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Abstract

This paper consists of four parts. It begins by using the authors’ generalized Schauder formula, [41],
and the algebraic multiplicity, x, of Esquinas and Lépez-Goémez [15,14,31] to package and sharpening
all existing results in local and global bifurcation theory for Fredholm operators through the recent au-
thor’s axiomatization of the Fitzpatrick—Pejsachowicz—Rabier degree, [42]. This facilitates reformulating
and refining all existing results in a compact and unifying way. Then, the local structure of the solution set
of analytic nonlinearities §(X, u) = 0 at a simple degenerate eigenvalue is ascertained by means of some
concepts and devices of Algebraic Geometry and Galois Theory, which establishes a bisociation between
Bifurcation Theory and Algebraic Geometry. Finally, the unilateral theorems of [31,33], as well as the
refinement of Shi and Wang [53], are substantially generalized. This paper also analyzes two important
examples to illustrate and discuss the relevance of the abstract theory. The second one studies the regular
positive solutions of a multidimensional quasilinear boundary value problem of mixed type related to the
mean curvature operator.
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1. Introduction

This paper is a natural continuation of [41-43], where the authors axiomatized the degree for
Fredholm operators of Fitzpatrick, Pejsachowicz and Rabier [19,20,50] through the generalized
algebraic multiplicity, x, of Esquinas and Lépez-Gémez [14,15,31], which had been axiomatized
by Mora-Corral [47]. The monographs [31] and [37] present a rather complete synthesis of the
crucial role played by y in Bifurcation Theory. The axiomatization of the degree for Fredholm
maps carried out by the authors in [42] follows similar patterns as the uniqueness theorems of
Fiihrer [22] and Amann and Weiss [2] for the degrees of Brouwer [7] and Leray—Schauder [30],
respectively.

The first part of this paper invokes these, rather recent, developments to reformulate all exist-
ing local and global bifurcation results for nonlinear Fredholm maps at the light of the algebraic
multiplicity x through the generalized Schauder formula delivered by the authors in [41]. In
particular, it tidies up and sharpens considerably the local bifurcations theorems of Fitzpatrick,
Pejsachowicz and Rabier [20], Pejsachowicz and Rabier [50], as well as [31, Th. 6.2.1] and the
global theorem of Lépez-Gémez and Mora-Corral [37], which was originally proven by using
the degree of Benevieri and Furi [3-5]; we deliver another proof of [37, Th. 5.4] by means of
the Fitzpatrick—Pejsachowicz—Rabier degree. Actually, this paper grew from the germinal idea
of bringing together, by the first time, all these results, scattered in a series of independent
monographs, at the light of our most recent developments concerning x and the Fitzpatrick—
Pejsachowicz—Rabier degree.

Roughly speaking, our global theorem (collected in Theorems 5.9 and 5.12) establishes that
any compact component € of the set of non-trivial solutions of a nonlinear equation §(A, u) =0
must bifurcate from the trivial solution (X, u) = (A, 0) respecting the topological property that the
sum of the parities of the compact components of the generalized spectrum where € bifurcates
from (A, 0) must be zero. In the proof of the global alternative of Rabinowitz [51], Nirenberg [48,
p. 87] emphasized this property in the context of the Leray—Schauder degree for nonlinear maps
$ (A, u) such that F(A,0) =0 for all . € R and £(A) = D,§(A,0) = Al — K for some compact
operator K. These findings were later sharpened by Ize [25] and Magnus [45], though in a rather
limited way, because of the absence of a versatile theory of algebraic multiplicities for arbitrary
compact perturbations of the identity map, £(A) = I — K(X) with K(A) compact. Examples of
compact components bifurcating from the trivial solution in the context of Reaction-Diffusion
systems are well known to arise in a huge number of applications. The interested reader is sent to
Chapter 2 of [31], and to Fencl and Lopez-Gémez [17] for some recent intriguing applications.

Naturally, as a byproduct of the global bifurcation theorem, the global alternative of Rabi-
nowitz, [51], holds. It establishes that any component bifurcating from a nonlinear eigenvalue
must be either unbounded, or it bifurcates from (1, 0) at two different values of the parame-
ter 1 with opposite parities. Possibly by the simplicity of this formulation and the sophisticated
topological technicalities necessary to state rigorously and prove the global theorem, even the
simplest version of Nirenberg [48] has fallen into oblivion for almost 50 years. As a result,
experts use to invoke exclusively the global alternative of Rabinowitz in the context of global bi-
furcation theory, which is really harmful from the point of view of the applications, as the global
alternative cannot provide with any useful information on the value of the degree of the XA-slices
of the component, which in many applications coincides with the exact number of solutions of
§ =0 (see, e.g., Lopez-Gémez and C. Mora-Corral [35], [36]). Actually, some authors did not
focus attention into the deeper insights of the underlying theory, as, e.g., Shi and Wang [53],
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whose observation that the local theorem of Crandall and Rabinowitz [9] is global was actually
a straightforward direct consequence of Theorem 5.4 of Lépez-Gémez and Mora-Corral [37].
Once tidied up, polished and sharpened the main bifurcation theorems at the light of the degree
of Fitzpatrick, Pejsachowicz and Rabier, the second part of this paper studies the bifurcation
from simple degenerate eigenvalues for analytic §’s, where N[D,§( o, 0)] = span[¢g] for some
¢o € U\{0}, which goes back to the pioneering work of Dancer [13,11,12] and Kielhofer [27].
By Theorem 4.4.3 of L6pez-Gémez and Mora-Corral [36], the main result of [27] can be stated
by simply saying that in a neighborhood of (1, 0), ' (0) consists of at most 2 -+ 2 branches
of analytic functions intersecting at (1o, 0). In this article, we use a rather different approach
by using a number of technical tools in Algebraic and Analytic Geometry to ascertain the fine
local structure of F~1(0) at (rg, 0). Precisely, after using a Lyapunov—Schmidt decomposition
to reduce the original problem to another one with a finite-dimensional character, the analysis
of the local structure of the associated solution set will be carried over through a careful study
of the roots of the Weierstrass polynomial associated to the reduced bifurcation equation. This
allows us to use some techniques of algebraic monodromy theory to study them by means of the
theory of Riemann surfaces. Thus, essentially, we translate the underlying analytic problem into
another one of algebraic nature that can be treated computationally. In the complex case, using
these technical devices, one can characterize the precise local structure of the zero set in terms of
a sequence of Riemann surfaces that can be analyzed through an algebraic field extension of finite
degree. At a later stage, we will use Galois Theory to ascertain whether, or not, the zero set can
be expressed through a composition of radicals and meromorphic functions. In the real case, this
problem has a rather computational nature, since one has to determine how many complexified
Riemann surfaces are real-to-real, i.e., such that its intersection with the real plane lies into the
real plane. Finally, we are able to determine the exact number of real branches that emanate from
(X0, 0) through the celebrated Sturm criteria, that is used in Numerical Analysis to ascertain
the exact number of real zeroes of polynomials. This analysis complements the one given by
Dancer and Kielhofer. In a further step we focus attention on the global behavior of the zero set
F1(0) of these types of nonlinearities. In this setting, we generalize the Dancer [12, Th. 4] and
Buffoni—Toland [8, Th. 9.1.1] global alternatives up to cover the degenerate case x > 2 where
the theorem of Crandall and Rabinowitz [9] cannot be applied. This is a significantly important
advance for the study of degenerate problems as illustrated in the example of Sections 8 and
10. Moreover, inspired by a novel idea of Dancer [12, Th. 3], we will prove that, under these
assumptions, 1 (0) is an analytic graph. As a very special example, by the local theorem of
Crandall and Rabinowitz [9] and the global alternative of Rabinowitz [51], it is folklore that,
for every a € C[0, ] and any integers n > 1 and p > 2, the set of solutions of the semilinear
boundary value problem
{ —u" =iu+a@x)u? in (0, 7w), (1)
u(Q)=u(r)=0, )

admits a component, 6, with (A, u) = (n?, 0) € %,, which is unbounded in R x C[0, 7 ]. More-
over, by the maximum principle, since the number of nodes of the solutions along %, is constant,
it turns out that 6, N6, = @, n # m. Our main result in this part shows that actually each of the
components %, n > 1, consists of a discrete set of analytic arcs of curve plus a discrete set of
branching points.

The third part of this paper generalizes substantially the unilateral bifurcation theorems of
[33] by substituting the norm in the underlying Banach space U by some continuous functional
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¥ (u). As a byproduct, our unilateral theorem does not require the differentiability of the norm
of U, as in Shi and Wang [53], but simply the compactness of the imbedding U < V, which is
a rather common property in most of the existing applications. Another important feature of our
refinement is that it can be applied to deal with the general case when x > 1. So, it also covers
the case of bifurcation from simple degenerate eigenvalues.

The main advantage of developing global bifurcation theory in a Fredholm scenario is that one
can deal very easily with quasilinear elliptic equations and systems, even when they cannot be
transformed into a semilinear boundary value problem though some change of variables, tricky or
not. As in this scenario one can directly deal with Fredholm operators, expressing the differential
equation as an integral equation is unnecessary. This paper ends by giving a non-trivial applica-
tion to a quasilinear boundary value problem of mixed type involving the multidimensional mean
curvature operator.

This paper has been organized as follows. Section 2 collects the main features of the alge-
braic multiplicity x used in this paper. Section 3 reviews the main ingredients of the degree of
Fitzpatrick, Pejsachowicz and Rabier [19,20,50], and invokes them to give a general version of
the Leray—Schauder continuation theorem for nonlinear Fredholm operators. Sections 4 and 5
deliver the main local bifurcation theorem and the main global bifurcation theorem of this paper,
respectively. Section 6 consists of a sharp analysis, at the light of Analytic Geometry, of the prob-
lem of bifurcation in the special case of analytic §’s and dim N[D, § (Ao, 0)] = 1. In particular, it
delivers our refinements of the main findings of Dancer [13,11,12] and Kielhofer [27]. Section 7
generalizes the Dancer [12] and Buffoni—Toland [8] global alternatives up to cover the degener-
ate case x > 2. Section 8 invokes the previous theory to analyze the local and global structure of
the solution set of
—u" = +u+ O —udHu? in (0, 7), 12
{u(O):u(n):O. 1.2)

In particular, it is shown that the set of positive solutions of (1.2) contains a closed loop bifurcat-
ing from (X, u) = (0, 0). This example seems to be the first of this type constructed, analytically,
in the literature in a situation where x = 2. The existence of such loops in problems with weights
is well documented in the literature (see, e.g., Fencl and Lépez-Gémez [17], Lépez-Gémez and
Tellini [44] and the references there in). Actually, introducing an additional parameter in the
model setting one can get, numerically, these closed loops, as in Lopez-Gémez and Molina-
Meyer [34], but our result for (1.2) is the first existing analytical result. Section 9 delivers the
refinement of the unilateral theorems of [33] and [53], and Section 10 uses these refinements
to analyze the global structure of the negative solutions of (1.2); so, completing the analysis of
Section 8. Finally, Section 11 applies the new unilateral theorem to analyze the global structure
of the set of positive solutions of the quasilinear problem

—div (\/%) =ia(x)u+g(x,u)u in Q,

Bu=0 on 0%,

(1.3)

where B is a general boundary operator of mixed type.

Along this paper, given a pair (U, V) of K-Banach spaces, K € {R, C}, the space of linear
bounded operators 7' : U — V is denoted by L(U, V). Naturally, we set L(U) := L(U, U). We
denote by GL(U, V) the space of topological isomorphisms and GL(U) := GL(U, U). Given
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T € L(U, V), wedenote by N[T] and R[T], the kernel and the range of T, respectively. Finally,
K (U) stands for the set of linear compact endomorphisms of U, and GL.(U) = GL(U)NK(U)
is the compact linear group of U.

2. Generalized algebraic multiplicity

Throughout this section, K € {R, C}, Q is a subdomain of K, and, for any given finite di-
mensional curve £ € C(2, L(KV)), a point A € Q is said to be a generalized eigenvalue of £ if
L) ¢ GL(EKM), ie., det£(1) = 0. Then, the generalized spectrum of £ € C(, LEKN)), de-
noted by X(£), consists of the set of A € Q such that £(A) ¢ GL(KM)}. For analytic curves
£eC”(Q, LKN)), since det £(1) is analytic in A € £, either £(£) = Q, or X(£) is discrete.
Thus, X(£) consists of isolated generalized eigenvalues if £(11) € GL(K") for some p € Q. In
such case, the algebraic multiplicity of the curve £ € C® (2, L(K™)) at A is defined through

Mag[ £, Ao] := ordy—y, det £L(1). 2.1

Although the multiplicity is defined for all 1y € R, it equals zero if Ao € R \ X(£). This con-
cept extends the classical notion of algebraic multiplicity in linear algebra. Indeed, if £(1) =
Ay — T for some linear operator T € L(KY), then £ € C®(K, £L(K")) and it is easily seen that
Mag[ £, Ao] is well defined for all A9 € X(£) and that (2.1) holds. Note that, since GLEKY) is
open, Iy — A~'T € GL(KY) for sufficiently large A. Thus, Aly — T € GL(K") and 2(£) is
discrete.

This concept admits a natural (non-trivial) extension to an infinite-dimensional setting. To
formalize it, we need to introduce some of notation. In this paper, for any given pair of K-
Banach spaces, say U and V, we denote by ®o(U, V) the set of linear Fredholm operators
of index zero between U and V. Then, a Fredholm (continuous) path, or curve, is any map
£ e C(R, Po(U, V)). Naturally, for any given £ € C(2, ®o(U, V)), it is said that A € Q is a
generalized eigenvalue of £ if £(1) ¢ GL(U, V), and the generalized spectrum of £, ¥(£), is
defined through

(L) ={reQ: L) ¢ GLWU,V)}.
The following concept, going back to [31], plays a pivotal role in the sequel.

Definition 2.1. Let £ € C(2, (U, V)) and k € N. A generalized eigenvalue 1o € X(£) is said
to be k-algebraic if there exists ¢ > 0 such that

(@ LA eGLU,V)if0 < |A— Aol <&
(b) there exists C > 0 such that

_ C .
|[E¥ 1(A)l|<m if 0<|X—Ao| <e; 2.2)

(c) « is the minimal integer for which (2.2) holds.

Throughout this paper, the set of «-algebraic eigenvalues of £ is denoted by Alg, (£), and
the set of algebraic eigenvalues by Alg(L) := U,cn Alg, (£). As in the special case when
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U=V =KV, according to Theorems 4.4.1 and 4.4.4 of [31], when £()) is analytic in €, i.e.,
£ e C?(Q, Py(U, V)), then, either (L) = 2, or X(L) is discrete and (L) C Alg(£L). Sub-
sequently, we denote by A;, (2, o(U, V)) the set of curves £ € C" (2, o(U, V)) such that
Ao € Alg, (£) with 1 <k <r for some r € N. Next, we will construct an infinite dimensional
analogue of the classical algebraic multiplicity ma[£, Ao] for the class Ay (2, DU, V). It
can be carried out through the theory of Esquinas and Lopez-Gémez [15], where the following
pivotal concept, generalizing the transversality condition of Crandall and Rabinowitz [9], was
introduced. Throughout this paper, we set £ j= %2(-/ ) (X0), 1 < j <r, should these derivatives
exist.

Definition 2.2. Let £ € C" (2, ®o(U, V)) and 1 <k <r. Then, a given A9 € X(£) is said to be a
k-transversal eigenvalue of £ if

i=0

K j—1 Kk—1
@i | (VL | @RI =V with £, (ﬂ N[::g) #{0}.
j=1 i=0

For these eigenvalues, the algebraic multiplicity was introduced in [15] by

K

Jj—1
X[ a0l:=) j-dim&; | [ NILiT]. (2.3)
j=1 i=0

In particular, when N[£¢] = span[¢g] for some ¢y € U such that £1¢p ¢ R[£o], then

L1(N[Lo) @ R[Lol =V 2.4)

and hence, Ao is a I-transversal eigenvalue of £(X) with x[£, 19] = 1. The transversality
condition (2.4) goes back to Crandall and Rabinowitz [9]. More generally, under condition
2.4), x[£, Ao] = dim N[£p]. According to Theorems 4.3.2 and 5.3.3 of [31], for every £ €
C' (2, P0(U, V)), k €{1,2,...,r} and X9 € Alg, (£), there exists a polynomial ® : Q@ — L(U)
with ®(Xg) = Iy such that X is a k-transversal eigenvalue of the path

£2:=Lod el (Q, DU, V)), (2.5)

and x[£®, Ao] is independent of the curve of trasversalizing local isomorphisms ® chosen to
transversalize £ at Ao through (2.5). Therefore, the following concept of multiplicity is consistent

x[€, 1ol := x[£%, Aol (2.6)

and it can be easily extended by setting x[£, o] =0 if o ¢ X(£) and x[£, Aol =400 if Ag €
(L) \ Alg(£) and r = 400. Thus, x[£, A] is well defined for all A €  of any smooth path
£eC*®(R, ®yg(U, V)); in particular, for any analytical curve £ € C*(2, ©o(U, V)).

The next uniqueness result, going back to Mora-Corral [47], axiomatizes these concepts
of algebraic multiplicity. Some refinements of them were delivered in [37, Ch. 6]. In order
to spate the result we need some preliminary definitions. Throughout this article, we denote
by ‘Kfoo(U), the set of operator families £ : ,, — ®o(U) of class C* that are defined in
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a neighborhood €2, of A, and introduce the space of germs of smooth curves over Ay by
Cf(?(U) = %)?OO(U)/ ~, where we identify two families £, £, € ‘ﬁfg’(U), L1 ~ £y, if there
exists a neighborhood €2,, C Z(£1) N Z(£,) of A such that £1 (1) = £,(A) for each A € Q).
Here, 2(£) stands for the domain of the curve £. Subsequently, given £, 9t € C(R2, ©o(U)),
we denote by £91 € C(2, ®o(U)), the curve defined through [£9T](X) := £(X) o M(A) for each
A€ Q.

Theorem 2.3. Let U be a non-trivial K-Banach space and ,y € K. Then, the algebraic multi-
plicity x is the unique map x|[-, Aol : Cf(‘)’(U) —> [0, oo] such that

(PF) For every pair £, € C2(U), x[£%, rol = x[£, 2ol + x [, Aol-
(NP) There exists a rank one projection I1 € L(U) such that

X[ = 2)IT+ Iy —TI, 20l = 1.

The axiom (PF) is the product formula and (NP) is a normalization property for establishing
the uniqueness of x. From these two axioms one can derive the remaining properties of x;
among them, that it equals the classical algebraic multiplicity when £(1) = Aly — K for some
compact operator K. Indeed, for every £ € C* (2, ®o(U)) and A¢ € 2, the following properties
are satisfied (see [37] for any further details):

x[£, Aol € N W {+o00};

x[£, Ao] = 0if and only if £(Ag) € GL(U);

x[£, Lo] < oo if and only if 1o € Alg(£).

If U =KD", then, in any basis, x[£, o] = ord;, det £(}).
For every K € IC(U) and 1¢ € 0 (K),

XMy = K, kol = dim N[(roly — K)"*),
where V(L) is the algebraic ascent of Ag, i.e., the minimal integer, v > 1, such that
Nl(holy — K)'1=N[(roly — K)''1.
3. Topological degree for Fredholm operators

A crucial feature that facilitates the construction of the Leray—Schauder degree is the fact that,
for any real Banach space U, the space GL.(U) consists of two path-connected components,
which fails to be true in the general context of Fredholm operators of index zero as a conse-
quence of the Kuiper theorem [29]. Consequently, it is not possible to introduce an orientation in
GL(U, V) for general real Banach spaces U, V, since in general, GL(U, V) is path-connected.
In 1991, assuming that (U, V) is a pair of real Banach spaces and £ : [a, b] —> Do(U, V) is
a continuous path of linear Fredholm operators of index zero with invertible endpoints, Fitz-
patrick and Pejsachowicz [16,18] introduced an homotopy invariant of £, the parity of £ on
[a, b], denoted in this paper by o (£, [a, b]), which became a key technical device to overcome
the difficulty of the orientation.

In this section we begin by reviewing, very shortly, the concept of parity of an admissi-
ble curve of Fredholm operators and state some of its fundamental properties. Subsequently,
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it is said that a curve £ € C([a, b], ®o(U, V)) is admissible if £(a), £L(b) € GL(U,V), and
we denote by € ([a, b], Do(U, V)) the class of admissible curves. To define the parity via the
Leray—Schauder degree it is necessary to introduce the concept of parametrix. For any given
£e%(a,b],®y(U, V)), a parametrix of £ is a family B € C([a, b], GL(V, U)) such that

PBA)LAX) — Iy e K(U) foreach A € [a, b].

The existence of a parametrix for every £ € € ([a, b], ©o(U, V)) is guaranteed by Theorem 2.1
of Fitzpatrick and Pejsachowicz [18]. Then, for every £ € € ([a, b], ©o(U, V)), the parity of the
curve £ is defined through

o (£, [a,b]) :=deg(P(a)£(a)) - deg(B(b)L (b)),

where 3 € C([a, b], GL(V,U)) is a parametrix of £ and, for every T € GL.(U), we are de-
noting deg(T) := deg(T, B.(0)), for sufficiently small ¢ > 0, where deg is the Leray—Schauder
degree. This notion is consistent as it does not depend of the chosen parametrix.

Throughout this paper, a homotopy H : [0, 1] x [a, b] = ®o(U, V) is called admissible if

H({a,b} x [0,1) CGL(U, V),

and the class of admissible homotopies is denoted by 57 = S ([a, b] x [0, 1], ®o(U, V)). Then,
two admissible curves £, £, € € ([a, b], ®o(U, V)) are said to be A-homotopic if there exists
an admissible homotopy H € 7 such that H (a, -) = £1 and H (b, -) = £;. The following result
collects some properties of the parity after Fitzpatrick and Pejsachowicz [18] that will be used
through this paper.

