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1. Introduction

This paper studies the positive and the negative solutions of the elliptic semilinear problem

—dAu = Ma, Vu) +u+ M —u?  in £, (1.1)
u =0 on 042, ’

where {2 is a bounded domain of class C? of the Euclidean space RY, N > 1, with boundary 042, d > 0 is
the diffusion coefficient, ¢ > 4 is an integer number, a € RV\{0}, a = (ay,...,an), and A € R. In (1.1) we
are denoting by (-,-) the Euclidean product of RY, i.e.,

N

<£L',y> :leyz for every T = (I17"-3IN)3 Y= (ylv"'7yN) ERNa
=1
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Fig. 1.1. Two bifurcation diagrams when d < 0'1_1.

and we regard A and d as bifurcation parameters: A the primary one, and d the secondary. The main goal of
this paper is ascertaining the evolution of the global A-bifurcation diagrams of positive and negative solutions
of (1.1) as d varies in (0, +00).

The problem (1.1) is a multidimensional counterpart of the 1-dimensional prototype problem introduced
by the authors in [30, Sect. 7] in the very special case when d = 1, ¢ = 4, a = 1 and 2 = (0, 7). In this
paper we are interested in analyzing how vary the admissible multidimensional bifurcation A-diagrams as the
diffusion coefficient d varies in (0, +00) according to the value of q. Although the value of ¢ > 4 is irrelevant
when dealing with positive solutions, its oddity is extremely significant when dealing with negative solutions.
The assumption g > 4 is required to keep unchanged the structure of the set of positive and negative solutions
in a neighborhood of (A,u) = (0,0). As in the simplest one-dimensional model, our main technical devices
here invoke the local and global bifurcation techniques for Fredholm operators discussed by the authors
in [30].

Throughout this paper, for any given V € C(£2), we denote by o1[—A 4 V] the principal eigenvalue of
—A + V in 2 under Dirichlet boundary conditions. To simplify notations, we will set o1 = o1[—A4]. Also,
we denote by (g any principal eigenfunction associated to o;.

Our results depend on the size of the secondary parameter d > 0 and on the concrete value of ¢ > 4. To
describe our main findings, we need to divide them into three different blocks.

Suppose d € (0,07 1). Then, the set of positive solutions bifurcating from v = 0 consists of a single
compact connected component, 1, linking (—A1(d),0) to (A1(d),0), where

M (d) = %\/d(l " doy) > 0, (1.2)
while the set of negative solutions bifurcating from u = 0 consists of another compact connected component,
¢, linking (—A1(d),0) to (A1(d),0), if ¢ > 5 is odd, as illustrated in the first plot of Fig. 1.1. In this figure,
and in all subsequent ones, we are representing the value of the parameter \ in abscissas versus the norm
[ullw2.p (o), for some p > N, if u > 0, or versus —||ully2.p(q) if u < 0. As usual, WP (£2) stands for the
Sobolev space of the functions v € LP({2) having distributional derivatives D*u € LP(2) for |a| < 2, and
we denote by Wi (£2) the kernel of the trace operator .7 : WLP(2) — LP(902).

When ¢ > 4 is an even integer and N = 1,2, or ¢ = 4 and N = 3, we can prove that the global bifurcation
diagram of the negative solutions looks like shows the second plot of Fig. 1.1, i.e., it contains two connected
components of negative solutions, ¢’y , bifurcating from (£X;(d),0), respectively, such that

(=00, =Ai(d)) CPA(ET),  (M(d),+00) C Pa(%}),

where Py stands for the A-projection operator Py(\,u) := X for all (\,u) € R x W2P(£2). We must impose

q =4 when N = 3 in order to get
N +2

N -2
2

q< (1.3)
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Fig. 1.2. Two bifurcation diagrams when d = a';l.

and benefit of the existence of a priori bounds in Wg P(£2) for the negative solutions of (1.1), because these
solutions are given through the positive solutions of a certain superlinear problem at u = 4o0.
Further, as d increases up to reach the critical value A = oy 1 we have that

lim A;(d) =0. (1.4)
oyt

Thus, the previous two bifurcation points from u = 0, (£A1(d),0), shrink to the single point (0, 0), which is
the unique bifurcation point from u = 0 to positive, or negative, solutions at d = oy ! Actually, assuming
that d = o] ! we can prove that the set of positive solutions of (1.1) bifurcating from (0,0) consists of a
loop, €T, regardless whether ¢ > 4 is even, or odd, as illustrated by Fig. 1.2.

As in the previous case when d < o] ! the negative solutions of (1.1) can behave in a rather different
manner, according to the values of g and the spatial dimension N. For instance, as soon as ¢ > 5 is an odd
integer, the set of negative solutions of (1.1) bifurcating from (0, 0) consists of another loop, €, bifurcating
from (0, 0), as sketched in the first plot of Fig. 1.2. However, when ¢ > 4 is an even integer and N = 1,2, or
N = 3 and ¢ = 4, then the set of negative solutions emanating from (0, 0) consists of two disjoint connected
components, 4~ and ¢, such that

,P)\(%—_) = (_0070)7 ,P/\(%-:) = (0’ 00)7 (15)

as shown in the right plot of Fig. 1.2. It turns out that (1.1) cannot admit any negative solution for A = 0.

It is worth-emphasizing that, in this case, the algebraic multiplicity of [15] equals 2 and hence, owing
to [24, Th. 5.6.2], the local topological index of u = 0 does not change as A crosses the bifurcation value 0.
Consequently, except for the local results of Kielhofer [23], no result is available in the literature to get the
global structure of the solution set of (1.1) bifurcating from (0, 0). Note that the global component bifurcating
from (0,0) respects [25, Th. 6.3.1], as the sum of the parities of its bifurcation points from u = 0 equals 0.
Actually, according to these results, those loops can only exist when they bifurcate from a point with an even
generalized algebraic multiplicity. Otherwise, they should satisfy the global alternative of Rabinowitz [34].

Finally, we assume that d > o s sufficiently close to oy ! Then, when ¢ > 5 is an odd integer number,
the previous bifurcation diagrams evolve to the global bifurcation diagram plotted in the first picture of
Fig. 1.3, where the two previous loops emanating from (0, 0) separate away from each other generating two
compact components, again denoted by ¥+ and ¢, filled in by positive and negative solutions, respectively,
that are separated away from u = 0. Thus, they are isolas with respect to u = 0.

Therefore, as d crosses the critical value oy L'and ¢ > 5 is an odd integer, the set of positive and negative
solutions of (1.1) evolve according to the patterns sketched by the first plots of Figs. 1.1-1.3, so exhibiting

3
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Fig. 1.3. Two bifurcation diagrams when d > 6;1.

a genuine imperfect bifurcation. In some sense, in this case, d = o] L can be regarded as a sort of organizing
center for all admissible bifurcation diagrams of positive and negative solutions of (1.1).

As far as it is concerned with the negative solutions of (1.1) when d > o7 and ¢ > 4 is an even integer,
we were able to prove the existence of a component, ¥ ~, perturbing from the former components ¢ as d
perturbs from o L though it remains an open problem to ascertain whether, or not, P(4~) = R. Moreover,
thanks to Lemmas 5.3 and 6.3, it becomes apparent that, as d increases, the A-projections of the compact
connected components 4", for every ¢ > 4, and ¢, for ¢ > 5 odd, say

PA(€") = [a™(d), ()], PA(€7)=[-B7(d), —a"(d)],

satisfy

: + _ 1 +
ilTrgoz (d)—OO—(lllTIgﬁ (d).

Therefore, these components move away towards +oo as d 1 co. However, it remains an open problem to
ascertain whether the components '+ and ¢~ diminish shrinking to a single point at some critical d* > oy *
up to disappear for all further values of d, or if they are well defined for all d > 0. Throughout this paper,
any component is non-empty.

Under Dirichlet boundary conditions, increasing d promotes a rapid random movement of the individuals
of the species u towards the edges of their territory, {2, where they are washed out by the hostile surroundings.
Thus, the positive solutions should become extinct for sufficiently large d > 0. But the role played in this
model by the parametric transport term A{a, Vu) is not well understood yet, and, actually, it might push the
individuals towards the interior of the inhabiting area as to avoid extinction. In a rather different context,
the extinction for a sufficiently large diffusion coefficient was confirmed, numerically, in [27] (see [24, Ch. 2]).

Although there is a number of available results concerning the formation of isolas and loops of positive
solutions in the context of systems and semilinear elliptic equations (see, e.g., [7,8,16,22,27,28 32], as well
as the references there in), the problem (1.1) is of a rather different nature, as it inherits a sublinear
nature as far it is concerns with the positive solutions, instead of superlinear indefinite as in most of the
references. Moreover, the parameter A appears incorporated to the differential equation in a rather different
way. Actually, (1.1) was introduced in [30] as an academic example for testing the abstract theory developed
there in. Naturally, the parameter transitions described through this simple example might enjoy a huge
number of applications in applied sciences and engineering. Anyway, up to the best of our knowledge, the
transition described by the first plots of Figs. 1.1-1.3 has not been previously described in the literature in
the context of semilinear BVP’s.

The fact that d = o7 Uis a critical value for (1.1) should not really surprise us because do; — 1 is the
principal eigenvalue of —dA —1 in {2 under Dirichlet boundary conditions. Thus, the stability of zero changes

4
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as d crosses 0 1 Getting the global structure of the solution set when ¢ > 4 as d crosses oy ! is a rather
delicate task that shows an intriguing phenomenology.

This paper is distributed as follows. In Section 2 we collect some preliminaries on the generalized algebraic
multiplicity, x, introduced by Esquinas and Lépez-Gémez in [14,15,24], and show that any positive (resp.
negative) solution of (1.1) is strongly positive (resp. negative). In Section 3, we study the linearization of
(1.1) at w = 0 to determine the structure of the bifurcation values to positive, or negative, solutions from
u = 0. In Section 4, we analyze the structure of the set of positive and negative solutions of (1.1) in a
neighborhood of their bifurcations points from u = 0. In Section 5 we show the existence of a priori bounds
for the positive solutions of (1.1). As it is a sublinear problem, these bounds are always available, regardless
the value of ¢ > 4. Things are more challenging concerning the existence of a priori bounds for the negative
solutions, because they are given by the positive solutions of a superlinear problem when ¢ > 4 is even. Thus,
in such case, the existence of a priori bounds depends, heavily, on the size of ¢ and the spatial dimension
N > 1. In Section 6 we will adapt the blowing-up techniques of Gidas and Spruck [17,18], to get these a
priori bounds. Finally, in Section 7 we will apply the abstract theory developed in [30] to prove the existence
of the components ¢+ and € already introduced in the description of Figs. 1.1-1.3.

Throughout this paper, for any given pair of real Banach spaces, U and V, and any linear continuous
operator T' : U — V, we will denote by N[T] the null space, or kernel, of T, and by R[T] the range, or
image, of T.

