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Abstract

"Somewhere, something incredible is
waiting to be known."

Sharon Begley

The Cosmic Microwave Background (CMB) constitutes one of the most valuable sources
of information for understanding the Universe. Among others, measurements from the
COBE, WMAP, and Planck missions have enabled the establishment of a cosmological model
in which the Universe is consistent with Euclidean geometry, is undergoing accelerated ex-
pansion, and is composed of baryonic matter, dark matter, and dark energy. Furthermore,
the density perturbations that gave rise to the large-scale structure observed today are com-
patible with purely adiabatic perturbations with an almost scale-invariant power spectrum.
All of this is encapsulated in the ΛCDM model, a six-parameter framework that provides
an excellent fit to both CMB and large-scale structure observations.

Despite its remarkable success, the model exhibits some tensions, among which are
the so-called CMB anomalies. These include a lack of power and angular correlation on
large angular scales, a hemispherical asymmetry in the distribution of power, an anoma-
lous alignment of the lowest multipoles, and the presence of a “cold spot" in the southern
hemisphere with an anomalous amplitude and curvature. These deviations have been iden-
tified in the temperature data with individual significances that, although not conclusive,
motivate the exploration of explanations beyond the hypothesis that they are statistical fluc-
tuations within the standard model.

Polarisation data could provide nearly independent information. However, current
measurements are limited by large-scale systematic effects and a low signal-to-noise ratio,
which prevent the extraction of robust conclusions. The forthcoming high-precision polari-
sation measurements, such as those expected from LiteBIRD, will be crucial for determining
whether these unexpected features are indicative of new physics.
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This PhD thesis presents my three contributions to the study and characterisation of
some of these anomalies. Chapter 4 focuses on a comprehensive analysis of the hemispher-
ical power asymmetry (HPA) in both temperature and polarisation E-mode data from the
most recent Planck data release. An HPA is confirmed in temperature with a p-value below
1%, while the E-modes exhibit a potential hint of asymmetry at the 1% − 3% level, with
an axis closely aligned with that found in temperature. Chapter 5 is dedicated to the de-
velopment of an image-processing technique for filling masked regions of the sky with a
realisation statistically compatible with the cosmological model and the observed data. This
method is implemented in a publicly available software package, CMB-PAInT, which offers a
valuable alternative for studies using masked skies. Finally, Chapter 6 includes two comple-
mentary analyses. The first one investigates the directional dependence of the temperature
angular power spectrum by fitting a dipole to the spatial distribution of power in each band-
power. The resulting directions exhibit anomalous clustering around an axis that closely
matches the HPA direction, an effect not observed in the polarisation data. The second
analysis explores the spatial distribution of cosmological parameters, finding consistency
with ΛCDM expectations for most parameters, except for As. Prior to these contributions,
Chapters 1 and 2 provide an overview of modern cosmology and the CMB, while Chapter
3 offers a review of the current state of the art of the CMB anomalies. Finally, Chapter 7 (or
8 for Spanish readers) wraps up with the general conclusions of my PhD thesis.



Resumen

"Somos una forma que tiene el cosmos de
conocerse a sí mismo."

Carl Sagan

El fondo cósmico de microondas (FCM) constituye una de las principales fuentes de
información para conocer el Universo en el que vivimos. Las mediciones realizadas, entre
otras, por las misiones COBE, WMAP, y Planck han permitido establecer un modelo cos-
mológico en el que el Universo es compatible con una geometría euclídea, se encuentra en
expansión acelerada, y está compuesto por materia bariónica, materia oscura, y energía os-
cura. Además, sabemos que las perturbaciones de densidad que dieron origen a las estruc-
turas cósmicas que observamos son compatibles con perturbaciones puramente adiabáticas
con un espectro casi invariante de escala. Todo ello viene recogido en el modelo ΛCDM, un
modelo descrito únicamente por seis parámetros, y que proporciona un ajuste notablemente
preciso a los datos del FCM y de la estructura a gran escala.

Sin embargo, a pesar de su éxito, el modelo presenta ciertas tensiones entre las que se
encuentran las denominadas anomalías del FCM. Estas incluyen un déficit de potencia y
correlación angular escalas grandes, una asimetría hemisférica en la distribución de poten-
cia, una alineación anómala de los multipolos más bajos, y la presencia de una mancha fría
en el hemisferio sur con una amplitud y curvatura anómalamente elevadas. Estas desvia-
ciones han sido observadas en los datos de temperatura con significancias individuales que,
aunque no concluyentes, motivan la exploración de explicaciones más allá de la hipótesis
de que se trata de meras fluctuaciones estadísticas dentro del modelo estándar.

El estudio de estas anomalías en los datos de polarización podría aportar información
prácticamente independiente sobre su origen. No obstante, las mediciones actuales presen-
tan limitaciones debido a la presencia de efectos sistemáticos a gran escala y al bajo nivel
de señal-ruido, lo que impide sacar conclusiones robustas. Es por ello, que los datos de
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polarización de alta precisión que obtendremos en la próxima decada, gracias a misiones
como LiteBIRD, serán cruciales para dar respuesta a estas cuestiones.

