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Abstract

This paper consists of four parts. It begins by using the authors’ generalized Schauder formula, [41], 
and the algebraic multiplicity, χ , of Esquinas and López-Gómez [15,14,31] to package and sharpening 
all existing results in local and global bifurcation theory for Fredholm operators through the recent au-
thor’s axiomatization of the Fitzpatrick–Pejsachowicz–Rabier degree, [42]. This facilitates reformulating 
and refining all existing results in a compact and unifying way. Then, the local structure of the solution set 
of analytic nonlinearities F(λ, u) = 0 at a simple degenerate eigenvalue is ascertained by means of some 
concepts and devices of Algebraic Geometry and Galois Theory, which establishes a bisociation between 
Bifurcation Theory and Algebraic Geometry. Finally, the unilateral theorems of [31,33], as well as the 
refinement of Shi and Wang [53], are substantially generalized. This paper also analyzes two important 
examples to illustrate and discuss the relevance of the abstract theory. The second one studies the regular 
positive solutions of a multidimensional quasilinear boundary value problem of mixed type related to the 
mean curvature operator.
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1. Introduction

This paper is a natural continuation of [41–43], where the authors axiomatized the degree for 
Fredholm operators of Fitzpatrick, Pejsachowicz and Rabier [19,20,50] through the generalized 
algebraic multiplicity, χ , of Esquinas and López-Gómez [14,15,31], which had been axiomatized 
by Mora-Corral [47]. The monographs [31] and [37] present a rather complete synthesis of the 
crucial role played by χ in Bifurcation Theory. The axiomatization of the degree for Fredholm 
maps carried out by the authors in [42] follows similar patterns as the uniqueness theorems of 
Führer [22] and Amann and Weiss [2] for the degrees of Brouwer [7] and Leray–Schauder [30], 
respectively.

The first part of this paper invokes these, rather recent, developments to reformulate all exist-
ing local and global bifurcation results for nonlinear Fredholm maps at the light of the algebraic 
multiplicity χ through the generalized Schauder formula delivered by the authors in [41]. In 
particular, it tidies up and sharpens considerably the local bifurcations theorems of Fitzpatrick, 
Pejsachowicz and Rabier [20], Pejsachowicz and Rabier [50], as well as [31, Th. 6.2.1] and the 
global theorem of López-Gómez and Mora-Corral [37], which was originally proven by using 
the degree of Benevieri and Furi [3–5]; we deliver another proof of [37, Th. 5.4] by means of 
the Fitzpatrick–Pejsachowicz–Rabier degree. Actually, this paper grew from the germinal idea 
of bringing together, by the first time, all these results, scattered in a series of independent 
monographs, at the light of our most recent developments concerning χ and the Fitzpatrick–
Pejsachowicz–Rabier degree.

Roughly speaking, our global theorem (collected in Theorems 5.9 and 5.12) establishes that 
any compact component C of the set of non-trivial solutions of a nonlinear equation F(λ, u) = 0
must bifurcate from the trivial solution (λ, u) = (λ, 0) respecting the topological property that the 
sum of the parities of the compact components of the generalized spectrum where C bifurcates 
from (λ, 0) must be zero. In the proof of the global alternative of Rabinowitz [51], Nirenberg [48, 
p. 87] emphasized this property in the context of the Leray–Schauder degree for nonlinear maps 
F(λ, u) such that F(λ, 0) = 0 for all λ ∈ R and L(λ) ≡ DuF(λ, 0) = λI − K for some compact 
operator K . These findings were later sharpened by Ize [25] and Magnus [45], though in a rather 
limited way, because of the absence of a versatile theory of algebraic multiplicities for arbitrary 
compact perturbations of the identity map, L(λ) = I − K(λ) with K(λ) compact. Examples of 
compact components bifurcating from the trivial solution in the context of Reaction-Diffusion 
systems are well known to arise in a huge number of applications. The interested reader is sent to 
Chapter 2 of [31], and to Fencl and López-Gómez [17] for some recent intriguing applications.

Naturally, as a byproduct of the global bifurcation theorem, the global alternative of Rabi-
nowitz, [51], holds. It establishes that any component bifurcating from a nonlinear eigenvalue 
must be either unbounded, or it bifurcates from (λ, 0) at two different values of the parame-
ter λ with opposite parities. Possibly by the simplicity of this formulation and the sophisticated 
topological technicalities necessary to state rigorously and prove the global theorem, even the 
simplest version of Nirenberg [48] has fallen into oblivion for almost 50 years. As a result, 
experts use to invoke exclusively the global alternative of Rabinowitz in the context of global bi-
furcation theory, which is really harmful from the point of view of the applications, as the global 
alternative cannot provide with any useful information on the value of the degree of the λ-slices 
of the component, which in many applications coincides with the exact number of solutions of 
F = 0 (see, e.g., López-Gómez and C. Mora-Corral [35], [36]). Actually, some authors did not 
focus attention into the deeper insights of the underlying theory, as, e.g., Shi and Wang [53], 
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whose observation that the local theorem of Crandall and Rabinowitz [9] is global was actually 
a straightforward direct consequence of Theorem 5.4 of López-Gómez and Mora-Corral [37].

Once tidied up, polished and sharpened the main bifurcation theorems at the light of the degree 
of Fitzpatrick, Pejsachowicz and Rabier, the second part of this paper studies the bifurcation 
from simple degenerate eigenvalues for analytic F’s, where N [DuF(λ0, 0)] = span[ϕ0] for some 
ϕ0 ∈ U\{0}, which goes back to the pioneering work of Dancer [13,11,12] and Kielhöfer [27]. 
By Theorem 4.4.3 of López-Gómez and Mora-Corral [36], the main result of [27] can be stated 
by simply saying that in a neighborhood of (λ0, 0), F−1(0) consists of at most 2χ + 2 branches 
of analytic functions intersecting at (λ0, 0). In this article, we use a rather different approach 
by using a number of technical tools in Algebraic and Analytic Geometry to ascertain the fine 
local structure of F−1(0) at (λ0, 0). Precisely, after using a Lyapunov–Schmidt decomposition 
to reduce the original problem to another one with a finite-dimensional character, the analysis 
of the local structure of the associated solution set will be carried over through a careful study 
of the roots of the Weierstrass polynomial associated to the reduced bifurcation equation. This 
allows us to use some techniques of algebraic monodromy theory to study them by means of the 
theory of Riemann surfaces. Thus, essentially, we translate the underlying analytic problem into 
another one of algebraic nature that can be treated computationally. In the complex case, using 
these technical devices, one can characterize the precise local structure of the zero set in terms of 
a sequence of Riemann surfaces that can be analyzed through an algebraic field extension of finite 
degree. At a later stage, we will use Galois Theory to ascertain whether, or not, the zero set can 
be expressed through a composition of radicals and meromorphic functions. In the real case, this 
problem has a rather computational nature, since one has to determine how many complexified 
Riemann surfaces are real-to-real, i.e., such that its intersection with the real plane lies into the 
real plane. Finally, we are able to determine the exact number of real branches that emanate from 
(λ0, 0) through the celebrated Sturm criteria, that is used in Numerical Analysis to ascertain 
the exact number of real zeroes of polynomials. This analysis complements the one given by 
Dancer and Kielhöfer. In a further step we focus attention on the global behavior of the zero set 
F−1(0) of these types of nonlinearities. In this setting, we generalize the Dancer [12, Th. 4] and 
Buffoni–Toland [8, Th. 9.1.1] global alternatives up to cover the degenerate case χ ≥ 2 where 
the theorem of Crandall and Rabinowitz [9] cannot be applied. This is a significantly important 
advance for the study of degenerate problems as illustrated in the example of Sections 8 and 
10. Moreover, inspired by a novel idea of Dancer [12, Th. 3], we will prove that, under these 
assumptions, F−1(0) is an analytic graph. As a very special example, by the local theorem of 
Crandall and Rabinowitz [9] and the global alternative of Rabinowitz [51], it is folklore that, 
for every a ∈ C[0, π] and any integers n ≥ 1 and p ≥ 2, the set of solutions of the semilinear 
boundary value problem

{−u′′ = λu + a(x)up in (0,π),

u(0) = u(π) = 0,
(1.1)

admits a component, Cn, with (λ, u) = (n2, 0) ∈ Cn, which is unbounded in R × C[0, π]. More-
over, by the maximum principle, since the number of nodes of the solutions along Cn is constant, 
it turns out that Cn ∩ Cm = ∅, n 	= m. Our main result in this part shows that actually each of the 
components Cn, n ≥ 1, consists of a discrete set of analytic arcs of curve plus a discrete set of 
branching points.

The third part of this paper generalizes substantially the unilateral bifurcation theorems of 
[33] by substituting the norm in the underlying Banach space U by some continuous functional 
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ψ(u). As a byproduct, our unilateral theorem does not require the differentiability of the norm 
of U , as in Shi and Wang [53], but simply the compactness of the imbedding U ↪→ V , which is 
a rather common property in most of the existing applications. Another important feature of our 
refinement is that it can be applied to deal with the general case when χ ≥ 1. So, it also covers 
the case of bifurcation from simple degenerate eigenvalues.

The main advantage of developing global bifurcation theory in a Fredholm scenario is that one 
can deal very easily with quasilinear elliptic equations and systems, even when they cannot be 
transformed into a semilinear boundary value problem though some change of variables, tricky or 
not. As in this scenario one can directly deal with Fredholm operators, expressing the differential 
equation as an integral equation is unnecessary. This paper ends by giving a non-trivial applica-
tion to a quasilinear boundary value problem of mixed type involving the multidimensional mean 
curvature operator.

This paper has been organized as follows. Section 2 collects the main features of the alge-
braic multiplicity χ used in this paper. Section 3 reviews the main ingredients of the degree of 
Fitzpatrick, Pejsachowicz and Rabier [19,20,50], and invokes them to give a general version of 
the Leray–Schauder continuation theorem for nonlinear Fredholm operators. Sections 4 and 5
deliver the main local bifurcation theorem and the main global bifurcation theorem of this paper, 
respectively. Section 6 consists of a sharp analysis, at the light of Analytic Geometry, of the prob-
lem of bifurcation in the special case of analytic F’s and dimN [DuF(λ0, 0)] = 1. In particular, it 
delivers our refinements of the main findings of Dancer [13,11,12] and Kielhöfer [27]. Section 7
generalizes the Dancer [12] and Buffoni–Toland [8] global alternatives up to cover the degener-
ate case χ ≥ 2. Section 8 invokes the previous theory to analyze the local and global structure of 
the solution set of

{−u′′ = λu′ + u + (λ − u2)u2 in (0,π),

u(0) = u(π) = 0.
(1.2)

In particular, it is shown that the set of positive solutions of (1.2) contains a closed loop bifurcat-
ing from (λ, u) = (0, 0). This example seems to be the first of this type constructed, analytically, 
in the literature in a situation where χ = 2. The existence of such loops in problems with weights 
is well documented in the literature (see, e.g., Fencl and López-Gómez [17], López-Gómez and 
Tellini [44] and the references there in). Actually, introducing an additional parameter in the 
model setting one can get, numerically, these closed loops, as in López-Gómez and Molina-
Meyer [34], but our result for (1.2) is the first existing analytical result. Section 9 delivers the 
refinement of the unilateral theorems of [33] and [53], and Section 10 uses these refinements 
to analyze the global structure of the negative solutions of (1.2); so, completing the analysis of 
Section 8. Finally, Section 11 applies the new unilateral theorem to analyze the global structure 
of the set of positive solutions of the quasilinear problem

⎧⎨
⎩−div

(
∇u√

1+|∇u|2

)
= λa(x)u + g(x,u)u in �,

Bu = 0 on ∂�,

(1.3)

where B is a general boundary operator of mixed type.
Along this paper, given a pair (U, V ) of K-Banach spaces, K ∈ {R, C}, the space of linear 

bounded operators T : U → V is denoted by L(U, V ). Naturally, we set L(U) := L(U, U). We 
denote by GL(U, V ) the space of topological isomorphisms and GL(U) := GL(U, U). Given 
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T ∈ L(U, V ), we denote by N [T ] and R[T ], the kernel and the range of T , respectively. Finally, 
K(U) stands for the set of linear compact endomorphisms of U , and GLc(U) = GL(U) ∩K(U)

is the compact linear group of U .

2. Generalized algebraic multiplicity

Throughout this section, K ∈ {R, C}, � is a subdomain of K, and, for any given finite di-
mensional curve L ∈ C(�, L(KN)), a point λ ∈ � is said to be a generalized eigenvalue of L if 
L(λ) /∈ GL(KN), i.e., detL(λ) = 0. Then, the generalized spectrum of L ∈ C(�, L(KN)), de-
noted by 
(L), consists of the set of λ ∈ � such that L(λ) /∈ GL(KN)}. For analytic curves 
L ∈ Cω(�, L(KN)), since detL(λ) is analytic in λ ∈ �, either 
(L) = �, or 
(L) is discrete. 
Thus, 
(L) consists of isolated generalized eigenvalues if L(μ) ∈ GL(KN) for some μ ∈ �. In 
such case, the algebraic multiplicity of the curve L ∈ Cω(�, L(KN)) at λ0 is defined through

malg[L, λ0] := ordλ=λ0 detL(λ). (2.1)

Although the multiplicity is defined for all λ0 ∈ R, it equals zero if λ0 ∈ R \ 
(L). This con-
cept extends the classical notion of algebraic multiplicity in linear algebra. Indeed, if L(λ) =
λIN − T for some linear operator T ∈ L(KN), then L ∈ Cω(K, L(KN)) and it is easily seen that 
malg[L, λ0] is well defined for all λ0 ∈ 
(L) and that (2.1) holds. Note that, since GL(KN) is 
open, IN − λ−1T ∈ GL(KN) for sufficiently large λ. Thus, λIN − T ∈ GL(KN) and 
(L) is 
discrete.

This concept admits a natural (non-trivial) extension to an infinite-dimensional setting. To 
formalize it, we need to introduce some of notation. In this paper, for any given pair of K-
Banach spaces, say U and V , we denote by �0(U, V ) the set of linear Fredholm operators 
of index zero between U and V . Then, a Fredholm (continuous) path, or curve, is any map 
L ∈ C(�, �0(U, V )). Naturally, for any given L ∈ C(�, �0(U, V )), it is said that λ ∈ � is a 
generalized eigenvalue of L if L(λ) /∈ GL(U, V ), and the generalized spectrum of L, 
(L), is 
defined through


(L) := {λ ∈ � : L(λ) /∈ GL(U,V )}.

The following concept, going back to [31], plays a pivotal role in the sequel.

Definition 2.1. Let L ∈ C(�, �0(U, V )) and κ ∈ N . A generalized eigenvalue λ0 ∈ 
(L) is said 
to be κ-algebraic if there exists ε > 0 such that

(a) L(λ) ∈ GL(U, V ) if 0 < |λ − λ0| < ε;
(b) there exists C > 0 such that

‖L−1(λ)‖ <
C

|λ − λ0|κ if 0 < |λ − λ0| < ε; (2.2)

(c) κ is the minimal integer for which (2.2) holds.

Throughout this paper, the set of κ-algebraic eigenvalues of L is denoted by Algκ(L), and 
the set of algebraic eigenvalues by Alg(L) := ∪κ∈N Algκ (L). As in the special case when 
186



J. López-Gómez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182–250
U = V = KN , according to Theorems 4.4.1 and 4.4.4 of [31], when L(λ) is analytic in �, i.e., 
L ∈ Cω(�, �0(U, V )), then, either 
(L) = �, or 
(L) is discrete and 
(L) ⊂ Alg(L). Sub-
sequently, we denote by Aλ0(�, �0(U, V )) the set of curves L ∈ Cr (�, �0(U, V )) such that 
λ0 ∈ Algκ (L) with 1 ≤ κ ≤ r for some r ∈ N . Next, we will construct an infinite dimensional 
analogue of the classical algebraic multiplicity malg[L, λ0] for the class Aλ0(�, �0(U, V )). It 
can be carried out through the theory of Esquinas and López-Gómez [15], where the following 
pivotal concept, generalizing the transversality condition of Crandall and Rabinowitz [9], was 
introduced. Throughout this paper, we set Lj := 1

j !L
(j)(λ0), 1 ≤ j ≤ r , should these derivatives 

exist.

Definition 2.2. Let L ∈ Cr (�, �0(U, V )) and 1 ≤ κ ≤ r . Then, a given λ0 ∈ 
(L) is said to be a 
κ-transversal eigenvalue of L if

κ⊕
j=1

Lj

⎛
⎝j−1⋂

i=0

N [Li]
⎞
⎠⊕ R[L0] = V with Lκ

(
κ−1⋂
i=0

N [Li]
)

	= {0}.

For these eigenvalues, the algebraic multiplicity was introduced in [15] by

χ[L, λ0] :=
κ∑

j=1

j · dimLj

⎛
⎝j−1⋂

i=0

N [Li]
⎞
⎠ . (2.3)

In particular, when N [L0] = span[ϕ0] for some ϕ0 ∈ U such that L1ϕ0 /∈ R[L0], then

L1(N [L0]) ⊕ R[L0] = V (2.4)

and hence, λ0 is a 1-transversal eigenvalue of L(λ) with χ[L, λ0] = 1. The transversality 
condition (2.4) goes back to Crandall and Rabinowitz [9]. More generally, under condition 
(2.4), χ[L, λ0] = dimN [L0]. According to Theorems 4.3.2 and 5.3.3 of [31], for every L ∈
Cr (�, �0(U, V )), κ ∈ {1, 2, ..., r} and λ0 ∈ Algκ(L), there exists a polynomial � : � → L(U)

with �(λ0) = IU such that λ0 is a κ-transversal eigenvalue of the path

L� := L ◦ � ∈ Cr (�,�0(U,V )), (2.5)

and χ[L�, λ0] is independent of the curve of trasversalizing local isomorphisms � chosen to 
transversalize L at λ0 through (2.5). Therefore, the following concept of multiplicity is consistent

χ[L, λ0] := χ[L�,λ0], (2.6)

and it can be easily extended by setting χ[L, λ0] = 0 if λ0 /∈ 
(L) and χ[L, λ0] = +∞ if λ0 ∈

(L) \ Alg(L) and r = +∞. Thus, χ[L, λ] is well defined for all λ ∈ � of any smooth path 
L ∈ C∞(�, �0(U, V )); in particular, for any analytical curve L ∈ Cω(�, �0(U, V )).

The next uniqueness result, going back to Mora-Corral [47], axiomatizes these concepts 
of algebraic multiplicity. Some refinements of them were delivered in [37, Ch. 6]. In order 
to spate the result we need some preliminary definitions. Throughout this article, we denote 
by C ∞(U), the set of operator families L : �λ → �0(U) of class C∞ that are defined in 
λ0 0
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a neighborhood �λ0 of λ0, and introduce the space of germs of smooth curves over λ0 by 
C∞

λ0
(U) := C ∞

λ0
(U)/ ∼, where we identify two families L1, L2 ∈ C ∞

λ0
(U), L1 ∼ L2, if there 

exists a neighborhood �λ0 ⊂ D(L1) ∩ D(L2) of λ0 such that L1(λ) = L2(λ) for each λ ∈ �λ0 . 
Here, D(L) stands for the domain of the curve L. Subsequently, given L, M ∈ C(�, �0(U)), 
we denote by LM ∈ C(�, �0(U)), the curve defined through [LM](λ) := L(λ) ◦M(λ) for each 
λ ∈ �.

Theorem 2.3. Let U be a non-trivial K-Banach space and λ0 ∈ K. Then, the algebraic multi-
plicity χ is the unique map χ[·, λ0] : C∞

λ0
(U) −→ [0, ∞] such that

(PF) For every pair L, P ∈ C∞
λ0

(U), χ[LP, λ0] = χ[L, λ0] + χ[P, λ0].
(NP) There exists a rank one projection � ∈L(U) such that

χ[(λ − λ0)� + IU − �,λ0] = 1.

The axiom (PF) is the product formula and (NP) is a normalization property for establishing 
the uniqueness of χ . From these two axioms one can derive the remaining properties of χ ; 
among them, that it equals the classical algebraic multiplicity when L(λ) = λIU − K for some 
compact operator K . Indeed, for every L ∈ C∞(�, �0(U)) and λ0 ∈ �, the following properties 
are satisfied (see [37] for any further details):

• χ[L, λ0] ∈ N � {+∞};
• χ[L, λ0] = 0 if and only if L(λ0) ∈ GL(U);
• χ[L, λ0] < ∞ if and only if λ0 ∈ Alg(L).
• If U = KN , then, in any basis, χ[L, λ0] = ordλ0 detL(λ).
• For every K ∈K(U) and λ0 ∈ σ(K),

χ[λIU − K,λ0] = dimN [(λ0IU − K)ν(λ0)],
where ν(λ0) is the algebraic ascent of λ0, i.e., the minimal integer, ν ≥ 1, such that

N [(λ0IU − K)ν] = N [(λ0IU − K)ν+1].

3. Topological degree for Fredholm operators

A crucial feature that facilitates the construction of the Leray–Schauder degree is the fact that, 
for any real Banach space U , the space GLc(U) consists of two path-connected components, 
which fails to be true in the general context of Fredholm operators of index zero as a conse-
quence of the Kuiper theorem [29]. Consequently, it is not possible to introduce an orientation in 
GL(U, V ) for general real Banach spaces U, V , since in general, GL(U, V ) is path-connected. 
In 1991, assuming that (U, V ) is a pair of real Banach spaces and L : [a, b] −→ �0(U, V ) is 
a continuous path of linear Fredholm operators of index zero with invertible endpoints, Fitz-
patrick and Pejsachowicz [16,18] introduced an homotopy invariant of L, the parity of L on 
[a, b], denoted in this paper by σ(L, [a, b]), which became a key technical device to overcome 
the difficulty of the orientation.

In this section we begin by reviewing, very shortly, the concept of parity of an admissi-
ble curve of Fredholm operators and state some of its fundamental properties. Subsequently, 
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it is said that a curve L ∈ C([a, b], �0(U, V )) is admissible if L(a), L(b) ∈ GL(U, V ), and 
we denote by C ([a, b], �0(U, V )) the class of admissible curves. To define the parity via the 
Leray–Schauder degree it is necessary to introduce the concept of parametrix. For any given 
L ∈ C ([a, b], �0(U, V )), a parametrix of L is a family P ∈ C([a, b], GL(V, U)) such that

P(λ)L(λ) − IU ∈K(U) for each λ ∈ [a, b].

The existence of a parametrix for every L ∈ C ([a, b], �0(U, V )) is guaranteed by Theorem 2.1 
of Fitzpatrick and Pejsachowicz [18]. Then, for every L ∈ C ([a, b], �0(U, V )), the parity of the 
curve L is defined through

σ(L, [a, b]) := deg(P(a)L(a)) · deg(P(b)L(b)),

where P ∈ C([a, b], GL(V, U)) is a parametrix of L and, for every T ∈ GLc(U), we are de-
noting deg(T ) := deg(T , Bε(0)), for sufficiently small ε > 0, where deg is the Leray–Schauder 
degree. This notion is consistent as it does not depend of the chosen parametrix.

Throughout this paper, a homotopy H : [0, 1] × [a, b] → �0(U, V ) is called admissible if

H({a, b} × [0,1]) ⊂ GL(U,V ),

and the class of admissible homotopies is denoted by H ≡ H ([a, b] ×[0, 1], �0(U, V )). Then, 
two admissible curves L1, L2 ∈ C ([a, b], �0(U, V )) are said to be A-homotopic if there exists 
an admissible homotopy H ∈ H such that H(a, ·) = L1 and H(b, ·) = L2. The following result 
collects some properties of the parity after Fitzpatrick and Pejsachowicz [18] that will be used
through this paper.

Theorem 3.1. For every L ∈ C ([a, b], �0(U, V )), the following properties hold:

• Stability: If L(λ) ∈ GL(U, V ) for all λ ∈ [a, b], then σ(L, [a, b]) = 1.
• Homotopy invariance: If L1, L2 ∈ C ([a, b], �0(U, V )) are A-homotopic, then

σ(L1, [a, b]) = σ(L2, [a, b]).

• Product formula: For any tern of real Banach spaces, (U, V, W), and every L1 ∈
C ([a, b], �0(U, V )) and L2 ∈ C ([a, b], �0(V , W)),

σ(L2L1, [a, b]) = σ(L2, [a, b]) · σ(L1, [a, b]).

• Additivity: For any partition of the interval [a, b], [a, b] = ∪N
i=1 [mi−1, mi], and every L ∈

C ([a, b], �0(U, V )) admissible on [mi−1, mi] for each 1 ≤ i ≤ N ,

σ(L, [a, b]) =
N∏

σ(L, [mi−1,mi]).

i=1
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Subsequently, for every r ∈N � {∞, ω}, we set

C r ([a, b],�0(U,V )) := Cr ([a, b],�0(U,V )) ∩ C ([a, b],�0(U,V )).

The next result, proven by the authors in [41], shows how the parity of any admissible Fredholm 
path L ∈ C ([a, b], �0(U, V )) can be computed though the algebraic multiplicity χ .

Theorem 3.2. Any continuous admissible path L ∈ C ([a, b], �0(U, V )) is A-homotopic to some 
analytic path Lω ∈ C ω([a, b], �0(U, V )). Moreover, for any of these paths,

σ(L, [a, b]) = (−1)
∑n

i=1 χ[Lω,λi ],

where 
(Lω) = {λ1, λ2, ..., λn}.

