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Abstract. This paper establishes some hidden connections between the
theory of generalized algebraic multiplicities, x, and the notion of ori-
entability of vector bundles. The novel approach adopted in it facilitates
the definition of several invariants closely related to the first Stiefel—
Whitney characteristic class through some path integration techniques.
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1. Introduction

The classical notion of algebraic multiplicity for eigenvalues of parametric
linear operators of the form Ay — K, where K is a compact operator in a real
Banach space U and Iy stands for the identity map in U, was substantially
generalized by Esquinas and Lépez-Gdémez [5,6,18] to cover general analytic
families

L) =Y NL;, XeR,
n=0

of Fredholm operators of index zero. Note that in the classical setting
Lyo=-K, Li=1Iy and L; =0 forall j>2.

The generalized algebraic multiplicity of [5,6,18], denoted throughout this
paper by x = x[£, Ao], was introduced to characterize the nonlinear eigen-
values, in the context of bifurcation theory, of a wide class of C"-curves,
A — £(A), of linear Fredholm operators of index zero (see Chapter 4 of [18]),
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and it extends the classical notion of algebraic multiplicity at A\¢ for classical
operator families of the form Ay — K, i.e.,

XMy — K, \o] = dimKer [(A\o Iy — K)*P0)], (1.1)

where v(\g) is the algebraic ascent of Ag.

More recently, adopting a geometrical point of view, the authors estab-
lished in [22] a connection between x[£, Ao] and the notion of local intersection
index of algebraic varieties, which is a central device in algebraic geometry.
Essentially, it was established that the algebraic multiplicity x[£, Ag] of a
curve of Fredholm operators of index zero £ : [a,b] — ®o(U) at a given eigen-
value A\g € [a,b] equals the intersection index of the curve £([a,d]) C ®o(U)
with respect to the stratified set of singular operators S(U) C ®y(U) at
£(Xo), where we are denoting by ®(U) the set of linear continuous opera-
tors T : U — U on a Banach space U that are Fredholm of index zero, i.e.,
such that

dim Ker [T] = codim R[T] < 0.

The main goal of this paper is to study vector bundles via topological K-
Theory focusing special attention into the obstruction described by the first
Stiefel-Whitney characteristic class, wi. One of our main findings reveals
how that obstruction can be fully described through x. These connections
are established by combining the Atiyah—J&nich index map

T [X, 0 (U)] — KO(X), (1.2)

with some spectral techniques developed by the authors in [20-22] for contin-
uous Fredholm maps h : X — ®q(U). In (1.2), [X, Po(U)] stands for the set of
homotopy classes of continuous maps X — ®o(U), and KO(X) denotes the
real reduced K-group of a compact path connected topological space X; the
K-group consists of the stable equivalence classes of real vector bundles with
base space X. In particular, our new approach shows that the orientability of
a given vector bundle can be characterized through the generalized algebraic
multiplicity, x.

The relationship between the obstruction associated to the first Stiefel—
Whitney class and the concept of algebraic multiplicity can be described,
shortly, as follows. Under the appropriate assumptions on U and X, the index
map (1.2) is an isomorphism and hence, each real vector bundle F — X has
an associated single parameterized family of Fredholm operators h : X —
Dy (U). Essentially, we will establish that, by considering wq(F) as a map
m1(X) — Zs, the value wy(F)[v] equals the sign, according to its oddity, of
the total generalized algebraic multiplicity of the closed Fredholm curve

hory:S' — & (V).

Equivalently, wq(E)[y] is the sign of the intersection index between [h o
7](SY) € ®4(U) and the stratified set of singular operators S(U) C ®q(U).
Therefore, the information provided by the first Stiefel-Whitney class can be
packaged in terms of the way that a geometrical object in ®o(U), as, e.g., a
parameterized family of Fredholm operators, intersects to S(U).



Vol. 25 (2023) Orientability through the algebraic multiplicity Page 3 of 29 60

Thanks to the versatility of the new approach, by using some path
integration techniques on Riemannian manifolds, we can introduce a new
topological invariant of stable equivalence classes of real vector bundles via
the integration of loops of the base space X. Namely, the global torsion in-
variant, which can be defined as follows. For any given closed Riemannian
manifold and a base-point x € M, the global torsion invariant is the map
A: KO(M) — [~1,1] defined by

A(E) := /L o Y2[In0HE] 07, SY dux(y) for all E € KO(M),

where Ly (M) stands for the space of continuous loops v : S' — M with
7(0) = x, pix is the normalised Wiener measure on L« (M), and, for every £ €
C(St, @4(U)), x2[L,S] := (—=1)XT where Y is the total algebraic multiplicity
of £. The real number A packages the information provided by the class
wy in a robust and compact way. Indeed, as established by Theorem 4.2, a
vector bundle E — M is orientable if, and only if, A(E) = 1. Moreover,
according to Theorem 4.3, A(E) = A(F) if E = F in KO(M), i.e., the map
A: KO(M) — [~1,1] is a topological invariant of stable equivalence classes
of real vector bundles over M.

Finally, we find out the value of the global torsion invariant for the circle
and the n-dimensional torus. The global torsion invariant A for the circle is
given by

A:KOES'Y) — [-1,1],  A(TS)) =1, A(M]) = —=,
V2

where TS! is the tangent bundle of St and M is the Mobius bundle. Its values

for the n-dimensional torus T" := X, S! are

m
AKO(T™)) = {(%) :me{l,2,... ,n}} .

This paper is organized as follows. Section 2 collects all the necessary
preliminaries to read comfortably the rest of the paper. Precisely, it reviews,
very briefly, the concept of generalized algebraic multiplicity, x, and the con-
cept of parity, o, discussed by Fitzpatrick, Pejsachowicz and Rabier [11]. As
the parity o s a pivotal invariant to study the topology of ®(U) and can
be determined from Y, it establishes a bridge between the algebraic informa-
tion provided by x and some relevant topological aspects of ®o(U). Section 3
describes the relationship between the first Stiefel-Whitney characteristic
class, wy, and the algebraic multiplicity, x. It studies also some notions of
orientability of vector bundles and parameterized families of Fredholm op-
erators. Section 4 introduces the global torsion invariant, A. Finally, Sect.5
finds out the global torsion invariant of the circle and the n-dimensional torus.

2. Preliminaries

This section collects some important properties of the algebraic multiplicity x
of Esquinas and Lépez-Gémez [5,6,18]. Among them, its connections with o,
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the topological parity of Fitzpatrick and Pejsachowicz [10]. These invariants
and their several relations will be used in the forthcoming sections to prove
the main results of this paper. As they are scattered in a number of research
papers and specialized monographs, they have been packaged in this section
for the convenience of the reader. Although x and o are closely related to
the index of intersection of algebraic varieties, i (see [22]), these links remain
outside the main scope of this paper.

2.1. The generalized algebraic multiplicity x

This section collects some important properties of the generalized algebraic
multiplicity, x, of Esquinas and Lépez-Gdémez [5,6,18]. Throughout it, K €
{R,C}, Q is a subdomain of K, and, for any given £ € C(Q, ®,(U)), a point
A € Q is said to be a generalized eigenvalue of £ if £(\) ¢ GL(U). Then, the
generalized spectrum of £, ¥(£), is defined through

(L) :={NeQ:L(\) ¢ GLU)}.
The next concept goes back to [6], where it was introduced to characterize the

nonlinear eigenvalues of a rather general class of nonlinear Fredholm maps in
the context of local bifurcation theory.

Definition 2.1. Let £ € C"(, o(U)) and 1 < k < r. Then, a given A\g € (L)
is said to be a k-transversal eigenvalue of £ if

ésj <]ﬂ Ker[ﬁd) ® R[€] = U with £, (ﬂ Ker[£ ) # {0},
j=1 =0

where we are denoting £; := - L20)(N), 1 < j < r. In such case, the gener-
alized algebraic mult1phc1ty, X, is defined by

XI€, Mo Z; dim £; (ﬂ Ker[Si]>. (2.1)
=0

In particular, when Ker[£q] = span[pg] for some ¢g € U such that
£1¢0 ¢ R[EQ], then
£ (Ker[ﬂo]) (5] R[So] =U (2.2)
and hence, A\ is a 1-transversal eigenvalue of £(\) with x[£, Ao] = 1. The
transversality condition (2.2) goes back to Crandall and Rabinowitz [4]. The
following concept, going back to [18], plays a pivotal role in the sequel.

