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Truth is much too complicated to allow anything but approximations.
[John von Neumann]

In this paper, we prove a finite dimensional approximation scheme for the Wiener 
measure on closed Riemannian manifolds, establishing a generalization for L1-
functionals, of the approach followed by Andersson and Driver on [1]. We follow 
a new approach motived by the categorical concept of colimit.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
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1. Introduction

In 1920, N. Wiener, based on Daniell’s interpretation of integral [7–9], defined in [25] an integral for 
bounded and continuous functionals F : Cx0 [0, 1] → R, where the notation Cx0 [0, 1] stands for the space 
of continuous functions u : [0, 1] → R with base point u(0) = x0. In later papers [25–30], he connected 
this notion to that of Brownian motion and he defined the so-called Wiener process. In posterior works, he 
generalized these results defining a probability measure μx0 on the measurable space (Cx0 [0, 1], Bx0), where 
Bx0 stands for the Borel σ-algebra of Cx0 [0, 1] endowed with the uniform convergence topology. This measure 
is characterized by the following property: For each finite partition T = {t1 < t2 < · · · < tn} ⊂ (0, 1] and 
each family (Bt)t∈T of Borel subsets of R, the identity
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μx0

(
π−1
T (Bt)t∈T

)
=

∫
Bt1

(n)· · ·
∫

Btn

n∏
i=1

pti−ti−1(xi, xi−1)
n∏

i=1
dxi, t0 = 0, x0 = x0, (1)

holds, where pt(x, y) is the heat kernel of R and πT : Cx0 [0, 1] → RT is the projector defined by

πT : Cx0 [0, 1] −→ RT , πT (u) := (u(t))t∈T .

At first, it seems there is no easy way to compute the integral of an arbitrary measurable functional 
F : Cx0 [0, 1] → R. Nevertheless, Wiener proved in [25] an analogue of Jessen’s formula [15,23] for the 
measure μx0 . More explicitly, he proved that given a bounded and continuous functional on Cx0 [0, 1] and a 
partition T = {Tn}n∈N , Tn = {tni }ni=1 of [0, 1] with mesh zero,

lim
n→∞

max
2≤i≤n

|tni − tni−1| = 0,

the integral of F can be computed though finite dimensional integrals via

∫
Cx0 [0,1]

F (u) dμx0(u) = lim
n→∞

∫
Rn

Fn(x1, x2, ..., xn)
n∏

i=1
ptni −tni−1

(xi, xi−1)
n∏

i=1
dxi,

where the functions Fn : Rn → R are defined by

Fn(x1, x2, ..., xn) := F (u(x1,x2,...)),

where u(x1,x2,...) denotes the linear interpolation of the points x1, x2, ..., xn, for each n ∈ N. In [23], the 
author generalized this formula to every L1-functional proving that for each F ∈ L1(Cx0 [0, 1], μx0), there 
exists a finite dimensional functional sequence (Fn)n∈N ∈×n∈N L1(Rn, μn

x0
) such that

∫
Cx0 [0,1]

F dμx0 = lim
n→∞

∫
Rn

Fn dμn
x0

where dμn
x0

=
n∏

i=1
ptni −tni−1

(xi, xi−1)
n∏

i=1
dxi. (2)

A similar discussion can be done for the category of Riemannian Manifolds. Given a compact connected 
Riemannian manifold (M, g) (closed Riemannian manifold for short) of dimension m, we can construct, 
analogously to the case of [0, 1], the measure space (Cx0(M), μx0). Here, the notation Cx0(M) denotes the 
space of continuous curves γ : [0, 1] → M beginning at x0 and μx0 the Wiener measure on Cx0(M), i.e., 
a measure satisfying an analogue of equation (1) for this setting (see section 2 for further details). Similar 
versions of Jessen type formula have been developed for the category of Riemannian manifolds in [1]. In that 
article, Andersson and Driver proved that given a bounded and continuous functional F : Cx0(M) → R, the 
identity

∫
Cx0 (M)

F dμx0 = lim
n→∞

∫
HTn (M)

F (σ) dνTn
(σ) (3)

holds, where (HTn
(M), νTn

) is a finite dimensional measure space based on the geometrical data of (M, g)
and T = {Tn}n∈N , Tn = {tni }ni=1, is a partition of [0, 1] with mesh zero. Roughly, HTn

(M) is the space 
of piecewise geodesics paths in M , σ : [0, 1] → M , which change direction only at the partition points 
Tn = {tni }ni=1. The precise definition of the pair (HTn

(M), νTn
) will be given in section 6.

After Andersson and Driver, several developments and generalizations have been done by several authors, 
for instance this scheme has been generalized to heat kernels on vector bundles in [2,3] and further developed 
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in [16–19]. This type of finite dimensional approximation of path integrals has a great impact in theoretical 
physics and in particular are extremely useful for the Feynman path integral approach to quantum field 
theory [10,11].

The aim of this article is to establish a generalization of equation (3) for every integrable functional 
F : Cx0(M) → R, not necessarily bounded and continuous in the vein of the analogous result (2) for the 
classical Wiener measure proved in [23]. To obtain this result, we use a categorical point of view. We prove 
that for 1 ≤ p < ∞, the space Lp(Cx0(M), μx0) is the colimit of certain diagram consisting on Lp-spaces of 
finite dimensional data associated with M .

This generalization and structural result has many applications in stochastic analysis. For instance, this 
scheme allows to embed the notion of the Stratonovich stochastic integral

1∫
0

f(Xt) ◦ dXt ∈ L2(Cx0(M), μx0),

in our approximation techniques, where X denotes the Wiener process on (Cx0(M), μx0). Indeed, since the 
Stratonovich stochastic integral is not, in general, a continuous and bounded functional, we cannot apply 
the approximation (3) directly, but we can apply the techniques of this article.

The paper is organized as follows. In section two, we present the abstract results about colimits that 
will be used throughout this article and we recall the definition and construction of the Wiener measure 
on closed Riemannan manifolds. In section three, we prove that for 1 ≤ p < ∞, the space Lp(Cx0(M), μx0)
is the colimit of a diagram consisting on Lp-spaces of Cartesian products of a finite number of M -factors. 
In section four, we derive a finite dimensional approximation formula of type (2) for integrable functionals 
F ∈ L1(Cx0(M), μx0), via a particular realization of the colimit of the diagram defined in the preceding 
section. In section five, we apply our approximation scheme to Stratonovich stochastic integrals. The end 
of this article, section six, is devoted to recall Andersson and Driver’s scheme and to adapt the results 
developed in sections three and four to their framework. In particular, we obtain a generalization of (3) for 
every integrable functional.

