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a b s t r a c t

In this paper, we ascertain the global λ-structure of the set of positive and negative
solutions bifurcating from u = 0 for the semilinear elliptic BVP{

−d∆u = λ⟨a, ∇u⟩ + u + λu2 − uq in Ω ,
u = 0 on ∂Ω ,

according to the values of d > 0 and the integer number q ≥ 4. Figs. 1.1–1.3
summarize the main findings of this paper according to the values of d and q.
Note that the role played by the parameter λ in this model is very special, because,
besides measuring the strength of the convection, it quantifies the amplitude of the
nonlinear term λu2. We regard to this problem as a mathematical toy to generate
solution loops and isolas in Reaction Diffusion equations.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper studies the positive and the negative solutions of the elliptic semilinear problem{
−d∆u = λ⟨a,∇u⟩ + u+ λu2 − uq in Ω ,
u = 0 on ∂Ω ,

(1.1)

where Ω is a bounded domain of class C2 of the Euclidean space RN , N ≥ 1, with boundary ∂Ω , d > 0 is
the diffusion coefficient, q ≥ 4 is an integer number, a ∈ RN \{0}, a = (a1, . . . , aN ), and λ ∈ R. In (1.1) we
are denoting by ⟨·, ·⟩ the Euclidean product of RN , i.e.,

⟨x, y⟩ =
N∑

i=1
xiyi for every x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN ,
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Fig. 1.1. Two bifurcation diagrams when d < σ−1
1 .

nd we regard λ and d as bifurcation parameters: λ the primary one, and d the secondary. The main goal of
his paper is ascertaining the evolution of the global λ-bifurcation diagrams of positive and negative solutions

of (1.1) as d varies in (0,+∞).
The problem (1.1) is a multidimensional counterpart of the 1-dimensional prototype problem introduced

y the authors in [30, Sect. 7] in the very special case when d = 1, q = 4, a = 1 and Ω = (0, π). In this
paper we are interested in analyzing how vary the admissible multidimensional bifurcation λ-diagrams as the
diffusion coefficient d varies in (0,+∞) according to the value of q. Although the value of q ≥ 4 is irrelevant
when dealing with positive solutions, its oddity is extremely significant when dealing with negative solutions.
The assumption q ≥ 4 is required to keep unchanged the structure of the set of positive and negative solutions
in a neighborhood of (λ, u) = (0, 0). As in the simplest one-dimensional model, our main technical devices
here invoke the local and global bifurcation techniques for Fredholm operators discussed by the authors
in [30].

Throughout this paper, for any given V ∈ C(Ω̄), we denote by σ1[−∆ + V ] the principal eigenvalue of
∆ + V in Ω under Dirichlet boundary conditions. To simplify notations, we will set σ1 ≡ σ1[−∆]. Also,
e denote by φ0 any principal eigenfunction associated to σ1.
Our results depend on the size of the secondary parameter d > 0 and on the concrete value of q ≥ 4. To

escribe our main findings, we need to divide them into three different blocks.
Suppose d ∈ (0, σ−1

1 ). Then, the set of positive solutions bifurcating from u = 0 consists of a single
ompact connected component, C +, linking (−λ1(d), 0) to (λ1(d), 0), where

λ1(d) := 2
|a|
√
d(1 − dσ1) > 0, (1.2)

hile the set of negative solutions bifurcating from u = 0 consists of another compact connected component,
−, linking (−λ1(d), 0) to (λ1(d), 0), if q ≥ 5 is odd, as illustrated in the first plot of Fig. 1.1. In this figure,

nd in all subsequent ones, we are representing the value of the parameter λ in abscissas versus the norm
u∥W 2,p(Ω), for some p > N , if u > 0, or versus −∥u∥W 2,p(Ω) if u < 0. As usual, W 2,p(Ω) stands for the
obolev space of the functions u ∈ Lp(Ω) having distributional derivatives Dαu ∈ Lp(Ω) for |α| ≤ 2, and
e denote by W 2,p

0 (Ω) the kernel of the trace operator T : W 1,p(Ω) → Lp(∂Ω).
When q ≥ 4 is an even integer and N = 1, 2, or q = 4 and N = 3, we can prove that the global bifurcation

iagram of the negative solutions looks like shows the second plot of Fig. 1.1, i.e., it contains two connected
omponents of negative solutions, C −

± , bifurcating from (±λ1(d), 0), respectively, such that

(−∞,−λ1(d)) ⊂ Pλ(C −
− ), (λ1(d),+∞) ⊂ Pλ(C −

+ ),

here Pλ stands for the λ-projection operator Pλ(λ, u) := λ for all (λ, u) ∈ R ×W 2,p(Ω). We must impose
= 4 when N = 3 in order to get

q <
N + 2 (1.3)

N − 2
2
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Fig. 1.2. Two bifurcation diagrams when d = σ−1
1 .

nd benefit of the existence of a priori bounds in W 2,p
0 (Ω) for the negative solutions of (1.1), because these

olutions are given through the positive solutions of a certain superlinear problem at u = +∞.
Further, as d increases up to reach the critical value λ = σ−1

1 , we have that

lim
d↑σ−1

1

λ1(d) = 0. (1.4)

Thus, the previous two bifurcation points from u = 0, (±λ1(d), 0), shrink to the single point (0, 0), which is
the unique bifurcation point from u = 0 to positive, or negative, solutions at d = σ−1

1 . Actually, assuming
that d = σ−1

1 , we can prove that the set of positive solutions of (1.1) bifurcating from (0, 0) consists of a
loop, C +, regardless whether q ≥ 4 is even, or odd, as illustrated by Fig. 1.2.

As in the previous case when d < σ−1
1 , the negative solutions of (1.1) can behave in a rather different

manner, according to the values of q and the spatial dimension N . For instance, as soon as q ≥ 5 is an odd
integer, the set of negative solutions of (1.1) bifurcating from (0, 0) consists of another loop, C −, bifurcating
from (0, 0), as sketched in the first plot of Fig. 1.2. However, when q ≥ 4 is an even integer and N = 1, 2, or
N = 3 and q = 4, then the set of negative solutions emanating from (0, 0) consists of two disjoint connected
components, C −

− and C −
+ , such that

Pλ(C −
− ) = (−∞, 0), Pλ(C −

+ ) = (0,∞), (1.5)

as shown in the right plot of Fig. 1.2. It turns out that (1.1) cannot admit any negative solution for λ = 0.
It is worth-emphasizing that, in this case, the algebraic multiplicity of [15] equals 2 and hence, owing

to [24, Th. 5.6.2], the local topological index of u = 0 does not change as λ crosses the bifurcation value 0.
Consequently, except for the local results of Kielhöfer [23], no result is available in the literature to get the
global structure of the solution set of (1.1) bifurcating from (0, 0). Note that the global component bifurcating
from (0, 0) respects [25, Th. 6.3.1], as the sum of the parities of its bifurcation points from u = 0 equals 0.
Actually, according to these results, those loops can only exist when they bifurcate from a point with an even
generalized algebraic multiplicity. Otherwise, they should satisfy the global alternative of Rabinowitz [34].

Finally, we assume that d > σ−1
1 is sufficiently close to σ−1

1 . Then, when q ≥ 5 is an odd integer number,
the previous bifurcation diagrams evolve to the global bifurcation diagram plotted in the first picture of
Fig. 1.3, where the two previous loops emanating from (0, 0) separate away from each other generating two
compact components, again denoted by C + and C −, filled in by positive and negative solutions, respectively,
that are separated away from u = 0. Thus, they are isolas with respect to u = 0.

Therefore, as d crosses the critical value σ−1
1 and q ≥ 5 is an odd integer, the set of positive and negative

solutions of (1.1) evolve according to the patterns sketched by the first plots of Figs. 1.1–1.3, so exhibiting

3
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Fig. 1.3. Two bifurcation diagrams when d > σ−1
1 .

genuine imperfect bifurcation. In some sense, in this case, d = σ−1
1 can be regarded as a sort of organizing

enter for all admissible bifurcation diagrams of positive and negative solutions of (1.1).
As far as it is concerned with the negative solutions of (1.1) when d > σ−1

1 and q ≥ 4 is an even integer,
e were able to prove the existence of a component, C −, perturbing from the former components C −

± as d
erturbs from σ−1

1 , though it remains an open problem to ascertain whether, or not, Pλ(C −) = R. Moreover,
hanks to Lemmas 5.3 and 6.3, it becomes apparent that, as d increases, the λ-projections of the compact
onnected components C +, for every q ≥ 4, and C −, for q ≥ 5 odd, say

Pλ(C +) ≡ [α+(d), β+(d)], Pλ(C −) = [−β−(d),−α−(d)],

atisfy
lim
d↑∞

α±(d) = ∞ = lim
d↑∞

β±(d).

herefore, these components move away towards ±∞ as d ↑ ∞. However, it remains an open problem to
scertain whether the components C + and C − diminish shrinking to a single point at some critical d∗ > σ−1

1
p to disappear for all further values of d, or if they are well defined for all d > 0. Throughout this paper,
ny component is non-empty.

Under Dirichlet boundary conditions, increasing d promotes a rapid random movement of the individuals
f the species u towards the edges of their territory, Ω , where they are washed out by the hostile surroundings.
hus, the positive solutions should become extinct for sufficiently large d > 0. But the role played in this
odel by the parametric transport term λ⟨a,∇u⟩ is not well understood yet, and, actually, it might push the

ndividuals towards the interior of the inhabiting area as to avoid extinction. In a rather different context,
he extinction for a sufficiently large diffusion coefficient was confirmed, numerically, in [27] (see [24, Ch. 2]).

Although there is a number of available results concerning the formation of isolas and loops of positive
olutions in the context of systems and semilinear elliptic equations (see, e.g., [7,8,16,22,27,28,32], as well
s the references there in), the problem (1.1) is of a rather different nature, as it inherits a sublinear
ature as far it is concerns with the positive solutions, instead of superlinear indefinite as in most of the
eferences. Moreover, the parameter λ appears incorporated to the differential equation in a rather different
ay. Actually, (1.1) was introduced in [30] as an academic example for testing the abstract theory developed

here in. Naturally, the parameter transitions described through this simple example might enjoy a huge
umber of applications in applied sciences and engineering. Anyway, up to the best of our knowledge, the
ransition described by the first plots of Figs. 1.1–1.3 has not been previously described in the literature in
he context of semilinear BVP’s.

The fact that d = σ−1
1 is a critical value for (1.1) should not really surprise us because dσ1 − 1 is the
rincipal eigenvalue of −d∆−I in Ω under Dirichlet boundary conditions. Thus, the stability of zero changes
4
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as d crosses σ−1
1 . Getting the global structure of the solution set when q ≥ 4 as d crosses σ−1

1 is a rather
delicate task that shows an intriguing phenomenology.

This paper is distributed as follows. In Section 2 we collect some preliminaries on the generalized algebraic
multiplicity, χ, introduced by Esquinas and López-Gómez in [14,15,24], and show that any positive (resp.
negative) solution of (1.1) is strongly positive (resp. negative). In Section 3, we study the linearization of
(1.1) at u = 0 to determine the structure of the bifurcation values to positive, or negative, solutions from
u = 0. In Section 4, we analyze the structure of the set of positive and negative solutions of (1.1) in a
neighborhood of their bifurcations points from u = 0. In Section 5 we show the existence of a priori bounds
for the positive solutions of (1.1). As it is a sublinear problem, these bounds are always available, regardless
the value of q ≥ 4. Things are more challenging concerning the existence of a priori bounds for the negative
solutions, because they are given by the positive solutions of a superlinear problem when q ≥ 4 is even. Thus,
in such case, the existence of a priori bounds depends, heavily, on the size of q and the spatial dimension
N ≥ 1. In Section 6 we will adapt the blowing-up techniques of Gidas and Spruck [17,18], to get these a
priori bounds. Finally, in Section 7 we will apply the abstract theory developed in [30] to prove the existence
of the components C ± and C −

± already introduced in the description of Figs. 1.1–1.3.
Throughout this paper, for any given pair of real Banach spaces, U and V , and any linear continuous

operator T : U → V , we will denote by N [T ] the null space, or kernel, of T , and by R[T ] the range, or
mage, of T .

. Preliminaries

In this section we collect some fundamental properties of the generalized algebraic multiplicity, χ,
ntroduced by Esquinas and López-Gómez [15], and later developed in [14,24]. This concept is necessary to
tudy the linearization of (1.1) at u = 0. Then, we will use the Hopf’s maximum principle to show that any
ositive solution of (1.1) is strongly positive, and that, similarly, any negative solution is strongly negative.

.1. The generalized algebraic multiplicity

Throughout this section, K ∈ {R,C}, Ω is a subdomain of K, and, for any given finite dimensional
urve L ∈ C(Ω ,L(KN )), a point λ ∈ Ω is said to be a generalized eigenvalue of L if L(λ) /∈ GL(KN ),

i.e., detL(λ) = 0. Then, the generalized spectrum of L ∈ C(Ω ,L(KN )) is defined by

Σ (L) := {λ ∈ Ω : L(λ) /∈ GL(KN )}.