Definition 2.2. Let £ € C(Q,®¢(U)) and k € N. A generalized eigenvalue
Ao € X(£) is said to be k-algebraic if there exists ¢ > 0 such that
(a) £A) e GLU) if 0 < |A — Xo| <¢;
(b) There exists C' > 0 such that [|[£71(N\)]| < ‘/\_L/\Olﬁ if 0 < A= Ao| <e¢;
(¢) k is the minimal integer for which the previous property holds.

Subsequently, the set of k-algebraic eigenvalues of £ will be denoted
by Alg, (£), and the set of algebraic eigenvalues by Alg(£) := .oy Alg,(£).
According to Theorems 4.4.1 and 4.4.4 of [18], if £(A) is analytic in , i.e., £ €
H(Q, o(U)), then, either X(L) = Q, or (L) is discrete and (L) C Alg(L).
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Subsequently, we denote by Ay, (€2, @o(U)) the set of curves £ € C"(2, ®o(U))
such that Ao € Alg,(£) with 1 < k < r for some r € N. According to
Theorems 4.3.2 and 5.3.3 of [18], for every £ € C"(Q, ®o(V)), k € {1,2,...,7}
and A\g € Alg, (L), there exists a polynomial ® : Q@ — L(U) with ®(\o) = Iy
such that A\ is a k-transversal eigenvalue of the path

£ = Lod cC"(Q,00(V)), (2.3)

and x[£?, \o] is independent of the curve of trasversalizing local isomorphisms
® chosen to transversalize £ at Ao through (2.3). Therefore, the next concept
of multiplicity is consistent

X[€, o] == X[£%, Xo). (2.4)

This notion of algebraic multiplicity can be easily extended by setting x[£, o]
=0if Ao ¢ 3(L) and x[£, No] = +ooif Ag € X(L)\ Alg(£) and r = +o0. Thus,
X[£, A] is well defined for all A € Q2 of any smooth path £ € C*(Q, ®¢(V)). In
particular, for any analytical curve £ € H(, ®¢(U)). The next uniqueness
result of Mora-Corral [23], axiomatizes x; some refinements can be found in
[19, Ch. 6].

Theorem 2.3. Let U be a K-Banach space. For every A\g € K and any open
neighborhood 2, C K of Ao, the algebraic multiplicity x is the unique map

X['7)‘U] 1 C (2, Po(U)) — [0700]

such that

(NP) There exists a rank one projection I € L(U) such that x[(A — Xo)II +
Iy —TL o] = 1.

(PF) For every pair £, € C>®(Qy,, Po(U)), x[£ o M, Xo] = x[L, o] +
X[ma )\0] .

The axiom (PF) is the product formula and (NP) is a normalization
property for establishing the uniqueness of x. From these two axioms one can
derive the remaining properties of x; among them, that it equals the classical
algebraic multiplicity when £(\) = Ay — K for some compact operator K.
Actually, for every £ € C*(Q,,, Po(U)), the following properties are satisfied
(see [19] for any further details):

() (£, Mo] € Nw {+00}.
) x[£, Ao] = 0 if, and only if, £(Xo) € GL(U).

(c) [2 o] < oo if and only if Ag € Alg(£).

(d) 1t KN then in any basis, x[£, )\o] = 01rd,\0 det 2()\)
)

holds

Therefore, x extends the classical algebraic multiplicity. An equivalent con-
struction of x beginning with property (d) has been recently carried out by
the authors in [22] through the Schur complement.
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2.2. The topological parity, o, and its relation with x

In this section, we study the topology of ®¢(U) via the parity, o, which is
a topological invariant of paths introduced by Fitzpatrick, Pejsachowicz and
Rabier [11], and collect some relations between o and x.

In general, ®o(U) is an open non-linear subset of £(U). Subsequently,
we denote the set of singular operators by

S(U) := @o(U)\GL(U) = |H Sal
neN
Sn(U)={L € ®o(U) : dimKer[L] =n}.

According to Fitzpatrick and Pejsachowicz [7], for every n € N, S,,(U) is a
Banach submanifold of ®4(U) of codimension n?, which allows us to view
S(U) as a stratified analytic set of ®(U). By Theorem 2 of Kuiper [16],
the space of isomorphisms, GL(H), of any real or complex separable infi-
nite dimensional Hilbert space, H, is contractible and hence path-connected.
Thus, in general, it is not possible to introduce an orientation for opera-
tors in GL(U), since GL(U) can be path-connected. By an orientation we
mean the choice of a path connected component of the space GL(U) when
it contains at least two. This fact reveals a fundamental difference between
finite and infinite dimensional spaces, as, for every N € N, it is folklore
that GL(RY) consists of two path-connected components, GL*(RY). A key
technical tool to overcome this shortcoming was provided by the concept of
parity introduced by Fitzpatrick and Pejsachowicz [10]. The parity is a gener-
alized local detector of the change of orientability of a given admissible path,
£ € C([a,b], Po(U)). Although one cannot expect to get a global orientation
in ®4(U) when GL(U) is path-connected, one can study the orientability as
a local phenomenon through the concept of parity.

Subsequently, a Fredholm path £ € C([a,b], ®q(U)) is said to be ad-
missible if £(a), £(b) € GL(U), and we denote by € ([a,b], Po(U)) the set of
admissible paths. Moreover, for every r € N {+o00,w}, we set

" ([0, b], ®0(U)) = €7 (a,b], @0(0) N % ([a,b], @(0)).
H[a,8), Bo(U)) = € ([a, b, Bo(U)).
The geometric way to introduce the notion of parity consists in defining it
for @-transversal paths, and then for general admissible curves through the
density of €-transversal paths in €([a, b], ®o(U)), established by Fitzpatrick
and Pejsachowicz in [7]. A continuous Fredholm path, £ € C([a, b], @o(U)), is
said to be @-transversal if
(i) €€ ¢ ([a,b], 20(U));
(ii) £([a,b])) NS(U) C §1(U) and it is finite;
(iii) £ is transversal to S;(U) at each point of £([a,b]) N S(U).
When £ is @-transversal, then, the (total) parity of £ in [a,b] is defined by
U(S’ [CL, b]) = (_I)Kv
where k € N equals the cardinal of £([a,b]) N S(U). Thus, the parity of a

@-transversal path, £(\), is the number of times, mod 2, that £()\) inter-
sects transversally the stratified analytic set S(U). The fact that the set of
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@-transversal paths is dense in the set of admissible paths, € ([a, b], ®o(U)),
allows us to define the parity for a general £ € €([a, b], ®o(U)) through

o(L,[a,b]) := o(£, [a,b]),

where £ is any ¢-transversal curve satisfying || € — £||oc < ¢ for sufficiently
small € > 0.

Subsequently, an homotopy H € C([0,1] x [a, ], Po(U)) is said to be
admissible if H([0,1)x{a,b}) C GL(U), and given two paths, £; and £, they
are said to be A-homotopic if they are homotopic through some admissible
homotopy. A fundamental property of the parity established by Fitzpatrick
and Pejsachowiz [10] is its invariance under admissible homotopies. The next
result, which is Theorem 4.5 of [20], shows how the parity of any admissible
Fredholm path £ € % ([a,b], o(U)) can be computed through x.