It is convenient to remark that all the results obtained in this article can be easily adapted to the category 
of Riemannian manifolds with boundary and to the case of continuous paths with fixed initial and end point, 
the so-called Pinned Wiener spaces. See for instance [4] for the definition and construction of the Wiener 
measure on these spaces.

2. Preliminaries

In this short section, we will recall some basic facts about colimits and the Wiener measure on Riemannian 
manifolds that will be used through this article. It will be also useful to fix notation.

2.1. Basic notions regarding colimits

Let C be a fixed category and I a directed set. A diagram is a functor F : I → C. It can be represented 
as (Xi, ϕij) for a family of objects indexed by I, {Xi : i ∈ I}, and for each i ≤ j a morphism ϕij : Xi → Xj

such that ϕii is the identity on Xi and ϕik = ϕjk ◦ ϕij for each i ≤ j ≤ k. In general, we can consider 
diagrams as functors F : J → C indexed by a general category J, however, diagrams indexed by directed 
sets are enough for our purposes. A cocone is a pair (X, φi) where X is an object of C and φi : Xi → X

is a morphism of C such that φi = φj ◦ ϕij for every i ≤ j. The class of cocones of a given diagram forms 
itself a category. A colimit of the diagram (Xi, ϕij) is defined to be a cocone (L, ψi) characterized by the 
following universal property: For any cocone (X, φi), there exists a unique morphism ϕX : L → X making 
the diagram of Fig. 1 commutative.
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Xi

ϕij

ψi

φi

Xj

ψj

φj

L

ϕX

X

Fig. 1. Diagram of the Universal Property.

The colimit of a given diagram can be also characterized as the initial object in the category of cocones. 
The colimit of a given diagram does not necessarily exist, however if the colimit exists, it is unique up to 
a unique isomorphism in the category of cocones. Any given isomorphism class of the colimit is called a 
realization. The colimit of a given diagram (Xi, ϕij) is commonly denoted by L ≡ lim−→ Xi.

In this article, we will consider the category Ban whose objects are Banach spaces and whose morphisms 
are linear isometries. The proof of the existence of the colimit for every diagram on Ban can be found in 
[24, App. L] or in [5] and references therein.

Though this article, we will make use of the following simple Lemma.

Lemma 2.1. Let (Xi, ϕij) be a diagram on Ban. Then a cocone (X, φi) is a realization of the colimit of 
(Xi, ϕij) if and only if 

⋃
i∈I φi(Xi) is dense in X.

Proof. Suppose that (X, φi) defines a realization of the colimit of (Xi, ϕij). Consider the cocone (Y, ρi)
where

Y :=
⋃
i∈I

φi(Xi) ⊂ X,

and where ρi : Xi → Y are the canonical inclusions. By the universal property there exists a unique isometry 
ϕY : X → Y making the diagram of Fig. 1 commutative. It is straightforward to prove that the morphism 
ϕY is in fact an isomorphism, hence 

⋃
i∈I φi(Xi) is dense in X. On the other hand, take a cocone (X, φi)

with 
⋃

i∈I φi(Xi) dense in X. For any other cocone (Y, ρi), define the morphism ϕY : X → Y by

ϕY ◦ φi := ρi, i ∈ I.

Then it is easy to see that the morphism ϕY is the unique morphism making the diagram of Fig. 1 com-
mutative. Hence (X, φi) is a colimit. This concludes the proof. �
2.2. Wiener measure on Riemannian manifolds

Along this article, (M, g) denotes a compact connected Riemannian manifold (closed Riemannian man-
ifold for short) with a fixed base point x0 ∈ M . The notation Cx0(M) stands for the space of continuous 
paths γ ∈ C([0, 1], M) satisfying γ(0) = x0, Bx0 for the Borel σ-algebra of Cx0(M) with respect to the 
uniform convergence topology given by the induced metric of M and μx0 for the Wiener measure on M
with base point x0.
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We recall the definition of the measure space (Cx0(M), Bx0 , μx0). Consider in (M, g) the measure μ :
BM → [0, +∞] induced by the metric g, where BM denotes the Borel σ-algebra of M . This measure is 
locally given by the expression

dμ =
√

det(gij)ij dx1 ∧ · · · ∧ dxm

where m is the dimension of M and (gij)ij is the matrix of g in a local chart. For each closed Riemannian 
manifold (M, g), there exists a heat kernel pt(x, y), for t > 0, x, y ∈ M , i.e., the Schwartz kernel of the 
selfadjoint operator etΔ on L2(M, μ), where Δ denotes the Laplace-Beltrami operator on (M, g). The proof 
of the existence of this map can be found in [4,13]. A well-known consequence of the Kolmogorov extension 
Theorem [31, Th. 6.1], is the existence of a probability measure

μx0 : B −→ [0,+∞]

on (M [0,1], B), where B denotes the Borel σ-algebra of M [0,1] with respect to the product topology, satisfying 
the identity

μx0

(
π−1
T (Bt)t∈T \{0}

)
=

∫
Bt1

(n)· · ·
∫

Btn

n∏
j=1

ptj−tj−1(xj , xj−1)
n∏

j=1
dμ(xj), x0 = x0, (4)

for each finite partition T = {0 = t0 < t1 < · · · < tn} ⊂ [0, 1] and each family of Borel subsets (Bt)t∈T \{0} ⊂
BM . Here and in the sequel, the notation πT stands for the projector defined by

πT : M [0,1] −→ MT \{0}, πT (γt)t∈[0,1] := (γt)t∈T \{0}. (5)

Since (M, g) is compact, it is, in particular, stochastically complete (see for instance [13]), and therefore
∫
M

pt(x, y)dμ(y) = 1

for each t > 0 and x ∈ M . This fact implies that the measure μx0 is of probability, that is, μx0(M [0,1]) = 1.
On the other hand, by [4, Cr. 2.19], the measure μx0 satisfies the identity μx0(Cα

x0
(M)) = 1 for each α ∈

(0, 1/2) where Cα
x0

(M) stands for the subset of M [0,1] consisting of Hölder continuous paths γ : [0, 1] → M

of exponent α ∈ (0, 1) satisfying γ(0) = x0. Therefore, since Cx0(M) is a Borel subset of M [0,1] (see [12, Th. 
10.28]) containing Cα

x0
(M) and since

B ∩ Cx0(M) := {B ∩ Cx0(M) : B ∈ B},

coincides with the Borel σ-algebra Bx0 (see [20, Prop. 2.2]), we can consider the restricted probability space 
(Cx0(M), Bx0 , μx0). The restricted measure μx0 is called the Wiener measure of M with base point x0. The 
proof of these facts can be found for instance in [4,13] and references therein.