As the main trouble to introduce a topological degree for Fredholm operators of index zero is 
the absence of orientation in GL(U, V ) ⊂ �0(U, V ), the notion introduced in the next definition, 
going back to Fitzpatrick, Pejsachowicz and Rabier [19], restricts the admissible maps for which 
the degree is defined to the ones where is possible to introduce a notion of orientability. Let X be 
a path-connected topological space and h : X → �0(U, V ) a continuous function. A point x ∈ X

is said to be regular with respect to h if h(x) ∈ GL(U, V ). Subsequently, the set of regular points 
with respect to h will be denoted by Rh.

Definition 3.3. Let X be a path-connected topological space, and consider a pair (U, V ) of real 
Banach spaces. A continuous map h : X → �0(U, V ) is said to be orientable if there exists a 
function ε : Rh → Z2, called orientation, such that, for every continuous curve γ ∈ C([a, b], X)

with γ (a), γ (b) ∈Rh,

σ(h ◦ γ, [a, b]) = ε(γ (a)) · ε(γ (b)). (3.1)

When X is not path-connected, a map h : X → �0(U, V ) is said to be orientable if it is orientable 
on each path-connected component of X.

Now, we will collect some important features going back to the seminal paper of Fitzpatrick, 
Pejsachowicz and Rabier [19]. If h : X → �0(U, V ) is an orientable map with orientation ε :
Rh → Z2, then ε is constant on each path connected component of Rh. Moreover, for every 
continuous map h : X → �0(U, V ), the following three assertions are equivalent:

(1) h is orientable.
(2) For each γ ∈ C([a, b], X) such that γ (a), γ (b) ∈Rh, the parity σ(h ◦γ, [a, b]) only depends 

on {γ (a), γ (b)}.
(3) σ(h ◦ γ, [a, b]) = 1 for every closed path γ ∈ C([a, b], X) such that γ (a) = γ (b) ∈ Rh.

When h : X → �0(U, V ) is orientable and Rh 	= ∅, then there are, exactly, two different orien-
tations for h. Namely, for any given p ∈Rh, these orientations are defined by

ε± : Rh −→ Z2, ε±(q) := ±σ(h ◦ γpq, [a, b]), (3.2)
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where γpq ∈ C([a, b], X) is an arbitrary path such that γ (a) = p and γ (b) = q , and the sign ±
determines the orientation of p, in the sense that ε+(p) = 1 and ε−(p) = −1. Thus, (3.2) can be 
expressed as

ε±(q) = ε±(p) · σ(h ◦ γpq, [a, b]), q ∈Rh. (3.3)

3.1. Topological degree for Fredholm operators

The main goal of this section is to introduce the degree for Fredholm operators that we are 
going to use in this paper. The best way to do it is through its axiomatization theorem. To state 
this fundamental result we need to introduce some previous notations and terminologies. Let 
(U, V ) be a pair of real Banach spaces. For any open subset, O ⊂ U and integers n ≥ 0, r ≥
1, an operator f : O → V is said to be Cr -Fredholm of index n if f ∈ Cr (O, V ) and Df ∈
Cr−1(O, �n(U, V )). The set of all these operators is denoted in this paper by F r

n (O, V ). An 
operator f ∈ F r

0 (O, V ) is said to be orientable if Df : O → �0(U, V ) is an orientable map, as 
discussed in Definition 3.3. Moreover, for any open and bounded set � such that �̄ ⊂ O ⊂ U , 
and any operator f :O → V satisfying

(1) f ∈ F 1
0 (O, V ) is orientable with orientation ε : RDf →Z2,

(2) f is proper on �̄,
(3) 0 /∈ f (∂�),

it is said that (f, �, ε) is a Fredholm O-admissible triple. Subsequently, the class of Fredholm 
O-admissible triples is denoted by A (O).

Given a Cr -Fredholm map f : O ⊂ U → V , a point u ∈ O is said to be a regular point of f
if Df (u) ∈ L(U, V ) is surjective, i.e., R[Df (u)] = V . Thanks to the open mapping theorem, if 
f ∈ F r

0 (O, V ), u ∈ O is a regular point of f if and only if Df (u) ∈ GL(U, V ). Naturally, RDf

stands for the set of regular points of f . On the other hand, for any given open or closed subset 
of O, O ⊂ O, a point v ∈ V is said to be a regular value of f : O → V if f −1(v) ∩O is empty or 
it consists on regular points, i.e., Df (u) ∈ L(U, V ) is surjective for each u ∈ f −1(v) ∩O . In this 
paper, the set of regular values of f : O → V is denoted by RVf (O). By definition, the regular 
points and regular values of f : O → V are related via the set identity

RVf (O) = V \f (O\RDf ).

Obviously, RVf (O) ⊂ RVf (O2) ⊂ RVf (O1) for any open or closed subsets O1, O2 ⊂ O such 
that O1 ⊂ O2. Given an open and bounded subset of O, say �, for the construction of the degree, 
we are mainly interested in regular values of the restriction map f : �̄ → V , i.e., in the set, 
RVf (�̄). Note that if (f, �, ε) ∈ A (O) and v ∈ RVf (�̄), then f −1(v) ∩ �̄ is finite, possibly 
empty. Given (f, �, ε) ∈ A (O), it is said that (f, �, ε) is a O-regular triple if 0 ∈ RVf (�), i.e., 
if Df (x) ∈ GL(U, V ) for all x ∈ f −1(0) ∩ �. The set of regular triples is denoted by R(O).

It is said that a map H ∈ Cr ([0, 1] × O, V ) is a Cr -Fredholm homotopy if H ∈ F r
1 ([0, 1] ×

O, V ), i.e., if

DuH(t, u) ∈ �0(U,V ) for all (t, u) ∈ [0,1] ×O.
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A Cr -Fredholm homotopy H ∈ F r
1 ([0, 1] × O, V ) is called orientable if DuH : [0, 1] × O →

�0(U, V ) is an orientable map. In such case, we denote by εt the restriction

εt :RDHt −→ Z2, εt (x) := ε(t, x), (3.4)

for every t ∈ [0, 1]. Given H ∈ F r
1 ([0, 1] ×O, V ), the following statements hold:

(1) If H is orientable with orientation ε, then for every t ∈ [0, 1], the t-section Ht ∈ F r
0 (O, V )

is orientable with the orientation εt defined in (3.4).
(2) If for some t0 ∈ [0, 1], the section Ht0 ∈ F r

0 (O, V ) is non-degenerate and orientable, then 
H is orientable. Furthermore, any orientation εt0 of Ht0 can be extended as an orientation ε
of H .

We are ready to introduce the class of O-admissible homotopies. For any open and bounded 
subset � ⊂ U such that �̄ ⊂ O, it is said that (H, �, ε) is a Fredholm O-admissible homotopy if 
the following conditions are satisfied:

(1) H ∈ F 1
1 ([0, 1] ×O, V ) is orientable with orientation ε :RDuH →Z2,

(2) H is proper on [0, 1] × �̄,
(3) 0 /∈ H([0, 1] × ∂�),

The class of O-admissible homotopies is denoted by H (O).
Finally, the admissible class is given by the set A := A / ∼, where

A :=
⋃

{A (O) :O ⊂ U open subset}

is the class of all O-admissible triples, and the binary relation ∼ relates two triples (fi, �i, εi) ∈
A (Oi ), i ∈ {1, 2}, whenever:

(1) �1 = �2 ≡ �.
(2) f1(u) = f2(u) for each u ∈ �̄.
(3) ε1(u) = ε2(u) for each u ∈RDf1 ∩ � = RDf2 ∩ �.

Once introduced these notations, we can estate the next axiomatization of the topological degree 
for Fredholm operators.

Theorem 3.4 (Axiomatization of the degree). There exists a unique integer valued map deg :
A → Z satisfying the next three properties:

(N) Normalization: For every L ∈ GL(U, V ) with orientation ε and each open and bounded 
subset � ⊂ U such that 0 ∈ �, one has that

deg(L,�, ε) = ε(0).

(A) Additivity: For every (f, �, ε) ∈ A and any pair of disjoint open subsets �1 and �2 of �
with 0 /∈ f (�\(�1 � �2)),
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deg(f,�, ε) = deg(f,�1, ε) + deg(f,�2, ε). (3.5)

(H) Homotopy Invariance: For every open subset O ⊂ U and each O-admissible homotopy 
(H, �, ε) ∈ H (O), we have that

deg(H(0, ·),�, ε0) = deg(H(1, ·),�, ε1). (3.6)

Moreover, for every open subset O ⊂ U and (f, �, ε) ∈ R(O), with � connected and such that 
RDf 	= ∅, one has that, for every p ∈ RDf ,

deg(f,�, ε) = ε(p) ·
∑

u∈f −1(0)∩�

(−1)χ[Lω,u,[a,b]] (3.7)

where Lω,u ∈ C ω([a, b], �0(U, V )) is any analytic curve A-homotopic to Df ◦ γ , for some 
γ ∈ C([a, b], �) such that γ (a) = p, γ (b) = u, and

χ[Lω,u, [a, b]] :=
∑

λ∈
(Lω,u)∩[a,b]
χ[Lω,u, λ].

The existence goes back to Fitzpatrick, Pejsachowicz and Rabier [20] for C2 mappings, and 
to Pejsachowicz and Rabier [50] in the C1 setting. The uniqueness and the generalized Schauder 
formula (3.7) were established by the authors in [42] and [41], respectively. Naturally, from the 
axioms (N), (A) and (H) one can readily get the most basic properties of the degree, as its exci-
sion and fundamental properties. For the purposes of this paper, it is appropriate to sketch, very 
briefly, the construction of the degree carried over in [20,50]. Let us start by defining the degree 
for regular triples. For every (f, �, ε) ∈ R(O), by definition, f ∈ F 1

0 (O, V ) is a C1-Fredholm
map of index zero and it is ε-orientable, i.e., Df :O → �0(U, V ) is an orientable map with ori-
entation ε : RDf →Z2. Since 0 ∈RVf (�̄), f −1(0) ∩ �̄ = f −1(0) ∩� is finite, possibly empty. 
Thus, if f −1(0) ∩ � 	= ∅, we can define

deg(f,�, ε) :=
∑

u∈f −1(0)∩�

ε(u), (3.8)

while we set deg(f, �, ε) := 0 if f −1(0) ∩� = ∅. Note that, whenever u ∈ f −1(0) ∩�, u ∈ RDf

since 0 is a regular value. Hence, ε(u) is well defined. If 0 /∈RVf (�), then we define

deg(f,�, ε) := deg(f − v,�, ε),

where v ∈ V is any regular value of f : � → V lying in a sufficiently small neighborhood of 0
in V . Since Df = D(f − v), the orientation map ε is the same for both maps f and f − v. The 
existence of the regular value is guaranteed by the Quinn–Sard–Smale theorem, [52,54,49].
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3.2. Perturbation theorems

The introduction of an orientation associated to each particular map f might cause some 
troubles in applications when dealing with the homotopy invariance of the degree, because this 
property relays on the particular global orientation chosen in the axiom (H) of Theorem 3.4. To 
precise what we mean, let (H, �, ε) ∈ H (O) be a O-admissible homotopy and suppose that 
γ ∈ C([a, b], [0, 1] × �) is a path such that γ (a) = (0, p0) and γ (b) = (1, p1), where pt is a 
regular point of DuH(t, ·) for each t ∈ {0, 1}. By (3.2), since RDHt 	= ∅ for each t ∈ {0, 1}, there 
are two different orientations of Ht ≡ H(t, ·). Thus, for any given regular point (t, pt) of Ht , 
there exists a unique orientation such that ε(t, pt) = 1, while the other satisfies ε(t, pt) = −1. 
Let εpt denote the unique orientation of Ht with εpt (pt ) = 1, t ∈ {0, 1}. Then, by the homotopy 
invariance of the degree, we have that

deg(H0,�, ε0) = deg(H1,�, ε1). (3.9)

The formula (3.9) establishes the degree invariance under admissible homotopies by choosing in 
Ht the (global) orientation εt := ε(t, ·), t ∈ [0, 1]. Thus, if, for example, we have that ε0 = εp0

and ε1 = −εp1 , then

deg(H0,�, ε0) = deg(H1,�, ε1),

though, paradoxically,

deg(H0,�, εp0) = −deg(H1,�, εp1).

Therefore, in dealing with the homotopy invariance of the degree for Fredholm operators, one 
should be extremely careful with the eventual changes of sign of the degree caused by the changes 
of orientation, even when using its invariance by homotopy. Such a rather subtle problematic, 
outside the Leray–Schauder degree, arises in the context of the degree for Fredholm operators 
by the absence of a global orientation in GL(U, V ). Nevertheless, one can easily get rid of this 
ambiguity by using the parity or, equivalently, the generalized algebraic multiplicity. Indeed, the 
next result holds.

Lemma 3.5. Let (H, �, ε) ∈ H (O) be a O-admissible homotopy with � connected and p0 ∈
RDH0 , p1 ∈ RDH1 . Then, for every path γ ∈ C([a, b], [0, 1] × �) such that γ (a) = (0, p0) and 
γ (b) = (1, p1),

deg(H0,�, εp0) = σ(DuH ◦ γ, [a, b])deg(H1,�, εp1). (3.10)

Therefore, thanks to Theorem 3.2,

deg(H0,�, εp0) = (−1)χ[Lω,[a,b]] deg(H1,�, εp1), (3.11)

where Lω ∈ C ω([a, b], �0(U, V )) is any analytic map A-homotopic to DuH ◦ γ .
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Proof. Since p0 ∈ RDH0 , by (3.2), H0 admits two orientations, εp0 and −εp0 . Consequently, 
either ε0 = εp0 , or ε0 = −εp0 . In either case,

ε0(q) = ε0(p0) · εp0(q), q ∈RDH0,

because ε0(p0) = 1 if ε0 = εp0 and ε0(p0) = −1 if ε0 = −εp0 . Thus, by the definition of the 
degree,

deg(H0,�, ε0) = ε0(p0)deg(H0,�, εp0).

Thus, multiplying by ε0(p0) yields to

deg(H0,�, εp0) = ε0(p0)deg(H0,�, ε0). (3.12)

Similarly, inter-exchanging p0 by p1 shows that

deg(H1,�, ε1) = ε1(p1)deg(H1,�, εp1). (3.13)

Combining the identities (3.12) and (3.13) with the invariance by homotopy of the degree, we 
find that

deg(H0,�, εp0) = ε0(p0)deg(H0,�, ε0)

= ε0(p0)deg(H1,�, ε1) = ε0(p0)ε1(p1)deg(H1,�, εp1).

On the other hand, thanks to (3.1), it becomes apparent that, for every γ ∈ C([a, b], [0, 1] × �)

such that γ (a) = (0, p0) and γ (b) = (1, p1),

ε0(p0)ε1(p1) = σ(DuH ◦ γ, [a, b]). (3.14)

Therefore, we obtain that

deg(H0,�, εp0) = σ(DuH ◦ γ, [a, b])deg(H1,�, εp1),

which is (3.10). Finally, owing to Theorem 3.2,

σ(DuH ◦ γ, [a, b]) = (−1)χ[Lω,[a,b]], (3.15)

where Lω ∈ C ω([a, b], �0(U, V )) is any analytic map A-homotopic to DuH ◦ γ . Consequently, 
inserting (3.15) into (3.10) yields to

deg(H0,�, εp0) = (−1)χ[Lω,[a,b]] deg(H1,�, εp1). (3.16)

This proves (3.11) and ends the proof. �
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3.3. Generalized homotopy invariance

This section collects and proves a generalized homotopy invariance property that is pivotal 
throughout this paper. Although it goes back to Fitzpatrick, Pejsachowicz and Rabier [19], our 
proof polishes substantially the original one and it is adapted to the notations of this paper. 
Subsequently, for any given subset � of R × U and every t ∈R, we set

�t := {u ∈ U : (t, u) ∈ �}.
For any bounded open and connected subset � of [0, 1] × U , any open subset O of U such 
that � ⊂ [0, 1] × O and any continuous map H : [0, 1] × O → V , it is said that (H, �, ε) is a 
generalized Fredholm O-admissible homotopy if the following conditions are satisfied:

(1) H ∈ F 1
1 ([0, 1] ×O, V ) is orientable with orientation ε :RDuH →Z2,

(2) H is proper on �,
(3) 0 /∈ H(∂�),

The class of generalized O-admissible homotopies is denoted by G (O) in this paper.

Theorem 3.6. Let (H, �, ε) ∈ G (O) be a generalized O-admissible homotopy and suppose that 
p0 ∈ RDH0 and p1 ∈ RDH1 . Then, for every path γ ∈ C([a, b], [0, 1] × O) such that γ (a) =
(0, p0) and γ (b) = (1, p1),

deg(H0,�0, εp0) = σ(DuH ◦ γ, [a, b])deg(H1,�1, εp1). (3.17)

Therefore, by Theorem 3.2,

deg(H0,�0, εp0) = (−1)χ[Lω,[a,b]] deg(H1,�1, εp1), (3.18)

where Lω ∈ C ω([a, b], �0(U, V )) is any analytic map A-homotopic to DuH ◦ γ .

Proof. The following concept of absolute degree goes back to [20],

deg(f,�) := |deg(f,�, ε)| for every (f,�, ε) ∈ A (O).

This degree is N-valued and satisfies the excision property and the generalized invariance by 
homotopy. Indeed, suppose that V is an open subset of � such that 0 /∈ f (�\V). Then, by the 
additivity property of the topological degree, we have that

deg(f,�, ε) = deg(f,V, ε).

Thus, taking absolute values yields deg(f, �) = deg(f, V) and hence, the absolute degree sat-
isfies the excision property. Similarly, since the absolute degree is invariant by orientations, the 
proof of the generalized invariance by homotopy of the Leray–Schauder degree shows that, for 
every (H, �, ε) ∈ G (O), we have that

deg(H0,�0) = deg(Ht ,�t ) for all t ∈ [0,1].
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Therefore, the absolute degree also satisfies the generalized invariance by homotopy.
Suppose that deg(H0, �0, εp0) = 0. Then, since the absolute degree is invariant by (admissi-

ble) homotopies, we have that

0 = deg(H0,�0) = deg(Ht ,�t ) for all t ∈ [0,1].

In particular, deg(H1, �1) = 0 and hence, deg(H1, �1, εp1) = 0. Therefore, (3.17) and (3.18)
hold.

Subsequently, we suppose that deg(H0, �0, εp0) = d 	= 0. Then,

deg(Ht ,�t ) = deg(H0,�0) = |d| 	= 0, t ∈ [0,1].

This entails that, for every t ∈ [0, 1], there exists a regular point pt ∈ RDHt , because, by defini-
tion, deg(f, �, ε) = 0 if (f, �, ε) ∈ A (O) does not admit regular points. In particular, RDHt 	= ∅
for all t ∈ [0, 1]. We claim that, for every t0 ∈ [0, 1] and pt0 ∈ RDHt0

, there exists ε > 0 such that:

(i) pt0 ∈RDHt for all t ∈ [t0 − ε, t0 + ε], and
(ii) H−1

t (0) ∩ �t = H−1
t (0) ∩ �t0 for all t ∈ [t0 − ε, t0 + ε],

making the necessary changes in these statements when t0 = 0 or t0 = 1. Indeed, since

RDuH = DuH
−1(GL(U,V ))

is an open subset of [0, 1] ×O and (t0, pt0) ∈ RDuH , there exists ε > 0 such that (t, pt0) ∈ RDuH

for all t ∈ [t0 − ε, t0 + ε]. Thus, the property (i) follows from the set identity

RDuH =
⋃

t∈[0,1]
{t} ×RDHt .

Suppose that Property (ii) fails for all ε > 0. Then, there exists a sequence {(tn, un)}n∈N ⊂
H−1(0) ∩ � such that limn→∞ tn = t0 and un ∈ �tn\�t0 for all n ≥ 1. Since H−1(0) ∩ � is 
compact, without loss of generality, we can assume that

lim
n→∞(tn, un) = (t0, u0) ∈ H−1(0) ∩ �.

Since 0 /∈ H(∂�), necessarily (t0, u0) ∈ H−1(0) ∩ �. Therefore, u0 ∈ H−1
t0

(0) and u0 ∈ �t0 . In 
particular �t0 	= ∅. But this contradicts the fact that un ∈ �tn\�t0 for all n ≥ 1. So, Property (ii) 
also holds.

Combining (i) and (ii) with the compactness of [0, 1], for some integer m ∈N , setting ti := i
m

, 
0 ≤ i ≤ m, there exists some qi ∈ O which is a regular point of DHt for all t ∈ [ti , ti+1] and 
0 ≤ i ≤ m − 1. Choose q0 = p0 and qm−1 = p1. Since H−1

t (0) ∩ �t = H−1
t (0) ∩ �ti for all 

t ∈ [ti , ti+1], it follows from the excision property that

deg(Ht ,�t , εqi
) = deg(Ht ,�ti , εqi

), t ∈ [ti , ti+1].

In particular,
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deg(Hti+1 ,�ti+1, εqi
) = deg(Hti+1 ,�ti , εqi

). (3.19)

Moreover, since 0 /∈ H([ti , ti+1] × ∂�ti ), by Lemma 3.5,

deg(Hti ,�ti , εqi
) = σ(DuH ◦ γ, [ti , ti+1])deg(Hti+1 ,�ti , εqi

),

where γ ∈ C([ti , ti+1], [ti , ti+1] × O) is the curve defined by t �→ (t, qi), t ∈ [ti , ti+1]. Since 
DuH(t, qi) ∈ GL(U, V ) for each t ∈ [ti , ti+1], necessarily σ(DuH ◦γ, [ti , ti+1]) = 1, and there-
fore

deg(Hti ,�ti , εqi
) = deg(Hti+1 ,�ti , εqi

).

Thus, by (3.19), we find that, for every i ∈ {0, ..., m − 1},

deg(Hti+1 ,�ti+1, εqi
) = deg(Hti ,�ti , εqi

). (3.20)

Once again by Lemma 3.5,

deg(Hti+1 ,�ti+1, εqi
) = σ(DuH ◦ γi, [0,1])deg(Hti+1 ,�ti+1, εqi+1),

where γi ∈ C([0, 1], {ti+1} ×O) links (ti+1, qi) to (ti+1, qi+1). Hence, by (3.20),

deg(Hti ,�ti , εqi
) = σ(DuH ◦ γi, [0,1])deg(Hti+1 ,�ti+1 , εqi+1).

Therefore, we can infer that

deg(H0,�0, εp0) = deg(Ht0 ,�t0, εq0) =
m−2∏
i=0

σ(DuH ◦ γi, [0,1])deg(Htm−1 ,�tm−1 , εqm−1).

Consequently, by (3.20), we obtain that

deg(H0,�0, εp0) =
m−2∏
i=0

σ(DuH ◦ γi, [0,1])deg(Htm,�tm, εqm−1)

=
m−2∏
i=0

σ(DuH ◦ γi, [0,1])deg(H1,�1, εp1).

Finally, let �i ∈ C([ti , ti+1], [ti , ti+1] × O) be the curves defined by t �→ (t, qi), t ∈ [ti , ti+1], 
for each 0 ≤ i ≤ m − 1. Then, after the necessary affine changes, the composite curve γ ∈
C([a, b], [0, 1] ×O),

γ := �0 ∗ γ0 ∗ �1 ∗ γ1 ∗ · · · ∗ γm−2 ∗ �m−1,

links (0, p0) to (1, p1). By the properties of the parity,
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σ(DuH ◦ γ, [a, b]) =
m−2∏
i=0

σ(DuH ◦ γi, [0,1])
m−1∏
i=0

σ(DuH ◦ �i, [ti , ti+1])

=
m−2∏
i=0

σ(DuH ◦ γi, [0,1]).

Therefore, we finally obtain

deg(H0,�0, εp0) = σ(DuH ◦ γ, [a, b])deg(H1,�1, εp1).

This proves (3.17). The identity (3.18) follows from Theorem 3.2. This ends the proof. �
A simplification of the preceding proof yields a counterpart of Theorem 3.6 without specifying 

the regular points.

Theorem 3.7. Let (H, �, ε) ∈ G (O) be a generalized O-admissible homotopy. Then,

deg(H0,�0, ε0) = deg(H1,�1, ε1). (3.21)

3.4. A Leray–Schauder continuation theorem

We conclude this section by delivering a generalized version of the Leray–Schauder con-
tinuation theorem for Fredholm operators of index zero. Some precursors in the context of the 
Leray–Schauder degree were given by Mawhin [46].

Theorem 3.8. Let (H, �, ε) ∈ H (O) be a O-admissible homotopy with deg(H0, �, ε0) 	= 0. 
Then, there exists a connected component C ⊂ H−1(0) ∩ � that connects {0} ×� with {1} × �.

Proof. Since deg(H0, �, ε0) 	= 0, by the existence property, H−1
0 (0) ∩� 	= ∅, and deg(H0, �) 	=

0. Let D be the disjoint union of the connected components C of H−1(0) ∩ � satisfying C ∩
H−1

0 (0) 	= ∅, and consider an isolating neighborhood, U , of D , i.e., an open subset of [0, 1] × �

such that D ⊂ U and H−1(0) ∩ ∂U = ∅. The existence of U follows by Property (9.3) on Chapter 
I of Whyburn [55], see also the forthcoming Lemma 4.2.

If D intersects {1} × �, we are done by simply choosing C to be one of the connected com-
ponents of D such that C ∩ [{1} × �] 	= ∅. Suppose that D does not intersect {1} × �. Then, 
necessarily, Pt (D) = [0, t0] with 0 ≤ t0 < 1, where Pt : [0, 1] × � → [0, 1], (t, u) �→ t , stands 
for the t-projection operator. Since H−1

0 (0) ∩ � ⊂ U0, by the excision property of the absolute 
degree, it is apparent that deg(H0, �) = deg(H0, U0). Thus, by homotopy invariance,

0 	= deg(H0,�) = deg(Ht ,Ut ) for all t ∈ [0,1].