Theorem 2.4. Any continuous admissible path £ € %€([a,b],Po(U)) is
A-homotopic to an admissible analytic Fredholm curve £, € € ([a,b], ®o(U)).
Moreover,

o(L,[a,b]) = (—1)Zi= XL XD ynere B(L,) = {1, A2y ooy An }-

For every £ € C([a,b],Po(U)) and any isolated eigenvalue Ag € X(£),
the localized parity of £ at Ao can be defined by o (£, \g) := limy, 0 o(£, [Ao —
7, X0 + 71]). As a consequence of Theorem 2.4, the next result holds (see [20,
Cor. 4.6]).

Corollary 2.5. Assume £ € Ay, ([a,b],®o(U)), i.e., £ € C"([a,b],Po(U)) with
Mo € Alg, (£) for some integer 1 > 1 and 1 < k < r. Then, o(£, ) =
(—1)x[€:A0],

Corollary 2.5 establishes a sharp connection between the topological
notion of parity, o, and the algebraic concept of multiplicity, x.

Next, we will introduce the concept of parity to closed curves, o(-,S'),
introduced by Fitzpatrick and Pejsachowiz in [8]. By considering the circle
St as given from [a, b] through identification of a and b, one can define

o(£,S") :=deg (P(a) o P(b)™') for all £ € C(S, P(0)),

where P : [a,b] — Po(U) is any parametrix of £ and deg stands for the
Leray—Schauder degree. If £ € €([a,b],Po(U)) is closed, i.e., £(a) = £(b),
then o (£, [a,b]) = o(£,S!) (see Fitzpatrick and Pejsachowiz [8], where it was
also established that this new notion of parity is also homotopy invariant).
When, in addition, U is of Kuiper type (i.e., GL(U) is contractible),
then, the fundamental group 71(®¢(U),T) does not depend on the chosen
base point T € & (U), i.e., m (Po(U),T) = m1(Po(U)), because in this case,
Dy (U) is path-connected. Therefore, one can introduce the map
g:m(Po(U)) — Lz, a(h]) = 0a(y,8"), (2.5)
which is well defined since it is invariant by homotopy, and defines a group
isomorphism. Thus, 7 (®o(U)) ~ Zy if U is of Kuiper type. This makes ap-

parent how the parity map describes some non trivial features of the topology
of (I)Q (U)
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We end this section by establishing a link between x and the notion of
parity for closed curves o(-,S!). It follows easily combining the proof of [20,
Th. 4.5] with Theorem 2.4.

Theorem 2.6. For every £ € C(S', ®y(U)), 0(£,S) = (—1)2i= X[EoAil yhere
£, € H (S, ®o(U)) is homotopic to £ and B(L,) = {A1, A2y ey An}-

3. K-Theory at the light of spectral theory

In this section, which is the central one of this paper, the theory of real vector
bundles will be complemented and sharpened by means of the spectral devices
reviewed in Sect. 2. Specifically, we will characterize the obstruction detected
by the first Stiefel-Whitney class of vector bundles through some spectral
properties by means of the Atiyah—Jénich map.

We begin by recalling some basic facts to introduce the Atiyah—Jénich
morphism. Two real vector bundles, F¥ and F', over a compact path-connected
topological space X, are said to be stably equivalent if there are N, M € N
such that

EoRY ~FoRY,

where Ri denotes the trivial bundle X x R? of rank i over X for each
i € {N,M}, @ stands for the Whitney sum of vector bundles, and ~ ex-
presses that both real vector bundles are isomorphic. Naturally, the stable
equivalence induces an equivalence relation in the set of isomorphism classes
of real vector bundles over X, denoted by Vect(X), whose associated quotient
is the reduced Grothendieck group, KO(X). It is a group under the Whitney
sum of vector bundles. Given a real Banach space U, the device linking vector
bundle theory with the theory of Fredholm operators is the Atiyah—Janich
index map

I [X, @0 (U)] — KO(X) (3.1)
introduced by Atiyah [1] and Jénich [15], which is a sort of generalization
of the classical notion of index of a Fredholm operator. We are denoting by
[X, o (U)] the set of homotopy classes of continuous maps X — ®o(U). It is
a group under the composition o defined by

(LoP)(x) :=L(x) o P(z), ze€X, L£,Pe[X, O(U).
The map (3.1) is a homomorphism of groups and makes exact the sequence
X, GL(U)] = [X, ®(U)] % KO(X),

where i, is the canonical inclusion, i.e., [X, GL(U)] = Ker Jnd. Some reason-
ably self-contained references for these materials are Mukherjee [24, Ch. 1,2],
Cohen [3], Zaidenberg et al. [31] and Husemoller [14].

As in this section we need this morphism to be an isomorphism, we
begin by fixing a class of real Banach spaces U for which this property holds.
For this, we need to recall some basic concepts. Given a real Banach space,
U, a Schauder basis, {un }nen, in U, is said to be unconditional, if for every
sequence of real numbers, {a, }nen, for which )\ anu, converges (say, to
x), this series is unconditionally convergent, i.e., regardless the permutation
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o : N — N, the series )y Qo(n)Uo(n) converges to x. A real Banach space
U is said to admit a symmetric basis if there exists an unconditional basis

{tn }neny on U such that:
(1) For any two sequences of real numbers, {@, }nen, {0n}nen, such that
|Bn| < |an| for all n € N, the series ) |y Bnun converges if )y anun

converges, and
> Butin >~ antin
neN neN
(2) If {an}nen is a sequence of real numbers such that )y onu, con-
verges, then ZneN QnlUg(n) also converges for every permutation o :

N — N, and
Z AplUp Z AnUeg(n)
neN neN

A real Banach space, U, is said to contain a complemented infinite dimen-
sional subspace admitting a symmetric basis if it has two closed subspaces,
VW CcU,suchthat U =V & W, dimV = +oo, and V admits a symmetric
basis. The following result is Theorem 2.3 of Zaidenberg et al. [31].

neN

<

Theorem 3.1. Let X be a compact path-connected topological space and U be
a real Banach space of Kuiper type that contains a complemented infinite
dimensional subspace admitting a symmetric basis. Then the index map (3.1)
is an isomorphism of groups.

Throughout the rest of this paper, we will assume that the real Ba-
nach space U is admissible in the sense that it satisfies the assumptions of
Theorem 3.1, i.e., it is of Kuiper type and it contains a complemented infi-
nite dimensional subspace admitting a symmetric basis. Note that any real
infinite-dimensional separable Hilbert space is admissible.

3.1. Orientability of Vector Bundles

This section collects some background on orientability, which is invoked in
Sect. 3.2 to obtain some of the main findings of this paper.

A real vector bundle £ — X is said to be orientable if it admits a trivi-
alizing atlas whose transition functions have positive determinant. According
to, e.g., Husemoller [14, Th. 12.1], E is orientable if, and only if, the first
Stiefel-Whitney class of E, wi(E) € H'(X, Zs), is zero, where H'(X,Zs) is
the first cohomology group of X with coefficients in Zs. It is folklore that a
vector bundle FE' is orientable if, and only if, its associated determinant line
bundle, det E := A" E, is trivial.

Since the first Stiefel-Whitney class, wy : Vect(X) — H(X,Zs), de-
pends only on the stable equivalence class, it induces, in a natural way, a
homomorphism of groups

wy : KO(X) — HY(X,Zy).
Thus, it is rather natural to agree that the class F € K O(X) is orientable

if wi(E) = 0. In particular, for every continuous map h : X — @o(U),
Jnoh] € KO(X) is orientable if wq (Ind[h]) = 0.
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Now, note that, for every class E € KO(X), the first Stiefel Whitney
class can be regarded as a homomorphism 71 (X) — Zs. Indeed, as a con-
sequence of the universal coefficient theorem, the groups H'(X,Zs) and
Hom(7 (X)), Z2) are isomorphic. To describe this isomorphism, following [9,
Sect. 2] and denoting 71 (X) = m1 (X, o), each homomorphism ¢ : 7 (X) —
Zs sends the commutator of m1(X), [r1(X), 71 (X)], to zero 0 € Zs. Thus, it
induces a homomorphism

& m1(X)
~[m(X), (X))
By the universal coefficient theorem, each ¢ : Hy(X,Zy) — Zs corresponds
to a unique cohomology class w € H'(X,Zs). The inverse isomorphism T :

HY(X,Z3) — Hom(71(X),Z2) can be described explicitly as follows. If w €
HY(X,Z5), and v € m1(X) is represented by g : S! — X, then

[C(w)](v) = {g" (w), [S"]) 2, (3.2)
where ¢g* : HY(X,Zs) — H'(S!,Z>) is the induced morphism in cohomology,
[S'] is the generator of H'(S!,Zy), and (-,-)z, : Hi(+,Z2) X H(:,Z2) — Z
is the Kronecker (duality) pairing.