Theorem 3.1. For every £ € € ([a, b], ®o(U, V)), the following properties hold:

Stability: If £(\) € GL(U, V) for all » € [a, b], then o (£, [a, b]) = 1.
Homotopy invariance: If £1, £, € € ([a, b], ®o(U, V)) are A-homotopic, then

o (L1, la, b)) =0 (£2,[a,b)).

Product formula: For any tern of real Banach spaces, (U,V,W), and every £ €
% (la, b], Po(U, V)) and £, € € ([a, b], Po(V, W)),

0(22217 [av b]) = 0(225 [a1 b]) . U(£1, [av b])'

Additivity: For any partition of the interval [a, b], [a, b] = UlN:] [mi_1,m;], and every £ €
€ ([a, b], (U, V)) admissible on [m;_1, m;] foreach 1 <i <N,

N

o (&, la,b) =[[o (&, tmi—1,m).

i=1
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Subsequently, for every r € N & {oc0, w}, we set

€' ([a, b], Po(U, V)) :=C"([a, b], Po(U, V)) NE([a, b], Po(U, V)).

The next result, proven by the authors in [41], shows how the parity of any admissible Fredholm
path £ € €([a, b], ®o(U, V)) can be computed though the algebraic multiplicity .

Theorem 3.2. Any continuous admissible path £ € € ([a, b], (U, V)) is A-homotopic to some
analytic path £, € €*([a, b], ®o(U, V)). Moreover, for any of these paths,

o (L, [a, b]) = (—1)Xi=t X[La:2i],
where £(£4) = {A1, A2, .o. ).

As the main trouble to introduce a topological degree for Fredholm operators of index zero is
the absence of orientation in GL(U, V) C ®¢(U, V), the notion introduced in the next definition,
going back to Fitzpatrick, Pejsachowicz and Rabier [19], restricts the admissible maps for which
the degree is defined to the ones where is possible to introduce a notion of orientability. Let X be
a path-connected topological space and i : X — ®o(U, V) a continuous function. A point x € X
is said to be regular with respect to h if h(x) € GL(U, V). Subsequently, the set of regular points
with respect to & will be denoted by R,.

Definition 3.3. Let X be a path-connected topological space, and consider a pair (U, V) of real
Banach spaces. A continuous map & : X — ®o(U, V) is said to be orientable if there exists a
function ¢ : Ry, — Z;, called orientation, such that, for every continuous curve y € C([a, b], X)
with y (a), v (b) € R,

o(hoy,la, b)) =e(y(a))-e(y(®)). (3.1

When X is not path-connected, amap h : X — ®¢(U, V) is said to be orientable if it is orientable
on each path-connected component of X.

Now, we will collect some important features going back to the seminal paper of Fitzpatrick,
Pejsachowicz and Rabier [19]. If 4 : X — ®o(U, V) is an orientable map with orientation ¢ :
Rn — Z, then ¢ is constant on each path connected component of Rj. Moreover, for every
continuous map & : X — ®¢(U, V), the following three assertions are equivalent:

(1) h is orientable.

(2) Foreach y € C([a, b], X) such that y (a), y (b) € Ry, the parity o (hoy, [a, b]) only depends
on {y(a),y(b)}.

(3) o(hoy,la,b]) =1 for every closed path y € C([a, b], X) such that y (a) =y (b) € R},.

When h : X — ®¢(U, V) is orientable and R, # @, then there are, exactly, two different orien-
tations for 4. Namely, for any given p € R, these orientations are defined by

e Ry —> L, °(q):==F0(hoyp,la,b)), (32)
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where y,4 € C([a, b], X) is an arbitrary path such that y(a) = p and y (b) = ¢, and the sign &
determines the orientation of p, in the sense that e*(p) = 1 and £~ (p) = —1. Thus, (3.2) can be
expressed as

e5(g) =" (p)-o(hoypgla,bD), gqeRy. (3.3)
3.1. Topological degree for Fredholm operators

The main goal of this section is to introduce the degree for Fredholm operators that we are
going to use in this paper. The best way to do it is through its axiomatization theorem. To state
this fundamental result we need to introduce some previous notations and terminologies. Let
(U, V) be a pair of real Banach spaces. For any open subset, © C U and integers n > 0, r >
1, an operator f : O — V is said to be C"-Fredholm of index n if f € C"(O,V) and Df €
C"~1(O, ®,(U, V)). The set of all these operators is denoted in this paper by .Z!(O, V). An
operator f € .77 (0O, V) is said to be orientable if Df : O — ®o(U, V) is an orientable map, as
discussed in Definition 3.3. Moreover, for any open and bounded set Q such that Q ¢ O C U,
and any operator f : O — V satisfying

(1) f e FO,V) is orientable with orientation ¢ : Rpy — Z»,
(2) f is proper on Q,
() 0¢ f(3%),

it is said that (f, €2, €) is a Fredholm O-admissible triple. Subsequently, the class of Fredholm
O-admissible triples is denoted by .27 (O).

Given a C"-Fredholm map f: O C U — V, apoint u € O is said to be a regular point of f
if Df(u) € L(U, V) is surjective, i.e., R[Df («)] = V. Thanks to the open mapping theorem, if
feF;(O,V),u e isaregular point of f if and only if Df (u) € GL(U, V). Naturally, Rpy
stands for the set of regular points of f. On the other hand, for any given open or closed subset
of O, ¢ C O, apoint v € V is said to be a regular value of f : ¢ — V if f~1(v)N O is empty or
it consists on regular points, i.e., Df (u) € L(U, V) is surjective for each u € f~1(v) N &. In this
paper, the set of regular values of f : & — V is denoted by RV ;(&). By definition, the regular
points and regular values of f : & — V are related via the set identity

RV (0) =V\f(O\Rpy).

Obviously, RV s (O) C RV s(02) C RV (1) for any open or closed subsets 07, 0> C O such
that &'y C 0. Given an open and bounded subset of O, say €2, for the construction of the degree,
we are mainly interested in regular values of the restriction map f : Q — V, ie., in the set,
RV (). Note that if (f, 2, ¢) € &/(0) and v € RV (), then f~!(v) N is finite, possibly
empty. Given (f, 2, &) € & (0), it is said that (f, Q, €) is a O-regular triple if 0 € RV ¢(Q), i.e.,
if Df(x) e GL(U, V) forall x € f_1 (0) N Q2. The set of regular triples is denoted by Z(O).

It is said that a map H € C"([0, 1] x O, V) is a C"-Fredholm homotopy if H € 7| ([0, 1] x
O,V),ie.,if

D, H(t,u) € ®g(U, V) forall (t,u) € [0, 1] x O.
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A C"-Fredholm homotopy H € .7[ ([0, 1] x O, V) is called orientable if D,H : [0,1] x O —
®((U, V) is an orientable map. In such case, we denote by &; the restriction

& :RpH, —> Z2, &(x):=¢(t, x), (3.4)
for every t € [0, 1]. Given H € 9{ ([0, 1] x O, V), the following statements hold:

(1) If H is orientable with orientation &, then for every ¢ € [0, 1], the ¢-section H, € fg 0,V)
is orientable with the orientation &; defined in (3.4).

(2) If for some 1 € [0, 1], the section Hy, € .#;(O, V) is non-degenerate and orientable, then
H is orientable. Furthermore, any orientation &, of H;, can be extended as an orientation &
of H.

We are ready to introduce the class of O-admissible homotopies. For any open and bounded
subset 2 C U such that Q C O, it is said that (H, 2, ¢) is a Fredholm O-admissible homotopy if
the following conditions are satisfied:

(1) He Z1(0,11 x O, V) is orientable with orientation & : Rp,u — Z2,
(2) H is proper on [0, 1] x Q,
(3) 0¢ H([0, 1T x 8€2),

The class of O-admissible homotopies is denoted by 57 (O).
Finally, the admissible class is given by the set A := o/ / ~, where

A = U{d(@) : O C U open subset}

is the class of all O-admissible triples, and the binary relation ~ relates two triples (f;, 2;, &) €
(O;), i €{l1,2}, whenever:

1) Q=0=Q. i
(2) fi(u) = f>(u) for each u € Q.
(3) e1(u) =e2(u) foreachu e Rpy, NQ=TRpp N Q.

Once introduced these notations, we can estate the next axiomatization of the topological degree
for Fredholm operators.

Theorem 3.4 (Axiomatization of the degree). There exists a unique integer valued map deg :
A — 7 satisfying the next three properties:

(N) Normalization: For every L € GL(U, V) with orientation & and each open and bounded
subset Q C U such that 0 € Q, one has that

deg(L, 2, ) = ¢(0).

(A) Additivity: For every (f, 2, ¢) € A and any pair of disjoint open subsets Q2 and 2 of Q
with 0 ¢ f(Q\(21 W),
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deg(f, 2, &) =deg(f, £21, &) +deg(f, S22, €). (3.5)

(H) Homotopy Invariance: For every open subset O C U and each O-admissible homotopy
(H, R, ¢) € (0), we have that

deg(H (0, -), 2, e0) =deg(H(1,-), 2, €1). (3.6)

Moreover, for every open subset O C U and (f, 2, €) € Z(0O), with Q connected and such that
Ropy # 9, one has that, for every p € Rpy,

deg(f, Q. e)=e(p)- D (=DxlLenlebl] 3.7)

uef~10)NQ

where £, € €“([a, bl, ©o(U, V)) is any analytic curve A-homotopic to Df oy, for some
y € C([a, b], Q) such that y (a) = p, y(b) =u, and

XCourla, b= Y x[Lou Al
AeX(Lo,u)Nla,b]

The existence goes back to Fitzpatrick, Pejsachowicz and Rabier [20] for C? mappings, and
to Pejsachowicz and Rabier [50] in the C! setting. The uniqueness and the generalized Schauder
formula (3.7) were established by the authors in [42] and [41], respectively. Naturally, from the
axioms (N), (A) and (H) one can readily get the most basic properties of the degree, as its exci-
sion and fundamental properties. For the purposes of this paper, it is appropriate to sketch, very
briefly, the construction of the degree carried over in [20,50]. Let us start by defining the degree
for regular triples. For every (f, @2, ¢) € Z(0O), by definition, f € fol (O, V) is a C'-Fredholm
map of index zero and it is e-orientable, i.e., Df : O — ®o(U, V) is an orientable map with ori-
entation ¢ : Rps — Z». Since 0 € RV £(Q), f~1(0)NQ = £~1(0) N Q is finite, possibly empty.
Thus, if f_1 (0) N 2 # @, we can define

deg(f.Q.e):= Y &), (3.8)

ue f~1(0)NQ

while we set deg(f, 2, ¢) := 0if £~1(0)NQ = . Note that, wheneveru € f~1(0)NQ, u € Rps
since 0 is a regular value. Hence, & (u) is well defined. If 0 ¢ RV 7 (£2), then we define

deg(f, Q,¢) :=deg(f —v, Q,¢),

where v € V is any regular value of f: Q2 — V lying in a sufficiently small neighborhood of 0
in V. Since Df = D(f — v), the orientation map ¢ is the same for both maps f and f — v. The
existence of the regular value is guaranteed by the Quinn—Sard—Smale theorem, [52,54,49].
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3.2. Perturbation theorems

The introduction of an orientation associated to each particular map f might cause some
troubles in applications when dealing with the homotopy invariance of the degree, because this
property relays on the particular global orientation chosen in the axiom (H) of Theorem 3.4. To
precise what we mean, let (H, 2, ¢) € 7 (0O) be a O-admissible homotopy and suppose that
y € C([a, b], [0, 1] x ) is a path such that y(a) = (0, pp) and y (b) = (1, p1), where p; is a
regular point of D, H (t, -) for each ¢ € {0, 1}. By (3.2), since Rpp, # ¥ for each t € {0, 1}, there
are two different orientations of H; = H(t, -). Thus, for any given regular point (¢, p;) of H;,
there exists a unique orientation such that e(z, p;) = 1, while the other satisfies e(z, p;) = —1.
Let ¢, denote the unique orientation of H; with ¢, (p,) =1, t € {0, 1}. Then, by the homotopy
invariance of the degree, we have that

deg(Ho, 2, &0) = deg(Hi, 2, €1). (3.9
The formula (3.9) establishes the degree invariance under admissible homotopies by choosing in

H; the (global) orientation &, := £(¢, -), t € [0, 1]. Thus, if, for example, we have that g9 = ¢,
and &1 = —¢p,, then

deg(Ho, 2, &9) = deg(Hy, 2, e1),

though, paradoxically,

deg(Hy, 2, £p,) = —deg(H1, 2, £p,).

Therefore, in dealing with the homotopy invariance of the degree for Fredholm operators, one
should be extremely careful with the eventual changes of sign of the degree caused by the changes
of orientation, even when using its invariance by homotopy. Such a rather subtle problematic,
outside the Leray—Schauder degree, arises in the context of the degree for Fredholm operators
by the absence of a global orientation in GL(U, V). Nevertheless, one can easily get rid of this
ambiguity by using the parity or, equivalently, the generalized algebraic multiplicity. Indeed, the
next result holds.

Lemma 3.5. Let (H, 2, ¢) € 7(0) be a O-admissible homotopy with Q connected and pg €
RpHy P1 € RpH,- Then, for every path y € C([a, b], [0, 1] x Q) such that y(a) = (0, po) and
y(®)=(1, p),
deg(Hyp, 2, &p,) =0 (DyH oy, [a,b])deg(H1, 2, &p,). (3.10)
Therefore, thanks to Theorem 3.2,
deg(Ho, 2, &py) = (=) El0t deg(Hy, Q. &), (3.11)
where £, € €“([a, b], ©o(U, V)) is any analytic map A-homotopic to D,H o y.
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Proof. Since pg € RpH,, by (3.2), Hy admits two orientations, &, and —¢,,. Consequently,
either g9 = &, or &9 = —¢& . In either case,

e0(q) = e0(po) - €py(q), g € Rpmy,

because g9(po) = 1 if g9 = &), and g9(po) = —1 if &9 = —¢p,. Thus, by the definition of the
degree,

deg(Hy, 2, £0) = £0(po) deg(Ho, 2, &p,).
Thus, multiplying by eo(po) yields to

deg(Hp, 2, €,) = €0(po) deg(Ho, 2, &). (3.12)
Similarly, inter-exchanging pg by p; shows that

Combining the identities (3.12) and (3.13) with the invariance by homotopy of the degree, we
find that

deg(Ho, 2, €,) = e0(po) deg(Ho, $2, £0)
= ¢go(po) deg(Hy, 2, €1) = go(po)e1(p1) deg(Hy, 2, &p)).

On the other hand, thanks to (3.1), it becomes apparent that, for every y € C([a, b], [0, 1] x 2)
such that y (a) = (0, po) and y (b) = (1, p1),

co(po)e1(p1) =o(DyH oy, [a,b]). (3.14)
Therefore, we obtain that
deg(Ho, 2, &p)) =0 (DyH oy, [a,b])deg(Hy, 2, &p,),
which is (3.10). Finally, owing to Theorem 3.2,
o(DyH oy, [a,b]) = (—1)X[Eala.bl] (3.15)

where £, € €“([a, b], ®o(U, V)) is any analytic map .A-homotopic to D, H o y. Consequently,
inserting (3.15) into (3.10) yields to

deg(Ho, Q. ) = (=) 5l deg(Hy, Q. ¢)). (3.16)
This proves (3.11) and ends the proof. O
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3.3. Generalized homotopy invariance
This section collects and proves a generalized homotopy invariance property that is pivotal
throughout this paper. Although it goes back to Fitzpatrick, Pejsachowicz and Rabier [19], our

proof polishes substantially the original one and it is adapted to the notations of this paper.
Subsequently, for any given subset 2 of R x U and every ¢ € R, we set

Q:={uelU: (t,u) e Q}.
For any bounded open and connected subset 2 of [0, 1] x U, any open subset O of U such
that  C [0, 1] x O and any continuous map H : [0, 1] x O — V, it is said that (H, 2, ¢) is a
generalized Fredholm O-admissible homotopy if the following conditions are satisfied:
() He Z!(0,1]1x O, V) is orientable with orientation & : Rp, i — Z,
(2) H is proper on ,
(3) 0¢ H(9%),

The class of generalized O-admissible homotopies is denoted by ¢ (O) in this paper.

Theorem 3.6. Let (H, 2, ¢) € 9(O) be a generalized O-admissible homotopy and suppose that
po € Rpm, and p1 € Rpw,. Then, for every path y € C(la, b], [0, 1] x O) such that y(a) =
(0, po) and y (b) = (1, p1),

deg(Ho, Q, €p,) =0 (DyH oy, [a, b])deg(Hi, Q1, &p,). (3.17)
Therefore, by Theorem 3.2,
deg(Ho, Q, £ p,) = (=X Eo 10l deo(Hy, Q1 ¢))), (3.18)
where £, € €“([a, b], ©o(U, V)) is any analytic map A-homotopic to D,H o y.
Proof. The following concept of absolute degree goes back to [20],
deg(f, 2) :=|deg(f, 2,¢)| forevery (f, R, ¢) e F(O).
This degree is N-valued and satisfies the excision property and the generalized invariance by

homotopy. Indeed, suppose that V is an open subset of €2 such that 0 ¢ f(£2\V). Then, by the
additivity property of the topological degree, we have that

deg(f, 2, &) =deg(f,V,¢).

Thus, taking absolute values yields deg( f, 2) = deg(f, V) and hence, the absolute degree sat-
isfies the excision property. Similarly, since the absolute degree is invariant by orientations, the
proof of the generalized invariance by homotopy of the Leray—Schauder degree shows that, for
every (H, Q, ) € 4(0), we have that

deg(Hy, 20) = deg(H;, ;) forall r €[0,1].
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Therefore, the absolute degree also satisfies the generalized invariance by homotopy.
Suppose that deg(Hy, 20, £,) = 0. Then, since the absolute degree is invariant by (admissi-
ble) homotopies, we have that

0 =deg(Hyp, 20) =deg(H;, 2;) forall t €[0,1].

In particular, deg(H1, 21) = 0 and hence, deg(H1, 21, €p,) = 0. Therefore, (3.17) and (3.18)
hold.
Subsequently, we suppose that deg(Ho, L0, £p,) = d # 0. Then,

deg(H;, ;) = deg(Ho, 20) = |d| #0, t<][0,1].

This entails that, for every ¢ € [0, 1], there exists a regular point p; € Rpp,, because, by defini-
tion, deg(f, 2, ¢) =0if (f, @, &) € &/ (O) does not admit regular points. In particular, Rpg, # ¥
forall # € [0, 1]. We claim that, for every #p € [0, 1] and p;, € Rp Hyy» there exists & > 0 such that:

(1) py € Rpm, forall t €[ty — €, 19 + €], and
(i) H7'0)N Q= H ' (0) Ny, forall 1 € [ty — &, 1o + €],

making the necessary changes in these statements when fo = 0 or #y = 1. Indeed, since
Rop,n=DyH ™ (GL(U, V))

is an open subset of [0, 1] x O and (1, ps,) € Rp, H, there exists ¢ > 0 such that (¢, p;)) € Rp,n
for all ¢ € [ty — &, tg + €]. Thus, the property (i) follows from the set identity

Rp,H = U {t} x Rpn,.
1€[0,1]

Suppose that Property (ii) fails for all & > 0. Then, there exists a sequence {(fn, n)}neN C
H~'(0) N Q such that lim, oo t, = to and u, € 2, \ 2y, for all n > 1. Since H~1(0) N Q is
compact, without loss of generality, we can assume that

lim (1, u,) = (to, uo) € H~1(0) N Q2.
n— o0

Since 0 ¢ H(3S2), necessarily (fo, ug) € H~'(0) N Q. Therefore, ug € H,O_I(O) and ug € Q4. In
particular €, # . But this contradicts the fact that u,, € ©;,\ €2, for all n > 1. So, Property (ii)
also holds.

Combining (i) and (ii) with the compactness of [0, 1], for some integer m € N, setting ¢; := ;14,
0 <i < m, there exists some g; € O which is a regular point of DH; for all t € [t;, t;+1] and
0<i<m~—1.Choose go = po and g, = p1. Since H,; ' (0) N Q, = H,; ' (0) N ;. for all
t € [t;, ti11], it follows from the excision property that

deg(Hl‘a Qt’ lEq[) = deg(Hlv Qt,‘ 5 Sqi)a re [tia ti+1]‘
In particular,
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deg(Ht[_H ’ QIH_] ’ 8q,~) = deg(Ht,'_H ’ Qt[ ’ Sq;)- (319)
Moreover, since 0 ¢ H([t;, ;1] x 0€2;), by Lemma 3.5,
deg(Hli ) Ql,’ ’ 8q,') = G(DMH o % [ti7 ti+1]) deg(Hli_H ’ Qt,‘ ’ Sq,’)v
where y € C([t;, tix1], [ti, ti+1] x O) is the curve defined by ¢t — (¢, ¢;), t € [t;, tj+1]. Since

D,H(t,qi) € GL(U, V) foreacht € [t;, tj+1], necessarily o (D, H oy, [t;, ti+1]) = 1, and there-
fore

deg(Hy;, 2, &4;) = deg(Hy,y, Q5 &q;)-
Thus, by (3.19), we find that, for every i € {0, ..., m — 1},
deg(Hy;,\» 4,1, 8¢;) = deg(H,y,, 24, &4;)- (3.20)
Once again by Lemma 3.5,
deg(Hyyy s Q24,5 6q,) =0 (DyH 0y, [0, 1) deg(Hy o 2415 €gi11)s
where y; € C([0, 1], {t;+1} x O) links (tj+1, ¢;) to (ti+1, gi+1). Hence, by (3.20),
deg(Hy;, 2, €q;) =0 (DyH 0 y;, [0, 1) deg(Hy,, 1 Q1115 €gi41)-

Therefore, we can infer that

m—2
deg(Ho. Q0. £) = deg(Hyy. Qiy. 2g9) = [ [ 0(DuH 0y:.10, 11) deg(Hy,, . R, £g,,_y)-

i=0
Consequently, by (3.20), we obtain that
m—2

deg(Ho, Q0.2py) = [ | 0 (DuH 0,10, 1) deg(H,, . 2. &,,_,)
i=0
m—2
=[] o(DuH 0,10, 1) deg(Hy, Q1. ).

i=0

Finally, let I'; € C([#;, ti+1], [#i, ti+1] X O) be the curves defined by ¢ — (¢, g;), t € [ti, ti+1],
for each 0 <i <m — 1. Then, after the necessary affine changes, the composite curve y €
C(la, b1, 10, 1] x O),

Yy =Toxyoxixyrsk---sxymoxlp_i,
links (0, po) to (1, p1). By the properties of the parity,
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m—2 m—1
o(DyH oy, la.b) =[] o(DuH oy, [0.1]) [ o(DuH o T, [ti. ti11])
i=0 i=0
m—2
= [[o@uH o yi.10. 1.
i=0

Therefore, we finally obtain

deg(Ho, 0, £py) =0 (DyH oy, [a, b]) deg(H1, 21, €p,).
This proves (3.17). The identity (3.18) follows from Theorem 3.2. This ends the proof. O

A simplification of the preceding proof yields a counterpart of Theorem 3.6 without specifying
the regular points.