Therefore, Ut 	= ∅ for all t ∈ (t0, 1], which is impossible if U is chosen to be sufficiently close to 
D . This ends the proof. �
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4. Local bifurcation theory

In this section we deliver our main local bifurcation theorem for Fredholm operators. Essen-
tially, it is a generalization and a re-elaboration of the local bifurcation results of Fitzpatrick, 
Pejsachowicz and Rabier [20], Pejsachowicz and Rabier [50], and [31, Th. 6.2.1], through 
the concept of algebraic multiplicity of Esquinas and López-Gómez [14,15,31]. It is worth-
mentioning that it is a very substantial generalization of the pioneering local bifurcation theorems 
of Krasnoselskij [28], Rabinowitz [51] and Ize [25], collected in [48] by Nirenberg.

Throughout this section, given a pair (U, V ) of real Banach spaces, two real values λ− < λ+
and a neighborhood U ⊂ R ×U of [λ−, λ+] ×{0}, we deal with C1 operators F : U ⊂ R ×U → V

satisfying the hypothesis:

(F1) F(λ, 0) = 0 for all (λ, 0) ∈ U .
(F2) DuF(λ, 0) ∈ �0(U, V ) for all (λ, 0) ∈ U .

The set of solutions T := {(λ, 0) : (λ, 0) ∈ U} is called the set of trivial solutions of F(λ, u) = 0, 
and

[
F−1(0)\T

]
∪ {(λ,0) : λ ∈ 
(DuF(·,0))}

is referred to as the set of non-trivial solutions of F(λ, u) = 0. We will denote by

L(λ) := DuF(λ,0), (λ,0) ∈ U ,

the linearization of F on the set of trivial solutions. In particular L(λ) ∈ �0(U, V ) is a continuous 
path of Fredholm operators of index zero. Given (λ0, 0) ∈ U , it is said that (λ0, 0) is a bifurcation 
point of F(λ, u) = 0 from T if there exists a sequence {(λn, un)}n∈N ⊂ F−1(0), with un 	= 0 for 
all n ≥ 1, such that limn→∞(λn, un) = (λ0, 0).

Let F ∈ C1(U , V ) satisfying conditions (F1)–(F3) and let (λ0, 0) ∈ U be a bifurcation point of 
F(λ, u) = 0 from T . Then, by the implicit function theorem, λ0 ∈ 
(L). The main result of this 
section reads as follows.

Theorem 4.1 (Local bifurcation). Let (U, V ) be a pair of real Banach spaces, λ−, λ+ be two 
real numbers such that λ− < λ+, and U ⊂ R × U be an open neighborhood of [λ−, λ+] × {0}. 
Consider F ∈ C1(U , V ) such that:

(a) F(λ, 0) = 0 and L(λ) := DuF(λ, 0) ∈ �0(U, V ), (λ, 0) ∈ U .
(b) L(λ±) ∈ GL(U, V ) and

χ[Lω, [λ−, λ+]] ∈ 2N + 1, (4.1)

where Lω ∈ C ω([λ−, λ+], �0(U, V )) is any analytic curve A-homotopic to L(λ), λ ∈
[λ−, λ+].

Then, the following assertions are satisfied:
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(i) There exists λ0 ∈ (λ−, λ+) such that (λ0, 0) is a bifurcation point of F(λ, u) = 0 from T ≡
{(λ, 0) : (λ, 0) ∈ U}.

(ii) There exists η0 > 0 such that, for every η ∈ (0, η0), there is a connected component of the 
set of non-trivial solutions of F(λ, u) = 0,

C⊂ F−1(0)\{(λ,0) ∈ U : λ /∈ 
(L)},

joining T := {(λ, 0) : λ ∈ 
(L) ∩ (λ−, λ+)} to the surface ‖x‖ = η.

In the proof of this result we need the following result of Whyburn [55].

Lemma 4.2. Let (M, d) be a compact metric space and A and B two disjoint compact subsets of 
M. Then, either there exists a connected component of M meeting both A and B , or M = MA �
MB , where MA and MB are disjoint compact subsets of M containing A and B , respectively.

Proof of Theorem 4.1. Let us start by fixing ε > 0 so that

[λ− − ε,λ+ + ε] × {0} ⊂ U .

Since DuF(λ, 0) ∈ �0(U, V ) for all λ ∈ [λ− − ε, λ+ + ε], necessarily

DF(λ,0) ∈ �1(R× U,V ) for all λ ∈ [λ− − ε,λ+ + ε].

Thus, by the Fredholm stability theorems (see, e.g., Kato [26]), for every λ ∈ [λ− − ε, λ+ + ε], 
there exists an open interval I(λ) ⊂ [λ− − ε, λ+ + ε], and r(λ) > 0 sufficiently small such that

DF(λ,u) ∈ �1(R× U,V ) for all (λ,u) ∈ I(λ) × Br(λ).

By the compactness of [λ− − ε, λ+ + ε] × {0}, there exist an integer N ≥ 1 and N points λi ∈
[λ− − ε, λ+ + ε], 1 ≤ i ≤ N , such that

[λ− − ε,λ+ + ε] × {0} ⊂
N⋃

i=1

I(λi) × Br(λi).

Therefore DF(λ, u) ∈ �1(R × U, V ) for all λ ∈ [λ− − ε, λ+ + ε] and u ∈ Br , where

r := min{r(λ1), r(λ2), ..., r(λN)} > 0.

Moreover, since the Fredholm maps are locally proper (see, e.g., Smale [54]), we can repeat the 
previous argument to show that actually F is a proper Fredholm map of index one on [λ− −
ε, λ+ + ε] × Br for sufficiently small r > 0. Moreover, shrinking r > 0 if necessary, we can 
suppose that DuF(λ±, u) ∈ GL(U, V ) for each u ∈ Br . Consequently, F(λ±, ·) is orientable 
and RDuF(λ±,·) 	= ∅. Hence F is orientable on [λ− − ε, λ+ + ε] × Br . Denoting O := Br and 
� := Br/2, we have proved that (H, �, ε) ∈ H (O) is a O-admissible homotopy.

To prove the part (i) we argue by contradiction. Suppose that F(λ, u) = 0 does not admit a 
bifurcation value in (λ−, λ+). Then, shortening r > 0, if necessary, one can assume that
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([λ−, λ+] × �) ∩ F−1(0) = [λ−, λ+] × {0}.

In particular, 0 /∈ F([λ−, λ+] × ∂�). Since DuF(λ±, 0) ∈ GL(U, V ), 0 is a regular value of both 
DuF(λ±, 0). Thus, Lemma 3.5 with p0 = p1 = 0 yields

deg(F(λ−, ·),�, ε0) = (−1)χ[Lω,[λ−,λ+]] deg(F(λ+, ·),�, ε0),

where ε0 is the orientation such that ε0(0) = 1, and Lω ∈ C ω([λ−, λ+], �0(U, V )) is any ana-
lytic curve A-homotopic to DuF(λ, 0). As, due to the hypothesis (b),

χ[Lω, [λ−, λ+]] ∈ 2N + 1,

we find that

deg(F(λ−, ·),�, ε0) = −deg(F(λ+, ·),�, ε0). (4.2)

On the other hand, since DuF(λ±, 0) ∈ GL(U, V ), by the inverse function theorem, shortening 
r > 0 if necessary, we can suppose that F(λ±, ·) : � → V is injective. Consequently, by the 
definition of the degree for regular values, it is apparent that

deg(F(λ±, ·),�, ε0) =
∑

u∈F−1
λ± (0)∩�

ε0(u) = ε0(0) = 1.

This contradicts (4.2) and concludes the proof of Part (i).
Now, we will prove the part (ii). Fix r > 0 so that F is a proper Fredholm map of index 

one on [λ− − ε, λ+ + ε] × Br as we have done in the proof of the part (i). Subsequently, for 
every 0 < η < r , we consider the closed cylinder Qη := [λ−, λ+] ×Bη, and the set of non-trivial 
solutions of F(λ, u) = 0,

S ≡ {(λ,u) ∈ F−1(0) : u 	= 0} � {(λ,0) ∈ U : λ ∈ 
(L)}.

It is easily seen that S and 
(L) are closed. Thus, as Qη is closed and bounded and S ⊂ F−1(0), 
the set M := S ∩ Qη is compact, because F is proper on [λ− − ε, λ+ + ε] × Br . Now, consider 
the subsets of M

A := {(λ,u) ∈ M : ‖u‖ = η} and B := {(λ,0) ∈ M : λ ∈ 
(L)}.

By Part (i), we already know that there exists λ0 ∈ (λ−, λ+) such that (λ0, 0) is a bifurcation 
point of F(λ, u) = 0 from (λ, 0). Thus, there exists η > 0 such that A 	= ∅. Clearly, B 	= ∅
because (λ0, 0) ∈ B . Therefore, A and B are non-empty disjoint compact subsets of M (see 
Fig. 1). Part (ii) establishes the existence of a continuum C linking A to B . To prove this we 
argue by contradiction. So, assume that A and B are not in the same connected component of M . 
Then, according to Lemma 4.2, M = MA �MB , where MA and MB are disjoint compact subsets 
of M containing A and B . Since dist (MA, MB) > 0, there exists δ > 0 such that the open δ-
neighborhood Mδ := MB +Bδ(0, 0) satisfies Mδ ∩MA = ∅. Moreover, since λ± /∈ 
(L), by the
B B
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Fig. 1. Scheme of the construction.

implicit function theorem, we can choose η > 0 and ε > 0 sufficiently small so that (λ, u) ∈ M

implies λ− + ε < λ < λ+ − ε. Hence, shortening δ > 0, if necessary, we have that

(λ,u) ∈ Mδ
B ⇒ λ− + ε

2
< λ < λ+ − ε

2
, (4.3)

and therefore Mδ
B ⊂ Qη . By construction, ∂Mδ

B ∩ M = ∅. Moreover, Qβ ∩ MA = ∅ for suf-
ficiently small β ∈ (0, η). Thus, for these β’s, the set � := intQβ ∪ Mδ

B , where the interior is 
taken over [λ−, λ+] ×U , is a bounded and connected open in [λ−, λ+] ×U and satisfies MB ⊂ �

and ∂� ∩ M = ∅. Setting O := Bη , since � ⊂ [λ−, λ+] × O and ∂� ∩ M = ∅, it follows that 
(F, �, ε) ∈ G (O), F : [λ−, λ+] ×O → V , is a generalized O-admissible homotopy. Since p0 = 0
is a regular point of DFλ± , by Theorem 3.6, we find that

deg(F(λ−, ·),�λ− , ε0) = (−1)χ[Lω,[λ−,λ+]] deg(F(λ+, ·),�λ+ , ε0), (4.4)

where ε0 is the orientation such that ε0(0) = 1, and Lω ∈ C ω([λ−, λ+], �0(U, V )) is any ana-
lytic curve A-homotopic to L(λ), λ ∈ [λ−, λ+]. Furthermore, by (4.3), �λ− = �λ+ = Bβ , and, 
by hypothesis, χ[Lω, [λ−, λ+]] ∈ 2N + 1. Therefore, from (4.4) we can infer that

deg(F(λ−, ·),Bβ, ε0) = −deg(F(λ+, ·),Bβ, ε0),

which is impossible, as we have already shown at the end of the proof of Part (i). Therefore, A
and B must be part of the same connected component of M . This ends the proof. �
5. Global bifurcation theory

In this section, we are going to adapt the global theorem of López-Gómez and Mora-Corral 
[37] to the context of the degree for Fredholm operators of Fitzpatrick, Pejsachowicz and Rabier 
[20,50]. Throughout this part, we consider a C1 function F :R × U → V such that

(F1) F is orientable with orientation ε : RDuH → Z2.
(F2) F(λ, 0) = 0 for all λ ∈R.
(F3) DuF(λ, u) ∈ �0(U, V ) for every λ ∈R and u ∈ U .
(F4) F is proper on bounded and closed subsets of R × U .

The next definition fixes the concept of admissible family of intervals for 
(L). Given two dis-
joint real intervals, A and B , it is said that A < B if a < b for every a ∈ A and b ∈ B .
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Definition 5.1. Let J be a non-empty locally finite family of disjoint non-empty open intervals 
of R. It is said that J is an admissible family of intervals for 
(L) if

J ∩ 
(L) = ∅ for all J ∈ J .

If, in addition, there are r, s ∈ Z ∪ {±∞}, r ≤ s, such that J = {Jn}sn=r with Jn−1 < Jn for all 
n ∈Z ∩ [r + 1, s], then J is said to be an admissible ordered family of intervals for 
(L).

Associated to any admissible ordered family of intervals J = {Jn}sn=r for 
(L), we have the 
associated family of compact intervals I = {In}sn=r+1 defined by

In := [supJn−1, infJn] , n ∈Z∩ [r + 1, s].

For each n ∈ Z ∩ [r + 1, s], one has that In 	= ∅, because Jn−1 < Jn, though In might consist 
of a single point. Moreover, In < In+1 for each n ∈ Z ∩ [r + 1, s − 1]. By [35, Le. 4.3], the 
family I is also locally finite. Now, we introduce the concept of J -parity map associated to an 
admissible ordered family of intervals, J = {Jn}sn=r for 
(L). Choose a point λn ∈ Jn for every 
n ∈ Z ∩ [r, s]. Since λr /∈ 
(L), necessarily L(λr) ∈ GL(U, V ) and p = 0 is a regular point 
of F(λr , ·). In fact, p = 0 is a regular point of F(λn, ·) for each n ∈ Z ∩ [r, s]. Let us suppose, 
without lost of generality, that ελr (0) = ε(λr , 0) = 1. This choice determines uniquely the total 
orientation ε. Consider the sequence {an}sn=r ⊂ {−1, 1} defined recursively by

ar = 1, an = an−1 · σ(L, [λn−1, λn]) for n ∈Z∩ [r + 1, s].

The following two lemmas provide us with two closed formulae for an.

Lemma 5.2. For every n ∈Z ∩ [r + 1, s], we have that an = σ(L, [λr, λn]).

Proof. Let n ∈Z ∩ [r + 1, s]. By applying inductively the properties of the parity yields

an = an−1 · σ(L, [λn−1, λn]) = ar ·
n∏

i=r+1

σ(L, [λi−1, λi]) = σ(L, [λr, λn]).

This concludes the proof. �
Lemma 5.3. For every n ∈N , we have that an = ελn(0).

Proof. By Lemma 5.2, we have that an = σ(L, [λr, λn]), for all n ∈Z ∩ [r + 1, s]. Thus, by the 
definition of the orientation,

σ(L, [λr, λn]) = ε(λr ,0) · ε(λn,0) = ελr (0) · ελn(0).

Since we have set ελr (0) = 1, it follows that an = ελn(0). �
The next definition introduces the notion of J -parity map.
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Definition 5.4. The J -parity map P associated to the admissible ordered family J := {Jn}sn=r

is defined through

P : I −→ {−1,0,1} , P(In) = an − an−1

2
,

where I = {In}sn=r+1.

Note that, setting

�0 := {n ∈Z∩ [r + 1, s] : an−1 = an}, �1 := {n ∈ Z∩ [r + 1, s] : an−1 	= an},

the J -parity P satisfies the following properties:

(a) P(In) = 0 if n ∈ �0,
(b) P(In) = ±1 if n ∈ �1,
(c) P(In)P(Im) = −1 if n, m ∈ �1 with n < m and (n, m) ∩ �1 = ∅.

The following lemma will be invoked later. It relates the J -parity map with the degree.

Lemma 5.5. Let n ∈Z ∩ [r + 1, s]. Then, for sufficiently small ρ > 0 and δ > 0,

2P(In) = deg(F(λn, ·),Bρ, ελn) − deg(F(λn−1, ·),Bρ, ελn−1). (5.1)

Proof. Fix some n ∈Z ∩ [r + 1, s]. By definition,

2P(In) = an − an−1 = an−1
[
σ(L, [λn−1, λn]) − 1

]
.

Thus, by Lemma 5.3,

2P(In) = ελn−1(0)
[
σ(L, [λn−1, λn]) − 1

]
. (5.2)

Recall that p = 0 is a regular point of F(λ, ·) for each λ ∈ {λn−1, λn}. By the definition of the 
orientation,

ελn−1(0) · ελn(0) = σ(L, [λn−1, λn]),

or equivalently,

ελn(0) = ελn−1(0) · σ(L, [λn−1, λn]). (5.3)

Since L(λn), L(λn−1) ∈ GL(U, V ), for sufficiently small ρ > 0, by the definition of the degree 
and (5.3), we infer that

deg(F(λn, ·),Bρ, ελn) = ελn(0) = ελn−1(0) · σ(L, [λn−1, λn]),
deg(F(λn−1, ·),Bρ, ελn−1) = ελn−1(0).
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Fig. 2. The set of non-trivial solutions SJ .

Therefore, we deduce that

deg(F(λn, ·),Bρ, ελn) − deg(F(λn−1, ·),Bρ, ελn−1) = ελn−1(0)
[
σ(L, [λn−1, λn]) − 1

]
.

Combining this identity together with (5.2) yields (5.1) and ends the proof. �
Associated to any admissible ordered family J = {Jn}sn=r for 
(L), we will consider the 

corresponding set of non-trivial solutions through

SJ :=
(
F−1(0) ∩ [R× (U \ {0})]

)
∪
[(

R \
s⋃

n=r

Jn

)
× {0}

]
.

Clearly, the set SJ ⊂ F−1(0) is closed. We will say that C ⊂ SJ is a component of SJ if it is a 
non-empty closed and connected subset of SJ maximal for the inclusion, i.e., if it is a connected 
component of SJ . Since F is proper on closed and bounded subsets, it is easily seen that every 
bounded component C is compact.

Fig. 2 shows an admissible unbounded set of non-trivial solutions SJ together with the in-
tervals, J1, J2, J3 and J4, of the admissible ordered family J ; J1 and J4 are unbounded open 
intervals, while J2 and J3 are bounded. In this example, SJ consists of four components, Ci , 
i ∈ {1, 2, 3, 4}, though, in general, it might consist of an arbitrarily large number of components. 
The set R \⋃4

i=1 Ji consists of three compact intervals, I1, I2 and I3, containing 
(L), which, in 
this particular example, it consists of two compact intervals and three single isolated points. The 
set 
(L) is colored in green. The components C1 and C2 are separated away from the real axis, 
which represents the trivial solution (λ, 0). This is why these components are usually referred 
to as isolas. C1 is unbounded in R × U , while C2 is bounded. The remaining two components 
bifurcate from (λ, 0) at a variety of spectral values. C3 bifurcates from I1 and it is unbounded, 
and C4 bifurcates from I2 and I3, and it is bounded. Thus, C3 contains I1 and C4 contains I2 and 
I3.

Subsequently, for any given component, C, of SJ , we will denote

B ≡ B(C) := {n ∈Z∩ [r + 1, s] : (In × {0}) ∩ C 	= ∅} .
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For example, in the special case described by Fig. 2, B(C3) = {1} and B(C4) = {2, 3}. The next 
result shows that B(C) is finite if C is compact (see [38, Le. 2.4] for its proof).

Lemma 5.6. For every bounded component C ⊂ SJ , B = B(C) is finite. If, in addition,

C∩ (R× {0}) ⊂ (∪s
n=rJn ∪ ∪s

n=r+1In

)× {0}, (5.4)

then there exists α > 0 such that

[K + Bα(0,0)] ∩
[(
R \ ∪s

n=rJn

)× {0}
]

⊂ ∪n∈BIn × {0}. (5.5)

Throughout the rest of the section, we fix an admissible ordered family J = {Jn}sn=r for 

(L) and a bounded component C of SJ . Thanks to Lemma 5.6, B = B(C) is finite. Moreover, 
∪n∈BIi × {0} ⊂ C, since C is a component. Also, every λ ∈R \ ∪s

n=rJn with (λ, 0) ∈ C satisfies 
λ ∈ ∪n∈BIn, since C is bounded. Thus,

C∩ (R× {0}) = ∪n∈BIn × {0} . (5.6)

The following concept plays a pivotal role in our subsequent analysis.

Definition 5.7. A bounded open set � ⊂R × U is said to be an open isolating neighborhood of 
C with size η > 0 if the following conditions are satisfied:

(a) C ⊂ � ⊂ C + Bη(0, 0),
(b) ∂� ∩ SJ = ∅,

(c)
[(
R \ ∪s

n=rJn

)× {0}
]
∩ � ⊂ ∪n∈BIn × {0}.

The condition (a) entails that ∂� can be taken as close as we wish to C, the condition (b) means 
that ∂� cannot admit any non-trivial solution, and (c) holds as soon as η > 0 is sufficiently small 
in (a). Note that item (c) implies that

B(C) = {n ∈ Z∩ [r + 1, s] : (In × {0}) ∩ � 	= ∅}.

To prove the main result of this section, we need the following technical lemma concerning the 
existence of an open isolating neighborhood for C (see [38, Pr. 3.3] for its proof).

Lemma 5.8. Let J := {Jn}sn=r be an admissible ordered family for 
(L), and suppose that C is 
a bounded component of SJ . Then, for every η > 0, C possesses an open isolating neighborhood 
� of size η. Moreover, for every open isolating neighborhood � of C and sufficiently small ε > 0, 
there exists ρ0 > 0 such that, for every 0 < ρ ≤ ρ0 and

λ ∈ �(C, ε) := R \ ∪n∈B [In + (−ε, ε)] , (5.7)

some of the following alternatives occurs:

(i) Either Bρ ∩ �λ = ∅, or
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(ii)
{
u ∈ Bρ : F(λ,u) = 0

} = {0}.

The main result of this section can be stated as follows.

Theorem 5.9. Let F ∈ C1(R × U, V ) be a map satisfying (F1)-(F4), J := {Jn}sn=r be an admis-
sible ordered family for 
(L), and suppose that C is a bounded component of SJ . Then,

∑
n∈B(C)

P(In) = 0, (5.8)

where P is the J -parity map.

Proof. Since C is compact, B(C) is finite and we can write B = {nk}mk=1 where m is the cardinal 
of the set B(C) and nk ∈Z ∩ [r + 1, s] for each 1 ≤ k ≤ m with

n1 < n2 < · · · < nk < · · · < nm.

Let � be an open isolating neighborhood of C with size η > 0. Pick a sufficiently small δ > 0
such that:

(1) (∪n∈BIn × {0}) + Bδ(0) ⊂ �.
(2) {In + (−δ/2, δ/2)}n∈B consists of disjoint intervals.
(3) Setting λ−

n := inf In − δ/2 and λ+
n := sup In + δ/2 for each integer n ∈ B, one has that 

λ−
n ∈ Jn−1 and λ+

n ∈ Jn for all n ∈ B.

Moreover, thanks to Lemma 5.8 with ε = δ/2, there exists ρ0 > 0 such that, for every 0 < ρ ≤ ρ0
and λ ∈ �(C, δ/2), either

Bρ ∩ �λ = ∅ or {u ∈ Bρ : F(λ,u) = 0} = {0}. (5.9)

Since λ±
n /∈ 
(L), necessarily DuF(λ±

n , 0) ∈ GL(U, V ). Thus, p0 = 0 is a regular point of 
F(λ±

n , ·) for each n ∈ B. In order to apply the homotopy invariance property of the degree, the 
following lemma is needed.

Lemma 5.10. Let 1 ≤ k ≤ m. Then, for every λ ∈ [λ−
nk

, λ+
nk

],

0 /∈ F({λ} × ∂�λ). (5.10)

Proof. Let λ ∈ [λ−
nk

, λ+
nk

] and u ∈ U such that (λ, u) ∈ ∂� and F(λ, u) = 0. Since (λ, u) ∈ ∂�, 
then, by Definition 5.7, item (b), (λ, u) /∈ S . Thus, since F(λ, u) = 0, necessarily u = 0. More-
over, due to the property (1), (λ, 0) ∈ � for all λ ∈ [λ−

nk
, λ+

nk
]. So, (λ, 0) /∈ ∂�, a contradiction. 

This ends the proof of the lemma. �
Consequently, setting for each 1 ≤ k ≤ m,

�n := � ∩ ([λ−
n , λ+

n ] × U),

k k k
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the tern (F, �nk
, ε) is a generalized U -admissible homotopy, (F, �nk

, ε) ∈ G (U), and from The-
orem 3.7,

deg(F(λ−
nk

, ·),�λ−
nk

, ελ−
nk

) = deg(F(λ+
nk

, ·),�λ+
nk

, ελ+
nk

). (5.11)

In order to apply again the homotopy invariance of the degree, the following counterpart of 
Lemma 5.10 is needed.