3. Approximation scheme for the Wiener measure

In this section, we will prove that the spaces Lp(Cx0(M), μx0), 1 ≤ p < ∞, are realizations of the colimit 
of the diagram (Lp(MT , μT

x0
), π∗

T T ′). Let us start by defining the diagram (Lp(MT , μT
x0

), π∗
T T ′). Consider 

the directed set P consisting on partitions of [0, 1]

T = {0 = t0 < t1 < · · · < tn},



6 J.C. Sampedro / J. Math. Anal. Appl. 512 (2022) 126176
partially ordered by inclusion. For notational simplicity, we will use the notation MT to denote

MT := ×
t∈T \{0}

M.

For a partition T = {0 = t0 < t1 < · · · < tn} in P, consider the probability space (MT , 
⊗n

i=1 BM , μT
x0

)
where μT

x0
is the measure defined by

dμT
x0

=
n∏

i=1
pti−ti−1(xti , xti−1)

n∏
i=1

dμ(xti), x0 = x0,

and 
⊗n

i=1 BM denotes the product σ-algebra. For each pair of partitions T , T ′ with T ⊂ T ′, we obtain a 
measurable projection map

πT T ′ : MT ′ −→ MT , πT T ′(xt)t∈T ′\{0} := (xt)t∈T \{0}.

We therefore obtain a diagram in the category of measure spaces, indexed by the directed set P. For each 
pair of partitions T , T ′ with T ⊂ T ′, we can consider the pullback operator

π∗
T T ′ : Lp(MT , μT

x0
) −→ Lp(MT ′

, μT ′

x0
), π∗

T T ′(f) := f ◦ πT T ′ .

Since each πT T ′ is measure-preserving, the pullback π∗
T T ′ is an isometry for each T ⊂ T ′. By func-

toriality of the pullback, we obtain a diagram in Ban indexed by the directed set P, where all arrow 
directions are now swapped, as the pullback is contravariant. This diagram will be subsequently denoted by 
(Lp(MT , μT

x0
), π∗

T T ′).
It will be proved that the cocone (Lp(Cx0(M), μx0), φT ), where φT are the morphisms defined by

φT : Lp(MT , νTx0
) −→ Lp(Cx0(M), μx0), φT (f) := f ◦ πT |Cx0 (M),

defines a realization of the colimit of (Lp(MT , μT
x0

), π∗
T T ′). The following Lemma will be useful for this 

purpose.

Lemma 3.1. Let 1 ≤ p < ∞, then the subspace 
⋃

T ∈P φT (Lp(MT , μT
x0

)) is dense in Lp(Cx0(M), μx0).

Proof. As we have recalled in section 2.2, the following equality of σ-algebras

Bx0 = B ∩ Cx0(M), (6)

holds. By definition, the product σ-algebra B is generated by the cylinder sets and therefore by (6), it follows 
that

Bx0 = σ(R), R := {π−1
T (Bt)t∈T : (Bt)t∈T ⊂ BM , T ⊂ (0, 1] finite} ∩ Cx0(M).

Since (Cx0(M), μx0) has finite measure, by [6, Lem. 3.4.6], the subspace Span {χR : R ∈ R}, where χR

denoted the characteristic function of R, is dense in Lp (Cx0(M), μx0). From the inclusion

{χR : R ∈ R} ⊂
⋃
T ∈P

φT (Lp(MT , μT
x0

)),

it follows that 
⋃

φT (Lp(MT , μT
x )) is dense in Lp (Cx0(M), μx0). This concludes the proof. �
T ∈P 0
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Finally, we prove the main result of this section.

Theorem 3.2. Let 1 ≤ p < ∞, then the cocone (Lp(Cx0(M), μx0), φT ) defines a realization of the colimit of 
(Lp(MT , μT

x0
), π∗

T T ′).

Proof. By Lemma 3.1, the subspace
⋃
T ∈P

φT (Lp(MT , μT
x0

)) ⊂ Lp(Cx0(M), μx0)

is dense in Lp(Cx0(M), μx0). Therefore, we can apply Lemma 2.1 to (Lp(Cx0(M), μx0), φT ) obtaining the 
result. �
4. Derivation of the limit formula

In this section, we will prove that the integral of a given integrable functional can be expressed as the 
limit of finite dimensional integrals. To relate the colimit structure obtained in the last section with the 
integration procedure, we have to provide a particular realization of the colimit of the directed system 
(Lp(MT , μT

x0
), π∗

T T ′). To define this realization, we need the following definition.
An element (fT )T ∈P ∈×T ∈P Lp(MT , μT

x0
) is said to be co-Cauchy if for each ε > 0, there exists R ∈ P

such that

‖π∗
T T ′(fT ) − fT ′‖Lp

T
< ε, for all T , T ′ ∈ P with R ⊂ T ⊂ T ′.

For notational simplicity we denote Lp ≡ Lp(Cx0(M), μx0) and Lp
T ≡ Lp(MT , μT

x0
).

We define the space L(Lp(MT , μT
x0

)) by

L(Lp(MT , μT
x0

)) :=
{

(fT )T ∈P ∈ ×
T ∈P

Lp(MT , μT
x0

) : (fT )T ∈P is co-Cauchy
}/

∼, (7)

where we relate (fT )T ∈P ∼ (gT )T ∈P if

lim
T

‖fT − gT ‖Lp
T

= 0.

We define in L(Lp(MT , μT
x0

)) the norm

‖(fT )T ∈P‖L := lim
T

‖fT ‖Lp
T
.

All the limits involved are considered as limits of nets. For further considerations, it is imperative to obtain 
the completeness of the space L(Lp(MT , μT

x0
)), which is not obvious from the definition. For this reason, 

we identify it directly with Lp(Cx0(M), μx0) via the following result.