Esta tesis doctoral recoge mis tres contribuciones al estudio y caracterización de algu-
nas de estas anomalías. En particular, el capítulo 4 se centra en un análisis exhaustivo de la
asimetría hemisférica de potencia (HPA, por sus siglas en inglés) en los datos de temperatura
y los modosE de polarización del último procesado de datos de Planck. Se confirma la pres-
encia de una HPA en temperatura con un p-value inferior al 1%, mientras que en los modos
E de polarización se observa un posible indicio, con una significancia entre el 1% y el 3%, y
un eje de asimetría muy próximo al identificado en temperatura. El capítulo 5 está dedicado
al desarrollo de una técnica de procesado de imagen que permite rellenar los datos enmas-
carados con una realización estadísticamente compatible con el modelo cosmológico y los
datos observados. Se presenta el software de acceso público CMB-PAInT, una herramienta
eficaz para estudios que utilizan regiones del cielo enmascaradas. Por último, el capítulo
6 incluye dos análisis complementarios. En el primero, se estudia la distribución espacial
de potencia en cada bandpower del espectro angular de potencias, ajustando un dipolo so-
bre cada uno de ellos y cuantificando el agrupamiento de las direcciones resultantes. Este
análisis aporta evidencia de una dependencia direccional del espectro angular de potencias
de temperatura, con un alineamiento anómalo de las direcciones en torno a un eje próximo
al de la HPA, mientras que los datos de polarización no muestran nada similar. El segundo
análisis examina la distribución espacial de los parámetros cosmológicos. Se observa que
la mayoría de parámetros son compatibles con las expectativas del modelo ΛCDM, con la
excepción de As. Previamente a estas contribuciones, los capítulos 1 y 2 ofrecen una visión
general de la cosmología y el FCM, mientras que el capítulo 3 contiene un breve repaso a las
diferentes anomalías. Finalmente, los capítulos 7 y 8 contienen las conclusiones generales
de la tesis en inglés y español, respectivamente.
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Introduction





1
An Introduction to the Universe

"Evolution simply hasn’t equipped the
human brain with the ability to have any
intuition for the vastness of the cosmos."

Daniel Baumann

Over the past century, cosmology has transformed from a largely philosophical endeav-
our into a precise, data-driven science. At the heart of this transformation lies the standard
model of cosmology, the ΛCDM model, which provides a remarkably successful framework
for describing the evolution of the Universe. This model rests on a set of key observational
pillars: the expansion of the Universe, the precise measure of the temperature and polarisa-
tion anisotropies in the cosmic microwave background (CMB), the distribution of galaxies
and large-scale structure, and the abundance of light elements as predicted by Big Bang
nucleosynthesis. Each of these observations has contributed to the emergence of a coherent
cosmological picture, one that includes a mysterious dark energy component, an unknown
dark matter component, and an inflationary paradigm. The road to this understanding has
been paved by a century of scientific breakthroughs, from Einstein’s formulation of general
relativity to the discovery of cosmic expansion and the detection of CMB anisotropies. This
chapter offers an overview of our current understanding of the Universe and a historical
recap of the key developments that have led us here.
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At the beginning of the 20th century, a series of key theoretical and observational devel-
opments led by distinguished physicists such as Albert Einstein, George Lemaître, Alexan-
der Friedmann, and Edwin Hubble, gave rise to what we know as modern cosmology. This
young scientific discipline aims to understand the origin and evolution of the Universe using
the fundamental laws of physics that include gravity and particle physics.The discovery of
General Relativity by Albert Einstein in 1916 (Einstein, 1916) was one of the most important
milestones as it provided for the first time a theoretical framework for describing gravity
and the Universe. It is a geometric theory of gravity that arose from the incompatibility
between Newton’s classical theory, where gravity is an instantaneous force, and the special
relativity (Einstein, 1905). Einstein proposed that gravity is no longer a force, but rather a
consequence of the curvature of the spacetime. General Relativity relates the geometry of
the spacetime to the constituents of the universe through Einstein’s equations, which are
summarised as the following tensor equality in natural units:

Gµν + Λgµν = 8πGTµν . (1.1)

The left side of the equation encapsulates the geometric properties of spacetime through
the metric, gµν , and the Einstein tensor,Gµν , while the right side encodes information about
the matter and energy content via the stress-energy tensor, Tµν . G is Newton’s constant,
and Λ is the famous cosmological constant, originally introduced by Einstein to balance
the attractive force of gravity and achieve a static universe, in line with the observational
evidence available at the time.

Soon after the discovery of the General Relativity, Alexander Friedmann (Friedman,
1922) found a solution to Einstein’s equations describing a homogeneous, isotropic and
expanding universe. He demonstrated for the first time that the General Relativity
equations admit non-static solutions. The metric describing this universe is the Fried-
mann–Lemaître–Robertson–Walker (FLRW) metric1 given in polar coordinates as

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1.2)

where a(t) is the scale factor, a dimensionless quantity that describes the expansion of the
universe. It relates the comoving2 and physical distances. It is set to be one at present time,
so both distances match. Additionally, k is the intrinsic spatial curvature, which could be
zero (k = 0), positive (k = 1) or negative (k = −1). The first case corresponds to the three-
dimensional Euclidean space, in which two parallel lines do not intersect. The second case
represents a space where two parallel lines eventually meet. In the last case, parallel lines
diverge.

1Here, I follow the (-, +, +, +) signature for the metric.
2Comoving coordinates define a reference frame that remains fixed with respect to the expanding universe,

as they do not change with time.
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Sometimes, it is convenient to write the metric in terms of comoving coordinates. The
line element takes this form,

ds2 = a2(η)[−dη2 + dχ2 + S2
k(η)dΩ

2], (1.3)

where the conformal time, dη = dt/a(t), and the comoving radial distance, dχ =

dr/
√
1− kr2, have been defined. Sk(χ) is the function relating comoving distances to angles

subtended on the sky, and it depends on the geometry of the Universe,

Sk(χ) =


R0 sin(χ/R0) for k > 0, closed,

χ for k = 0, flat,

R0 sinh(χ/R0) for k < 0, open.

(1.4)

Note that, for a flat Universe, r and χ are equivalent, so rphys = a(t)r. In the general case,
we have rphys = a(t)χ.