2. Preliminaries

In this section we collect some fundamental properties of the generalized algebraic multiplicity, x,
introduced by Esquinas and Lépez-Gémez [15], and later developed in [14,24]. This concept is necessary to
study the linearization of (1.1) at u = 0. Then, we will use the Hopf’s maximum principle to show that any
positive solution of (1.1) is strongly positive, and that, similarly, any negative solution is strongly negative.

2.1. The generalized algebraic multiplicity

Throughout this section, K € {R,C}, §2 is a subdomain of K, and, for any given finite dimensional
curve £ € C(2,L(KY)), a point A € £ is said to be a generalized eigenvalue of £ if £(\) ¢ GL(KY),
i.e., det £(\) = 0. Then, the generalized spectrum of £ € C(£2, L(K¥)) is defined by

(L) ={\e2:L0\) ¢ GLKM)L.

For analytic curves £ € H (2, L(KY)), since det £(\) is analytic in A € 2, either X (£) = 2, or XY(£) is
discrete. Thus, (L) consists of isolated generalized eigenvalues if £(1) € GL(KY) for some p € 2. In such
case, the algebraic multiplicity of the curve £ € H (2, L(KY)) at )¢ is defined through

Maig[€, Ao] = ordy, det £(N). (2.1)

Although the multiplicity is defined for all Ay € R, it equals zero if Ay € R\ X'(£). This concept extends the
classical notion of algebraic multiplicity in linear algebra. Indeed, if £(\) = My —T for some linear operator
T € L(KY), then £ € H(K, L(KY)) and it is easily seen that mai,[£, Ao is well defined for all Ay € X(£)
and that (2.1) holds. Note that, since GL(KY) is open, Iy — AT € GL(KY) for sufficiently large A. Thus,
My —T € GL(KY) and X(£) is discrete.

This concept admits a natural (non-trivial) extension to an infinite-dimensional setting. To formalize it,
we need to introduce some of notation. In this paper, for any given pair of K-Banach spaces, say U and V|, we
denote by @, (U, V) the set of linear Fredholm operators of index zero between U and V. Then, a Fredholm

5
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(continuous) path, or curve, is any map £ € C(£2, $o(U, V)). Naturally, for any given £ € C(£2, ¢o(U,V)), it
is said that A € 2 is a generalized eigenvalue of £ if £(\) ¢ GL(U, V), and the generalized spectrum of £,
X (L), is defined through

L) ={ e : £\ ¢GLUV)}

The following concept, going back to [24], plays a pivotal role in the sequel.

Definition 2.1. Let £ € C(£2, $o(U,V)) and x € N. A generalized eigenvalue \g € X'(£) is said to be
k-algebraic if there exists € > 0 such that

(a) £A) e GL(U, V) if 0 < |[A — Xo| < ¢
(b) There exists C' > 0 such that

71N < if 0<|XA=Xo|<e; (2.2)

_C
IA = Xo|”
(¢) k is the minimal integer for which (2.2) holds.

Throughout this paper, the set of k-algebraic eigenvalues of £ is denoted by Alg, (£), and the set of
algebraic eigenvalues by

Alg(g) = ] Alg, ()
reN

As in the special case when U = V = KV according to Theorems 4.4.1 and 4.4.4 of [24], when £()\) is
analytic in 2, i.e., £ € H(2, §o(U,V)), then, either X (L) = 2, or X(L) is discrete and ¥ (L) C Alg(L).
Subsequently, we denote by Ax, (12, @o(U,V)) the set of curves £ € C" (12, $o(U,V')) such that \g € Alg, (£)
with 1 < k < r for some r € N. Next, we will construct an infinite dimensional analogue of the classical
algebraic multiplicity maig[£, Ao] for the class Ay (2, @o(U,V)). It can be carried out through the theory
of Esquinas and Lépez-Gémez [15], where the following pivotal concept, generalizing the transversality
condition of Crandall and Rabinowitz [9], was introduced. Throughout this paper, we set £; := %E(j)()\()),
1 < 7 < r, should these derivatives exist.

Definition 2.2. Let £ € C"(2, $,(U,V)) and 1 < k < r. Then, a given Ay € X(£) is said to be a
k-transversal eigenvalue of £ if

é@(ﬂzv )@RSO) w1th2<ﬂzv );é{o}.

For these eigenvalues, the following generalized concept of algebraic multiplicity was introduced by
Esquinas and Lépez-Goémez [15],

XI€, Ao] : Z; dim &; (h N[&-]). (2.3)
=0

In particular, when N[£o] = span[po] for some ¢g € U such that £1p¢ ¢ R[£o], then
21(N[8o) & Rlgo] = V (2.0

and hence, \g is a 1-transversal eigenvalue of £(\) with x[£, A\g] = 1. The transversality condition (2.4) goes
back to Crandall and Rabinowitz [9]. More generally, under condition (2.4),

X[£, Ao] = dim N[£).
6
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According to Theorems 4.3.2 and 5.3.3 of [24], for every £ € C"(02,P9(U,V)), & € {1,2,...,r} and
Ao € Alg, (L), there exists a polynomial @ : 2 — L(U) with &(N\g) = Iy such that \g is a k-transversal
eigenvalue of the path

L2 = Lo dcC (N, &(U,V)), (2.5)

and x[£?, \o] is independent of the curve of trasversalizing local isomorphisms ® chosen to transversalize £
at Ag through (2.5). Therefore, the following concept of multiplicity is consistent

X[€, Ao = x[£%, Ao], (2.6)

and it can be easily extended by setting x[£, Ao] = 0 if A\g ¢ X'(£) and x[£, Ag] = +o0 if g € T (L) \ Alg(£L)
and r = +oo. Thus, x[£, A] is well defined for all A € £ of any smooth path £ € C>(£2, $,(U,V)); in
particular, for any analytical curve £ € H(£2, @o(U,V)). The next uniqueness result, going back to Mora-
Corral [33], axiomatizes these concepts of algebraic multiplicity. Some refinements of them were delivered
in [29, Ch. 6]. Subsequently, given £, 9t € C(2, $(U)), we denote by £ € C(£2, Py(U)), the curve defined
through £M(A) := £(A) o M(A) for each A € 2. Given A € K, we denote by S57(U) the set of all germs of
families £(A) of class C*° defined in a neighborhood of Ay with values in @(U, V).

Theorem 2.3. Let U be a K-Banach space. For every Ag € K, the algebraic multiplicity x is the unique
map

X[ Ao] + SHU) — [0, 0]
such that:
(PF) For every pair £,9 € S30(U),

X[EM, Ao] = X[£, Ao] + X[, Ao].
(NP) There exists a rank one projection II € L(U) such that

X[()\_)\Q)H+IU —H,)\o] =1.

The axiom (PF) is the product formula and (NP) is a normalization property for establishing the
uniqueness of x. From these two axioms one can derive the remaining properties of y; among them, that it
equals the classical algebraic multiplicity when

LN =My - K
for some compact operator K. Indeed, for every £ € C>(§2,, $o(U)), the following properties are satisfied
(see [29] for any further details):

« x[€, Ao] € NW {+00};
o x[£, Ao] =0 if and only if £(N\g) € GL(U);
o X[£, M) < o0 if and only if Ay € Alg(L).
o If U = KV, then, in any basis,
X[£, Ao] = ordy, det £(N).

o For every K € K(U) and X\ € o(K),
XMy — K, \o] = dim Ker[(A\oIpy — K)¥0)],
where v(\g) is the algebraic ascent of Ay, i.e., the minimal integer, v > 1, such that

Ker[(AoIy — K)"] = Ker[(AoIy — K)" 1.
7
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2.2. Strong positivity of the positive solutions of (1.1)

The change of variable

_A

u(z) = C(\, d, z)v(x), C\ d, ) = e zal®) z e . (2.7)

transforms the problem (1.1) into the new problem

2 2
—Av = % (1 — %) v+ fa(A x,v)v in £, (2.8)
v=20 on 012,
where
fa(\, z,0) == d PN = ¢T3\, d, )07 ) (N, d, z)v. (2.9)

Thus, if u € WOQ’p(.Q), with p > N, is a positive (resp. negative) solution of (1.1), then v provides us with a

positive (resp. negative) solution of (2.8) in WO2 "P(£2). Consequently, the next result holds. Note that, thanks
N  —

to the Rellich-Kondrachov theorem, W2P(2) < C"'~% () (see, e.g., [19], or [25, Th. 4.5)).

Theorem 2.4. Any positive solution u € Wi’ (2) of (1.1) satisfies u > 0 in the sense that u(x) > 0 for all
x € 2 and g—;j(x) < 0 for all xz € 312, where n stands for the outward unit normal to {2 along 0£2. Similarly,
any negative solution, w, satisfies w < 0 in the sense that —w > 0.

Proof. Thanks to a result of Bony [4], the Hopf maximum principle, and the boundary lemma of
Hopf-Oleinik work out in the space W2P(£2) (see, e.g., [25, Ch.1]).

Suppose u is a positive solution of (1.1). Then, the function v defined through (2.7) is a positive solution
of (2.8) and hence, for some continuous function b(z) whose expression is irrelevant here, we have that

(=A+b(z)v=0 in L. (2.10)
Consider a sufficiently large constant, w > 0, such that ¢ :=b+ w > 0 in 2. Then,
(A+cv=wv>0

and hence, since ming v = 0, it follows from the Hopf maximum principle that v cannot reach its minimum
in {2 unless it is constant. Thus, as it cannot be constant, v(x) > 0 for all z € £2. Moreover, since {2 is of class
C?, by the Hopf-Oleinik boundary lemma, %(x) < 0 for all € 9f2. Naturally, the change of variable (2.7)
preserves these properties. The fact that any negative solution is strongly negative is a direct consequence
of the positivity result that we have just proven. O

An alternative proof can be delivered through [25, Th. 7.10], since (2.10) entails v > 0 to be a principal
eigenfunction of —A + ¢ associated with the eigenvalue 0. Therefore, 0 must be the principal eigenvalue of
—A 4+ cand v > 0 by the Krein—Rutman theorem.