Theorem 4.1. The following spaces are isometrically isomorphic for 1 ≤ p < ∞

L(Lp(MT , μT
x0

)) 
 Lp(Cx0(M), μx0).

Proof. Let us prove that the map

Ip : L(Lp(MT , μT
x0

)) −→ Lp(Cx0(M), μx0), (fT )T ∈P �→ limφT (fT )

T
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defines an isometric isomorphism. The map Ip is well defined since the net (φT (fT ))T ∈P converges in 
Lp(Cx0(M), μx0), a fact that follows from the identity

‖φT (fT ) − φT ′(fT ′)‖Lp = ‖(φT ′ ◦ π∗
T T ′)(fT ) − φT ′(fT ′)‖Lp

= ‖π∗
T T ′(fT ) − fT ′‖Lp

T ′ , T ⊂ T ′

and the co-Cauchy property. It is easily seen that Ip is an isometry since

‖Ip(fT )T ∈P‖Lp = ‖ lim
T

φT (fT )‖Lp = lim
T

‖fT ‖Lp
T

= ‖(fT )T ∈P‖L.

Finally, we prove that Ip is onto. Let f ∈ Lp(Cx0(M), μx0) and take D = {ti}i∈N∪{0}, t0 = 0, a dense 
countable subset of [0, 1]. Define the sequence of partitions P = {Pn}n∈N by

Pn := {ti}ni=0, n ∈ N.

Clearly Pn ⊂ Pn+1, n ∈ N and 
⋃

n∈N Pn = D. It is easily seen using the same techniques of the proof of 
Lemma 3.1, that 

⋃
n∈N φPn

(Lp(MPn , μPn
x0

)) is dense in Lp(Cx0(M), μx0). Hence there exists a sequence

(fn)n∈N , fn ∈ Lp(MPNn , μ
PNnx0 ) for some Nn ∈ N,

such that

lim
n→∞

φPNn
(fn) = f in Lp(Cx0(M), μx0).

Take a strictly increasing sequence (Mn)n∈N ⊂ N such that Nn ≤ Mn, n ∈ N. Then, in particular, PNn
⊂

PMn
and

gn := π∗
PNnPMn

(fn) ∈ Lp(MPMn , μ
PMnx0 ), n ∈ N.

Define the sequence

(Fn)n∈N , Fn :=
{

π∗
PMmPn

(gn) if Mm ≤ n < Mm+1

0 if n < M1

then

(Fn)n∈N ∈ ×
n∈N

Lp(MPn , μPn
x0

) and lim
n→∞

φPn
(Fn) = f in Lp(Cx0(M), μx0).

Define the associated net (FT )T ∈P by

FT :=
{

π∗
PnT (Fn) if Pn ⊂ T but Pn+1 �⊂ T

0 else

Finally, we have that (FT )T ∈P ∈ ×T ∈P Lp(MT , μT
x0

) and limT φT (FT ) = f , which implies that 
Ip(FT )T ∈P = f . This concludes the proof. �

It is appropriate to note the following in accordance with the proof of Theorem 4.1. One is tempted to 
think that in order to prove the surjectivity of Ip, for each f ∈ Lp(Cx0 , μx0), it is sufficient to use Lemma 2.1, 
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Lp(MT , μT
x0

)
π∗

T T ′

ψT

φT

Lp(MT ′
, μT ′

x0
)

ψT ′

φT ′

L(Lp(MT , μT
x0

))

Ip

Lp(Cx0 (M), μx0 )

Fig. 2. Diagram of the Universal Property II.

choosing a sequence (fT )T ∈
⋃

T ∈P φT (Lp(MT , μT
x0

)) such that limT φT (fT ) = f . Nonetheless, it must be 
observed that the sequence (fT )T is not necessarily contained in the Cartesian product ×T ∈P Lp(MT , μT

x0
)

which makes things a bit more involved.
We define the morphisms ψR : Lp(MR, μR

x0
) → L(Lp(MT , μT

x0
)), R ∈ P, through

ψR(fR) = (gT )T ∈P , gT :=
{

π∗
RT (fR) if R ⊂ T

0 else
(8)

By Theorem 4.1, the space L(Lp(MT , μT
x0

)) is a Banach space and therefore the pair (L(Lp(MT , μT
x0

)), ψR)
defines a cocone. The colimit of (Lp(MT , μT

x0
), π∗

T T ′) will be identified with (L(Lp(MT , μT
x0

)), ψR).

Theorem 4.2. The cocone (L(Lp(MT , μT
x0

)), ψT ) defines another realization of the colimit of (Lp(MT , μT
x0

),
π∗
T T ′).

Proof. Since the colimit is unique up to a unique isomorphism on the category of cocones, it is enough to 
prove that (L(Lp(MT , μT

x0
)), ψT ) is isomorphic to (Lp(Cx0(M), μx0), φT ) in the category of cocones. By the 

proof of Theorem 4.1, the map

Ip : L(Lp(MT , μT
x0

)) −→ Lp(Cx0(M), μx0), (fT )T ∈P �→ lim
T

φT (fT )

is an isometric isomorphism. To prove that it defines an isomorphism of cocones, we need to verify the 
commutativity of the diagram of Fig. 2 for each T ∈ P. Take fT ∈ Lp(MT , μT

x0
), then by a simple 

computation we obtain

(Ip ◦ ψT )(fT ) = lim
Q

hQ, hQ :=
{

φT (fT ) if T ⊂ Q
0 else

and thus (Ip ◦ ψT )(fT ) = φT (fT ). Hence the diagram of Fig. 2 commutes and the proof is concluded. �
Here in after, as a direct consequence of Theorem 4.2, we can and we shall denote L(Lp(MT , μT

x0
)) ≡

lim−→ Lp(MT , μT
x0

).
As a rather direct application of the isometric property of Ip, we obtain our integral limit approximation. 

Indeed, if F ∈ Lp(Cx0(M), μx0), there exists an element (fT )T ∈P ∈ lim−→ Lp(MT , μT
x0

) such that ‖F‖Lp =
‖(fT )T ‖L. Therefore, we have
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])
∫
Cx0 (M)

|F |p dμx0 = lim
T

∫
MT

|fT |p dμT
x0
.

