
space through the well known space Hy(R™) via Cartan’s development map. Cartan’s development map
®: H(R™) — H(M) is defined, for « € H(R™), by ®(«) := +, where v € H(M) is the unique solution of
the ordinary differential equation

V() =//e(1)a'(t),  7(0) =xo. (9)
The anti-development map ®~! : H(M) — H(R™) is defined by ®71() := a where a € H(R™) is given
by

alt) = [ 1171000 dr,
0

The map @ : H(R™) — H(M) is bijective and smooth, hence it defines a diffeomorphism of infinite dimen-

sional Hilbert manifolds, but it is not in general an isometry of Riemannian manifolds. The development
map ® : H(R™) — H(M) has the property

O(Hr(R™)) = Hr(M).
We shall denote |, rm) by ®7.

A fundamental property of Cartan’s development map is that it preserves the 7-measure, in the sense
that

pr(B) = vr(®7(B)), (10)

for each Borel subset B of Hy(R™).

Moreover, it can be seen that the development map relates the measure vy of Hy (M) with the well
known heat kernel measure in the flat space R™*7. For a partition 7 = {0=tg<t; <---<t, =1}, the
heat kernel measure \] is the Borel measure on R™*7 defined by

d\] = ﬁpti—ti—l (Te;, e, ) ﬁ dxy,,
i=1 i=1
where 29 = 0 and p;(x,y) is the heat kernel of R™. In [1, Lem. 4.11], it is proved the identity
pr(I7(B)) = AJ (B) (11)
for each Borel subset B of R™*7. Hence joining equations (10) and (11) yields
vr((®7 o 1IF1)(B)) = A (B).

As a consequence, we can reduce the structure of the space LP (H7(M),vr) to the more familiar one
LP(R™*T A]'). That is, for 1 < p < oo, the following spaces are identified

Lr (HT(M)7 V'T) = LP(RmXTa )‘3—)7

via the isometric isomorphism
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A LP (Hr(M),v7) — LPR™T N, Ar(f) == fo®r oIl (12)

It can be also introduced an almost everywhere defined stochastic extension of the development map,
called the stochastic development map @ : Co(R™) — Cx, (M) and its corresponding anti-development map
®~1: Cyy (M) — Co(R™). It can be proved that they preserve the Wiener measure in the sense that

Ao(B) = tix, (D(B)),

for each Borel subset B of Co(R™) where A¢ is the Wiener measure on the classical Wiener space Co(R™) (see
for instance [23]). Hence, thanks to the stochastic development map, we can reduce the structure of the space
LP(Cyy (M), pix,) to the more familiar one LP(Co(R™), Ag) under the philosophy of (12). For 1 < p < oo, the
following spaces are identified

LP(Cxo (M), i) = LP(Co(R™), Ao),
via the map
A LP(Cxo (M), pixy) —> LP(Co(R™), Ao),  A(f) := fo®. (13)
6.4. Finite dimensional approximation scheme

To prove an analogue of Theorem 3.2 for the geometric measure v, we will follow the following philosophy.
Firstly we shall prove the approximation scheme for the classical Wiener measure space (Co(R™), Ag) and
then we will make use the identifications provided by equations (12) and (13), to translate the result to the
geometric framework.

Let P be the directed set consisting on partitions of [0, 1]

T:{0:t0<t1<"'<tn:1},
partially ordered by inclusion and consider the projectors

mrr t R™T— R™T g (@)t oy = (@) (0}

m s RO gmxT T (2t )tefo,1] = (Te)eT\{0}-

In analogy with the preceding sections, we define the diagram (LP(R™*7 )\OT), 177 ) where the morphisms
nyr, T C T', are defined through

nrr s LPR™T N — LPR™ T N\, nrr(f) o= fomrr.

Using the same techniques of section 4, it is easily proved that for each 1 < p < oo, the cocone
(LP(Co(R™), \), o7) defines a realization of the colimit of (LP(R™*7 A\]),n77/), where the morphisms
o1, T € P, are given by

o7 : LP(R™ T, A]) — LP(Co(R™), Xo),  o7(f) := f o mrlee, ®m)-

This establishes the approximation scheme for the classical Wiener space (Co(R™), \g). Now, we proceed to
define the diagram and cocone for the geometric measure v

Let us consider the diagram (LP (Hr(M),v1), o77) where for each T C T’, o7 are the morphisms
defined by
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A
LP (Hy (M), v) —— LP(R™*T A7)

I
| errr nrr’
+ A

L? (Hy (M), vr) —— LPR™T A7)

Fig. 3. Definition of the morphisms o775 .