For analytic curves L ∈ H(Ω ,L(KN )), since detL(λ) is analytic in λ ∈ Ω , either Σ (L) = Ω , or Σ (L) is
iscrete. Thus, Σ (L) consists of isolated generalized eigenvalues if L(µ) ∈ GL(KN ) for some µ ∈ Ω . In such
ase, the algebraic multiplicity of the curve L ∈ H(Ω ,L(KN )) at λ0 is defined through

malg[L, λ0] := ordλ0 detL(λ). (2.1)

Although the multiplicity is defined for all λ0 ∈ R, it equals zero if λ0 ∈ R\Σ (L). This concept extends the
lassical notion of algebraic multiplicity in linear algebra. Indeed, if L(λ) = λIN −T for some linear operator

∈ L(KN ), then L ∈ H(K,L(KN )) and it is easily seen that malg[L, λ0] is well defined for all λ0 ∈ Σ (L)
nd that (2.1) holds. Note that, since GL(KN ) is open, IN −λ−1T ∈ GL(KN ) for sufficiently large λ. Thus,
IN − T ∈ GL(KN ) and Σ (L) is discrete.

This concept admits a natural (non-trivial) extension to an infinite-dimensional setting. To formalize it,
e need to introduce some of notation. In this paper, for any given pair of K-Banach spaces, say U and V , we
enote by Φ (U, V ) the set of linear Fredholm operators of index zero between U and V . Then, a Fredholm
0

5
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(continuous) path, or curve, is any map L ∈ C(Ω ,Φ0(U, V )). Naturally, for any given L ∈ C(Ω ,Φ0(U, V )), it
s said that λ ∈ Ω is a generalized eigenvalue of L if L(λ) /∈ GL(U, V ), and the generalized spectrum of L,
Σ (L), is defined through

Σ (L) := {λ ∈ Ω : L(λ) /∈ GL(U, V )}.

he following concept, going back to [24], plays a pivotal role in the sequel.

efinition 2.1. Let L ∈ C(Ω ,Φ0(U, V )) and κ ∈ N. A generalized eigenvalue λ0 ∈ Σ (L) is said to be
κ-algebraic if there exists ε > 0 such that

(a) L(λ) ∈ GL(U, V ) if 0 < |λ− λ0| < ε;
(b) There exists C > 0 such that

∥L−1(λ)∥ < C

|λ− λ0|κ
if 0 < |λ− λ0| < ε; (2.2)

(c) κ is the minimal integer for which (2.2) holds.

Throughout this paper, the set of κ-algebraic eigenvalues of L is denoted by Algκ(L), and the set of
algebraic eigenvalues by

Alg(L) :=
⋃

κ∈N
Algκ(L).

s in the special case when U = V = KN , according to Theorems 4.4.1 and 4.4.4 of [24], when L(λ) is
nalytic in Ω , i.e., L ∈ H(Ω ,Φ0(U, V )), then, either Σ (L) = Ω , or Σ (L) is discrete and Σ (L) ⊂ Alg(L).
ubsequently, we denote by Aλ0(Ω ,Φ0(U, V )) the set of curves L ∈ Cr(Ω ,Φ0(U, V )) such that λ0 ∈ Algκ(L)
ith 1 ≤ κ ≤ r for some r ∈ N. Next, we will construct an infinite dimensional analogue of the classical
lgebraic multiplicity malg[L, λ0] for the class Aλ0(Ω ,Φ0(U, V )). It can be carried out through the theory
f Esquinas and López-Gómez [15], where the following pivotal concept, generalizing the transversality
ondition of Crandall and Rabinowitz [9], was introduced. Throughout this paper, we set Lj := 1

j!L
(j)(λ0),

1 ≤ j ≤ r, should these derivatives exist.

Definition 2.2. Let L ∈ Cr(Ω ,Φ0(U, V )) and 1 ≤ κ ≤ r. Then, a given λ0 ∈ Σ (L) is said to be a
-transversal eigenvalue of L if

κ⨁
j=1

Lj

(
j−1⋂
i=0

N(Li)
)

⊕R(L0) = V with Lκ

(
κ−1⋂
i=0

N(Li)
)

̸= {0}.

For these eigenvalues, the following generalized concept of algebraic multiplicity was introduced by
squinas and López-Gómez [15],

χ[L, λ0] :=
κ∑

j=1
j · dimLj

(
j−1⋂
i=0

N [Li]
)
. (2.3)

n particular, when N [L0] = span[φ0] for some φ0 ∈ U such that L1φ0 /∈ R[L0], then

L1(N [L0]) ⊕R[L0] = V (2.4)

nd hence, λ0 is a 1-transversal eigenvalue of L(λ) with χ[L, λ0] = 1. The transversality condition (2.4) goes
ack to Crandall and Rabinowitz [9]. More generally, under condition (2.4),

χ[L, λ ] = dimN [L ].
0 0

6
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According to Theorems 4.3.2 and 5.3.3 of [24], for every L ∈ Cr(Ω ,Φ0(U, V )), κ ∈ {1, 2, . . . , r} and
0 ∈ Algκ(L), there exists a polynomial Φ : Ω → L(U) with Φ(λ0) = IU such that λ0 is a κ-transversal
igenvalue of the path

LΦ := L ◦ Φ ∈ Cr(Ω ,Φ0(U, V )), (2.5)

nd χ[LΦ , λ0] is independent of the curve of trasversalizing local isomorphisms Φ chosen to transversalize L

at λ0 through (2.5). Therefore, the following concept of multiplicity is consistent

χ[L, λ0] := χ[LΦ , λ0], (2.6)

and it can be easily extended by setting χ[L, λ0] = 0 if λ0 /∈ Σ (L) and χ[L, λ0] = +∞ if λ0 ∈ Σ (L) \ Alg(L)
and r = +∞. Thus, χ[L, λ] is well defined for all λ ∈ Ω of any smooth path L ∈ C∞(Ω ,Φ0(U, V )); in
particular, for any analytical curve L ∈ H(Ω ,Φ0(U, V )). The next uniqueness result, going back to Mora-
Corral [33], axiomatizes these concepts of algebraic multiplicity. Some refinements of them were delivered
in [29, Ch. 6]. Subsequently, given L,M ∈ C(Ω ,Φ0(U)), we denote by LM ∈ C(Ω ,Φ0(U)), the curve defined
hrough LM(λ) := L(λ) ◦ M(λ) for each λ ∈ Ω . Given λ0 ∈ K, we denote by S∞

λ0
(U) the set of all germs of

amilies L(λ) of class C∞ defined in a neighborhood of λ0 with values in Φ0(U, V ).

heorem 2.3. Let U be a K-Banach space. For every λ0 ∈ K, the algebraic multiplicity χ is the unique
ap

χ[·, λ0] : S∞
λ0(U) −→ [0,∞]

uch that:

PF) For every pair L,M ∈ S∞
λ0

(U),

χ[LM, λ0] = χ[L, λ0] + χ[M, λ0].

NP) There exists a rank one projection Π ∈ L(U) such that

χ[(λ− λ0)Π + IU − Π , λ0] = 1.

The axiom (PF) is the product formula and (NP) is a normalization property for establishing the
uniqueness of χ. From these two axioms one can derive the remaining properties of χ; among them, that it
equals the classical algebraic multiplicity when

L(λ) = λIU −K

for some compact operator K. Indeed, for every L ∈ C∞(Ωλ0 ,Φ0(U)), the following properties are satisfied
(see [29] for any further details):

• χ[L, λ0] ∈ N ⊎ {+∞};
• χ[L, λ0] = 0 if and only if L(λ0) ∈ GL(U);
• χ[L, λ0] < ∞ if and only if λ0 ∈ Alg(L).
• If U = KN , then, in any basis,

χ[L, λ0] = ordλ0 detL(λ).

• For every K ∈ K(U) and λ0 ∈ σ(K),

χ[λIU −K,λ0] = dim Ker[(λ0IU −K)ν(λ0)],

where ν(λ0) is the algebraic ascent of λ0, i.e., the minimal integer, ν ≥ 1, such that

ν ν+1
Ker[(λ0IU −K) ] = Ker[(λ0IU −K) ].
7
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2.2. Strong positivity of the positive solutions of (1.1)

The change of variable

u(x) = ζ(λ, d, x)v(x), ζ(λ, d, x) := e− λ
2d

⟨a,x⟩, x ∈ Ω̄ . (2.7)

transforms the problem (1.1) into the new problem{
−∆v = 1

d

(
1 − λ2|a|2

4d

)
v + fd(λ, x, v)v in Ω ,

v = 0 on ∂Ω ,
(2.8)

here
fd(λ, x, v) := d−1(λ− ζq−2(λ, d, x)vq−2)ζ(λ, d, x)v. (2.9)

hus, if u ∈ W 2,p
0 (Ω), with p > N , is a positive (resp. negative) solution of (1.1), then v provides us with a

ositive (resp. negative) solution of (2.8) in W 2,p
0 (Ω). Consequently, the next result holds. Note that, thanks

o the Rellich–Kondrachov theorem, W 2,p(Ω) ↪→ C1,1− N
p (Ω̄) (see, e.g., [19], or [25, Th. 4.5]).

Theorem 2.4. Any positive solution u ∈ W 2,p
0 (Ω) of (1.1) satisfies u ≫ 0 in the sense that u(x) > 0 for all

∈ Ω and ∂u
∂n (x) < 0 for all x ∈ ∂Ω , where n stands for the outward unit normal to Ω along ∂Ω . Similarly,

ny negative solution, w, satisfies w ≪ 0 in the sense that −w ≫ 0.

roof. Thanks to a result of Bony [4], the Hopf maximum principle, and the boundary lemma of
opf–Oleinik work out in the space W 2,p(Ω) (see, e.g., [25, Ch.1]).
Suppose u is a positive solution of (1.1). Then, the function v defined through (2.7) is a positive solution

f (2.8) and hence, for some continuous function b(x) whose expression is irrelevant here, we have that

(−∆ + b(x))v = 0 in Ω . (2.10)

onsider a sufficiently large constant, ω > 0, such that c := b+ ω ≥ 0 in Ω . Then,

(−∆ + c)v = ωv ≥ 0

nd hence, since minΩ̄ v = 0, it follows from the Hopf maximum principle that v cannot reach its minimum
n Ω unless it is constant. Thus, as it cannot be constant, v(x) > 0 for all x ∈ Ω . Moreover, since Ω is of class
2, by the Hopf–Oleinik boundary lemma, ∂v

∂n (x) < 0 for all x ∈ ∂Ω . Naturally, the change of variable (2.7)
reserves these properties. The fact that any negative solution is strongly negative is a direct consequence
f the positivity result that we have just proven. □

An alternative proof can be delivered through [25, Th. 7.10], since (2.10) entails v ⪈ 0 to be a principal
igenfunction of −∆ + c associated with the eigenvalue 0. Therefore, 0 must be the principal eigenvalue of
∆ + c and v ≫ 0 by the Krein–Rutman theorem.

. The linearization of the problem (1.1) at u = 0

Throughout this paper, we set R+ = (0,∞). In this section we study the linearization of (1.1) at
λ, d, u) = (λ, d, 0). Note that, for every p > N , the solutions of (1.1) can be regarded as the zeros of
he nonlinear operator

F : R × R ×W 2,p(Ω) −→ Lp(Ω)
+ 0

8
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defined by

F(λ, d, u) := d∆u+ λ⟨a,∇u⟩ + u+ λu2 − uq, (λ, d, u) ∈ R × R+ ×W 2,p
0 (Ω), (3.1)

whose linearization at (λ, d, u) = (λ, d, 0) is given by the linear operator

L(λ, d) := DuF(λ, d, 0) : R × R+ −→ L(W 2,p
0 (Ω), Lp(Ω))

defined by
L(λ, d)u := d∆u+ λ⟨a,∇u⟩ + u, (λ, d, u) ∈ R × R+ ×W 2,p

0 (Ω). (3.2)

As for some computations the presence of the gradient term ∇u in (3.1) is somewhat involved, we will
perform the change of variables (2.7). To accomplish this task, we introduce the operator surfaces

P : R × R+ → GL(W 2,p
0 (Ω)), P(λ, d)u := e− λ

2d
⟨a,x⟩u,

R : R × R+ → GL(Lp(Ω)), R(λ, d)u := e
λ
2d

⟨a,x⟩u,

and the associated linear operator

C ∈ L(R × R+ ×W 2,p
0 (Ω)), C(λ, d, u) := (λ, d,P(λ, d)u).

learly, C is a topological isomorphisms with inverse

C−1 ∈ L(R × R+ ×W 2,p
0 (Ω)), C−1(λ, d, u) = (λ, d,R(λ, d)u),

nd the operator N : R × R+ ×W 2,p
0 (Ω) → Lp(Ω) defined by

N(λ, d, u) := [R(λ, d) ◦ F ◦ C](λ, d, u)

is given through

N(λ, d, u) = d∆u+
(

1 − λ2|a|2

4d

)
u+ (λ− ζq−2(λ, d, x)uq−2)ζ(λ, d, x)u2. (3.3)

y construction,
F−1(0) = C(N−1(0)).

herefore, the zero sets F−1(0) and N−1(0) are related via a linear isomorphism. Moreover, since C is a
ositive operator, it preserves the positive (resp. negative) cone of W 2,p

0 (Ω). As a byproduct, the study
f the positive (resp. negative) solutions of (1.1) is equivalent to the study of the positive (resp. negative)
olutions of the problem{

−d∆u =
(

1 − λ2|a|2
4d

)
u+ (λ− ζq−2(λ, d, x)uq−2)ζ(λ, d, x)u2 in Ω ,

u = 0 on ∂Ω .
(3.4)

We will chose to use either (1.1), or (3.4), by convenience.
The next result provides us with the structure of L(λ, d).

emma 3.1. L(λ, d) ∈ Φ (W 2,p(Ω), Lp(Ω)) for each (λ, d) ∈ R × R .
0 0 +

9
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Fig. 3.4. The spectrum Σ+(L(λ, d)).