Lemma 5.11. Let 1 ≤ k ≤ m − 1. Then,

F(λ,u) 	= 0 if λ ∈ [λ+
nk

, λ−
nk+1

] and u ∈ ∂(�λ \ Bρ). (5.12)

Proof. Let (λ, u) be such that λ ∈ [λ+
nk

, λ−
nk+1

] and u ∈ ∂(�λ \ Bρ) for some 1 ≤ n ≤ m. Then, 
u 	= 0 and λ ∈ �(C, δ/2). Thus, by (5.9), either

Bρ ∩ �λ = ∅ or {u ∈ Bρ : F(λ,u) = 0} = {0}.
Suppose Bρ ∩ �λ = ∅. Then, �λ \ Bρ = �λ and, hence, (λ, u) ∈ ∂�. Thus (λ, u) /∈ S and, 
therefore, F(λ, u) 	= 0, since u 	= 0. Now, suppose that

{u ∈ Bρ : F(λ,u) = 0} = {0}. (5.13)

Then, u ∈ ∂(�λ \ Bρ) ⊂ ∂�λ ∪ ∂Bρ . Moreover, by (5.13), F(λ, u) 	= 0 if u ∈ ∂Bρ , whereas 
(λ, u) ∈ ∂� if u ∈ ∂�λ. In any circumstances, (λ, u) /∈ S . Therefore, F(λ, u) 	= 0, since u 	= 0, 
which concludes the proof of (5.12). �

According to (5.12), setting for 1 ≤ k ≤ m − 1,

�nk := � ∩ ([λ+
nk

, λ−
nk+1

] × U), �nk := �nk\([λ+
nk

, λ−
nk+1

] × Bρ),

the tern (F, �nk , ε) is a generalized U -admissible homotopy, (F, �nk , ε) ∈ G (U)·. Thus, we can 
apply Theorem 3.7 to infer that

deg(F(λ+
nk

, ·),�λ+
nk

\ Bρ, ελ+
nk

) = deg(F(λ−
n+1, ·),�λ−

nk+1
\ Bρ, ελ−

nk+1
).

Let us denote⎧⎪⎪⎨
⎪⎪⎩

deg
(
F(λ, ·),�λ \ Bρ, ελ

) = dk if λ ∈ {λ+
nk

, λ−
nk+1

}, 1 ≤ k ≤ m − 1,

deg
(
F(λ+

nm
, ·),�λ+

nm
\ Bρ, ελ+

nm

) = dm,

deg
(
F(λ−

n1
, ·),�λ−

n1
\ Bρ, ελ−

n1

) = d0.

By the additivity property of the degree, we have that, for every 1 ≤ k ≤ m,

deg
(
F(λ−

nk
, ·),�λ−

nk
, ελ−

nk

) = dk−1 + deg
(
F(λ−

nk
, ·),Bρ, ελ−

nk

)
,

deg
(
F(λ+

nk
, ·),�λ+

nk
, ελ+

nk

) = dk + deg
(
F(λ+

nk
, ·),Bρ, ελ+

nk

)
.
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Thus, by (5.11) and Lemma 5.5, for sufficiently small ρ0 > 0 and each ρ ∈ (0, ρ0],

dk−1 − dk = deg
(
F(λ+

nk
, ·),Bρ, ελ+

nk

)− deg
(
F(λ−

nk
, ·),Bρ, ελ−

nk

) = 2P(Ink
).

Therefore, adding up these identities yields

d0 − dm =
m∑

k=1

(dk−1 − dk) = 2
m∑

k=1

P(Ink
) = 2

∑
n∈B(C)

P(In). (5.14)

Finally, since C is bounded, there exists λ∗ < λ−
n1

and λ∗ > λ+
nm

such that �λ∗ = �λ∗ = ∅. Thus, 
applying Theorem 3.7 with the generalized U -admissible homotopies (F, �∗, ε), (F, �∗, ε) ∈
G (U), where

�∗ := � ∩ ([λ∗, λ−
n1

] × U), �∗ := �∗\([λ∗, λ−
n1

] × Bρ),

�∗ := � ∩ ([λ+
nm

,λ∗] × U), �∗ := �∗\([λ+
nm

,λ∗] × Bρ),

we find that

0 = deg(F(λ∗, ·),�λ∗\Bρ, ελ∗) = deg(F(λ−
n1

, ·),�λ−
n1

\Bρ, ελ−
n1

) = d0,

0 = deg(F(λ∗, ·),�λ∗\Bρ, ελ∗) = deg(F(λ+
nm

, ·),�λ+
nm

\Bρ, ελ+
nm

) = dm.

Since d0 = dm = 0, the identity (5.14) ends the proof. �
As a direct consequence of Theorems 4.1 and 5.9, the following global alternative holds.

Theorem 5.12 (Global alternative). Let F ∈ C1(R × U, V ) be a map satisfying (F1)–(F4) and 
J := {Jn}sn=r be an admissible ordered family for 
(L). Suppose there exists n ∈Z ∩ [r + 1, s]
such that, for sufficiently small δ > 0,

χ[Lω, [λ−, λ+]] ∈ 2N + 1, λ− = inf In − δ, λ+ = sup In + δ, (5.15)

where Lω ∈ C ω([λ−, λ+], �0(U, V )) is any analytic curve A-homotopic to L(λ), λ ∈ [λ−, λ+]. 
Then, there exists a component C of the set of non-trivial solutions SJ such that C ∩ (In ×{0}) 	=
∅. Moreover, one of the following non-excluding alternatives occur:

(i) C is unbounded.
(ii) There exists m ∈Z ∩ [r + 1, s], m 	= n, such that C ∩ (Im × {0}) 	= ∅.

Proof. Since the hypothesis of Theorem 4.1 hold, we infer the existence of a component C of 
SJ such that (λ0, 0) ∈ C for some λ0 ∈ (λ−, λ+). Since for sufficiently small δ > 0,

L(λ) ∈ GL(U,V ), λ ∈ [λ−, inf In] ∪ [sup In, λ+],
necessarily, λ0 ∈ In. Hence, C ∩ (In × {0}) 	= ∅ and we have proved the first part of the theorem. 
Let us prove the second part. If C is unbounded, then (i) holds. Suppose C is bounded. Then, by 
Theorem 5.9,
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∑
�∈B(C)

P(I�) = 0, (5.16)

where P is the J -parity map. By (5.2), we obtain

2P(In) = ελ−(0)
[
σ(L, [λ−, λ+]) − 1

]
. (5.17)

On the other hand, by Theorem 3.2 and (5.15), we find that, for every analytic curve Lω ∈
C ω([λ−, λ+], �0(U, V )) A-homotopic to L(λ), λ ∈ [λ−, λ+],

σ(L, [λ−, λ+]) = (−1)χ[Lω,[λ−,λ+]] = −1.

Consequently, by (5.17), we deduce that P(In) = −ελ−(0) 	= 0. Since n ∈ B(C), according to 
(5.16), there exists m ∈ B(C), m 	= n. (ii) holds if C is bounded. This ends the proof. �

Under the general assumptions of the local theorem of Crandall and Rabinowitz [9], λ0 is an 
isolated eigenvalue of L(λ). Thus, setting λ± = λ0 ± δ for sufficiently small δ and using (2.4), 
we are led to

χ[Lω, [λ−, λ+]] = χ[L, [λ−, λ+]] = χ[L, λ0] = dimN [L0] = 1.

Therefore, the local theorem of [9] is actually global. Although Shi and Wang [53] observed 
that in the setting of [9] the global alternative of Rabinowitz also holds, Theorem 5.9 is a 
substantially sharper result, as it establishes, in addition, the validity of (5.8), which is a very 
sophisticated condition of global topological nature. The validity of this condition in the context 
of the Leray–Schauder degree goes back to Nirenberg [48] and Magnus [45]. Rather paradoxi-
cally, the simplicity of the global alternative of Rabinowitz and the topological technicalities of 
the underlying theory hid for almost 50 years the much stronger condition (5.8) until [35] was 
published (see [33] for further details).

6. Sharp local bifurcation analysis from simple degenerate eigenvalues

This section is devoted to the study of bifurcation from simple degenerate eigenvalues for 
analytic nonlinearities. We begin by recalling some basic concepts for analytic maps between 
Banach spaces. Given K ∈ {R, C}, an integer n ≥ 1, and n +1 K-Banach spaces U1, U2, · · · , Un, 
V , a map L : U1 × · · · × Un → V is said to be K-multilinear if it is K-linear in each variable 
ui ∈ Ui for all i = 1, ..., n. Naturally, in such case, L is said to be bounded if

‖L‖ := sup{‖L(u1, · · · , un)‖ : ‖u1‖, · · · ,‖un‖ ≤ 1} < ∞.

The space of the bounded K-multilinear operators is denoted by M(U1, · · · , Un; V ), and 
we simply set M(U1, · · · , Un; V ) ≡ Mn(U, V ) if U1 = U2 = · · · = Un = U . An operator 
L ∈M(U1, · · · , Un; V ) is called symmetric if, for every permutation σ ∈ 
n,

L(u1, u2, · · · , un) = L(uσ(1), uσ(2), · · · , uσ(n)),
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where 
n stands for the symmetric group of permutations of {1, · · · , n}. In this section, the 
space of bounded K-multilinear symmetric operators is denoted by S(U1, · · · , Un; V ), and we 
set S(U, · · · , U ; V ) = Sn(U ; V ). Accordingly, for every L ∈ Sn(U, V ), we set

L(u,u, · · · , u) ≡ Lun, u ∈ U. (6.1)

Given a pair of K-Banach spaces (U, V ) and a point u0 ∈ U , a map F : U → V is said to be 
K-analytic at u0 if there exist a neighborhood Uu0 of u0 in U and r > 0 such that

F(u) =
∞∑

n=0

Ln(u − u0)
n, u ∈ Uu0 , sup

n≥0

(
rn‖Ln‖

)
< ∞,

where F(u0) = L0 ∈ V and Ln ∈ Sn(U, V ) for all n ∈ N . A map F : U → V is said to be K-
analytic if it is K-analytic at every point u ∈ U . In this section, the space of analytic functions 
U → V is denoted by Cω(U, V ), and we simply say that F is analytic, without specifying where, 
if there is no ambiguity.

6.1. Analytic Lyapunov–Schmidt reduction

In this section, we will perform a general Lyapunov–Schmidt reduction for analytic nonlinear-
ities. Precisely, we consider a field K ∈ {R, C}, an analytic map F ∈ Cω(K × U, V ), and a point 
(λ0, u0) ∈ F−1(0) such that DuF(λ0, u0) ∈ �0(U, V ). For any given pair (P, Q) of DuF(λ0, u0)-
projections, P : U → N [DuF(λ0, u0)], Q : V → R[DuF(λ0, u0)], we can decompose

U = N [DuF(λ0, u0)] ⊕ Y (Y ≡ N [P ]), V = Z ⊕ R[DuF(λ0, u0)] (Z ≡ N [Q]).

and identify K × N [DuF(λ0, u0)] with Kn+1, where

n := dimN [DuF(λ0, u0)] = codimR[DuF(λ0, u0)],

via the linear isomorphism

T : K× N [DuF(λ0, u0)] →K×Kn, (λ, x) �→ (λ,Lx). (6.2)

Similarly, one can identify Z with Kn via another linear isomorphism S : Z −→ Kn, because 
dimZ = n. Since every u ∈ U admits a unique decomposition as

u = u0 + x + y, x = P [u − u0], y = (IU − P)[u − u0], (6.3)

the equation F(λ, u) = 0 is equivalent to the system

QF(λ,u0 + x + y) = 0, (IV − Q)F(λ,u0 + x + y) = 0. (6.4)

Consider the operator

H : K× N [DuF(λ0, u0)] × Y → V, H(λ, x, y) := QF(λ,u0 + x + y).
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This operator is analytic and it satisfies H(λ0, 0, 0) = 0. Moreover, its linearization

DyH(λ0,0,0) = QDuF(λ0, u0)|Y : Y → R[DuF(λ0, u0)]

is an isomorphism. Thus, by the implicit function theorem, there exist a neighborhood U of 
(λ0, 0) in K × N [DuF(λ0, u0)] and an analytic map Y : U → Y such that

H(λ, x,Y(λ, x)) = 0 for all (λ, x) ∈ U . (6.5)

In particular Y(λ0, 0) = 0. Moreover, there exists a neighborhood O of (λ, u) = (λ0, u0) in K ×
U such that if (λ, u) = (λ, u0 + x + y) ∈ O and H(λ, x, y) = 0, then y = Y(λ, x). Finally, 
substituting Y(λ, x) into the second equation of the system (6.4) yields

(IV − Q)F(λ,u0 + x +Y(λ, x)) = 0, (λ, x) ∈ U . (6.6)

Therefore, (λ, x) ∈ U is a solution of (6.6) if, and only if, (λ, u) = (λ, u0 + x + Y(λ, x)) ∈
O satisfies F(λ, u) = 0. Consequently, considering the open set � := T (U), where T is the 
isomorphism (6.2), we have reduced the equation F(λ, u) = 0 in the neighborhood O of (λ0, u0), 
to the problem of finding out the zeroes of the finite dimensional analytic map G : � ⊂ K ×Kn →
Kn defined by

G(λ, z) := S(IV − Q)F(λ,u0 + L−1z +Y(λ,L−1z)). (6.7)

In particular G(λ0, 0) = 0. Consequently, the following result holds.

Theorem 6.1. Let F ∈ Cω(K × U, V ) and (λ0, u0) ∈ F−1(0) with DuF(λ0, u0) ∈ �0(U, V ). 
Then, there exists a neighborhood O of (λ0, u0) in K × U such that the maps

� : F−1(0) ∩O −→G−1(0), (λ,u) �→ (λ,LP (u − u0)),

�−1 : G−1(0) −→ F−1(0) ∩O, (λ, z) �→ (λ,u0 + L−1z +Y(λ,L−1z)),
(6.8)

are mutually inverses, where G : � → Kn is given by (6.7). Moreover, for every (λ, z) ∈ G−1(0), 
the following statements are equivalent:

(1) DzG(λ, z) 	= 0.
(2) DuF(λ, L−1z +Y(λ, L−1z)) ∈ GL(U, V ).

6.2. Sharp local bifurcation analysis from simple degenerate eigenvalues

In this section we ascertain the local structure of the solution sets for analytic nonlinearities 
at simple degenerate eigenvalues. Throughout it, we assume that K ∈ {R, C}, that U and V are 
K-Banach spaces, and that F ∈ Cω(K × U, V ) satisfies the following assumptions:

(F1) F(λ, 0) = 0 for every λ ∈K.
(F2) L(λ) := DuF(λ, 0) ∈ �0(U, V ) for all λ ∈K.
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(F3) λ0 ∈ 
(L) is an isolated eigenvalue such that

N [L0] = span[ϕ0] for some ϕ0 ∈ U\{0}.

Subsequently, we denote by 〈·, ·〉 : U ×U∗ →K the duality pairing between U and its topological 
dual space U∗. By the Hahn–Banach theorem, there exists ϕ∗

0 ∈ U∗ such that 〈ϕ0, ϕ∗
0 〉 = 1. Let 

us consider a pair P = (P, Q) of L0-projections, P : U → N [L0] and Q : V → R[L0], where P
is given by

P(u) := 〈u,ϕ∗
0 〉ϕ0 for all u ∈ U. (6.9)

Then, we have the topological direct sum decompositions

U = N [L0] ⊕ Y (Y ≡ N [P ]), V = Z ⊕ R[L0] (Z ≡ N [Q]).

In the sequel, we identify K × N [L0] with K2 via the linear isomorphism

T : K× N [L0] −→ K2, T (λ, zϕ0) = (λ, z), (6.10)

and Z with K via another linear isomorphism, S : Z → K, whose expression is not relevant. 
Then, according to the results of Section 6.1 applied to F(λ, u) = 0 on (λ0, 0) with the L0-
projections (P, Q), there exist two neighborhoods, U ⊂ K × N [L0], (λ0, 0) ∈ U , O ⊂ K × U , 
(λ0, 0) ∈ O, and an analytic operator Y : U → Y such that the maps (6.8) with LP(u − u0) =
〈u, ϕ∗

0 〉 and L−1z = zϕ0, are mutually inverse. Note that now G is given by (6.7) with L−1z =
zϕ0 and � = T (U). Without loss of generality, we can assume that (λ0, 0) = (0, 0). Since G is 
analytic and G(λ, 0) = 0, it can be expressed as

G(λ, z) =
∑

i≥0, j≥1

aijλ
izj , (λ, z) ∼ (0,0),

for some coefficients aij ∈K, (i, j) ∈ Z2+, j 	= 0. Thus, there exists an analytic function g : � →
K such that

G(λ, z) = z
∑

i≥0, j≥1

aijλ
izj−1 = zg(λ, z), (λ, z) ∼ (0,0). (6.11)

The next lemma shows how the algebraic multiplicity χ of L(λ) is related to G.

Lemma 6.2. χ[L, 0] = ordλ=0 DzG(λ, 0) = ordλ=0 g(λ, 0).

Proof. Since F is analytic, L ∈ Cω(K, �0(U, V )). Thus, by hypothesis (F3), λ0 = 0 is an isolated 
eigenvalue. Hence, by Theorems 4.4.1 and 4.4.4 of [31], 0 ∈ Alg(L). Therefore, χ[L, 0] is well 
defined. On the other hand, by [43, Th. 1.2], we have that χ[L, 0] = ordλ=0 DzG(λ, 0). The proof 
is complete. �
214



J. López-Gómez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182–250
Combining Lemma 6.2 with the Weierstrass preparation theorem (see [8, Th. 5.3.1]), there 
exist a open neighborhood U = Uλ × Uz of (0, 0) in �, an analytic function c : U → K such 
that c(0, 0) 	= 0, and χ := χ[L, 0] ≥ 1 analytic functions cj : Uz → K such that cj (0) = 0 for all 
0 ≤ j ≤ χ − 1, and

g(λ, z) = c(λ, z)
[
λχ + cχ−1(z)λ

χ−1 + · · · + c1(z)λ + c0(z)
]
.

The factoring monic polynomial

p(λ, z) := λχ + cχ−1(z)λ
χ−1 + · · · + c1(z)λ + c0(z) (6.12)

is often called the Weierstrass polynomial of g(λ, z). These results can be summarized into the 
following theorem.

Theorem 6.3. Let F ∈ Cω(K ×U, V ) be a map satisfying (F1)–(F3). Then, there exist a neighbor-
hood U of (0, 0) in K2, an analytic function c : U → K, with c(0, 0) 	= 0, and χ = χ[L, 0] ≥ 1
analytic functions cj : Uz → K, 0 ≤ j ≤ χ − 1, with cj (0) = 0, such that

G(λ, z) ≡ zc(λ, z)(λχ + cχ−1(z)λ
χ−1 + · · · + c1(z)λ + c0(z)), (λ, z) ∈ U ,

satisfies G(λ, z) = 0 if and only if (λ, u) = (λ, zϕ0 + Y(λ, zϕ0)) ∈ F−1(0). Therefore, the 
associated Weierstrass polynomial (6.12) provides us with the local structure of F−1(0) at 
(0, 0) ∈ K × U .

This result reduces the analysis of the local structure of the solutions of the infinite dimen-
sional problem F(λ, u) = 0 to the analysis of the zeros of the Weierstrass polynomial p(λ, z). 
According to Theorem 6.3, in the simplest case when χ = 1, the local structure of F−1(0) is 
determined by

G(λ, z) = zc(λ, z)(λ + c0(z)) = 0, (λ, z) ∈ U .

Since c is analytic and c(0, 0) 	= 0, shortening the neighborhood U , if necessary, we can assume 
that c(λ, z) 	= 0 for all (λ, z) ∈ U . Thus, G(λ, z) = 0 if and only if either z = 0, or λ = −c0(z), 
z ∈ Uz, which provides us with the analytic counterpart of the main theorem of Crandall and 
Rabinowitz [9]. Throughout the rest of this section, we will distinguish between two different 
cases, according to the nature of K.

6.3. The complex case K =C

Then, given a domain � of C, we will denote by O(�) and M(�), the spaces of holomor-
phic and meromorphic functions defined on �, respectively, and we denote by M(�)[λ] (resp. 
O(�)[λ]) the space of polynomials in λ with coefficients in the space of meromorphic (resp. 
holomorphic) functions on �. Let U = Uλ × Uz be the open set of C2 whose existence was 
established after the proof of Lemma 6.2. Since M(Uz) is a field, M(Uz)[λ] is a Unique Factor-
ization Domain (UFD). Thus, there exists an integer n ≥ 1 and n monic irreducible polynomials 
in M(Uz)[λ], say pi(λ, z), with pi(λ, 0) = λdegpi , i ∈ {1, ..., n}, such that
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p(λ, z) =
n∏

i=1

pi(λ, z),

where p(λ, z) is the Weierstrass polynomial (6.12). Subsequently, we set di ≡ degpi for all 
i ∈ {1, ..., n}. Since pi(λ, z) ∈ M(Uz)[λ], we can express

pi(λ, z) = λdi + ci,di−1(z)λ
di−1 + · · · + ci,1(z)λ + ci,0(z), z ∈ Uz,

for some meromorphic functions ci,k : Uz → C such that ci,k(0) = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ di − 1. 
Actually, shrinking U , if necessary, we can suppose that each ci,k ∈ O(Uz). Thus, pi(λ, z) ∈
O(Uz)[λ].

Suppose that di ≥ 2 for some i ∈ {1, ..., n}, and let us denote by �i(z), z ∈ Uz, the discrimi-
nant of the polynomial pi(λ, z). Since pi(λ, 0) = λdi with di ≥ 2, λ = 0 is, at least, a double root. 
Hence, �i(0) = 0. Moreover, �i 	≡ 0, because pi(λ, z) is irreducible in M(Uz)[λ]. Thus, since 
the discriminant is analytic, shortening U if necessary, we can assume that �i(z) 	= 0 for all 
z ∈ Uz\{0}. Consequently, for every z ∈ Uz\{0}, the irreducible factor pi(λ, z) admits di simple 
roots. Pick z ∈ Uz\{0}. Then, by [21, Cor. 8.8], there exists a neighborhood V of z in Uz\{0}, 
and di holomorphic functions, ϕj ∈O(V ), j ∈ {1, ..., di}, such that

pi(λ, z) =
di∏

j=1

(λ − ϕj (z)), z ∈ V .

Consequently, the set Si := p−1
i (0) ∩ [C × (Uz \ {0})] consists, locally, of the analytic curves 

(λ, z) = (ϕj (z), z), z ∈ V , j ∈ {1, ..., di}, and therefore, Si can be endowed with the structure of 
an open Riemann surface, i.e., an open one-dimensional smooth complex manifold. Obviously, 
this is also true if d1 = 1. So, it holds for all i ∈ {1, ..., n}. The next result establishes that (0, 0) is 
an accumulation point of Si ⊂ C2 for all i ∈ {1, ..., n}. According to Theorem 6.3, in the complex 
setting, (0, 0) ∈C × U always is a bifurcation point of F(λ, u) = 0, regardless the value of χ .

Lemma 6.4. (0, 0) ∈C2 is an accumulation point of Si for all i ∈ {1, ..., n}.

Proof. We claim that, for every (λ, z) ∈C × Uz such that pi(λ, z) = 0,

|λ| ≤ max
{

1,

di−1∑
j=0

‖ci,j‖L∞(Uz)

}
≡ R. (6.13)

Note that Uz can be shortened so that ci,j ∈ C(Ūz). Suppose pi(λ, z) = 0. Then,

λdi = −
di−1∑
j=0

ci,j (z)λ
j . (6.14)

Thus, (6.13) holds if |λ| ≤ 1. Suppose |λ| > 1. Then, (6.14) implies that
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|λ|di ≤ |λ|di−1
di−1∑
j=0

‖cij‖L∞(Uz), (6.15)

and dividing (6.15) by |λ|di−1 yields (6.13). On the other hand, since the domain W := {z ∈
C : Rz > 0} ∩ Uz is simply connected, by analytic continuation, it follows from [21, Cor. 8.8]
that there exists a holomorphic function ϕ : W → C such that pi(ϕ(z), z) = 0 for all z ∈ W . In 
particular, we have that

lim
z→0

pi(ϕ(z), z) = 0. (6.16)

Moreover, by (6.13), |ϕ(z)| ≤ R for all z ∈ W . Let (zn)n∈N be a sequence in W such that zn → 0
as n → ∞ and set wn := ϕ(zn), n ≥ 1. Since |wn| ≤ R for all n ∈ N , by compactness, there 
exists a subsequence, relabeled by n, such that wn → w0 as n → ∞ with |w0| ≤ R. By (6.16), 
pi(w0, 0) = 0. Since pi(λ, 0) = λdi , necessarily w0 = 0. Therefore, (0, 0) is an accumulation 
point of Si . �

To gain some insight into the local structure of the zeros near (0, 0), we consider the z-
projection operator πi : Si −→ Uz\{0}, (λ, z) �→ z. By construction, πi is a di -sheeted holomor-
phic covering map whose associated fiber at z ∈ Uz\{0} is the set of simple roots of pi(λ, z) = 0. 
To study the singularity at (0, 0) or, equivalently, to add the multiple root (0, 0) of pi(λ, z) to the 
Riemann surface Si , one can extend Si to a Riemann surface, Xi , with a branched covering map 
�i : Xi → Uz such that �i |Si

= π , by means of the following classical theorem of B. Riemann 
(see, e.g., [21, Th. 8.4] for a proof).

Theorem 6.5. Let � be a domain in C and z0 ∈ �. Suppose X is a Riemann surface and π :
X −→ �\{z0}, is a proper holomorphic covering map. Then, π extends to a branched covering 
of �. In other words, there exists a Riemann surface X , with X ⊂ X , and a proper holomorphic 
map � :X → � such that X \�−1(z0) = X and �|X = π .