3. The linearization of the problem (1.1) at w = 0

Throughout this paper, we set Ry = (0,00). In this section we study the linearization of (1.1) at
(A, d,u) = (A, d,0). Note that, for every p > N, the solutions of (1.1) can be regarded as the zeros of
the nonlinear operator

F:RxRy x WoP(02) — LP(Q)
8
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defined by
SO\ d,u) = dAu+ Ma, Vu) +u+ M —ul, (A du) € R xRy x WgP(02), (3.1)
whose linearization at (A, d,u) = (A, d,0) is given by the linear operator
L\ d) = D,F(\,d,0) : R x Ry — L(WFP (), LP(2))

defined by
LN d)u = dAu+ Ma, Vu) +u, (A d,u) € R xRy x WIP(R2). (3.2)

As for some computations the presence of the gradient term Vu in (3.1) is somewhat involved, we will
perform the change of variables (2.7). To accomplish this task, we introduce the operator surfaces

TR xRy = GLW"(2), PO du=e 27,
N:R xRy — GLLP(2)), R\, d)u = ezat®)y,

and the associated linear operator
Ce LR xRy x WPP(R), €\ d,u):=(\d, B d)u).
Clearly, € is a topological isomorphisms with inverse
¢l e LR xRy x W2P(R)), €Y\ d,u) = (\d, R\ d)u),
and the operator 0 : R x Ry x WZP(£2) — LP(£2) defined by
N, d,u) == [R(A,d) oF o €](\, d,u)
is given through

~ A?af’
1d

NN, d,u) = dAu + <1 ) u+ (A= ¢T3\, d, 2)ut )¢, d, 2)u. (3.3)

By construction,

Therefore, the zero sets F~1(0) and 9171(0) are related via a linear isomorphism. Moreover, since € is a
positive operator, it preserves the positive (resp. negative) cone of WO2 P(£2). As a byproduct, the study
of the positive (resp. negative) solutions of (1.1) is equivalent to the study of the positive (resp. negative)
solutions of the problem

{ —dau = (1= 25 ) ut (V= ¢\ d 2yt ) d ) in 2, (3.4)

u=20 on 0f2.

We will chose to use either (1.1), or (3.4), by convenience.
The next result provides us with the structure of £(\, d).

Lemma 3.1. £(\,d) € $o(WSP(R2),LP(R2)) for each (A, d) € R x R
9
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Fig. 3.4. The spectrum X (£(X,d)).

Proof. Since —£(\,d) is uniformly elliptic, there exists a constant w(A,d) > 0 such that for every
v > w(A,d) and f € LP(12), the equation

(=N, d) +7)v=—dAv—Xa,Vu)+ (y—1v=f
has a unique solution v € W?(£2). In other words,
L\ d) —vJ € GL(WSP(R), LP(2)),
where J is the canonical embedding J : W (£2) < LP(£2). Since J is compact and
e\ d) = (£\, d) —7J) + 7,

£(A,d) can be expressed as the sum of an isomorphism and a compact operator. Therefore, by [20, Chap.
XV, Th. 4.1], the operator £(A, d) is Fredholm of index zero. O

Throughout this paper, given a pair of real Banach spaces (U, V') and an operator surface 9 : R x Ry —
Do (U, V), M =M(\, d), we will denote by M, the operator curve given by

My R~ Do(U, V), Ma(\) == M\, d).

By X, (91) we will denote the subset of X (9) consisting of the generalized eigenvalues associated to a
positive eigenfunction. The next result provides us with the structure of X, (£), where £(), d) is the surface
defined in (3.2), and shows that A\g € X (£) if (Ao, 0) is a bifurcation point to positive solutions of (1.1).

Theorem 3.2. X, (£) is given by
(8 ={(\d) eR xR, : 4d(1 — o1d) = X?|a|*} (3.5)

(see Fig. 3.4). Moreover, the following assertions are satisfied:

(i) For everyd < oy, 5, (L£4) = {=A1(d), \1(d)}, where

M(d) = 2 /(T = don).

~

Moreover, x[Lq, £A1(d)] = 1.

10
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(ii) Suppose d =o', Then, X, (£4) = {0} and x[L4,0] = 2.
(iil) 2(Lq) =0 ifd > o7 .
(iv) Ao € 24 (L) if (Mo, 0) 4s a bifurcation point to positive solutions of (1.1).

Proof. Consider the operator surfaces B and R defined above. Since B (A, d) and R(\, d) are topological
isomorphisms for each (A, d) € R x Ry, they are in particular Fredholm of index zero, i.e.,

P, d) € GLWP(2)) € 2o(W5(2)), R(\,d) € GL(LP(12)) C Do(LP(2)).

As the composition of an isomorphism and a Fredholm operator of index zero is again a Fredholm operator
of index zero, it follows that

R\, d) o £\, d) o B(\, d) € o(WZP(2), LP(2))
for all (A,d) € R x R,. It is easily seen that
RO d) o £ d) o B du = d [Au+ 4 (1= 255 ) o] (3.6)
Thus, since B(A,d) € GL(WFP(R2)) and R(\, d) € GL(LP(R2)), it is apparent that
S(8) =Y (RoLoP).
Hence, it suffices to find out Xy (R o £0oP). From (3.6), it is easily seen that (A,d) € Xy (R o LoP) if and

only if -
=Xy = o (3.7)

because o7 is the unique principal eigenvalue of —A. Finally, note that (3.5) is a direct consequence of (3.7).
It remains to show the assertions (i)-(iv). Suppose d < o7 *. Then, by (3.5), it is obvious that X (£,4) =
{=X1(d), A1(d)}. To compute x[L4, £A1(d)], we use the product formula. According to it,

BN

X[Ra 0 La o Pa, £A1(d)] = x[Ra, £A1(d)] + x[La, TA1(d)] + X [Ba, £A1(d)]-

On the other hand, since P(\,d) € GL(W P (R2)) and R(\,d) € GL(LP(Q)) for all (\,d) € R x Ry,
necessarily

X[Ba, £A1(d)] =0, x[Ra, £A1(d)] = 0.
Hence,

X[Sd, :t)\l(d)] = X[md ¢} Sd ] ‘I;d7 :t)\l(d)]
To find out x[:Rg0L40Ba, £A1(d)], we denote & := 9o LoP. Let ¢y € W (£2) be a principal eigenfunction
associated with o1. Then, by a direct computation, we find that
N(Sal£Mi(d)] = span o), RISu(EM ()] = {F € (@) [ fon da =0}
Q
Moreover, differentiating with respect to A, yields

Wi onrd)u =

A1 (d)]af®

5 W ue WP ().

Thus, the transversality condition

%(im(d)) (N[Ga(£M(d)]) & R[Sa(£N(d))] = LP(£2)

11
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holds. This entails +X;(d) to be 1-transversal eigenvalues. Therefore,
X[€a, £M1(d)] = x[6a, £A1(d)] = dim N[S4(+A1(d))] = 1,

which ends the proof of Part (i).
Now, suppose d = oy '. Then, by (3.7), X(£4) = {0}. Again,

N[G4(0)] = spanlga],  RIS4(0)] = {f € L*(2) /Q Foo de = 0.

However, differentiating with respect to A, on this occasion, we find that

dSy - 1d®,, o 20
o Ou=0 g Q=T ue W (@),
Thus, setting )
o _ de _ 1 d Gd
Gd’o = Gd(o), Gd,l = W(O), d,2 = 21 dAQ ( )a

the following transversality condition holds
G42(N[Gao] N N[Ga,1]) © 641(N[Gyo]) ® R[Sa0] = LP (),

because
N[&a,0] N N[&a,1] = spanfepo].

Consequently, A = 0 is a 2-transversal eigenvalue of &, and, due to (2.3),
X[Gd, 0] = 2dim 6d72(N[Gd,o] N N[gd,l]) + dim Gd,l(N[Gd,O]) = 2.

Hence, x[£4,0] = x[64,0] = 2 as stated. This proves Part (ii). Part (iii) follows directly from (3.7).
To show Part (iv), let {(An, un)}nen be a sequence of positive solutions of (3.4) such that

lim A\, =Xy and lim u, =0 in C({2).
n—oo

n—oo
Then, setting 1, := Hui%’ n > 1, we have that, for every n > 1,
2 2
—dipn = (~2)71 (1= 2255 ) o+ O = €72y, )l 2)C A s @)t | (3.8)

in £2. By a standard compactness argument, some subsequence of 1, must approximate some 1y > 0, which
is an eigenfunction of £, associated to Ag. Therefore, \g € X (£4). O

By a rather simple manipulation, it is easily seen that X (£) is the ellipse

A2 d=? _ — 1 1 1
et =L asEE A

which has been plotted in Fig. 3.4.

4. Local structure of the solution set when d < o, !

In this section, we study the local structure of the solution set F~1(0) in a neighborhood
(A d,u) = (£M1(d),d,0) € R x Ry x WEP(2)

when d < o;', where we are setting A\ (o ') = 0. This section is divided into two subsections to treat,

separately, the cases when d < o] Vand d = oy L
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4.1. The regular case when d < ofl

Since £A1(d) are simple eigenvalues of the curve £4(\) with x[£4, £A1(d)] = 1, the theorem of Crandall
and Rabinowitz [9,10] provides us with the local estructure of §~1(0). Indeed, setting

Y ={felLP() :/ feo dz = 0},
Q
where ¢ is a principal eigenfunction associated to o1, and
FaOhu) = dAu + Ma, Vu) + u + M —u?, (A u) € Rx WP (), (4.1)

the next result is a direct consequence of [9,10].

Theorem 4.1. There exist € > 0 and two analytic maps
At i (—e,6) = R, Uyt : (—¢,e) =Y,
such that A1 (0) = £A1(d), Ux(0) = 0, and, for every s € (—¢,¢),

Fa(A£(s),ux(s)) =0, ux(s) = s(po+Ux(s)).

Moreover, there exists p > 0 such that, whenever Fq(A,u) = 0 with (A, u) € B,(£M 1(d),0), either u =0, or
(A u) = (A(8),ux(s)) for some s € (—¢,¢).

Consequently, for every d < o', the set F1(0) \ {(X\,0)}, A ~ £\, (d), consists of two analytic curves
(A(s),u(s)) = (M (d) + O(1),s¢0 + O(s)) ass—0

bifurcating from (+A;(d),d,0) € R x WP(82), respectively. These solutions are positive if s > 0, and
negative if s < 0.
Actually, by applying the implicit function theorem to the operator

s8N d s(po+y)) i s #£0,
G\ dyy, s) = { £\, d) (o + ) if =0,

at (\,d,y,s) = (£ 1(d),d,0,0), it becomes apparent that F~!(0) consists of two analytic bi-dimensional
manifolds bifurcating from u = 0 along the curves A = +£X;(d), d > 0, d ~ 0.

4.2. The degenerate case when d = 01_1

This case is far more sophisticated, since x[£4,0] = 2 and hence the theorem of Crandall and
Rabinowitz [9,10] cannot be applied. Instead, to ascertain the local structure of F~1(0) in this case, we
will use some abstract results on analytic bifurcation theory, going back to [30] and the references there in,

valid for two arbitrary real Banach spaces, U and V', with U C V', and any analytic operator § € H(Rx U, V)
satisfying the following assumptions:

(F1) §(,0) = 0 for all A € R.
(F2) D,F(\,0) € &(U, V) for all A € R.
(F3) Ao € X(£) is an isolated eigenvalue such that
N[Dus(A07 O)] = span[(po},

for some o € U\{0}.

13
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As usual, we denote £()\) := D, F(X,0) for all A € R. As we are assuming § to be analytic, we can expand
it in the form

Fhu)=LNu+ > NFjx(u),

Jj=0, k>2
where F} ;. : U — V are homogeneous polynomials of degree k > 2 with symmetric polar forms

F_](k) . Uk -V, Fj,k(u) = _Fj(k)(u7 .. ,U).