Theorem 3.7. Let (H, 2, ¢) € 4(0O) be a generalized O-admissible homotopy. Then,

deg(Ho, S20, £0) = deg(H, 21, £1). (3.21)
3.4. A Leray-Schauder continuation theorem

We conclude this section by delivering a generalized version of the Leray—Schauder con-
tinuation theorem for Fredholm operators of index zero. Some precursors in the context of the
Leray—Schauder degree were given by Mawhin [46].

Theorem 3.8. Let (H, 2,¢) € 7(0O) be a O-admissible homotopy with deg(Hy, 2, &) # 0.
Then, there exists a connected component € C H™1(0) N Q that connects {0} x Q with {1} x Q.

Proof. Since deg(Hy, €2, g9) # 0, by the existence property, H(;l (0)NQ £ @, and deg(Hy, 2) #
0. Let 2 be the disjoint union of the connected components % of H~!(0) N Q satisfying € N
Hy, ! (0) # @, and consider an isolating neighborhood, U/, of Z, i.e., an open subset of [0, 1] x
such that 2 c U and H~1(0) N dU/ = . The existence of I follows by Property (9.3) on Chapter
I of Whyburn [55], see also the forthcoming Lemma 4.2.

If 2 intersects {1} x Q, we are done by simply choosing € to be one of the connected com-
ponents of 2 such that € N [{1} x Q] # @. Suppose that 2 does not intersect {1} x €. Then,
necessarily, P;(2) = [0, to] with 0 < fy < 1, where P; : [0, 1] x Q — [0, 1], (¢, u) — ¢, stands
for the ¢-projection operator. Since H,, L0y N Q c U, by the excision property of the absolute
degree, it is apparent that deg(Hoy, 2) = deg(Ho, Up). Thus, by homotopy invariance,

0 # deg(Hy, 2) =deg(H;,U;) forall ¢ €[0,1].

Therefore, U; #~ @ for all ¢ € (79, 1], which is impossible if I/ is chosen to be sufficiently close to
2. This ends the proof. O
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4. Local bifurcation theory

In this section we deliver our main local bifurcation theorem for Fredholm operators. Essen-
tially, it is a generalization and a re-elaboration of the local bifurcation results of Fitzpatrick,
Pejsachowicz and Rabier [20], Pejsachowicz and Rabier [50], and [31, Th. 6.2.1], through
the concept of algebraic multiplicity of Esquinas and Lépez-Gémez [14,15,31]. It is worth-
mentioning that it is a very substantial generalization of the pioneering local bifurcation theorems
of Krasnoselskij [28], Rabinowitz [51] and Ize [25], collected in [48] by Nirenberg.

Throughout this section, given a pair (U, V) of real Banach spaces, two real values A_ < A4
and a neighborhood i/ C R x U of [A_, A,] x {0}, we deal with C! operators §: U/ CRxU — V
satisfying the hypothesis:

(F1) §(Ax,0)=0forall (A,0) eld.
(F2) D,§(x,0) € Dp(U, V) for all (A,0) eld.

The set of solutions 7 := {(A, 0) : (A, 0) € U} is called the set of trivial solutions of (A, u) =0,
and

[371ONT] Ut 01 2 e ZDLFC,0)
is referred to as the set of non-trivial solutions of F(A, u) = 0. We will denote by

LA) =D, 5, 0), (1,0 el,

the linearization of § on the set of trivial solutions. In particular £(1) € ®((U, V) is a continuous
path of Fredholm operators of index zero. Given (Ao, 0) € U, it is said that (1¢, 0) is a bifurcation
point of F(A, u) =0 from T if there exists a sequence {(A;, uy)},eN C F1(0), with u, # 0 for
all n > 1, such that lim,,_, oo (A, u,) = (A9, 0).

Let § € C1 (U, V) satisfying conditions (F1)—(F3) and let (1, 0) € U be a bifurcation point of
F (&, u) =0 from 7. Then, by the implicit function theorem, Ao € 2(£). The main result of this
section reads as follows.

Theorem 4.1 (Local bifurcation). Let (U, V) be a pair of real Banach spaces, A_, Ay be two
real numbers such that A_ < A4, and U C R x U be an open neighborhood of [A—, A1] x {0}.
Consider § € CY(U, V) such that:

(@) §(A,0)=0and £(A) :=D,F(A,0) € Do(U, V), (1,0) €U4.
(b)) £A+) e GL(U, V) and

X[Lw, A=, 2411 € 2N + 1, 4.1

where £, € € (A=, +], ©o(U, V)) is any analytic curve A-homotopic to £(1), A €
(A, Aq]

Then, the following assertions are satisfied:
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(1) There exists Ay € (A—, Ay) such that (Lo, 0) is a bifurcation point of F(A,u) =0 from T =
{(x,0):(A,0) elUd}.

(1) There exists no > 0 such that, for every n € (0, ng), there is a connected component of the
set of non-trivial solutions of §(A,u) =0,

CCF MG 0 et g SO,
joining T :={(X,0) : L € (L) N (A_, Ay)} to the surface || x| = 7.
In the proof of this result we need the following result of Whyburn [55].
Lemma 4.2. Let (M, d) be a compact metric space and A and B two disjoint compact subsets of
M. Then, either there exists a connected component of M meeting both A and B, or M = M W
Mp, where M 4 and Mp are disjoint compact subsets of M containing A and B, respectively.
Proof of Theorem 4.1. Let us start by fixing ¢ > 0 so that
[A- —e, Ay +e]l x{0}CU.
Since D, §(1,0) € ®o(U, V) for all A € [A_ — ¢, A4 + €], necessarily
DFX,0ed(RxU,V) forallie[r_ —e, Ay +¢].

Thus, by the Fredholm stability theorems (see, e.g., Kato [26]), for every A € [A_ — &, A4 + €],
there exists an open interval Z(A) C [A_ — &, A4 + €], and r (1) > O sufficiently small such that

DF(h,u) e ® (R x U, V) forall (A, u) €Z(A) x Byg).

By the compactness of [A_ — &, A + €] x {0}, there exist an integer N > 1 and N points X; €
[A- —e, A4 +¢],1 <i <N, such that

N
[ —& Ay +el x {0} €[ JZ) x Bra-
i=1

Therefore D§(A,u) € ®1(R x U, V) forall L € [A_ — ¢, A+ + €] and u € B,, where

r:=min{r(x1), r(A2), ..., r(Ay)} > 0.

Moreover, since the Fredholm maps are locally proper (see, e.g., Smale [54]), we can repeat the
previous argument to show that actually § is a proper Fredholm map of index one on [A_ —
e Ay +e]lx B, for sufficiently small » > 0. Moreover, shrinking r > 0 if necessary, we can
suppose that D, F(As,u) € GL(U, V) for each u € B,. Consequently, §(A+, ) is orientable
and Rp,zx.,) 7 Y. Hence § is orientable on [A_ — &, A4 + €] x B,. Denoting O := B, and
Q := B,2, we have proved that (H, , &) € 5#(0) is a O-admissible homotopy.

To prove the part (i) we argue by contradiction. Suppose that §(x, #) = 0 does not admit a
bifurcation value in (A_, A). Then, shortening r > 0, if necessary, one can assume that
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(A= A4 x ) NF1(0) = [A—, A4] x {0}.

In particular, 0 ¢ §([A—, A4+] x 9€2). Since D, §(A+,0) € GL(U, V), 0 is a regular value of both
Dy, §(r+,0). Thus, Lemma 3.5 with pg = p1 = 0 yields

deg(F(A—, ), Q, g0) = (= XL lt=2+ll deo(F (4, 1), 2, £9),

where &g is the orientation such that £9(0) = 1, and £, € €“([A—, A+], Po(U, V)) is any ana-
lytic curve .A-homotopic to D, F(A, 0). As, due to the hypothesis (b),

x[Lo, [A—, 2411 € 2N + 1,

we find that

deg(§(A-. ). 2, g0) = —deg(§(A+. ). 2, £0). (4.2)

On the other hand, since D,§(A+,0) € GL(U, V), by the inverse function theorem, shortening
r > 0 if necessary, we can suppose that F(Ai,-) : 2 — V is injective. Consequently, by the
definition of the degree for regular values, it is apparent that

degF(hs, ), Qoe))= Y o) =g0)=1.
e, | 0NL

This contradicts (4.2) and concludes the proof of Part (i).

Now, we will prove the part (ii). Fix » > 0 so that § is a proper Fredholm map of index
one on [A_ — &, A4 + &] x B, as we have done in the proof of the part (i). Subsequently, for
every 0 < n <r, we consider the closed cylinder Q, :=[A_, A4 ] X En’ and the set of non-trivial
solutions of §(A, u) =0,

S={0u)eF O :u#0}W{(A,0)elU:re (L))

It is easily seen that § and X(£) are closed. Thus, as Q, is closed and bounded and ScF Y0,
the set M := S N Q, is compact, because § is proper on [A_ — &, A + €] x B,. Now, consider
the subsets of M

A:={(h,u)eM:|ull=n} and B:={(X,0)e M : 1 Z(L)}.

By Part (i), we already know that there exists Ag € (A_, A4+) such that (19, 0) is a bifurcation
point of F(A,u) =0 from (X, 0). Thus, there exists n > 0 such that A # @. Clearly, B #
because (Ag,0) € B. Therefore, A and B are non-empty disjoint compact subsets of M (see
Fig. 1). Part (ii) establishes the existence of a continuum € linking A to B. To prove this we
argue by contradiction. So, assume that A and B are not in the same connected component of M.
Then, according to Lemma 4.2, M = Mo W Mp, where M4 and Mp are disjoint compact subsets
of M containing A and B. Since dist (M4, Mp) > 0, there exists § > 0 such that the open §-
neighborhood M?S = Mg + Bs(0, 0) satisfies Mg N M4 = (). Moreover, since A+ ¢ 2(£), by the
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\Mg

Av A

Fig. 1. Scheme of the construction.

implicit function theorem, we can choose 1 > 0 and ¢ > 0 sufficiently small so that (A, u) € M
implies A_ + & < A < A4 — ¢. Hence, shortening é > 0, if necessary, we have that

(o u) € M, :>x_+§<)\<x+—%, 4.3)

and therefore Mg C Qy. By construction, BMg N M = @. Moreover, Qg N M4 = @ for suf-
ficiently small B € (0, ). Thus, for these B’s, the set Q :=intQg UM 8 where the interior is
taken over [A_, A4+ ] x U, is a bounded and connected open in [A_, A, ] x U and satisfies Mp C Q2
and 02 N M = ¢. Setting O := B, since QClr, A+l x O and 02 N M =@, it follows that
(F,92,8) €4(0),F : [M—, A+] x O — V,is a generalized O-admissible homotopy. Since pg =0
is a regular point of D), , by Theorem 3.6, we find that

deg(F(A—, ), Q_, g0) = (=X Lo l=2+l deo (T, ), Qi , €0), (4.4)

where g is the orientation such that 9(0) = 1, and £, € €“([A—, A+], Po(U, V)) is any ana-
lytic curve A-homotopic to £(A), A € [A_, A]. Furthermore, by (4.3), Q,_ = Q,, = Bg, and,
by hypothesis, x[£y, [A—, A+]] € 2N + 1. Therefore, from (4.4) we can infer that

deg(%’()\.,, ')7 Bﬂv 80) = deg(%()\'ﬁﬂ ')’ Bﬂa 80)7

which is impossible, as we have already shown at the end of the proof of Part (i). Therefore, A
and B must be part of the same connected component of M. This ends the proof. O

5. Global bifurcation theory

In this section, we are going to adapt the global theorem of Lépez-Gémez and Mora-Corral
[37] to the context of the degree for Fredholm operators of Fitzpatrick, Pejsachowicz and Rabier
[20,50]. Throughout this part, we consider a C!' function §: R x U — V such that

(F1) 3 is orientable with orientation € : Rp, g — Z>.
(F2) §(A,0)=0forall » e R.

(F3) D,S(A,u) € do(U,V) forevery L. e Randu e U.
(F4) § is proper on bounded and closed subsets of R x U'.

The next definition fixes the concept of admissible family of intervals for £(£). Given two dis-
joint real intervals, A and B, it is said that A < B ifa < b foreverya € A and b € B.
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Definition 5.1. Let 7 be a non-empty locally finite family of disjoint non-empty open intervals
of R. It is said that 7 is an admissible family of intervals for X (£) if

JNZEL) =0 forall J € J.

If, in addition, there are r, s € Z U {00}, r <'s, such that J = {J,};_, with J,_1 < J, for all
neZN[r+1,s], then J is said to be an admissible ordered family of intervals for X(£).

Associated to any admissible ordered family of intervals 7 = {J,}; _, for £(£), we have the

associated family of compact intervals Z = {I,}, _._ | defined by

I, :==[sup J,,—1,inf J,,], neZNr+1,s].
For each n € Z N [r + 1, 5], one has that I,, # @, because J,_| < J,, though I, might consist
of a single point. Moreover, I, < I, foreachn € ZN[r + 1,5 — 1]. By [35, Le. 4.3], the
family 7 is also locally finite. Now, we introduce the concept of J-parity map associated to an
admissible ordered family of intervals, J = {J,};_, for £(£). Choose a point A, € J,, for every
n € Z N|[rs]. Since A, ¢ X(£), necessarily £(A,) € GL(U, V) and p = 0 is a regular point
of F(A,-). In fact, p =0 is a regular point of F(A,, -) for each n € Z N [r, s]. Let us suppose,

without lost of generality, that €, (0) = &(A,, 0) = 1. This choice determines uniquely the total
orientation ¢. Consider the sequence {a,};_, C {—1, 1} defined recursively by

a =1, a,=an—1-0L,[Ap—1,An]) forneZnN[r+1,s].
The following two lemmas provide us with two closed formulae for a,,.
Lemma 5.2. For everyn € Z N[r + 1, s], we have that a, = o (£, [LAr, A ]).

Proof. Letn € Z N[r + 1, s]. By applying inductively the properties of the parity yields

n

ay =01 -0 D1, M) =ar - [] 0(& i1, ki) =0 (€, A, Aa)).
i=r+1

This concludes the proof. O
Lemma 5.3. For every n € N, we have that a,, = ¢;,,(0).

Proof. By Lemma 5.2, we have that a, = o (£, [\, A,]), foralln € Z N [r + 1, s]. Thus, by the
definition of the orientation,

o (L, [Ar, M) =€e(Ar,0) - £(X,,0) = Ex, 0) - Ern 0).
Since we have set ¢;, (0) = 1, it follows that a, = ¢;,(0). O
The next definition introduces the notion of 7-parity map.
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Definition 5.4. The [J-parity map P associated to the admissible ordered family J := {J,,}}_,
is defined through

P T— (1,01}, PU,)= %

where Z = {I,},_, .
Note that, setting
Ip:={neZnr+1,s]l:ap—1=a,}, Tr:=mneZN[r+1,s]:a,-1# an},
the J-parity P satisfies the following properties:
(a) P(Ip)=0ifn eIy,
(b) P(,)==xlifnely,
©) PUH)PUp)=—1ifn,mel withn <mand (n,m)NT =0.
The following lemma will be invoked later. It relates the 7 -parity map with the degree.
Lemma 5.5. Let n € Z N [r + 1, s]. Then, for sufficiently small p > 0 and § > 0,
2P(Ip) = deg(§(An, ), By, €3,) — deg(F(An—1,-), Bp, €x,_,). (3.1
Proof. Fix somen € Z N[r + 1, s]. By definition,
2P (L) = an — an—1 = an 1 [0/(L, Dt 2 ]) — 1].
Thus, by Lemma 5.3,
2P (1) = £3,, (0) [0/, Dhnt, D) — 1]. (5.2)

Recall that p = 0 is a regular point of F(A, -) for each A € {X,,_1, A,;}. By the definition of the
orientation,

Ernr (0) - 3, (0) = 0 (£, [An—1, An)),
or equivalently,
€3, (0) =&3,,(0) - 0 (£, [An—1, 20 ]). (5.3)

Since £(1,), £(Ay—1) € GL(U, V), for sufficiently small p > 0, by the definition of the degree
and (5.3), we infer that

deg(g()‘n, ')7 B,07 8).,,) = 8)»,1 (O) = 8),,,,1 (O) : U(Ev [)"VL*l? )\n]),
deg(F(An—1. ), Bp, €1,_;) = €x,_,(0).
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Cy

C2 C4

(&S
=y Ny g

Fig. 2. The set of non-trivial solutions S 7.

Therefore, we deduce that

deg(F(An, ), Bp, &3,,) — deg(Fn—1,-), Bp, €1, ) = &1, , (0) [0/ (L, [An—1, n]) — 1]
Combining this identity together with (5.2) yields (5.1) and ends the proof. O

Associated to any admissible ordered family J = {J,};_, for £(£), we will consider the
corresponding set of non-trivial solutions through

S7:= (5O NRx U\ {op1) U [(R\ U Jn> x {0}] :

Clearly, the set S;7 C F71(0) is closed. We will say that € C S7 is a component of Sz ifitisa
non-empty closed and connected subset of S 7 maximal for the inclusion, i.e., if it is a connected
component of S;7. Since § is proper on closed and bounded subsets, it is easily seen that every
bounded component € is compact.

Fig. 2 shows an admissible unbounded set of non-trivial solutions S together with the in-
tervals, Ji, J2, J3 and Jyg, of the admissible ordered family 7; J; and J4 are unbounded open
intervals, while J, and J3 are bounded. In this example, S consists of four components, ¢;,
i €{l1,2,3,4}, though, in general, it might consist of an arbitrarily large number of components.
The set R \ ULI J; consists of three compact intervals, I, I> and I3, containing X (£), which, in
this particular example, it consists of two compact intervals and three single isolated points. The
set X(£) is colored in green. The components € and €, are separated away from the real axis,
which represents the trivial solution (A, 0). This is why these components are usually referred
to as isolas. €1 is unbounded in R x U, while ¢, is bounded. The remaining two components
bifurcate from (X, 0) at a variety of spectral values. €3 bifurcates from /; and it is unbounded,
and ¢4 bifurcates from I, and I3, and it is bounded. Thus, €3 contains /; and €4 contains I, and
1.

Subsequently, for any given component, &, of S;7, we will denote

B=B&) :={neZnN[r+1,s]: (I, x {0}) N&€ £ @}.
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For example, in the special case described by Fig. 2, B(€3) = {1} and B(¢4) = {2, 3}. The next
result shows that B(€) is finite if € is compact (see [38, Le. 2.4] for its proof).

Lemma 5.6. For every bounded component € C Sz, B = B(Q) is finite. If, in addition,
CNR x {0} C (U, Jn UUS_. ) x {0}, (5.4)

then there exists a > O such that
K + Ba(©,0010 [ (R\ U, Ju) x {0}] € Unersl x (0. (5.5)

Throughout the rest of the section, we fix an admissible ordered family J = {J,};_, for
> (£) and a bounded component € of S 7. Thanks to Lemma 5.6, B = B(€) is finite. Moreover,
Unenli x {0} C €, since € is a component. Also, every A € R\ Uj_.J, with (1, 0) € € satisfies
A € U,enly, since € is bounded. Thus,

N R x {0}) =VU,epl, x {0}. (5.6)
The following concept plays a pivotal role in our subsequent analysis.

Definition 5.7. A bounded open set 2 C R x U is said to be an open isolating neighborhood of
¢ with size n > 0 if the following conditions are satisfied:

(a) €CQCC+ B,(0,0),
(b) IQNSs =10,

© [(R \US_, Jn) X {0}] NQ cU,epl, x {0).

The condition (a) entails that €2 can be taken as close as we wish to €, the condition (b) means
that 9€2 cannot admit any non-trivial solution, and (c) holds as soon as 1 > 0 is sufficiently small
in (a). Note that item (c) implies that

B@)={neZNr+1,s]:, x {0}) NQ#0}.

To prove the main result of this section, we need the following technical lemma concerning the
existence of an open isolating neighborhood for € (see [38, Pr. 3.3] for its proof).

Lemma 5.8. Let J := {J,,};_, be an admissible ordered family for £(£), and suppose that € is
a bounded component of S 7. Then, for every n > 0, € possesses an open isolating neighborhood

Q of size . Moreover, for every open isolating neighborhood Q2 of € and sufficiently small ¢ > 0,
there exists py > 0 such that, for every 0 < p < pg and

re A€, ) =R\ Uyepllp + (¢, €)1, (5.7
some of the following alternatives occurs:
(i) Either Ep N, =0, or
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(ii) {u € B,:F(h,u)=0}={0}.
The main result of this section can be stated as follows.

Theorem 5.9. Let § € C'(R x U, V) be a map satisfying (F1)-(F4), J := {Jn)s—, be an admis-
sible ordered family for £(£), and suppose that € is a bounded component of S 7. Then,

> Py =0, (5.8)
neB(¢)

where P is the J -parity map.

Proof. Since € is compact, B(€) is finite and we can write B = {n;};"_; where m is the cardinal
of the set B(€) and ny € ZN[r + 1, s] foreach 1 <k <m with

Ny <ny<---<np<--+-<Nlp.