For every E € Ind([X,®o(U)]) = KO(X), one can also describe the
orientability of F in terms of its determinant bundle. Indeed, according to
Wang [29], for every h € [X, ®¢(U)], the determinant bundle of Jnd[h] can
be defined as the line bundle

det Ind[h] := A" Ker h @ (AN"**coKer h)*

~ Hl(X, ZQ) — Zg.

where A™2#* denotes the wedge product in the corresponding dimension of
the vector space where we are defining the operation. It turns out that these
two notions of orientability are actually the same. This is the content of the
following result of Pejsachowicz [25].

Theorem 3.2. Let U be an admissible real Banach space, X a compact path-
connected space, and h : X — ®¢(U) a continuous map. Then, the next
statements are equivalent

(a) wy(Indlh]) =0 in HY(X,Zs).

(b) det Ind[h] is a trivial line bundle.

The equivalence of these two (and some other) notions of orientability
is far from evident, and it has been one of the central issues in the theory of
the topological degree for Fredholm operators (see, e.g., [10-12,26], and the
references therein).

3.2. Intersection Morphism

In this section we study the obstruction detected by the first Stiefel-Whitney
fundamental class and establish its relationship with the generalized algebraic
multiplicity y introduced in Sect. 2.1. Essentially, for any given vector bundle
E over X, we will ascertain some of its most significative topological prop-
erties through the techniques introduced in Sect.2 in the classifying space
®o(U). These findings count among the main novelties of this paper.
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For any given vector bundle £ — X, its pre-image via the index map,
I YE] : X — ®y(U), is a parameterized family of Fredholm operators of
index zero. The main goal of this section is to reformulate some of the main
topological invariants of E in terms of the algebraic data provided by x and
o (see Sect. 2 for the precise definitions). Adopting this methodology, the first
Stiefel-Whitney class, wy, is going to be related to the concept of algebraic
multiplicity, x.

Subsequently, for notational convenience, for every £ € C(S!, ®4(U)),
we will denote

X2l€ 8 = (—1)XT with xr= > x[€, A,
AoEX(LY)

where £ € (S, ®¢(U)) is any admissible analytic curve homotopic to £.
To relate the topological properties to the spectral ones, we introduce
the intersection morphism

J: KO(X) — Hom(m(X), Zs),
defined, for every E € KO(X) and [y] € 71 (X), by
IE)([7]) = xe[In0 7 [E] 07, S']. (3.3)

Its name is motivated by the fact that x equals the intersection index of two
certain algebraic varieties (see [22]). To prove that J is well defined, we have
to check that J[E] : m1(X) — Zz is a homomorphism of groups.

Lemma 3.3. For every E € KO(X), the map 3[E] : m(X) — Zs is a group
homomorphism.

Proof. Fix 9 € X and let [y1],[v2] € m(X,20). Then, its product on
m1(X, x0) is given by the loop [y1 * 2] € 71 (X, zo) defined through

. (@) 0<t<g,
1%y St — X, (’71*72)(t)'_{72(2t1) i<«

where we are viewing S! as the interval [0, 1] with endpoints identified. Then,
it becomes apparent that

I HE] o (71 % 2) = (I [E] o y1) * (IndH[E] 0 72).
By Theorem 2.6, we get
IEN(In *72)) = x2[In0 T E] o (1 % 72),8'] = o(Ind ™ [E] 0 (11 % 72), [0, 1]).

Finally, by using the additivity property of the parity [10, Th. 6.6] applied
to the partition [0,1] = [0,1/2] U [1/2,1], we obtain that

IEN ([ *72]) = o (07 [E] o (1 % 72), [0, 1])
= (I [E] oy1) * (Ind[E] 0 72), [0,1])
(0[] 0 71, [0,1/2]) - (300 [E] 0 72, [1/2, 1)
= x2[In0 ' [E] 0 71, S'] - X2 [Ind T [E] 072, 8]
JEN([n]) - IEN([e))-
This ends the proof. 0

)
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Lemma 3.4. The intersection morphism 3 : KO(X) — Hom(m(X),Zs) de-
fines a homomorphism of groups. Thus, it defines a morphism in the category
of groups Gr.

Proof. Since Ind is an isomorphism of groups, it is apparent that
Ino Tt (KO(M), @) — ([M, ®o(U)],0)

establishes a homomorphism of groups. Thus, for every E,F € KO(X) and
[v] € m(X),

X2[In0 " ([E] @ [F]) 0 7,8'] = x2[(In0 " [E] 0 Tnd ' [F]) 0 4, S'].
By the definition of y2 and Theorem 2.3(PF), we find that
X2[(I0 T [E] 0 y) o (Ind ! [F] 0 ), S']
= x2[In0 ' [E] 07, 8] - x2[In0 T [F] 0, ).

Consequently,
IE @ F)(Iy]) = x[In0~([E] @ [F]) 07, S"]
= X2[In0 " [E] 0,8 - xo[In0 ! [F] 07,8
= JEN() - IFUD)-
This shows that J[E @ F| = J[E] - 3[F] and ends the proof. O

The next result establishes that J equals the first Stiefel-Whitney class
morphism wy : [N((’)(X) — H'(X,Zs) modulo the isomorphism I' : H!(X, Z)
— Hom(71(X),Z2) defined in (3.2). Since it fully describes the obstruction
of the first Stiefel-Whitney class by means of x, it is one of the main findings
of this paper.

Theorem 3.5. Let U be an admissible real Banach space, and X a com-
pact path-connected space. Then, J = I' o wy as morphisms f(O(X) —
Hom (1 (X),Zs) of &t, where T' is the isomorphism between H'(X,Zs) and
Hom(m (X),Zs) defined by (3.2).

Proof. By Fitzpatrick and Pejsachowicz [9, Pr. 2.7], the Stiefel-Whitney mor-
phism w; can be factorized through the following diagram in ®rt,

KO(X) —2— H'Y(X,Z)

o] Ir

[X, ®o(U)] —Z— Hom(my(X), Zs)
where ¢ : [X, ®o(U)] — Hom(m(X),Z2) is the morphism defined by
5[A(1)) == o(h o, 8Y) for all [4] € m(X).
To show the commutativity of the diagram, it suffices to prove that

T(w, (Ind[h])) = 6[h] for all h € [X, B(U)], (3.4)



Vol. 25 (2023) Orientability through the algebraic multiplicity Page 13 of 29 60

viewed as homomorphisms 7 (X) — Zs. Since they are Zs-valued group
homomorphisms, (3.4) holds from the fact that their corresponding kernels
are equal. As

wy : KO(:) — HY (-, Zy),  Ind: [, (V)] — KO(.),
are natural transformations in the category Top of topological spaces and
continuous maps, it follows that, for every continuous map ¢ : S* — X,
9" (w1 (Ind[h])) = w1 (g (Tnd[h])) = w1 (Ind[h o g]), (3.5)

where ¢* : H'(X,Zy) — H'(S',Zs) and ¢! : KO(X) — KO(S') are the
induced morphisms by the cohomology functor H'(-,Zs) and the K-theory
functor KO(-), respectively. Pick a loop [y] € Ker[I'(wy (Ind[h]))] C 71 (X).
Then, for any representation of the loop [4], g : S — X, we can deduce from
(3.2) and (3.5) that