See [21, Chap. 26] for the definition of this concepts. Throughout this section, {-,-) : V' x V' — R denotes
the duality pairing between V' and its topological dual space V'. By (F3), we can normalize {pq, ¢§) = 1,
where f > 0 spans the null space of the adjoint operator £§ : V' — U’. Subsequently, we consider the
projection operators

P:V = N[&], P):=(v,95)¢0 Q:V — R[L],

and identify R x N[£o] with R? via the isomorphism T'(\, z¢0) = (), z). By a standard Lyapunov—Schmidt
reduction (see [31] and [24, Ch. 3], if necessary), there exist an open neighborhood U of ()\g,0) in R?, an
analytic map Y : T~1(U) — V, and a finite dimensional operator

&:UCR? SR, B\ ) = Iy — Q)F(\, o + V(A x¢o)),

such that (A, z) € U satisfies (A, z) = 0 if and only if (\,u) = (A, 2@ + V(A zo)) satisfies F(A,u) = 0.
Actually, there exists an open neighborhood V of (A\g,0) in R x U such that

Y:FHO)NY — & H0)NU,  (N\u) = (A (u,0f)),
T NU — FTHO)NY, (N x) = (N 200 + V(N z00)),

are analytic and mutual inverses. Therefore, the analytical structures of F=1(0)NV and &~1(0) N coincide.
In particular, (A, z) is a regular point of &, i.e., D, & (A, x) # 0, if and only if, (A, zpo+IV (A, z¢p)) is a regular
point of §, i.e.,

DS\ zpo+ V(N xpp)) € GL(U, V).

In other words, both the regular and the singular points are preserved.

Without loss of generality, we can assume that (A\g,0) = (0,0). In this way, the infinite dimensional
problem can be reduced, locally, to the finite dimensional problem &(\, x) = 0, with (\,z) € U C R2. Since
& is analytic and &(X,0) = 0, it admits the local expansion

S(\az)= Y ayNa?,  (A\x)~(0,0),

i>0, j>1

for certain coefficients a;; € R, (,7) € Zi, j # 0. Thus, there exists an analytic function ¢ : «/ — R such
that
B\ z)==z Z aij)\ixj_l =zg(\, ), (A, z) ~ (0,0).
i>0, j>1

According to [30, Sect. 6], it follows from (F3) that
1< x=x[£,0] =ordy—o D, ®(A,0) = ordy—g g(}A,0). (4.2)
Hence, g : Y — R can be expanded in the form
g\ x) = Z C NVt + Z Cj N ", (4.3)
v=0 7.k

14
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where (49,j0) = (0,x), x > j1 > -+ > Js, 0 < €1 < --- < {4, and the summation of the second sum is
taken only on the points (k, j) lying above the polygonal line joining (0,x), (¢1,41), - -+, (¢s,js), or on the
line j = js. The polygonal line joining the points (0, x), (¢1,71), - -+, (¢s,Js) is usually called the Newton’s
polygon of g. Subsequently, we will use the next result of Kielhofer [23]. It is rewritten with our own notations
here. Actually, the last assertion is based on [29, Th. 4.3.3].

Theorem 4.2. Let § : R x U — V be an analytic operator satisfying hypothesis (F1)—(F3) with
x[£,0] = x > 1 and having the expansion

FOu) = LN u+ > NFj, o1(u) + > NFjp(u), NER, uel, (4.4)
v=1 gk

where x > j1 > -+ > js, 0 < {1 < -+ < Ly, and the summation of the second sum is taken on points (k,j)
lying above the polygonal line joining (0,x), (¢1,71), -+, (¢s,Js), or on the line j = js. If, in addition,

Hu = <Fj(fu+1)(8007~”7§00)7§03>7&07 V:]'?"‘?S’

then the Newton’s polygon associated to the reduced map g : U — R defined by (4.3) is given by the polygonal
line joining the points (0,x), (¢1,71), -+, (s, js). Furthermore, the corresponding coefficients are precisely
the numbers

C,=H,, v=1,...,s,

and Cy = pX)(0), where p(\) is the perturbed eigenvalue from 0 of the operator £()).

Next, we apply Theorem 4.2 with d = o7 * to the operator F4 : R x WP (2) — LP(12) defined by
FaOhu) = dAu + Ma, Vu) + u + M —u?, (A u) € Rx WeP(Q).

Since ¢ is integer, §q4 is analytic. Moreover, by our previous analysis, it satisfies hypothesis (F1)-(F3) with
Ao = 0 and g the principal eigenfunction associated to o;. As in this setting V' = LP({2), we have that
V' = LPI(Q), where p’ is the Holder conjugate of p, i.e.,

1 1

p p

Thus, the duality pairing (-,-)y,y~ is given through

(F,9) = (Fr ghvr = /Q fodz,  (f.9) € LP(2) x L¥ (£2).

In this way, we can choose ¢ = ¢¢. In order to apply Theorem 4.2, it is appropriate to express the operator
Fq in the form
Fa\u) = La(Nu+ AFro(u) + Fog(u), (A u) € R x WP(02),

where
La(Nu = dAu + Xa, Vu) + u, (A u) € R x WeP(Q), (4.5)
and
Fio(u) =u?  Fygu)=—ul, ue WP (),

which is consistent with the notations used in the expansion (4.4).
According to Theorem 3.2 (ii), x[£4,0] = 2. Thus, Theorem 4.2 implies that

g\, ) = CoX? + (93, po)z A — (0, po)x?™ + Z CipNzF, (A1) €U, (4.6)
jik
15
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(0,2)

(q-1,0 ¢

Fig. 4.5. Newton diagram of g(X\, z).

where the summation of the second sum is only over points (k, j) lying above the polygonal with vertices
(0,2), (1,1) and (¢ — 1,0). The Newton’s polygon of g is the polygonal line joining the points (0, 2), (1,1)
and (¢ — 1,0). It is represented in Fig. 4.5.

The next result follows readily from the last assertion of Theorem 4.2.

_la?

Lemma 4.3. The first coefficient of g(\, x) is given by Co = — 5.

Proof. Indeed, since x[€4,0] = 2, by Theorem 4.2, the coefficient Cy is given by p(*(0) where p(\) is the
perturbation of the zero eigenvalue of £4()\). By definition, p(\) satisfies the eigenvalue problem

dAu + Xa, Vu) +u = p(Au in £, (@7)
u=20 on 02. ‘
As the change of variables u(z) = e‘ﬁ“‘””)v(aﬂ), x € {2, transforms (4.7) into
Av + [é (1 - 7)‘1;'2) - %p()\)] v=20 in 2,
v=20 on 042,
and we are assuming that 1/d = o1, it becomes apparent that p(A) = —’\24‘7?2. Therefore, Cy = p(0) =
2
f%. This ends the proof. [
Substituting the value Cy = —% in (4.6), and owing the Newton—Puiseux algorithm, we obtain the

following asymptotic expansion of solutions of g(A,2) = 0 in a neighborhood of (0, 0),

_ _la? s
z(A) = 20 e0) A+O0(N\) as A —0, 15
2(\) = £ (@3”@) 7 7y FOMTZ) as ALO )
(p@:#0) ’
if ¢ is even, and
— __laf
z(\) = Qd(v(%,wo))\ +O0(\) as A—0, 0o

1
2 -2  _1_ _1_
() = (2) 7T ATT L 00T) as A0,
if ¢ is odd. By Theorem 3.2(ii), x[£4,0] = 2. Thus, it follows from (4.2) that
X[£4,0] = ordx=o g(\,0) = 2.

Consequently, by the Weierstrass—-Malgrange preparation theorem [5, Th. 5.3.1], shortening the neighbor-
hood U = Uy, x U, C R?, if necessary, there exists an analytic function ¢ : i/ — R such that ¢(0,0) # 0, plus
X = 2 analytic functions, ¢; : U, — R, ¢;(0) =0, j = 1,2, such that
g\ z) =c(\z) [N+ e (@)X + eo(w)] -
16
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x T
. _Z
| |
q>5 isodd q >4 iseven

Fig. 4.6. ¢~ '(0) in a neighborhood of (0, 0).

Hence for each x € U, the equation g(A,2) = 0 has, at most, two solutions. This shows that indeed, the
solutions (4.8) and (4.9), are the unique ones of g(\,z) = 0 in a neighborhood of (0,0). Fig. 4.6 represents
these branches in each of these cases.

It should be noted that if ¢ = 3, the Newton diagram illustrated in Fig. 4.5 becomes an straight line.
Consequently, the Newton—Puiseux algorithm does not provide, in general, with two branches of solutions.
Actually, a direct application of the Newton—Puiseux algorithm shows that the number of branches depends
on the real solutions y of the polynomial

Jaf?

(0, wo)y® — (05, o)y + o =0

As the special case ¢ = 3 does not follow the patterns of the general case ¢ > 4, it has been left outside the
general scope of this paper. Thus, throughout the rest of this paper we assume that ¢ > 4.

The following result establishes that in a neighborhood of (A,u) = (0,0) the solutions of (1.1), (A, u),
must be either positive or negative. By Theorem 2.4, this entails u > 0, or u < 0.

Proposition 4.4. There exists ¢ > 0 such that either u > 0, or —u > 0, for every (\,u) € §;(0) such
that |\ + ||[ullw2p < €. In other words, there exists a neighborhood of (0,0) in R x WP (), U, such that
351(0) NU consists of positive, or negative, solutions.

Proof. Let {(An,un)}nen C &' (0) be a sequence of solutions such that

lim (A, u,) = (0,0) in R x WZP(02). (4.10)

n—oo

Since WP(2) — Cl’k%(ﬁ), (4.10) holds in R x C*(£2). Performing the change of variables
vp () = eﬁ“’mun(x), reNCRY,
it is apparent that, for every n > 1,

Un = (_A)_l [é (1 o Aiﬁll;‘z) Un + fd()‘nvx’vn)vn} )

where, setting ((\, d,x) := e—ﬁ(u,:@’ we have denoted

faln z,v) = d Y\ = ¢T3\, d, )07 2) (N, d, x)v

(see (3.4), if necessary). Then, the functions v, := Toct» 1 = 1, satisfy [l¥nlloc = 1 and
2 2
n = (_A)_l [é (1 - %) n + fd()\nyxvvn)wn (4'11)

for all n > 1. On the other hand, the sequence

2 2
gn = é (1 - Ani;' )wn +fd()\n’-ravn)wna nz 1’

17
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is bounded in C(£2). Thus, by the compactness of (—A)~!, there exists ¢» € C({2) such that, along some
subsequence, relabeled by n > 1, lim,, ;o ¥, = ¢ in C(£2). By (4.10),

lim fa(An, 2, v,) = 0.

n—o0

Thus, letting n — co in (4.11), yields ¢ = d=!(—A)~4). Therefore, since o1 = d~1, by the simplicity of o7,
it is apparent that 1) = +pg. Hence, either ¢ > 0, or ¢ < 0 (i.e., —t > 0). This entails that either v, > 0,
or v, < 0, for sufficiently large n, and ends the proof. [

In the previous Lyapunov—Schmidt reduction we have denoted = = (u, ¢g). Thus,

z = (u, o) Z/ ugpo dx.
Q
Thus, by Proposition 4.4, the solutions of the bifurcation equation
Ga(\,z) = (I — Q)Fa(\, xwo + V(N 290)) =0

are positive for x > 0 and negative for z < 0. Therefore, according to the asymptotic expansions (4.8)
and (4.9), when ¢ is even, for A > 0 there emanate from (0,0) two branches of positive solutions and one
branch of negative solutions, while another branch of negative solutions emanates for A < 0, as illustrated
by Fig. 4.6. Similarly, when ¢ is odd, for A > 0 there emanate from (0,0) two branches of positive solutions,
while there emanate another two branches of negative solutions for A < 0, as illustrated by Fig. 4.6. This

concludes the analysis of the local structure of the solution set when d = o7 L

5. A priori bounds for the positive solutions

In this section we establish the existence of a priori bounds for the positive solutions of (1.1). For any
given d > 0, we will denote by .#; the set of positive solutions of (1.1), i.e.,

Fy=1{\u) €F;10): u>0} CRx WFP(R2).