For every i ∈ {1, ..., n}, the extended Xi is called the Riemann surface of the irreducible fac-
tor pi(λ, z) ∈ M(Uz)[λ], and �i : Xi → Uz is refereed to as the di -sheeted branched covering 
map associated to it. In particular Si = Xi\�−1

i (0). Therefore, the local structure of G−1(0)

in a neighborhood of (0, 0) ∈ C2 is completely determined by the pairs (Xi, �i), i ∈ {1, ..., n}. 
The internal structure of the pairs (Xi , �i) can further be analyzed through symmetries via the 
concept of deck transformation. A deck transformation associated to the pair (Xi, �i) is a bi-
holomorphic map ϕ : Xi → Xi making the following diagram commutative:

Xi

ϕ

�i

Xi

�i

Uz

(6.17)

Let us denote by Deck(Xi , �i) the group of the deck transformations associated to (Xi , �i). 
This group gives information about the nature of the singularity at (0, 0). To study the structure 
of Deck(Xi , �i), we need some preliminaries on field extensions. Consider the field extensions 
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M(Uz) ⊂ M(Xi ), i ∈ {1, ..., n}, where we are denoting by M(Xi) the field of meromorphic 
functions defined on Xi . As, due to [21, Th. 8.12], the field isomorphism

M(Xi ) � M(Uz)[λ]
(pi(λ, z))

, (6.18)

holds, the extensions M(Uz) ⊂ M(Xi ) are determined by the algebraic field extensions

M(Uz) ⊂ M(Uz)[λ]
(pi(λ, z))

. (6.19)

Some elementary algebra shows that

M(Uz)[λ]
(pi(λ, z))

=
⎧⎨
⎩

di−1∑
j=0

aj (z)λ
j : aj ∈M(Uz), j ∈ {1,2, · · · , di − 1}

⎫⎬
⎭
/

∼,

where degpi = di and f1 ∼ f2 if and only if f1 − f2 ∈ (pi(λ, z)). Thus, it is apparent that

[M(Uz)[λ]
(pi(λ, z))

:M(Uz)

]
= di = degpi.

As usual in field theory, [L : K] stands for the degree of any field extension K ⊂ L, i.e., the 
dimension of L viewed as a K-vector space. Finally, let us associate to the field extensions 
M(Uz) ⊂ M(Xi ) their associated Galois groups Gi(M(Xi )/M(Uz)), i ∈ {1, · · · , n}. The Ga-
lois group of a field extension K ⊂ L, G (L/K), consists of the set of field K-automorphisms 
(or permutations) σ : L → L leaving invariant K . Thanks to (6.18), the following group isomor-
phism holds

Gi (M(Xi )/M(Uz)) � G

(M(Uz)[λ]
(pi(λ, z))

/
M(Uz)

)
=: Gi . (6.20)

According to [21, Th. 8.12], the map I : Deck(Xi , �i) → Gi (M(Xi )/M(Uz)), ϕ �→ σ [ϕ], 
where,

σ [ϕ] : Gi (M(Xi )/M(Uz)) → Gi (M(Xi )/M(Uz)), f �→ f ◦ ϕ−1,

is a group isomorphism. Therefore, by (6.20), Deck(Xi , �i) is isomorphic to Gi for all i ∈
{1, · · · , n}. By the fundamental theorem of the Galois theory, for every i ∈ {1, ..., n}, the roots 
λ = λ(z) of the irreducible polynomial pi(λ, z) can be expressed as a composition of radicals 
and meromorphic functions on Uz if and only if the Galois group Gi is solvable. For instance, the 
Galois group of the irreducible polynomial λ2 +zλ +1 ∈M(Uz)[λ], is solvable because its roots 
can be expressed as λ(z) = 1

2 (−z ± √
z2 − 1), z ∈ Uz. Precisely, its Galois group is given by 

G (L/K) = {1, σ }, where L = M(Uz)[λ]
(λ2+zλ+1)

, K = M(Uz), 1 : L → L stands for the identity map, 
and σ : L → L is defined by σ(λ) = −λ. The previous results can be summarized into the next 
one.
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Theorem 6.6. Suppose that F ∈ Cω(C×U, V ) satisfies (F1)–(F3) and its associated Weierstrass 
polynomial p(λ, z) has irreducible components pi(λ, z), 1 ≤ i ≤ n. Then, (0, 0) ∈ C × U is a 
bifurcation point of F(λ, u) = 0 from (λ, 0) at λ = 0, regardless the value of χ . Moreover, the 
set F−1(0) near (0, 0) is in one-to-one correspondence with Ti = ⋃n

i=1 Si ∪ {(λ, 0) : λ ∈ Uλ}, 
and the structure of this set is given by the pair (Xi, �i), where Xi is the Riemann surface of 
the polynomial pi(λ, z), i ∈ {1, ..., n}, and �i : Xi → Uz stands for its associated branched 
covering map. Also, the structure of the singularity at (0, 0) is described by the Galois group 
Deck(Xi , �i) � Gi , i ∈ {1, · · · , n}. Furthermore, for every i ∈ {1, ..., n}, Ti can be expressed as 
Ti = {(λ(z), z) : z ∈ Uz} ∩ U , where λ : Uz → C is an algebraic composition of radicals and 
meromorphic functions if and only if Gi is solvable.

6.4. The real case K =R

As in this case Uz ⊂ R is an open interval containing 0, Uz\{0} = U +
z � U −

z , where, for 
some α < 0 < ω, U −

z and U +
z are the intervals U −

z = (α, 0) and U +
z = (0, ω). Throughout this 

section, we denote

B := {x + iy ∈C : x, y ∈ Uz} ≡ Uz × Uz,

B+ := {x + iy ∈C : x ∈ U +
z , y ∈ Uz} ≡ U +

z × Uz,

B− := {x + iy ∈C : x ∈ U −
z , y ∈ Uz} ≡ U −

z × Uz.

In this case, the Weierstrass polynomial p(λ, z) lies in M(Uz)[λ], and it can be regarded as a 
polynomial of M(B)[λ] by complexifying the variable z to z = x + iy. Thus, as in the complex 
case, we can decompose the complex polynomial p(λ, z) ∈M(B)[λ] in its irreducible compo-
nents p(λ, z) = ∏n

i=1 pi(λ, z), z ∈ B. Since B± is a simply connected open set not containing 
0, by analytic continuation, we find from [21, Cor. 8.8], that, for every i ∈ {1, ..., n}, there exist 
an integer mi ≥ 1 and 2mi analytic functions, ϕi

j : B+ →C, φi
j : B− → C, j ∈ {1, ..., mi}, such 

that

pi(λ, z) =
mi∏

j=1

(λ − ϕi
j (z)) for all z ∈ B+, pi(λ, z) =

mi∏
j=1

(λ − φi
j (z)) for all z ∈ B−.

Thus, since χ = degp = ∑n
i=1 mi , p(λ, z), p(λ, z) can be factorized as

p(λ, z) =
χ∏

k=1

(λ − ϕk(z)) for all z ∈ B+, p(λ, z) =
χ∏

k=1

(λ − φk(z)) for all z ∈ B−,

for some analytic functions ϕk : B+ → C and φk : B− → C, 1 ≤ k ≤ χ . Subsequently, we 
will consider the complex functions ϕk(z) and φk(z), 1 ≤ k ≤ χ , as functions of a real variable, 
z ∈ R. Since the zeroes of the analytic non-zero functions are isolated, shortening the interval 
Uz, if necessary, for every k ∈ {1, ..., χ} and hk ∈ {ϕk, φk}, some of the next excluding options 
occurs. Either (a) hk(U +

z ) ⊂ R; or (b) hk(U +
z ) ∩R = ∅. Indeed, since Imhk(z) = 0 if and only 

if hk(z) ∈ R, and Imhk is analytic, either Imhk = 0, or Imhk cannot vanish for sufficiently small 
U + = (0, ω).
z
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Next, we pick a point (λ0, z0) ∈ G−1(0) with z0 ∈ Uz. If z0 = 0, then (λ0, z0) = (λ0, 0)

belongs to the trivial branch. If z0 	= 0, then either z0 ∈ U +
z , or z0 ∈ U −

z . Suppose, without 
loss of generality, that z0 ∈ U +

z . Then, since p(λ0, z0) = 0, there exists k ∈ {1, ..., χ} such that 
λ0 = ϕk(z0). Therefore, every zero (λ0, z0) of G belongs to an analytic curve. Consequently, at 
least locally, G−1(0) consists of local branches of analytic curves. Moreover, since there are, at 
most, χ analytic curves in each direction, from (0, 0) might emanate, at most, 2χ + 2 analytic 
curves: χ from each direction U ±

z , plus the two half branches of the trivial curve.
When, in addition, χ = degp is an odd integer, then, for every z ∈ Uz\{0}, p(λ, z) has a 

real root. Thus, there exist k1, k2 ∈ {1, 2, ..., χ} such that ϕk1(U
+

z ) ⊂ R and φk2(U
−

z ) ⊂ R. 
Consequently, ϕk1 : U +

z →R and φk2 : U −
z →R are real analytic functions. Therefore, G−1(0)

contains, at least, the two branches of the trivial curve and two real analytic curves emanating 
from (λ, 0) at λ = 0. In particular, (0, 0) is a bifurcation point of F = 0 from (λ, 0), in agreement
with Theorem 4.1.

To conclude this subsection, we present a new method, based on the Sturm theorem, for de-
termining the exact number of branches of analytic curves that can bifurcate from (0, 0). We 
already know that there are, at most, 2χ + 2 curves. Namely, at most χ from U +

z , at most χ
from U −

z , and the remaining two are the half branches of the trivial curve (λ, 0), which always 
exist. We will focus our attention into the case when z ∈ U +

z , as the case when z ∈ U −
z follows 

the same general patterns.
Given a polynomial q ∈ R[x] of degree n ≥ 1, we define the Sturm chain of the polynomial q

as the sequence of polynomials

q0(x) := q(x), q1(x) := q ′(x), qi(x) := −rem (qi−2(x), qi−1(x)),

for all i ≥ 2, where rem (qi−2, qi−1) stands for the remainder of the Euclidean division of qi−2
by qi−1. The length of the Sturm chain is, at most, n, the degree of q . For every ξ ∈ R \ q−1(0), 
let V (ξ) denote the number of sign changes of the Sturm chain (q0(ξ), q1(ξ), ..., qn(ξ)) without 
taking into account zeroes. Then, the Sturm theorem states that, whenever a < b are not roots 
of q , the number V (a) − V (b) counts the distinct real roots of q in the interval (a, b). By the 
Lyapunov–Schmidt reduction procedure described at the beginning of this section, we already 
know that, locally at (0, 0), the solutions of F(λ, u) = 0 are in one-to-one correspondence with 
the zeroes (λ, u) ∈ U of the reduced nonlinear operator G(λ, z) = zc(λ, z)p(λ, z), (λ, z) ∈ U , 
where p(λ, z) is the associated Weierstrass polynomial. According to our previous analysis, we 
can factorize p(λ, z) in U +

z as p(λ, z) = ∏χ
j=1(λ −ϕi(z)), z ∈ U +

z , for some analytic functions 
ϕi : U +

z →C, 1 ≤ i ≤ χ , and we already know that, for every 1 ≤ i ≤ χ , either (i) ϕi(U +
z ) ⊂ R, 

or (ii) ϕi(U +
z ) ∩R = ∅. Subsequently, we consider the neighborhood U ≡ Uλ × Uz, shortened 

so that ({λ±} × Uz) ∩ p−1(0) = {(λ±,0)} for some λ−, λ+ ∈ Uλ, λ− < λ+. This can be easily 
accomplished from the implicit function theorem, because L(λ) ∈ GL(U, V ) for λ ∼ 0, λ 	= 0. 
For this choice of U we have that, for every z ∈ U +

z , the number of real roots of the polynomial 
p(λ, z) in the interval (λ−, λ+) is constant; it equals the number of i’s with i ∈ {1, ..., χ} for 
which ϕi(z) ∈ R. Next, for every (λ, z) ∈ Uλ × U ±

z , we consider the following Sturm chain of 
polynomials in λ

p0(λ, z) := p(λ, z), p1(λ, z) := ∂λp(λ, z),

pi(λ, z) := −remλ(pi−2(λ, z),pi−1(λ, z)) for all i ≥ 2,
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where the z variable is regarded as a label for the polynomial. For each ξ ∈ [λ−, λ+], we denote 
by V (ξ, z) the number of sign changes of the chain (p0(ξ, z), p1(ξ, z), . . . , pχ(ξ, z)). As the 
number of real roots of p(λ, z) in (λ−, λ+) is constant for all z ∈ U +

z , by the Sturm theorem, 
V (λ−, z) − V (λ+, z) is constant for all z ∈ U +

x , and it equals the number of distinct (real) 
analytical curves emanating from (0, 0) in the direction of U +

z . Similarly, V (λ−, z) − V (λ+, z)
is constant for all x ∈ U −

z , and it equals the number of distinct (real) analytical curves emanating 
from (0, 0) in the direction of U −

z . Thus, the next result holds.

Theorem 6.7. Suppose that F ∈ Cω(R × U, V ) satisfies (F1)–(F3). Then, in a sufficiently small 
neighborhood of (0, 0) ∈ R × U , the set F−1(0) consists of finitely many branches of analytical 
curves. Precisely, it has

N(0,0) = [V (λ−, z+) − V (λ+, z+)] + [V (λ−, z−) − V (λ+, z−)] + 2,

distinct half branches of analytic curve, regardless the values of z± ∈ U ±
z . In particular, if χ is 

an odd integer, then N(0,0) ≥ 3, and (0, 0) is a bifurcation point of F(λ, u) = 0 from (λ, 0).

As Theorem 6.7 counts the exact number of analytic branches of F−1(0), it provides us with 
a substantial improvement of the pioneering results of Kielhöfer [27], where it was established 
that F−1(0) possesses at most 2χ + 2 analytic branches emanating from (0, 0).

6.5. Kielhöfer’s result

We conclude this section by getting a result of Kielhöfer [27] that will be useful for analyzing 
the example of Section 8. Throughout this subsection we work with a pair (U, V ) of real Ba-
nach spaces with continuous inclusion U ⊂ V and an analytic map F : R × U → V satisfying 
(F1)–(F3) and, in addition,

(F4) λ0 ∈ 
(L) is an simple eigenvalue of L0, i.e., V = N [L0] ⊕ R[L0].

Subsequently, we suppose, without loss of generality, that λ0 = 0. By (F4), it follows from the 
Hahn–Banach theorem that there exists ϕ∗

0 ∈ V ∗ such that 〈ϕ0, ϕ∗
0 〉 = 1 and

R[L0] = {v ∈ V : 〈v,ϕ∗
0 〉 = 0},

where 〈·, ·〉 : V × V ∗ → R is the duality pairing on V . By [37, Le. 4.4.1], the zero eigenvalue of 
L0 perturbs into a unique eigenvalue μ(λ) of L(λ). Precisely, there exist δ > 0 and two (unique) 
analytic functions μ ∈ Cω(−δ, δ) and ϕ ∈ Cω((−δ, δ), U) such that μ(0) = 0, ϕ(0) = ϕ0, ϕ(λ) −
ϕ0 ∈ R[L0], and L(λ)ϕ(λ) = μ(λ)ϕ(λ) for all λ ∈ (−δ, δ). Now, consider the pair of projections 
(P, Q) defined by P : V → N [L0], P(v) := 〈v, ϕ∗

0 〉ϕ0, Q : V → R[L0], Q := IV − P . By the 
theory of Sections 6.1 and 6.2, performing a Lyapunov–Schmidt reduction with pair (P, Q), 
it is apparent that the zeroes of F near (0, 0), say in the neighborhood O, are in one-to-one 
correspondence with the zeroes of the finite dimensional analytic map G : � ⊂ R × R −→ R, 
defined by

G(λ, z) := S(IV − Q)F(λ, zϕ0 +Y(λ, zϕ0)), (λ, z) ∈ �, (6.21)
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where S is the linear isomorphism given by S : N [L0] → R, S(zϕ0) = z. By the definition of the 
projections (P, Q), G(λ, z) = 〈F(λ, zϕ0 +Y(λ, zϕ0)), ϕ∗

0 〉. Moreover, according to the analysis 
of Section 6.2, there exists an analytic function g : � → R such that G(λ, z) = zg(λ, z). By 
Lemma 6.2, χ ≡ χ[L, 0] = ordλ=0 g(λ, 0). Thus, g : � → R has the expansion

g(λ, z) =
s∑

ν=0

Cνλ
jν z�ν +

∑
j,k

Cj,kλ
j zk, (6.22)

where (�0, j0) = (0, χ), χ > j1 > · · · > js , 0 < �1 < · · · < �s , and the summation of the second 
sum is taken only on the points (k, j) lying above the polygonal line joining (0, χ), (�1, j1), · · · , 
(�s, js), or on the line j = js . The polygonal line joining the points (0, χ), (�1, j1), · · · , (�s, js)

is usually called the Newton’s polygon of g. This shows the validity of Lemma 5.4 of [27], which 
can be stated as follows.

Theorem 6.8. Let F :R ×U → V be an analytic map satisfying (F1)–(F4) with χ[L, 0] = χ ≥ 1
and having the expansion

F(λ,u) = L(λ)u +
s∑

ν=1

λjν L
jν

�ν+1u
�ν+1 +

∑
j,k

λjL
j
k+1u

k+1, (6.23)

where χ > j1 > · · · > js , 0 < �1 < · · · < �s , and the summation of the second sum is taken on 
the points (k, j) lying above the polygonal line joining (0, χ), (�1, j1), · · · , (�s, js), or on the 
line j = js . If, in addition, Hν := 〈Ljν

�ν+1ϕ
�ν+1
0 , ϕ∗

0 〉 	= 0 for all ν = 1, · · · , s, then the Newton 
polygon associated to the reduced map g : � → R defined by (6.22) is given by the polygonal 
line joining the points (0, χ), (�1, j1), · · · , (�s, js). Furthermore, the corresponding coefficients 

are given by C0 = μ(χ)(0)
χ ! , Cν = Hν , ν = 1, · · · , s.

Consequently, under the hypothesis of Theorem 6.8, the zero set F−1(0) locally at (0, 0) ∈
R × U is in one-to-one correspondence with the zeroes of the finite dimensional analytic map 
G = G(λ, z), given by

G(λ, z) = z
[μ(χ)(0)

χ ! λχ +
s∑

ν=1

〈Ljν

�ν+1ϕ
�ν+1
0 , ϕ∗

0 〉λjν z�ν + higher order terms (hot)
]
.

7. Analytic global alternative

The aim of this section is to sharpen the global bifurcation theorems for analytic nonlinearities 
of Dancer [13,11,12] and Buffoni and Tolland [8]. These results were originally stated for the 
special case of 1-transversal eigenvalues, where the theorem of Crandall and Rabinowitz [9]
applies. Our main goal is to generalize these findings up to cover the degenerate case when 
χ[L, λ0] ≥ 2. This is imperative in many applications where χ[L, λ0] 	= 1, as the one given in 
Section 8. Throughout this section, given a pair (U, V ) of real Banach spaces, we consider a map 
F ∈ Cω(R × U, V ) satisfying the following properties:

(F1) F(λ, 0) = 0 for all λ ∈R.
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(F2) DuF(λ, u) ∈ �0(U, V ) for all (λ, u) ∈ R × U .
(F3) λ0 ∈ 
(L) is an isolated eigenvalue such that N [L0] = span[ϕ0] for some ϕ0 ∈ U\{0}.
(F4) F is proper on closed and bounded subsets of R × U .

Given an analytic nonlinearity F ∈ Cω(R × U, V ) satisfying conditions (F1)–(F4), it is said 
that (λ, u) ∈ F−1(0) is a regular point if DuF(λ, u) ∈ GL(U, V ). In the contrary case when 
DuF(λ, u) /∈ GL(U, V ) is called singular. The set of regular points of F will be denoted by 
R(F). According to the exchange stability principle (see, e.g., [10] and [31, Th. 2.4.2]), when 
χ[L, λ0] = 1, in a neighborhood of (0, 0) all nontrivial solutions of an analytic operator are reg-
ular points, unless the bifurcation is vertical. Subsequently, we will give some general sufficient 
conditions so that, locally at (0, 0), the bifurcated solutions are regular points of F−1(0) even in 
the degenerate case when χ[L, λ0] ≥ 2.

By Theorem 6.3, we already know that, locally in a neighborhood U of (0, 0), the solu-
tions of F(λ, u) = 0 are in one-to-one correspondence with the zeroes of the reduced map 
G(λ, z) = zc(λ, z)p(λ, z), (λ, z) ∈ U , where p(λ, z) is the associated Weierstrass polynomial. 
Moreover, by Theorem 6.1, there is a local bijection between the regular points of F−1(0) and 
those of G−1(0). Obviously, the regular points of G−1(0) are characterized through the con-
dition DzG(λ, z) 	= 0. By the analysis already done in Section 6.4, in U ±

z one can factorize 
G(λ, z) in the form G(λ, z) = zc(λ, z) 

∏χ
j=1(λ − ϕi(z)), z ∈ U ±

z for some analytic functions 
ϕi : U ±

z →C, 1 ≤ i ≤ χ . Thus, differentiating G(λ, z) with respect to z, we find that

DzG(λ, z) =[c(λ, z) + zDzc(λ, z)]p(λ, z) − zc(λ, z)

χ∑
i=1

dϕi

dz
(z)

∏
j 	=i

(λ − ϕj (z)).

Hence, a given local analytic branch λ = ϕk(z), k ∈ {1, ..., χ}, of zeroes of G(λ, z) consists of 
singular points if and only if DzG(ϕk(z), z) = 0, or, equivalently, if

0 =
χ∑

i=1

dϕi

dz
(z)

∏
j 	=i

(ϕk(z) − ϕj (z)) = dϕk

dz
(z)

∏
j 	=k

(ϕk(z) − ϕj (z)).

Therefore, the next result holds.

Theorem 7.1. Let λ = ϕk(z), z ∈ U ±
z , be a local analytic branch of zeroes of G(λ, z) bifurcating 

from (0, 0). Then, either this branch consists of regular solutions, or it consists of singular solu-
tions. Moreover, it consists of singular solutions if and only if some of the following conditions 
occurs:

(a) ϕk : U ±
z → C is constant, i.e., there is ϕ0 ∈C such that ϕk(z) = ϕ0 for all z ∈ U ±

z .
(b) There exists another j ∈ {1, ..., χ}, j 	= k, such that ϕk = ϕj in U ±

z .

As a byproduct of Theorem 7.1, when p(λ, z) is irreducible on M(U )[λ], neither it can 
admit multiple roots in the splitting field, nor any constant function can be a root of p(λ, z). 
So, all bifurcating branches from (0, 0) consist of regular points. The next result sharpens, very 
substantially, Theorem 9.1.1 of [8] up to cover the more general case when χ ≥ 1, where the 
main result of Crandall and Rabinowitz [9] fails.
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Theorem 7.2. Let F ∈ Cω(R × U, V ) be an analytic map satisfying (F1)–(F4). Suppose that 
there exists an analytic injective curve γ : (0, 1) → R × U such that γ (0, 1) ⊂ F−1(0)\T , 
limt↓0 γ (t) = (0, 0), and γ (0, 1) ⊂ R(F). Then, there exists a locally injective continuous path 
� : [0, ∞) → R × U , with �([0, ∞)) ⊂ F−1(0), for which there exists 0 < δ < 1 satisfying 
�(t) = γ (t) for all t ∈ (0, δ). Moreover, � satisfies one of the following non-excluding alter-
natives:

(a) limt↑∞ ‖�(t)‖R×U = +∞.
(b) � is a closed loop, i.e., there exists T > 0 such that �(T ) = (0, 0).

In particular, when the associated Weierstrass polynomial, p(λ, z), is irreducible, every analyti-
cal curve of F−1(0) emanating from (0, 0) can be extended to a locally injective continuous path 
� : [0, +∞) → R × U on F−1(0) satisfying some of these alternatives.

Proof. As the proof of this result follows, almost mutatis mutandis, the proof of [8, Th. 9.1.1], 
we simply sketch it. It relies on the theorem of structure of analytic manifolds [8, Th. 7.4.7]. 
According to it, either F−1(0) consists of singular points, or its set of singular points is discrete. 
As γ is a local branch consisting of regular points, necessarily the set of singular points of F−1(0)

is discrete. On the other hand, by complexifying U , it follows from the theorem of structure of 
analytic varieties [8, Th.7.4.7] and the parametrization theorem [8, Cor.7.5.3] that any arc of 
analytic branch can be prolonged, after passing any singular point, to another branch of analytic 
curve. After taking the maximal route (see Step 3 of page 118 of [8]), we conclude the existence 
of the extension curve. Finally, if condition (a) fails, since the bounded subsets of F−1(0) are 
compact, there exists an accumulation point that must coincide with a singular point. By the 
definition of maximal route, � must be a closed loop (see p. 119 of [8] for any further detail). �

The global alternatives of Theorems 5.12 and 7.2 are independent. Indeed, if the connected 
component of F−1(0) bifurcating from (0, 0), say C, is bounded, then, according to Theo-
rem 7.2, F−1(0) contains a closed loop. But this does not entail, necessarily, the existence of 
some (λ1, 0) ∈ C with λ1 	= 0, as it is guaranteed by Theorem 5.12 when, in addition, χ is odd. 
Conversely, when C is bounded and χ is odd, then, owing to Theorem 5.12, (λ1, 0) ∈ C for some 
λ1 	= 0, though this does not entail that any local analytic curve bifurcating from (0, 0) can be 
continued to a global closed loop.

Such an independence is far from surprising, as these global alternatives are of a completely 
different nature: algebraic the one of Theorem 7.2 and topological the classical one of Theo-
rem 5.12. Actually, the proof of Theorem 7.2 does not invoke the degree, which was essential 
for the proof of Theorem 5.12, but simply the theorem of structure of analytic varieties, which 
remained outside the proof of Theorem 5.12. Thus, it should not come to surprise that they are 
alternatives of a rather different nature, though certainly reminiscent.