0 = [ (w1 (Ind[R])]([7]) = (9" (w1 (Imd[A])), [$'])z, = (w1 (Tnd[h o g]), [S'])z,-
Thus, since Hy(S',Zy) ~ Zy ~ H'(S',Z,), it becomes apparent that
(w1 (Ind[h 0 g]),[S'])z, = 0 in Zy if, and only if, wi(Ind[h o g]) = 0 in
H'(S',Zs). On the other hand, since

KO(SY) = {[TS"], (M} = Z»,

where T'S! is the tangent bundle of S* and M is the Mébius bundle, taking
into account that M is not orientable, it follows that S' is orientable if,
and only if, is trivial. This implies that w; : KO(Sl) — HY(S',Z,) is an
isomorphism. Consequently, wq (Ind[h o g]) = 0 in H'(S!,Zy) if, and only if,
Jnd[hogl is the identity on KO(S"). Since [S!, GL(U)] = Ker Jnd, necessarily
hog € [S',GL(U)]. Therefore, o(hog,S') =1, i.e.,

G[hl() = o(hog,Sh) =1,
and hence, [y] € Ker[g[h]]. The proof of the converse inclusion follows iden-
tical patterns. Consequently,

Ker[I'(w1 (Ind[h]))] = Ker[g[h]] for all h € [X,Do(U)],

which implies (3.4) and the commutativity of the diagram. Thus, T' o w; =
&0 Jnd . On the other hand, & o Jnd ! = 3. Indeed, for every E € KO(X)
and [y] € m(X), it follows from Theorem 2.6 that

IEN[) = x2[Im0 7 [E] 07,8 = o(Ind ™ [E] 04, 81) = 6[Ind ™ [E]]([7]).
Therefore, 3 = I" o wy. This ends the proof. O

As a consequence of the proof of Theorem 3.5, it is apparent that the
intersection morphism J : KO(X) — Hom(7;(X), Z2) factorizes the diagram
in Br,

— " HY(X,Z)

MT \ Ir

[X q’o 4) HOm(T{'l(X),Zg)
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because
GoImd ' =3=Touw;.
Since J describes the class wy in terms of the algebraic multiplicity, x, it
establishes a link between the topological information of the vector bundle
FE and the spectral properties of the underlying Fredholm paths.
Moreover, since J = I' o wy, J defines a topological invariant of stable
equivalence classes of vector bundles. In other words, E # F in KO(X) for

any pair of vector bundles E, F over X with J[E] # J[F]. So, the next result
holds.

Corollary 3.6. The intersection morphism 3 : KO(X) — Hom(m (X)), Z3) is
a topological invariant of stable equivalence classes of real vector bundles with
base X.

Thanks to Theorems 3.2 and 3.5, the orientability of a given vector
bundle £ — X can be characterized in terms of y. Precisely, the next result
holds.

Corollary 3.7. Let E — X be a real vector bundle over X. Then, the following
conditions are equivalent:

e FE is orientable,

o x2[Ind Y [E]on,S =1 for all [y] € m (X),

e J[E| =1, where 1 stands for the identity in Hom (w1 (X),Zs).

Proof. By definition, the vector bundle £ — X is orientable if, and only if,
wi(E) = 0in H'(X,Zsy). Thus, since, due to Theorem 3.5, J = ['owy, and I’
is an isomorphism, it is apparent that F is orientable if, and only if, J[E] = 1.

O

The interest of these findings relies on the crucial fact that, although
the computation of w;[F] is difficult in practice, the intersection morphism
J can be easily computed in many particular examples, as it will become
apparent in the next sections. Another relevant consequence of these findings
is the fact that the real line bundles can be completely described through
their spectral properties. Precisely, the next result holds. Subsequently, we
denote by Vect;(X) the set of isomorphism classes of line bundles over X. In
particular Vect;(X) is a group with the tensor product ® of line bundles.

Theorem 3.8. The restricted intersection morphism J : Vect;(X) — Hom
(m1(X),Zs) is an isomorphism, i.e., two line bundles L, L' € Vect(X) are
isomorphic if, and only if,

X2[In0 Y [L] 07,8 = xo[In0 L]0, St for all [y] € T (X).

Proof. First, we show that J is well defined. We should see that the isomor-
phism classes of the line bundles coincide with the stable equivalence ones. If
L, L’ € Vect; (X) are isomorphic, they are clearly stably isomorphic. Assume
that L, L’ € Vect;(X) are stably isomorphic. Then, by the properties of the
Stiefel-Whitney class, wi(L) = wi(L'). Since w; : Vect1(X) — HY(X,Z2)
is an isomorphism, necessarily wi(L) = w;(L’) implies that the line bundles
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L, L' are isomorphic. This proves our claim. On the other hand, we already
know that J = T" o w; as maps Vecty(X) — Hom(m(X),Z2). Thus, since T’
and w; : Vect;(X) — H'(X,Z2) are isomorphisms, it follows that J is also
an isomorphism. This ends the proof. 0

As illustrated by the next result, in some circumstances the intersection
morphism J can classify also every stable equivalence class of real vector

bundles.

Theorem 3.9. If all orientable vector bundles are stably trivial, i.e., all ori-
entable maps X — ®o(U) are homotopic, then the intersection morphism
J: KO(X) — Hom(m(X), Zy) is an isomorphism of groups. Thus, J classi-
fies all stable equivalence classes of vector bundles, i.e., E, F € Vect(X) are
stably equivalent if, and only if,

X2[Ind HE] 07,8 = x2[Ind " F] 0, S for all [y] € m(X).

Proof. Since any orientable vector bundle is stably trivial, Ker[w;] is the
identity of KO(X). Thus, w; : KO(X) — H'(X,Zs) is injective. It is sur-
jective because wy : Vect1(X) — H'(X,Zs) is an isomorphism. So, w; is an
isomorphism. Therefore, J =I'" o wy. This ends the proof. O

Roughly spoken, the Stiefel-Whitney class, or, equivalently, the inter-
section morphism

JE] = (Tow)[E]: m(X) — Za,

measures how the vector bundle £ — X twists along a given loop of the
base space [y] € m1(X). In the following section, we will introduce a new
topological invariant of vector bundles that will encode all these values, J[E] :
7m1(X) — Za, through a generalized analogue of the arithmetical mean, giving
rise to a sort of global measure of the torsion of F. This invariant is far more
comfortable to work with than with w;, because it deals with real numbers,
instead of cohomology classes.

4. The global torsion invariant

This section introduces a new topological invariant of stable equivalence
classes of real vector bundles that encodes the information given by the first
Stiefel-Whitney class, w;. Besides characterizing the orientability of a vec-
tor bundle, w; also gives some useful information on non orientable bundles
which can be used to classify them. This information is actually encoded in
the values of the map J[E] : m1(X) — Zg, where J is the intersection mor-
phism constructed in Sect. 3.2. Essentially, the basic idea consists in summing
up the values of this map.

For any given closed smooth manifold M, there exists a Riemannian
metric, g, defined on M for which (M, g) becomes a Riemannian manifold.
In the sequel, we fix this metric g and a base-point x € M. Then, the global
torsion invariant A : KO(M) — [~1,1] can be defined by

AE) = / B dux(y) for all Ee ROM),  (4.1)
L (M)
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where L (M) stands for the loop space of M, i.e., the space of continuous
loops 7 : S! — M with base-point x, i.e., v(0) = x, and px : Bx — [0, +0oc] is
the normalised Wiener measure on Lx(M); Bx denotes the Borel o-algebra
of Lx(M) under the topology of the uniform convergence. In Appendix A we
have recalled the definition of the measure pix.

The real number A packages the information provided by the class w;
in a robust and compact way. Thanks to Theorem 3.5, A is easily computable
in a number of cases. The next result expresses the global torsion invariant A
in terms of the algebraic multiplicity x introduced in Sect. 2. It is very useful
for computational purposes.