The next result shows the existence of a priori bounds regardless the size of d > 0.

Lemma 5.1.  There exists a real valued function C : R — (0,400), such that, for every d > 0 and
(\u) € Ly,
if A<0,

1
com<d 5.1
Jullo < <>_{M12+1, it A>0. oy

Proof. Let (\,u) € #; be a positive solution of (1.1), and xg € {2 such that u(zg) = ||ullc. Since
u € WiP(2) with p > N, the maximum principle of Bony [4] entails that Vu(zg) = 0 and Au(zo) < 0.
Thus,

0 < —dAu(zo) = Ma, Vu(zo)) + u(zo) + Au? (o) — u?(20)

= u(z0) + Mu?(z0) — u?(20).
Consequently, since u(zg) > 0, it follows that

u?™(z0) — Au(zo) — 1 <0, (5.2)

18
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Equivalently, P(u(zg)) < 0, where P(\,2) = 2971 — Xz — 1, 2 > 0. Since P(A\,0) = —1 < 0 and
lim, ,o P(A,z) = 400, the function P(),:) possesses a positive zero for every A € R. Moreover, this
positive zero must be unique due to the convexity of P(A,-), which follows from the inequality

d*P -
w()\,z) =(q—1)(g—2)27%>0, 2z>0,

since ¢ > 4. Let C(\) > 0 be the unique positive zero of P(),-) for each A € R. According to (5.2),
u(zo) < C(N). )
Finally, setting r(A) := A7=2 + 1, we have that, for every A > 0,
q—1

P(/\,r(A)):(Aql?+1)‘1‘1—)\(/\412+1)—1:Z<qi1) N = B

i=0
1 q—3 1 , q—3 g—1 )
_ (49— q— T3 N — (o - 7=
_<q2>x+;( ) )qu A= (q 2)A+;< . )quzo
and hence C(A) < r(A). This ends the proof if A > 0. When A < 0, we have that

dP
P\ 1) =-X>0, E(A,z) =(q—1)z72 = X>0,

for all z > 0 and A < 0. Thus, C(A\) < 1if A < 0. This ends the proof. O

The next result provides us with a necessary condition for the existence of positive solutions when
d>ort.

Lemma 5.2. Suppose d > Ufl and (1.1) admits a positive solution. Then, A > 0.

Proof. Let (A, u) € % Then, multiplying the differential equation by w and integrating yields

N
0
/(_dAU)Udl’:)\Zai/ lud$+/u2dx+)\/u3d$—/uq+1dx.
Q i=1 2 Ox; n n 0

Thus, integrating by parts in {2, it follows from the Courant characterization of o7 that

dal/ uzdacgd/ |Vu|2da::/ uzdx—&-/()\—uq_Q)ugdx.
e} Q Q Q

Consequently, since 1 < doy, it is apparent that

Og(dal—l)/

u? dr < / X —u??)u? dz,
e} e}

and therefore, A > 0. This concludes the proof. [

The following result shows that P (%) is bounded, where P, stands for the A-projection operator defined
by Pa(\,u) = X for all A € R and u € Wi P(£2). Part (i) straightens Lemma 5.2.
Lemma 5.3. The following assertions are true:

(i) Suppose d < oy*. Then, there exists a constant Co(d) > 0 such that

— ZVd(1—01d) <A< Co(d)  for all (A u) € S, (5.3)
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(ii) Suppose d > oy '. Then, there are two constants, 0 < Cy(d) < Cy(d), such that
Ci(d) <A< Cy(d)  forall (M u) € Sy (5.4)

Moreover, C1(d),Ca(d) — 0o as d — oo.

Proof. Let (A\,u) € .%;. Then, v(z) = eﬁ“’”u(x), x € 2, satisfies v = 0 on 92 and

—av =1 (1= 2B v+ fhm 0o in @, (5.5)

where f; is defined as in the proof of Proposition 4.4. Since v > 0, by the uniqueness of the principal
eigenvalue it is apparent that

o1 [=A = fa(\z,v), 2] =1 (1 _ %) . (5.6)
Suppose that d < 01_1 and A > 0. Then, by Lemma 5.1,
o\ z,0) <dTIACN d,z)v = d P hu < d7IAC(N).
Thus, by the monotonicity of the principal eigenvalue with respect to the potential,
L(-2EE) >0 —amac),
Therefore, rearranging terms yields

POy =2l 1A <d - oy (5.7)

Let Ag be the set of A > 0 satisfying (5.7). As I'(A) < 0 for sufficiently small A > 0, there exists £ > 0 such
that [0,e) C Aq4. On the other hand, limyo I'(A) = 400. This shows Part (i) when A > 0. Now, suppose
A < 0. Then, fq(\ z,v) <0 and, hence, (5.6) implies that

1 )\2|u‘2
E(]-_ Ad 201,

which provides us with the lower estimate of (5.3) and ends the proof Part (i).

Now, suppose d > o 1 According to Lemma 5.2, (1.1) cannot admit a positive solution if A < 0.
Thus, we can assume A > 0. By adapting the argument of the proof of Part (i), it becomes apparent that
I'(A\) <dt—o; <0if (\u) € 7, As above, let A4 denote the set of A > 0 satisfying I'(\) < d~! — 3.
If A; = 0, then the conclusion follows by choosing C4(d) = CQTW) = d > 0. Suppose A, is non-empty. In
such case, since I'(A) 1 0 as A } 0, (0,e) N Ag = @ for some € > 0. Thus, min A4 > 0 and we can choose
C1(d) = min A4. On the other hand, as limyjoo I'(A\) = +00 and d~1 — o1 < 0, it follows that max A4 < oo
and we choose C3(d) = max Aq. This shows (5.4). Since C;(d), Ca(d) € Aq, it follows that

0<ord—1<Ci(d)[l+Ci(d)T2], ie{l,2).
This shows Cy(d), Co(d) — oo as d — co. The proof is complete. O

Subsequently, for any given compact interval J of R, we denote by .#;(J) the set of positive solutions
(Mu) € Sy with A € J. The next result provides us with uniform a priori bounds for these subsets of
R x WZP(02).

Theorem 5.4. For any compact interval J C R, there is a constant C(J,d) > 0 such that
sup  |lullwze, < C(J,d). (5.8)

(Au)eFy(J)
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Proof. Let J be a compact interval of R and pick (A, u) € #(J). We already know that the function
v(x) = eﬁ“’wu(x), x € (2, satisfies v = 0 on 92 and (5.5). By the invertibility of the operator
—A : WZP(02) — LP(R2), based on a classical inequality of Calderén and Zygmund [6] (see [19, Ch. 9],
if necessary), there exists a constant M > 0, depending only on p and N (the spatial dimension), such that

2112
lollwas < M (4 1= 2555 oller + 17ah 2, v)llin ) - (5.9)

Since J and {2 are compact, the function e3a(®e) i uniformly bounded on (A, z) € J x 2 for each d > 0.
Subsequently, we set

BE(d,J)= max e2®®  L(J):=max |\
(A\z)ETX R reJ

Then, thanks to Lemma 5.1, we have that
o]l oo < B(d, )llullse < B(d, JYINTZ +1) < B(d, J)(LI)TZ +1), (5.10)
Thus, by the definition of fy, there exists a constant F'(d,.J) > 0 such that
[fa(X, 2, v)vlloe < F(d, J). (5.11)

Combining (5.9) with (5.10) and (5.11), the estimate (5.8) readily follows. O

6. A priori bounds for the negative solutions

To get a priori bounds for the negative solutions is a more delicate issue, as it depends on whether the
exponent ¢ > 4 is odd or even. Actually, the global structure of the set of negative solutions of (1.1) changes,
very substantially, in these two cases, as it will become apparent later. As a consequence, these two cases
will be treated separately.

6.1. ¢ > 4 Is an odd integer

For any given d > 0, we will denote by .45 the set of negative solutions of (1.1), i.e.,
Mg = {(\u) €F;10): u< 0} CRx WP(RQ).

Setting v = —u, it becomes apparent that the negative solutions of (1.1) are given by the positive solutions

of
{ —dAv = Ma, Vv) + v — Av? — 04 in 2,

v=>0 on 0f2. (6.1)

Based on the fact that, much like in (1.1), the dominant term at v = +o00 is —v?, the set of positive solutions
of (6.1) satisfies similar properties as the set of positive solutions of (1.1) already analyzed in Section 5. As the
proofs can be easily adapted, to avoid repetitions we will restrict ourselves to state the corresponding results
without proofs. The next results provide us with counterparts of Lemmas 5.1, 5.2, 5.3 and Theorem 5.4,
respectively.

Lemma 6.1. There exists a real valued function C : R — (0, +00) such that, for everyd > 0 and (A, u) € Ay,

1 .
lulle <CN) < 1A ASO, (6.2)
1 if A>0.

Lemma 6.2. A< 0ifd>o;" and (1.1) admits a negative solution.
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Lemma 6.3. The following assertions are true:

(i) Suppose d < oy'. Then, there exists a constant Co(d) > 0 such that

—Co(d) <A< ZVd(1 —o1d)  forall (A u) € Ag. (6.3)

la]
(ii) Suppose d > o' Then, there are two constants, Cy(d) < Cy(d) < 0, such that

Ci(d) <A< Co(d)  forall (\u) € A. (6.4)

Moreover, Cy(d), Co(d) — —o0 as d — oo. In particular, (1.1) cannot admit a negative solution if d > oy '

and X\ > 0.