Furthermore, if we take into account that given F ∈ L1(Cx0(M), μx0), we can write it as F = F+ − F−

with F+, F− positive and F+, F− ∈ L1(Cx0(M), μx0), then we get the following result.

Theorem 4.3. Let F ∈ L1(Cx0(M), μx0), then there exists (fT )T ∈P ∈×T ∈P L1(MT , μT
x0

) such that
∫

Cx0 (M)

F dμx0 = lim
T

∫
MT

fT dμT
x0
.

5. Stratonovich stochastic integral

In this section, we will apply the developed theory to a particular example, the Stratonovich stochastic 
integral. Our approach can be used to get a finite dimensional approximation scheme for this type of 
integrals, in contrast to the Andersson and Driver’s framework [1] that only can be used if the involved 
functional is bounded and continuous.

Let us firstly recall briefly some basic facts about stochastic integration. Let (X, Y ) = ({Xt}t∈[0,1], {Yt}t∈[0,1
be a pair of bounded R-valued semimartingales defined in the probability space (Ω, F , μ). Then, the 
Stratonovich integral of X with respect to Y is defined by the relation

1∫
0

Xt ◦ dYt := lim
L2(μ)

n∑
i=1

Xtni
+ Xtni−1

2 (Ytni
− Ytni−1

) ∈ L2(Ω, μ)

where T = {Tn}n∈N , Tn := {tni }ni=0, is a fixed partition with mesh zero of [0, 1]. It is related to the Itô 
stochastic integral by the relation

1∫
0

Xt ◦ dYt =
1∫

0

Xt dYt + [X,Y ]t

where [X, Y ]t denotes the covariation of the processes (X, Y ) and dYt denotes the Itô differential. In the 
case in which (X, Y ) = ({Xt}t∈[0,1], {Yt}t∈[0,1]) are bounded RN -valued semimartingales, we define

1∫
0

Xt ◦ dYt :=
N∑
i=1

1∫
0

Xi
t ◦ dY i

t .

It is worth to mention that the usual definition of the Stratonovich integral is under convergence in probabil-
ity [21, Th. 26, Ch. V]. Since we will deal with semimartingales defined on compact manifolds, we only need 
the definition for bounded ones, in which case, the convergence in probability implies the L2-convergence 
as a consequence of Vitali’s convergence Theorem.

It must be taken into account that if (M, g) is a closed Riemannian manifold embedded in the Euclidean 
space RN , by [14, Pr. 3.2.1], the M -valued stochastic process X = {Xt}t∈[0,1] defined by the coordinate 
functionals of (Cx0(M), μx0), defines a RN -valued bounded semimartingale. This implies by [14, Pr. 1.2.7, 
(i)] that {f(Xt)}t∈[0,1] is a real valued semimartingale for each f ∈ C∞(M). Therefore the Stratonovich 
stochastic integral of f(X) with respect to X, where f ∈ C∞(M, RN ), f = (f1, f2, ..., fN ), is well defined.

The main result of this section is the following. It establishes which is exactly the preimage of the 
functional 

∫ 1
f(Xt) ◦dXt ∈ L2(Cx0(M), μx0) via the identification I2 : lim L2(MT , μT

x ) → L2(Cx0(M), μx0).
0 −→ 0
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Theorem 5.1. Let (M, g) be a closed Riemannian manifold embedded in the Euclidean space RN , f ∈
C∞(M, RN ), f = (f1, f2, ..., fN ), and {Xt}t∈[0,1] the M -valued semimartingale defined by the coordinate 
functionals of (Cx0(M), μx0). Then

I2

⎛
⎝ N∑

j=1

n∑
i=1

fj(xti) + fj(xti−1)
2 (xj

ti − xj
ti−1

)

⎞
⎠

T ∈P

=
1∫

0

f(Xt) ◦ dXt,

where T = {0 = t0 < t1 < · · · < tn} and xti = (x1
ti , · · · , xN

ti ) ∈ M ⊂ RN .

Proof. Since M is compact and embedded in RN , the process X = {Xt}t∈[0,1] is, in particular, a bounded 
RN -valued semimartingale and its Stratonovich integral is defined in the usual manner by

1∫
0

f(Xt) ◦ dXt :=
N∑
j=1

1∫
0

fj(Xt) ◦ dXj
t

= lim
L2(μx0 )

N∑
j=1

n∑
i=1

fj(Xtni
) + fj(Xtni−1

)
2 (Xj

tni
−Xj

tni−1
),

for every partition Q = {Qn}n∈N , Qn := {tni }ni=0 with mesh zero of [0, 1] satisfying tn0 = 0 for each n ∈ N. 
This limit can be expressed as a convergence of nets via

1∫
0

f(Xt) ◦ dXt = lim
T

N∑
j=1

n∑
i=1

fj(Xti) + fj(Xti−1)
2 (Xj

ti −Xj
ti−1

),

where T = {0 = t0 < t1 < · · · < tn}. The limit is understood in L2-convergence. On the other hand, we 
define the maps F j

T : MT → R, j ∈ {1, 2, ..., N}, by

F j
T (xti)ni=1 :=

n∑
i=1

fj(xti) + fj(xti−1)
2 (xj

ti − xj
ti−1

),

where T = {0 = t0 < t1 < · · · < tn} and xti = (x1
ti , x

2
ti , · · · , xn

ti). Then, by the boundedness of each 
F j
T , it follows that F j

T ∈ L2(MT , μT
x0

) and by the definition of the morphisms φT : L2(MT , μT
x0

) →
L2(Cx0(M), μx0), we obtain

φT (F j
T ) =

n∑
i=1

fj(Xti) + fj(Xti−1)
2 (Xj

ti −Xj
ti−1

).

Therefore, if we prove that (F j
T )T ∈P ∈ lim−→ L2(MT , μT

x0
) for each j ∈ {1, 2, ..., N}, by the definition of I2

and the linearity of φT , we will deduce

I2

⎛
⎝ N∑

j=1
F j
T

⎞
⎠

T ∈P

= lim
T

N∑
j=1

φT (F j
T )

= lim
T

N∑ n∑ fj(Xti) + fj(Xti−1)
2 (Xj

ti −Xj
ti−1

)

j=1 i=1
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=
1∫

0

f(Xt) ◦ dXt,

obtaining the required result. Finally, we prove that, indeed, (F j
T )T ∈P ∈ lim−→ L2(MT , μT

x0
) for each j ∈

{1, 2, ..., N}. Since each φT is an isometric isomorphism, we have

‖π∗
RT (F j

R) − F j
T ‖L2

T
= ‖(φT ◦ π∗

RT )(F j
R) − φT (F j

T )‖L2

= ‖φR(F j
R) − φT (F j

T )‖L2 , R ⊂ T .