In 1927 George Lemaître arrived independently to the same solutions (Lemaître, 1927)
and predicted what would later be known as the Hubble-Lemaître law, showing that galax-
ies appear to recede from us at speeds proportional to their distances

v ≈ H0d. (1.5)

He also estimated the proportionality constant, the Hubble constant, two years before Ed-
win Hubble measured it using Vesto Slipher’s galaxy radial velocities and distance mea-
surements based on Cepheids3. Equation 1.5 corresponds to the Hubble flow, which is the
velocity of the galaxy resulting from the expansion of space. Furthermore, Lemaître was the
first to propose the Big Bang theory. If the universe is expanding, tracing its age backward
eventually leads to the initial singularity what he called "primeval atom". In the 1940s and
1950s, George Gamow, along with Ralph Alpher and Robert Hearman, made significant
contributions to the Big Bang theory (Alpher et al., 1948; Gamow, 1948). They proposed a
mechanism for the formation of the light elements in the early universe, what is now known
as Big Bang Nucleosynthesis (BBN), and predicted the existence of an old relic radiation,
the Cosmic Microwave Background (CMB). In 1965 Arno Penzias and Robert Wilson de-
tected an excess of 4K antenna temperature in their instrument (Penzias & Wilson, 1965),
which was later determined to be due to the CMB (Dicke et al., 1965). This discovery was
the definitive evidence for the Big Bang theory.

Coming back to the FLRW metric, when combined with Einstein’s field equations the

3Henrietta Swan Leavitt discovered the period-luminosity relationship for Cepheid variables.
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metric gives the two Friedmann equations,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.6)

ä

a
= −4πG

3
(ρ+ 3P ), (1.7)

where ρ = ρr + ρm + ρΛ, is the energy density and accounts for all the radiation, matter,
and cosmological constant4 contributions. In order to derive these equations, the following
energy-momentum tensor has been assumed

Tµν = (ρ+ P )uµuν + Pgµν , (1.8)

where uµ is fluid’s four-velocity relative to a comoving observer. This is the energy-
momentum tensor of a perfect fluid, which is completely characterised by its rest frame
energy density, ρ, and pressure, P. It arises from the homogeneous and isotropic assump-
tions that restrict the possible values of the energy-momentum tensor elements. Apart from
the two Friedman equations, a third equation5 can be derived from the relativistic version
of the continuity and Euler equations, which determines how ρ and P evolve over time,
ensuring that energy and momentum are conserved,

∇µT
µ
ν =

∂Tµν
∂xµ

+ ΓµµλT
λ
ν − ΓλµνT

µ
λ = 0. (1.9)

If we focus on the conservation equations for the energy density (ν = 0)

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.10)

Considering that most cosmological fluids can be described by a constant equation of
state, ω = P/ρ, Eq. 1.10 can be rewritten as

ρ̇

ρ
= −3(1 + ω)

ȧ

a
, (1.11)

which has the following solutions that depends on the equation of state,

ρ ∝ a−3(1+ω). (1.12)

This provides information on the scaling of different fluids with the expansion. De-
pending on their equation of state, we distinguish three types of fluids: matter, radiation
and dark energy.

4Note that the Λ term in Eq. 1.1 can be moved to the right-hand side.
5Only two of them are needed to determine the dynamics of the universe.
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➪ Matter refers to a gas of non-relativistic particles which has effectively zero pressure,
i.e. its pressure is much smaller than its energy density. Setting ω = 0 in Eq. 1.12
gives ρ ∝ a−3. This reflects the fact that energy within a given volume stays con-
stant, while the density dilutes as the volume expands like V ∝ a3. The "matter" term
refers to ordinary and dark matter (DM). Fritz Zwicky first coined this term in 1933

after observing a discrepancy in the Coma cluster between the gravitational mass in-
ferred from the virial theorem and the much lower mass estimated from its brightness,
finding the former to be at least 400 times greater (Zwicky, 1933). He was forced to
introduce an extra form of matter named "dunkle materie", i.e., dark matter. Further
evidence for the existence of a non-visible matter came in 1970s when Vera Rubin
and collaborators measured the rotation curve of spiral galaxies (Rubin & Ford, 1970).
Contrary to the expected decreasing6, the rotation curves flatten, which could only
be explained if galaxies were embedded in halos of DM. Today, the clearest evidence
for DM comes from the gravitational lensing of the CMB (Planck Collaboration et al.,
2020c).

➪ Radiation refers to a gas of relativistic particles for which the energy density is dom-
inated by the kinetic energy. It can be shown that radiation has P = ρ/3, which gives
ρ ∝ a−4. In an expanding universe, the energy density of radiation decreases faster
than the inverse of the volume, because the energy of each photon is also redshifted
like E ∝ a−1. The redshift is defined as the fractional shift in the wavelength,

z ≡ λ0 − λ1
λ1

, (1.13)

where λ0 is the observed wavelength and λ1 is the emitted one. Redshift originated
by the expansion of the universe is also called the cosmological redshift. It occurs
because the space itself is expanding and stretching the wavelength of light travelling
through it. The redshift can also be expressed in terms of the scale factor,

1 + z =
1

a(t1)
. (1.14)

This implies that if we observe a galaxy at redshift z = 1, we are detecting light emitted
when the size of the Universe was half its current size. Except for photons, which are
relativistic as they are massless, the inventory of relativistic particles changes through-
out the history of the universe. At early times, all the particles were relativistic as the
temperature was so high that the rest mass of all of them was negligible. Later on, the
temperature dropped below the masses of many particles and they started to behave
like non-relativistic matter. Neutrinos, on the other hand, had remained relativistic

6For a spherically symmetric mass distribution where all the mass is concentrated near the centre, the orbital
velocity in the outer regions is expected to decrease proportionally to r−1/2.
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until late times.