Proof. Since −L(λ, d) is uniformly elliptic, there exists a constant ω(λ, d) > 0 such that for every
γ ≥ ω(λ, d) and f ∈ Lp(Ω), the equation

(−L(λ, d) + γ)v = −d∆v − λ⟨a,∇v⟩ + (γ − 1)v = f

has a unique solution v ∈ W 2,p
0 (Ω). In other words,

L(λ, d) − γJ ∈ GL(W 2,p
0 (Ω), Lp(Ω)),

where J is the canonical embedding J : W 2,p
0 (Ω) ↪→ Lp(Ω). Since J is compact and

L(λ, d) = (L(λ, d) − γJ) + γJ,

L(λ, d) can be expressed as the sum of an isomorphism and a compact operator. Therefore, by [20, Chap.
XV, Th. 4.1], the operator L(λ, d) is Fredholm of index zero. □

Throughout this paper, given a pair of real Banach spaces (U, V ) and an operator surface M : R×R+ →
Φ0(U, V ), M ≡ M(λ, d), we will denote by Md the operator curve given by

Md : R → Φ0(U, V ), Md(λ) := M(λ, d).

y Σ+(M) we will denote the subset of Σ (M) consisting of the generalized eigenvalues associated to a
ositive eigenfunction. The next result provides us with the structure of Σ+(L), where L(λ, d) is the surface
efined in (3.2), and shows that λ0 ∈ Σ+(L) if (λ0, 0) is a bifurcation point to positive solutions of (1.1).

heorem 3.2. Σ+(L) is given by

Σ+(L) = {(λ, d) ∈ R × R+ : 4d(1 − σ1d) = λ2|a|2} (3.5)

see Fig. 3.4). Moreover, the following assertions are satisfied:

(i) For every d < σ−1
1 , Σ+(Ld) = {−λ1(d), λ1(d)}, where

λ1(d) = 2
|a|
√
d(1 − dσ1).

Moreover, χ[L ,±λ (d)] = 1.
d 1

10
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(ii) Suppose d = σ−1
1 . Then, Σ+(Ld) = {0} and χ[Ld, 0] = 2.

(iii) Σ (Ld) = ∅ if d > σ−1
1 .

(iv) λ0 ∈ Σ+(L) if (λ0, 0) is a bifurcation point to positive solutions of (1.1).

roof. Consider the operator surfaces P and R defined above. Since P(λ, d) and R(λ, d) are topological
somorphisms for each (λ, d) ∈ R × R+, they are in particular Fredholm of index zero, i.e.,

P(λ, d) ∈ GL(W 2,p
0 (Ω)) ⊂ Φ0(W 2,p

0 (Ω)), R(λ, d) ∈ GL(Lp(Ω)) ⊂ Φ0(Lp(Ω)).

s the composition of an isomorphism and a Fredholm operator of index zero is again a Fredholm operator
f index zero, it follows that

R(λ, d) ◦ L(λ, d) ◦ P(λ, d) ∈ Φ0(W 2,p
0 (Ω), Lp(Ω))

or all (λ, d) ∈ R × R+. It is easily seen that

[R(λ, d) ◦ L(λ, d) ◦ P(λ, d)]u = d
[
∆u+ 1

d

(
1 − λ2|a|2

4d

)
u
]
. (3.6)

hus, since P(λ, d) ∈ GL(W 2,p
0 (Ω)) and R(λ, d) ∈ GL(Lp(Ω)), it is apparent that

Σ+(L) = Σ+(R ◦ L ◦ P).

ence, it suffices to find out Σ+(R ◦ L ◦ P). From (3.6), it is easily seen that (λ, d) ∈ Σ+(R ◦ L ◦ P) if and
nly if

1
d

(
1 − λ2|a|2

4d

)
= σ1, (3.7)

because σ1 is the unique principal eigenvalue of −∆. Finally, note that (3.5) is a direct consequence of (3.7).
It remains to show the assertions (i)–(iv). Suppose d < σ−1

1 . Then, by (3.5), it is obvious that Σ+(Ld) =
{−λ1(d), λ1(d)}. To compute χ[Ld,±λ1(d)], we use the product formula. According to it,

χ[Rd ◦ Ld ◦ Pd,±λ1(d)] = χ[Rd,±λ1(d)] + χ[Ld,±λ1(d)] + χ[Pd,±λ1(d)].

n the other hand, since P(λ, d) ∈ GL(W 2,p
0 (Ω)) and R(λ, d) ∈ GL(Lp(Ω)) for all (λ, d) ∈ R × R+,

ecessarily
χ[Pd,±λ1(d)] = 0, χ[Rd,±λ1(d)] = 0.

ence,
χ[Ld,±λ1(d)] = χ[Rd ◦ Ld ◦ Pd,±λ1(d)].

o find out χ[Rd ◦Ld ◦Pd,±λ1(d)], we denote S := R◦L◦P. Let φ0 ∈ W 2,p
0 (Ω) be a principal eigenfunction

ssociated with σ1. Then, by a direct computation, we find that

N [Sd(±λ1(d))] = span [φ0], R[Sd(±λ1(d))] = {f ∈ Lp(Ω) :
∫
Ω

fφ0 dx = 0}.

oreover, differentiating with respect to λ, yields

dSd

dλ
(±λ1(d))u = ∓λ1(d)|a|2

2d u, u ∈ W 2,p
0 (Ω).

hus, the transversality condition

dSd (±λ1(d)) (N [Sd(±λ1(d))]) ⊕R[Sd(±λ1(d))] = Lp(Ω)

dλ

11
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holds. This entails ±λ1(d) to be 1-transversal eigenvalues. Therefore,

χ[Ld,±λ1(d)] = χ[Sd,±λ1(d)] = dimN [Sd(±λ1(d))] = 1,

hich ends the proof of Part (i).
Now, suppose d = σ−1

1 . Then, by (3.7), Σ (Ld) = {0}. Again,

N [Sd(0)] = span[φ0], R[Sd(0)] = {f ∈ Lp(Ω) :
∫
Ω

fφ0 dx = 0}.

owever, differentiating with respect to λ, on this occasion, we find that

dSd

dλ
(0)u = 0, 1

2!
d2Sd

dλ2 (0)u = −|a|2

4d u, u ∈ W 2,p
0 (Ω).

hus, setting
Sd,0 ≡ Sd(0), Sd,1 ≡ dSd

dλ
(0), Sd,2 ≡ 1

2!
d2Sd

dλ2 (0),

he following transversality condition holds

Sd,2(N [Sd,0] ∩N [Sd,1]) ⊕ Sd,1(N [Sd,0]) ⊕R[Sd,0] = Lp(Ω),

ecause
N [Sd,0] ∩N [Sd,1] = span[φ0].

onsequently, λ = 0 is a 2-transversal eigenvalue of Sd and, due to (2.3),

χ[Sd, 0] = 2 dimSd,2(N [Sd,0] ∩N [Sd,1]) + dimSd,1(N [Sd,0]) = 2.

ence, χ[Ld, 0] = χ[Sd, 0] = 2 as stated. This proves Part (ii). Part (iii) follows directly from (3.7).
To show Part (iv), let {(λn, un)}n∈N be a sequence of positive solutions of (3.4) such that

lim
n→∞

λn = λ0 and lim
n→∞

un = 0 in C(Ω̄).

Then, setting ψn := un
∥un∥∞

, n ≥ 1, we have that, for every n ≥ 1,

− dψn = (−∆)−1
[(

1 − λ2
n|a|2
4d

)
ψn + (λn − ζq−2(λn, d, x)uq−2

n )ζ(λn, d, x)unψn

]
(3.8)

in Ω . By a standard compactness argument, some subsequence of ψn must approximate some ψ0 > 0, which
is an eigenfunction of Ld associated to λ0. Therefore, λ0 ∈ Σ+(Ld). □

By a rather simple manipulation, it is easily seen that Σ+(L) is the ellipse

λ2

α2 + (d−γ)2

β2 = 1, α := 1
|a|√σ1

, β := 1
2σ1

, γ := 1
2σ1

,

which has been plotted in Fig. 3.4.

4. Local structure of the solution set when d ≤ σ−1
1

In this section, we study the local structure of the solution set F−1(0) in a neighborhood

(λ, d, u) = (±λ1(d), d, 0) ∈ R × R+ ×W 2,p
0 (Ω)

hen d ≤ σ−1
1 , where we are setting λ1(σ−1

1 ) ≡ 0. This section is divided into two subsections to treat,
eparately, the cases when d < σ−1 and d = σ−1.
1 1

12
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4.1. The regular case when d < σ−1
1

Since ±λ1(d) are simple eigenvalues of the curve Ld(λ) with χ[Ld,±λ1(d)] = 1, the theorem of Crandall
nd Rabinowitz [9,10] provides us with the local estructure of F−1(0). Indeed, setting

Y := {f ∈ Lp(Ω) :
∫
Ω

fφ0 dx = 0},

here φ0 is a principal eigenfunction associated to σ1, and

Fd(λ, u) := d∆u+ λ⟨a,∇u⟩ + u+ λu2 − uq, (λ, u) ∈ R ×W 2,p
0 (Ω), (4.1)

he next result is a direct consequence of [9,10].

heorem 4.1. There exist ε > 0 and two analytic maps

λ± : (−ε, ε) → R, U± : (−ε, ε) → Y,

uch that λ±(0) = ±λ1(d), U±(0) = 0, and, for every s ∈ (−ε, ε),

Fd(λ±(s), u±(s)) = 0, u±(s) := s(φ0 + U±(s)).

Moreover, there exists ρ > 0 such that, whenever Fd(λ, u) = 0 with (λ, u) ∈ Bρ(±λ1(d), 0), either u = 0, or
λ, u) = (λ±(s), u±(s)) for some s ∈ (−ε, ε).

Consequently, for every d < σ−1
1 , the set F−1(0) \ {(λ, 0)}, λ ∼ ±λ1(d), consists of two analytic curves

(λ(s), u(s)) = (±λ1(d) +O(1), sφ0 +O(s)) as s → 0

ifurcating from (±λ1(d), d, 0) ∈ R × W 2,p
0 (Ω), respectively. These solutions are positive if s > 0, and

egative if s < 0.
Actually, by applying the implicit function theorem to the operator

G (λ, d, y, s) :=
{
s−1F(λ, d, s(φ0 + y)) if s ̸= 0,
L(λ, d)(φ0 + y) if s = 0,

at (λ, d, y, s) = (±λ1(d), d, 0, 0), it becomes apparent that F−1(0) consists of two analytic bi-dimensional
manifolds bifurcating from u = 0 along the curves λ = ±λ1(d), d > 0, d ∼ 0.