Let 2 be an open isolating neighborhood of € with size 1 > 0. Pick a sufficiently small § > 0
such that:

(1) (Unesln x {0}) + B5(0) C €.

2) {I, +(—8/2,8/2)},ep consists of disjoint intervals.

(3) Setting A :=infl, — §/2 and A} := sup 1, + §/2 for each integer n € B, one has that
A, € Jy—1and 1S € J, forall n € B.

Moreover, thanks to Lemma 5.8 with ¢ = §/2, there exists pg > 0 such that, for every 0 < p < pg
and A € A(€, §/2), either

Epmszkzw or {u eﬁp:S(A,u)=0}={0}. 5.9
Since A,T ¢ (L), necessarily DMS(A,{E, 0) e GL(U, V). Thus, pg = 0 is a regular point of

5 (Af, -) for each n € B. In order to apply the homotopy invariance property of the degree, the
following lemma is needed.

Lemma 5.10. Let 1 < k < m. Then, for every A € [A,, )»,jk],

0¢F({A} x 9€2). (5.10)

Proof. Let A €[4, , )»,j’k] and u € U such that (A, u) € 02 and §(A, u) = 0. Since (A, u) € 9L2,
then, by Definition 5.7, item (b), (A, u) ¢ S. Thus, since F(A, u) = 0, necessarily u = 0. More-
over, due to the property (1), (x,0) € Q forall A € [A, AT ]. So, (1,0) ¢ 32, a contradiction.

ng’ “*ng
This ends the proof of the lemma. O
Consequently, setting for each 1 <k <m,

Q= QN (A, AT x U),

ng’ “"ng
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the tern (§, 2y, , €) is a generalized U-admissible homotopy, (§, 2, , €) € 4 (U), and from The-
orem 3.7,

deg(§lhy ), Ry, 65, ) = dea@ At ), Ry 65 )- (5.11)

’
nj

In order to apply again the homotopy invariance of the degree, the following counterpart of
Lemma 5.10 is needed.

Lemma 5.11. Let 1 <k <m — 1. Then,

FO,u)#0 ifrelrf, a1 and ued(Q\By). (5.12)

ng? "Nkt

Proof. Let (A, u) besuchthat A e [A", A~ Jand u € (R \Ep) for some 1 <n < m. Then,

g “"Ng41

u#0and A € A(€,5/2). Thus, by (5.9), either
B,NQ =0 or {ueB,:F, u)=0}={0}.
Suppose B, N 2, = @. Then, Q; \ B, = Q; and, hence, (A, u) € 3Q. Thus (A,u) ¢ S and,
therefore, §(, u) # 0, since u # 0. Now, suppose that
{ueB,:F(h,u)=0}={0}. (5.13)

Then, u € (2, \Ep) C 092, U 0B,. Moreover, by (5.13), §(A,u) # 0 if u € 9B,, whereas
(A, u) € 02 if u € 92, In any circumstances, (A, u) ¢ S. Therefore, §(A, u) # 0, since u # 0,
which concludes the proof of (5.12). O

According to (5.12), setting for | <k <m — 1,

QU :=QN(A A, IxU), Tl=Q"\([Af, A, 1% B,),

ng’ g4l ng’ "Nyl
the tern (g, [+, €) is a generalized U-admissible homotopy, (§, ', ¢) € 4(U)-. Thus, we can
apply Theorem 3.7 to infer that

deg(-&’()\,;:—k ) ')a Q)\"Tk \ E,Oa 8)”':']{) = deg(g()";+1 ) ')7 Q)L'Tk+l \ E,O’ EA_ )

N1
Let us denote
deg (A, ), Qu\ By, ex) =di if Ae(Xf, A ), 1<k<m-—1,
deg (F\F ), Q1 \ B, sl\;rm) =d,,
deg (F(1, ). . \ B, on ) =do.

By the additivity property of the degree, we have that, for every 1 <k <m,

deg (g()\;k’ ')9 Q)‘;k » €y, ) = dk—l + deg (5()‘;18 ')7 pr S)L;k)’

i

deg (F(A,» ), Q'\»erk’S/\er) =dj +deg (F(\,1. ). By, sk;rk).
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Thus, by (5.11) and Lemma 5.5, for sufficiently small pg > 0 and each p € (0, po],
dy—1 — dp = deg (FO.F . ). Bp,swk) — deg (F(1,,,. ), Bp,skn_k) =2P(Iy,).
Therefore, adding up these identities yields
do—dm_Z(dk 1—dk)_227?(1nk)_2 > P. (5.14)
k=1 neB(€)
Finally, since € is bounded, there exists A, < A, and A* > )ﬁ such that ), = 2, = . Thus,

applying Theorem 3.7 with the generalized U admlss1ble homotoples (F, Ty, 8), (F,T*,¢) €
4 (U), where

Qo =QN (A, A, 1 x U),  Tyi=Q\([Ass Ay, 1 X Bp),
Q :=QN (N A TxU), T :=Q"\ (A} .1*] x By),
we find that

0= deg(F(he, ), ., \Bp, £1,) = deg(F 0y, ), @y \By, &, ) = do,
0=deg(F(A*, ), Qu=\Bp, £22) = deg(F(4,}, . ). it \Bp. &, ) = d.

Since do = d,,, = 0, the identity (5.14) ends the proof. O
As a direct consequence of Theorems 4.1 and 5.9, the following global alternative holds.
Theorem 5.12 (Global alternative). Let § € CY(R x U, V) be a map satisfying (F1)—(F4) and

J ={n}—, be an admissible ordered family for ¥(£). Suppose there existsn € Z N [r + 1, s]
such that, for sufficiently small § > 0,

X[Low, [A—,A4]1€2N+1, r_=infl, —§, Ay =supl, + 4, (5.15)
where £, € €“([A—, A+], ®o(U, V)) is any analytic curve A-homotopic to £(A), A € [A_, A4].
Then, there exists a component € of the set of non-trivial solutions S 7 such that €N (I, x {0}) #

(. Moreover, one of the following non-excluding alternatives occur:

(i) € is unbounded.
(i) There exists m € Z N [r + 1, s], m #£ n, such that €N (I, x {0}) # @.

Proof. Since the hypothesis of Theorem 4.1 hold, we infer the existence of a component € of
Sz such that (X9, 0) € € for some Ag € (A, ). Since for sufficiently small § > 0,

L) eGLWU,V), re[r_,infl,JU [supl,, Ay],
necessarily, Ag € I,,. Hence, €N (I, x {0}) # @ and we have proved the first part of the theorem.
Let us prove the second part. If € is unbounded, then (i) holds. Suppose € is bounded. Then, by
Theorem 5.9,
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> P =0, (5.16)
LeB(€)

where P is the J-parity map. By (5.2), we obtain

2P (1) = &._(0) [0 (&, [, Aq]) — 1]. (5.17)

On the other hand, by Theorem 3.2 and (5.15), we find that, for every analytic curve £, €
EP([A—, A1]l, Do(U, V)) A-homotopic to £(1), L € [A_, A4],

o (L [A i) = (_1))([2&,,[)»—,?%]] - 1.

Consequently, by (5.17), we deduce that P(I,) = —e;_(0) # 0. Since n € B(€), according to
(5.16), there exists m € B(&), m # n. (ii) holds if € is bounded. This ends the proof. 0O

Under the general assumptions of the local theorem of Crandall and Rabinowitz [9], A¢ is an
isolated eigenvalue of £(X). Thus, setting A1 = Ag &= 6 for sufficiently small § and using (2.4),
we are led to

X[ Lo, [A—, A1) = X [€, [A—, A4 11 = X [£, o] =dim N[£o] = 1.

Therefore, the local theorem of [9] is actually global. Although Shi and Wang [53] observed
that in the setting of [9] the global alternative of Rabinowitz also holds, Theorem 5.9 is a
substantially sharper result, as it establishes, in addition, the validity of (5.8), which is a very
sophisticated condition of global topological nature. The validity of this condition in the context
of the Leray—Schauder degree goes back to Nirenberg [48] and Magnus [45]. Rather paradoxi-
cally, the simplicity of the global alternative of Rabinowitz and the topological technicalities of
the underlying theory hid for almost 50 years the much stronger condition (5.8) until [35] was
published (see [33] for further details).

6. Sharp local bifurcation analysis from simple degenerate eigenvalues

This section is devoted to the study of bifurcation from simple degenerate eigenvalues for
analytic nonlinearities. We begin by recalling some basic concepts for analytic maps between
Banach spaces. Given K € {R, C}, an integer n > 1, and n + 1 K-Banach spaces Uy, U, - - - , Uy,

V,amap L:U; x --- x U, — V is said to be K-multilinear if it is K-linear in each variable
u; € U; foralli =1, ..., n. Naturally, in such case, L is said to be bounded if

LI :=sup{l|LGuy, - up)ll = Nt - unll < 1} < oo.

The space of the bounded K-multilinear operators is denoted by M(Uy,---,U,; V), and

we simply set MUy, ---,U,; V) = M*"(U,V) if U = U = --- = U, = U. An operator
Le MUy, ---,Uy; V) is called symmetric if, for every permutation o € X,
L(uy,uz, -+, up) = Lg(1), Us@), "+ s Uo(n))s
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where X, stands for the symmetric group of permutations of {1, ---,n}. In this section, the

space of bounded K-multilinear symmetric operators is denoted by S(Uy, - -+, Uy,; V), and we

set S(U,---,U; V)=8"(U; V). Accordingly, for every L € S"(U, V), we set
Lu,u,---,uy=Lu", uecl. (6.1)

Given a pair of K-Banach spaces (U, V) and a point ugp € U, amap § : U — V is said to be
K-analytic at uy if there exist a neighborhood U, of 1o in U and r > 0 such that

o0
Fw) =Y Low—uo)", uelhy,  sup(r'l|Lyl) < oo,

n=0 n=0

where F(ug) =Lope V and L, € S*(U,V) foralln e N. Amap §: U — V is said to be K-
analytic if it is K-analytic at every point u € U. In this section, the space of analytic functions
U — V isdenoted by C”(U, V), and we simply say that § is analytic, without specifying where,
if there is no ambiguity.
6.1. Analytic Lyapunov—Schmidt reduction

In this section, we will perform a general Lyapunov—Schmidt reduction for analytic nonlinear-
ities. Precisely, we consider a field K € {R, C}, an analytic map § € C*(K x U, V), and a point

(20, 1) € F~1(0) such that D, F (Ao, uo) € ®o(U, V). For any given pair (P, Q) of D, (Ao, ug)-
projections, P : U — N[D,§(X o, up)l, Q:V — R[D,5 (Ao, up)], we can decompose

U=N[Dy§(o,up)]®Y (Y =N[P]), V =Z® R[Dy§(ho,u0)] (Z=NI[Q)].
and identify K x N[D,F (o, uo)] with K"+, where
n:=dim N[D,§( g, ug)] = codim R[D,§ (Ao, ug)]l,
via the linear isomorphism
T:K x N[D,§(ro,up)] > K x K", (A, x)— (&, Lx). (6.2)

Similarly, one can identify Z with K” via another linear isomorphism S : Z — K", because
dim Z = n. Since every u € U admits a unique decomposition as

u=uo+x+y, x=Plu—upl, y=Uy— P)lu—uopl, (6.3)
the equation §(X, u) = 0 is equivalent to the system
0§ uo+x+y)=0, Uy —Q)F*,uo+x+y)=0. (6.4)
Consider the operator
H: K xN[D,Fro,uo)l xY =V, HA,x,y):=05N, uo+x+y).
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This operator is analytic and it satisfies $(1g, 0, 0) = 0. Moreover, its linearization

Dy (20,0,0) = ODy§ (o, uo)ly : ¥ = R[Dy§ (o, uo)]

is an isomorphism. Thus, by the implicit function theorem, there exist a neighborhood U of
(X0,0) in K x N[D,§(ro, uo)] and an analytic map Y : i/ — Y such that

H,x, YA, x))=0 forall (A,x)ell. (6.5)

In particular Y (1g, 0) = 0. Moreover, there exists a neighborhood O of (A, u) = (19, ug) in K x
U such that if (A, u) = (A, up+x +y) € O and H(A,x,y) =0, then y = V(A, x). Finally,
substituting Y (A, x) into the second equation of the system (6.4) yields

Iy = DFRr, uo+x+ Y2, x) =0, (4 x)el. (6.6)

Therefore, (A, x) € U is a solution of (6.6) if, and only if, (A,u) = (A, up +x + Y(A,x)) €
O satisfies §(A, u) = 0. Consequently, considering the open set 2 := T (i), where T is the
isomorphism (6.2), we have reduced the equation (A, u) = 0 in the neighborhood O of (Aq, up),
to the problem of finding out the zeroes of the finite dimensional analyticmap & : @ C K x K" —
K" defined by

B(h,2):=SUy — DF*huo+ L~ 2+ Y, L7'2)). (6.7)
In particular & (1, 0) = 0. Consequently, the following result holds.

Theorem 6.1. Ler § € CO(K x U, V) and (o, uo) € §1(0) with D, F(ro,ug) € ®o(U, V).
Then, there exists a neighborhood O of (A, ug) in K x U such that the maps
U0 N0 — &710), u)— (A LPu—up)),

6.8)
v 70— 30 NO, (L) Mug+ L' z+ Y0, L7'2),

are mutually inverses, where & : Q@ — K" is given by (6.7). Moreover, for every (A, z) € &~ 1(0),
the following statements are equivalent:

(1) D,B(r,z2) #0.
2) DS, L™ 24+ Y, L712) e GLWU, V).

6.2. Sharp local bifurcation analysis from simple degenerate eigenvalues
In this section we ascertain the local structure of the solution sets for analytic nonlinearities
at simple degenerate eigenvalues. Throughout it, we assume that K € {R, C}, that U and V are

K-Banach spaces, and that § € C*(K x U, V) satisfies the following assumptions:

(F1) §(A,0) =0 for every A e K.
F2) £(0) :=D,F(A,0) € Dy(U, V) for all A € K.
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(F3) Ao € 2(£) is an isolated eigenvalue such that

N[£o] =span[gg] for some ¢y € U\{0}.

Subsequently, we denote by (-, -) : U x U* — K the duality pairing between U and its topological
dual space U*. By the Hahn—Banach theorem, there exists ¢; € U* such that (o, ¢5) = 1. Let
us consider a pair P = (P, Q) of £o-projections, P : U — N[£p] and Q : V — R[£y], where P
is given by

P(u):=(u,¢5)¢p0 forall ueU. (6.9)
Then, we have the topological direct sum decompositions
U=N[&l®Y F=N[P]), V=Z&R[L] (Z=N[QD.
In the sequel, we identify K x N[£q] with K2 via the linear isomorphism

T:K x N[€]— K%, Tk, z90) = (A, 2), (6.10)

and Z with K via another linear isomorphism, S : Z — K, whose expression is not relevant.
Then, according to the results of Section 6.1 applied to §(x,u) = 0 on (Ao, 0) with the £o-
projections (P, Q), there exist two neighborhoods, Y C K x N[£p], (A0,0) e U, O CK x U,
(X0, 0) € O, and an analytic operator ) : i{ — Y such that the maps (6.8) with LP (u — ug) =
(u, @3) and L~ 'z = z¢o, are mutually inverse. Note that now & is given by (6.7) with L™z =
zgo and 2 = T (U). Without loss of generality, we can assume that (Ag, 0) = (0, 0). Since & is
analytic and & (A, 0) = 0, it can be expressed as

G(h.)= Y ayiz, (2~ (0.0),
i>0, j>1

for some coefficients a;; €K, (i, j) € 72, J # 0. Thus, there exists an analytic function g : Q2 —
K such that

6=z Y @} '=z80,2,  (h,2)~(0,0). (6.11)

i>0, j>1
The next lemma shows how the algebraic multiplicity x of £(A) is related to &.
Lemma 6.2. x[£, 0] =ord)—o D;® (A, 0) =ord)—o g(1, 0).
Proof. Since § is analytic, £ € C*(K, ®o(U, V)). Thus, by hypothesis (F3), 1o = 0 is an isolated
eigenvalue. Hence, by Theorems 4.4.1 and 4.4.4 of [31], 0 € Alg(£). Therefore, x[£, 0] is well
defined. On the other hand, by [43, Th. 1.2], we have that x[£, 0] = ord)—o D;® (A, 0). The proof

is complete. O
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Combining Lemma 6.2 with the Weierstrass preparation theorem (see [8, Th. 5.3.1]), there
exist a open neighborhood % = %, x % of (0,0) in 2, an analytic function ¢ : Z — K such
that ¢(0,0) #0, and x := x[£, 0] > 1 analytic functions c; : %, — K such that ¢;(0) = 0 for all
0<j<x-—1,and

802 =0, ) [M + 1@V 4 @A+ )]
The factoring monic polynomial

pOL2) =2 F eyt @M e (@A + eo(2) (6.12)

is often called the Weierstrass polynomial of g(A, z). These results can be summarized into the
following theorem.

Theorem 6.3. Let § € C*(K x U, V) be a map satisfying (F1)—(F3). Then, there exist a neighbor-
hood % of (0,0) in K2, an analytic function ¢ : %4 — K, with ¢(0,0) #£0, and x = x[£,0] > 1
analytic functions cj : %, — K, 0 < j < x — 1, with ¢;(0) =0, such that

G, ) =z2c(h, DA + ey 1 @M 4 el (@A+e02), (M 2) e,

satisfies B(h,z) = 0 if and only if (A, u) = (A, z90 + V(r,z¢0)) € F1(0). Therefore, the
associated Weierstrass polynomial (6.12) provides us with the local structure of F~'(0) at
0,00 e K x U.

This result reduces the analysis of the local structure of the solutions of the infinite dimen-
sional problem §(X, u) = 0 to the analysis of the zeros of the Weierstrass polynomial p(}, z).
According to Theorem 6.3, in the simplest case when x = 1, the local structure of 3’1(0) is
determined by

&, 2)=zc(A,2)(A+c0()=0, (\2)e%.

Since ¢ is analytic and ¢(0, 0) # 0, shortening the neighborhood %, if necessary, we can assume
that c(A, z) # 0 for all (&, z) € Z. Thus, &(1, z) = 0 if and only if either z =0, or A = —cp(z),
Z € U,, which provides us with the analytic counterpart of the main theorem of Crandall and
Rabinowitz [9]. Throughout the rest of this section, we will distinguish between two different
cases, according to the nature of K.

6.3. The complex case K =C

Then, given a domain 2 of C, we will denote by O(2) and M(2), the spaces of holomor-
phic and meromorphic functions defined on €2, respectively, and we denote by M (2)[A] (resp.
O(2)[A]) the space of polynomials in A with coefficients in the space of meromorphic (resp.
holomorphic) functions on 2. Let % = %, x %, be the open set of C? whose existence was
established after the proof of Lemma 6.2. Since M (%) is a field, M (%)[A] is a Unique Factor-
ization Domain (UFD). Thus, there exists an integer n > 1 and n monic irreducible polynomials
in M(Z.)[A], say pi (X, z), with p; (1, 0) = A9€Pi j e {1, ..., n}, such that
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pO ) =]]rin 2,

i=1

where p(A,z) is the Weierstrass polynomial (6.12). Subsequently, we set d; = deg p; for all
i €{l,...,n}. Since p; (A, z) € M(%,)[1], we can express

pitn2) =A% tcig 1 @A (@A F o), z €,

for some meromorphic functions c¢;  : %, — C such that ¢; x(0) =0, 1 <i<n,1 <k <d; — 1.
Actually, shrinking %/, if necessary, we can suppose that each c; x € O(%;). Thus, p;(r,2) €
O[],

Suppose that d; > 2 for some i € {1, ..., n}, and let us denote by A;(z), z € %;, the discrimi-
nant of the polynomial p; (X, z). Since p; (A, 0) = A4 with d; > 2, A =01is, at least, a double root.
Hence, A;(0) = 0. Moreover, A; # 0, because p; (1, z) is irreducible in M (%;)[A]. Thus, since
the discriminant is analytic, shortening % if necessary, we can assume that A;(z) # 0 for all
7 € 2%, \{0}. Consequently, for every z € %,\{0}, the irreducible factor p; (X, z) admits d; simple
roots. Pick z € %,\{0}. Then, by [21, Cor. 8.8], there exists a neighborhood ¥ of z in %;\{0},
and d; holomorphic functions, ¢; € O(¥), j € {1, ..., d;}, such that

d;
P =[] —9i@), ze?.
j=1

Consequently, the set S; := p;” ! (0) N [C x (7, \ {0})] consists, locally, of the analytic curves
A, 2)=(¢j(2),2),z€ ¥, je{l,..,d;}, and therefore, S; can be endowed with the structure of
an open Riemann surface, i.e., an open one-dimensional smooth complex manifold. Obviously,
this is also true if d; = 1. So, it holds for all i € {1, ..., n}. The next result establishes that (0, 0) is
an accumulation point of §; C CZforalli € {1, ...,n}. According to Theorem 6.3, in the complex
setting, (0, 0) € C x U always is a bifurcation point of §(X, u) = 0, regardless the value of .
Lemma 6.4. (0, 0) € C? is an accumulation point of S; for all i € {1, ..., n}.