The convergence of {φT (F j
T )}T ∈P (that is justified by the existence of the integral 

∫ 1
0 f(Xt) ◦dXt) together 

with the last identity, implies the co-Cauchy property for (F j
T )T ∈P . Hence (F j

T )T ∈P ∈ lim−→ L2(MT , μT
x0

)
and the proof is concluded. �

As a direct consequence of the preceding result and the isometric property of I2, we deduce the following 
finite dimensional approximation under the same hypothesis of Theorem 5.1,

∫
Cx0 (M)

∣∣∣∣∣∣
1∫

0

f(Xt) ◦ dXt

∣∣∣∣∣∣
2

dμx0 = lim
T

∫
MT

∣∣∣∣∣∣
N∑
j=1

n∑
i=1

fj(xti) + fj(xti−1)
2 (xj

ti − xj
ti−1

)

∣∣∣∣∣∣
2

dμT
x0
,

where T = {0 = t0 < t1 < · · · < tn}. Finally, it is convenient to remark that all the considerations made in 
this section can be adapted easily to the cover the Itô stochastic integration.

6. Approximation scheme for the geometric framework

In this final section, we will give an approximation scheme based in the geometric measure introduced 
by Andersson and Driver in [1]. Up to here, we have proved that the spaces Lp(Cx0(M), μx0), 1 ≤ p < ∞, 
define a realization of the colimit of the diagram (Lp(MT , μT

x0
), π∗

T T ′), where the measures μT
x0

are given 
by

dμT
x0

=
n∏

i=1
pti−ti−1(xti , xti−1)

n∏
i=1

dμ(xti), T = {0 = t0 < t1 < · · · < tn}.

Moreover, we have provided a particular realization, lim−→ Lp(MT , μT
x0

), of the colimit that allows to stablish 
a finite dimensional approximation result for integrable functionals.

However, observe that this approximation scheme does not follow the philosophy of Andersson and Driver 
approach materialized in equation (3). For this reason, in this section, we adapt our scheme to cover the 
measure considered by Andersson and Driven in [1]. We start recalling some facts and definitions of [1]. 
Through this section, the notation C0(Rm) stands for the space of continuous paths γ : [0, 1] → Rm such 
that γ(0) = 0.

6.1. Piecewise linear path space

Consider H(Rm) ⊂ C0(Rm) the subspace consisting on finite energy paths

H(Rm) := {γ ∈ C0(Rm) : γ is absolutely continuous and ERm(γ) < ∞},

where the energy functional is defined by
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ERm(γ) :=
1∫

0

〈γ′(s), γ′(s)〉 ds.

For each partition T = {0 = t0 < t1 < · · · < tn = 1}, the space of piecewise linear paths on Rm with respect 
to T , subsequently denoted by HT (Rm), is defined through

HT (Rm) := {γ ∈ C0(Rm) : γ is linear for t /∈ T }.

Clearly HT (Rm) is linearly isomorphic to Rm×T , where

Rm×T := ×
t∈T \{0}

Rm,

via the linear isomorphism

ΠT : HT (Rm) −→ Rm×T , ΠT (γ) = (γ(t1), γ(t2), ..., γ(tn)).

Since HT (Rm) is linear, it follows that TγHT (Rm) 
 HT (Rm) for each γ ∈ HT (Rm). We introduce the 
Riemannian metric on HT (Rm), hT ∈ Γ(T ∗HT (Rm) ⊗ T ∗HT (Rm)), defined by

hT (u, v) :=
1∫

0

〈u′(s), v′(s)〉 ds, u, v ∈ TγHT (Rm), γ ∈ HT (Rm),

and its corresponding volume form VolhT ∈ Γ(∧m×nTHT (Rm)) determinated by

VolhT (u1, u2, ..., um×n) :=
√

det(hT (ui, uj)ij),

where {u1, u2, ..., um×n} ⊂ TγHT (Rm) is an oriented basis and γ ∈ HT (Rm). Finally, we introduce a Borel 
measure μT on HT (Rm). As usual, when we deal with a measure associated with a Riemannian structure, we 
choose the Borel σ-algebra associated with the topology induced by the corresponding Riemannian metric. 
Along this section, this will be done several times without specifying it again.

Definition 6.1. For each partition T = {0 = t0 < t1 < · · · < tn = 1} of [0, 1], we denote by μT the Borel 
measure on HT (Rm) defined by the density

dμT = 1
(
√

2π)mn
exp

{
−1

2ERm

}
VolhT .

6.2. Piecewise geodesic path space

Now, we define the curved analogue of the measure space (HT (Rm), μT ). Let (M, g) be a closed Rieman-
nian manifold of dimension m. Consider H(M) ⊂ Cx0(M) to be the Hilbert manifold of finite energy paths, 
defined by

H(M) := {γ ∈ Cx0(M) : γ is absolutely continuous and E(γ) < ∞}

where the energy functional E is given through
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E(γ) :=
1∫

0

g(γ′(s), γ′(s)) ds.

Recall that γ ∈ Cx0(M) is said to be absolutely continuous if f◦γ is absolutely continuous for all f ∈ C∞(M). 
The tangent space TγH(M) to H(M) at γ can be identified with the space of absolutely continuous vector 
fields X : [0, 1] → TM along γ such that X(0) = 0 and G1(X, X) < ∞ where

G1(X,X) :=
1∫

0

g

(
∇X(t)
dt

,
∇X(t)
dt

)
dt.

As usual, we denote

∇X(t)
dt

:= //t(γ) d
dt

{//t(γ)−1X(t)},

where //t(γ) : Tx0M → Tγ(x0)M denotes the parallel translation along γ relative to the Levy-Civita 
covariant derivative ∇.