4.2. The degenerate case when d = σ−1
1

This case is far more sophisticated, since χ[Ld, 0] = 2 and hence the theorem of Crandall and
Rabinowitz [9,10] cannot be applied. Instead, to ascertain the local structure of F−1(0) in this case, we
will use some abstract results on analytic bifurcation theory, going back to [30] and the references there in,
valid for two arbitrary real Banach spaces, U and V , with U ⊂ V , and any analytic operator F ∈ H(R×U, V )
satisfying the following assumptions:

F1) F(λ, 0) = 0 for all λ ∈ R.
F2) DuF(λ, 0) ∈ Φ0(U, V ) for all λ ∈ R.
F3) λ0 ∈ Σ (L) is an isolated eigenvalue such that

N [DuF(λ0, 0)] = span[φ0],

for some φ ∈ U\{0}.
0

13



J. López-Gómez and J.C. Sampedro Nonlinear Analysis 232 (2023) 113268

i

w

S
t
w

a
r
a

s
A

a
I
p

I

p
G

f
t

A

H

As usual, we denote L(λ) := DuF(λ, 0) for all λ ∈ R. As we are assuming F to be analytic, we can expand
t in the form

F(λ, u) = L(λ)u+
∑

j≥0, k≥2
λjFj,k(u),

here Fj,k : U → V are homogeneous polynomials of degree k ≥ 2 with symmetric polar forms

F
(k)
j : Uk → V, Fj,k(u) = F

(k)
j (u, . . . , u).

ee [21, Chap. 26] for the definition of this concepts. Throughout this section, ⟨·, ·⟩ : V × V ′ → R denotes
he duality pairing between V and its topological dual space V ′. By (F3), we can normalize ⟨φ0, φ

∗
0⟩ = 1,

here φ∗
0 > 0 spans the null space of the adjoint operator L∗

0 : V ′ → U ′. Subsequently, we consider the
projection operators

P : V → N [L0], P (v) := ⟨v, φ∗
0⟩φ0, Q : V → R[L0],

nd identify R ×N [L0] with R2 via the isomorphism T (λ, xφ0) = (λ, x). By a standard Lyapunov–Schmidt
eduction (see [31] and [24, Ch. 3], if necessary), there exist an open neighborhood U of (λ0, 0) in R2, an
nalytic map Y : T−1(U) → V , and a finite dimensional operator

G : U ⊂ R2 → R, G(λ, x) := (IV −Q)F(λ, xφ0 + Y(λ, xφ0)),

uch that (λ, x) ∈ U satisfies G(λ, x) = 0 if and only if (λ, u) = (λ, xφ0 + Y(λ, xφ0)) satisfies F(λ, u) = 0.
ctually, there exists an open neighborhood V of (λ0, 0) in R × U such that

ψ : F−1(0) ∩ V −→ G−1(0) ∩ U , (λ, u) ↦→ (λ, ⟨u, φ∗
0⟩),

ψ−1 : G−1(0) ∩ U −→ F−1(0) ∩ V, (λ, x) ↦→ (λ, xφ0 + Y(λ, xφ0)),

re analytic and mutual inverses. Therefore, the analytical structures of F−1(0)∩V and G−1(0)∩U coincide.
n particular, (λ, x) is a regular point of G, i.e., DxG(λ, x) ̸= 0, if and only if, (λ, xφ0+Y(λ, xφ0)) is a regular
oint of F, i.e.,

DuF(λ, xφ0 + Y(λ, xφ0)) ∈ GL(U, V ).

n other words, both the regular and the singular points are preserved.
Without loss of generality, we can assume that (λ0, 0) = (0, 0). In this way, the infinite dimensional

roblem can be reduced, locally, to the finite dimensional problem G(λ, x) = 0, with (λ, x) ∈ U ⊂ R2. Since
is analytic and G(λ, 0) = 0, it admits the local expansion

G(λ, x) =
∑

i≥0, j≥1
aijλ

ixj , (λ, x) ∼ (0, 0),

or certain coefficients aij ∈ R, (i, j) ∈ Z2
+, j ̸= 0. Thus, there exists an analytic function g : U → R such

hat
G(λ, x) = x

∑
i≥0, j≥1

aijλ
ixj−1 = xg(λ, x), (λ, x) ∼ (0, 0).

ccording to [30, Sect. 6], it follows from (F3) that

1 ≤ χ ≡ χ[L, 0] = ordλ=0 DxG(λ, 0) = ordλ=0 g(λ, 0). (4.2)

ence, g : U → R can be expanded in the form

g(λ, x) =
s∑
Cνλ

jνxℓν +
∑

Cj,kλ
jxk, (4.3)
ν=0 j,k

14
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where (ℓ0, j0) = (0, χ), χ > j1 > · · · > js, 0 < ℓ1 < · · · < ℓs, and the summation of the second sum is
taken only on the points (k, j) lying above the polygonal line joining (0, χ), (ℓ1, j1), · · · , (ℓs, js), or on the
line j = js. The polygonal line joining the points (0, χ), (ℓ1, j1), · · · , (ℓs, js) is usually called the Newton’s

olygon of g. Subsequently, we will use the next result of Kielhöfer [23]. It is rewritten with our own notations
ere. Actually, the last assertion is based on [29, Th. 4.3.3].

heorem 4.2. Let F : R × U → V be an analytic operator satisfying hypothesis (F1)–(F3) with
[L, 0] = χ ≥ 1 and having the expansion

F(λ, u) = L(λ)u+
s∑

ν=1
λjνFjν ,ℓν+1(u) +

∑
j,k

λjFj,k+1(u), λ ∈ R, u ∈ U, (4.4)

where χ > j1 > · · · > js, 0 < ℓ1 < · · · < ℓs, and the summation of the second sum is taken on points (k, j)
lying above the polygonal line joining (0, χ), (ℓ1, j1), · · · , (ℓs, js), or on the line j = js. If, in addition,

Hν := ⟨F (ℓν +1)
jν

(φ0, . . . , φ0), φ∗
0⟩ ≠ 0, ν = 1, . . . , s,

hen the Newton’s polygon associated to the reduced map g : U → R defined by (4.3) is given by the polygonal
ine joining the points (0, χ), (ℓ1, j1), · · · , (ℓs, js). Furthermore, the corresponding coefficients are precisely
he numbers

Cν = Hν , ν = 1, . . . , s,

nd C0 = ρ(χ)(0), where ρ(λ) is the perturbed eigenvalue from 0 of the operator L(λ).

Next, we apply Theorem 4.2 with d = σ−1
1 to the operator Fd : R ×W 2,p

0 (Ω) → Lp(Ω) defined by

Fd(λ, u) := d∆u+ λ⟨a,∇u⟩ + u+ λu2 − uq, (λ, u) ∈ R ×W 2,p
0 (Ω).

ince q is integer, Fd is analytic. Moreover, by our previous analysis, it satisfies hypothesis (F1)-(F3) with
0 = 0 and φ0 the principal eigenfunction associated to σ1. As in this setting V = Lp(Ω), we have that
′ = Lp′(Ω), where p′ is the Hölder conjugate of p, i.e.,

1
p

+ 1
p′ = 1.

Thus, the duality pairing ⟨·, ·⟩V,V ′ is given through

⟨f, g⟩ ≡ ⟨f, g⟩V,V ′ :=
∫
Ω

fg dx, (f, g) ∈ Lp(Ω) × Lp′
(Ω).

In this way, we can choose φ∗
0 = φ0. In order to apply Theorem 4.2, it is appropriate to express the operator

Fd in the form
Fd(λ, u) = Ld(λ)u+ λF1,2(u) + F0,q(u), (λ, u) ∈ R ×W 2,p

0 (Ω),

here
Ld(λ)u := d∆u+ λ⟨a,∇u⟩ + u, (λ, u) ∈ R ×W 2,p

0 (Ω), (4.5)

nd
F1,2(u) := u2, F0,q(u) := −uq, u ∈ W 2,p

0 (Ω),

hich is consistent with the notations used in the expansion (4.4).
According to Theorem 3.2 (ii), χ[Ld, 0] = 2. Thus, Theorem 4.2 implies that

g(λ, x) = C0λ
2 + ⟨φ2

0, φ0⟩xλ− ⟨φq
0, φ0⟩xq−1 +

∑
Cj,kλ

jxk, (λ, x) ∈ U , (4.6)

j,k
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Fig. 4.5. Newton diagram of g(λ, x).

where the summation of the second sum is only over points (k, j) lying above the polygonal with vertices
(0, 2), (1, 1) and (q − 1, 0). The Newton’s polygon of g is the polygonal line joining the points (0, 2), (1, 1)
and (q − 1, 0). It is represented in Fig. 4.5.

The next result follows readily from the last assertion of Theorem 4.2.

Lemma 4.3. The first coefficient of g(λ, x) is given by C0 = − |a|2
2d .

Proof. Indeed, since χ[Ld, 0] = 2, by Theorem 4.2, the coefficient C0 is given by ρ(2)(0) where ρ(λ) is the
perturbation of the zero eigenvalue of Ld(λ). By definition, ρ(λ) satisfies the eigenvalue problem{

d∆u+ λ⟨a,∇u⟩ + u = ρ(λ)u in Ω ,
u = 0 on ∂Ω .

(4.7)

As the change of variables u(x) = e− λ
2d

⟨a,x⟩v(x), x ∈ Ω , transforms (4.7) into{
∆v +

[
1
d

(
1 − λ2|a|2

4d

)
− 1

dρ(λ)
]
v = 0 in Ω ,

v = 0 on ∂Ω ,

nd we are assuming that 1/d = σ1, it becomes apparent that ρ(λ) = − λ2|a|2
4d . Therefore, C0 = ρ(2)(0) =

− |a|2
2d . This ends the proof. □

Substituting the value C0 = − |a|2
2d in (4.6), and owing the Newton–Puiseux algorithm, we obtain the

ollowing asymptotic expansion of solutions of g(λ, x) = 0 in a neighborhood of (0, 0),

x(λ) = |a|2

2d⟨φ2
0,φ0⟩λ+O(λ) as λ → 0,

x(λ) = ±
(

⟨φ2
0,φ0⟩

⟨φ
q
0,φ0⟩

) 1
q−2

λ
1

q−2 +O(λ
1

q−2 ) as λ ↓ 0,
(4.8)

if q is even, and

x(λ) = |a|2

2d⟨φ2
0,φ0⟩λ+O(λ) as λ → 0,

x(λ) =
(

⟨φ2
0,φ0⟩

⟨φ
q
0,φ0⟩

) 1
q−2

λ
1

q−2 +O(λ
1

q−2 ) as λ → 0,
(4.9)

f q is odd. By Theorem 3.2(ii), χ[Ld, 0] = 2. Thus, it follows from (4.2) that

χ[Ld, 0] = ordλ=0 g(λ, 0) = 2.

onsequently, by the Weierstrass–Malgrange preparation theorem [5, Th. 5.3.1], shortening the neighbor-
ood U = Uλ × Ux ⊂ R2, if necessary, there exists an analytic function c : U → R such that c(0, 0) ̸= 0, plus
= 2 analytic functions, cj : Ux → R, cj(0) = 0, j = 1, 2, such that

g(λ, x) = c(λ, x)
[
λ2 + c (x)λ+ c (x)

]
.
1 2
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Fig. 4.6. g−1(0) in a neighborhood of (0, 0).

ence for each x ∈ Ux, the equation g(λ, x) = 0 has, at most, two solutions. This shows that indeed, the
olutions (4.8) and (4.9), are the unique ones of g(λ, x) = 0 in a neighborhood of (0, 0). Fig. 4.6 represents
hese branches in each of these cases.

It should be noted that if q = 3, the Newton diagram illustrated in Fig. 4.5 becomes an straight line.
onsequently, the Newton–Puiseux algorithm does not provide, in general, with two branches of solutions.
ctually, a direct application of the Newton–Puiseux algorithm shows that the number of branches depends
n the real solutions y of the polynomial

⟨φ3
0, φ0⟩y2 − ⟨φ2

0, φ0⟩y + |a|2

2d = 0.

s the special case q = 3 does not follow the patterns of the general case q ≥ 4, it has been left outside the
eneral scope of this paper. Thus, throughout the rest of this paper we assume that q ≥ 4.

The following result establishes that in a neighborhood of (λ, u) = (0, 0) the solutions of (1.1), (λ, u),
ust be either positive or negative. By Theorem 2.4, this entails u ≫ 0, or u ≪ 0.

roposition 4.4. There exists ε > 0 such that either u ≫ 0, or −u ≫ 0, for every (λ, u) ∈ F−1
d (0) such

hat |λ| + ∥u∥W 2,p < ε. In other words, there exists a neighborhood of (0, 0) in R × W 2,p
0 (Ω), U , such that

−1
d (0) ∩ U consists of positive, or negative, solutions.

roof. Let {(λn, un)}n∈N ⊂ F−1
d (0) be a sequence of solutions such that

lim
n→∞

(λn, un) = (0, 0) in R ×W 2,p
0 (Ω). (4.10)

ince W 2,p
0 (Ω) ↪→ C1,1− N

p (Ω̄), (4.10) holds in R × C1(Ω). Performing the change of variables

vn(x) := e
λ
2d

⟨a,x⟩un(x), x ∈ Ω ⊂ RN ,

t is apparent that, for every n ≥ 1,

vn = (−∆)−1
[

1
d

(
1 − λ2

n|a|2
4d

)
vn + fd(λn, x, vn)vn

]
,

where, setting ζ(λ, d, x) := e− λ
2d

⟨a,x⟩, we have denoted

fd(λ, x, v) := d−1(λ− ζq−2(λ, d, x)vq−2)ζ(λ, d, x)v

see (3.4), if necessary). Then, the functions ψn := vn
∥vn∥∞

, n ≥ 1, satisfy ∥ψn∥∞ = 1 and

ψn = (−∆)−1
[

1
d

(
1 − λ2

n|a|2
4d

)
ψn + fd(λn, x, vn)ψn

]
(4.11)

for all n ≥ 1. On the other hand, the sequence

gn := 1
(

1 − λ2
n|a|2

)
ψn + fd(λn, x, vn)ψn, n ≥ 1,
d 4d

17
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is bounded in C(Ω̄). Thus, by the compactness of (−∆)−1, there exists ψ ∈ C(Ω̄) such that, along some
ubsequence, relabeled by n ≥ 1, limn→∞ ψn = ψ in C(Ω̄). By (4.10),

lim
n→∞

fd(λn, x, vn) = 0.

Thus, letting n → ∞ in (4.11), yields ψ = d−1(−∆)−1ψ. Therefore, since σ1 = d−1, by the simplicity of σ1,
t is apparent that ψ = ±φ0. Hence, either ψ ≫ 0, or ψ ≪ 0 (i.e., −ψ ≫ 0). This entails that either vn ≫ 0,
or vn ≪ 0, for sufficiently large n, and ends the proof. □

In the previous Lyapunov–Schmidt reduction we have denoted x = ⟨u, φ0⟩. Thus,

x = ⟨u, φ0⟩ =
∫
Ω

uφ0 dx.