Proof. We claim that, for every (A, z) € C x %, such that p; (A, z) =0,

di—1
1Al fmax{l, ||ci,j||LOO(%} =R. (6.13)
0

Jj=

Note that %, can be shortened so that ¢; ; € C (%.). Suppose p;(x,z) = 0. Then,

di—1
Wi — Z ¢ @M. (6.14)
Jj=0

Thus, (6.13) holds if |A| < 1. Suppose |A| > 1. Then, (6.14) implies that
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di—1

M < D il (6.15)
j=0

and dividing (6.15) by |)\|d"_1 yields (6.13). On the other hand, since the domain # := {7 €
C : Rz > 0} N %, is simply connected, by analytic continuation, it follows from [21, Cor. 8.8]
that there exists a holomorphic function ¢ : #° — C such that p; (¢(z),z) =0 forall z€ # . In
particular, we have that

lir% pi(p(2),z) =0. (6.16)

Moreover, by (6.13), |¢(z)| < R forall z € # . Let (z,),eN be a sequence in % such that z, — 0
as n — oo and set w, := ¢(z,), n > 1. Since |w,| <R for all n € N, by compactness, there
exists a subsequence, relabeled by n, such that w,, — wo as n — oo with |wg| < R. By (6.16),
pi(wo,0) = 0. Since p;(r,0) = A4 necessarily wo = 0. Therefore, (0, 0) is an accumulation
point of §;. O

To gain some insight into the local structure of the zeros near (0,0), we consider the z-
projection operator 7; : S; —> %;\{0}, (%, z) — z. By construction, 7; is a d;-sheeted holomor-
phic covering map whose associated fiber at z € % \{0} is the set of simple roots of p; (A, z) = 0.
To study the singularity at (0, 0) or, equivalently, to add the multiple root (0, 0) of p; (A, z) to the
Riemann surface S;, one can extend S; to a Riemann surface, A, with a branched covering map
I; : &; — %, such that I1;|s, = 7, by means of the following classical theorem of B. Riemann
(see, e.g., [21, Th. 8.4] for a proof).

Theorem 6.5. Let 2 be a domain in C and zo € Q2. Suppose X is a Riemann surface and 7 :
X —> Q\{zo}, is a proper holomorphic covering map. Then, 7 extends to a branched covering
of Q. In other words, there exists a Riemann surface X, with X C X, and a proper holomorphic
map T1: X — Q such that X\I1"'(z0) = X and T|x = .

For every i € {1, ..., n}, the extended A; is called the Riemann surface of the irreducible fac-
tor p; (A, z) € M(Z;)[\], and T1; : X; — %, is refereed to as the d;-sheeted branched covering
map associated to it. In particular S; = 2\3\1’[;1(0). Therefore, the local structure of &~ )
in a neighborhood of (0, 0) € C2is completely determined by the pairs (X;, I1;), i € {1, ..., n}.
The internal structure of the pairs (&}, I1;) can further be analyzed through symmetries via the
concept of deck transformation. A deck transformation associated to the pair (X;, I1;) is a bi-
holomorphic map ¢ : X; — A making the following diagram commutative:

& X (6.17)

Let us denote by Deck(&;, I1;) the group of the deck transformations associated to (X;, I1;).
This group gives information about the nature of the singularity at (0, 0). To study the structure
of Deck(X;, IT;), we need some preliminaries on field extensions. Consider the field extensions
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M) € M(X;), i € {1, ...,n}, where we are denoting by M (X;) the field of meromorphic
functions defined on &j. As, due to [21, Th. 8.12], the field isomorphism

M(%):%, (6.18)
holds, the extensions M (%) C M(X;) are determined by the algebraic field extensions
M) % (6.19)
Some elementary algebra shows that
MO _ difa'(),\f e M), jel{l,2,---,di—1 ~
T T P e /~

where deg p; =d; and f] ~ f if and only if f1 — f> € (pi (X, 2)). Thus, it is apparent that

[M(%)[k]

i) M(%)} =d; =degpi.

As usual in field theory, [L : K] stands for the degree of any field extension K C L, i.e., the
dimension of L viewed as a K-vector space. Finally, let us associate to the field extensions
M(YU;) € M(X;) their associated Galois groups &; (M(X;)/ M (%)), i € {1,---,n}. The Ga-
lois group of a field extension K C L, 4(L/K), consists of the set of field K-automorphisms
(or permutations) o : L — L leaving invariant K. Thanks to (6.18), the following group isomor-
phism holds

M) )
GMX)/MU) =G ———— | M) )| =% 6.20
(MX)/ M%) (WMD/ (%) (6.20)

According to [21, Th. 8.12], the map J : Deck(X}, I1;) — & (M(X;)/ M(U)), ¢ — ole],
where,

ole]: G (M(X) | M(Z)) — G (MX) M),  frs fogp !,

is a group isomorphism. Therefore, by (6.20), Deck(X;, I1;) is isomorphic to ¥; for all i €
{1,---,n}. By the fundamental theorem of the Galois theory, for every i € {1, ..., n}, the roots
X = A(z) of the irreducible polynomial p; (A, z) can be expressed as a composition of radicals
and meromorphic functions on % if and only if the Galois group ¥; is solvable. For instance, the
Galois group of the irreducible polynomial A2 +zA + 1 € M(%;)[A], is solvable because its roots
can be expressed as A(z) = %(—z ++72—1), 7z € %,. Precisely, its Galois group is given by

9Y(L/K)={l,0}, where L = %, K = M(%,), 1 : L — L stands for the identity map,

and o : L — L is defined by o () = —A. The previous results can be summarized into the next
one.
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Theorem 6.6. Suppose that § € C®(C x U, V) satisfies (F1)—(F3) and its associated Weierstrass
polynomial p(X, z) has irreducible components p;(7,z), 1 <i <n. Then, (0,00 e C x U isa
bifurcation point of §(,,u) =0 from (1,0) at A =0, regardless the value of x. Moreover, the
set F=1(0) near (0, 0) is in one-to-one correspondence with J; = U?:l SiU{A,0): 1 e},
and the structure of this set is given by the pair (X;, I1;), where X; is the Riemann surface of
the polynomial p;(L,z), i € {l,...,n}, and T1; : X; — %, stands for its associated branched
covering map. Also, the structure of the singularity at (0,0) is described by the Galois group
Deck(X;, I1;) ~ %, i € {1, -, n}. Furthermore, for everyi € {1, ..., n}, J; can be expressed as
T ={(M2),2) : 2 € U} NU, where )\ : U, — C is an algebraic composition of radicals and
meromorphic functions if and only if 4; is solvable.

6.4. The real case K =R

As in this case % C R is an open interval containing 0, % \{0} = %,* @ %_, where, for
some o <0 < w, %, and %" are the intervals %, = («, 0) and %,* = (0, w). Throughout this
section, we denote

B.={x+iyeC:x,yeUy=U x U,
,@+:={x+iye(j:x6%+,y€%}5%+x%,
B_={x+iyeC:xelU ,yelUy=U xU.

In this case, the Weierstrass polynomial p(A, z) lies in M (%;)[A], and it can be regarded as a
polynomial of M (Z)[A] by complexifying the variable z to z = x + iy. Thus, as in the complex
case, we can decompose the complex polynomial p(A, z) € M(Z)[A] in its irreducible compo-
nents p(,z) =[]/, pi(A,z), z € . Since A is a simply connected open set not containing
0, by analytic continuation, we find from [21, Cor. 8.8], that, for every i € {1, ..., n}, there exist
an integer m; > 1 and 2m; analytic functions, gpj- B — C, ¢§. B — C,jell,...,m;},such
that

pi(h,2) = H(A — (pz-(z)) forall ze€e B+, pi(h,z)= 1_[()» — ¢§-(z)) forall ze€ A_.
j=1 j=1

Thus, since x =degp = Z?:l m;, p(A, ), p(x, z) can be factorized as

X X
P =[] — @) forall ze By, p(h.2) =[] —di(2)) forall ze B,
k=1 k=1

for some analytic functions ¢y : Zy — C and ¢ : - — C, 1 <k < x. Subsequently, we
will consider the complex functions ¢ (z) and ¢ (z), 1 <k < x, as functions of a real variable,
z € R. Since the zeroes of the analytic non-zero functions are isolated, shortening the interval
., if necessary, for every k € {1, ..., x} and hy € {@x, ¢}, some of the next excluding options
occurs. Either (a) hx(%,*) C R; or (b) hx (%) NR = . Indeed, since Im A (z) = 0 if and only
if hx(z) € R, and Im A is analytic, either Im i = 0, or Im /24 cannot vanish for sufficiently small
U =0, w).
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Next, we pick a point (A9, zg) € &1 (0) with zg € %. If zo = 0, then (Ao, z0) = (X0, 0)
belongs to the trivial branch. If zo # 0, then either z € ?/;‘, or zo € %, . Suppose, without
loss of generality, that zg € %+- Then, since p(Ag, zo) = 0, there exists k € {1, ..., x} such that
X0 = @k (zo). Therefore, every zero (Ao, zo) of & belongs to an analytic curve. Consequently, at
least locally, &1 (0) consists of local branches of analytic curves. Moreover, since there are, at
most, x analytic curves in each direction, from (0, 0) might emanate, at most, 2y + 2 analytic
curves: x from each direction %Zi, plus the two half branches of the trivial curve.

When, in addition, x = deg p is an odd integer, then, for every z € %;\{0}, p(A, z) has a
real root. Thus, there exist k1, k2 € {1,2, ..., x} such that ¢, (%+) C R and ¢, (%) C R.
Consequently, ¢, : %;r — R and ¢, : %, — R are real analytic functions. Therefore, &~1(0)
contains, at least, the two branches of the trivial curve and two real analytic curves emanating
from (%, 0) at A = 0. In particular, (0, 0) is a bifurcation point of § = 0 from (1, 0), in agreement
with Theorem 4.1.

To conclude this subsection, we present a new method, based on the Sturm theorem, for de-
termining the exact number of branches of analytic curves that can bifurcate from (0, 0). We
already know that there are, at most, 2 + 2 curves. Namely, at most x from 02/Z+, at most x
from %, and the remaining two are the half branches of the trivial curve (4, 0), which always
exist. We will focus our attention into the case when z € 02/;2 as the case when z € %Z’ follows
the same general patterns.

Given a polynomial g € R[x] of degree n > 1, we define the Sturm chain of the polynomial ¢
as the sequence of polynomials

go() :=q(x), q1(x):=q'(x), ¢i(x) = —rem (gj-2(x), gi—1(x)),

for all i > 2, where rem (g;—2, gi—1) stands for the remainder of the Euclidean division of ¢g;_»
by g;—1. The length of the Sturm chain is, at most, n, the degree of gq. For every £ e R \ q’] 0,
let V(&) denote the number of sign changes of the Sturm chain (go(§), g1 (§), ..., g»(§)) without
taking into account zeroes. Then, the Sturm theorem states that, whenever a < b are not roots
of g, the number V (a) — V(b) counts the distinct real roots of g in the interval (a, b). By the
Lyapunov—Schmidt reduction procedure described at the beginning of this section, we already
know that, locally at (0, 0), the solutions of §(X, #) = 0 are in one-to-one correspondence with
the zeroes (A, u) € % of the reduced nonlinear operator &(A, z7) = zc(X, z2)p(A, 2), (A, 2) € %,
where p(X, z) is the associated Weierstrass polynomial. According to our previous analysis, we
can factorize p(X, z) in 02/Z+ as p(A,2) = j.(:l A —¢i(2),z€ %Zﬁ for some analytic functions
@i ?/;‘ — C, 1 <i <y, and we already know that, for every 1 <i < x, either (i) ¢; (%+) CR,
or (ii) ¢; (%;) N R = @. Subsequently, we consider the neighborhood % = %, x %,, shortened
so that ({A+} x %) N p~1(0) = {(A+, 0)} for some A_, Ay € %, A_ < 4. This can be easily
accomplished from the implicit function theorem, because £(A) € GL(U, V) for A ~0, A # 0.
For this choice of % we have that, for every z € %;r, the number of real roots of the polynomial
p(X, 2) in the interval (A_, A4 ) is constant; it equals the number of i’s with i € {1, ..., x} for
which ¢; (z) € R. Next, for every (A, z) € %, x OZZZi, we consider the following Sturm chain of
polynomials in A

po(A,2) :=p,2), p1(A,2) ;=0 p(A, 2),

pi(A, z) :=—remy (pi—2(A, 2), pi—1(A,z)) forall i >2,
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where the z variable is regarded as a label for the polynomial. For each & € [A_, 1], we denote
by V (£, z) the number of sign changes of the chain (po(§,z), p1(§,2),..., py(§,2)). As the
number of real roots of p(A,z) in (A_, A4+) is constant for all z € %+’ by the Sturm theorem,
V(k=,z) — V(A4,z) is constant for all z € %", and it equals the number of distinct (real)
analytical curves emanating from (0, 0) in the direction of ?/;‘. Similarly, V(A_,z) — V(A4, 2)
is constant for all x € %,~, and it equals the number of distinct (real) analytical curves emanating
from (0, 0) in the direction of %/~ . Thus, the next result holds.

Theorem 6.7. Suppose that § € C*(R x U, V) satisfies (F1)—(F3). Then, in a sufficiently small
neighborhood of (0,0) € R x U, the set §'(0) consists of finitely many branches of analytical
curves. Precisely, it has

Noo =1VO_.z4) = VOp, 2]+ [VO—,z22) = Vg, 2] + 2,

distinct half branches of analytic curve, regardless the values of 74 € %Zi. In particular, if x is
an odd integer; then ./\/(0,0) > 3, and (0, 0) is a bifurcation point of (A, u) =0 from (1, 0).

As Theorem 6.7 counts the exact number of analytic branches of F~'(0), it provides us with
a substantial improvement of the pioneering results of Kielhofer [27], where it was established
that F~!(0) possesses at most 2y + 2 analytic branches emanating from (0, 0).

6.5. Kielhdofer’s result

We conclude this section by getting a result of Kielhofer [27] that will be useful for analyzing
the example of Section 8. Throughout this subsection we work with a pair (U, V) of real Ba-
nach spaces with continuous inclusion U C V and an analytic map § : R x U — V satisfying
(F1)—(F3) and, in addition,

(F4) Ao € Z(£) is an simple eigenvalue of £y, i.e., V = N[£o] ® R[Lo].

Subsequently, we suppose, without loss of generality, that 1o = 0. By (F4), it follows from the
Hahn-Banach theorem that there exists ¢; € V* such that {(go, ¢;) = 1 and

R[€]1={veV:(v, g5 =0},

where (-, ) : V x V* — R is the duality pairing on V. By [37, Le. 4.4.1], the zero eigenvalue of
£o perturbs into a unique eigenvalue w1 (1) of £()). Precisely, there exist § > 0 and two (unique)
analytic functions u € C®(—46, §) and ¢ € C®((—8, §), U) such that ;£(0) =0, ¢(0) = ¢p, ¢(A) —
o € R[£o], and L\)p(A) = u(XM)p(A) for all 1 € (—48, ). Now, consider the pair of projections
(P, Q) defined by P :V — N[£o], P(v) := (v, ¢5)p0, Q : V — R[£o], Q := Iy — P. By the
theory of Sections 6.1 and 6.2, performing a Lyapunov—Schmidt reduction with pair (P, Q),
it is apparent that the zeroes of § near (0,0), say in the neighborhood O, are in one-to-one
correspondence with the zeroes of the finite dimensional analytic map & : Q CR x R — R,
defined by

G, 2) =Sy — Q)F(, zp0 + Y (A, z90)),  (A,2) €, (6.21)
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where S is the linear isomorphism given by S : N[£9] — R, S(z¢o) = z. By the definition of the
projections (P, Q), (A, z) = (§(A, zo + VY (X, 2¢0)), ¢;). Moreover, according to the analysis
of Section 6.2, there exists an analytic function g : & — R such that &(X, z) = zg(A, z). By
Lemma 6.2, x = x[£, 0] = ordy—o g(A, 0). Thus, g : 2 — R has the expansion

N
g =) Cl 4y i, (6.22)
v=0 Jik

where (g, jo) = 0, x), x > j1 > -+ > js, 0 < £y <--- < £, and the summation of the second
sum is taken only on the points (k, j) lying above the polygonal line joining (0, x), (41, j1), - - -,
(€s, js), or on the line j = j;. The polygonal line joining the points (0, x), (¢1, j1), -+, (s, Js)
is usually called the Newton’s polygon of g. This shows the validity of Lemma 5.4 of [27], which
can be stated as follows.

Theorem 6.8. Let §: R x U — V be an analytic map satisfying (F1)—(F4) with x[£,0] = x > 1
and having the expansion

N
FOw) = Lu+ Y ALY ut TR L]kt (6.23)
v=1 j.k

where x > j1 > -+ > j;, 0 <€y < --- < £, and the summation of the second sum is taken on
the points (k, j) lying above the polygonal line joining (0, x), (€1, j1), -+, (£s, js), or on the
line j = js. If, in addition, H, := (Lé‘v’H(pg”H,gog) #0forallv=1,---,s, then the Newton
polygon associated to the reduced map g : Q@ — R defined by (6.22) is given by the polygonal
line joining the points (0, x), (1, j1), - -+, (Us, js). Furthermore, the corresponding coefficients

0
aregivenbyCO:%, Cy=Hy,v=1,---,s.

Consequently, under the hypothesis of Theorem 6.8, the zero set ' (0) locally at (0,0) €
R x U is in one-to-one correspondence with the zeroes of the finite dimensional analytic map
® = 6(A, 7), given by

M(X)

Qﬁ(k,z)zz[

0 SN ;
’( )AX + E (L?H(pg”l,(pa"))u’“zgv + higher order terms (hot)].
X! !

v=1

7. Analytic global alternative

The aim of this section is to sharpen the global bifurcation theorems for analytic nonlinearities
of Dancer [13,11,12] and Buffoni and Tolland [8]. These results were originally stated for the
special case of 1-transversal eigenvalues, where the theorem of Crandall and Rabinowitz [9]
applies. Our main goal is to generalize these findings up to cover the degenerate case when
x[£, Ao] > 2. This is imperative in many applications where x[£, Ao] # 1, as the one given in
Section 8. Throughout this section, given a pair (U, V') of real Banach spaces, we consider a map
§€C”?R x U, V) satisfying the following properties:

(F1) §(A,0) =0 forall A € R.
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F2) D,S(A,u) € do(U, V) forall (h,u)e R x U.
(F3) Ao € Z(£) is an isolated eigenvalue such that N[£y] = span[¢g] for some ¢y € U\{0}.
(F4) § is proper on closed and bounded subsets of R x U.

Given an analytic nonlinearity § € C*(R x U, V) satisfying conditions (F1)—(F4), it is said
that (A, u) € §'(0) is a regular point if D, (A, u) € GL(U, V). In the contrary case when
D,F(A,u) ¢ GL(U, V) is called singular. The set of regular points of § will be denoted by
R(F). According to the exchange stability principle (see, e.g., [10] and [31, Th. 2.4.2]), when
x[£, X0l =1, in a neighborhood of (0, 0) all nontrivial solutions of an analytic operator are reg-
ular points, unless the bifurcation is vertical. Subsequently, we will give some general sufficient
conditions so that, locally at (0, 0), the bifurcated solutions are regular points of S’l (0) even in
the degenerate case when x[£, Ag] > 2.

By Theorem 6.3, we already know that, locally in a neighborhood % of (0, 0), the solu-
tions of §(A,u) = 0 are in one-to-one correspondence with the zeroes of the reduced map
B, z) =z¢(h, 2)p(X, 2), (A, 2) € %, where p(A, 7) is the associated Weierstrass polynomial.
Moreover, by Theorem 6.1, there is a local bijection between the regular points of 5 10) and
those of &~!(0). Obviously, the regular points of &~!(0) are characterized through the con-
dition D;®&(A, z) # 0. By the analysis already done in Section 6.4, in @/Zi one can factorize
®(X, z) in the form & (A, z) = zc(A, 2) H;'(:l()‘ —9i(2),z€ ﬁi/zi for some analytic functions
i : 52/; — C, 1 <i < x. Thus, differentiating & (A, z) with respect to z, we find that

X
do;
DB\, z) =[c(A,z) +2D,c(A, 2)1p(r,z) —zc(A, 2) Z d</) () H(k —9;(2).

i=1 i

Hence, a given local analytic branch A = ¢ (z), k € {1, ..., x}, of zeroes of & (X, z) consists of
singular points if and only if D,® (¢ (z), z) = 0, or, equivalently, if

X dy d
0= T o[l@@-vi =720 e - 9.

i=1 J# J#k
Therefore, the next result holds.

Theorem 7.1. Let A = @i (2), z € %+, be a local analytic branch of zeroes of & (X, z) bifurcating
from (0, 0). Then, either this branch consists of regular solutions, or it consists of singular solu-
tions. Moreover, it consists of singular solutions if and only if some of the following conditions
occurs:

(a) o : %i — C is constant, i.e., there is oo € C such that o (z) = @o forall z € ?/zi.
(b) There exists another j € {1, ..., x}, j #k, such that o = ¢ in %i.

As a byproduct of Theorem 7.1, when p(A, z) is irreducible on M (% )[A], neither it can
admit multiple roots in the splitting field, nor any constant function can be a root of p(A, 7).
So, all bifurcating branches from (0, 0) consist of regular points. The next result sharpens, very
substantially, Theorem 9.1.1 of [8] up to cover the more general case when y > 1, where the
main result of Crandall and Rabinowitz [9] fails.

223



J. Lopez-Gomez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182-250

Theorem 7.2. Let § € C*(R x U, V) be an analytic map satisfying (F1)—(F4). Suppose that
there exists an analytic injective curve y : (0,1) = R x U such that y(0,1) C F1(O)\T,
lim; oy (t) = (0,0), and y (0, 1) C R(F). Then, there exists a locally injective continuous path
I':[0,00) = R x U, with T'([0,00)) C ' (0), for which there exists 0 < § < 1 satisfying
I'(t) =y (t) for all t € (0,68). Moreover, T" satisfies one of the following non-excluding alter-
natives:

(@) limppoo [T IRxv = +00.
(b) T isa closed loop, i.e., there exists T > 0 such that T'(T) = (0, 0).

In particular, when the associated Weierstrass polynomial, p(A, z), is irreducible, every analyti-
cal curve of §~1(0) emanating from (0, 0) can be extended to a locally injective continuous path
I':[0, +00) — R x U on §~1(0) satisfying some of these alternatives.