Theorem 4.1. For every E € KO(M), J[E]([-]) € L' (Lyx(M), jix) and

AME)= Y X230 '[E]on,S"- pux((n])- (4.2)
[n]€m1 (M)

Proof. Since M is a real topological manifold, by Lee [17, Th. 1.16], 7 (M)
is countable. Thus, there exists a sequence of loops, n, : S'! — M, n € Z,
possibly finite, such that

(M) = |4 [nal,
nez

where W denotes the disjoint union. Since J[E] is a map w1 (M) — Zo, it is
constant on each homotopy class. Thus, for every v € Ly (M),

IEN ) =D IEN[0a]) - Ly ()
nez

where 1, 1(7) = 1if v € [n,], and 1p;, ;(v) = 0 if not. Thus, by the definition
of the intersection morphism (see (3.3), if necessary),

JENRD = Y x[I0 7 [E] 01, S - Lpy,5(7)-
nez

As J[E]([-]) is the pointwise limit of the simple functions defined by

m

fm(’)/) = Z X2Dn071[E] o UnaSl] . 1[7]n](7)7 m 2> 1,

n=—m

and [n,] € By, the function J[E]([]) : Lx(M) — R is measurable. Moreover,
since |J[E]([y])] = 1 for all v € Lx(M), we have that

[ BERD] i) =1
L (M)

and hence J[E|([]) € L*(Lx(M), px). Finally, by the dominated convergence
theorem, we find from (4.1) that

Mmz/ SEN(]) duxly) = lim S () i ()
Ly (M) MmO J L (M)

m]gnoo Z Xg[jnail[E] © 7771781] : Mx([nn])
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= el (B oS i)
[n]em (M)

This shows (4.2) and ends the proof. O

The next result characterizes the orientability of the vector bundles in
terms of A.

Theorem 4.2. A vector bundle E — M is orientable if, and only if, A(E) = 1.

Proof. Suppose E is orientable. Then, by Corollary 3.7, J[E] = 1. Thus,
JIE)([7]) =1 € Z for all [y] € m1(M). Hence, by (3.3),

xo[Jn0 E] oy, S =1 forall [y] € m (M).
Therefore, (4.2) implies that
AME) = JEN(]) dpx(v) = x([n]) = px (Lx(M)) = 1,
/EX(M) 7)) dp(y [n]e;(mﬂ n) = u

since ux is a probability measure.
Conversely, suppose A(E) = 1. Then, by Theorem 2.4,

> xelmm ' E]on, S - () = 1. (4.3)
[njem1 (M)
Subsequently, we consider the following subsets of 71 (M):
2= {[n] € m (M) : xo[In0 " [E] o, S'] = 1},
N = {n] € m(M) : x2[In0"'[E]on,S'] = -1} .
According to (4.3), we have that
1= > o[ ' [Elon, ST m(l)) = > mxlfn) = D pe([n])-
[n]em (M) nez [ne
On the other hand,
L= > ()= D> px() + Y p([n))-
[nlem (M) ez [nles
Thus, by subtracting the last two identities, we find that
> () =0.
[nle

Since every path-connected component of L4 (M) has a positive Wiener mea-
sure, we have that ux([n]) > 0 for all [n] € (M) and hence, A = (.
Consequently,

x2[Ind HE]on, S =1 forall [n] € 7 (M).

So, by (3.3), J[E] = 1. Therefore, by Corollary 3.7, E is orientable. This ends
the proof. O
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The detailed proof that every path-connected component of Ly (M) has
positive Wiener measure will be given on the last two lines before the state-
ment of Theorem 4.5 in Sect. 4.1 bellow, where some important features of
the Wiener measure used in this section are collected.

According to Theorem 4.2, A is far from appropriate for comparing
orientable vector bundles. However, A is extremely useful to measure the
degree of of non-orientability, as it will become apparent later.

We end this section by establishing that A is a topological invariant of
stable equivalent classes of real vector bundles.

Theorem 4.3. A(E) = A(F) if E = F in KO(M), i.e., the map A : KO(M) —
[—1,1] 4s a topological invariant of stable equivalence classes of real vector
bundles over M.

Proof. Suppose that E = F in KO(M). Then, by Corollary 3.6, 3[E] = J[F],
because J is a topological invariant of real vector bundles. Thus, thanks to
(3.3), we have that

X2 [T HE] o1, S'] = xo2[In0 [F]on,S!]  for all [n] € m (M).

Consequently,

> xe[0 M EJon, S () = Y xo[I0T [Flon, ' px([n])-
[nlem (M) [nlem (M)
Therefore, by Theorem 4.2, A(E) = A(F). This ends the proof. O

We end this section with the next additive formulae for A.
Proposition 4.4. For every E, F € KO(M),
AMEJ®[F) = > xe[In0 ' [E]on,S') xo[In0 ™ [F] 0, S - pux([m))-
[n€m1 (M)
Proof. By definition (see (4.2)),
AEI@[F) = Y e[ '([E]@[F]) on,S"- pux([n]).
[n]emy (M)

Since Jnd ! 1 (KO(M),®) — ([M, ®o(U)],0) establishes a homomorphism
of groups,

X2[In0 " ([E] & [F]) 0, S'] = x2[(Ind ™! [E] 0 Tnd ™! [F]) 0, S"].
Hence,
MEI@[F))= > xo[(no'[E]on) o (In ! [F]on),S"] - m([n]).
[n]€m1 (M)

Therefore, by the definition of x5 at the beginning of Sect. 3.2 and the product
formula of the x (see Theorem 2.3(PF)), we find that

X2 [(Ind~H[Elon)o(Ind " [Flon), St = xo[Ind ! [E]on, S!-x2[Ind " [Flon, S'].
This concludes the proof. O
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4.1. Decomposition of the Wiener measure

In this section, we will reduce the calculation of the global torsion invariant,
A, to the determination of the heat kernel of the universal covering of M,
which is far more easy to compute than the one of M. Note that the loop
space of M, Lx(M), can be expressed as the union of its path-connected
components

Lx(M) = L‘H ], (4.4)

nemny (M,x)

where [n] denotes the homotopy class of 7). Let M be the universal covering
space of M with covering projection © : M — M, and endow M with the
Riemannian structure given by the pull-back metric g := 7*g. Then, 7 :
(M,g) — (M, g) is a regular Riemannian covering. According to, e.g., [27,
Cor. 4, Sect. 6, Ch. 2], the fundamental group of M based on x, m1 (M, x), is
isomorphic to the group of deck, or covering, transformations of the covering
7 M — M, subsequently denoted by Autjs M. Actually, once chosen x €
7 1(x), the isomorphism can be defined through

®:m (M, x) — Autpy M, ] = ©n,

where ¢, : M — M is the unique covering transformation sending X to 7(1),
and 7 is the unique lifting of n with 7(0) = %. In this way, (4.4) can be
expressed as
Lu(M)= | cL),
wEeAut s M
where L£(M) stands for the path component of £y(M) containing the ho-
motopy class @~ 1(¢). According to [2, Th. 4.3] and [28], it is easily seen that
the map
o: W P00 — L), qomoi
peAuty M
is a homeomorphism with the uniform convergence topology, where we use
the notation 7 to emphasize that the curve is defined on M, and the spaces
C;f(i)(M) are defined by

CEF (M) = {v € C([0,1], M) : 4(0) = %, v(1) = p(X)}.

Moreover, © preserves the Wiener measure, in the sense that, for every B €

Bxa
MB) = Y AW (e By nef¥ ),
pEAuty M

where /\;fz(x) is the non-normalised Wiener measure on C ®) (M), and Ay is
the non-normalised Wiener measure on Lx(M) (see Appendix A, or [2], for
the precise definition). As a direct consequence, setting B = L (M), the next
relationship between the heat kernel of M and the corresponding heat kernel
of its universal covering space M holds

nxx)= Y H&e®X), (4.5)

pEAut s M
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where §;(z,) stands for the heat kernel of M. In particular, since
OCE® (M) = L2(M) for all ¢ € Auty M,

the restricted map ©, : C;f(i)(M) — LZ(M) is also a homeomorphism.
Moreover, for every B € Bx N L£(M), we have that

MB) = Y A (67 By nef¥ ) =S¥ ©7H(B)).  (46)
deAuty M
Thus, ©,, also preserves the Wiener measure. As according to (4.6) we have
that
A(LL(M) = AP (€™ (1)) = (%, p(%)) > 0, (4.7)
it becomes apparent that every path-connected component of L£x(M) has a

positive Wiener measure. Furthermore, as a consequence of (4.5) and (4.7),
the following result holds.