➪ Dark energy At the end of the twentieth century, studies of Supernovae Type Ia found
that the Universe was expanding in an accelerated way (Riess et al., 1998; Perlmutter
et al., 1999). This was an unexpected result for a matter-dominated Universe, where
a cosmic deceleration is expected. To explain this, a fluid with negative pressure is
required. As a consequence, the cosmological constant, Λ, which had been discarded
many years before following the observations that the Universe is not static, was rein-
troduced. With ω = -1, the energy density remains constant, ρΛ = Λ/(8πG). The
vacuum energy associated to the empty space is a natural candidate for a fluid with
a constant energy density and it is predicted by the quantum field theory. Unfortu-
nately, the value predicted by the theory is much larger than the observed value. The
two values differ by 120 orders of magnitude (Adler et al., 1995). Despite the term dark
energy is often used to refer to the cosmological constant, it describes a more general
fluid whose equation of state could be different from ω = -1, or even it can vary in
time, as suggested by recent observations (Adame et al., 2025; DESI Collaboration
et al., 2025).

Figure 1.1 shows the evolution of the energy density for each component. The Universe
started with a radiation-dominated (RD) epoch. Then, at some point, the matter and radia-
tion densities equalled, a moment referred to as matter-radiation equality, which occurred
roughly at zeq ≈ 3400, when the Universe was about 50, 000 years old. From that point
onward, the energy density became dominated by matter (MD). This lasts until z ≈ 0.3

(tΛD ≈ 10.3 Gyr), when the cosmological constant started to dominate over the other com-
ponents (ΛD). In general, it is more convenient to rewrite the densities in dimensionless
form and work with the following density parameters,

Ωi,0 ≡
ρi,0
ρcrit,0

, (1.15)

where subscript “i" refers to different components, and ρcrit is the critical density, which
corresponds to the energy density required for the Universe to be spatially flat. The sub-
script ’0’ indicates that the quantities refer to their present-day values. From Eq. 1.6 and
substituting H with its present-day value, the Hubble constant,

k = 0 ; H0 = 100h km s−1Mpc−1 → ρcrit,0 =
3H2

0

8πG
= 1.9× 10−29 h2g cm−3. (1.16)

Using dimensionless densities, Eq. 1.6 can be rewritten as

H2 = H2
0 [Ωra

−4 +Ωma
−3 +Ωka

−2 +ΩΛ], (1.17)

where the curvature "density" parameter is also included, Ωk ≡ −k/H2
0 . Evaluating this
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FIGURE 1.1: Evolution of the radiation (blue), dark energy (green), and matter (red) energy densities,
in units of critical density, during Universe history. The solid vertical line indicates the present time,
while the dashed lines mark the matter–radiation equality (aeq ≈ 2.9 × 10−4) and the matter–dark
energy equality (aΛD ≈ 0.76). This is computed for Ωm = 0.3071, Ωr = 9 × 10−5, Ωk = 0, and
ΩΛ = 0.693 (Tristram et al., 2024).

equation at the present time we get

1 = Ωr +Ωm +ΩΛ +Ωk = Ω0 +Ωk, (1.18)

from where it is straightforward to see that when the curvature is zero, the density equals
the critical density,

∑
i ρi,0 = ρcrit,0.

The discovery of the accelerated Universe and dark energy helped to solve some tensions
in cosmology. In particular, the matter-only model predicted an age for the Universe that
was shorter than the ages of the oldest observed stars. Moreover, observations of the large-
scale structure showed that the total matter content accounted for only about 30% of the
critical density, which was in tension with strong indications that the Universe is nearly
spatially flat. Including dark energy not only solved the age discrepancy, but also brought
the total energy density in line with a flat geometry.

In general, determining how the scale factor, a(t), evolves in time requires solving numer-
ically the Friedmann equation 1.17, which is a complicated non-linear differential equation.
Figure 1.2 shows the expansion history for Planck cosmology. However, if we assume the
single component case, we can solve for it analytically.

a(t) ∝


t2/3 MD

t1/2 RD

eH0
√
ΩΛt ΛD

(1.19)
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From these solutions it is straightforward to see how the expansion is decelerated for MD
case, while for ΛD case the Universe expands exponentially. In particular, for a MD case,
we have

H(t) =
ȧ

a
=

2

3

1

t
→ H0 =

2

3

1

t0
, (1.20)

and therefore, we can infer the age of the Universe (t0) from the Hubble constant. If we set
H0 ≈ 70 km s−1Mpc−1, we obtain t0 ≈ 9.3 × 109 years, which is substantially smaller than
the value of 13.8× 109 years estimated from Planck data.

The rest of the chapter is dedicated to outlining the current state-of-the-art. This includes
a more detailed description of the ΛCDM model in Section 1.2, an overview of the most
relevant observational probes in Section 1.3, and a brief summary of the unresolved issues
in Section 1.4. However, we first review the thermal history of the Universe in Section 1.1
(see Figure 1.3 for a schematic illustration).

1.1 Thermal history of the Universe

The Hot Big Bang model starts at the Planck time ≈ 10−43 s. Beyond this, the current the-
ory breaks down and cannot make any prediction. It is also known as the “quantum gravity
limit" because a theory beyond it requires an understanding of gravity at the quantum level7.

7It is believed that above this limit all the forces (gravity, strong and weak nuclear forces, and electromag-
netic force) were unified.
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FIGURE 1.3: Schematic timeline of the thermal history of the Universe. Credits: Txemi.