Proof. As the proof of this result follows, almost mutatis mutandis, the proof of [8, Th. 9.1.1],
we simply sketch it. It relies on the theorem of structure of analytic manifolds [8, Th. 7.4.7].
According to it, either F~'(0) consists of singular points, or its set of singular points is discrete.
As y is a local branch consisting of regular points, necessarily the set of singular points of F~'(0)
is discrete. On the other hand, by complexifying U, it follows from the theorem of structure of
analytic varieties [8, Th.7.4.7] and the parametrization theorem [8, Cor.7.5.3] that any arc of
analytic branch can be prolonged, after passing any singular point, to another branch of analytic
curve. After taking the maximal route (see Step 3 of page 118 of [8]), we conclude the existence
of the extension curve. Finally, if condition (a) fails, since the bounded subsets of 5 10) are
compact, there exists an accumulation point that must coincide with a singular point. By the
definition of maximal route, I" must be a closed loop (see p. 119 of [8] for any further detail). O

The global alternatives of Theorems 5.12 and 7.2 are independent. Indeed, if the connected
component of 3_1(0) bifurcating from (0, 0), say €, is bounded, then, according to Theo-
rem 7.2, 3’1(0) contains a closed loop. But this does not entail, necessarily, the existence of
some (A1, 0) € € with A; # 0, as it is guaranteed by Theorem 5.12 when, in addition, x is odd.
Conversely, when € is bounded and x is odd, then, owing to Theorem 5.12, (11, 0) € € for some
A1 # 0, though this does not entail that any local analytic curve bifurcating from (0, 0) can be
continued to a global closed loop.

Such an independence is far from surprising, as these global alternatives are of a completely
different nature: algebraic the one of Theorem 7.2 and topological the classical one of Theo-
rem 5.12. Actually, the proof of Theorem 7.2 does not invoke the degree, which was essential
for the proof of Theorem 5.12, but simply the theorem of structure of analytic varieties, which
remained outside the proof of Theorem 5.12. Thus, it should not come to surprise that they are
alternatives of a rather different nature, though certainly reminiscent.

7.1. Global graphs

In this section, inspired by a novel idea of Dancer [12, Th.3], we study the global structure
of the zero set of an analytic nonlinearity satisfying the special conditions set out below. Given
a pair (U, V) of real Banach spaces, we consider an analytic map § € C*(R x U, V) satisfying
the following properties:

224



J. Lopez-Gomez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182-250

(F1) F(,0) =0 forall A € R.
(F2) DuZ(h,u) € do(U, V) forall (\,u) eR x U.
(F3) dim N[D,F (A, u)] € {0, 1} for all (A, u) e R x U.

These assumptions are fulfilled in most of the applications involving one-dimensional nonlinear
boundary value problems. The next definition introduces the concept of analytic graph that we
are going to use in this section to describe the global structure of the zero set of §.

Definition 7.3 (Analytic graph). A closed subset o/ # ) of R x U is said to be an analytic graph
when, for every (A, u) € o7, one of the following excluding options occurs:

(a) There exists € > 0 such that B.(A,u) N <7 is the graph of an injective analytic curve y :
(=8,8) > R x U, y(0) = (A, u),ie., Be:(h,u) N o/ =y((=4,38)). In such case, (A, u) is
said to be an edge point.

(b) Item (a) does not occur and there exists ¢ > 0 such that either B,(A,u) N .o/ = {(A, u)},
or Be(A,u) N o/ consists of the point (A, ) and N > 1 graphs of analytic injective curves
yi:(0,1) > R x U, (A, u) ¢vy(0,1)),i e{l,---, N}, such that y;(t) > (A, u) ast 1 1,
ie.,

N
B.(,u) N =] yi((0, D) U{(h, w)}.

i=1

In such case, (A, u) is called a vertex, or nodal point.
(c) There exists ¢ > 0, an open subset 2 C R? and an analytic homeomorphism W : Q —
B. (A, u) N o/ In such case, (A, u) is called a residual point.

For any given analytic graph, .2, we will denote by G, the set of edge points of <7, by V,,
the set of vertex points of .7 and by R, the set of residual points of .7. From the definition
we infer that G, and R,/ are open subsets of &7 and that V., is closed in .o/. We define the
skeleton of o7 by K : =V WG,y . It is easy to see that I is an open subset of .o7. Clearly,
A =Ky WR,y and K N'R 7 = . The main result of this section reads as follows.

Theorem 7.4. Let § € C°(R x U, V) satisfying (F1)—~(F3). Then, 5! (0) is an analytic graph of
RxU.

Proof. Pick a point (1g, ug) € %1(0). Then, either D,F(1o, ug) € GL(U, V), or, due to (F3),
we have that

dim N[ DT (ho, to)] = 1. (7.1)

Suppose that D, § (Ao, ug) € GL(U, V). Then, by the implicit function theorem, in a neighbor-
hood of (Ag, ug), F~'(0) consists of the graph of an injective analytic curve through the point
(X0, uo). Therefore, (Ao, up) is an edge point.

Suppose (7.1). In this case, N[D,§( o, up)] = span{p} for some ¢ € U\{0}. By the Hahn—
Banach theorem, there exists ¢* € U* such that (¢, ¢*) = 1. Let P: U — N[D,F(ro, ug)] be
the continuous projection defined by P(u) := (u, ¢*)¢ for all u € U, and consider any other
continuous projection Q : V — R[D,§( o, uo)]. Then,
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U=N[Dy§(o,u)1®Y (Y =N[P]), V=Z&R[Dy§(o,u0)] (Z=N[QD.

In the sequel, we identify R x N[D,F( o, ug)] with R? via the linear isomorphism

T:R x N[D,§(ro, u0)l — R?, T (x,z¢) = (%, Llzg]),

where, L : N[D,§(ro,u9)] — R is defined by L[z¢] := z, and we identify Z with R via
another fixed isomorphism S : Z — R. As in Section 6.1, performing a Lyapunov—Schmidt re-
duction to F(A, u) = 0 on (Xg, ug) under the pair of D, F (Ao, up)-projections (P, Q), it becomes
apparent that there are a neighborhood U/ of (Ag,0) in R x N[D,F (Ao, uo)], a neighborhood O
of (Ao, up) in R x N[D,§(ro, up)], and an analytic operator ) : i/ — Y such that the maps

U:F N0 — &710), u) > (4 —ug, @),
el o) — 3O N0, (A2 otz + YO, 29)),

are mutually inverses, where & : Q CR x R — R, & = &(}, z), is given by

G, 2):=8SUy — DT, uo+z9 + Y, z9)), (A, 2) €,

where Q :={(A,2) : (1, z¢) e U} C K x K. In particular, &(1p,0) =0. If & =0 in 2, then the
map V1 Q= FHO)NO, (A, 2)— (A, ug+z¢ + V(X, z¢)), is an analytic homeomorphism
and consequently (Ag, ug) is a residual point. So, subsequently we suppose that & #£ 0. Let o €
N U {0} be the minimum integer such that

& :=ordy—;, DB (1, 0) < oo. (7.2)

The existence of « is guaranteed by the fact that & = 0 if Df D¢® (Ao, 0) =0 for all o, B €
N U {0}. By (7.2), there exists an analytic function g : 2 — R such that & (A, z) = z%g (4, z) for
all (A, z) € 2. A direct computation shows that & = ordy—;, g(A, 0). Thus, by the Weierstrass
preparation theorem, there exists a neighborhood % C 2 of (Ag, 0), such that

&(r,2) = %A, 2) [()» — )¢ +ce_1(2) (A — ) 4 +co(z)] , o)ew,

for some analytic function ¢ : Z — R, with ¢(Ag, 0) # 0, and & analytic functions ¢ IE U, — R,
with ¢;(0) =0forall 0 < j <& — 1. Then, setting %j :=(a,0), %, := (0, b) and adapting the
argument of Section 6.4, it becomes apparent that there exist £ analytic functions g; : %Zi - C,
1 <i <&, such that

§
6. =c [ [d—ro—wi2). zeut.

i=1

Thus, in a neighborhood of the point (Lo, uo), §'(0) consists of, at most, 2& + 2 graphs of
injective analytic curves and the point (Ao, ug). Therefore, (Lo, ug) is a vertex point. Indeed,
either it is isolated, or there emanate from it finitely many arcs of (real) analytic curve. This
concludes the proof. O
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Actually, the proof of Theorem 7.4 shows that every subset of § ! (0) is also an analytic graph.
Finally, let us apply Theorem 7.4 to a paradigmatic one-dimensional boundary value problem.
Given a € C[0, ] and an integer p > 2, we consider the boundary value problem
—u"=Au+ax)u? in (0,7),

{ uQ)=u(r)=0, (7.3)

whose solutions are the zeros of the analytic nonlinear operator
R xC0, 7] —> C[0, 7], Fh,u):=u" + ru+a(x)u’.

It is straightforward to verify that § satisfies hypothesis (F1)—(F3) of this section. Thus, by The-
orem 7.4, the set §~!(0) is an analytic graph. Moreover, the set of non-trivial solutions

S=[F"HONTTW{(R,0): 1 € Z(L)},

is also an analytic graph as S C §~!(0). On the other hand, by the local theorem of Crandall
and Rabinowitz [9] and the global alternative of Rabinowitz [51], it is folklore that, for every
integer n > 1, the set of non-trivial solutions S admits a connected component, %, with (A, u) =
(n2,0) € €,, which is unbounded in R x Cg [0, ]. Moreover, by the maximum principle, since
the number of nodes of the solutions along %, is constant, it turns out that 6, N6, =¥, n #m.
Note that, for each n > 1, we have that 6, N\Cs # @ and S = KsWR g, where g is the skeleton
of § and R g its residual set. Thus, since %, is a connected component of S and both, s and Rs
are open, it becomes apparent that 6, C Ks. This shows that actually each of the components
%n, n > 1, consists of a discrete set of analytic arcs of curve (edge points) plus a discrete set of
branching points (vertex points).

8. A degenerate one-dimensional problem

In this section we apply the previous theory to the following nonlinear one-dimensional
boundary value problem

/A / —ud)u? i
{ u” = \u +u+()\, u )I/l m (0’77:)9 (81)

u(0) = u(w) =0.

Considering the Hilbert spaces U = H*(0,77) N H} (0, 7) and V = L?(0, 7), with the inner

1
products {(u, v)y = (fon uv)f, u,veV,and

(u, v)y == (u,v)y + (', ")y + ", v")v, u,veU,

the solutions of (8.1) can be viewed as the zeroes of the nonlinear operator §: R x U — V
defined by

FOuu)=u" + i +u+ O —udHu?, (L u)eR x U.

Since § is polynomial in A and u, it is analytic in (A, u) € R x U (see, e.g., Henry [24]). More-
over, for every (Lo, up) € 5! O®andu €U,
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D,F o, ug)u =u" + ru' + u + 2rouou — 4u8u =u" + 1’ +u+Wk)u,

where W = 2Agug — 4u(3). Thus, by the Sturm-Liouville theory, N[D,§ (Ao, uo)] is at most one-
dimensional. Moreover, by the Rellich—Kondrachov theorem, the embedding J : U — V is
compact, and, thanks to the Lax—Milgram theorem, for every A € R, there exists o = uo(A) € R

: d
such that, setting D = Ir
D2+XD+(1 +W)J+uJ e GL(U,V) forall u < ug. 8.2)

Thus, since

D> +AD+(14+W)J=D>+AD+ A+ W)J+puJ —ul,

is a compact perturbation of an invertible operator, it becomes apparent that D, (Lo, o) €
@y (U, V) for all A € R. Therefore, the conditions (F1)-(F3) of Section 7.1 are fulfilled. Con-
sequently, as a direct consequence of Theorem 7.4, we have that F~!(0) is an analytic graph of
R x U. Note that

LMu =D, I, 0u=u"+ru'+u, uel,

whose generalized spectrum, X(£), consists of the values A € R for which the problem

" — 3y :
{ W =xr'+u in (0,7), 83)

u0) =u(r) =0,

admits a solution u # 0. Since £(A) is analytic in A, thanks to (8.2), we find from [31, Th. 4.4.4]
that X(£) is discrete. Obviously, 0 € X(£) and

2
N[£(0)] = span[¢o], @o(x) ==,/ —sinx, x€l[0,x]
b4
Actually, £(£) = {0}. Indeed, the change of variable u = ¢~ 5%y transforms (8.3) into

i 4=22 :

—v"="~v in 0, m), (8.4)
v(0) =v(r) =0,

and hence, A € X(£) if and only if 4 — 22 = 4n? for some integer n > 1, whose unique real

solution is A = 0O for the choice n = 1.

Our main goal is applying the results of Sections 6 and 7 for ascertaining the structure of
§10). Since £1u = £ (0)u = u’ for all u € U, we have that £ (o) = ¢o, where ¢g(x) =
\/gcosx, x € [0, 7]. Thus, since R[€o] = {f € L?(0,7): (f,po)v =0}, it is apparent that
¢o € R[£o], where we are denoting £y = £(0). Thus, A9 = 0 is not a 1-transversal eigenvalue

of £(A), i.e., the transversality condition of Crandall and Rabinowitz (see (2.4)) fails. Actually,
since 2(")()\) =0 forall A € R and n > 2, 0 cannot be a transversal eigenvalue of £()) of any

order. Indeed, the change of variable u = ¢~ 2%y, transforms the ei genvalue perturbation problem
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u" +r +u=puMu in (0,7),
u(0) = u() =0,

into

v+ (1 _ );‘_2 —M(A))UZO in (0, ),
v(0) =v(w) =0,

and provides us with the perturbed eigenvalue from A =0 of £(A), u(}) = —%2. Thus, since
w(0) = 1/ (0) =0 and 1" (0) # 0, it follows from [37, th. 4.3.3] that x[£, 0] = 2. Since x =2,
Theorem 4.1 cannot guarantee the existence of a continuum emanating from (0,0) e R x U.
Thus, the techniques developed in Sections 6 and 7 are imperative to analyze the structure of

§10).
8.1. Local structure of the solution set:

As in this setting V = L?(0, ), we have that V' = L?(0, 7). Thus, the duality pairing (-, -) :
V x V' — R is given through (f, g) fo fgdx for all f,g € L*>(0, 7). In this way, we can
choose ¢ = ¢o and in particular ((po @y) = 1. Let us consider the pair P = (P, Q) of £o-
projections,

P:L*(0,m) > N[€ol, P):=(u,godpo, Q:L*0,7)—> R[], Q:=Iy—P.
As already described in Section 6.1, performing a Lyapunov—Schmidt reduction to F(x, u) =0
at (0,0) € R x U under the pair of £p-projections (P, Q), it is easily seen that there exist a

neighborhood U of (0,0) in R x N[£y], a neighborhood O of (0,0) in R x U, and an analytic
operator ) : U{ — R[£p] such that the maps

V:FHONO—370), (h,u) - (O, (1, 90)),

o . (8.5)
Ve (0)—>F O0)N0, (A2 (A, ze0 + V(A 2¢0)),
are inverses of each other, where the operator & : % C RZ 5 R, & =&(),7),is given by
S, z) == (S, ze0 + YV (X, z¢0)), ¥0), (8.6)

with % :={(x,2) : (A, zgo) € U} C R2. Since B (A, 0) = 0, there exists an analytic function g :
% — R such that (A, z) = zg(A, z) for all (A, z) € % . To apply Theorem 6.8, it is appropriate
to express the operator § in the form

SO, u)=Lu+ALw® + Lu*, (L, u) eRx U,
where the symmetric operators Lé eS*(U, V), Lg e S*(U, V), are given by

LYy, up) ==ujuz, uy,uzeU,

0 )
Lg(ui,uz, u3, ug) = —uruouzug, uy,uz,u3, u4 €U,
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0,2)

1. n

3,0) ¢

Fig. 3. Newton diagram of g(4, z).

which is consistent with the notations used in the expansion (6.23). In particular,

2 0.4 __ 4
Lyju” =

L2u =u —u", uel.

According to Theorem 6.8, and taking into account that (1) = — );1—2, it becomes apparent that

1 .
B(1.2) = z( = 27+ @5, p0)2h = (9, w0)” + ch,kxfz")
jik

1, 8
= (_ZAQJFE ™ 15n2\/>Z +ZC w2t ) =250.2)

where the summation of the second sum is taken only on the points (k, j) lying above the polyg-
onal line joining (0, 2), (1, 1) and (3, 0) (see Fig. 3). Owing the Newton—Puiseux algorithm, we
obtain the following asymptotic expansion for the solutions of g(X, z) = 0 close to (0, 0),

1 3
z(\) = —>A+O(A)—3—2 A+0(A) as A — 0,

z(V) = ‘/ f+0(f) \/>f+0(f) as A | 0.

On the other hand, since x[£, 0] = 2, it follows from Lemma 6.2 that x[£, 0] = ordy—¢ g(A,0) =
2. Thus, by the Weierstrass preparation theorem [8, Th. 5.3.1], shortening the neighborhood % =
U, x U. C R? if necessary, there exists an analytic function ¢ : % — R such that ¢(0, 0) # 0,
plus x =2 analytic functions, c; : %; — R with ¢;(0) =0 for j = 1, 2, such that

(8.7)

gh,2)=c(A,2) [)»2 +c1(Dr + cz(z)] .

Hence for every z € %, the equation g(X, z) = 0 has, at most, two solutions. This shows that
indeed, the solutions (8.7), are the unique ones of g(X, z) = 0 in a neighborhood of (0, 0). Fig. 4
represents these branches.
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Fig. 4. g*l (0) in a neighborhood of (0, 0). (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

8.2. Global structure of the solution set:

Throughout the rest of this section, we will study the global structure of the set of positive
solutions of the problem (8.1). The next result shows that any small solution of (8.1) must be
either positive or negative.

Lemma 8.1. There exists € > 0 such that if (A, u) solves (8.1) with |A| + ||u|lco < &, then, either
u>0,oru<O.

Proof. On the contrary, suppose that there exists a sequence of solutions of (8.1), {(A,, un)}n>1,
such that

lim (hn, un) = (0,0) in R x C[0, 7] (8.8)
n—00

and u,, changes sign in (0, 7); in particular, u, # 0. Then, for every n > 1, the functions v, (x) :=
in .
e?2*u,(x), x €0, ], satisfy v, (0) = v, (;r) =0 and

)‘1% —dpx, 2\ —tny 2

v =K|(1-2 vn+(,\,,—e "vn)e g2l (8.9)

where, for every f € C[0, ], we have denoted
X w
X
K110 i= [ -xfwds == [6-mreas
0 0
Note that u = K[ f] is the unique solution of —u” = f in [0, 7] such that u(0) = u(r) = 0. Thus,
setting ¥, := ”v:ﬁ, n > 1, and dividing (8.9) by ||v, |l oo yields to
)‘1% —nx, 2 —tny
v =K|(1-2 w,,+(,\,,—e vn>e x|, n>1. (8.10)

By (8.8) and the definition of the v,’s, the sequence of continuous functions

A2 :
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is bounded in C[0, 7r]. Thus, since K : C[0, 7] — C'[0, 7] is a compact operator, along some
subsequence, relabeled by n, one has that lim,—. o, ¥, = ¥ in c'o, 7]. In particular, ||V ]l =
1. On the other hand, letting n — oo in (8.10), it becomes apparent that y» = [t and hence,
either ¥ (x) = sinx for all x € [0, 7], or ¥ (x) = —sinx for all x € [0, w]. Therefore, v, must
be positive for sufficiently large n if ¥ (x) = sinx, whereas it is negative in (0, ) if ¥ (x) =
— sinx. This contradicts the assumption that u,, and so v,, change sign as n — 0o, and ends the
proof. 0O

In the Lyapunov—Schmidt reduction above, by (8.5), we have z = (u, ¢g). Thus, an integration
by parts yields

T

T T
(u, o) /u(podx—l—/u(p(/)dx—{—/u”(pg 3/ug00.
0 0

0

Hence, by Lemma 8.1, it follows that the solutions of &(A, z) = 0 are positive for z > 0 and
negative for z < 0. Therefore, according to the asymptotic expansions (8.7), for A > 0 there
emanate from (0, 0) two branches of positive solutions and one branch of negative solutions,
while another branch of negative solutions emanates for A < 0, as illustrated by Fig. 4. We have
represented the positive solutions in blue color while the negative ones have been represented in
green color.

We conclude this section by analyzing the structure of the set of positive solutions of (8.1).
The next result shows that A > 0 is necessary for the existence of a positive solution.

Lemma 8.2. The problem (8.1) cannot admit any positive solution if A < 0.

Proof. Suppose (8.1) has a positive solution, u. Then, multiplying (8.1) by # and integrating in
(0, ), it follows that

T e T b
—/u”udx:)»/u/udx—i—/uzdx—i—/()»—uz)u3dx.
0 0 0 0

Moreover, since u(0) =u(r) =0,

/uudx—/(uu)dx /(u)zdx— /(u)zdx
//d _1/(2)1_0

u'u x—E u-) =0.
0 0

Thus,

g

b T
/(u/)zdx =/u2dx +/(A —uz)u3 dx.
0 0

0
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On the other side, it is well known that fon u?dx < fon (u')?dx for all u € Cé [0, 7r]. Therefore,
f(;T (A —u?)u? dx > 0. Consequently, A > 0, which ends the proof. O

The next result provides us with some useful estimates for the positive solutions of (8.1).
Lemma 8.3. Let (A, u) be a positive solution of (8.1). Then, A > 0 and
lulloo < VA+1. 8.11)

Proof. By Lemma 8.2, A > 0. Let xo € (0, ) be such that u(xp) = ||u||cc = maxjg »]u«. Then,
u'(x0) =0 and u” (xg) <0. Thus,

0 < —u"(x0) = A (x0) + u(x0) + (A — u*(x0))u* (x0) = u(x0) + (A — u*(x0))u* (x0).
Hence, since u(xp) > 0, 1 + (A — u2(x0))u(xg) > 0. Consequently, setting P(z) := -z —
1, z € R, we have that P(||uls) < 0. Since P’(z) = 3z> — A, it is easily seen that the cubic
polynomial P(z) has a local maximum at —+/1/3, a local minimum at /A /3, and it satisfies

P(0)=—1<0. Since P(||u]loo) <0, necessarily |u| € (0, (X)), where t(X) is the unique
positive root of P. Moreover, since

PVA+D)=(Wr+1) —AWr+1)—1=21+3V/2>0
for all A > 0, then T(X) < VA + 1. Therefore, (8.11) holds. O
As a consequence of Lemma 8.3, the next result holds.
Lemma 8.4. Let (A, u) be a positive solution of (8.1). Then,
0 < <4(1++2)>% (8.12)

Proof. The change of variable v = ¢%*u transforms the problem (8.1) into the next one

i_W:%#wwww”wﬂf%“’xemﬂ’ (8.13)

v(0) =v(r) =0.