Theorem 6.4. For any compact interval J C R, there is a constant C(J,d) > 0 such that

sup lullw2.r < C(J,d). (6.5)
ANuw)eANg(J)

6.2. ¢ >4 Is an even integer

In such case, the negative solutions of (1.1) are given through the change of variable v = —u from the
positive solutions of

— = — 2 q i
{ dAv = Xa, Vv) +v — v 4o in £, (6.6)

v=20 on 02,
which is a much more sophisticated problem than Problem (6.1), as it is of superlinear type with dominant
term at v = +oo given by v?. Thus, when N > 3, the existence of a priori bounds relays on the size of ¢ with
respect to the critical exponent %, much like in the classical papers of Gidas and Spruck [17,18], whose
finding were adapted to study a general class of superlinear indefinite problems by Berestycki, Capuzzo-
Dolcetta and Nirenberg [2] and Amann and Lépez-Gémez [1]. Yet (6.6) lies outside the general scope of
these papers.

Note that the change of variable
v(z) = dyp)w(x), (N dya)=e 2 g0

transforms the problem (6.6) into

_ _ 1 ~ A%a? N g—1/2 —1,q—1,,q :
{ Awfd(l 1 )w A Cw* +d T w in {2, (6.7)

w=0 on 0f2,

where ¢ = ((\,d,x). Since, the differential equation of (6.7) cannot be expressed in the form —Aw =
pw + a(x)w? for some continuous function a(z), our next results are not a direct consequence of the findings
of [1,2,17,18]. However, the blowing-up techniques introduced by Gidas and Spruck [17,18] can be adapted
to get them, like in [1,2].

As in Section 6.1, for any given compact subinterval J C R, .45(.J) stands for the set of negative solutions
of (1.1) with A € J.

Theorem 6.5. Suppose g > 4 is an even integer and either N = 1,2, or N > 3 and q < % Then, for
every compact interval J C R, there exists a constant C(J,d) such that

sup fullp2p < C(J,d).
(Aw)eta()
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Theorem 6.5 provides us with a priori bounds for the negative solutions of (1.1) only when N = 1,2, or
N = 3 and g = 4, though it is an optimal result because it is well known that the a priori bounds are lost
when N >3 and ¢ > 3%2 (see, e.g., [1] and its list of references).

Proof. Fix a compact interval J C R. By elliptic regularity, arguing as in the proof of Theorem 5.4, it
suffices to show the existence of a constant C(J,d) such that

sup  |lufleo < C(J,d). (6.8)

(A uw)eAg(J)

On the contrary, suppose that (6.8) fails. Then, there exist a sequence {(An,wy)}nen of positive solutions
of (6.7) in J x WZP(£2) and a sequence {z, }nen in 2 such that

n—oo

Since {2 is compact, there exists a subsequence of {&n }nen, still labeled by n, such that

lim z, = 2o € 2. (6.10)

n— oo

Since 2 = 2 U N, either zo € 2, or zoo € .

Case 1: Suppose that =, € 2. Then, for every n > 1, we consider the re-scaled function

1—q 1

Up = M?71, Wy, <u§<q_2) (x — xn)> = vl P wy(2), x € {2, (6.11)

which differs from the classical one of Gidas and Spruck [17,18]. By (6.11), regardless the domain of definition
of W, we have that, for every n > 1,
1

_1_ _1_
100 |loe = Wn(0) = v 2wy (z,) = v > M, =1 (6.12)

Moreover, by (6.9) and (6.11), lim,, o 5 = 0. To estimate the domain of definition of w,,, pick any ¢ > 0
satisfying
0<e< mier dist(zy,, 012)
ne

and let ny € N be an integer such that
|dist(2 oo, 002) — dist(z,,002)] < e for all n > ng. (6.13)

g—1

m, one has that

Note that, setting, s :=

1

Wy, (v, (= 20)) =il wa (), x € .
Thus, for every n > 1, the domain of definition of @, is the set
D(wn) = v, (—n + £2),
because {2 is the domain of definition of w,. We claim that, setting
_ dist(200.092) s

Pp = T, n>1,

one has that B,, = B,,(0) C D(w,) for all n > ng, where Bp is the ball of radius R > 0 centered at 0.
Indeed, by choice of ¢, it follows from (6.13) that, for every n > ny,

diSt(ﬁ;(ha‘Q) < e-‘rdist(;n,ﬁﬂ) < dist(xT“a.Q)
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Thus, for every y € B,,, with n > ng, we have that

lyll < pn = Lt D)y = Gist(,,, DQ)v;, .

Hence ||viy|l < dist(zy,082), and so x, + viy € £2, for all n > ng. Therefore,
B,, C D(wy,), n > ng. (6.14)

Moreover, since lim,,_, o, v, = 0, one has that lim,,_, o, p, = 400 and hence, for every R > 0 one can enlarge
ng, if necessary, so that R < p,, and hence Br C D(,,), for all n > ng. By differentiating and substituting
in (6.7), it becomes apparent that, for any given R > 0 and n > ng, w, € W?P?(Bg) and it solves

dAT, = i (1- *%1';'2) B — VpAnCa@2 + €318 (6.15)
in Bg, point-wise almost everywhere, where
Cn = C( A, dy 2 + Voy).
According to (6.12), we have that
l@nlle(zp) = @n(0) =1 for all n > n.
Therefore, using the LP-theory as in the proof of Theorem 5.4, there exists a constant C = C(J, d) such that
lon |2, < C(J,d) for all n > ng,

where we are denoting by C(J, d) any constant depending on d and J. Consequently, the sequence {1y, } n>n,
nfn>

is uniformly bounded in W2?(Bg). Thus, by the compactness of the imbedding W2?(Bg) < C"'~ 7 (Bg),
we can extract a subsequence, {p, }ren, such that, for some w € W?2P(Bg),

lim w,, =

i, Ty =
weakly in W2P(Bg) and strongly in W1P(Bg) and in Cl’l_%(BR). Since Wy, (0) = 1 for all & € N, it
follows that w(0) = 1. As J is compact, without loss of generality, we can assume that, for some Ao, € J,
limg 00 An, = Aoo- Thus, letting k& — oo in (6.15) at n = ny, each side converges weakly in L?(Bg) and
strongly in C*(Bg) to

—dAw = (T (Ao, d, oo )w?.

As R > 0 is arbitrary, through a further diagonal argument, we can assume that w is actually defined in
the whole of RV, Since w € C*(RY), by elliptic regularity, w € C?>(RY). Moreover, by construction, w > 0,
w(0) = 1 and |Jw|/s < 1. Consequently, since (971 (\y,d, 7o) > 0, this contradicts [17, Th. 1.1], because
we are assuming that either N =1,2, or N =3 and ¢ = 4. So, ¢ < %

Case 2: Suppose that z,, € 02. By a change of variable depending only on {2, we can assume that x, = 0
and there exists a neighborhood of x4, = 0 in RY, %, such that

U NoR ={x=(x1,...,2Nn) E% : xn =0},

(6.16)
wN2={x=(r1,...,2N) EX : zn >0}

As in the proof of Case 1, for every n > 1, we consider the re-scaled function defined through (6.11). Similarly,

setting
g—1 . _
§i= ———, Op, = dist(xn, 002) = xn N, Tn =V, "On, n>1,
2(q—2) ( )
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the domain of definition of 10, D(w,), consists of the set of points y € RY such that x = z,, + vy € £.
In particular, it contains the set of points y € RY such that z, + 13y € 2 N % . Hence, it follows that the
condition ||y|| < 7, together with

TN +Vpyn >0 (6.17)

entails z,, + vy € 2 N % and hence, y € D(w,,). As (6.17) can be equivalently expressed as

—s —s
YN > —V, Tn, N = "V, 6n = —Tn,

it becomes apparent that
D () ={y € By, : yn = —rn} C D(0y,) for all n > 1. (6.18)

Therefore, 0, is well defined in 2(w,,) for all n > 1.
As in Case, 1, we have that

1

lim v, =0, 1@ (W)]lc(@(wn)) = n(0) = v > M, = 1. (6.19)

n—oo

Similarly, @, € W2P?(2(1,,)) and it satisfies (6.15) in 2(w,,).
By elliptic regularity, thanks to (6.15) and (6.19), there exists a constant C' > 0 such that

HVUN)an(@(u;n)) <C forall n>1.
Thus, the mean value theorem implies that, for every n > 1,
|’Lf1n(0) - ’lI)n(O, ..., 0, —’I“n)| < ||V1Dn||c(@(mn))rn <Cry. (6.20)

On the other hand, by (6.11) and (6.16), we find that

1

W (0,...,0,—1,) = vy zwn(xn71,...,xn71\;_1,0) =0,

and, thanks to (6.19), @, (0) = 1. Therefore, substituting in (6.20) yields 1 < C'r, for all n > 1. In other
words, the sequence {r,},en is separated away from zero.

There are two possibilities: Either lim,, ., 7, = 400, or there exists a subsequence, labeled again by n,
such that lim,,_,o 7, = r for some r > 0.

Suppose lim,, oo 7, = +00. Then, for every R > 0, there exists ny € N such that R < r, for all n > n;.
In this case, since 2 (w,) approximates RY as n — oo, adapting the argument of the last part of the proof
of Case 1, we can again reach a contradiction with Theorem 1.1 of Gidas and Spruck [17].

Suppose that lim,,_, o 7, = r for some r > 0. Then, setting

H::{yERN: yn > —r},

and adapting the proof of the Case 1, we get the existence of a function w € C?(H) such that 0 < w < 1,
w(0) =1, w =0 on OH, and
—dAw = (T (Ao, d, 2oo)w?  in H.

Since ¢ < ££2 and (77 (Aso, d, 2o0) > 0, this contradicts [18, Th. 1.3] and ends the proof. O
We end this section with a result that will be useful later.

Lemma 6.6. The problem (1.1) cannot admit a negative solution if d < oy ' and X\ = 0.
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Proof. As the negative solutions of (1.1) are given by the positive solutions of (6.6) via the change of
variables v = —u, it suffices to show that the problem

_ - q i
{ dAv=v+v in {2, (6.21)

v=20 on 92,

cannot admit a positive solution if d < o7 '. Let v be a positive solution of (6.21). Then, multiplying the
v-equation by a principal eigenfunction, g, associated to o1, integrating by parts in {2 and rearranging

(doq —1)/ Ugaodm:/ vipg dx.
Q Q

Since fQ vlpg dz > 0, this cannot occur if d < afl. O

terms yields

7. Global bifurcation diagrams

In this section, we ascertain the global structure of the set of positive and negative solutions of (1.1). Recall
that the solutions of (1.1) are the zeros of the nonlinear differential operator g : R x WaP(2) — LP(Q)
defined by

Fa(\u) = dAu + Na, Vu) +u + Mu? — ul. (7.1)
The next result establishes that the positive (resp. negative) solutions of (1.1) cannot leave the interior of

the positive cone of the ordered Banach space Cg (f)) unless they reach u = 0.

Lemma 7.1. Let {(An,un)}nen be a sequence of positive (resp. negative) solutions of (1.1) such that

lim (A, un) = (Ao, u0) € §7(0),  in R x WeP(2). (7.2)

n—oo

Then, either ug > 0 (resp. ug < 0), or ug = 0.