Thus, by Proposition 4.4, the solutions of the bifurcation equation

Gd(λ, x) = (IV −Q)Fd(λ, xφ0 + Y(λ, xφ0)) = 0

are positive for x > 0 and negative for x < 0. Therefore, according to the asymptotic expansions (4.8)
and (4.9), when q is even, for λ > 0 there emanate from (0, 0) two branches of positive solutions and one
branch of negative solutions, while another branch of negative solutions emanates for λ < 0, as illustrated
by Fig. 4.6. Similarly, when q is odd, for λ > 0 there emanate from (0, 0) two branches of positive solutions,
while there emanate another two branches of negative solutions for λ < 0, as illustrated by Fig. 4.6. This
concludes the analysis of the local structure of the solution set when d = σ−1

1 .

5. A priori bounds for the positive solutions

In this section we establish the existence of a priori bounds for the positive solutions of (1.1). For any
given d > 0, we will denote by Sd the set of positive solutions of (1.1), i.e.,

Sd := {(λ, u) ∈ F−1
d (0) : u ≫ 0} ⊂ R ×W 2,p

0 (Ω).

The next result shows the existence of a priori bounds regardless the size of d > 0.

Lemma 5.1. There exists a real valued function C : R → (0,+∞), such that, for every d > 0 and
(λ, u) ∈ Sd,

∥u∥∞ ≤ C(λ) ≤

{
1 if λ ≤ 0,
λ

1
q−2 + 1, if λ > 0.

(5.1)

Proof. Let (λ, u) ∈ Sd be a positive solution of (1.1), and x0 ∈ Ω such that u(x0) = ∥u∥∞. Since
u ∈ W 2,p

0 (Ω) with p > N , the maximum principle of Bony [4] entails that ∇u(x0) = 0 and ∆u(x0) ≤ 0.
Thus,

0 ≤ −d∆u(x0) = λ⟨a,∇u(x0)⟩ + u(x0) + λu2(x0) − uq(x0)
= u(x0) + λu2(x0) − uq(x0).

onsequently, since u(x0) > 0, it follows that

q−1
u (x0) − λu(x0) − 1 ≤ 0. (5.2)
18



J. López-Gómez and J.C. Sampedro Nonlinear Analysis 232 (2023) 113268

l
p

s
u

T

C

Equivalently, P (u(x0)) ≤ 0, where P (λ, z) := zq−1 − λz − 1, z ≥ 0. Since P (λ, 0) = −1 < 0 and
imz→∞ P (λ, z) = +∞, the function P (λ, ·) possesses a positive zero for every λ ∈ R. Moreover, this
ositive zero must be unique due to the convexity of P (λ, ·), which follows from the inequality

d2P

dz2 (λ, z) = (q − 1)(q − 2)zq−3 > 0, z > 0,

ince q ≥ 4. Let C(λ) > 0 be the unique positive zero of P (λ, ·) for each λ ∈ R. According to (5.2),
(x0) ≤ C(λ).

Finally, setting r(λ) := λ
1

q−2 + 1, we have that, for every λ ≥ 0,

P (λ, r(λ)) = (λ
1

q−2 + 1)q−1 − λ(λ
1

q−2 + 1) − 1 =
q−1∑
i=0

(
q − 1
i

)
λ

i
q−2 − λ

q−1
q−2 − λ− 1

=
(
q − 1
q − 2

)
λ+

q−3∑
i=1

(
q − 1
i

)
λ

i
q−2 − λ = (q − 2)λ+

q−3∑
i=1

(
q − 1
i

)
λ

i
q−2 ≥ 0

and hence C(λ) ≤ r(λ). This ends the proof if λ ≥ 0. When λ < 0, we have that

P (λ, 1) = −λ > 0, dP

dz
(λ, z) = (q − 1)zq−2 − λ > 0,

for all z ≥ 0 and λ < 0. Thus, C(λ) ≤ 1 if λ < 0. This ends the proof. □

The next result provides us with a necessary condition for the existence of positive solutions when
d ≥ σ−1

1 .

Lemma 5.2. Suppose d ≥ σ−1
1 and (1.1) admits a positive solution. Then, λ > 0.

Proof. Let (λ, u) ∈ Sd. Then, multiplying the differential equation by u and integrating yields∫
Ω

(−d∆u)u dx = λ

N∑
i=1

ai

∫
Ω

∂u

∂xi
u dx+

∫
Ω

u2 dx+ λ

∫
Ω

u3 dx−
∫
Ω

uq+1 dx.

hus, integrating by parts in Ω , it follows from the Courant characterization of σ1 that

dσ1

∫
Ω

u2 dx ≤ d

∫
Ω

|∇u|2 dx =
∫
Ω

u2 dx+
∫
Ω

(λ− uq−2)u3 dx.

onsequently, since 1 ≤ dσ1, it is apparent that

0 ≤ (dσ1 − 1)
∫
Ω

u2 dx ≤
∫
Ω

(λ− uq−2)u3 dx,

and therefore, λ > 0. This concludes the proof. □

The following result shows that Pλ(Sd) is bounded, where Pλ stands for the λ-projection operator defined
by Pλ(λ, u) = λ for all λ ∈ R and u ∈ W 2,p

0 (Ω). Part (ii) straightens Lemma 5.2.

Lemma 5.3. The following assertions are true:

(i) Suppose d ≤ σ−1
1 . Then, there exists a constant C0(d) > 0 such that

− 2
√
d(1 − σ d) ≤ λ ≤ C (d) for all (λ, u) ∈ S . (5.3)
|a| 1 0 d
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(ii) Suppose d > σ−1
1 . Then, there are two constants, 0 < C1(d) < C2(d), such that

C1(d) ≤ λ ≤ C2(d) for all (λ, u) ∈ Sd. (5.4)

Moreover, C1(d), C2(d) → ∞ as d → ∞.

roof. Let (λ, u) ∈ Sd. Then, v(x) := e
λ
2d

⟨a,x⟩u(x), x ∈ Ω̄ , satisfies v = 0 on ∂Ω and

− ∆v = 1
d

(
1 − λ2|a|2

4d

)
v + fd(λ, x, v)v in Ω , (5.5)

here fd is defined as in the proof of Proposition 4.4. Since v > 0, by the uniqueness of the principal
igenvalue it is apparent that

σ1[−∆ − fd(λ, x, v),Ω ] = 1
d

(
1 − λ2|a|2

4d

)
. (5.6)

uppose that d ≤ σ−1
1 and λ ≥ 0. Then, by Lemma 5.1,

fd(λ, x, v) ≤ d−1λζ(λ, d, x)v = d−1λu ≤ d−1λC(λ).

hus, by the monotonicity of the principal eigenvalue with respect to the potential,

1
d

(
1 − λ2|a|2

4d

)
≥ σ1 − d−1λC(λ).

herefore, rearranging terms yields

Γ (λ) := λ2|a|2
4d2 − d−1λ(1 + λ

1
q−2 ) ≤ d−1 − σ1. (5.7)

Let Λd be the set of λ ≥ 0 satisfying (5.7). As Γ (λ) < 0 for sufficiently small λ > 0, there exists ε > 0 such
that [0, ε) ⊂ Λd. On the other hand, limλ↑∞ Γ (λ) = +∞. This shows Part (i) when λ ≥ 0. Now, suppose
λ < 0. Then, fd(λ, x, v) ≤ 0 and, hence, (5.6) implies that

1
d

(
1 − λ2|a|2

4d

)
≥ σ1,

hich provides us with the lower estimate of (5.3) and ends the proof Part (i).
Now, suppose d > σ−1

1 . According to Lemma 5.2, (1.1) cannot admit a positive solution if λ ≤ 0.
hus, we can assume λ > 0. By adapting the argument of the proof of Part (i), it becomes apparent that
(λ) ≤ d−1 − σ1 < 0 if (λ, u) ∈ Sd. As above, let Λd denote the set of λ > 0 satisfying Γ (λ) ≤ d−1 − σ1.

If Λd = ∅, then the conclusion follows by choosing C1(d) = C2(d)
d = d > 0. Suppose Λd is non-empty. In

uch case, since Γ (λ) ↑ 0 as λ ↓ 0, (0, ε) ∩ Λd = ∅ for some ε > 0. Thus, minΛd > 0 and we can choose
1(d) = minΛd. On the other hand, as limλ↑∞ Γ (λ) = +∞ and d−1 − σ1 < 0, it follows that maxΛd < ∞
nd we choose C2(d) = maxΛd. This shows (5.4). Since C1(d), C2(d) ∈ Λd, it follows that

0 < σ1d− 1 ≤ Ci(d)[1 + Ci(d)
1

q−2 ], i ∈ {1, 2}.

his shows C1(d), C2(d) → ∞ as d → ∞. The proof is complete. □

Subsequently, for any given compact interval J of R, we denote by Sd(J) the set of positive solutions
(λ, u) ∈ Sd with λ ∈ J . The next result provides us with uniform a priori bounds for these subsets of
R ×W 2,p

0 (Ω).

Theorem 5.4. For any compact interval J ⊂ R, there is a constant C(J, d) > 0 such that

sup ∥u∥W 2,p ≤ C(J, d). (5.8)

(λ,u)∈Sd(J)
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Proof. Let J be a compact interval of R and pick (λ, u) ∈ Sd(J). We already know that the function
(x) := e

λ
2d

⟨a,x⟩u(x), x ∈ Ω , satisfies v = 0 on ∂Ω and (5.5). By the invertibility of the operator
∆ : W 2,p

0 (Ω) → Lp(Ω), based on a classical inequality of Calderón and Zygmund [6] (see [19, Ch. 9],
f necessary), there exists a constant M > 0, depending only on p and N (the spatial dimension), such that

∥v∥W 2,p ≤ M
(

1
d

⏐⏐⏐1 − λ2|a|2
4d

⏐⏐⏐ ∥v∥Lp + ∥fd(λ, x, v)v∥Lp

)
. (5.9)

ince J and Ω̄ are compact, the function e
λ
2d

⟨a,x⟩ is uniformly bounded on (λ, x) ∈ J × Ω for each d > 0.
ubsequently, we set

E(d, J) := max
(λ,x)∈J×Ω

e
λ
2d

⟨a,x⟩, L(J) := max
λ∈J

|λ|.

Then, thanks to Lemma 5.1, we have that

∥v∥L∞ ≤ E(d, J)∥u∥∞ ≤ E(d, J)(|λ|
1

q−2 + 1) ≤ E(d, J)(L(J)
1

q−2 + 1), (5.10)

Thus, by the definition of fd, there exists a constant F (d, J) > 0 such that

∥fd(λ, x, v)v∥∞ ≤ F (d, J). (5.11)

ombining (5.9) with (5.10) and (5.11), the estimate (5.8) readily follows. □

. A priori bounds for the negative solutions

To get a priori bounds for the negative solutions is a more delicate issue, as it depends on whether the
xponent q ≥ 4 is odd or even. Actually, the global structure of the set of negative solutions of (1.1) changes,
ery substantially, in these two cases, as it will become apparent later. As a consequence, these two cases
ill be treated separately.

.1. q ≥ 4 Is an odd integer

For any given d > 0, we will denote by Nd the set of negative solutions of (1.1), i.e.,

Nd := {(λ, u) ∈ F−1
d (0) : u ≪ 0} ⊂ R ×W 2,p

0 (Ω).

etting v = −u, it becomes apparent that the negative solutions of (1.1) are given by the positive solutions
f {

−d∆v = λ⟨a,∇v⟩ + v − λv2 − vq in Ω ,
v = 0 on ∂Ω .

(6.1)

Based on the fact that, much like in (1.1), the dominant term at v = +∞ is −vq, the set of positive solutions
of (6.1) satisfies similar properties as the set of positive solutions of (1.1) already analyzed in Section 5. As the
proofs can be easily adapted, to avoid repetitions we will restrict ourselves to state the corresponding results
without proofs. The next results provide us with counterparts of Lemmas 5.1, 5.2, 5.3 and Theorem 5.4,
respectively.