Theorem 4.5. The normalized Wiener measure of the path components of

Lx (M) is given by

[ _ f)l (5(’ 90(5()) u ~
px(LL(M)) = S e i1 (5,6 o e Auty M,  (4.8)

where Py (x,y) denotes the heat kernel of M and %X € 7 (x).

As a direct consequence of Theorems 2.4 and 4.5, one can determine the
global torsion invariant of any given vector bundle £ — M in terms of x and
the heat kernel of the universal covering M. Indeed, for every E € KO(M),
(4.2) and (4.8) imply that

2 peAutar NTX2 [0~ [E] 0 @7 1(p), S - pr (%, (X)) '

AE) = > e 511 9(X)

(4.9)
Moreover, as, due to Theorem 3.8, the restricted morphism J : Vecty(X) —
Hom(7(X),Z2) is an isomorphism, it follows that

AEKO(M)) = A(Vect; (X))
= {/ f(M) de(V) : € € Hom(ﬂ-l(X)?ZQ)} : (410)
Lx (M)

Consequently, setting

ZL{JEAu‘U\{ MC(SO) : ﬁl (iv 90(5{))
ZcpeAutM Wbt (%, (%))

the values of the global torsion invariant are given by

AEKO(M)) ={q(¢): ¢ € Hom(Aut; M,Z5)}. (4.11)

q(¢) == for all ¢ € Hom(Aut; M, Z,),

In the next section, we will show that (4.11) is useful for ascertaining the
values of A in some practical examples of interest.
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5. Examples

In this section we will compute the global torsion invariant, A, of the circle
S! and the n-dimensional torus T™ by using all the machinery developed in
Sects. 3 and 4.

5.1. Global torsion invariant of S!

The aim of this subsection is computing A : KO(S!) — [~1,1], where the
circle St is regarded as the quotient R/2,/7Z; the period factor 2/7 is chosen
for computational convenience. It is well known that

KO(s') = {[TS'], [M]},

where T'S! is the tangent bundle of S* and M is the Mobius bundle. Viewed
as groups, it is easily seen that K’(’)(Sl) ~ Zs, where T'S! is the identity (since
it is trivial) and M is the generator.

We begin by computing the index map. Let U be an admissible real
Banach space. By Theorem 3.1, [S*, ®(U)] =~ Zs. Let € : St — ®(U) be
the constant map x — T, where T' € GL(U) is fixed. Since Jnd is a group
homomorphism, the identity must go to the identity and hence, Ind([€]) =
[T'S!]. Pick a singular operator T' € S(U) and an open ball B.(T') C ®¢(U) of
centre T and radius € > 0. Let P,Q € L(U) be projections onto Ker[T'] and
RI[TY, respectively. Then, the following topological direct sum decompositions
hold

U=y - P)U)® Ker[T], U=R[T|® Iy —Q)).
Moreover, setting
R[ly — P] = (Iy — P)(U) =Ker[T]*, R[ly - Q] = (Iy — Q)(U) = R[T]*,

it follows from Fitzpatrick and Pejsachowicz [7, p. 286] that every L € ®¢(U)
can be expressed as a block operator matrix

L1 Ly
L= ,
<L21 L22>

L11 = QL(IU —P), L12 = QLP,
Loy := (Iy — Q)L(Iy — P), Lao:= (Iy — Q)LP.

In particular, since TP = 0 and (Iy — Q)T = 0, the operator T can be

expressed as
(T O
(% 0)

with 711 € GL(Ker[T]*, R[T]). Now, consider the segment v : J. = [-5, 5] —
Oy (U) defined by

where

T 0
v(t) = ( 61 ‘I ) =T B tly,, teJ.,
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where n = dimKer[T] and I,, is the identity matrix of rank n. Note that
~(t) € GL(U) for every t € J.\{0}, and that v(J.) C B:(T). Now, we re-
parameterize this curve in ¢ under an affine transformation to get a curve pa-
rameterized in [0, ], denoted by 71 : [0, 3] — ®o(U), such that v1(0),711(3) €
GL(U). Observe that, since GL(U) is contractible, it is, in particular, path-
connected. Thus, there exists a curve 7o : [£,1] — ®0(U) such that vo(1) =

71(0), 72(1) = 71(3) and 12([3,1]) C GL(U). Consider the curve
o) = () if telo, 3],
T @) if te[d1]

Let v : [0,1] — S! be the parametrization of the circle given by ~(t) =
(cos(2mt), sin(2nt)). Then, by the properties of the parity

0(L07:00.1]) = o (11, [0,3]) o (32, [5:1]) = o (1, [0, 5])
=0 (1 [=5:5]) =0 (Tueih, [-5.5])

£:St— @y (U), (5.1)

Hence, since o(£,S!) = o(£ 0 +,[0,1]), we deduce that o(£,S') = —1.
Consequently,

o(e,SY =1, o(g,Sh = —1. (5.2)
Thus, since the parity map o : [St, ®¢(U)] — Zs is an isomorphism, it be-
comes apparent that [€] # [£] on [S!, ®o(U)]. Therefore, the index map is
necessarily given by

~ ~ @] — [TSY],

I : [SE, @ (U)] — KO(SY) { H - [[M].]
To compute A, we still have to calculate J[E] : m (SY) — Zgy for every E €
KO(SY).

Suppose E = [T'S']. Then, regarding S' as the unit circle in C, |z| = 1,
and setting

71 (SY) = {[vn] : Y : St = S 40 (2) = 2"} ~ Z,
it follows that, for every n € Z,
IEN([yn)) = x2[I00 7 [E] 0 1, §'] = x2[€ 07, §'] = X2 [T, §'] = 1,
by the properties of x discussed in Sect. 2. Thus, J[E] = 1 and therefore
AMS) = [ B duelr) = [ 1) =1
Ly (ST) Ly (ST)
Note that this value can be also found, directly, by applying Theorem 4.2, as

the trivial bundle is orientable.
Subsequently, we suppose that E = [M]. Then, since

Vn:’YlO'T'L'O’Vh lfIn‘EZZO?

=0 Mon .  ifn € Zeo,
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by the product formula of the multiplicity, it becomes apparent that, for
every n € Z,

In|

IE](Iyn)) = x2[In0 7 [E] 0 75, S HX2 [0~ [E] 0 741, 8]

In| In|

=] Delgeran s = ] [xale.8",

i=1
where we convine the value of the empty product to be one. Next, we will
determine y2[£,S!]. By (5.2), we have that
x2[&, S = o(L,SY) = —
Thus, for every n € Z,

In|

D =T1xles= (1"
i=1
Hence, we find that

AE) = [ SBIRD dia) = S )

nez
Now, we proceed to the computation of ux([y,]) through (4.8). Let
us consider the circle S! as the quotient R/2\/7Z. It is well known that
the universal covering of M = S! is M = R with corresponding covering
map 7 : M — M, z — [z], where [z] denotes the class of z € R in the
quotient R/2y/7Z. Tt is easily seen that Auty, M = {¢" : n € Z}, where
e"(x) = x + 24/, x € R, for each n € N. Since the heat kernel of the
universal covering space M = R is
e(2,y) = L e
b\, y) = \/m )
it follows from (4.8) that, for every n € Z,
p(Cg (8 = < PEE®) _ewlom?} _T(0)
Yomez 1 0™(X) Yo egexp{—mm?} 7
To get the last identity, we have used that

_ _ VT
m;me = 05(0,e7 ") = @) (5.3)

where 03(z,q) stands for the Jacobi-Theta function (see [30], if necessary).
Hence,

AE) = [ 3B dint) = S

exp{—mn?}.