Proof. We will prove it for the case of positive solutions. By Eq. (7.2) and the Sobolev embedding
W2P() — Cl’lf%(f}), it follows that ug € §;'(0) is the pointwise limit of positive functions, u, > 0,
n € N. Hence ug = 0, concluding the proof, or uy > 0. In the later case, Theorem 2.4 is applied to obtain
ug > 0. The proof is complete. [

The next result establishes a pivotal compactness property of §q4.
Lemma 7.2. For every d > 0, §q is proper on closed and bounded subsets of R x WOQ’p(Q).

Proof. It suffices to prove that the restriction of F4 to the closed subset K := [A_, A;] X Bp is proper,
where A_ < Ay and Bp stands for the open ball of Wg’p(ﬂ) of radius R > 0 centered at 0. According to [3,
Th. 2.7.1], we must check that §q(K) is closed in LP(£2), and that, for every f € LP(£2), the set ;' (f)NK
is compact in R x Wg"P(2).

To show that §4(K) is closed in LP(£2), let {f,}nen be a sequence in §q(K) C LP(§2) such that

lim f, =f in LP(£2). (7.3)
n—oo
Then, there exists a sequence {(An, un)}nen in K such that

fn=Fa(An,upn) forall neN. (7.4)
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By the compactness of the imbedding WP (£2) < G (£2), we can extract a subsequence {(An, , Un, ) }ren
such that, for some (Mg, ug) € [A_, Ay] X Cl’l_%(ﬁ), limg o0 Any, = Ao and

lim w,, =up in Cl’l_%(fl). (7.5)

k—o0
As a direct consequence of (7.3), (7.4) and (7.5), it becomes apparent that ug must be a weak solution of
the nonlinear elliptic problem

{ dAug + Mo{a, Vug) + ug + Mg —ul = f in £,

ug =0 on 0f2. (7.6)

By elliptic regularity, ug € WOQ”’(Q) and f = Fa(No, ug). Therefore, f € Fq4(K).
Now, pick f € LP(£2). To show that §;'(f) N K is compact in [A_, A1] x WgP(£2). Let {( A, tn) }nen be
a sequence in §; ' (f) N K. Then,
FaAn,un) = f forall neN. (7.7)

Based again on the compactness of the imbedding W?2P(§2) « gv 1’17%(9), we can extract a subsequence
{(Ang» Uny) bren such t}%atl for some (Ao, up) € [A_, Ay] x CH7 P (), limy_y oo An, = Ao and (7.5) holds.
Similarly, ug € C"'~ 7 () is a weak solution of (7.6) and, by elliptic regularity, up € Wg*(£2) and
Fa(Xo,up) = f. In particular, for every k € N,

—dA(un, — uo) = Ao{a, V(tn, — ug))+un, —uo+ )\o(uik —ud) — (uf, —wug) in 2.

By the LP-elliptic estimates, there is a positive constant C' > 0 such that
Hunk - UO”ngP(Q) < c (”uik - ug”Lp(Q) + ||U$Lk - Ug”LP(Q))
for all & € N. On the other hand, {uy, }ren is bounded in W?2P(£2) and hence it is relatively compact in
N -
C"'~ % (R2). Therefore, letting k — oo we finally get that
Hm (A, , 10, ) = (Ao,uo)  in [A_, Ay x WEP(02).

k—o0

This concludes the proof. O

The rest of this section is devoted to the analysis of the global structure of the set of positive and negative
solutions of (1.1). As it is strongly dependent on the size of the diffusion coefficient d > 0, we have divided
it into three subsections.

7.1. The case when d < o7*

Throughout this section we assume that doy < 1. To get our main results in this case, we will use the
unilateral global bifurcation theorem [30, Th. 8.5], which is a refinement of [24, Th. 6.4.3] and [26, Th. 1.2].
To state it, consider two real Banach spaces, U, V, and an operator § € C}(R x U, V) satisfying:

(C) U is a subspace of V' with compact inclusion U < V.

(F1) §(A,0) =0 for all A € R.
(F2) Dy§(Au) € &o(U, V) forall A e R and uw € U.
(F3) § is proper on closed and bounded subsets of R x U.
(F4) The map
N, u) = Fu) — DoV, 0u,  (A\u) eRx U, (7.8)

admits a continuous extension, also denoted by 91, to R x V.
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(F5) The linearization £(\) := D,§(X,0) is analytic in A € R and )¢ is an isolated eigenvalue of £(\) :=
D,F(X,0) such that N[£(Xo)] = span|p] for some ¢y € U with ||po] = 1.

We consider for € > 0 and 5 € (0, 1), the open subsets of R x U,

Sn={w) ERXU A= ol <&, (g5, u) > nllul},

e =) ERXU A= Ao| <&, (pg,u) < —nllull},

We denote by T the set of trivial solutions of F(\,u) = 0, that is, T := {(A,0) : A € R}. The set F~1(0)\7 is
consequently referred as the set of non-trivial solutions. Then, under these hypotheses, the following result
holds.

Theorem 7.3. Suppose (C), § satisfies (F1)—(F5) and x[£, Ao] € 2N + 1. Then, there exist two connected
components of FH(0)\T, denoted by €t and €, such that (\o,0) € €F and for sufficiently small § > 0,
¢t N Bs(Xo,0) CQF,, € NBs(X,0) CQ,,

e,m)

for every e € (0,e0) and n € (0,1), for some g9 > 0. On the other hand, let Z C U a closed subspace such
that
U= NI[g]® Z, N[£o] = span[po].

Then, each unilateral component €, v € {+}, satisfies some of the following alternatives:

(i) €¥ is unbounded in R x U.
(ii) There exists pn # Ao such that (u,0) € €.
(iif) There exist X € R and z € Z \ {0} such that (\, z) € €.

This theorem will provide us with the global behavior of the continua of positive and negative solutions of
(1.1) when d < o7 !. By the local analysis of Sections 2 and 3, we already know that from each of the points
(A1(d),0) and (—A1(d),0) there emanates an analytic curve of positive solutions of (1.1). Let us denote by
%, and €7 the connected components of the set of non-trivial solutions 3,1 (0)\T containing the curves
of positive solutions emanating from (A;(d),0) and (—A;(d),0), respectively. By Lemma 7.1 they can only
leave the interior of the positive cone through u = 0 and hence they consists of positive solutions, that is,
%I C .%4. The next result, based on Theorem 7.3, shows that %j = €7, as illustrated by Fig. 1.1.

Theorem 7.4. It holds that %j_r = €. Thus, there is a connected component of the set of positive solutions
H(=¢F =€) C Fy such that (£X(d),0) € €.

Proof. We will apply Theorem 7.3 to the operator g : R x Wi (£2) — LP(£2) defined by (7.1). Clearly, §q
satisfies the hypotheses of Theorem 7.3 with Ag = £\ (d). Thus, the connected components €3 C §,;'(0)\7T
are well defined and each of them satisfies one of the alternatives (i)—(iii). According to Lemma 5.3(i), there
exist & < [ such that A\ € [a, ] if (1.1) admits a positive solution (A, w). Thus, by Theorem 5.4, the
alternative (i) cannot occur. To exclude (iii) we take

z={uewi): /

upy dr = O},
Q
where g > 0 is any principal eigenfunction associated 1. Suppose that there are A € R and v € Z\{0}
such that (A,v) € %j Since v # 0, necessarily v > 0 and hence fQ vg dxr > 0 which contradicts v € Z.
Hence, the alternative (iii) cannot occur neither. Therefore, there exists p # A1 (d) such that (u,0) € €.
In particular, this implies that A = p is a bifurcation value to positive solutions from w = 0. Thus, by
Theorem 3.2(iv), p = —A1(d). Therefore, € =¢+. O
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As far as concerns the negative solutions, by the local analysis of Sections 2 and 3, from each of the
points (A1 (d),0) and (—A;(d),0) emanates an analytic curve of negative solutions. Let denote by ¢, and €~
the connected components of the set of non-trivial solutions &;1(0)\7' that contains the curves of negative
solutions emanating from (A1(d),0) and (—\;(d),0), respectively. By Lemma 7.1 they can only leave the
interior of the negative cone through u = 0 and hence they consists of negative solutions, that is, €, C A45.
By the results of Section 6, these components might have a different behavior according to the oddity of ¢.
The next result provides us with their behavior when ¢ > 4 is odd. It has been sketched in the left plot of
Fig. 1.1.

Theorem 7.5. Let ¢ > 4 be an odd integer. Then, €, = €_, i.e., there exists a connected component of

the set of negative solutions €~ (=€, = €~ ) C g linking (A\1(d),0) to (=A1(d),0).

Proof. It follows identical patterns as the proof of Theorem 7.4, though now one should use Lemma 6.3(i)
and Theorem 6.4, instead of Lemma 5.3(i) and Theorem 5.4. So, we omit the technical details. O

The behavior of €, and €~ is rather different when ¢ > 4 is even. Actually, the next theorem establishes
that, in this case, they are disjoint and unbounded.

Theorem 7.6.  Suppose q > 4 is an even integer. Then, €, and €~ are unbounded and disjoint,
i.e., €y N€- = 0. Moreover, if N =1,2, or N > 3 and q = 4, then

(Ai(d),00) CPA(EY ), (=Ai(d), —o0) € Pa(E7), (7.9)

where Py stands for the A-projection operator. In particular, (1.1) has at least one negative solution whenever
Al > A\1(d), as illustrated by the right plot of Fig. 1.1.

Proof. By Lemma 6.6, (1.1) cannot admit a negative solution at A = 0. Thus, € N6~ = (). According to
Theorem 7.3, ¢, and ¢~ must satisfy some of the alternatives (i)—(iii). By Theorem 3.2(iv) and Lemma 6.6,
the alternative (ii) cannot occur. Arguing as in the proof of Theorem 7.5, the option (iii) is excluded to occur
too. Therefore, (i) occurs, i.e., ¢, and ¢~ are unbounded. This concludes the proof of the first part of the
result. Finally, suppose that N = 1,2, or N = 3 and ¢ = 4. Then, thanks to Theorem 6.5, for every compact
interval J C R, the subsets

Cr(J)={(\Mu)€CL : NeJ} CCr

are bounded in R x WP(2). As ¢ are unbounded, (7.9) holds. [J
7.2. The case when d = oy "

This section shows the validity of the global bifurcation diagrams sketched in Fig. 1.2, by invoking [30,
Th. 6.5], which follows by adapting some arguments of Dancer [11-13] and Buffoni and Tolland [5]. For any
proper analytic map, § : Rx U — V, satisfying (F1)—(F3) of Section 4.2, (A\,u) € R x U is said to be regular
with respect to § if Dy, §(A,u) € GL(U, V). In our setting, [30, Th. 6.5] reads as follows.