Multiplying the v-differential equation by v and integrating by parts in (0, 7r) yields to

b/

/ W) dx = /

0 0

g
A
v dx—i—/ e M 2 e “33 dx.
0

Thus, since ;' v? < [; (v/)?dx, it is apparent that

2 T T T
A
I/vzdx5/(k—e‘“v2>e_%"v3dx§A/uv2dx.
0 0

0
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Therefore, combining this estimate with (8.11), we find that % <1+ \/X . From this estimate, the
proof is straightforward. O

Subsequently, we will say that a function u € C(l) [0, ] is strongly positive if u(x) > 0 for
every x € (0, ), u’'(0) > 0, and u’(r) < 0. In such case, we simply write u >> 0. Similarly, it is
said that a function u € Cé [0, 7] is strongly negative if —u > 0, i.e., u < 0. We claim that any
positive (resp. negative) solution of (8.1) is strongly positive (resp. negative). Indeed, suppose
that u > 0 is a positive solution of (8.1) such that either u’(0) =0, or u’(7) =0, or u(n) =0
for some n € (0, 7r). Then, since u’(n) = 0 in the latest case, in any of these cases there exists
xo € [0, ] for which u satisfies the Cauchy problem
{ —u" = cou’ —i/— u+ 0 —udHu? in (0, n), 8.14)
u(xg) =0, u'(xg)=0.

By the Cauchy-Lipschitz theorem, there exists a unique maximal solution u € C> of (8.14). By
uniqueness, # = 0, which contradicts # > 0. Therefore, u > 0. Similarly, any negative solution
must be strongly negative. Based on this positivity result, the next result holds.

Lemma 8.5. Let {(Ay, un)}nen C 3 1(0) be a sequence of positive (resp. negative) solutions of
(8.1), such that limy— o (A, tn) = (ho, 1) € F1(0) in R x U. Then, either ug>> 0, or ug = 0.
In other words, the unique way to abandon the interior of the positive cone of the ordered Banach
space Cé [0, 7] is through u = 0.

Proof. We will detail the proof of the result when u,, >> 0, n > 1, since the case when u, < 0 is
analogous. Since u, — ugin U asn — oo and U — C'0, 7], we have that u,, — ug in C'[0, 7]
as n — oo. This implies that ug > 0 in [0, r]. Thus, either ug > 0, or ug = 0, and, should the
first case occurs, we already know that ug > 0. This ends the proof. O

This section finalizes by proving that, there is a loop of positive solutions of (8.1) emanating
from u = 0 at A = 0. The existence of a connected component of the set of positive solutions

S ={,u)eF0): u>0CRxU,

bifurcating from (A, u) = (0, 0) has been already established. More precisely, we already know
that there emanate from (0, 0) two analytic arcs of positive solutions y; : (0, ) — R x U of the
form y; (A) = (A, u; (1)), with lim, jou; (A) =0, i € {1, 2}. The connected components of the set
of positive solutions . containing to each of the curves y; and y», locally at (0, 0), will be called
%f’ and (5;’, respectively.

Theorem 8.6. Under the previous assumptions, €, = (f;. Moreover each of the local curves
¥i 1 (0, &) = R x U can be continued to a global locally injective continuous curve I'; : (0, T) —
‘ff such that Ui |i7—s,1) = vj for some § > 0 and j € {1, 2}\{i}. Thus, there is a loop of positive
solutions of (8.1) with vertex at (0, 0).

Proof. Once given the local curve y; : (0, &) — R x U and the component ", in order to apply
Theorem 7.2, we should make sure that, for sufficiently small ¢ > 0, the set (0, &) C 3_1(0)
consists of regular points of §. By the local analysis already done in Section 6.1, the regular and
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singular points of § in §~'(0) N O are in analytical correspondence with those of the reduced
map B(A,z) =zg(A, 2), (A, 2) € %. So, it suffices to prove that, near (0,0), the set &~1(0)
does not contain any singular point of & different form (0, 0). By the Weierstrass preparation
theorem, shortening the neighborhood % = % x %, C R, if necessary, there exists an analytic
function ¢ : % — R such that ¢(0, 0) # 0, plus x = 2 analytic functions, c; : %, — R, c;(0) =0,
j =1, 2, such that

g, 2)=c(*,2) [/\2 + 11+ cz(z)] -
Hence, we can express & : 7 — R in the form
(. 2 =2¢(02) W2+ 1 (@h + ().

By the local analysis already done in Section 8.1 (see Fig. 4), for every z € %,\{0}, the equation
B(A, z) = 0 has two positive different solutions in A € %,. Thus, there are two analytic maps,
@j:(=6,9\{0} = R, j =1, 2, such that

B, z2)=zc(A, D) — 1A —92(2)),  z€X\0}.

By a direct computation it follows that (1, z) € 8~1(0) N %, (A, z) # (0, 0), is a singular point,
ie., D;B(A,z) =0, if and only if ¢1(z) = ¢2(z) or q)} (z) =0 for some j = 1, 2. According to
(8.7), for sufficiently small %, this is not possible. Therefore, y; : (0, &) — R x U consists of
regular points for sufficiently small ¢ > 0. By Theorem 7.2, y; admits a prolongation to a global
locally injective continuous map I'y : [0, 00) = R x U, I'1 ([0, 00)) C 510, satisfying one of
the alternatives (a) or (b). Due to Lemma 8.5, I'1 ([0, 00)) C ‘KIJF. Thanks to Lemmas 8.3 and 8.4,
I'1 ([0, 00)) is bounded. Therefore, the alternative (a) cannot occur. Consequently, there exists
some T > 0 such that I'{(T") = (0, 0). As in a neighborhood of (0, 0) the set of positive solutions
consists of the graphs of | and y», being I'; is locally injective, it follows that, modulus a re-
parametrization (if necessary), I'1|(r—s,7] = y2. This implies, in particular, that ¢ = %ZJ“ and
concludes the proof. O

9. Unilateral bifurcation at geometrically simple eigenvalues

This section is devoted to the study of the unilateral bifurcation problem. Throughout this
section, we consider a pair (U, V) of real Banach spaces such that

(C) U is a subspace of V with compact inclusion U — V.
We consider a map § € C' (R x U, V) satisfying the following assumptions:

(F1) §(A,0) =0 forall A € R.

(F2) D,§(A,u) e ®g(U,V)forallAeRandu € U.

(F3) g is proper on closed and bounded subsets of R x U'.

(F4) The map N(A, u) :=F(A,u) — D, F(A,0)u, (A, u) € R x U, admits a continuous extension,
also denoted by 91, to R x V.

(F5) X is an isolated eigenvalue of £(A) := D, F (X, 0) such that N[£o] = span[¢g] for some
®o € U with [lgoll = 1.
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Let us consider a closed subspace Z C U such that U = N[£y] @ Z. Then, by the Hahn—Banach
theorem, there exists ¢ € U " such that

Z={ueU : (g5 u)=0}=Nlggl. (05, o) =1,

where (-, -) stands for the (U’, U)-duality. In particular, every u € U admits a unique decompo-
sition as u = s¢@p + z for some (s, z) € R x Z. Necessarily, s := (¢5,u). Let  : U — R be a
continuous functional such that, for some positive constants 0 < C; < Co,

¥ (0) =0, Cillull <¢¥(u) <Callul| forall ueU. 9.1

Then, for every ¢ > 0 and n € (0, 1/C>), we consider

Qe ={u) eR x U : [A—2ol <e&, [{¢g,u)l >ny @)}

Since the mapping u + |(gg, u)| — n¥(u) is continuous, Q¢ ; is an open subset of R x U, and
it consists of the two open subsets

OF, ={0w eR XU : [h—=hol <&, (g5, u)>ny@),
O ={,w) eRxU : |A—hol <&, (gy,u) <-—ny@))}.

The following result establishes that, under the conditions of this section, the nontrivial solutions
of §(A,u) =0 in a neighborhood of (1o, 0) must lie in Q. ;. Note that (19, 0) might not be a
bifurcation point of F(&, u) =0 from 7 = {(, 0) : A € R}. We denote by S the set of non-trivial
solutions of F(%,u) = 0, which is given by S = [FH(O)\T] U {(x,0) : A € B(L)}. The first
result of this section reads as follows.

Proposition 9.1. Let (U, V) be a pair of real Banach spaces satisfying (C) and § € C IR xU, V)
a map satisfying (F1)—-(FS). Then, for sufficiently small ¢ > 0, there exists 69 = §o(n) > 0 such
that, for every § € (0, 89), [S \ {(*o,0)}] N B5(Xo,0) C Qg 4.

The proof of Proposition 9.1 is based on the following lemma of technical nature.

Lemma 9.2. Let (U, V) be a pair of real Banach spaces satisfying (C) and F € C'(R x U, V) a
map satisfying (F1)—(F5). Then, 1:R x U — V is a compact operator.

Proof. Let (A,,, u,) € R x U, n > 1, be abounded sequence. As {X,},>1 is bounded in R we can
extract a subsequence, relabeled by n, such that lim,,_, oo A;, = A, for some 1, € R. According to
(C), we also can extract a subsequence of {u,},>1, labeled again by n, such that lim,—, oc 4, = vy,
for some v, € V. Thus, by (F3), lim;,— 0o Xy, un) =Ny, vy). O

Proof of Proposition 9.1. By (F5), there is &9 > 0 such that 3(£) N [Ag — 0, Lo + €0] = {Xo}-
By [18, Th. 2.1], there exists a parametrix P : [Ag — €9, Ag + €0] = GL(V, U), of the restricted
curve £: [Ag — €9, Ao + &9] = Po(U, V), such that

KX =1y —BAR)LA) e KU) if |2 — 1| <eo.
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As for |L — Ag| < & the equation §F(X, u) = 0 can be equivalently written as P(X)F(A, u) =0, it
becomes apparent that (A, #) = 0 can be expressed as

u—K)[ul +PAR)NMK, u) =0, A —Xol <&, uel. 9.2)

Since (1) € K£(U) and, due to Lemma 9.2, B(A)N(A,u) : R x U — U, is compact, we have
reduced our problem to the compact case. Thus, setting & (A, u) :=PA)FA, u), KMy :=u —
K )u and M, u) :=PA)N(X, u), it suffices to show the validity of the proposition for

SO u) = AW+ MO, u) =0, |[A—rol <o, uel. 9.3)

To prove the result, we will argue by contradiction. Should not exist §g satisfying the desired
requirements, there exist two sequences, 8,, n > 1, and (A, u,) € (S\{(*o,0)}) N Bs, (1o, 0),
n > 1, such that

lim 6, =0 and (A, u,) ¢ Q¢ forall n>1.
n—>oo

Since (A,, un) € Bs, (Ao, 0), we have that [A, — Ag| <, < ¢ for sufficiently large n, say n > ng.
Thus, we can infer from (A, u,) ¢ Q¢ , that

@5 un)| < (up) forall n > no. 9.4

Moreover, by construction, (A, u,) € S\{(Xo,0)}. So, (A, un) # (Ao, 0). On the other hand,
as Ag is an isolated eigenvalue of X (&), for sufficiently large n, 1, ¢ X(£) and hence u, # 0,
because (A,, u,) € S. Consequently, since ¥ (u) > 0 for all u € U \ {0}, it follows from (9.3) that

Un Un M, un)
=K, — . 9.5

Since (A, u) = o(||u||) as u — 0, by the continuity of B (1), it follows from (9.1) and (F4) that

li M (A, un) BT m()‘n)m()\'m Up) BT m()‘n)m()"n’ Up) .
m — = hm —_— = hm P ——
n—>00 Y (up) n—>00 Y (un) n—>00 Cllunll

9

for some constant C > 0. Moreover, by (9.1) and the continuity of /C(1),

Jim [ () — K(ho)] =

W( n)
Thus, letting n — oo in (9.5) yields
11m 1[Iy — K (o)l = 9.6)
v w o
On the other hand, by (9.1),
1l ” ‘ lall 1 07
Cy Collunll = | ¥ (un) Cilluall G
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Thus, the sequence % n > 1, is bounded and hence, since K(1¢) is compact, along some
subsequence, relabeled by n, we find that, for some ¢ € U,

Un
lim (A = 0. 9.8
Jim ( 0)(w(un)> @ (9.3)

Combining (9.6) with (9.8), it becomes apparent that lim,_, ﬁ = ¢. By (9.7), we have

the bounds Clz < || < CLI Thus, letting n — oo in (9.8) gives K(1g)¢ = ¢. Equivalently,
@ — Po)L(ho)le] = ¢, and, since P(rg) € GL(U, V), this implies that £(1p)[¢] = 0. Conse-
quently, ¢ = %||¢|l@o, where ¢ is the generator of N[£()p)] in (F5). Finally, letting n — 0o in

(9.4), we obtain that

’

: . u, . e, un)l
— << = *, =1 *7 : :l 07<
c; = 1ol =15, o)l = lim lgg, o)l = lim = 0 <

which implies 1/C> < n and contradicts the choice of 1 € (0, 1/C3). This contradiction shows
the existence of o for which [S\ {(Xg, 0)}]1 N Bs(X0,0) C Q¢p. O

The following result establishes the existence of unilateral components.

Theorem 9.3 (Unilateral components). Let (U, V) be a pair of real Banach spaces satisfying (C)
and § € C'(R x U, V) a map satisfying (F1)—(F5). Suppose that for sufficiently small p > 0,

x[Lo, A, A411€2N +1, A_=kro—p, Ay =Ao+p, 9.9

where £, € € ([A—, Ay], Po(U, V) is any analytic curve A-homotopic to £(A), . € [A_, A4 ].
Then, there exists a component € of the set of nontrivial solutions S, such that (Lg,0) € €
and, choosing ¢ > 0 and § > 0 as in Proposition 9.1, there exist two closed connected sub-
sets 6;,65_ C €N Bs(rg, 0), such that Qf; - Q;n U {(20,0)}, & C Q. ,, U {(Ro,0)} and
¢ N &5 ={(ro,0)}. Moreover, € and &5 links (1o, 0) to 3 Bs(ko, 0).

Proof. The existence of a component € of the set of nontrivial solutions S such that (A9, 0) € €,
follows from Theorem 5.12. Choose ¢ > 0 and § > 0 as in Proposition 9.1. Suppose no closed
and connected subset € C € N Bs(Ag, 0) exists such that € C O:y U{(o, 0}, (R0,0) € € and

¢ N 3Bs (Ao, 0) # #. Then, arguing as in the proof of Proposition 9.1, by taking a parametrix
P:ho, Ayl > GL(V,U)of £:[A_, As] = Do(U, V), the equation F(A, u) = 0 can be equiv-
alently written in the form

B, u) =PRSS, u) =RAW)[u] + M, u)=0, Ael[ri_,Ay]l, uel,

where we are using the same notation as in (9.3). Subsequently, we define

M, ) if (\,u)e Q.
M, w) = ~ BB omG, —nywigo+2) i —np ) < (g 1) <O, u£0,
—IM (A, —u) if (g, u) >0,
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where z stands for the projection of u on Z parallel to span[¢g]. Set
S, u) := KW [ul + MO, u), Ae[A_,Ay]l, uel. (9.10)

Clearly, m satisfies the same continuity and compactness properties as 9)t and, in addition, it
is odd in u. Thus, & also is odd in u. However, note that 91 is not necessarily of class C I and
therefore the bifurcation theory of Sections 4 and 5 cannot be applied to this case. Nevertheless,
thanks to the compactness, the classical bifurcation theory for compact operators collected and
refined in [31] can be applied.

By (9.9), it follows from Theorem 3.2 that o (£, [A—, A+]) = —1. Consequently, by the defi-
nition of the parity in terms of the parametrix, we obtain that

deg(P(A-) L)) - deg(PA ) L)) = —1,

where deg is the Leray—Schauder degree. Thus, the Leray—Schauder degree deg(R(1)) changes
as A crosses Ag. Therefore, the bifurcation theorem for compact operators [31, Th. 6.2.1] yields
the existence of a component, Qf of nontrivial solutions of ®(A u) = 0, such that (A9, 0) € ¢.
By applying the same procedure as in the proof of Proposition 9.1, shortening § if necessary,
we can get en Bs(1o,0) C Q¢ 5 U{(ro, 0)}. Moreover, by applying [31 Cor. 6.3.2], either ¢is
unbounded, or it contains a point (A1, 0) with A1 # Ag. In either case, en 0Bs(r0,0) N Q¢ #0.
On the other hand, as é(k, u) is odd in u, it is apparent that ¢n Q;Tn ={(\,—u): (Au) e
en Q. 1. Consequently, necessarily

€N dBs(h,0)N Oy, # . 9.11)
Moreover, since & (A, u) = §(A, u) for all (A, u) € Q;,’, it becomes apparent that en Q;n =

cno,,. Therefore, (9.11) can be equivalently expressed in the form €N d Bs(1p, 0) N Qe # @,
which contradicts our first assumption. Similarly, the result follows for Q;n' m|

Under the hypothesis of Theorem 9.3, we consider the closed and connected subsets of
S, ¢t =% U{(A,0)} and €~ := %€~ U {(Xo,0)}, where € (resp. ¢ ) is the connected
component of S\{(1g, 0)} containing Qf;'\{(ko, 0)} (resp. ijé_\{(ko, 0)}). The existence of these

components is guaranteed by Theorem 9.3. In particular &5 C ¢+ C €. The sets ¢ are called
the unilateral components of €.

Theorem 9.4 (Unilateral global alternative). Let (U, V) be a pair of real Banach spaces satis-
fying (C) and § € C'(R x U, V) a map satisfying (F1)—(F5). Suppose that, for sufficiently small
p >0,

K€ o A 1€2N 1, A =io—p, Ay =Ao+p, 9.12)
where £, € €“([A—, A+], (U, V)) is any analytic curve A-homotopic to £(X), A € [A—, A4].
Then, for each v € {—, 4}, the unilateral component €' whose existence has been established in
Theorem 9.3, satisfies some of the following alternatives:

(1) €Y is not compactin R x U.
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(ii) There exists A1 # Ao such that (A1, 0) € €.
(iii) There exist A € R and z € Z \ {0} such that (A, z) € €".

Proof. It proceeds by contradiction. Assume, for example, that €~ does not satisfy any of the
three alternatives (i)-(iii). Then, it satisfies the following properties:

(a) €~ isboundedin R x U.

(b) For sufficiently small p > 0, the component €~ is bounded away from {(1,0) e R x U :
|2 — Aol > p}.

(©) € N[R x (Z\{0h] = 0.

According to (a), since § is proper on closed and bounded sets, the component €~ is compact.
We now show that there exists ng € (0, 1/C>) such that, for every 0 < n < 7o,

€™ C 05, U{(ro. 0)). 9.13)

= since ¥ (u) > 0, we
have that (@7, u) < —ny¥ (u) < =7y (u), and hence (A, u) € Qs__ﬁ. To prove (9.13) we proceed
by contradiction. So, suppose (9.13) fails. Then, there exists a sequence, {n,},>1, such that
lim,—, o0 7, = 0 for which €~ must leave Q,, . Thus, by Proposition 9.1, there exist § > 0

and a sequence, (A, u,) € € \Bs(Xo,0), n > 1, such that, for sufficiently large n > 1,

Observe that Q. , C QS_;] if n > 7. Indeed, for any given (A, u) € Q

(@0 un) = =1 ¥ (un), 9.14)

because €~ leaves Q;nn outside Bjs(Xg, 0) for sufficiently large n. Moreover, since €~ is com-
pact, there exists a subsequence of (A,, u,), labeled again by n, such that lim,_, 5o (A,, u,) =
Ay, Uyp) € €. Since (A, u,) € € \Bs(ro,0), n > 1, it is apparent that (A, u,) ¢ B% (20, 0).
Moreover, thanks to (b), u, # 0. Furthermore, since €~ is bounded and i is continuous,
letting n — oo in (9.14) yields to ((pa‘,uw) = 0 and hence u, € Z. Therefore, (Ay, uy,) €
¢C™ N [R x (Z\{0})], which contradicts (c). This contradiction shows the existence of 1y > 0
such that (9.13) holds for all n € (0, ng).

Now, pick n € (0, ng) and consider the map & [A_,A4+] x U — U defined by (9.10) in the
proof of Theorem 9.3. Since the Leray-Schauder degree deg(£(2)) changes as A crosses Ao,
by [31, Th. 6.2.1], there exists a component ¢ of the set of nontrivial solutions of &(A,u) =0
bifurcating from (%9, 0). Since €N Q. , = &N Q,,, by (9.13), it follows from the oddness of

@ﬁ(k, u) in u that
C=C¢"U{(h —u): (O, u)e€ ). 9.15)
Lastly, according to (b), we have that ¢n {(A,0): A € Z} = {(Xo, 0)}. Therefore, we infer from
[31, Cor. 6.3.2] that € is unbounded in R x U. By (9.15), also €~ must be unbounded in R x U,
which contradicts (a) and ends the proof. O
When the compactness assumption (C) is removed for our list of hypothesis, things do not
work as before, by the failure of the compactness arguments involved in the proof of Propo-

sition 9.1. Nevertheless, these technical difficulties can be overcome if Ag is a 1-transversal
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eigenvalue and, in addition, v is differentiable. In the special case when v (1) = |lu||, our cor-
responding results provide us with the unilateral theorem of Shi and Wang [53], whose proof
follows the same general patterns as the proof of Theorem 6.4.3 of Lépez-Gémez [31].

Subsequently, we consider two real Banach spaces, U, V, and an operator § € C'(R x U, V)
satisfying the following assumptions:

(F1) §(A,0)=0forall A € R.

(F2) § is orientable.

(F3) D,§(A,u) € ®o(U,V) forallAe Randu e U.

(F4) § is proper on closed and bounded subsets of R x U.

(F5) Ao is anisolated eigenvalue of £()1) := D, § (X, 0) such that N[£(Ag)] = span[¢p] for some
@o € U with [lgo|| = 1 and £'(ho)go ¢ R[L(X0)]. i.e., x[£, Aol = 1.