Z(—l)" exp(—mn?).

nez

N

Again, a simple computation with the Jacobi—-Theta function yields to

T 1
—1D)"exp(—mn?) = ¢ = ——, 5.4
S empt-mn) = [ (5.9
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which implies that A([M]) = %\/5 In particular, by Theorem 4.2, since

A([M]) # 1, it follows that M is not orientable. So, our analysis establishes
a new (different) proof of this well known fact.

Therefore, we have proved that the global torsion invariant A of the
circle is given by

A:KO(SY) — [-1,1],  A(TS]) =1, A(M]) = —.
As a direct application of the additive formula of Proposition 4.4, we
can obtain A([T'S']) from [M]. Since [M] @& [M] = [T'S!] and
Y2 [T HM] o y,, S = (=1)"  forall neZ,
from Proposition 4.4 it is apparent that

A(TS)) = xa[In0 [M] 04, S - x2[Tn0 ™ [M] 07, S'] - pase([])

nez
= (D" (=1)"x([yn)) = D pxclfrm]) = 1.
nez neZ

5.2. Global torsion invariant of T?

In this subsection, we will compute the global torsion invariant A(KO(T?))
of the torus considering it as the quotient

T? :=S! x St = R?/[2V/7Z x 2/7Z)]. (5.5)
It is well known that the universal covering of M = T2 is M = R? with
corresponding covering map
T M — M, (2,y)~ [(z,9)),
where [(z,y)] denotes the class of (z,y) € R? in the quotient (5.5). An easy
computation shows that
Auty M = {™"™ :ny,ne € Z},

ni,n2

:R? — R? are defined, for every ny,ny € Z, by

" (@,y) = (z+ 2V, Y + 2¢/na).
The group of isomorphisms is given by 7 (T?) ~ Aut uM ~Z®Z. To
compute the values of the global torsion invariant of T2, A(KO(T?)), we will
use (4.11). Since the heat kernel of the universal covering space M = R? is

where the morphisms ¢

pe(z,y)=-—e 2, (2,9) €R? t>0,
T

it follows that, for every x € 771(x),

S~ s NN (G 1
pr(x, "™ (x)) = I P {~m(ni+n3)}.
Hence, using the summability methods involving the theta function (5.3),

yields to

Yo hEe®E) = D hixe""(R)

pEAut ;; M ni,no€L
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2
L (Z) _ L vE
T
in \ 4, 4 T2 (3)
Now, we will compute the group Hom(Aut; M, Z;). Clearly, since Aut; M
is generated by the transformations ¢!? and %!, every homomorphism ( :
Auty; M — Zs is determinated by the values ((¢*?),((¢"!) € Zs. In this
way, we obtain the group isomorphisms
Hom(Aut ;; M, Zo) ~ Hom(Z @® Z, L) ~ Lo & Zs.

As a direct consequence, given any homomorphism ¢ € Hom(Aut, M, Z,),
we can write the action of ¢ on each ¢""2 € Aut,; M as

(o™ ™) = [ O™ - o)™,

This allows us to compute the sum

Y @) )= D KM O] i (% @™ (X))

pEAut; M ny,no €L
1 2 2
== (Z[cw"))}"e”" ) (Z[c(&l)]"em ) ,
nez neL

where ((p'9),((¢%') € Zy depend on the chosen ¢ € Hom(Aut; M,Zs).
Therefore, substituting in (4.11), we find that

A(KO(T?)) = {F\/(?:) (Z a"e_”"2> (Z ﬁ"e‘”"2> NGES Zg}

neZ nez

{1 1 1 1 }

where (5.3) and (5.4) have been used in the last step. This information has
been represented in the left table of Fig. 1. According to Theorem 3.8, J de-
fines an isomorphism between Vect;(T?) and Hom(m(T?),Zs) =
Hom(Aut ;; M, Zs). Thus, Vect;(T?) ~ Hom(Aut,; M,Z>) and therefore,
each ¢ € Hom(Auty; M,Zy) corresponds to a single isomorphism class of
line bundle. Each row of the table corresponds to an isomorphism class of
line bundle. So, the table describes the values of the global torsion invariant
on each line bundle.

Rephrasing these computations, we can obtain the corresponding result
for the n-dimensional torus T" := X[_; S, where each factor is taken as
S! = R/2y/7Z. In this case, the values of the global torsion invariant are
given by

_ . 1\™
AKO(T™)) = {(\4/5> tm € {1,2,...,n}}.
The corresponding results for n = 3 are summarized in the right table of
Fig. 1, where the values of the global torsion invariant, A, on each line bundle
of T? are collected.

Author contributions All the authors have prepared the manuscript from the
very begining to the very end.
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11/v2 —~1 1 —1|1/V2
—1|1/V2 1 —1 —1|1/V2
—1 —1 1]1/V2
—1 -1 —1|1/v8

™) [ ™) [ (™) [ A
1 1 1|1
Ce™) <" TA -1 1 1| 1/v2
1 11 1 —1 11/v2
1 —1[1/v2 1 1 —1(1/v2
1
1

FIGURE 1. The global torsion invariant for T? and T3, re-
spectively
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Appendix A. The Wiener measure on loops spaces

For any given Riemannian manifold, (M, g), let denote by Bjs the Borel o-
algebra of M, and consider, in (M, g), the measure p : By — [0, +00] induced
by the metric g. Locally, this measure can be expressed by

d,u = \/det(gij)ij dxl JARERIVAN dl‘m

where m is the dimension of M and (g;;);; is the matrix of g in a local
chart. According to Bar and Pfiffle [2] and Grigor’yan [13], for any given
closed Riemannian manifold, (M, g), there exists a heat kernel p;(z,y), t > 0,
x,y € M. Namely, the Schwartz kernel of the self-adjoint semigroup e*® on
L?(M, p1), where A stands for the Laplace-Beltrami operator on (M, g).
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For any given (fixed) x € M, the Wiener measure on the loop space
Lyx(M) :={y €C([0,1], M) : v(0) = (1) = x}

is a measure Ax : Bx — [0, +00] on the measurable space (Lx (M), Bx), where
Bx stands for the Borel o-algebra of L (M) with respect to the topology of
the uniform convergence, such that, for every finite subset

T:{Ozt0<t1<-~'<tn<tn+1:1}C[0,l]

and any (Bi)ier\{0,1} C Bu,

n+1
_ (n)
Ax (TFq—l(Bt)teT\{o,l}) :/ / Hpt,-—t,;,l(xul"i—ﬁ
By, Bty j=1
X Hd,u(xi), To = Tpt1 = X. (5.6)
i=1

In this context, we are using the notation w7 to denote the projector

T - Mo MT\{O’l}, WT(%)te[o,u = (’Yt)teT\{o,1}~
Since
Ax(Lx(M)) = p1(x,%x) > 0, (5.7)
the measure A is not a probability measure, unless p;(x,x) = 1. Neverthe-
less, the normalized measure
Hx = p1(X, X)il)\x

provides us with a probability measure. Rephrasing (5.6), it is apparent that,
for every finite subset

T={0=ty<t1 < <ty <tpy1 =1} C[0,1]

and each (By)icr\{0,1y C B, setting 29 = 2,41 = X, one has that

_ (n) _
Mx(TrTl(Bt)teT\{O,l}) Z/B /B p(x,y) !

n+1 n

[T P (@owy) [] dua).
i=1 i=1
The measure pyx : Bx — [0,+00] is ususally refereed to as the normalized
Wiener measure.
This construction can be easily generalized to cover pinned spaces

(M) :={y € C([0,1], M) : 7(0) = x,7(1) = ¥},

where it is possible to construct a generalized Wiener measure, A\Y : BY —
[0, 4+¢], as well as a normalized Wiener measure, p¥ : BY — [0, +o00], where
BY, stands for the Borel o-algebra of CY (M) under the topology of the uniform
convergence (see Bar and Pféffle [2] for any further required details).
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