Let T = {0 = t0 < t1 < · · · < tn = 1} be a partition of [0, 1]. We define the subspace of H(M),

HT (M) :=
{
γ ∈ H(M) ∩ C2([0, 1]\T ,M) : ∇γ′(t)/dt = 0 for t /∈ T

}
,

consisting on piecewise geodesic paths in H(M) which change directions only at the partition points. The 
space HT (M) is a finite dimensional submanifold of H(M) of dimension n ×m. For γ ∈ HT (M), the tangent 
space TγHT (M) can be identified with elements X ∈ TγH(M) satisfying the Jacobi equations on [0, 1]\T . 
In other words, X ∈ TγH(M) is in TγHT (M) if and only if

∇2

dt2
X(t) = R(γ′(t), X(t))γ′(t),

where R is the curvature tensor of ∇. We can give to HT (M) a Riemannian structure introducing the 
T -metric. The T -metric gT ∈ Γ(T ∗HT (M) ⊗ T ∗HT (M)) is defined by

gT (X,Y ) :=
n∑

i=1
g

(
∇X(ti−1+)

dt
,
∇Y (ti−1+)

dt

)
Δit, X, Y ∈ TγHT (M),

for each γ ∈ HT (M), where the notation ∇X(ti−1+)/dt is a shorthand of limt↓ti−1 ∇X(t)/dt. We denote 
by VolgT ∈ Γ(∧m×mTHT (M)) the volume form associated to gT . It is determinated by

VolgT (X1, X2, ..., Xm×n) :=
√

det(gT (Xi, Xj)ij),

where {X1, X2, ..., Xm×n} ⊂ TγHT (M) is an oriented basis and γ ∈ HT (M).

Definition 6.2. For each partition T = {0 = t0 < t1 < · · · < tn = 1} of [0, 1], we denote by νT the Borel 
measure on HT (M) defined by the density

dνT := 1
(
√

2π)mn
exp

{
−1

2E
}

VolgT .

This measure spaces (HT (M), BT , νT ), where BT stands for the Borel σ-algebra of HT (M), will be the 
finite dimensional candidates for the approximation scheme.
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6.3. Cartan’s development map

In general, it is not quite easy to deal with the manifold HT (M). Due to this fact, we will identify this 
space through the well known space HT (Rm) via Cartan’s development map. Cartan’s development map 
Φ : H(Rm) → H(M) is defined, for α ∈ H(Rm), by Φ(α) := γ, where γ ∈ H(M) is the unique solution of 
the ordinary differential equation

γ′(t) = //t(γ)α′(t), γ(0) = x0. (9)

The anti-development map Φ−1 : H(M) → H(Rm) is defined by Φ−1(γ) := α where α ∈ H(Rm) is given 
by

α(t) :=
t∫

0

//−1
r (γ)γ′(r) dr.

The map Φ : H(Rm) → H(M) is bijective and smooth, hence it defines a diffeomorphism of infinite dimen-
sional Hilbert manifolds, but it is not in general an isometry of Riemannian manifolds. The development 
map Φ : H(Rm) → H(M) has the property

Φ(HT (Rm)) = HT (M).

We shall denote Φ|HT (Rm) by ΦT .
A fundamental property of Cartan’s development map is that it preserves the T -measure, in the sense 

that

μT (B) = νT (ΦT (B)), (10)

for each Borel subset B of HT (Rm).
Moreover, it can be seen that the development map relates the measure νT of HT (M) with the well 

known heat kernel measure in the flat space Rm×T . For a partition T = {0 = t0 < t1 < · · · < tn = 1}, the 
heat kernel measure λT

0 is the Borel measure on Rm×T defined by

dλT
0 :=

n∏
i=1

pti−ti−1(xti , xti−1)
n∏

i=1
dxti ,

where x0 = 0 and pt(x, y) is the heat kernel of Rm. In [1, Lem. 4.11], it is proved the identity

μT (Π−1
T (B)) = λT

0 (B) (11)

for each Borel subset B of Rm×T . Hence joining equations (10) and (11) yields

νT ((ΦT ◦ Π−1
T )(B)) = λT

0 (B).

As a consequence, we can reduce the structure of the space Lp (HT (M), νT ) to the more familiar one 
Lp(Rm×T , λT

0 ). That is, for 1 ≤ p < ∞, the following spaces are identified

Lp (HT (M), νT ) 
 Lp(Rm×T , λT
0 ),

via the isometric isomorphism
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ΛT : Lp (HT (M), νT ) −→ Lp(Rm×T , λT
0 ), ΛT (f) := f ◦ ΦT ◦ Π−1

T . (12)

It can be also introduced an almost everywhere defined stochastic extension of the development map, 
called the stochastic development map Φ̃ : C0(Rm) → Cx0(M) and its corresponding anti-development map 
Φ̃−1 : Cx0(M) → C0(Rm). It can be proved that they preserve the Wiener measure in the sense that

λ0(B) = μx0(Φ̃(B)),

for each Borel subset B of C0(Rm) where λ0 is the Wiener measure on the classical Wiener space C0(Rm) (see 
for instance [23]). Hence, thanks to the stochastic development map, we can reduce the structure of the space 
Lp(Cx0(M), μx0) to the more familiar one Lp(C0(Rm), λ0) under the philosophy of (12). For 1 ≤ p < ∞, the 
following spaces are identified

Lp(Cx0(M), μx0) 
 Lp(C0(Rm), λ0),

via the map

Λ : Lp(Cx0(M), μx0) −→ Lp(C0(Rm), λ0), Λ(f) := f ◦ Φ̃. (13)

6.4. Finite dimensional approximation scheme

To prove an analogue of Theorem 3.2 for the geometric measure νT , we will follow the following philosophy. 
Firstly we shall prove the approximation scheme for the classical Wiener measure space (C0(Rm), λ0) and 
then we will make use the identifications provided by equations (12) and (13), to translate the result to the 
geometric framework.

Let P be the directed set consisting on partitions of [0, 1]

T = {0 = t0 < t1 < · · · < tn = 1},

partially ordered by inclusion and consider the projectors

πT T ′ : Rm×T ′ −→ Rm×T , πT T ′(xt)t∈T ′\{0} := (xt)t∈T \{0}

πT : Rm×[0,1] −→ Rm×T , πT (xt)t∈[0,1] := (xt)t∈T \{0}.

In analogy with the preceding sections, we define the diagram (Lp(Rm×T , λT
0 ), ηT T ′) where the morphisms 

ηT T ′ , T ⊂ T ′, are defined through

ηT T ′ : Lp(Rm×T , λT
0 ) −→ Lp(Rm×T ′

, λT ′

0 ), ηT T ′(f) := f ◦ πT T ′ .