7.1. Global graphs

In this section, inspired by a novel idea of Dancer [12, Th.3], we study the global structure 
of the zero set of an analytic nonlinearity satisfying the special conditions set out below. Given 
a pair (U, V ) of real Banach spaces, we consider an analytic map F ∈ Cω(R × U, V ) satisfying 
the following properties:
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(F1) F(λ, 0) = 0 for all λ ∈R.
(F2) DuF(λ, u) ∈ �0(U, V ) for all (λ, u) ∈ R × U .
(F3) dimN [DuF(λ, u)] ∈ {0, 1} for all (λ, u) ∈ R × U .

These assumptions are fulfilled in most of the applications involving one-dimensional nonlinear 
boundary value problems. The next definition introduces the concept of analytic graph that we 
are going to use in this section to describe the global structure of the zero set of F.

Definition 7.3 (Analytic graph). A closed subset A 	= ∅ of R ×U is said to be an analytic graph 
when, for every (λ, u) ∈ A , one of the following excluding options occurs:

(a) There exists ε > 0 such that Bε(λ, u) ∩ A is the graph of an injective analytic curve γ :
(−δ, δ) → R × U , γ (0) = (λ, u), i.e., Bε(λ, u) ∩ A = γ ((−δ, δ)). In such case, (λ, u) is 
said to be an edge point.

(b) Item (a) does not occur and there exists ε > 0 such that either Bε(λ, u) ∩ A = {(λ, u)}, 
or Bε(λ, u) ∩ A consists of the point (λ, u) and N ≥ 1 graphs of analytic injective curves 
γi : (0, 1) → R × U , (λ, u) /∈ γi((0, 1)), i ∈ {1, · · · , N}, such that γi(t) → (λ, u) as t ↑ 1, 
i.e.,

Bε(λ,u) ∩ A =
N⋃

i=1

γi((0,1)) ∪ {(λ,u)}.

In such case, (λ, u) is called a vertex, or nodal point.
(c) There exists ε > 0, an open subset � ⊂ R2 and an analytic homeomorphism � : � →

Bε(λ, u) ∩ A . In such case, (λ, u) is called a residual point.

For any given analytic graph, A , we will denote by GA the set of edge points of A , by VA
the set of vertex points of A and by RA the set of residual points of A . From the definition 
we infer that GA and RA are open subsets of A and that VA is closed in A . We define the 
skeleton of A by KA := VA � GA . It is easy to see that KA is an open subset of A . Clearly, 
A = KA �RA and KA ∩RA = ∅. The main result of this section reads as follows.

Theorem 7.4. Let F ∈ Cω(R × U, V ) satisfying (F1)–(F3). Then, F−1(0) is an analytic graph of 
R × U .

Proof. Pick a point (λ0, u0) ∈ F−1(0). Then, either DuF(λ0, u0) ∈ GL(U, V ), or, due to (F3), 
we have that

dimN [DuF(λ0, u0)] = 1. (7.1)

Suppose that DuF(λ0, u0) ∈ GL(U, V ). Then, by the implicit function theorem, in a neighbor-
hood of (λ0, u0), F−1(0) consists of the graph of an injective analytic curve through the point 
(λ0, u0). Therefore, (λ0, u0) is an edge point.

Suppose (7.1). In this case, N [DuF(λ0, u0)] = span{ϕ} for some ϕ ∈ U\{0}. By the Hahn–
Banach theorem, there exists ϕ∗ ∈ U∗ such that 〈ϕ, ϕ∗〉 = 1. Let P : U → N [DuF(λ0, u0)] be 
the continuous projection defined by P(u) := 〈u, ϕ∗〉ϕ for all u ∈ U , and consider any other 
continuous projection Q : V → R[DuF(λ0, u0)]. Then,
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U = N [DuF(λ0, u0)] ⊕ Y (Y = N [P ]), V = Z ⊕ R[DuF(λ0, u0)] (Z = N [Q]).

In the sequel, we identify R × N [DuF(λ0, u0)] with R2 via the linear isomorphism

T : R× N [DuF(λ0, u0)] −→ R2, T (λ, zϕ) = (λ,L[zϕ]),

where, L : N [DuF(λ0, u0)] −→ R is defined by L[zϕ] := z, and we identify Z with R via 
another fixed isomorphism S : Z → R. As in Section 6.1, performing a Lyapunov–Schmidt re-
duction to F(λ, u) = 0 on (λ0, u0) under the pair of DuF(λ0, u0)-projections (P, Q), it becomes 
apparent that there are a neighborhood U of (λ0, 0) in R × N [DuF(λ0, u0)], a neighborhood O
of (λ0, u0) in R × N [DuF(λ0, u0)], and an analytic operator Y : U → Y such that the maps

� : F−1(0) ∩O −→ G−1(0), (λ,u) �→ (λ, 〈u − u0, ϕ
∗〉),

�−1 :G−1(0) −→ F−1(0) ∩O, (λ, z) �→ (λ,u0 + zϕ +Y(λ, zϕ)),

are mutually inverses, where G : � ⊂ R ×R −→R, G = G(λ, z), is given by

G(λ, z) := S(IV − Q)F(λ,u0 + zϕ +Y(λ, zϕ)), (λ, z) ∈ �,

where � := {(λ, z) : (λ, zϕ) ∈ U} ⊂ K ×K. In particular, G(λ0, 0) = 0. If G ≡ 0 in �, then the 
map �−1 : � → F−1(0) ∩O, (λ, z) �→ (λ, u0 + zϕ +Y(λ, zϕ)), is an analytic homeomorphism 
and consequently (λ0, u0) is a residual point. So, subsequently we suppose that G 	≡ 0. Let α ∈
N ∪ {0} be the minimum integer such that

ξ := ordλ=λ0 Dα
z G(λ,0) < ∞. (7.2)

The existence of α is guaranteed by the fact that G ≡ 0 if Dβ
λ Dα

xG(λ0, 0) = 0 for all α, β ∈
N ∪ {0}. By (7.2), there exists an analytic function g : � → R such that G(λ, z) = zαg(λ, z) for 
all (λ, z) ∈ �. A direct computation shows that ξ = ordλ=λ0 g(λ, 0). Thus, by the Weierstrass 
preparation theorem, there exists a neighborhood U ⊂ � of (λ0, 0), such that

G(λ, z) = zαc(λ, z)
[
(λ − λ0)

ξ + cξ−1(z)(λ − λ0)
ξ−1 + · · · + c0(z)

]
, (λ, z) ∈ U ,

for some analytic function c : U → R, with c(λ0, 0) 	= 0, and ξ analytic functions cj : Uz → R, 
with cj (0) = 0 for all 0 ≤ j ≤ ξ − 1. Then, setting U +

z := (a, 0), U −
z := (0, b) and adapting the 

argument of Section 6.4, it becomes apparent that there exist ξ analytic functions ϕi : U ±
z →C, 

1 ≤ i ≤ ξ , such that

G(λ, z) = zαc(λ, z)

ξ∏
i=1

(λ − λ0 − ϕi(z)), z ∈ U ±
z .

Thus, in a neighborhood of the point (λ0, u0), F−1(0) consists of, at most, 2ξ + 2 graphs of 
injective analytic curves and the point (λ0, u0). Therefore, (λ0, u0) is a vertex point. Indeed, 
either it is isolated, or there emanate from it finitely many arcs of (real) analytic curve. This 
concludes the proof. �
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Actually, the proof of Theorem 7.4 shows that every subset of F−1(0) is also an analytic graph. 
Finally, let us apply Theorem 7.4 to a paradigmatic one-dimensional boundary value problem. 
Given a ∈ C[0, π] and an integer p ≥ 2, we consider the boundary value problem

{−u′′ = λu + a(x)up in (0,π),

u(0) = u(π) = 0,
(7.3)

whose solutions are the zeros of the analytic nonlinear operator

F : R× C2
0 [0,π] −→ C[0,π], F(λ,u) := u′′ + λu + a(x)up.

It is straightforward to verify that F satisfies hypothesis (F1)–(F3) of this section. Thus, by The-
orem 7.4, the set F−1(0) is an analytic graph. Moreover, the set of non-trivial solutions

S = [F−1(0)\T ] � {(λ,0) : λ ∈ 
(L)},
is also an analytic graph as S ⊂ F−1(0). On the other hand, by the local theorem of Crandall 
and Rabinowitz [9] and the global alternative of Rabinowitz [51], it is folklore that, for every 
integer n ≥ 1, the set of non-trivial solutions S admits a connected component, Cn, with (λ, u) =
(n2, 0) ∈ Cn, which is unbounded in R × C2

0 [0, π]. Moreover, by the maximum principle, since 
the number of nodes of the solutions along Cn is constant, it turns out that Cn ∩ Cm = ∅, n 	= m. 
Note that, for each n ≥ 1, we have that Cn ∩KS 	= ∅ and S = KS �RS , where KS is the skeleton 
of S and RS its residual set. Thus, since Cn is a connected component of S and both, KS and RS
are open, it becomes apparent that Cn ⊂ KS . This shows that actually each of the components 
Cn, n ≥ 1, consists of a discrete set of analytic arcs of curve (edge points) plus a discrete set of 
branching points (vertex points).

8. A degenerate one-dimensional problem

In this section we apply the previous theory to the following nonlinear one-dimensional 
boundary value problem

{−u′′ = λu′ + u + (λ − u2)u2 in (0,π),

u(0) = u(π) = 0.
(8.1)

Considering the Hilbert spaces U ≡ H 2(0, π) ∩ H 1
0 (0, π) and V ≡ L2(0, π), with the inner 

products 〈u, v〉V := (∫ π

0 uv
) 1

2 , u, v ∈ V , and

〈u,v〉U := 〈u,v〉V + 〈u′, v′〉V + 〈u′′, v′′〉V , u, v ∈ U,

the solutions of (8.1) can be viewed as the zeroes of the nonlinear operator F : R × U → V

defined by

F(λ,u) := u′′ + λu′ + u + (λ − u2)u2, (λ,u) ∈ R× U.

Since F is polynomial in λ and u, it is analytic in (λ, u) ∈ R × U (see, e.g., Henry [24]). More-
over, for every (λ0, u0) ∈ F−1(0) and u ∈ U ,
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DuF(λ0, u0)u = u′′ + λu′ + u + 2λ0u0u − 4u3
0u = u′′ + λu′ + u + W(x)u,

where W = 2λ0u0 − 4u3
0. Thus, by the Sturm–Liouville theory, N [DuF(λ0, u0)] is at most one-

dimensional. Moreover, by the Rellich–Kondrachov theorem, the embedding J : U ↪→ V is 
compact, and, thanks to the Lax–Milgram theorem, for every λ ∈R, there exists μ0 = μ0(λ) ∈ R
such that, setting D = d

dx
,

D2 + λD + (1 + W)J + μJ ∈ GL(U,V ) for all μ < μ0. (8.2)

Thus, since

D2 + λD + (1 + W)J = D2 + λD + (1 + W)J + μJ − μJ,

is a compact perturbation of an invertible operator, it becomes apparent that DuF(λ0, u0) ∈
�0(U, V ) for all λ ∈ R. Therefore, the conditions (F1)–(F3) of Section 7.1 are fulfilled. Con-
sequently, as a direct consequence of Theorem 7.4, we have that F−1(0) is an analytic graph of 
R × U . Note that

L(λ)u := DuF(λ,0)u = u′′ + λu′ + u, u ∈ U,

whose generalized spectrum, 
(L), consists of the values λ ∈R for which the problem

{−u′′ = λu′ + u in (0,π),

u(0) = u(π) = 0,
(8.3)

admits a solution u 	= 0. Since L(λ) is analytic in λ, thanks to (8.2), we find from [31, Th. 4.4.4]
that 
(L) is discrete. Obviously, 0 ∈ 
(L) and

N [L(0)] = span[ϕ0], ϕ0(x) :=
√

2

π
sinx, x ∈ [0,π].

Actually, 
(L) = {0}. Indeed, the change of variable u = e− λ
2 xv transforms (8.3) into

{−v′′ = 4−λ2

4 v in (0,π),

v(0) = v(π) = 0,
(8.4)

and hence, λ ∈ 
(L) if and only if 4 − λ2 = 4n2 for some integer n ≥ 1, whose unique real 
solution is λ = 0 for the choice n = 1.

Our main goal is applying the results of Sections 6 and 7 for ascertaining the structure of 
F−1(0). Since L1u ≡ L′(0)u = u′ for all u ∈ U , we have that L1(ϕ0) = φ0, where φ0(x) =√

2
π

cosx, x ∈ [0, π]. Thus, since R[L0] =
{
f ∈ L2(0,π) : 〈f,ϕ0〉V = 0

}
, it is apparent that 

φ0 ∈ R[L0], where we are denoting L0 = L(0). Thus, λ0 = 0 is not a 1-transversal eigenvalue 
of L(λ), i.e., the transversality condition of Crandall and Rabinowitz (see (2.4)) fails. Actually, 
since L(n)(λ) = 0 for all λ ∈ R and n ≥ 2, 0 cannot be a transversal eigenvalue of L(λ) of any 
order. Indeed, the change of variable u = e− λ

2 xv, transforms the eigenvalue perturbation problem
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{
u′′ + λu′ + u = μ(λ)u in (0,π),

u(0) = u(π) = 0,

into {
v′′ +

(
1 − λ2

4 − μ(λ)
)

v = 0 in (0,π),

v(0) = v(π) = 0,

and provides us with the perturbed eigenvalue from λ = 0 of L(λ), μ(λ) = −λ2

4 . Thus, since 
μ(0) = μ′(0) = 0 and μ′′(0) 	= 0, it follows from [37, th. 4.3.3] that χ[L, 0] = 2. Since χ = 2, 
Theorem 4.1 cannot guarantee the existence of a continuum emanating from (0, 0) ∈ R × U . 
Thus, the techniques developed in Sections 6 and 7 are imperative to analyze the structure of 
F−1(0).

8.1. Local structure of the solution set:

As in this setting V = L2(0, π), we have that V ′ = L2(0, π). Thus, the duality pairing 〈·, ·〉 :
V × V ′ → R is given through 〈f, g〉 := ∫ π

0 fg dx for all f, g ∈ L2(0, π). In this way, we can 
choose ϕ∗

0 = ϕ0 and in particular 〈ϕ0, ϕ∗
0 〉 = 1. Let us consider the pair P = (P, Q) of L0-

projections,

P : L2(0,π) → N [L0], P (u) := 〈u,ϕ0〉ϕ0, Q : L2(0,π) → R[L0], Q := IV − P.

As already described in Section 6.1, performing a Lyapunov–Schmidt reduction to F(λ, u) = 0
at (0, 0) ∈ R × U under the pair of L0-projections (P, Q), it is easily seen that there exist a 
neighborhood U of (0, 0) in R × N [L0], a neighborhood O of (0, 0) in R × U , and an analytic 
operator Y : U → R[L0] such that the maps

� : F−1(0) ∩O → G−1(0), (λ,u) �→ (λ, 〈u,ϕ0〉),
�−1 :G−1(0) → F−1(0) ∩O, (λ, z) �→ (λ, zϕ0 +Y(λ, zϕ0)),

(8.5)

are inverses of each other, where the operator G : U ⊂ R2 → R, G = G(λ, z), is given by

G(λ, z) := 〈F(λ, zϕ0 +Y(λ, zϕ0)), ϕ0〉, (8.6)

with U := {(λ, z) : (λ, zϕ0) ∈ U} ⊂ R2. Since G(λ, 0) = 0, there exists an analytic function g :
U → R such that G(λ, z) = zg(λ, z) for all (λ, z) ∈ U . To apply Theorem 6.8, it is appropriate 
to express the operator F in the form

F(λ,u) = L(λ)u + λL1
2u

2 + L0
4u

4, (λ,u) ∈R× U,

where the symmetric operators L1
2 ∈ S2(U, V ), L0

4 ∈ S4(U, V ), are given by

L1
2(u1, u2) := u1u2, u1, u2 ∈ U,

L0
q(u1, u2, u3, u4) := −u1u2u3u4, u1, u2, u3, u4 ∈ U,
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(1,1)

(0,2)

(3,0)

j

�

Fig. 3. Newton diagram of g(λ, z).

which is consistent with the notations used in the expansion (6.23). In particular,

L1
2u

2 = u2, L0
4u

4 = −u4, u ∈ U.

According to Theorem 6.8, and taking into account that μ(λ) = −λ2

4 , it becomes apparent that

G(λ, z) = z
(

− 1

4
λ2 + 〈ϕ2

0 , ϕ0〉zλ − 〈ϕ4
0 , ϕ0〉z3 +

∑
j,k

Cj,kλ
j zk

)

= z
(

− 1

4
λ2 + 8

3π

√
2

π
zλ − 64

15π2

√
2

π
z3 +

∑
j,k

Cj,kλ
j zk

)
= zg(λ, z),

where the summation of the second sum is taken only on the points (k, j) lying above the polyg-
onal line joining (0, 2), (1, 1) and (3, 0) (see Fig. 3). Owing the Newton–Puiseux algorithm, we 
obtain the following asymptotic expansion for the solutions of g(λ, z) = 0 close to (0, 0),

z(λ) = 1

4〈ϕ2
0 , ϕ0〉

λ + O(λ) = 3π

32

√
π

2
λ + O(λ) as λ → 0,

z(λ) = ±
√

〈ϕ2
0, ϕ0〉

〈ϕ4
0, ϕ0〉

√
λ + O(

√
λ) = ±

√
5π

8

√
λ + O(

√
λ) as λ ↓ 0.

(8.7)

On the other hand, since χ[L, 0] = 2, it follows from Lemma 6.2 that χ[L, 0] = ordλ=0 g(λ, 0) =
2. Thus, by the Weierstrass preparation theorem [8, Th. 5.3.1], shortening the neighborhood U =
Uλ × Uz ⊂ R2 if necessary, there exists an analytic function c : U → R such that c(0, 0) 	= 0, 
plus χ = 2 analytic functions, cj : Uz →R with cj (0) = 0 for j = 1, 2, such that

g(λ, z) = c(λ, z)
[
λ2 + c1(z)λ + c2(z)

]
.

Hence for every z ∈ Uz, the equation g(λ, z) = 0 has, at most, two solutions. This shows that 
indeed, the solutions (8.7), are the unique ones of g(λ, z) = 0 in a neighborhood of (0, 0). Fig. 4
represents these branches.
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λ

z

Fig. 4. g−1(0) in a neighborhood of (0, 0). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

8.2. Global structure of the solution set:

Throughout the rest of this section, we will study the global structure of the set of positive 
solutions of the problem (8.1). The next result shows that any small solution of (8.1) must be 
either positive or negative.

Lemma 8.1. There exists ε > 0 such that if (λ, u) solves (8.1) with |λ| + ‖u‖∞ ≤ ε, then, either 
u > 0, or u < 0.

Proof. On the contrary, suppose that there exists a sequence of solutions of (8.1), {(λn, un)}n≥1, 
such that

lim
n→∞(λn,un) = (0,0) in R× C[0,π] (8.8)

and un changes sign in (0, π); in particular, un 	= 0. Then, for every n ≥ 1, the functions vn(x) :=
e

λn
2 xun(x), x ∈ [0, π], satisfy vn(0) = vn(π) = 0 and

vn = K
[(

1 − λ2
n

4

)
vn +

(
λn − e−λnxv2

n

)
e− λn

2 xv2
n

]
, (8.9)

where, for every f ∈ C[0, π], we have denoted

K[f ](x) :=
x∫

0

(s − x)f (s) ds − x

π

π∫
0

(s − π)f (s) ds.

Note that u ≡K[f ] is the unique solution of −u′′ = f in [0, π] such that u(0) = u(π) = 0. Thus, 
setting ψn := vn‖vn‖∞ , n ≥ 1, and dividing (8.9) by ‖vn‖∞ yields to

ψn = K
[(

1 − λ2
n

4

)
ψn +

(
λn − e−λnxv2

n

)
e− λn

2 xvnψn

]
, n ≥ 1. (8.10)

By (8.8) and the definition of the vn’s, the sequence of continuous functions

fn :=
(

1 − λ2
n

)
ψn +

(
λn − e−λnxv2

n

)
e− λn

2 xvnψn, n ≥ 1,

4
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is bounded in C[0, π]. Thus, since K : C[0, π] → C1[0, π] is a compact operator, along some 
subsequence, relabeled by n, one has that limn→∞ ψn = ψ in C1[0, π]. In particular, ‖ψ‖∞ =
1. On the other hand, letting n → ∞ in (8.10), it becomes apparent that ψ = Kψ and hence, 
either ψ(x) = sinx for all x ∈ [0, π], or ψ(x) = − sinx for all x ∈ [0, π]. Therefore, vn must 
be positive for sufficiently large n if ψ(x) = sinx, whereas it is negative in (0, π) if ψ(x) =
− sinx. This contradicts the assumption that un, and so vn, change sign as n → ∞, and ends the 
proof. �

In the Lyapunov–Schmidt reduction above, by (8.5), we have z = 〈u, ϕ0〉. Thus, an integration 
by parts yields

z = 〈u,ϕ0〉 =
π∫

0

uϕ0 dx +
π∫

0

u′ϕ′
0 dx +

π∫
0

u′′ϕ′′
0 = 3

π∫
0

uϕ0.

Hence, by Lemma 8.1, it follows that the solutions of G(λ, z) = 0 are positive for z > 0 and 
negative for z < 0. Therefore, according to the asymptotic expansions (8.7), for λ > 0 there 
emanate from (0, 0) two branches of positive solutions and one branch of negative solutions, 
while another branch of negative solutions emanates for λ < 0, as illustrated by Fig. 4. We have 
represented the positive solutions in blue color while the negative ones have been represented in 
green color.

We conclude this section by analyzing the structure of the set of positive solutions of (8.1). 
The next result shows that λ > 0 is necessary for the existence of a positive solution.

Lemma 8.2. The problem (8.1) cannot admit any positive solution if λ ≤ 0.

Proof. Suppose (8.1) has a positive solution, u. Then, multiplying (8.1) by u and integrating in 
(0, π), it follows that

−
π∫

0

u′′udx = λ

π∫
0

u′udx +
π∫

0

u2 dx +
π∫

0

(λ − u2)u3 dx.

Moreover, since u(0) = u(π) = 0,

π∫
0

u′′udx =
π∫

0

(u′u)′ dx −
π∫

0

(u′)2 dx = −
π∫

0

(u′)2 dx,

π∫
0

u′udx = 1

2

π∫
0

(u2)′ = 0.

Thus,

π∫
(u′)2 dx =

π∫
u2 dx +

π∫
(λ − u2)u3 dx.
0 0 0

232



J. López-Gómez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182–250
On the other side, it is well known that 
∫ π

0 u2 dx ≤ ∫ π

0 (u′)2 dx for all u ∈ C1
0 [0, π]. Therefore, ∫ π

0 (λ − u2)u3 dx ≥ 0. Consequently, λ > 0, which ends the proof. �
The next result provides us with some useful estimates for the positive solutions of (8.1).

Lemma 8.3. Let (λ, u) be a positive solution of (8.1). Then, λ > 0 and

‖u‖∞ ≤ √
λ + 1. (8.11)

Proof. By Lemma 8.2, λ > 0. Let x0 ∈ (0, π) be such that u(x0) = ‖u‖∞ = max[0,π] u. Then, 
u′(x0) = 0 and u′′(x0) ≤ 0. Thus,

0 ≤ −u′′(x0) = λu′(x0) + u(x0) + (λ − u2(x0))u
2(x0) = u(x0) + (λ − u2(x0))u

2(x0).

Hence, since u(x0) > 0, 1 + (λ − u2(x0))u(x0) ≥ 0. Consequently, setting P(z) := z3 − λz −
1, z ∈ R, we have that P(‖u‖∞) ≤ 0. Since P ′(z) = 3z2 − λ, it is easily seen that the cubic 
polynomial P(z) has a local maximum at −√

λ/3, a local minimum at 
√

λ/3, and it satisfies 
P(0) = −1 < 0. Since P(‖u‖∞) ≤ 0, necessarily ‖u‖∞ ∈ (0, τ(λ)), where τ(λ) is the unique 
positive root of P . Moreover, since

P(
√

λ + 1) = (
√

λ + 1)3 − λ(
√

λ + 1) − 1 = 2λ + 3
√

λ > 0

for all λ > 0, then τ(λ) ≤ √
λ + 1. Therefore, (8.11) holds. �

As a consequence of Lemma 8.3, the next result holds.

Lemma 8.4. Let (λ, u) be a positive solution of (8.1). Then,

0 < λ ≤ 4(1 + √
2)2. (8.12)

Proof. The change of variable v = e
λ
2 xu transforms the problem (8.1) into the next one

{
−v′′ = 4−λ2

4 v + (
λ − e−λxv2

)
e− λ

2 xv2, x ∈ [0,π],
v(0) = v(π) = 0.

(8.13)

Multiplying the v-differential equation by v and integrating by parts in (0, π) yields to

π∫
0

(v′)2 dx =
π∫

0

4 − λ2

4
v2 dx +

π∫
0

(
λ − e−λxv2

)
e− λ

2 xv3 dx.