Immediately afterward, from ∼ 10−43 to 10−36 seconds after the Big Bang, the universe is
theorised to have entered the Grand Unified Theory (GUT) epoch, a hypothetical period in
the early universe where strong, weak, and electromagnetic forces are believed to be unified
in a single fundamental interaction. This period remains highly speculative, as it involves
energy scales far beyond the current experimental capabilities. Toward the end of the GUT
epoch, it is believed that the Universe experienced an abrupt quasi-exponential expansion
where the scale factor grew by at least a factor of 1026. This is cosmic inflation (Starobinsky,
1980; Guth, 1981; Linde, 1982), which was proposed to explain the observed homogeneity,
isotropy, and flatness of the cosmos. A more detailed discussion is presented in Section
1.2. After GUT transition (t ∼ 10−35 s, T ∼ 1027 K ≃ 1014 GeV)89, the electroweak and
strong forces emerged as independent fundamental forces, and quarks, leptons, and their
respective anti-particles, filled the universe. At this moment the Universe was a hot and
dense plasma, where all particles were interacting in thermal equilibrium10. As the Uni-
verse expanded, its temperature decreased, leading to significant changes in the compo-
sition of the thermal bath. At high temperatures, pair of particles and antiparticles were
spontaneously created and annihilated in thermal equilibrium. However, as the tempera-
ture dropped below the rest mass of a given particle species, the production of that species
were exponentially suppressed, and annihilation dominated. As a result, the particles and
their antiparticles gradually disappeared from the thermal bath. This process occurred se-
quentially for different species, depending on their masses. The Universe continued cooling
and at t ∼ 10−12 s (T ∼ 1015 K ≃ 100GeV) the electroweak transition took place, where the

8Temperature and energy are related by the Boltzmann constant, so that 1 eV ≈ 1.16× 104 K.
9During the radiation-dominated epoch, the temperature scales as T

MeV
∝ t−1/2, where t is the cosmic time.

10A system of particles is in thermodynamical equilibrium if the particles exchange energy and momentum
in an efficient way. It is established when the rate of interactions for a given process is much larger than the
expansion rate, H, so tc = 1

Γ
<< tH = 1

H
.
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electromagnetic and weak forces separated. This transition occurred as a consequence of the
Higgs mechanism. At this point, Higgs field acquired a non zero vacuum expectation value,
giving their mass to the Standard Model (SM) particles. In particular, the massive gauge
bosons mediating the weak interaction appeared,W+,W−,andZ0, along with the massless
photon, which mediates the electromagnetic force. At t ∼ 10−6 s (T ∼ 1012 K ≃ 200 MeV)
the quantum chromodynamic (QCD) transition happened. Free quarks could not longer
exist, and they became bound with gluons through strong force into hadrons (baryons and
mesons). Heavier hadrons decayed immediately to lighter particles.

Until now, we have omitted an important process that must have happened in the early
Universe, the baryogenesis. This is the physical process that generated the observed asym-
metry between matter and antimatter. If, during the Big Bang, the Universe had produced
the same amount of baryons and antibaryons, they would have annihilated each other, and
after freeze-out, the remanent baryon-to-photon ratio would be of the order of 10−20 (Kolb
& Turner, 1990). Freeze-out refers to the moment when a certain species’ interaction rate
becomes slower than the expansion rate of the Universe, preventing it from keeping ther-
mal equilibrium with the plasma. At this point, the particles decoupled from the thermal
bath and started evolving independently, preserving their temperature and number density,
relic abundance, and propagating freely. For instance, if DM were composed of a weakly
interacting massive particles (WIMPs), this would provide an explanation of how it ac-
quires its relic abundance. Observations from the Big Bang Nucleosynthesis (BBN) and
the CMB have constrained the baryon-to-photon ratio to be around 10−10 (Dodelson, 2003).
The observed asymmetry requires a mechanism satisfying the three Sakharov conditions
(Sakharov, 1991). Baryogenesis must have happened at early steps, when temperature was
above the rest-mass energy of protons (mp = 938.3 MeV from Navas et al. (2024)) and neu-
trons (mn = 939.6 MeV from Navas et al. (2024)). Accordingly, the current baryonic content
of the Universe was established during the first microsecond after the Big Bang.

Between t ∼ 10−6 s and t ∼ 1 s, the Universe entered in the Lepton era as the electrons,
neutrinos and their antiparticles, and photons, were the only remaining relativistic species.
In particular, neutrinos were coupled to the plasma through weak interactions. These re-
actions started to be inefficient for T ∼ 1010 K and neutrinos decoupled from the plasma,
generating the cosmic neutrino background (CνB). Shortly after, the temperature dropped
below the electron rest mass (me = 0.511 MeV from Navas et al. (2024)), electron-positron
pairs started to annihilate, leaving a small amount of electrons and injecting energy in the
photon gas, but not in the recently decoupled neutrino background11. This is the reason
why the blackbody spectrum of CνB is predicted to have a lower temperature than the
CMB, Tν ≈ 1.95 K (Weinberg, 2008). From t ∼ 1 s, nuclear reactions between baryons
started. As the temperature dropped below a critical threshold, the number of high-energy

11This is not completely true. The weak interactions provide still some thermal contact between neutrinos
and the plasma, and electron-positron annihilation slightly increases neutrino energy density. As a result, the
effective number of neutrino species increases to Neff = 3.045 (Weinberg, 2008).
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photons capable of breaking nuclear bonds decreased significantly. This allowed for the
formation of the first light elements. Most of the free neutrons ended up bound in 4He,
with a few residual abundances of D, 3He, 7Li, and 7Be. This process is known as Primor-
dial Nucleosynthesis, or more commonly, Big Bang Nucleosynthesis (BBN). Further details
on BBN are provided in Section 1.3.1.