Lemma 6.1. There exists a real valued function C : R → (0,+∞) such that, for every d > 0 and (λ, u) ∈ Nd,

∥u∥∞ ≤ C(λ) ≤

{
1 − λ

1
q−2 if λ ≤ 0,

1 if λ > 0.
(6.2)

emma 6.2. λ < 0 if d ≥ σ−1 and (1.1) admits a negative solution.
1
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Lemma 6.3. The following assertions are true:

(i) Suppose d ≤ σ−1
1 . Then, there exists a constant C0(d) > 0 such that

− C0(d) ≤ λ ≤ 2
|a|

√
d(1 − σ1d) for all (λ, u) ∈ Nd. (6.3)

(ii) Suppose d > σ−1
1 . Then, there are two constants, C1(d) < C2(d) < 0, such that

C1(d) ≤ λ ≤ C2(d) for all (λ, u) ∈ Nd. (6.4)

oreover, C1(d), C2(d) → −∞ as d → ∞. In particular, (1.1) cannot admit a negative solution if d > σ−1
1

nd λ ≥ 0.

heorem 6.4. For any compact interval J ⊂ R, there is a constant C(J, d) > 0 such that

sup
(λ,u)∈Nd(J)

∥u∥W 2,p ≤ C(J, d). (6.5)

.2. q ≥ 4 Is an even integer

In such case, the negative solutions of (1.1) are given through the change of variable v = −u from the
ositive solutions of {

−d∆v = λ⟨a,∇v⟩ + v − λv2 + vq in Ω ,
v = 0 on ∂Ω ,

(6.6)

hich is a much more sophisticated problem than Problem (6.1), as it is of superlinear type with dominant
erm at v = +∞ given by vq. Thus, when N ≥ 3, the existence of a priori bounds relays on the size of q with
espect to the critical exponent N+2

N−2 , much like in the classical papers of Gidas and Spruck [17,18], whose
nding were adapted to study a general class of superlinear indefinite problems by Berestycki, Capuzzo-
olcetta and Nirenberg [2] and Amann and López-Gómez [1]. Yet (6.6) lies outside the general scope of

hese papers.
Note that the change of variable

v(x) = ζ(λ, d, x)w(x), ζ(λ, d, x) = e− λ
2d

⟨a,x⟩, x ∈ Ω ,

transforms the problem (6.6) into{
−∆w = 1

d

(
1 − λ2|a|2

4d

)
w − λd−1ζw2 + d−1ζq−1wq in Ω ,

w = 0 on ∂Ω ,
(6.7)

here ζ ≡ ζ(λ, d, x). Since, the differential equation of (6.7) cannot be expressed in the form −∆w =
w+a(x)wq for some continuous function a(x), our next results are not a direct consequence of the findings

of [1,2,17,18]. However, the blowing-up techniques introduced by Gidas and Spruck [17,18] can be adapted
to get them, like in [1,2].

As in Section 6.1, for any given compact subinterval J ⊂ R, Nd(J) stands for the set of negative solutions
f (1.1) with λ ∈ J .

Theorem 6.5. Suppose q ≥ 4 is an even integer and either N = 1, 2, or N ≥ 3 and q < N+2
N−2 . Then, for

very compact interval J ⊂ R, there exists a constant C(J, d) such that

sup ∥u∥W 2,p < C(J, d).

(λ,u)∈Nd(J)
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Theorem 6.5 provides us with a priori bounds for the negative solutions of (1.1) only when N = 1, 2, or
= 3 and q = 4, though it is an optimal result because it is well known that the a priori bounds are lost

hen N ≥ 3 and q ≥ N+2
N−2 (see, e.g., [1] and its list of references).

Proof. Fix a compact interval J ⊂ R. By elliptic regularity, arguing as in the proof of Theorem 5.4, it
uffices to show the existence of a constant C(J, d) such that

sup
(λ,u)∈Nd(J)

∥u∥∞ < C(J, d). (6.8)

n the contrary, suppose that (6.8) fails. Then, there exist a sequence {(λn, wn)}n∈N of positive solutions
f (6.7) in J ×W 2,p

0 (Ω) and a sequence {xn}n∈N in Ω such that

Mn := ∥wn∥∞ = wn(xn), lim
n→∞

Mn = +∞. (6.9)

ince Ω̄ is compact, there exists a subsequence of {xn}n∈N, still labeled by n, such that

lim
n→∞

xn = x∞ ∈ Ω̄ . (6.10)

Since Ω̄ = Ω ∪ ∂Ω , either x∞ ∈ Ω , or x∞ ∈ ∂Ω .

Case 1: Suppose that x∞ ∈ Ω . Then, for every n ≥ 1, we consider the re-scaled function

νn := M2−q
n , w̃n

(
ν

1−q
2(q−2)
n (x− xn)

)
:= ν

1
q−2
n wn(x), x ∈ Ω , (6.11)

which differs from the classical one of Gidas and Spruck [17,18]. By (6.11), regardless the domain of definition
of w̃, we have that, for every n ≥ 1,

∥w̃n∥∞ = w̃n(0) = ν
1

q−2
n wn(xn) = ν

1
q−2
n Mn = 1 (6.12)

Moreover, by (6.9) and (6.11), limn→∞ νn = 0. To estimate the domain of definition of w̃n, pick any ε > 0
satisfying

0 < ε < min
n∈N

dist(xn, ∂Ω)

nd let n0 ∈ N be an integer such that

|dist(x∞, ∂Ω) − dist(xn, ∂Ω)| < ε for all n ≥ n0. (6.13)

ote that, setting, s := q−1
2(q−2) , one has that

w̃n

(
ν−s

n (x− xn)
)

:= ν
1

q−2
n wn(x), x ∈ Ω .

hus, for every n ≥ 1, the domain of definition of w̃n is the set

D(w̃n) := ν−s
n (−xn + Ω),

ecause Ω is the domain of definition of wn. We claim that, setting

ρn := dist(x∞,∂Ω)
2 ν−s

n , n ≥ 1,

ne has that Bρn ≡ Bρn(0) ⊂ D(w̃n) for all n ≥ n0, where BR is the ball of radius R > 0 centered at 0.
Indeed, by choice of ε, it follows from (6.13) that, for every n ≥ n0,

dist(x∞,∂Ω) < ε+dist(xn,∂Ω) < dist(x , ∂Ω).
2 2 n
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Thus, for every y ∈ Bρn with n ≥ n0, we have that

∥y∥ ≤ ρn = dist(x∞,∂Ω)
2 ν−s

n < dist(xn, ∂Ω)ν−s
n .

ence ∥νs
ny∥ < dist(xn, ∂Ω), and so xn + νs

ny ∈ Ω , for all n ≥ n0. Therefore,

Bρn ⊂ D(w̃n), n ≥ n0. (6.14)

oreover, since limn→∞ νn = 0, one has that limn→∞ ρn = +∞ and hence, for every R > 0 one can enlarge
n0, if necessary, so that R < ρn, and hence BR ⊂ D(w̃n), for all n ≥ n0. By differentiating and substituting
in (6.7), it becomes apparent that, for any given R > 0 and n ≥ n0, w̃n ∈ W 2,p(BR) and it solves

− d∆w̃n = ν
q−1
q−2
n

(
1 − λ2

n|a|2
4d

)
w̃n − νnλnζnw̃

2
n + ζq−1

n w̃q
n (6.15)

n BR, point-wise almost everywhere, where

ζn := ζ(λn, d, xn + νs
ny).

ccording to (6.12), we have that

∥w̃n∥C(B̄R) = w̃n(0) = 1 for all n ≥ n0.

herefore, using the Lp-theory as in the proof of Theorem 5.4, there exists a constant C = C(J, d) such that

∥w̃n∥W 2,p ≤ C(J, d) for all n ≥ n0,

here we are denoting by C(J, d) any constant depending on d and J . Consequently, the sequence {w̃n}n≥n0

s uniformly bounded in W 2,p(BR). Thus, by the compactness of the imbedding W 2,p(BR) ↪→ C1,1− N
p (B̄R),

we can extract a subsequence, {w̃nk
}k∈N, such that, for some w ∈ W 2,p(BR),

lim
k→∞

w̃nk
= w

weakly in W 2,p(BR) and strongly in W 1,p(BR) and in C1,1− N
p (B̄R). Since w̃nk

(0) = 1 for all k ∈ N, it
follows that w(0) = 1. As J is compact, without loss of generality, we can assume that, for some λ∞ ∈ J ,
imk→∞ λnk

= λ∞. Thus, letting k → ∞ in (6.15) at n = nk, each side converges weakly in Lp(BR) and
strongly in C1(B̄R) to

−d∆w = ζq−1(λ∞, d, x∞)wq.

As R > 0 is arbitrary, through a further diagonal argument, we can assume that w is actually defined in
the whole of RN . Since w ∈ C1(RN ), by elliptic regularity, w ∈ C2(RN ). Moreover, by construction, w ≥ 0,
w(0) = 1 and ∥w∥∞ ≤ 1. Consequently, since ζq−1(λ∞, d, x∞) > 0, this contradicts [17, Th. 1.1], because
we are assuming that either N = 1, 2, or N = 3 and q = 4. So, q < N+2

N−2 .

ase 2: Suppose that x∞ ∈ ∂Ω . By a change of variable depending only on Ω , we can assume that x∞ = 0
nd there exists a neighborhood of x∞ = 0 in RN , U , such that

U ∩ ∂Ω = {x = (x1, . . . , xN ) ∈ U : xN = 0},
U ∩ Ω = {x = (x1, . . . , xN ) ∈ U : xN > 0}.

(6.16)

s in the proof of Case 1, for every n ≥ 1, we consider the re-scaled function defined through (6.11). Similarly,
etting

s := q − 1
, δn := dist(xn, ∂Ω) = xn,N , rn := ν−s

n δn, n ≥ 1,
2(q − 2)
24
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the domain of definition of w̃n, D(w̃n), consists of the set of points y ∈ RN such that x = xn + νs
ny ∈ Ω̄ .

n particular, it contains the set of points y ∈ RN such that xn + νs
ny ∈ Ω̄ ∩ U . Hence, it follows that the

ondition ∥y∥ ≤ rn together with
xn,N + νs

nyN ≥ 0 (6.17)

entails xn + νs
ny ∈ Ω̄ ∩ U and hence, y ∈ D(w̃n). As (6.17) can be equivalently expressed as

yN ≥ −ν−s
n xn,N = −ν−s

n δn = −rn,

t becomes apparent that

D(w̃n) := {y ∈ Brn : yN ≥ −rn} ⊂ D(w̃n) for all n ≥ 1. (6.18)

herefore, w̃n is well defined in D(w̃n) for all n ≥ 1.
As in Case, 1, we have that

lim
n→∞

νn = 0, ∥w̃n(y)∥C(D(w̃n)) = w̃n(0) = ν
1

q−2
n Mn = 1. (6.19)

imilarly, w̃n ∈ W 2,p(D(w̃n)) and it satisfies (6.15) in D(w̃n).
By elliptic regularity, thanks to (6.15) and (6.19), there exists a constant C > 0 such that

∥∇w̃n∥C(D(w̃n)) ≤ C for all n ≥ 1.

hus, the mean value theorem implies that, for every n ≥ 1,

|w̃n(0) − w̃n(0, . . . , 0,−rn)| ≤ ∥∇w̃n∥C(D(w̃n))rn ≤ Crn. (6.20)

n the other hand, by (6.11) and (6.16), we find that

w̃n(0, . . . , 0,−rn) = ν
1

q−2
n wn(xn,1, . . . , xn,N−1, 0) = 0,

nd, thanks to (6.19), w̃n(0) = 1. Therefore, substituting in (6.20) yields 1 ≤ Crn for all n ≥ 1. In other
ords, the sequence {rn}n∈N is separated away from zero.
There are two possibilities: Either limn→∞ rn = +∞, or there exists a subsequence, labeled again by n,

uch that limn→∞ rn = r for some r > 0.
Suppose limn→∞ rn = +∞. Then, for every R > 0, there exists n1 ∈ N such that R < rn for all n ≥ n1.

n this case, since D(w̃n) approximates RN as n → ∞, adapting the argument of the last part of the proof
f Case 1, we can again reach a contradiction with Theorem 1.1 of Gidas and Spruck [17].

Suppose that limn→∞ rn = r for some r > 0. Then, setting

H := {y ∈ RN : yN > −r},

nd adapting the proof of the Case 1, we get the existence of a function w ∈ C2(H) such that 0 ≤ w ≤ 1,
(0) = 1, w = 0 on ∂H, and

−d∆w = ζq−1(λ∞, d, x∞)wq in H.

ince q < N+2
N−2 and ζq−1(λ∞, d, x∞) > 0, this contradicts [18, Th. 1.3] and ends the proof. □

We end this section with a result that will be useful later.

emma 6.6. The problem (1.1) cannot admit a negative solution if d ≤ σ−1 and λ = 0.
1
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Proof. As the negative solutions of (1.1) are given by the positive solutions of (6.6) via the change of
variables v = −u, it suffices to show that the problem{

−d∆v = v + vq in Ω ,
v = 0 on ∂Ω ,

(6.21)

cannot admit a positive solution if d ≤ σ−1
1 . Let v be a positive solution of (6.21). Then, multiplying the

v-equation by a principal eigenfunction, φ0, associated to σ1, integrating by parts in Ω and rearranging
terms yields

(dσ1 − 1)
∫
Ω

vφ0 dx =
∫
Ω

vqφ0 dx.

Since
∫
Ω
vqφ0 dx > 0, this cannot occur if d ≤ σ−1

1 . □

7. Global bifurcation diagrams

In this section, we ascertain the global structure of the set of positive and negative solutions of (1.1). Recall
that the solutions of (1.1) are the zeros of the nonlinear differential operator Fd : R × W 2,p

0 (Ω) → Lp(Ω)
defined by

Fd(λ, u) = d∆u+ λ⟨a,∇u⟩ + u+ λu2 − uq. (7.1)

The next result establishes that the positive (resp. negative) solutions of (1.1) cannot leave the interior of
the positive cone of the ordered Banach space C1

0(Ω̄) unless they reach u = 0.