We keep the same notations as above for Z, S, O, , and Qgi,,’. By (F5), one can adapt the proof
of the main theorem of Crandall and Rabinowitz [9], to show that there exist ¢ > 0 and two
continuous functions, i : (—¢&, &) — R and ¢ : (—¢, &) = Z, such that u(0) = A9, ¢ (0) =0, and
& 1(0) consists, in a neighborhood of (Ag, 0), of the trivial branch {(A, 0) : A ~ X} and the curve
(u(s), s[eo+@(s)]), s ~ 0. In this case, since the component emanating from (1g, 0) has locally
the form (. (s), s[@o + @ (s)]), for sufficiently small & > 0, there exists o = §o(1) > O such that,
for every 6 € (0, 8p),

[S\ {(20, 0)}1 N Bs(ro,0) C Qs (9.16)

Theorem 9.5. Suppose § satisfies (F1)~(F5) and r is of class C'. Then, the set of nontrivial
solutions, S, possesses a connected component € such that (Ag, 0) € € and, choosing ¢ > 0 and
6 > 0 as in (9.16), there exist two closed connected subsets Qf;, &5 C €N Bs(Ao, 0) such that
€5 C OF, U{(ho. 0)}, €5 C Q;, U{(ho.0)} and & N &5 ={(o. 0)}. Moreover, €5 and &5
links (Lo, 0) to 3 Bs (1o, 0). Furthermore, setting €+ := €T U{(Ao, 0)} and €~ := €~ U{(ro, 0)},
where €t (resp. €7) is the connected component of S\{(rg, 0)} containing Q;\{()\.O, 0)} (resp.
&5 \{ (Mo, 0)}), then for every v € {—, +}, some of the following alternatives hold.:

(1) €Y is not compactin R x U.
(ii) There exists Ay # Ao such that (A1, 0) € €.
(iii) There exist A € R and z € Z \ {0} such that (A, z) € &".

Proof. The existence of the connected component € is evident from the adaptation of the main
theorem of [9]. Let us choose ¢ > 0 and § > 0 as in (9.16). Suppose no closed and connected
subset € C €N Bs (Ao, 0) exists such that € C 0, U{(%0.0)}, (A0.0) € € and €N Bs (%0, 0) #
. Next, setting (A, u) :=Fk, u) — L(A)u, for (A, u) € R x U, we define

N, 1) if (1) € 07,
N, u) = | & (— f;f;(;) NGouw)  if — 0y () < (gl u) <0, u 0, 9.17)
—NO, —u) if (@5, u) >0,

where § : R — R is a fixed increasing C! function satisfying £(0) =0, (1) =1 and £/(1) = 0.
Now, set (A, u) := LM)u +MN(A, u), (A, u) € R x U. The same argument of the proof of [53,

241



J. Lopez-Gomez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182-250

Th.4.4] shows that§ is of class C' and D @(A u) € ®og(U, V) forall (A, u) € R x U. Moreover,
S isodd in u. Since £’ (2o)lgol ¢ R[£(Ao)], it follows that X[S Aol = 1. Hence, by Theorem 4.1,
there exists a component, Qﬁ of nontrivial solutions of S(A u) = 0 such that (19, 0) € S By
applying the same argument we follow to establish (9.16), we can prove that

¢ N Bs(ho,0) C Oc.n U{(Xo, 0)} (9.18)

for sufficiently srpall 8, say 6 € (0,80]. Moreover, since x[£, Ag] = 1, according to Theo-
rem 5.12, either € is unbounded, or it contains a point (i1, 0) Awith A1 # Ap. Note that the
hypothesis (F2) is necessary to apply Theorem 5.12. In either case, €N 9 Bs(Ao, 0)N Q¢  # ¥. On
the other hand, as @(k, u) is odd in u, it is apparent that en an ={(A,—u): (M, u) e en Q;n}'
Therefore, necessarily

€NaBs(r0.0) N Q;, # 1. (9.19)

Moreover, since §(A, u) = §(A, u) for all (A, u) € Qs_,n’ it becomes apparent that ¢n Qs_,n =

€N Q.. Therefore, (9.19) can be equivalently expressed in the form €N adBs(ro, 0) N O, # @,
which contradicts our first assumption. The same procedure holds for Q;‘fn. This ends the proof
of the first of the theorem. The second part follows mutatis mutandis from the proof of Theorem
9.4 interchanging the operator G withg. O

10. The negative solutions of (8.1)

In this section we complete the analysis of Section 8 by studying the global structure of the
component of negative solutions of (8.1) emanating from (0, 0). We have postponed this analysis
because we need the unilateral theorems of Section 9 to get our result.

Lemma 10.1. u = 0 is the unique solution of (8.1) at . = 0.
Proof. Suppose A = 0. Then, multiplying (8.1) by ¢y = sinx and integrating by parts gives

b

b T T
/ugz)o dx:—/u”goo dx:/mpo dx—/u4g0() dx.
0 0 0

0
Thus, foﬂ u4(po dx =0, and since ¢g > 0, it follows that u = 0. This ends the proof. O

Observe that (A, ) is a negative solution of (8.1) if and only if (A, v) = (A, —u) is a positive
solution of the problem

(10.1)

v =xm"4v— A —vHv?* in (0, n),
v(0) =v(r)=0.

Therefore, the problem of analyzing the negative solutions of (8.1) can be solved by studying the
positive solutions of (10.1).
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Theorem 10.2. Suppose L < 0. Then, the problem (8.1) admits a negative solution.

Proof. The change of variable w = 3%y transforms (10.1) into

{ —w’ = %w — e~ P2 +e*%)‘xw4 in (0, 7), (10.2)

w0)=w(m)=0

and setting ; = —A, this problem can be expressed as

2
—w" =y + et w? eIyt in (0, 1),
w(0) =w(r)=0.

To study this problem, we will deal with its generalization

—w” = pw+ax)w?+ p@w* in(0,7), (10.3)
w(0) =w(mr) =0, )
where p € R is regarded as a bifurcation parameter and «, 8 € C[0, 7] satisty a(x) > 0 and
B(x) > 0 for all x € [0, ]. The solutions of (10.3) are the zeroes of the nonlinear operator

T RxU—>V, Fp w=v"+pw+ax)w’+px)w

According to the main theorem of Crandall and Rabinowitz [9], it is folklore that, for every
integer n > 1, p, = n? is a bifurcation point to a curve of solutions with n — 1 nodes. In particular,
a curve of positive solutions emanates from p = 1.

Suppose that w is a positive solution of (10.3). Then, multiplying (10.3) by ¢o(x) = sinx and
integrating by parts in (0, ) yields

e

T T b
O:(,o—])/w(po dx—i—/oz(x)wz(po dx+//3(x)w4(po dx > (,o—l)/w(po dx.
0 0 0 0

Therefore, since u and ¢g are positive, necessarily p < 1. Consequently, (10.3) cannot admit any
positive solution if p > 1.

Let us denote by ¥ the component of positive solutions of (10.3) emanating from w = 0
at p = 1. We already know that ¥ C (—o0, 1] x U. In particular, ¥ cannot meet any other
bifurcation point p, = n?. According to Theorem 9.4, either € is unbounded in (—oo, 1] x U,
or there exists (p, w) € %, with w # 0, such that w € Z where Z stands for the Lz—orthogonal of
span [¢p] in U. The second alternative is impossible since w is positive and hence fon upo dx > 0.
Therefore, € is unbounded.

Finally, by the a priori bounds of Amann and Lépez-Gémez [1], it is apparent that P,(%) =
(=00, 1] where P, : R x U — R stands for the p-projection operator P,(p, w) = p. Conse-
quently, the problem (10.3) admits a positive solution for each p < 1. Finally, since % <1,
it is easily realized that, for every u > 0, the problem (10.2) admits a positive solution. In other
words, (8.1) admits a negative solution forall A <0. O
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Fig. 5. Bifurcation diagram of the component emanating at (0, 0).

When, instead of negative, A > 0, the problem (10.2) admits the following generalization

{ —w" = pw —a@)w?+ Bx)w* in(0,7), (10.4)

w(0) =w(m) =0,

where p € R and «, 8 € C[0, ] satisfy a(x) > 0 and S(x) > O for all x € [0, w]. Although
the bifurcation to positive solutions from w = 0 at p = 1 is supercritical in this case, because
for w ~ 0 the problem (10.4) inherits a sublinear nature, for sufficiently large w (10.4) behaves
much like a superlinear problem. Thus, the argument given in the proof of Theorem 10.2 can be
also combined with the a priori bounds of [1] to infer that (8.1) possesses a positive solution for
all & > 0. However, as the argument in this case is more elaborate technically, because we are
dealing with a superlinear indefinite problem whose structure is far more intricate, the complete
technical details will be given elsewhere.

According to the analysis carried out in Section 8.1, we already know that there are two
analytic curves of negative solutions bifurcating from (0, 0): One in the direction of A > 0 and
another in the direction of A < 0. Subsequently, we denote by % (resp. €_) the connected
component of the set of negative solutions

N o={uw)eF 1) : uk0}CcRxU,

emanating from (0, 0) in the direction A > 0 (resp. A < 0). The next result provides us with their
global behavior.

Theorem 10.3. The components 6. and 6~ are unbounded and disjoint, i.e., €, N €~ = 0.

Proof. By Lemma 10.1, (8.1) cannot admit a negative solution at A =0. So, ¢, N ¢~ =§.
Let us denote by y4 : (0,e) > R x U and y_ : (—¢,0) = R x U the two local curves of
negative solutions of (8.1) that emanate from (0, 0) in the direction of ¢’, and ¢, respec-
tively. Adapting the argument of the proof of Theorem 8.6, it is easily seen that y; and
y_ consist of regular points for sufficiently small ¢ > 0. Thus, by Theorem 7.2, there are
two global locally injective continuous curves I'; : [0, 00) - R x U, '+ ([0, 00)) C 5! 0,
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. :(=00,0] > R x U, 't ((—00,0]) C §1(0), that extend y+ and y_, respectively, and sat-
isfy one of the alternatives (a) and (b). By Lemma 8.5, I'; ([0, 00)) C €, I ((—00,0]) C ¢_.
Since ¢’ N6~ =0, the curves 'y cannot form a loop. Thus, the alternative (a) cannot happen.
Therefore, lim;yoo T4 (#) |y = 00 and lim; | _ |- (#)||y = oo. This entails that ¢’ and €~
are unbounded. The proof is complete. 0O

As a consequence of the analysis carried out in Sections 8 and 10, the global structure of the
component % of solutions of (8.1) emanating from (0, 0) looks as shown in Fig. 5. Essentially, it
consists of a bounded component of positive solutions (A, ) with A > 0 forming a loop around
(0, 0) plus two unbounded branches of negative solutions: one for A > 0 and another for A < 0.
It should be emphasized that, thanks to the results of Section 7.1, the set 3’1(0) is an analytic
graph.

To conclude this section, it should be noted that the loop of positive solutions, %7, does not
satisfy any of the alternatives (i)—(iii) of Theorem 9.4. This fact shows the relevance that x is odd
for the validity of these unilateral theorems.

11. A quasilinear problem of mixed type

In this section, €2 stands for a bounded subdomain of RY of class C2 such that Q2 =Ty W T,
where I'g and I' are two open and closed subsets of d€2. Thus, both are of class C2. Our main
goal is analyzing the existence of regular positive solutions for the multidimensional quasilinear
boundary value problem

T Vu — i
le(W) =Xda(x)u + g(x,u)u  in €2, (11.1)
Bu =0 on 0€2,

where a € C(Q2,R) changes sign in €2, g € CH(Q x R) satisfies g(-,0) =0, and the boundary
operator B:C(I'g) ® C(I'1) — R is defined by

Buw—1" on Iy
= Ot + B(x)u  onTy

where n is the exterior normal vector field to 2 on 92, and 8 € C(I"1). Thus, B is a non-classical
mixed boundary operator on d€2; non-classical because B can change sign on I';. When '] =0,
then B coincides with the Dirichlet boundary operator, D. When, I'o = ¥ and 8 = 0, 5 equals
the Neumann boundary operator, A

In this section, we will assume that (—A — Aga(x), B, 2) satisfies the maximum principle for
some Ao € R, i.e., thanks to [32, Th. 7.10],

o1[—=A — roa(x), B, Q] > 0, (11.2)

where we are denoting by o1[—A — Aa, B, ] the principal eigenvalue of —A — Aa in Q2 subject
to the boundary operator B on 2. The condition (11.2) holds with 1y = 0 if, for example, I'g = @
and 8 > 0, or I'g # @ and B > 0, as in both cases, the constant function & = 1 provides us with a
positive strict supersolution of (—A, B, 2) as discussed in [32, Ch. 7].
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For every p > N, we can define a nonlinear operator § : R x Wé’p () — LP(R2) through

S(A,u):—div( ) —da(x)u — g(x,u)u.

Vu
V14 |Vul?
Then, § € C'(R x W5 " (Q), L? (%)) and

LMu=D,F\,0u=—Au—ra(x)u forall ue Wé,’p(Q).

Since

I’L()“’ 7/) =01 [_A - )\-a(-x) + Y, Bv Q] =01 [_A - )‘a(-x)’ Bv Q] + Vs

it is apparent that, for sufficiently large y € R, u(x,y) > 0. Thus, £(1) + yJ lies in
GL(W;),”J(Q), LP(2)), where J : Wé’p(Q) — LP(Q2) stands for the canonical embedding,
which is a linear compact operator. Consequently, £(A) = (£(A) + yJ) — y can be expressed as
the sum of a compact operator plus an isomorphism. In particular, £(1) € CIDO(Wé,’p (), LP ().
Therefore, £ is an analytic curve of Fredholm operators of index zero. By (11.2),

£(ho) = —A — hoa € GL(W5"(Q), L7 ().

Thus, thanks to Theorems 4.4.1 and 4.4.3 of [31], X(£) is a discrete subset of R. Moreover,
¥ (L) consists of algebraic eigenvalues. Note that A € X (£) if and only if the linear problem

—Au=Xta(x)u in Q,

{Bu:O on 0%, (11.3)

admits some solution u # 0 in Wé’p (£2). As a(x) changes of sign in €2, it follows from [32, Th.
9.4] that (11.3) has two (principal) eigenvalues, A_ < A9 < A4, associated with each of them the
problem (11.3) possesses a (principal) positive eigenfunction, ¢+ > 0, unique up to a positive
multiplicative constant. By ¢+ > 0 it is meant that ¢4+ (x) > 0 for all x € Q UT'q, and that
one+(x) < 0if x € I'y. Moreover, also based on [32, Th. 9.4], it becomes apparent that A4 are
algebraically simple and that £1(A4+)(p+) ¢ R[£(A1)]. Thus, according to (2.3), x[£,A+] = 1.
Therefore, when, in addition, g is assumed to be of class C 3 by the Crandall-Rabinowitz theorem
[9], there exist £ > 0 and two C!-functions

Ut :(—e,6) >R, wi:(—s,s)QZE{ueWé’p(Q): fmpi:O}
Q

such that 14+ (0) = A+, ¥+(0) = 0, and, in a neighborhood of (A, 0), the solution set F~!(0)
consists of the trivial curve (1, 0) plus the bifurcated C'-curve (A+(s), u+(s)) = (u+(s), s+ +
Y+(s)), s ~ 0. At least for sufficiently small s > 0, the solutions (A+(s), u+(s)) provide us with
positive solutions of (11.1). Actually, those are the unique small positive solutions of (11.1) as
no other eigenvalue of (11.3) admits a positive eigenfunction (see, e.g., [32, Ch. 6]).
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Nevertheless, even when g is simply of class C! regularity, by Theorem 4.1, there are two
components, QﬁI, of non-trivial solutions of (11.1) emanating from (X, 0) at A1. These compo-
nents consist of the smooth curves (A4 (s), u+(s)) for sufficiently small s > 0 if, in addition, g is
C2. Based on the next result, a direct adaptation of the argument of [31, Sec. 6.5] shows that CI
actually provides us with the component of positive solutions of (11.1) emanating from (A, 0) at
At

Lemma 11.1. Suppose that u > 0 is a solution of (11.1) in Wé’p(Q). Then, u > 0 in the sense
that u(x) > 0 forall x e QUT'| and ogu(x) <0 forall x € T'y.

Proof. By the Sobolev embedding theorem, u € C' (). Thus, (11.1) can be written equivalently
in the form

N 2
du du 9
CU 4 V) P Au4 (4 Va2 S M T
1 8)61' 3Xj 3)61'3)6/‘

=Aa(x)u + g(x, u)u,

L=

where the second order differential operator

u du 9w

la_xl'gjaxiaxl‘

LG, Vidw = —(1+ [Vu>) "2 Aw + (1 + [Vu|?) 2

i,j=

is uniformly elliptic in €2 (see, e.g., Gilbarg—Trudinger [23, p. 261]). Thus, since # > 0 and (11.1)
can be equivalently expressed in the form

(L(u,Vu) —ra(x) — g(x,u))u=0,

by the uniqueness of the principal eigenvalue o1[L(u, Vu) —ra — g(-,u), B,Q]=0and u >0
must be a principal eigenfunction associated to 0. Finally, adapting the arguments of [32, Ch. 7],
it follows from the Krein—Rutman theorem that u > 0. O

Therefore, by Theorem 9.4, each of the components in satisfies some of the following alter-
natives:

(i) €7 is not compact in R x Wé’p(Q).
(i1) There exists A4 1 # A4 such that (A4 1,0) € in.
(iii) There exist A € R and z € Z \ {0} such that (A, z) € QI.

Since z # 0 and ¢+ > 0, it follows from fQ zo+dx = 0 that z changes sign in €2 and hence
(A, 2) ¢ Qﬁl. Therefore, either (i), or (ii) occurs and the next result holds.

Theorem 11.2. Either QI =¢t, or @i N et =0 and, in such case, there exist two sequences

(At p Ut p) € in, n > 1, such that either lim,_ oo [A+ | = 00, or limy o0 |[Ut4 n ||Wé,p(9) = 00.

Naturally, Q]Lr = ¢ occurs when the alternative (ii) holds. Therefore, when (ii) fails, both
components of positive solutions must satisfy the alternative (i). Naturally, the precise global
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behavior of the components in depends on the particular choice of the map g(x, u) in the setting
of the problem (11.1), as well as on the nature of the boundary conditions. The following result
provides us with a sufficient condition so that Ci N ¢ = ¢ under Dirichlet boundary conditions.

Theorem 11.3. Suppose B="D and g(x,u) <0 for all x € Q and u > 0. Then, u =0 is the
unique non-negative solution, in W02’p(52), of (11.1) for A =0. Thus, QZI net=g.

Proof. Let u € WO2 P(Q) be a positive solution of (11.1) with A = 0. Then, multiplying the dif-
ferential equation by u and integrating by parts in €2, we obtain that

vul® fdiv vu d
——————adX = — —————— | udax
2 V1+|Vul? 2 V1+|Vul?

=A/a(x)u2dx+/g(x,u)u2(x)dx50.

Q Q

Thus, Vu = 0 in 2 and therefore, u = 0 in €2, because 2 is connected.

On the other hand, since o1[—A, D, ] > 0, the condition (11.2) holds with Lo = 0. Hence,
A_ <0 < Ay. Consequently, since (11.1) cannot admit any positive solution at A =0, Qi net =
. This ends the proof. O

When B =N, A =0 is always a principal eigenvalue of (11.3). Indeed, any positive constant
satisfies (11.3) if > = 0. In such case, based on a result of Brown and Lin [6], .- =0and A4 >0
if [qa(x)dx <0,whileA_ <Oand Ay =0if [, a(x)dx > 0. When, [, a(x)dx =0, then A =0
is the unique eigenvalue of (11.3) (see the discussion on page 312 of [32]). Even in the simplest
one-dimensional prototype models, the classical solutions of (11.1) can develop singularities for
certain values of the parameter A. Consider, for instance, the simplest one dimensional problem

_ <\/#T)2> =Xa(x)u in(0,1), (11.4)
W' (0)=u'(1)=0,

with fol a(x)dx < 0. Then, A_ =0 and A4 > 0. Moreover, {(r,0): r e R} C ¢ . In particular,
¢ is unbounded in L?(0, 1). This particular model fits within the abstract setting of Lépez-
Gomez and Omari [39,40], with p = g = 2, if there exists z € (0, 1) such that a(x) > 0 for all
x € (0,z) and a(x) < O for all x € (z, 1). Subsequently, we will assume that a(x) satisfies this
condition. Then, thanks to [39, Th. 1.1], for sufficiently small A > 0, any positive solution of

(11.4) is singular if
_1

Z 2

/a(t)dt eL'(0,2)NL'(z 1). (11.5)

X

Therefore, if a(x) satisfies (11.5), then there exists w > 0 such that P,, (Qﬁi) C [w, 00), where P;,
stands for the A-projection operator P, (A, u) = A. In particular, Qi net =g.
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By having a glance at (11.5) it becomes apparent that it fails whenever the function a is
differentiable at the nodal point z, whereas it occurs when a(x) is discontinuous at z, like in
the special case when it equals a positive constant, A > 0, in [z — ¢, z) and a negative constant,
B <0,1n (z, z 4 &], for some ¢, § > 0. Thus, there is a huge contrast in the nature of the positive
solutions of (11.4) according to the integrability properties of a(x) near the node z. Figure 1 of
Lépez-Gémez and Omari [39] shows how, under condition (11.5), the solutions along Qli can
develop singularities when A approximates zero, as their gradients develop singularities at the
node z when they become sufficiently large. Naturally, at these critical values, ||u’||L» becomes
unbounded, though |u|.» always stay bounded. Actually, thanks to Lépez-Gémez and Omari
[39, Th. 7.2], any positive bounded variation solution of (11.4) must be regular if the integrability
condition (11.5) fails. Therefore, in this case, the solutions along QI cannot develop singularities.
Characterizing whether, or not, the positive solutions of (11.1) can develop singularities in a
multidimensional context seems extremely challenging and remains an open problem.
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