An important event in the history of the early Universe was the photon decoupling. As
the Universe cooled below approximately 0.3 eV, electrons and nuclei started to combine
into neutral hydrogen and helium atoms in a process known as recombination12 (Zeldovich
et al., 1968; Peebles, 1968). This transition drastically reduced the density of free electrons,
allowing the mean free path of photons to increase rapidly. By the time the temperature
dropped to around 0.25 eV, roughly 380, 000 years after the Big Bang, the photon scattering
rate dropped below the Hubble expansion rate. At this point, photons decoupled from
matter13, and the Universe became transparent for the first time. These primordial photons
have since travelled and are now observed as the Cosmic Microwave Background (CMB).
The epoch of recombination thus marks the surface of the last scattering, setting the ultimate
horizon of the observable Universe through electromagnetic radiation.

After recombination, the Universe entered the Dark Ages phase, where the only pho-
tons filling the Universe were the CMB photons and 21 cm emission from neutral hydrogen
(Scott & Rees, 1990). During this epoch, baryonic matter began to fall into the gravitational
potential wells that DM already started to form. After matter–radiation equality, the ini-
tial inhomogeneities in the dark matter density field grew through gravitational instability,
leading to the formation of dark matter halos. Gas condensed within these halos, even-
tually giving rise to the first stars, known as Population III stars (Schaerer, 2002), and the
earliest galaxies (Dayal & Ferrara, 2018). These luminous objects emitted intense ultraviolet
radiation, which ionized the surrounding neutral hydrogen in a process known as cosmic
reionisation (Barkana & Loeb, 2001). As a result, photons began to interact with free elec-
trons via Thomson scattering again, making the Universe partly opaque. Population III
stars are thought to be extremely massive, burning their hydrogen rapidly and exploding
in powerful supernovae that enrich the interstellar medium with heavy elements synthe-
sized through nuclear fusion. Structure formation continued throughout cosmic history,
with galaxies grouping into clusters and superclusters.

12Although the hydrogen binding energy is 13.6 eV, the Saha equation (Baumann, 2022) shows that the
free electron fraction decreases significantly only when the temperature drops well below this value, due to the
abundance of high-energy photons capable of ionizing hydrogen.

13Dark matter decoupled much before and could start to collapse via gravity around the initial density
perturbations. However, this process was highly suppressed during radiation dominated era.
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1.2 Standard Cosmological Model: ΛCDM and inflation

Although the Hot Big Bang theory successfully describes the early thermal history of the
universe, it does not by itself specify the dynamics of cosmic expansion or the precise com-
position of the universe today. The ΛCDM (Lambda Cold Dark Matter) model extends the
Hot Big Bang framework by incorporating two new components that have been already
discussed in the previous section; a cosmological constant (Λ) to account for the observed
accelerated expansion, and cold dark matter (CDM) to explain large-scale structure (LSS)
formation, gravitational lensing, and galaxy rotation curves, among others.

The ΛCDM model is the current standard model of cosmology, the simplest model that
explains a wide range of observations, from CMB to LSS. The model makes some assump-
tions, i) the Universe is spatially flat (k = 0) governed by general relativity and composed
of ii) a cosmological constant (Λ), ordinary matter, which is composed of all the particles
of the Standard Model (SM) of particle physics14, and mysterious DM which is assumed to
be cold, i.e. non-relativistic DM. It also incorporates the iii) inflationary paradigm to solve
some issues of the classical Big Bang model, and provides a framework to generate the seeds
of the structures we observe today.

In this section, we briefly go through each of the components and describe the six cos-
mological parameters on which the model depends. The section concludes with a short
overview of inflationary dynamics. This includes an introduction to motivate inflation and
the equations that determine the dynamics of the background. A more detailed discussion
of the initial perturbations is presented in Chapter 2.

➪ Ordinary matter: It refers to the matter that makes up stars, planets, and all visible
structures in the Universe. It only accounts for 5% of the Universe content, which is
matter well described by the SM of particle physics, primarily baryonic matter. It is the
only form of matter that interacts via the electromagnetic force, absorbing, emitting,
and reflecting light. Neutrinos are also included here. In the SM, they are assumed to
be massless. However, it is already known from neutrino oscillations (Fukuda et al.,
1998), first proposed by Bruno Pontecorvo, that at least two of the neutrinos should
have a non-zero mass. The reason is because the flavor states (e, µ, τ ) are different
from the mass eigenstates, which have slightly different masses.

➪ Cold dark mattter (CDM): Around 26% of the energy content of the Universe is in the
form of a non-visible type of matter, dark matter (DM), which either does not interact
or interacts very weakly with electromagnetic radiation. Currently, its effect can only
be observed through gravity force. It plays a vital role in the formation of galaxies and
cosmic structures. The nature of this matter is still a mystery, and there are several

14SM of particle physics describes three of the known fundamental forces in the Universe and classifies the
elementary particles, which are fermions (quarks and leptons) and bossons.
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proposals, i.e. WIMPs, axions, self-interacting dark matter, fuzzy dark matter, (Mili-
)charged dark matter, primordial black holes (PBH), etc. (Cirelli et al., 2024). DM must
be cold, which means that DM must be non-relativistic. Hot DM models, including the
SM neutrinos, are already excluded by structure formation. As alternatives to CDM,
there are the so-called warm dark matter (WDM) models. In these scenarios, DM
particles were produced with a velocity large enough to affect structure formation
(Strigari, 2013), and in particular, they could suppress the formation of small-scale
structures.

➪ Dark energy: It is a mysterious form of energy that dominates the energy density
of the Universe. Accounting for 69% of the total content, dark energy counteracts
gravity and is responsible for the accelerated expansion of the Universe. The simplest
explanation is a cosmological constant (Λ) with an equation of state given by ω ≃ −1,
although alternative models with an evolving equation of state or modified gravity
theories have also been proposed. The latest ones proposed that the accelerated ex-
pansion is a consequence of a change in the laws of gravity at large scales. These
theories include f(R) gravity (Sotiriou & Faraoni, 2010).