Thus, since 
∫ π

0 v2 ≤ ∫ π

0 (v′)2 dx, it is apparent that

λ2

4

π∫
v2 dx ≤

π∫ (
λ − e−λxv2

)
e− λ

2 xv3 dx ≤ λ

π∫
uv2 dx.
0 0 0
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Therefore, combining this estimate with (8.11), we find that λ4 ≤ 1 +√
λ. From this estimate, the 

proof is straightforward. �
Subsequently, we will say that a function u ∈ C1

0 [0, π] is strongly positive if u(x) > 0 for 
every x ∈ (0, π), u′(0) > 0, and u′(π) < 0. In such case, we simply write u � 0. Similarly, it is 
said that a function u ∈ C1

0 [0, π] is strongly negative if −u � 0, i.e., u � 0. We claim that any 
positive (resp. negative) solution of (8.1) is strongly positive (resp. negative). Indeed, suppose 
that u � 0 is a positive solution of (8.1) such that either u′(0) = 0, or u′(π) = 0, or u(η) = 0
for some η ∈ (0, π). Then, since u′(η) = 0 in the latest case, in any of these cases there exists 
x0 ∈ [0, π] for which u satisfies the Cauchy problem

{−u′′ = λ0u
′ + u + (λ − u2)u2 in (0,π),

u(x0) = 0, u′(x0) = 0.
(8.14)

By the Cauchy–Lipschitz theorem, there exists a unique maximal solution u ∈ C2 of (8.14). By 
uniqueness, u = 0, which contradicts u � 0. Therefore, u � 0. Similarly, any negative solution 
must be strongly negative. Based on this positivity result, the next result holds.

Lemma 8.5. Let {(λn, un)}n∈N ⊂ F−1(0) be a sequence of positive (resp. negative) solutions of 
(8.1), such that limn→∞(λn, un) = (λ0, u0) ∈ F−1(0) in R × U . Then, either u0 � 0, or u0 = 0. 
In other words, the unique way to abandon the interior of the positive cone of the ordered Banach 
space C1

0 [0, π] is through u = 0.

Proof. We will detail the proof of the result when un � 0, n ≥ 1, since the case when un � 0 is 
analogous. Since un → u0 in U as n → ∞ and U ↪→ C1[0, π], we have that un → u0 in C1[0, π]
as n → ∞. This implies that u0 ≥ 0 in [0, π]. Thus, either u0 � 0, or u0 ≡ 0, and, should the 
first case occurs, we already know that u0 � 0. This ends the proof. �

This section finalizes by proving that, there is a loop of positive solutions of (8.1) emanating 
from u = 0 at λ = 0. The existence of a connected component of the set of positive solutions

S := {(λ,u) ∈ F−1(0) : u � 0} ⊂ R× U,

bifurcating from (λ, u) = (0, 0) has been already established. More precisely, we already know 
that there emanate from (0, 0) two analytic arcs of positive solutions γi : (0, ε) → R × U of the 
form γi(λ) = (λ, ui(λ)), with limλ↓0 ui(λ) = 0, i ∈ {1, 2}. The connected components of the set 
of positive solutions S containing to each of the curves γ1 and γ2, locally at (0, 0), will be called 
C +

1 and C +
2 , respectively.

Theorem 8.6. Under the previous assumptions, C +
1 = C +

2 . Moreover each of the local curves 
γi : (0, ε) → R ×U can be continued to a global locally injective continuous curve �i : (0, T ) →
C +

i such that �i |[T −δ,T ) = γj for some δ > 0 and j ∈ {1, 2}\{i}. Thus, there is a loop of positive 
solutions of (8.1) with vertex at (0, 0).

Proof. Once given the local curve γ1 : (0, ε) → R ×U and the component C +
1 , in order to apply 

Theorem 7.2, we should make sure that, for sufficiently small ε > 0, the set γ1(0, ε) ⊂ F−1(0)

consists of regular points of F. By the local analysis already done in Section 6.1, the regular and 
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singular points of F in F−1(0) ∩ O are in analytical correspondence with those of the reduced 
map G(λ, z) = zg(λ, z), (λ, z) ∈ U . So, it suffices to prove that, near (0, 0), the set G−1(0)

does not contain any singular point of G different form (0, 0). By the Weierstrass preparation 
theorem, shortening the neighborhood U = Uλ ×Uz ⊂ R2, if necessary, there exists an analytic 
function c : U → R such that c(0, 0) 	= 0, plus χ = 2 analytic functions, cj : Uz →R, cj (0) = 0, 
j = 1, 2, such that

g(λ, z) = c(λ, z)
[
λ2 + c1(z)λ + c2(z)

]
.

Hence, we can express G : U → R in the form

G(λ, z) = zc(λ, z)
[
λ2 + c1(z)λ + c2(z)

]
.

By the local analysis already done in Section 8.1 (see Fig. 4), for every z ∈ Uz\{0}, the equation 
G(λ, z) = 0 has two positive different solutions in λ ∈ Uλ. Thus, there are two analytic maps, 
ϕj : (−δ, δ)\{0} → R, j = 1, 2, such that

G(λ, z) = zc(λ, z)(λ − ϕ1(z))(λ − ϕ2(z)), z ∈ Uz\{0}.
By a direct computation it follows that (λ, z) ∈ G−1(0) ∩ U , (λ, z) 	= (0, 0), is a singular point, 
i.e., DzG(λ, z) = 0, if and only if ϕ1(z) = ϕ2(z) or ϕ′

j (z) = 0 for some j = 1, 2. According to 
(8.7), for sufficiently small U , this is not possible. Therefore, γ1 : (0, ε) → R × U consists of 
regular points for sufficiently small ε > 0. By Theorem 7.2, γ1 admits a prolongation to a global 
locally injective continuous map �1 : [0, ∞) → R × U , �1([0, ∞)) ⊂ F−1(0), satisfying one of 
the alternatives (a) or (b). Due to Lemma 8.5, �1([0, ∞)) ⊂ C +

1 . Thanks to Lemmas 8.3 and 8.4, 
�1([0, ∞)) is bounded. Therefore, the alternative (a) cannot occur. Consequently, there exists 
some T > 0 such that �1(T ) = (0, 0). As in a neighborhood of (0, 0) the set of positive solutions 
consists of the graphs of γ1 and γ2, being �1 is locally injective, it follows that, modulus a re-
parametrization (if necessary), �1|(T −δ,T ] = γ2. This implies, in particular, that C +

1 = C +
2 and 

concludes the proof. �
9. Unilateral bifurcation at geometrically simple eigenvalues

This section is devoted to the study of the unilateral bifurcation problem. Throughout this 
section, we consider a pair (U, V ) of real Banach spaces such that

(C) U is a subspace of V with compact inclusion U ↪→ V .

We consider a map F ∈ C1(R × U, V ) satisfying the following assumptions:

(F1) F(λ, 0) = 0 for all λ ∈R.
(F2) DuF(λ, u) ∈ �0(U, V ) for all λ ∈R and u ∈ U .
(F3) F is proper on closed and bounded subsets of R × U .
(F4) The map N(λ, u) := F(λ, u) −DuF(λ, 0)u, (λ, u) ∈ R ×U , admits a continuous extension, 

also denoted by N, to R × V .
(F5) λ0 is an isolated eigenvalue of L(λ) := DuF(λ, 0) such that N [L0] = span[ϕ0] for some 

ϕ0 ∈ U with ‖ϕ0‖ = 1.
235



J. López-Gómez and J.C. Sampedro Journal of Differential Equations 404 (2024) 182–250
Let us consider a closed subspace Z ⊂ U such that U = N [L0] ⊕ Z. Then, by the Hahn–Banach 
theorem, there exists ϕ∗

0 ∈ U ′ such that

Z = {u ∈ U : 〈ϕ∗
0 , u〉 = 0} = N [ϕ∗

0 ], 〈ϕ∗
0 , ϕ0〉 = 1,

where 〈·, ·〉 stands for the 〈U ′, U 〉-duality. In particular, every u ∈ U admits a unique decompo-
sition as u = sϕ0 + z for some (s, z) ∈ R × Z. Necessarily, s := 〈ϕ∗

0 , u〉. Let ψ : U → R be a 
continuous functional such that, for some positive constants 0 < C1 < C2,

ψ(0) = 0, C1‖u‖ ≤ ψ(u) ≤ C2‖u‖ for all u ∈ U. (9.1)

Then, for every ε > 0 and η ∈ (0, 1/C2), we consider

Qε,η := {(λ,u) ∈R× U : |λ − λ0| < ε, |〈ϕ∗
0 , u〉| > ηψ(u)}.

Since the mapping u �→ |〈ϕ∗
0 , u〉| − ηψ(u) is continuous, Qε,η is an open subset of R × U , and 

it consists of the two open subsets

Q+
ε,η := {(λ,u) ∈ R× U : |λ − λ0| < ε, 〈ϕ∗

0 , u〉 > ηψ(u)},
Q−

ε,η := {(λ,u) ∈ R× U : |λ − λ0| < ε, 〈ϕ∗
0 , u〉 < −ηψ(u)}.

The following result establishes that, under the conditions of this section, the nontrivial solutions 
of F(λ, u) = 0 in a neighborhood of (λ0, 0) must lie in Qε,η. Note that (λ0, 0) might not be a 
bifurcation point of F(λ, u) = 0 from T = {(λ, 0) : λ ∈R}. We denote by S the set of non-trivial 
solutions of F(λ, u) = 0, which is given by S = [

F−1(0)\T ] ∪ {(λ, 0) : λ ∈ 
(L)}. The first 
result of this section reads as follows.

Proposition 9.1. Let (U, V ) be a pair of real Banach spaces satisfying (C) and F ∈ C1(R ×U, V )

a map satisfying (F1)–(F5). Then, for sufficiently small ε > 0, there exists δ0 = δ0(η) > 0 such 
that, for every δ ∈ (0, δ0), [S \ {(λ0, 0)}] ∩ Bδ(λ0, 0) ⊂ Qε,η .

The proof of Proposition 9.1 is based on the following lemma of technical nature.

Lemma 9.2. Let (U, V ) be a pair of real Banach spaces satisfying (C) and F ∈ C1(R × U, V ) a 
map satisfying (F1)–(F5). Then, N :R × U → V is a compact operator.

Proof. Let (λn, un) ∈ R ×U , n ≥ 1, be a bounded sequence. As {λn}n≥1 is bounded in R we can 
extract a subsequence, relabeled by n, such that limn→∞ λn = λω for some λω ∈ R. According to 
(C), we also can extract a subsequence of {un}n≥1, labeled again by n, such that limn→∞ un = vω

for some vω ∈ V . Thus, by (F3), limn→∞ N(λn, un) = N(λω, vω). �
Proof of Proposition 9.1. By (F5), there is ε0 > 0 such that 
(L) ∩ [λ0 − ε0, λ0 + ε0] = {λ0}. 
By [18, Th. 2.1], there exists a parametrix P : [λ0 − ε0, λ0 + ε0] → GL(V, U), of the restricted 
curve L : [λ0 − ε0, λ0 + ε0] → �0(U, V ), such that

K(λ) ≡ IU −P(λ)L(λ) ∈K(U) if |λ − λ0| ≤ ε0.
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As for |λ − λ0| ≤ ε0 the equation F(λ, u) = 0 can be equivalently written as P(λ)F(λ, u) = 0, it 
becomes apparent that F(λ, u) = 0 can be expressed as

u −K(λ)[u] +P(λ)N(λ,u) = 0, |λ − λ0| ≤ ε0, u ∈ U. (9.2)

Since K(λ) ∈ K(U) and, due to Lemma 9.2, P(λ)N(λ, u) : R × U → U , is compact, we have 
reduced our problem to the compact case. Thus, setting G(λ, u) := P(λ)F(λ, u), K(λ)u := u −
K(λ)u and M(λ, u) := P(λ)N(λ, u), it suffices to show the validity of the proposition for

G(λ,u) = K(λ)[u] +M(λ,u) = 0, |λ − λ0| ≤ ε0, u ∈ U. (9.3)

To prove the result, we will argue by contradiction. Should not exist δ0 satisfying the desired 
requirements, there exist two sequences, δn, n ≥ 1, and (λn, un) ∈ (S\{(λ0, 0)}) ∩ Bδn(λ0, 0), 
n ≥ 1, such that

lim
n→∞ δn = 0 and (λn,un) /∈ Qε,η for all n ≥ 1.

Since (λn, un) ∈ Bδn(λ0, 0), we have that |λn − λ0| ≤ δn < ε for sufficiently large n, say n ≥ n0. 
Thus, we can infer from (λn, un) /∈ Qε,η that

|〈ϕ∗
0 , un〉| ≤ ηψ(un) for all n ≥ n0. (9.4)

Moreover, by construction, (λn, un) ∈ S\{(λ0, 0)}. So, (λn, un) 	= (λ0, 0). On the other hand, 
as λ0 is an isolated eigenvalue of 
(L), for sufficiently large n, λn /∈ 
(L) and hence un 	= 0, 
because (λn, un) ∈ S . Consequently, since ψ(u) > 0 for all u ∈ U \ {0}, it follows from (9.3) that

un

ψ(un)
= K(λn)

un

ψ(un)
− M(λn,un)

ψ(un)
. (9.5)

Since N(λ, u) = o(‖u‖) as u → 0, by the continuity of P(λ), it follows from (9.1) and (F4) that

lim
n→∞

M(λn,un)

ψ(un)
= lim

n→∞
P(λn)N(λn,un)

ψ(un)
= lim

n→∞
P(λn)N(λn,un)

C‖un‖ = 0,

for some constant C > 0. Moreover, by (9.1) and the continuity of K(λ),

lim
n→∞‖[K(λn) −K(λ0)] un

ψ(un)
‖ = 0.

Thus, letting n → ∞ in (9.5) yields

lim
n→∞‖[IU −K(λ0)] un

ψ(un)
‖ = 0. (9.6)

On the other hand, by (9.1),

1 = ‖un‖ ≤
∥∥∥∥ un

∥∥∥∥ ≤ ‖un‖ = 1
. (9.7)
C2 C2‖un‖ ψ(un) C1‖un‖ C1
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Thus, the sequence un

ψ(un)
, n ≥ 1, is bounded and hence, since K(λ0) is compact, along some 

subsequence, relabeled by n, we find that, for some ϕ ∈ U ,

lim
n→∞K(λ0)

(
un

ψ(un)

)
= ϕ. (9.8)

Combining (9.6) with (9.8), it becomes apparent that limn→∞ un

ψ(un)
= ϕ. By (9.7), we have 

the bounds 1
C2

≤ ‖ϕ‖ ≤ 1
C1

. Thus, letting n → ∞ in (9.8) gives K(λ0)ϕ = ϕ. Equivalently, 
ϕ −P(λ0)L(λ0)[ϕ] = ϕ, and, since P(λ0) ∈ GL(U, V ), this implies that L(λ0)[ϕ] = 0. Conse-
quently, ϕ = ±‖ϕ‖ϕ0, where ϕ0 is the generator of N [L(λ0)] in (F5). Finally, letting n → ∞ in 
(9.4), we obtain that

1

C2
≤ ‖ϕ‖ = |〈ϕ∗

0 , ϕ〉| = lim
n→∞|〈ϕ∗

0 ,
un

ψ(un)
〉| = lim

n→∞
|〈ϕ∗

0 , un〉|
ψ(un)

≤ η,

which implies 1/C2 ≤ η and contradicts the choice of η ∈ (0, 1/C2). This contradiction shows 
the existence of δ0 for which [S \ {(λ0, 0)}] ∩ Bδ(λ0, 0) ⊂ Qε,η . �

The following result establishes the existence of unilateral components.

Theorem 9.3 (Unilateral components). Let (U, V ) be a pair of real Banach spaces satisfying (C) 
and F ∈ C1(R × U, V ) a map satisfying (F1)–(F5). Suppose that for sufficiently small ρ > 0,

χ[Lω, [λ−, λ+]] ∈ 2N + 1, λ− = λ0 − ρ, λ+ = λ0 + ρ, (9.9)

where Lω ∈ C ω([λ−, λ+], �0(U, V )) is any analytic curve A-homotopic to L(λ), λ ∈ [λ−, λ+]. 
Then, there exists a component C of the set of nontrivial solutions S , such that (λ0, 0) ∈ C

and, choosing ε > 0 and δ > 0 as in Proposition 9.1, there exist two closed connected sub-
sets C+

δ , C−
δ ⊂ C ∩ Bδ(λ0, 0), such that C+

δ ⊂ Q+
ε,η ∪ {(λ0, 0)}, C−

δ ⊂ Q−
ε,η ∪ {(λ0, 0)} and 

C
+
δ ∩ C

−
δ = {(λ0, 0)}. Moreover, C+

δ and C−
δ links (λ0, 0) to ∂Bδ(λ0, 0).

Proof. The existence of a component C of the set of nontrivial solutions S such that (λ0, 0) ∈ C, 
follows from Theorem 5.12. Choose ε > 0 and δ > 0 as in Proposition 9.1. Suppose no closed 
and connected subset C̃ ⊂ C ∩ Bδ(λ0, 0) exists such that C̃ ⊂ Q−

ε,η ∪ {(λ0, 0)}, (λ0, 0) ∈ C̃ and 

C̃ ∩ ∂Bδ(λ0, 0) 	= ∅. Then, arguing as in the proof of Proposition 9.1, by taking a parametrix 
P : [λ−, λ+] → GL(V, U) of L : [λ−, λ+] → �0(U, V ), the equation F(λ, u) = 0 can be equiv-
alently written in the form

G(λ,u) := P(λ)F(λ,u) = K(λ)[u] +M(λ,u) = 0, λ ∈ [λ−, λ+], u ∈ U,

where we are using the same notation as in (9.3). Subsequently, we define

M̂(λ,u) =

⎧⎪⎪⎨
⎪⎪⎩
M(λ,u) if (λ,u) ∈ Q−

ε,η,

−〈ϕ∗
0 ,u〉

ηψ(u)
M(λ,−ηψ(u)ϕ0 + z) if − ηψ(u) ≤ 〈ϕ∗

0 , u〉 ≤ 0, u 	= 0,

−M̂(λ,−u) if 〈ϕ∗, u〉 ≥ 0,
0
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where z stands for the projection of u on Z parallel to span[ϕ0]. Set

Ĝ(λ,u) := K(λ)[u] + M̂(λ,u), λ ∈ [λ−, λ+], u ∈ U. (9.10)

Clearly, M̂ satisfies the same continuity and compactness properties as M and, in addition, it 
is odd in u. Thus, Ĝ also is odd in u. However, note that M is not necessarily of class C1 and 
therefore the bifurcation theory of Sections 4 and 5 cannot be applied to this case. Nevertheless, 
thanks to the compactness, the classical bifurcation theory for compact operators collected and 
refined in [31] can be applied.

By (9.9), it follows from Theorem 3.2 that σ(L, [λ−, λ+]) = −1. Consequently, by the defi-
nition of the parity in terms of the parametrix, we obtain that

deg(P(λ−)L(λ−)) · deg(P(λ+)L(λ+)) = −1,

where deg is the Leray–Schauder degree. Thus, the Leray–Schauder degree deg(K(λ)) changes 
as λ crosses λ0. Therefore, the bifurcation theorem for compact operators [31, Th. 6.2.1] yields 
the existence of a component, Ĉ, of nontrivial solutions of Ĝ(λ, u) = 0, such that (λ0, 0) ∈ Ĉ. 
By applying the same procedure as in the proof of Proposition 9.1, shortening δ if necessary, 
we can get Ĉ∩ Bδ(λ0, 0) ⊂ Qε,η ∪ {(λ0, 0)}. Moreover, by applying [31, Cor. 6.3.2], either Ĉ is 
unbounded, or it contains a point (λ1, 0) with λ1 	= λ0. In either case, Ĉ∩ ∂Bδ(λ0, 0) ∩Qε,η 	= ∅. 
On the other hand, as Ĝ(λ, u) is odd in u, it is apparent that Ĉ ∩ Q+

ε,η = {(λ, −u) : (λ, u) ∈
Ĉ∩ Q−

ε,η}. Consequently, necessarily

Ĉ∩ ∂Bδ(λ0,0) ∩ Q−
ε,η 	= ∅. (9.11)

Moreover, since G(λ, u) = F(λ, u) for all (λ, u) ∈ Q−
ε,η , it becomes apparent that Ĉ ∩ Q−

ε,η =
C ∩Q−

ε,η. Therefore, (9.11) can be equivalently expressed in the form C ∩ ∂Bδ(λ0, 0) ∩Q−
ε,η 	= ∅, 

which contradicts our first assumption. Similarly, the result follows for Q+
ε,η. �

Under the hypothesis of Theorem 9.3, we consider the closed and connected subsets of 
S , C+ := C + ∪ {(λ0, 0)} and C− := C − ∪ {(λ0, 0)}, where C + (resp. C −) is the connected 
component of S\{(λ0, 0)} containing C+

δ \{(λ0, 0)} (resp. C−
δ \{(λ0, 0)}). The existence of these 

components is guaranteed by Theorem 9.3. In particular C±
δ ⊂ C± ⊂ C. The sets C± are called 

the unilateral components of C.

Theorem 9.4 (Unilateral global alternative). Let (U, V ) be a pair of real Banach spaces satis-
fying (C) and F ∈ C1(R × U, V ) a map satisfying (F1)–(F5). Suppose that, for sufficiently small 
ρ > 0,

χ[Lω, [λ−, λ+]] ∈ 2N + 1, λ− = λ0 − ρ, λ+ = λ0 + ρ, (9.12)

where Lω ∈ C ω([λ−, λ+], �0(U, V )) is any analytic curve A-homotopic to L(λ), λ ∈ [λ−, λ+]. 
Then, for each ν ∈ {−, +}, the unilateral component Cν whose existence has been established in 
Theorem 9.3, satisfies some of the following alternatives:

(i) Cν is not compact in R × U .
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(ii) There exists λ1 	= λ0 such that (λ1, 0) ∈ Cν .
(iii) There exist λ ∈R and z ∈ Z \ {0} such that (λ, z) ∈ Cν .

Proof. It proceeds by contradiction. Assume, for example, that C− does not satisfy any of the 
three alternatives (i)-(iii). Then, it satisfies the following properties:

(a) C− is bounded in R × U .
(b) For sufficiently small ρ > 0, the component C− is bounded away from {(λ, 0) ∈ R × U :

|λ − λ0| ≥ ρ}.
(c) C− ∩ [R × (Z\{0})] = ∅.

According to (a), since F is proper on closed and bounded sets, the component C− is compact. 
We now show that there exists η0 ∈ (0, 1/C2) such that, for every 0 < η < η0,

C− ⊂ Q−
ε,η ∪ {(λ0,0)}. (9.13)

Observe that Q−
ε,η ⊂ Q−

ε,η̃
if η > η̃. Indeed, for any given (λ, u) ∈ Q−

ε,η , since ψ(u) ≥ 0, we 

have that 〈ϕ∗
0 , u〉 < −ηψ(u) < −η̃ψ(u), and hence (λ, u) ∈ Q−

ε,η̃
. To prove (9.13) we proceed 

by contradiction. So, suppose (9.13) fails. Then, there exists a sequence, {ηn}n≥1, such that 
limn→∞ ηn = 0 for which C− must leave Q−

ε,ηn
. Thus, by Proposition 9.1, there exist δ > 0

and a sequence, (λn, un) ∈ C−\Bδ(λ0, 0), n ≥ 1, such that, for sufficiently large n ≥ 1,

〈ϕ∗
0 , un〉 = −ηnψ(un), (9.14)

because C− leaves Q−
ε,ηn

outside Bδ(λ0, 0) for sufficiently large n. Moreover, since C− is com-
pact, there exists a subsequence of (λn, un), labeled again by n, such that limn→∞(λn, un) =
(λω, uω) ∈ C−. Since (λn, un) ∈ C−\Bδ(λ0, 0), n ≥ 1, it is apparent that (λω, uω) /∈ Bδ

2
(λ0, 0). 

Moreover, thanks to (b), uω 	= 0. Furthermore, since C− is bounded and ψ is continuous, 
letting n → ∞ in (9.14) yields to 〈ϕ∗

0 , uω〉 = 0 and hence uω ∈ Z. Therefore, (λω, uω) ∈
C− ∩ [R × (Z\{0})], which contradicts (c). This contradiction shows the existence of η0 > 0
such that (9.13) holds for all η ∈ (0, η0).

Now, pick η ∈ (0, η0) and consider the map Ĝ : [λ−, λ+] × U → U defined by (9.10) in the 
proof of Theorem 9.3. Since the Leray-Schauder degree deg(K(λ)) changes as λ crosses λ0, 
by [31, Th. 6.2.1], there exists a component Ĉ of the set of nontrivial solutions of Ĝ(λ, u) = 0
bifurcating from (λ0, 0). Since Ĉ ∩ Q−

ε,η = C ∩ Q−
ε,η , by (9.13), it follows from the oddness of 

Ĝ(λ, u) in u that

Ĉ= C− ∪ {(λ,−u) : (λ,u) ∈ C−}. (9.15)

Lastly, according to (b), we have that Ĉ ∩ {(λ, 0) : λ ∈ 
} = {(λ0, 0)}. Therefore, we infer from 
[31, Cor. 6.3.2] that Ĉ is unbounded in R ×U . By (9.15), also C− must be unbounded in R ×U , 
which contradicts (a) and ends the proof. �

When the compactness assumption (C) is removed for our list of hypothesis, things do not 
work as before, by the failure of the compactness arguments involved in the proof of Propo-
sition 9.1. Nevertheless, these technical difficulties can be overcome if λ0 is a 1-transversal 
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eigenvalue and, in addition, ψ is differentiable. In the special case when ψ(u) = ‖u‖, our cor-
responding results provide us with the unilateral theorem of Shi and Wang [53], whose proof 
follows the same general patterns as the proof of Theorem 6.4.3 of López-Gómez [31].