Using the same techniques of section 4, it is easily proved that for each 1 ≤ p < ∞, the cocone 
(Lp(C0(Rm), λ0), ϕT ) defines a realization of the colimit of (Lp(Rm×T , λT

0 ), ηT T ′), where the morphisms 
ϕT , T ∈ P, are given by

ϕT : Lp(Rm×T , λT
0 ) −→ Lp(C0(Rm), λ0), ϕT (f) := f ◦ πT |Cx0 (Rm).

This establishes the approximation scheme for the classical Wiener space (C0(Rm), λ0). Now, we proceed to 
define the diagram and cocone for the geometric measure νT .

Let us consider the diagram (Lp (HT (M), νT ) , �T T ′) where for each T ⊂ T ′, �T T ′ are the morphisms 
defined by
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Lp (HT (M), νT )

�T T ′

ΛT
Lp(Rm×T , λT

0 )

ηT T ′

Lp (HT ′ (M), νT ′ )
ΛT ′

Lp(Rm×T ′
, λT ′

0 )

Fig. 3. Definition of the morphisms �T T ′ .

Lp (HT (M), νT )

ΛT

θT
Lp(Cx0 (M), μx0 )

Λ

Lp(Rm×T , λT
0 )

ϕT
Lp(C0(Rm), λ0)

Fig. 4. Definition of the morphisms θT .

�T T ′ : Lp (HT (M), νT ) −→ Lp (HT ′(M), νT ′) , �T T ′ := Λ−1
T ′ ◦ ηT T ′ ◦ ΛT ,

in other words, the unique morphisms making the diagram of Fig. 3 commutative.
The main result of this subsection is to prove that the cocone (Lp(Cx0(M), μx0), θT ) is a realization of 

the colimit of the diagram (Lp (HT (M), νT ) , �T T ′), where the morphisms θT , T ∈ P, are defined by

θT : Lp (HT (M), νT ) −→ Lp(Cx0(M), μx0), θT := Λ−1 ◦ ϕT ◦ ΛT .

In other words, the morphisms θT are the unique morphisms making commutative the diagram of Fig. 4. 
This identification establishes an analogue of Theorem 3.2 for the geometrical framework. The definition 
of the involved morphisms �T T ′ , θT is given through the commutativity of the diagrams of Fig. 3 and 4, 
respectively, in order to make things natural, in the categorical meaning of the word. This will become clear 
in the proof of the main Theorem of this subsection, Theorem 6.3.

Theorem 6.3. The cocone (Lp(Cx0(M), μx0), θT ) defines a realization of the colimit of (Lp (HT (M), νT ) ,
�T T ′).

Proof. By (12), we have a family of isometric isomorphisms indexed by T ,

ΛT : Lp (HT (M), νT ) → Lp(Rm×T , μT
x0

).

By the commutativity of the diagram of Fig. 3, this family of isomorphisms (ΛT )T establishes a natural 
isomorphism between the diagrams (Lp (HT (M), νT ) , �T T ′) and (Lp(Rm×T , λT

0 ), ηT T ′). Hence the colimits 
of these two diagrams are isomorphic via a naturally defined isomorphism, see for instance the reference 
[22, Cor. 3.6.3] for a proof of this fact. As the colimit of (Lp(Rm×T , λT

0 ), ηT T ′) is (Lp(C0(Rm), λ0), ϕT ), 
to prove the Theorem it is enough to prove that the cocone (Lp(Cx0(M), μx0), θT ) is isomorphic to 
(Lp(C0(Rm), λ0), ϕT ) via a naturally defined isomorphism. The commutativity of the diagram of Fig. 4, 
establishes that Λ is our required isomorphism. This concludes the proof. �
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6.5. Derivation of the limit formula

In this final subsection, we prove an analogue of Theorem 4.3 for the geometric measure νT . Let us 
denote by lim−→ Lp(Rm×T , λT

0 ) and lim−→ Lp (HT (M), νT ), the analogues of the space defined by (7), under the 
natural changes to adapt it to (Rm×T , λT

0 ) and (HT (M), νT ), respectively. We omit the explicit description 
of these spaces for notational convenience. Rephrasing the arguments of section 4, it can be proved that the 
operator

Ip : lim−→ Lp(Rm×T , λT
0 ) −→ Lp(C0(Rm), λ0), (fT )T ∈P �→ lim

T
ϕT (fT ) (14)

is an isometric isomorphism. Thanks to this isomorphism and the identifications provided by (12) and (13), 
we prove the final result of this article, Theorem 6.4. As a direct consequence of Theorem 6.3 and the 
following Theorem 6.4, we obtain that the cocone

(lim−→ Lp (HT (M), νT ) , ψR),

where the morphisms ψR are the corresponding analogues of (8) for (HT (M), νT ), defines a realization of 
the colimit of (Lp (HT (M), νT ) , �T T ′).

Theorem 6.4. Let 1 ≤ p < ∞, then the following spaces are isometrically isomorphic

lim−→ Lp (HT (M), νT ) 
 Lp(Cx0(M), μx0). (15)

In consequence, for every F ∈ L1(Cx0(M), μx0), there exists an element (fT )T ∈P ∈×T ∈P L1 (HT (M), νT )
such that ∫

Cx0 (M)

F dμx0 = lim
T

∫
HT (M)

fT dνT . (16)

Proof. By (12), we have a family of isometric isomorphisms indexed by T ,

ΛT : Lp (HT (M), νT ) → Lp(Rm×T , μT
x0

).

It is easily seen using the definition of the morphisms �T T ′ , Fig. 3, that the operator

Σp : lim−→ Lp (HT (M), νT ) −→ lim−→ Lp(Rm×T , λT
0 ), Σp(fT )T ∈P := (ΛT (fT ))T ∈P

defines an isometric isomorphism. Finally, the composition operator

lim−→ Lp (HT (M), νT )

Σp

Lp(Cx0(M), μx0)

lim−→ Lp(Rm×T , λT
0 )

Ip

Lp(C0(Rm), λ0)

Λ−1

where the morphisms Ip and Λ are given by (14) and (13), respectively, defines an isometric isomorphism. 
This concludes the proof of (15). Formula (16) follows from the isometric property of the induced opera-
tor. �
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