1.2.1 Cosmological parameters

The baseΛCDMmodel compresses the dynamics of the Universe into a set of 6 independent
cosmological parameters. The rest of the parameters can be derived from that set, which
is not unique. The most common set of parameters are: Ωbh

2, Ωch2, θ∗, As, ns, and τ .
Observations of the CMB anisotropies15, supernovae, and LSS can place tight constraints
on these parameters. Table 1.1 shows the latest constraints from the combination of CMB
anisotropies, CMB lensing, and Barionic Acoustic Oscillations (BAO). In this section, we
briefly review each of them, including also a set of parameters that describe extensions of
the ΛCDM model.

Geometry, expansion, and composition

This subsection describes the parameters characterising geometrical properties of the Uni-
verse, its evolution, and composition.

The angular size of the sound horizon at recombination, denoted as θ∗, is a key geometri-
cal parameter, mainly constrained by the CMB. It is a robustly determined quantity, known
with a precision better than 0.03%, and almost independent of late-time cosmology (Planck
Collaboration et al., 2020c). It is defined as the ratio between the comoving size of the sound
horizon at the epoch of recombination, rs(z∗), and the angular diameter distance16 to that

15Small temperature fluctuations, of the order of 10−5K, in the CMB that reflect primordial density fluctua-
tions.

16The angular diameter distance relates the physical size of an object to its apparent angular size, and it
depends on the underlying cosmological model.
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epoch, DA(z∗),

DA(z) =
SK(χ)

1 + z
−−→
k=0

DA(z) =
χ(z)

1 + z
=

1

1 + z

∫ z

0

dz′

H(z′)
. (1.21)

θ∗ =
rs(z∗)

DA(z∗)
. (1.22)

The first quantity depends on the physics of the early Universe, while the second one is
sensitive to the expansion history and the spatial geometry.

As already shown in previous sections, the evolution of the Universe depends on the
dimensionless energy densities of its constituents (see Eq. 1.17), i.e., baryons (b), CDM (c),
dark energy (Λ), radiation (r), and curvature (k). The energy density of radiation is well
known and fixed by the CMB temperature, and the current observations are compatible
with a spatially flat Universe, leaving only two quantities to be constrained. These are the
physical densities Ωbh

2 and Ωch
2, where h = H0/100 km s−1 Mpc−1 is the dimensionless

Hubble constant17. In some analyses, the Hubble constant is used in place of θ∗ as one of
the six independent parameters. Although they are not strictly interchangeable, each can
be derived from the other within the framework of a given cosmological model.

Initial conditions

The primordial power spectrum of density fluctuations, which is described later in Section
2.2.2, is parametrised by two quantities. These fluctuations, generated during inflation,
are the initial seeds for the formation of structures in the late Universe. The spectrum is
modelled as a power law characterised by its amplitude (As) and spectral index (ns).

Astrophysical parameters

As previously discussed, the Universe experienced a reionisation epoch when the first stars
and galaxies formed, reionising the hydrogen in the intergalactic medium. The optical
depth to reionisation, τ , provides a measure of the line-of-sight free-electron opacity to
the CMB photons,

τ =

∫ zrei

0
dzσTne(z)

dr

dz
=

∫ zrei

0

σTne(z)

(1 + z)H(z)
dz, (1.23)

where σT is the Thomson cross section, ne(z) denotes the electron density as a function of
redshift, zrei represents the redshift at which reionisation begins, and dr/dz is the line-of-
sight proper distance per unit redshift, given by

[
(1 + z)H(z)

]−1 in a flat Universe. Larger
value of τ means, for a fixed electron density function, a larger period of reionisation, and
thus an earlier star and galaxy formation.

17ΩΛh
2 is derived from these two as the total energy density is equal to unity for flat Universe.
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Parameter Meaning Value

Ωbh
2 Physical baryon density 0.02229± 0.00012

Ωch
2 Physical cold dark matter density 0.1186± 0.0009

100θ∗ Angular size of sound horizon 1.04111± 0.00024
H0 Hubble constant [km/s/Mpc] 67.81± 0.38
τ Optical depth to reionisation 0.0605± 0.0059
ns Scalar spectral index 0.9690± 0.0035

ln(1010As) Amplitude of scalar perturbations 3.048± 0.012

Table 1.1: Best-fit parameters of the base ΛCDM model obtained using a combination of the Planck
CMB temperature and polarisation power spectra for the Planck Data Release 4 (PR4), CMB lensing,
and BAO (Tristram et al., 2024). In addition to the six standard cosmological parameters, H0 is also
included in this table.

Beyond ΛCDM

Several additional parameters are introduced in extensions of ΛCDM model. Each corre-
sponds to a theoretical modification beyond the six base parameters. In the following, we
provide an overview of some of them.

➪ Neutrino and light relics (
∑
mν , Neff ): The base ΛCDM model assumes a normal

mass hierarchy 18 with a minimum mass of
∑
mν = 0.06 eV and an effective number of

relativistic species fixed atNeff = 3.045 (Planck Collaboration et al., 2020c). Neutrinos
leave detectable imprints on cosmological observables. In particular, the total neutrino
mass, which determines the timing of the transition from relativistic to non-relativistic
behaviour, affects the expansion rate and has consequences on gravitational clustering
and the growth of structures. Cosmological probes such as the CMB and the BAO
have placed upper bounds on

∑
mν , with current limits improving by nearly a factor

of 20 over the past two decades. Regarding Neff , deviations from the standard value
could indicate the presence of additional light particles, such as sterile neutrinos or
light axions. Current observations remain fully consistent with the standard model
prediction. See (Lesgourgues et al., 2013; Navas et al., 2024) for a more detailed review
on neutrino impact in cosmology.