Subsequently, we consider two real Banach spaces, U, V , and an operator F ∈ C1(R × U, V )

satisfying the following assumptions:

(F1) F(λ, 0) = 0 for all λ ∈R.
(F2) F is orientable.
(F3) DuF(λ, u) ∈ �0(U, V ) for all λ ∈R and u ∈ U .
(F4) F is proper on closed and bounded subsets of R × U .
(F5) λ0 is an isolated eigenvalue of L(λ) := DuF(λ, 0) such that N [L(λ0)] = span[ϕ0] for some 

ϕ0 ∈ U with ‖ϕ0‖ = 1 and L′(λ0)ϕ0 /∈ R[L(λ0)], i.e., χ[L, λ0] = 1.

We keep the same notations as above for Z, S , Qε,η and Q±
ε,η. By (F5), one can adapt the proof 

of the main theorem of Crandall and Rabinowitz [9], to show that there exist ε > 0 and two 
continuous functions, μ : (−ε, ε) → R and φ : (−ε, ε) → Z, such that μ(0) = λ0, φ(0) = 0, and 
F−1(0) consists, in a neighborhood of (λ0, 0), of the trivial branch {(λ, 0) : λ ∼ λ0} and the curve 
(μ(s), s[ϕ0 +φ(s)]), s ∼ 0. In this case, since the component emanating from (λ0, 0) has locally 
the form (μ(s), s[ϕ0 + φ(s)]), for sufficiently small ε > 0, there exists δ0 = δ0(η) > 0 such that, 
for every δ ∈ (0, δ0),

[S \ {(λ0,0)}] ∩ Bδ(λ0,0) ⊂ Qε,η. (9.16)

Theorem 9.5. Suppose F satisfies (F1)–(F5) and ψ is of class C1. Then, the set of nontrivial 
solutions, S , possesses a connected component C such that (λ0, 0) ∈ C and, choosing ε > 0 and 
δ > 0 as in (9.16), there exist two closed connected subsets C+

δ , C−
δ ⊂ C ∩ Bδ(λ0, 0) such that 

C
+
δ ⊂ Q+

ε,η ∪ {(λ0, 0)}, C−
δ ⊂ Q−

ε,η ∪ {(λ0, 0)} and C+
δ ∩ C

−
δ = {(λ0, 0)}. Moreover, C+

δ and C−
δ

links (λ0, 0) to ∂Bδ(λ0, 0). Furthermore, setting C+ := C + ∪{(λ0, 0)} and C− := C − ∪{(λ0, 0)}, 
where C + ( resp. C −) is the connected component of S\{(λ0, 0)} containing C+

δ \{(λ0, 0)} (resp. 
C

−
δ \{(λ0, 0)}), then for every ν ∈ {−, +}, some of the following alternatives hold:

(i) Cν is not compact in R × U .
(ii) There exists λ1 	= λ0 such that (λ1, 0) ∈ Cν .

(iii) There exist λ ∈R and z ∈ Z \ {0} such that (λ, z) ∈ Cν .

Proof. The existence of the connected component C is evident from the adaptation of the main 
theorem of [9]. Let us choose ε > 0 and δ > 0 as in (9.16). Suppose no closed and connected 
subset C̃⊂ C ∩ Bδ(λ0, 0) exists such that C̃⊂ Q−

ε,η ∪ {(λ0, 0)}, (λ0, 0) ∈ C̃ and C̃∩ ∂Bδ(λ0, 0) 	=
∅. Next, setting N(λ, u) := F(λ, u) −L(λ)u, for (λ, u) ∈ R × U , we define

N̂(λ,u) :=

⎧⎪⎪⎨
⎪⎪⎩
N(λ,u) if (λ,u) ∈ Q−

ε,η,

ξ
(
−〈ϕ∗

0 ,u〉
ηψ(u)

)
N(λ,u) if − ηψ(u) ≤ 〈ϕ∗

0 , u〉 ≤ 0, u 	= 0,

−N̂(λ,−u) if 〈ϕ∗
0 , u〉 ≥ 0,

(9.17)

where ξ : R → R is a fixed increasing C1 function satisfying ξ(0) = 0, ξ(1) = 1 and ξ ′(1) = 0. 
Now, set F̂(λ, u) := L(λ)u + N̂(λ, u), (λ, u) ∈ R × U . The same argument of the proof of [53, 
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Th.4.4] shows that F̂ is of class C1 and DuF̂(λ, u) ∈ �0(U, V ) for all (λ, u) ∈ R ×U . Moreover, 
F̂ is odd in u. Since L′(λ0)[ϕ0] /∈ R[L(λ0)], it follows that χ[L, λ0] = 1. Hence, by Theorem 4.1, 
there exists a component, Ĉ, of nontrivial solutions of F̂(λ, u) = 0 such that (λ0, 0) ∈ F̂. By 
applying the same argument we follow to establish (9.16), we can prove that

Ĉ∩ Bδ(λ0,0) ⊂ Qε,η ∪ {(λ0,0)} (9.18)

for sufficiently small δ, say δ ∈ (0, δ0]. Moreover, since χ[L, λ0] = 1, according to Theo-
rem 5.12, either Ĉ is unbounded, or it contains a point (λ1, 0) with λ1 	= λ0. Note that the 
hypothesis (F2) is necessary to apply Theorem 5.12. In either case, Ĉ∩∂Bδ(λ0, 0) ∩Qε,η 	= ∅. On 
the other hand, as F̂(λ, u) is odd in u, it is apparent that Ĉ∩Q+

ε,η = {(λ, −u) : (λ, u) ∈ Ĉ∩Q−
ε,η}. 

Therefore, necessarily

Ĉ∩ ∂Bδ(λ0,0) ∩ Q−
ε,η 	= ∅. (9.19)

Moreover, since F(λ, u) = F̂(λ, u) for all (λ, u) ∈ Q−
ε,η , it becomes apparent that Ĉ ∩ Q−

ε,η =
C ∩Q−

ε,η. Therefore, (9.19) can be equivalently expressed in the form C ∩ ∂Bδ(λ0, 0) ∩Q−
ε,η 	= ∅, 

which contradicts our first assumption. The same procedure holds for Q+
ε,η. This ends the proof 

of the first of the theorem. The second part follows mutatis mutandis from the proof of Theorem
9.4 interchanging the operator Ĝ with F̂. �
10. The negative solutions of (8.1)

In this section we complete the analysis of Section 8 by studying the global structure of the 
component of negative solutions of (8.1) emanating from (0, 0). We have postponed this analysis 
because we need the unilateral theorems of Section 9 to get our result.

Lemma 10.1. u = 0 is the unique solution of (8.1) at λ = 0.

Proof. Suppose λ = 0. Then, multiplying (8.1) by ϕ0 = sinx and integrating by parts gives

π∫
0

uϕ0 dx = −
π∫

0

u′′ϕ0 dx =
π∫

0

uϕ0 dx −
π∫

0

u4ϕ0 dx.

Thus, 
∫ π

0 u4ϕ0 dx = 0, and since ϕ0 > 0, it follows that u = 0. This ends the proof. �
Observe that (λ, u) is a negative solution of (8.1) if and only if (λ, v) = (λ, −u) is a positive 

solution of the problem

{−v′′ = λv′ + v − (λ − v2)v2 in (0,π),

v(0) = v(π) = 0.
(10.1)

Therefore, the problem of analyzing the negative solutions of (8.1) can be solved by studying the 
positive solutions of (10.1).
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Theorem 10.2. Suppose λ < 0. Then, the problem (8.1) admits a negative solution.

Proof. The change of variable w = e
λ
2 xv transforms (10.1) into

{−w′′ = 4−λ2

4 w − λe− 1
2 λxw2 + e− 3

2 λxw4 in (0,π),

w(0) = w(π) = 0
(10.2)

and setting μ = −λ, this problem can be expressed as

{
−w′′ = 4−μ2

4 w + μe
1
2 μxw2 + e

3
2 μxw4 in (0,π),

w(0) = w(π) = 0.

To study this problem, we will deal with its generalization

{−w′′ = ρw + α(x)w2 + β(x)w4 in (0,π),

w(0) = w(π) = 0,
(10.3)

where ρ ∈ R is regarded as a bifurcation parameter and α, β ∈ C[0, π] satisfy α(x) > 0 and 
β(x) > 0 for all x ∈ [0, π]. The solutions of (10.3) are the zeroes of the nonlinear operator

F :R× U → V, F(ρ,w) = w′′ + ρw + α(x)w2 + β(x)w4.

According to the main theorem of Crandall and Rabinowitz [9], it is folklore that, for every 
integer n ≥ 1, ρn = n2 is a bifurcation point to a curve of solutions with n −1 nodes. In particular, 
a curve of positive solutions emanates from ρ = 1.

Suppose that w is a positive solution of (10.3). Then, multiplying (10.3) by ϕ0(x) = sinx and 
integrating by parts in (0, π) yields

0 = (ρ − 1)

π∫
0

wϕ0 dx +
π∫

0

α(x)w2ϕ0 dx +
π∫

0

β(x)w4ϕ0 dx > (ρ − 1)

π∫
0

wϕ0 dx.

Therefore, since u and ϕ0 are positive, necessarily ρ < 1. Consequently, (10.3) cannot admit any 
positive solution if ρ ≥ 1.

Let us denote by C the component of positive solutions of (10.3) emanating from w = 0
at ρ = 1. We already know that C ⊂ (−∞, 1] × U . In particular, C cannot meet any other 
bifurcation point ρn = n2. According to Theorem 9.4, either C is unbounded in (−∞, 1] × U , 
or there exists (ρ, w) ∈ C , with w 	= 0, such that w ∈ Z where Z stands for the L2-orthogonal of 
span [ϕ0] in U . The second alternative is impossible since w is positive and hence 

∫ π

0 uϕ0 dx > 0. 
Therefore, C is unbounded.

Finally, by the a priori bounds of Amann and López-Gómez [1], it is apparent that Pρ(C ) =
(−∞, 1] where Pρ : R × U → R stands for the ρ-projection operator Pρ(ρ, w) = ρ. Conse-

quently, the problem (10.3) admits a positive solution for each ρ < 1. Finally, since 4−μ2

4 < 1, 
it is easily realized that, for every μ > 0, the problem (10.2) admits a positive solution. In other 
words, (8.1) admits a negative solution for all λ < 0. �
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‖ · ‖U

C +

C −+
C −−

Fig. 5. Bifurcation diagram of the component emanating at (0,0).

When, instead of negative, λ > 0, the problem (10.2) admits the following generalization

{−w′′ = ρw − α(x)w2 + β(x)w4 in (0,π),

w(0) = w(π) = 0,
(10.4)

where ρ ∈ R and α, β ∈ C[0, π] satisfy α(x) > 0 and β(x) > 0 for all x ∈ [0, π]. Although 
the bifurcation to positive solutions from w = 0 at ρ = 1 is supercritical in this case, because 
for w ∼ 0 the problem (10.4) inherits a sublinear nature, for sufficiently large w (10.4) behaves 
much like a superlinear problem. Thus, the argument given in the proof of Theorem 10.2 can be 
also combined with the a priori bounds of [1] to infer that (8.1) possesses a positive solution for 
all λ > 0. However, as the argument in this case is more elaborate technically, because we are 
dealing with a superlinear indefinite problem whose structure is far more intricate, the complete 
technical details will be given elsewhere.

According to the analysis carried out in Section 8.1, we already know that there are two 
analytic curves of negative solutions bifurcating from (0, 0): One in the direction of λ > 0 and 
another in the direction of λ < 0. Subsequently, we denote by C −+ (resp. C −− ) the connected 
component of the set of negative solutions

N := {(λ,u) ∈ F−1(0) : u � 0} ⊂ R× U,

emanating from (0, 0) in the direction λ > 0 (resp. λ < 0). The next result provides us with their 
global behavior.

Theorem 10.3. The components C −+ and C −− are unbounded and disjoint, i.e., C −+ ∩ C −− = ∅.

Proof. By Lemma 10.1, (8.1) cannot admit a negative solution at λ = 0. So, C −+ ∩ C −− = ∅. 
Let us denote by γ+ : (0, ε) → R × U and γ− : (−ε, 0) → R × U the two local curves of 
negative solutions of (8.1) that emanate from (0, 0) in the direction of C −+ and C −− , respec-
tively. Adapting the argument of the proof of Theorem 8.6, it is easily seen that γ+ and 
γ− consist of regular points for sufficiently small ε > 0. Thus, by Theorem 7.2, there are 
two global locally injective continuous curves �+ : [0, ∞) → R × U , �+([0, ∞)) ⊂ F−1(0), 
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�− : (−∞, 0] → R × U , �+((−∞, 0]) ⊂ F−1(0), that extend γ+ and γ−, respectively, and sat-
isfy one of the alternatives (a) and (b). By Lemma 8.5, �+([0, ∞)) ⊂ C −+ , �−((−∞, 0]) ⊂ C −− . 
Since C −+ ∩ C −− = ∅, the curves �± cannot form a loop. Thus, the alternative (a) cannot happen. 
Therefore, limt↑∞ ‖�+(t)‖U = ∞ and limt↓−∞ ‖�−(t)‖U = ∞. This entails that C −+ and C −−
are unbounded. The proof is complete. �

As a consequence of the analysis carried out in Sections 8 and 10, the global structure of the 
component C of solutions of (8.1) emanating from (0, 0) looks as shown in Fig. 5. Essentially, it 
consists of a bounded component of positive solutions (λ, u) with λ > 0 forming a loop around 
(0, 0) plus two unbounded branches of negative solutions: one for λ > 0 and another for λ < 0. 
It should be emphasized that, thanks to the results of Section 7.1, the set F−1(0) is an analytic 
graph.

To conclude this section, it should be noted that the loop of positive solutions, C +, does not 
satisfy any of the alternatives (i)–(iii) of Theorem 9.4. This fact shows the relevance that χ is odd 
for the validity of these unilateral theorems.

11. A quasilinear problem of mixed type

In this section, � stands for a bounded subdomain of RN of class C2 such that ∂� = �0 ��1, 
where �0 and �1 are two open and closed subsets of ∂�. Thus, both are of class C2. Our main 
goal is analyzing the existence of regular positive solutions for the multidimensional quasilinear 
boundary value problem

⎧⎨
⎩−div

(
∇u√

1+|∇u|2

)
= λa(x)u + g(x,u)u in �,

Bu = 0 on ∂�,

(11.1)

where a ∈ C(�, R) changes sign in �, g ∈ C1(� × R) satisfies g(·, 0) = 0, and the boundary 
operator B : C(�0) ⊗ C(�1) → R is defined by

Bu :=
{

u on �0
∂nu + β(x)u on �1

where n is the exterior normal vector field to � on ∂�, and β ∈ C(�1). Thus, B is a non-classical 
mixed boundary operator on ∂�; non-classical because β can change sign on �1. When �1 = ∅, 
then B coincides with the Dirichlet boundary operator, D. When, �0 = ∅ and β = 0, B equals 
the Neumann boundary operator, N .

In this section, we will assume that (−� − λ0a(x), B, �) satisfies the maximum principle for 
some λ0 ∈ R, i.e., thanks to [32, Th. 7.10],

σ1[−� − λ0a(x),B,�] > 0, (11.2)

where we are denoting by σ1[−� − λa, B, �] the principal eigenvalue of −� − λa in � subject 
to the boundary operator B on ∂�. The condition (11.2) holds with λ0 = 0 if, for example, �0 = ∅
and β � 0, or �0 	= ∅ and β ≥ 0, as in both cases, the constant function h = 1 provides us with a 
positive strict supersolution of (−�, B, �) as discussed in [32, Ch. 7].
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For every p > N , we can define a nonlinear operator F :R × W
2,p

B (�) −→ Lp(�) through

F(λ,u) = −div

(
∇u√

1 + |∇u|2

)
− λa(x)u − g(x,u)u.

Then, F ∈ C1(R × W
2,p

B (�), Lp(�)) and

L(λ)u = DuF(λ,0)u = −�u − λa(x)u for all u ∈ W
2,p

B (�).

Since

μ(λ,γ ) ≡ σ1[−� − λa(x) + γ,B,�] = σ1[−� − λa(x),B,�] + γ,

it is apparent that, for sufficiently large γ ∈ R, μ(λ, γ ) > 0. Thus, L(λ) + γ J lies in 
GL(W

2,p

B (�), Lp(�)), where J : W
2,p

B (�) → Lp(�) stands for the canonical embedding, 
which is a linear compact operator. Consequently, L(λ) = (L(λ) + γ J ) − γ can be expressed as 
the sum of a compact operator plus an isomorphism. In particular, L(λ) ∈ �0(W

2,p

B (�), Lp(�)). 
Therefore, L is an analytic curve of Fredholm operators of index zero. By (11.2),

L(λ0) = −� − λ0a ∈ GL(W
2,p

B (�),Lp(�)).

Thus, thanks to Theorems 4.4.1 and 4.4.3 of [31], 
(L) is a discrete subset of R. Moreover, 

(L) consists of algebraic eigenvalues. Note that λ ∈ 
(L) if and only if the linear problem

{−�u = λa(x)u in �,

Bu = 0 on ∂�,
(11.3)

admits some solution u 	= 0 in W 2,p

B (�). As a(x) changes of sign in �, it follows from [32, Th. 
9.4] that (11.3) has two (principal) eigenvalues, λ− < λ0 < λ+, associated with each of them the 
problem (11.3) possesses a (principal) positive eigenfunction, ϕ± � 0, unique up to a positive 
multiplicative constant. By ϕ± � 0 it is meant that ϕ±(x) > 0 for all x ∈ � ∪ �1, and that 
∂nϕ±(x) < 0 if x ∈ �0. Moreover, also based on [32, Th. 9.4], it becomes apparent that λ± are 
algebraically simple and that L1(λ±)(ϕ±) /∈ R[L(λ±)]. Thus, according to (2.3), χ[L, λ±] = 1. 
Therefore, when, in addition, g is assumed to be of class C2, by the Crandall–Rabinowitz theorem 
[9], there exist ε > 0 and two C1-functions

μ± : (−ε, ε) → R, ψ± : (−ε, ε) → Z ≡
{
u ∈ W

2,p

B (�) :
∫
�

uϕ± = 0
}

such that μ±(0) = λ±, ψ±(0) = 0, and, in a neighborhood of (λ±, 0), the solution set F−1(0)

consists of the trivial curve (λ, 0) plus the bifurcated C1-curve (λ±(s), u±(s)) ≡ (μ±(s), sϕ± +
ψ±(s)), s ∼ 0. At least for sufficiently small s > 0, the solutions (λ±(s), u±(s)) provide us with 
positive solutions of (11.1). Actually, those are the unique small positive solutions of (11.1) as 
no other eigenvalue of (11.3) admits a positive eigenfunction (see, e.g., [32, Ch. 6]).
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Nevertheless, even when g is simply of class C1 regularity, by Theorem 4.1, there are two 
components, C+±, of non-trivial solutions of (11.1) emanating from (λ, 0) at λ±. These compo-
nents consist of the smooth curves (λ±(s), u±(s)) for sufficiently small s > 0 if, in addition, g is 
C2. Based on the next result, a direct adaptation of the argument of [31, Sec. 6.5] shows that C+±
actually provides us with the component of positive solutions of (11.1) emanating from (λ, 0) at 
λ±.

Lemma 11.1. Suppose that u � 0 is a solution of (11.1) in W 2,p

B (�). Then, u � 0 in the sense 
that u(x) > 0 for all x ∈ � ∪ �1 and ∂nu(x) < 0 for all x ∈ �0.

Proof. By the Sobolev embedding theorem, u ∈ C1(�̄). Thus, (11.1) can be written equivalently 
in the form

−(1 + |∇u|2)− 1
2 �u + (1 + |∇u|2)− 3

2

N∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

= λa(x)u + g(x,u)u,

where the second order differential operator

L(u,∇u)w := −(1 + |∇u|2)− 1
2 �w + (1 + |∇u|2)− 3

2

N∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2w

∂xi∂xj

is uniformly elliptic in � (see, e.g., Gilbarg–Trudinger [23, p. 261]). Thus, since u � 0 and (11.1)
can be equivalently expressed in the form

(L(u,∇u) − λa(x) − g(x,u))u = 0,

by the uniqueness of the principal eigenvalue σ1[L(u, ∇u) − λa − g(·, u), B, �] = 0 and u � 0
must be a principal eigenfunction associated to 0. Finally, adapting the arguments of [32, Ch. 7], 
it follows from the Krein–Rutman theorem that u � 0. �

Therefore, by Theorem 9.4, each of the components C+± satisfies some of the following alter-
natives:

(i) C
+± is not compact in R × W

2,p

B (�).
(ii) There exists λ±,1 	= λ± such that (λ±,1, 0) ∈ C

+±.
(iii) There exist λ ∈R and z ∈ Z \ {0} such that (λ, z) ∈ C

+±.

Since z 	= 0 and ϕ± � 0, it follows from 
∫
�

zϕ±dx = 0 that z changes sign in � and hence 
(λ, z) /∈ C

+±. Therefore, either (i), or (ii) occurs and the next result holds.

Theorem 11.2. Either C++ = C
+−, or C++ ∩ C

+− = ∅ and, in such case, there exist two sequences 
(λ±,n, u±,n) ∈ C

+±, n ≥ 1, such that either limn→∞ |λ±,n| = ∞, or limn→∞ ‖u±,n‖W
2,p

B (�)
= ∞.

Naturally, C++ = C
+− occurs when the alternative (ii) holds. Therefore, when (ii) fails, both 

components of positive solutions must satisfy the alternative (i). Naturally, the precise global 
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behavior of the components C+± depends on the particular choice of the map g(x, u) in the setting 
of the problem (11.1), as well as on the nature of the boundary conditions. The following result 
provides us with a sufficient condition so that C++ ∩C

+− = ∅ under Dirichlet boundary conditions.

Theorem 11.3. Suppose B = D and g(x, u) ≤ 0 for all x ∈ � and u ≥ 0. Then, u = 0 is the 
unique non-negative solution, in W 2,p

0 (�), of (11.1) for λ = 0. Thus, C++ ∩ C
+− = ∅.

Proof. Let u ∈ W
2,p

0 (�) be a positive solution of (11.1) with λ = 0. Then, multiplying the dif-
ferential equation by u and integrating by parts in �, we obtain that

∫
�

|∇u|2√
1 + |∇u|2 dx = −

∫
�

div

(
∇u√

1 + |∇u|2

)
udx

= λ

∫
�

a(x)u2 dx +
∫
�

g(x,u)u2(x) dx ≤ 0.

Thus, ∇u = 0 in � and therefore, u = 0 in �, because � is connected.
On the other hand, since σ1[−�, D, �] > 0, the condition (11.2) holds with λ0 = 0. Hence, 

λ− < 0 < λ+. Consequently, since (11.1) cannot admit any positive solution at λ = 0, C++ ∩C
+− =

∅. This ends the proof. �
When B = N , λ = 0 is always a principal eigenvalue of (11.3). Indeed, any positive constant 

satisfies (11.3) if λ = 0. In such case, based on a result of Brown and Lin [6], λ− = 0 and λ+ > 0
if 
∫
�

a(x) dx < 0, while λ− < 0 and λ+ = 0 if 
∫
�

a(x) dx > 0. When, 
∫
�

a(x) dx = 0, then λ = 0
is the unique eigenvalue of (11.3) (see the discussion on page 312 of [32]). Even in the simplest 
one-dimensional prototype models, the classical solutions of (11.1) can develop singularities for 
certain values of the parameter λ. Consider, for instance, the simplest one dimensional problem

⎧⎪⎨
⎪⎩

−
(

u′√
1+(u′)2

)′
= λa(x)u in (0,1),

u′(0) = u′(1) = 0,

(11.4)

with 
∫ 1

0 a(x) dx < 0. Then, λ− = 0 and λ+ > 0. Moreover, {(r, 0) : r ∈ R} ⊂ C
+−. In particular, 

C
+− is unbounded in Lp(0, 1). This particular model fits within the abstract setting of López-

Gómez and Omari [39,40], with p = q = 2, if there exists z ∈ (0, 1) such that a(x) > 0 for all 
x ∈ (0, z) and a(x) < 0 for all x ∈ (z, 1). Subsequently, we will assume that a(x) satisfies this 
condition. Then, thanks to [39, Th. 1.1], for sufficiently small λ > 0, any positive solution of 
(11.4) is singular if

⎛
⎝ z∫

x

a(t) dt

⎞
⎠

− 1
2

∈ L1(0, z) ∩ L1(z,1). (11.5)

Therefore, if a(x) satisfies (11.5), then there exists ω > 0 such that Pλ(C
++) ⊂ [ω, ∞), where Pλ

stands for the λ-projection operator Pλ(λ, u) = λ. In particular, C++ ∩ C
+− = ∅.
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By having a glance at (11.5) it becomes apparent that it fails whenever the function a is 
differentiable at the nodal point z, whereas it occurs when a(x) is discontinuous at z, like in 
the special case when it equals a positive constant, A > 0, in [z − ε, z) and a negative constant, 
B < 0, in (z, z + δ], for some ε, δ > 0. Thus, there is a huge contrast in the nature of the positive 
solutions of (11.4) according to the integrability properties of a(x) near the node z. Figure 1 of 
López-Gómez and Omari [39] shows how, under condition (11.5), the solutions along C++ can 
develop singularities when λ approximates zero, as their gradients develop singularities at the 
node z when they become sufficiently large. Naturally, at these critical values, ‖u′‖Lp becomes 
unbounded, though ‖u‖Lp always stay bounded. Actually, thanks to López-Gómez and Omari 
[39, Th. 7.2], any positive bounded variation solution of (11.4) must be regular if the integrability 
condition (11.5) fails. Therefore, in this case, the solutions along C+± cannot develop singularities. 
Characterizing whether, or not, the positive solutions of (11.1) can develop singularities in a 
multidimensional context seems extremely challenging and remains an open problem.
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