LP (Hr (M), 7)) — 5 LP(Cay (M), pix,)

®
LPR™ T AT) — 5 LP(Co(R™), Ao)
Fig. 4. Definition of the morphisms 0+.

orr : LP (Hr(M),vr) — L? (Hp(M),v), o1 = A onrri o A7,

in other words, the unique morphisms making the diagram of Fig. 3 commutative.
The main result of this subsection is to prove that the cocone (LP(Cx,(M), pix, ), 07) is a realization of
the colimit of the diagram (L? (Hy(M),vy), 077), where the morphisms 6, T € P, are defined by

(97' . LP (HT(M), 1/7') — LP(CXO (M)7Mx0)7 97’ = Ail o T O AT.

In other words, the morphisms f7 are the unique morphisms making commutative the diagram of Fig. 4.
This identification establishes an analogue of Theorem 3.2 for the geometrical framework. The definition
of the involved morphisms o777, 07 is given through the commutativity of the diagrams of Fig. 3 and 4,
respectively, in order to make things natural, in the categorical meaning of the word. This will become clear
in the proof of the main Theorem of this subsection, Theorem 6.3.

Theorem 6.3. The cocone (LP(Cx,(M), ix,),07) defines a realization of the colimit of (L? (Hy(M),vr),
oTT")-

Proof. By (12), we have a family of isometric isomorphisms indexed by T,
A7 LP (HT(M)v VT) - Lp(RmXTa /IJIO)

By the commutativity of the diagram of Fig. 3, this family of isomorphisms (A7) establishes a natural
isomorphism between the diagrams (LP (H7(M),v7), 077+) and (LP(R™*7T AT}, nr). Hence the colimits
of these two diagrams are isomorphic via a naturally defined isomorphism, see for instance the reference
[22, Cor. 3.6.3] for a proof of this fact. As the colimit of (LP(R™ 7T A]),nrr) is (LP(Co(R™), Xo), ©7),
to prove the Theorem it is enough to prove that the cocone (LP(Cx,(M),pix,),07) is isomorphic to
(LP(Co(R™), Xo), ¢7) via a naturally defined isomorphism. The commutativity of the diagram of Fig. 4,
establishes that A is our required isomorphism. This concludes the proof. 0O
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6.5. Derivation of the limit formula

In this final subsection, we prove an analogue of Theorem 4.3 for the geometric measure v7. Let us
denote by hﬂ LP(R™*T A\I') and lim LP (Hy(M),v7), the analogues of the space defined by (7), under the
natural changes to adapt it to (R™*7 \]') and (H7(M),v7), respectively. We omit the explicit description
of these spaces for notational convenience. Rephrasing the arguments of section 4, it can be proved that the
operator

Jp :lim LP(R™TAT) — LP(Co(R™), M), (fr)Tep = lim o7 (f7) (14)

is an isometric isomorphism. Thanks to this isomorphism and the identifications provided by (12) and (13),
we prove the final result of this article, Theorem 6.4. As a direct consequence of Theorem 6.3 and the
following Theorem 6.4, we obtain that the cocone

(lig L (H7 (M), v7) ),

where the morphisms ¢x are the corresponding analogues of (8) for (Hr (M), vy), defines a realization of
the colimit of (LP (Hy(M),vr), o77)-

Theorem 6.4. Let 1 < p < oo, then the following spaces are isometrically isomorphic
lim LP (H7(M),v7) ~ LP(Cxy (M), pix, ) (15)

In consequence, for every F € L'(Cx,(M), jix,), there exists an element (fr)1ep € Xyep L' (Hr(M),v7)
such that

/ F djix, = lim / fr dv7. (16)

Cxeo (M) Hr (M)
Proof. By (12), we have a family of isometric isomorphisms indexed by T,
Ag: LP (Hp (M), vr) = LP(R™ T u] ).
It is easily seen using the definition of the morphisms g77, Fig. 3, that the operator
p :lim L (Hy (M), v7) — lim LP(R™ T AD),  Sp(fr)7er = (AT (f7))Tep

defines an isometric isomorphism. Finally, the composition operator

@ Lr (HT(M)7VT) - Lp(CXO(M)nU/XO)

Jp
ling LP(R™*T X]) ——— LP(Co(R™), Ao)

where the morphisms J, and A are given by (14) and (13), respectively, defines an isometric isomorphism.
This concludes the proof of (15). Formula (16) follows from the isometric property of the induced opera-
tor. O
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