Lemma 7.1. Let {(λn, un)}n∈N be a sequence of positive (resp. negative) solutions of (1.1) such that

lim
n→∞

(λn, un) = (λ0, u0) ∈ F−1
d (0), in R ×W 2,p

0 (Ω). (7.2)

Then, either u0 ≫ 0 (resp. u0 ≪ 0), or u0 = 0.

Proof. We will prove it for the case of positive solutions. By Eq. (7.2) and the Sobolev embedding
W 2,p(Ω) ↪→ C1,1− N

p (Ω̄), it follows that u0 ∈ F−1
d (0) is the pointwise limit of positive functions, un ≫ 0,

n ∈ N. Hence u0 = 0, concluding the proof, or u0 ⪈ 0. In the later case, Theorem 2.4 is applied to obtain
u0 ≫ 0. The proof is complete. □

The next result establishes a pivotal compactness property of Fd.

Lemma 7.2. For every d > 0, Fd is proper on closed and bounded subsets of R ×W 2,p
0 (Ω).

roof. It suffices to prove that the restriction of Fd to the closed subset K := [λ−, λ+] × B̄R is proper,
here λ− < λ+ and BR stands for the open ball of W 2,p

0 (Ω) of radius R > 0 centered at 0. According to [3,
h. 2.7.1], we must check that Fd(K) is closed in Lp(Ω), and that, for every f ∈ Lp(Ω), the set F−1

d (f) ∩K
s compact in R ×W 2,p

0 (Ω).
To show that Fd(K) is closed in Lp(Ω), let {fn}n∈N be a sequence in Fd(K) ⊂ Lp(Ω) such that

lim
n→∞

fn = f in Lp(Ω). (7.3)

hen, there exists a sequence {(λn, un)}n∈N in K such that

f = F (λ , u ) for all n ∈ N. (7.4)
n d n n
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By the compactness of the imbedding W 2,p(Ω) ↪→ C1,1− N
p (Ω̄), we can extract a subsequence {(λnk

, unk
)}k∈N

uch that, for some (λ0, u0) ∈ [λ−, λ+] × C1,1− N
p (Ω̄), limk→∞ λnk

= λ0 and

lim
k→∞

unk
= u0 in C1,1− N

p (Ω̄). (7.5)

As a direct consequence of (7.3), (7.4) and (7.5), it becomes apparent that u0 must be a weak solution of
the nonlinear elliptic problem{

d∆u0 + λ0⟨a,∇u0⟩ + u0 + λu2
0 − uq

0 = f in Ω ,
u0 = 0 on ∂Ω .

(7.6)

By elliptic regularity, u0 ∈ W 2,p
0 (Ω) and f = Fd(λ0, u0). Therefore, f ∈ Fd(K).

Now, pick f ∈ Lp(Ω). To show that F−1
d (f) ∩K is compact in [λ−, λ+] ×W 2,p

0 (Ω). Let {(λn, un)}n∈N be
a sequence in F−1

d (f) ∩K. Then,
Fd(λn, un) = f for all n ∈ N. (7.7)

Based again on the compactness of the imbedding W 2,p(Ω) ↪→ C1,1− N
p (Ω̄), we can extract a subsequence

{(λnk
, unk

)}k∈N such that, for some (λ0, u0) ∈ [λ−, λ+] × C1,1− N
p (Ω̄), limk→∞ λnk

= λ0 and (7.5) holds.
imilarly, u0 ∈ C1,1− N

p (Ω̄) is a weak solution of (7.6) and, by elliptic regularity, u0 ∈ W 2,p
0 (Ω) and

d(λ0, u0) = f . In particular, for every k ∈ N,

−d∆(unk
− u0) = λ0⟨a,∇(unk

− u0)⟩+unk
− u0 + λ0(u2

nk
− u2

0) − (uq
nk

− uq
0) in Ω .

y the Lp-elliptic estimates, there is a positive constant C > 0 such that

∥unk
− u0∥

W
2,p
0 (Ω) ≤ C

(
∥u2

nk
− u2

0∥Lp(Ω) + ∥uq
nk

− uq
0∥Lp(Ω)

)
or all k ∈ N. On the other hand, {unk

}k∈N is bounded in W 2,p(Ω) and hence it is relatively compact in
1,1− N

p (Ω̄). Therefore, letting k → ∞ we finally get that

lim
k→∞

(λnk
, unk

) = (λ0, u0) in [λ−, λ+] ×W 2,p
0 (Ω).

his concludes the proof. □

The rest of this section is devoted to the analysis of the global structure of the set of positive and negative
olutions of (1.1). As it is strongly dependent on the size of the diffusion coefficient d > 0, we have divided
t into three subsections.

.1. The case when d < σ−1
1

Throughout this section we assume that dσ1 < 1. To get our main results in this case, we will use the
nilateral global bifurcation theorem [30, Th. 8.5], which is a refinement of [24, Th. 6.4.3] and [26, Th. 1.2].
o state it, consider two real Banach spaces, U, V , and an operator F ∈ C1(R × U, V ) satisfying:

(C) U is a subspace of V with compact inclusion U ↪→ V .

F1) F(λ, 0) = 0 for all λ ∈ R.
F2) DuF(λ, u) ∈ Φ0(U, V ) for all λ ∈ R and u ∈ U .
F3) F is proper on closed and bounded subsets of R × U .
F4) The map

N(λ, u) := F(λ, u) −DuF(λ, 0)u, (λ, u) ∈ R × U, (7.8)
admits a continuous extension, also denoted by N, to R × V .
27
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F5) The linearization L(λ) := DuF(λ, 0) is analytic in λ ∈ R and λ0 is an isolated eigenvalue of L(λ) :=
DuF(λ, 0) such that N [L(λ0)] = span[φ0] for some φ0 ∈ U with ∥φ0∥ = 1.

e consider for ε > 0 and η ∈ (0, 1), the open subsets of R × U ,

Q+
ε,η := {(λ, u) ∈ R × U : |λ− λ0| < ε, ⟨φ∗

0, u⟩ > η∥u∥},

Q−
ε,η := {(λ, u) ∈ R × U : |λ− λ0| < ε, ⟨φ∗

0, u⟩ < −η∥u∥},

e denote by T the set of trivial solutions of F(λ, u) = 0, that is, T := {(λ, 0) : λ ∈ R}. The set F−1(0)\T is
consequently referred as the set of non-trivial solutions. Then, under these hypotheses, the following result
holds.

Theorem 7.3. Suppose (C), F satisfies (F1)–(F5) and χ[L, λ0] ∈ 2N + 1. Then, there exist two connected
components of F−1(0)\T , denoted by C+ and C−, such that (λ0, 0) ∈ C± and for sufficiently small δ > 0,

C+ ∩Bδ(λ0, 0) ⊂ Q+
ε,η, C− ∩Bδ(λ0, 0) ⊂ Q−

ε,η,

or every ε ∈ (0, ε0) and η ∈ (0, 1), for some ε0 > 0. On the other hand, let Z ⊂ U a closed subspace such
hat

U = N [L0] ⊕ Z, N [L0] = span[φ0].

hen, each unilateral component Cν , ν ∈ {±}, satisfies some of the following alternatives:

(i) Cν is unbounded in R × U .
(ii) There exists µ ̸= λ0 such that (µ, 0) ∈ Cν .
(iii) There exist λ ∈ R and z ∈ Z \ {0} such that (λ, z) ∈ Cν .

This theorem will provide us with the global behavior of the continua of positive and negative solutions of
(1.1) when d < σ−1

1 . By the local analysis of Sections 2 and 3, we already know that from each of the points
(λ1(d), 0) and (−λ1(d), 0) there emanates an analytic curve of positive solutions of (1.1). Let us denote by
C +

+ and C +
− the connected components of the set of non-trivial solutions F−1

d (0)\T containing the curves
f positive solutions emanating from (λ1(d), 0) and (−λ1(d), 0), respectively. By Lemma 7.1 they can only
eave the interior of the positive cone through u = 0 and hence they consists of positive solutions, that is,

+
± ⊂ Sd. The next result, based on Theorem 7.3, shows that C +

+ = C +
− , as illustrated by Fig. 1.1.

heorem 7.4. It holds that C +
+ = C +

− . Thus, there is a connected component of the set of positive solutions
C +(= C +

+ = C +
− ) ⊂ Sd such that (±λ1(d), 0) ∈ C +.

Proof. We will apply Theorem 7.3 to the operator Fd : R×W 2,p
0 (Ω) → Lp(Ω) defined by (7.1). Clearly, Fd

atisfies the hypotheses of Theorem 7.3 with λ0 = ±λ1(d). Thus, the connected components C +
± ⊂ F−1

d (0)\T
are well defined and each of them satisfies one of the alternatives (i)–(iii). According to Lemma 5.3(i), there
exist α < β such that λ ∈ [α, β] if (1.1) admits a positive solution (λ, u). Thus, by Theorem 5.4, the
alternative (i) cannot occur. To exclude (iii) we take

Z =
{
u ∈ W 2,p

0 (Ω) :
∫
Ω

uφ0 dx = 0
}
,

here φ0 ≫ 0 is any principal eigenfunction associated σ1. Suppose that there are λ ∈ R and v ∈ Z\{0}
such that (λ, v) ∈ C +

+ . Since v ̸= 0, necessarily v ≫ 0 and hence
∫
Ω
vφ0 dx > 0 which contradicts v ∈ Z.

Hence, the alternative (iii) cannot occur neither. Therefore, there exists µ ̸= λ1(d) such that (µ, 0) ∈ C +
+ .

n particular, this implies that λ = µ is a bifurcation value to positive solutions from u = 0. Thus, by
heorem 3.2(iv), µ = −λ (d). Therefore, C + = C +. □
1 + −
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As far as concerns the negative solutions, by the local analysis of Sections 2 and 3, from each of the
points (λ1(d), 0) and (−λ1(d), 0) emanates an analytic curve of negative solutions. Let denote by C −

+ and C −
−

he connected components of the set of non-trivial solutions F−1
d (0)\T that contains the curves of negative

olutions emanating from (λ1(d), 0) and (−λ1(d), 0), respectively. By Lemma 7.1 they can only leave the
nterior of the negative cone through u = 0 and hence they consists of negative solutions, that is, C −

± ⊂ Nd.
y the results of Section 6, these components might have a different behavior according to the oddity of q.
he next result provides us with their behavior when q ≥ 4 is odd. It has been sketched in the left plot of
ig. 1.1.

heorem 7.5. Let q ≥ 4 be an odd integer. Then, C −
+ = C −

− , i.e., there exists a connected component of
he set of negative solutions C −(= C −

+ = C −
− ) ⊂ Nd linking (λ1(d), 0) to (−λ1(d), 0).

roof. It follows identical patterns as the proof of Theorem 7.4, though now one should use Lemma 6.3(i)
nd Theorem 6.4, instead of Lemma 5.3(i) and Theorem 5.4. So, we omit the technical details. □

The behavior of C −
+ and C −

− is rather different when q ≥ 4 is even. Actually, the next theorem establishes
hat, in this case, they are disjoint and unbounded.

heorem 7.6. Suppose q ≥ 4 is an even integer. Then, C −
+ and C −

− are unbounded and disjoint,
.e., C −

+ ∩ C −
− = ∅. Moreover, if N = 1, 2, or N ≥ 3 and q = 4, then

(λ1(d),∞) ⊂ Pλ(C −
+ ), (−λ1(d),−∞) ⊂ Pλ(C −

− ), (7.9)

here Pλ stands for the λ-projection operator. In particular, (1.1) has at least one negative solution whenever
λ| > λ1(d), as illustrated by the right plot of Fig. 1.1.

roof. By Lemma 6.6, (1.1) cannot admit a negative solution at λ = 0. Thus, C −
+ ∩ C −

− = ∅. According to
heorem 7.3, C −

+ and C −
− must satisfy some of the alternatives (i)–(iii). By Theorem 3.2(iv) and Lemma 6.6,

he alternative (ii) cannot occur. Arguing as in the proof of Theorem 7.5, the option (iii) is excluded to occur
oo. Therefore, (i) occurs, i.e., C −

+ and C −
− are unbounded. This concludes the proof of the first part of the

esult. Finally, suppose that N = 1, 2, or N = 3 and q = 4. Then, thanks to Theorem 6.5, for every compact
nterval J ⊂ R, the subsets

C −
± (J) := {(λ, u) ∈ C −

± : λ ∈ J} ⊂ C −
±

re bounded in R ×W 2,p
0 (Ω). As C −

± are unbounded, (7.9) holds. □

.2. The case when d = σ−1
1

This section shows the validity of the global bifurcation diagrams sketched in Fig. 1.2, by invoking [30,
h. 6.5], which follows by adapting some arguments of Dancer [11–13] and Buffoni and Tolland [5]. For any
roper analytic map, F : R×U → V , satisfying (F1)–(F3) of Section 4.2, (λ, u) ∈ R×U is said to be regular
ith respect to F if DuF(λ, u) ∈ GL(U, V ). In our setting, [30, Th. 6.5] reads as follows.

heorem 7.7. Let F ∈ H(R × U, V ) be an analytic map satisfying (F1)–(F3) of Section 4.2 such that
t is proper on bounded and closed subsets of R × U . Suppose that F−1(0) possesses a local analytic branch,
: (0, ε) → R×U , emanating from (0, 0) and consisting of regular points for sufficiently small ε > 0. Then, γ

dmits a prolongation to a global locally injective continuous path Γ : (0,+∞) → R×U on F−1(0) satisfying

ne of the following non-excluding alternatives. Either

29
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(a) limt↑∞ ∥Γ (t)∥R×U = +∞, or
(b) Γ is a closed loop, i.e., there exists T > 0 such that Γ (T ) = (0, 0).