Theorem 7.7. Let § € H(R x U,V) be an analytic map satisfying (F1)—(F3) of Section 4.2 such that
it is proper on bounded and closed subsets of R x U. Suppose that F~1(0) possesses a local analytic branch,
v:(0,e) = Rx U, emanating from (0,0) and consisting of reqular points for sufficiently smalle > 0. Then,
admits a prolongation to a global locally injective continuous path I' : (0,+0c0) — R x U on F~1(0) satisfying
one of the following non-excluding alternatives. Either
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(a) limepoo [[1'(8)|[xU = 400, or
(b) I' is a closed loop, i.e., there exists T > 0 such that I'(T) = (0,0).

First of all, we will prove that, for any integer ¢ > 4, there is a loop of positive solutions of (1.1) emanating
from u = 0 at A = +\; (07 ") = 0. The existence of a connected component of the set of positive solutions
4, bifurcating from (A, u) = (0,0) has been already established in Section 4. More precisely, we already
know that there emanate from (0,0) two analytic arcs of positive solutions v; : (0,e) — R x WgP(£2),
vi(A) = (A u;(N), with limyjou;(A) = 0, 4 € {1,2}. The connected components of the set of positive
solutions .#; containing to each of the curves v; and s, locally at (0,0), will be called ¢;" and €, ,
respectively.

Theorem 7.8. Under the previous assumptions, €;" = €, . Moreover each of the local curves v; : (0,&) —
R x Woz’p(Q) can be continued to a global locally injective continuous curve Iy : (0,T) — €, such that
Lilir—sy = 75 for some § > 0 and j € {1,2}\{i}. Thus, there is a loop of positive solutions of (1.1) with
vertezx at (0,0).

Proof. Once given the local curve 71 : (0,) — R x WOQ”’(Q) and the component %, in order to apply
Theorem 7.7, we should make sure that, for sufficiently small ¢ > 0, the set v;((0,¢)) C §,;"(0) consists
of regular points of Fy4. By the local analysis already done in Section 4, the regular and singular points of
Fa in §;'(0) NV are in analytical correspondence with those of the reduced map ®4(\, z) = zga()\, x) in
&, '(0) NU, where V and U are open neighborhoods of R x U and R2, respectively, containing (0,0). So, it
suffices to prove that, near (0,0), the set 6;1(0) does not contain any singular point of &, different form
(0,0). By Theorem 3.2(ii), x[£4,0] = 2. Thus, it follows from (4.2) that

x[£4, 0] = ordy=0 ga(A,0) = 2.

Consequently, by the Weierstrass—Malgrange preparation theorem, shortening the neighborhood U = U, X
U, C R? if necessary, there exists an analytic function ¢ : U — R such that ¢(0,0) # 0, plus x = 2 analytic
functions, ¢; : U, = R, ¢;(0) =0, j = 1,2, such that

ga(\,z) = e\, z) [N + er(z)X + ea(z)] -
Hence, we can rewrite &, : U/ — R as
Ba(\, z) = zc(A, ) [N + 1 (2)A + eo(2)] .

By the local analysis already done in Section 4 (see Fig. 4.6), for every « € U, \{0}, the equation B4(\,z) =0
has two positive different solutions in A € Uy. Thus, there are two analytic maps, ¢; : (—0,6)\{0} — R,
7 =1,2, such that

Ga(A, x) = ze(X, )(A = o1(2))(A = @2(x)), = € Ux\{O}.

By a direct computation if follows that (\,z) € &;'(0) nU, (\,z) # (0,0), is a singular point,
ie, DG4\, x) = 0, if and only if p1(z) = wa(x) or j(z) = 0 for some j = 1,2. According to (4.8)
and (4.9), for sufficiently small U, this is not possible. Therefore, 71 : (0,€) — R x WgP(2) consists of
regular points for sufficiently small € > 0. By Theorem 7.7, v, admits a prolongation to a global locally

)
b

injective continuous map I : (0,00) — R x WeP(£2) on &,(0) satisfying one of the alternatives (a) or
(b). Due to Lemma 7.1, I'1(0,00) C %;". Thanks to Lemma 5.3(i) and Theorem 5.4, I'(0,00) is bounded.
Therefore, the alternative (a) cannot occur. Consequently, there exists some T > 0 such that I'1(T") = (0, 0).
As in a neighborhood of (0,0) the set of positive solutions consists of the graphs of 71 and ~s, being I is
locally injective, it follows that, modulus a re-parametrization (if necessary), I'|(7—sr] = 72. This implies,
in particular, that €, = %, and concludes the proof. [
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As illustrated by Fig. 1.2, the behavior of the negative solutions differs according to the oddity of q.

Suppose ¢ > 5 is odd. Then, by the local analysis of Section 4 summarized in Fig. 4.6, we already
know that in a neighborhood of (A, u) = (0,0) there emanate two analytic arcs of negative solutions,
Yi : (—£,0) = R x WP (), v(A) = (A ug(N)), such that limyyous(A) = 0, i € {1,2}. The components
of the set of negative solutions .43 containing the curves vy; and 7, will be subsequently denoted by %; and
@5 , respectively. In this case, adapting the proof of Theorem 7.8, the following result holds.

Theorem 7.9. ¢, =%, if ¢ > 5 is odd. Moreover each of the local curves v; : (—¢,0) — R x WOQ’p(Q)
can be continued to a global locally injective continuous curve Iy : (=T,0) — €, such that Ii|_r —115 = 7;
for some 6 > 0 and j € {1,2}\{i}. Thus, there is a loop of negative solutions of (1.1) with vertex at (0,0),
as sketched by the left picture of Fig. 1.2.

Now, suppose that ¢ is even. Then, according to the analysis carried out in Section 4, we already know
that there are two analytic curves of negative solutions bifurcating from (0,0): One in the direction of A > 0
and another in the direction of A < 0. Subsequently, we denote by € (resp. 4 ) the connected component
of the set of negative solutions .#; emanating from (0,0) in the direction A > 0 (resp. A < 0). The next
result provides us with their global behavior.

Theorem 7.10. Suppose q > 4 is an even integer. Then, € and €~ are unbounded and disjoint,
ie., €. NE€- =10. Moreover, if N = 1,2, or N > 3 and q = 4, then

P)\(Cg—:) = (0,00), ’P)\(Cg:) = (—O0,0), (710)

as sketched in the right picture of Fig. 1.2. In particular, (1.1) possesses at least one negative solution for
every A # 0.

Proof. By Lemma 6.6, (1.1) cannot admit a negative solution at A = 0. So, €, N ¢~ = (). Let us denote
by 74 : (0,€) = R x WgP(2) and 7_ : (—¢,0) = R x WP (£2) the two local curves of negative solutions of
(1.1) that emanate from (0,0) in the direction of ¢, and ¢, respectively. Adapting the argument of the
proof of Theorem 7.8, it is easily seen that v, and «_ consist of regular points for sufficiently small € > 0.
Thus, by Theorem 7.7, there are two global locally injective continuous curves I'y : (0,00) — R x WP (1)
and I'_ : (—00,0) — R X WO2 P(§2) that extend v, and v_, respectively, and satisfy one of the alternatives
(a) and (b). By Lemma 7.1, I'y ((0,00)) C €, and I'_((—00,0)) C €. Since € N€_ = 0, the curves I'y
cannot form a loop. Thus, the alternative (a) cannot happen. Therefore,

lim |17 (O)llwas =00, lim 72 (8)yy2s = ox.

Owing to Theorem 6.5, this entails that ¢, and 4~ are unbounded in A. Consequently, P»(¢; ) = (0, c0)
and Py (€~ ) = (—0o0,0). This ends the proof. O

The components ¢, and 4~ might loose their a priori bounds at some critical values of A\, AL, if N =3
and ¢ > 6, or N > 3 and ¢ > 4.

7.3. The case when d > oy "

In such case, due to Theorem 3.2(iii), X'(£4) = 0. Thus, neither the positive solutions nor the negative
solutions can bifurcate from u = 0. Thus, to get the existence of positive solutions, we proceeded through
an indirect argument involving the analytic implicit function theorem (see, e.g., [3, Th. 3.3.2]). As a result,
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for d sufficiently close to o, L (1.1) admits, at least, one compact connected component of the set of positive
solutions €T C .¥; separated away from u = 0, as illustrated in Fig. 1.3. Precisely, the following result
holds.

Theorem 7.11.  There exists v > o' such that, for every d € (oy',v), the problem (1.1) has a
compact connected component of the set of positive solutions, ‘5;' C Y4, such that PA(‘K;') = [a, f] for
some 0 < a < .

Proof. By our previous results in Section 7.2, we already know that there emanates two branches of
analytical curves of positive solutions of Fq(\,u) = 0 from (0,0) at d = o, '. Moreover, these curves are
filled in by regular points. Therefore, there exists (Ao, o7, ug) € §(0), with ug > 0 and Ag > 0, such that

DuF(No, 07t u0) € GL(WSP(R), LP(2)).

By the analytic implicit function theorem, there exists an open neighborhood of (Ao, 07 1), U CRxR,, and
an analytic mapping, U : U — W02’p((2), such that

UXo,o7Y) =uo, F\,d, U\ d) =0, (\d) €U.

By Lemma 7.1, U(U) consists of positive solutions for sufficiently small . Consequently, there exists v > 0
such that, for every d € (01_1, v), there is some A = Ay > 0 for which the problem (1.1) admits a positive
solution, ugq. Let & j C %4 be the connected component of the set of positive solutions through (Mg, ug).
According to Lemma 5.3(ii), there exist 0 < C1(d) < C2(d) such that C1(d) < X < Ca(d) for all (\,u) € €.
Moreover, thanks to Theorem 5.4, there exists a constant C' > 0 such that

sup  ||lullw2r, < C.
AweeT

Therefore, since by Lemma 7.2, the operator §q is proper on closed and bounded subsets, %j is a compact
connected component of the set of positive solutions. As it is separated away from u = 0, because X (£4) = 0,
it becomes apparent that Py(%;") = [, 8] for some o < B, because €; is compact and connected and Py
is continuous. This ends the proof. [

As far as concerns the negative solutions, as usual, their structure depends on the values of ¢. Indeed,
when ¢ is an odd integer, adapting the proof of Theorem 7.11, it is easily seen that the following result holds.

Theorem 7.12. Suppose q > 5 is an odd integer. Then, there exists v > 0;1 such that, for every
d e (0;17V), the problem (1.1) has a compact connected component of negative solutions, €; C Ag, such
that Px(€; ) = [a, B] for some o < B < 0, as illustrated in the left plot of Fig. 1.3.

Finally, suppose that ¢ > 4 is an even integer. Then, although the argument of the proof of Theorem 7.11
provides us with a connected component, € , of the set of negative solutions of (1.1) separated away from
u = 0 for every d > o] ! sufficiently close to oy ! and ¢, possesses uniform a priori bounds on compact
intervals of A if N = 1,2, or N = 3 and ¢ = 4, we do not know yet whether, or not, ¢, is bounded, or
Px(€; ) can be an interval of the form [a, +00), or (—o0, @], for some a € R, or simply Pr(€, ) = R, as
suggested by the right plot of Fig. 1.3. This remains an open problem in this paper.
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