First of all, we will prove that, for any integer q ≥ 4, there is a loop of positive solutions of (1.1) emanating
rom u = 0 at λ = ±λ1(σ−1

1 ) = 0. The existence of a connected component of the set of positive solutions
d, bifurcating from (λ, u) = (0, 0) has been already established in Section 4. More precisely, we already

now that there emanate from (0, 0) two analytic arcs of positive solutions γi : (0, ε) → R × W 2,p
0 (Ω),

i(λ) = (λ, ui(λ)), with limλ↓0 ui(λ) = 0, i ∈ {1, 2}. The connected components of the set of positive
olutions Sd containing to each of the curves γ1 and γ2, locally at (0, 0), will be called C +

1 and C +
2 ,

espectively.

heorem 7.8. Under the previous assumptions, C +
1 = C +

2 . Moreover each of the local curves γi : (0, ε) →
× W 2,p

0 (Ω) can be continued to a global locally injective continuous curve Γi : (0, T ) → C +
i such that

i|[T −δ,T ) = γj for some δ > 0 and j ∈ {1, 2}\{i}. Thus, there is a loop of positive solutions of (1.1) with
ertex at (0, 0).

roof. Once given the local curve γ1 : (0, ε) → R × W 2,p
0 (Ω) and the component C +

1 , in order to apply
heorem 7.7, we should make sure that, for sufficiently small ε > 0, the set γ1((0, ε)) ⊂ F−1

d (0) consists
f regular points of Fd. By the local analysis already done in Section 4, the regular and singular points of
d in F−1

d (0) ∩ V are in analytical correspondence with those of the reduced map Gd(λ, x) = xgd(λ, x) in
−1
d (0) ∩ U , where V and U are open neighborhoods of R × U and R2, respectively, containing (0, 0). So, it

uffices to prove that, near (0, 0), the set G−1
d (0) does not contain any singular point of Gd different form

0, 0). By Theorem 3.2(ii), χ[Ld, 0] = 2. Thus, it follows from (4.2) that

χ[Ld, 0] = ordλ=0 gd(λ, 0) = 2.

onsequently, by the Weierstrass–Malgrange preparation theorem, shortening the neighborhood U = Uλ ×
x ⊂ R2, if necessary, there exists an analytic function c : U → R such that c(0, 0) ̸= 0, plus χ = 2 analytic

unctions, cj : Ux → R, cj(0) = 0, j = 1, 2, such that

gd(λ, x) = c(λ, x)
[
λ2 + c1(x)λ+ c2(x)

]
.

ence, we can rewrite Gd : U → R as

Gd(λ, x) = xc(λ, x)
[
λ2 + c1(x)λ+ c2(x)

]
.

y the local analysis already done in Section 4 (see Fig. 4.6), for every x ∈ Ux\{0}, the equation Gd(λ, x) = 0
as two positive different solutions in λ ∈ Uλ. Thus, there are two analytic maps, φj : (−δ, δ)\{0} → R,
= 1, 2, such that

Gd(λ, x) = xc(λ, x)(λ− φ1(x))(λ− φ2(x)), x ∈ Ux\{0}.

y a direct computation if follows that (λ, x) ∈ G−1
d (0) ∩ U , (λ, x) ̸= (0, 0), is a singular point,

.e., DxGd(λ, x) = 0, if and only if φ1(x) = φ2(x) or φ′
j(x) = 0 for some j = 1, 2. According to (4.8)

nd (4.9), for sufficiently small U , this is not possible. Therefore, γ1 : (0, ε) → R × W 2,p
0 (Ω) consists of

egular points for sufficiently small ε > 0. By Theorem 7.7, γ1 admits a prolongation to a global locally
njective continuous map Γ1 : (0,∞) → R × W 2,p

0 (Ω) on F−1
d (0) satisfying one of the alternatives (a) or

b). Due to Lemma 7.1, Γ1(0,∞) ⊂ C +
1 . Thanks to Lemma 5.3(i) and Theorem 5.4, Γ1(0,∞) is bounded.

herefore, the alternative (a) cannot occur. Consequently, there exists some T > 0 such that Γ1(T ) = (0, 0).
s in a neighborhood of (0, 0) the set of positive solutions consists of the graphs of γ1 and γ2, being Γ1 is

ocally injective, it follows that, modulus a re-parametrization (if necessary), Γ1|(T −δ,T ] = γ2. This implies,
+ +
n particular, that C1 = C2 and concludes the proof. □
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As illustrated by Fig. 1.2, the behavior of the negative solutions differs according to the oddity of q.
Suppose q ≥ 5 is odd. Then, by the local analysis of Section 4 summarized in Fig. 4.6, we already

now that in a neighborhood of (λ, u) = (0, 0) there emanate two analytic arcs of negative solutions,
i : (−ε, 0) → R × W 2,p

0 (Ω), γi(λ) = (λ, ui(λ)), such that limλ↑0 ui(λ) = 0, i ∈ {1, 2}. The components
f the set of negative solutions Nd containing the curves γ1 and γ2 will be subsequently denoted by C −

1 and
−
2 , respectively. In this case, adapting the proof of Theorem 7.8, the following result holds.

heorem 7.9. C −
1 = C −

2 if q ≥ 5 is odd. Moreover each of the local curves γi : (−ε, 0) → R × W 2,p
0 (Ω)

an be continued to a global locally injective continuous curve Γi : (−T, 0) → C −
i such that Γi|(−T,−T +δ] = γj

or some δ > 0 and j ∈ {1, 2}\{i}. Thus, there is a loop of negative solutions of (1.1) with vertex at (0, 0),
s sketched by the left picture of Fig. 1.2.

Now, suppose that q is even. Then, according to the analysis carried out in Section 4, we already know
hat there are two analytic curves of negative solutions bifurcating from (0, 0): One in the direction of λ > 0
nd another in the direction of λ < 0. Subsequently, we denote by C −

+ (resp. C −
− ) the connected component

f the set of negative solutions Nd emanating from (0, 0) in the direction λ > 0 (resp. λ < 0). The next
esult provides us with their global behavior.

heorem 7.10. Suppose q ≥ 4 is an even integer. Then, C −
+ and C −

− are unbounded and disjoint,
.e., C −

+ ∩ C −
− = ∅. Moreover, if N = 1, 2, or N ≥ 3 and q = 4, then

Pλ(C −
+ ) = (0,∞), Pλ(C −

− ) = (−∞, 0), (7.10)

s sketched in the right picture of Fig. 1.2. In particular, (1.1) possesses at least one negative solution for
very λ ̸= 0.

roof. By Lemma 6.6, (1.1) cannot admit a negative solution at λ = 0. So, C −
+ ∩ C −

− = ∅. Let us denote
y γ+ : (0, ε) → R ×W 2,p

0 (Ω) and γ− : (−ε, 0) → R ×W 2,p
0 (Ω) the two local curves of negative solutions of

1.1) that emanate from (0, 0) in the direction of C −
+ and C −

− , respectively. Adapting the argument of the
roof of Theorem 7.8, it is easily seen that γ+ and γ− consist of regular points for sufficiently small ε > 0.
hus, by Theorem 7.7, there are two global locally injective continuous curves Γ+ : (0,∞) → R ×W 2,p

0 (Ω)
nd Γ− : (−∞, 0) → R × W 2,p

0 (Ω) that extend γ+ and γ−, respectively, and satisfy one of the alternatives
a) and (b). By Lemma 7.1, Γ+((0,∞)) ⊂ C −

+ and Γ−((−∞, 0)) ⊂ C −
− . Since C −

+ ∩ C −
− = ∅, the curves Γ±

annot form a loop. Thus, the alternative (a) cannot happen. Therefore,

lim
t↑∞

∥Γ+(t)∥W 2,p = ∞, lim
t↓−∞

∥Γ−(t)∥W 2,p = ∞.

wing to Theorem 6.5, this entails that C −
+ and C −

− are unbounded in λ. Consequently, Pλ(C −
+ ) = (0,∞)

nd Pλ(C −
− ) = (−∞, 0). This ends the proof. □

The components C −
+ and C −

− might loose their a priori bounds at some critical values of λ, λ∗
±, if N = 3

nd q ≥ 6, or N > 3 and q ≥ 4.

.3. The case when d > σ−1
1

In such case, due to Theorem 3.2(iii), Σ (Ld) = ∅. Thus, neither the positive solutions nor the negative
olutions can bifurcate from u = 0. Thus, to get the existence of positive solutions, we proceeded through

n indirect argument involving the analytic implicit function theorem (see, e.g., [3, Th. 3.3.2]). As a result,

31



J. López-Gómez and J.C. Sampedro Nonlinear Analysis 232 (2023) 113268

s
h

T
c
s

P
a
fi

B
a

B
s
s
A
M

T
c
i
i

w

T
d

t

p
u

i
P
s

A

t

for d sufficiently close to σ−1
1 , (1.1) admits, at least, one compact connected component of the set of positive

olutions C + ⊂ Sd separated away from u = 0, as illustrated in Fig. 1.3. Precisely, the following result
olds.

heorem 7.11. There exists ν > σ−1
1 such that, for every d ∈ (σ−1

1 , ν), the problem (1.1) has a
ompact connected component of the set of positive solutions, C +

d ⊂ Sd, such that Pλ(C +
d ) = [α, β] for

ome 0 < α ≤ β.

roof. By our previous results in Section 7.2, we already know that there emanates two branches of
nalytical curves of positive solutions of Fd(λ, u) = 0 from (0, 0) at d = σ−1

1 . Moreover, these curves are
lled in by regular points. Therefore, there exists (λ0, σ

−1
1 , u0) ∈ F−1(0), with u0 ≫ 0 and λ0 > 0, such that

DuF(λ0, σ
−1
1 , u0) ∈ GL(W 2,p

0 (Ω), Lp(Ω)).

y the analytic implicit function theorem, there exists an open neighborhood of (λ0, σ
−1
1 ), U ⊂ R×R+, and

n analytic mapping, U : U → W 2,p
0 (Ω), such that

U(λ0, σ
−1
1 ) = u0, F(λ, d, U(λ, d)) = 0, (λ, d) ∈ U .

y Lemma 7.1, U(U) consists of positive solutions for sufficiently small U . Consequently, there exists ν > 0
uch that, for every d ∈ (σ−1

1 , ν), there is some λ = λd > 0 for which the problem (1.1) admits a positive
olution, ud. Let C +

d ⊂ Sd be the connected component of the set of positive solutions through (λd, ud).
ccording to Lemma 5.3(ii), there exist 0 < C1(d) < C2(d) such that C1(d) ≤ λ ≤ C2(d) for all (λ, u) ∈ C +

d .
oreover, thanks to Theorem 5.4, there exists a constant C > 0 such that

sup
(λ,u)∈C +

d

∥u∥W 2,p < C.

herefore, since by Lemma 7.2, the operator Fd is proper on closed and bounded subsets, C +
d is a compact

onnected component of the set of positive solutions. As it is separated away from u = 0, because Σ (Ld) = ∅,
t becomes apparent that Pλ(C +

d ) = [α, β] for some α ≤ β, because C +
d is compact and connected and Pλ

s continuous. This ends the proof. □

As far as concerns the negative solutions, as usual, their structure depends on the values of q. Indeed,
hen q is an odd integer, adapting the proof of Theorem 7.11, it is easily seen that the following result holds.

heorem 7.12. Suppose q ≥ 5 is an odd integer. Then, there exists ν > σ−1
1 such that, for every

∈ (σ−1
1 , ν), the problem (1.1) has a compact connected component of negative solutions, C −

d ⊂ Nd, such
hat Pλ(C −

d ) = [α, β] for some α ≤ β < 0, as illustrated in the left plot of Fig. 1.3.

Finally, suppose that q ≥ 4 is an even integer. Then, although the argument of the proof of Theorem 7.11
rovides us with a connected component, C −

d , of the set of negative solutions of (1.1) separated away from
= 0 for every d > σ−1

1 sufficiently close to σ−1
1 , and C −

d possesses uniform a priori bounds on compact
ntervals of λ if N = 1, 2, or N = 3 and q = 4, we do not know yet whether, or not, C −

d is bounded, or
λ(C −

d ) can be an interval of the form [α,+∞), or (−∞, α], for some α ∈ R, or simply Pλ(C −
d ) = R, as

uggested by the right plot of Fig. 1.3. This remains an open problem in this paper.
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[30] J. López-Gómez, J.C. Sampedro, Bifurcation theory for fredholm operators, 2021a, arXiv:2105.12193v1, [math.AP].
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