➪ Dark energy modification (ω0, ωa): The baseΛCDMmodel fixes the equation of state
of DE to be ω = −1, a cosmological constant. However, if DE is actually a dynamical
fluid, its equation of state would be time dependent, which is typically characterised
by the so-called Chevallier-Polarski-Linder (CPL) parametrization (Chevallier & Po-
larski, 2001; Linder, 2003),

ω(a) = ω0 + (1− a)ωa. (1.24)
18The neutrino mass hierarchy refers to the ordering of the three neutrino mass eigenstates, which can be

either normal (NH) (m1 < m2 < m3) or inverted (IH) (m3 < m1 < m2). Neutrino oscillation experiments are
sensitive only to differences in the squared masses, leaving the absolute scale and hierarchy undetermined.
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➪ Curvature (Ωk): The base ΛCDM model assumes spatially flat Universe, as predicted
by the simplest inflationary models. Introducing a non-zero spatial curvature param-
eter, Ωk, allows deviations from flat geometry, with Ωk > 0 corresponding to an open
Universe and Ωk < 0 to a closed one. Curvature affects the angular diameter distance
to the last scattering surface and modifies the expansion history (see Eq. 1.17).

➪ Primordial spectrum extensions (r0.002, dns/d ln k): In the base ΛCDM model the
primordial scalar perturbations are characterised by an amplitude (As) and a constant
spectral index (ns). In a more general case, the spectral index can depend on the scale
as follows,

n(k) = ns − 1 + (1/2)(dns/d lnk) ln(k/k0) + (1/6)(d2ns/d lnk
2) (ln(k/k0))

2, (1.25)

where running, and running of the running, of the spectral index have been added.

Apart from primordial scalar perturbations, inflation also predicts the generation of
primordial gravitational waves, or tensor modes (see Section 2.2.2 for more details).
The primordial power spectrum of tensor modes is also modelled by a power law
characterised by its amplitude (At) and spectral index (nt). In general, the amplitude
of tensor perturbations is usually given in terms of the tensor-to-scalar ratio,

r =
At
As

(1.26)

The base ΛCDM model assumes no tensor modes, i.e., r = 0. Allowing r to vary
defines an extended model, ΛCDM+ r, for which the latest constraint is r < 0.032 at
95% confidence level (Tristram et al., 2022).

1.2.2 Inflationary paradigm

Cosmic inflation is expected to play a crucial role in the early Universe by driving the Uni-
verse towards the observed large-scale homogeneity and flatness state, even if it started
from more generic initial conditions.

Although the inflationary period has not yet been confirmed, it is a widely accepted ex-
tension of the ΛCDM model. Inflation offers elegant solutions to fundamental issues of the
Standard Big Bang model, i.e., horizon, flatness, and magnetic monopole problems, yields
predictions that are in excellent agreement with observations, and provides a mechanism
for generating the primordial perturbations that seeded the LSS (see Section 2.2.2). For
these reasons, the confirmation of the inflationary paradigm is one of the current goals of
modern cosmology.

The following pages provide a brief review of the horizon, flatness, and magnetic
monopole problems, as well as the basic properties and dynamics of the simplest infla-
tionary models. A detailed discussion of this topic can be found in D. Baumann’s textbook
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(Baumann, 2022) and lecture notes (Baumann, 2009).

Standard Big Bang problems

The standard Big Bang model cannot explain the observed large-scale homogeneity and
flatness without imposing by hand very fine-tuned initial conditions19. To understand these
problems, we must introduce a few concepts.

For two separated regions of spacetime to be causally-connected, light must have been
able to travel between them. This condition is satisfied if both lie within the past lightcones
defined by their respective particle horizons. At any given moment in the Universe’s history,
the particle horizon defines the maximum comoving distance from which light could have
reached an observer since the beginning of the Universe,

dh(η) = η − ηi =

∫ t

ti

dt

a(t)
=

∫ ln a

ln ai

(aH)−1d ln a (1.27)

where η is the conformal time20. Therefore, the particle horizon is related to the evolution
of the comoving Hubble radius, (aH)−1, which, for ordinary matter, always increases, and
physically defines the distance at which objects recede from the observer at the speed of
light due to the cosmic expansion. Integrating equation 1.27 from initial singularity up to
recombination, which defines the particle horizon when the CMB was emitted, and com-
paring it to the comoving distance of the last scattering surface, one finds that two points
in the CMB separated by more than approximately 2 degrees in the sky lie in causally dis-
connected regions (Baumann, 2022). This is shown in Figure 1.4. Then, how is it possible
that CMB photons arriving from all directions exhibit the same temperature? This is the
horizon problem.

Additionally, the standard Big Bang model suffers from the flatness problem. The time-
dependent curvature parameter is proportional to the square of the comoving Hubble ra-
dius,

Ωk(a) =
ρk(a)

ρcrit(a)
=

H2
0

(aH)2
Ωk,0. (1.28)

Taking into account that (aH)−1 grows during the standard Big Bang model, this means that
the curvature should be smaller in the past. The current measurements, which combines
CMB anisotropies, lensing, and BAO, are consistent with our Universe being spatially flat,
Ωk = 0.0000 ± 0.0016 (Tristram et al., 2024). To ensure that Ωk < 0.0016 today, its value at
the time of electroweak phase transition must have been Ωk(tEW) < 10−29. This means that
in the early Universe the energy density matched the critical density to at least 29 significant
digits. Achieving such a fine-tuned match in the early Universe seems extremely unnatural.

19We are not considering that these conditions are outcomes from a still unknown quantum theory of gravity.
20Conformal time is defined as dη = dt/a(t). In this parametrization of time, the expansion is "factored out",

making light rays behave as if they move in flat spacetime, i.e., null geodesics are straight lines.
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FIGURE 1.4: Illustration of the horizon problem in the standard Big Bang model. Any two points in
the CMB separated by more than approximately 2 degrees have non-overlapping particle horizons,
as there is not enough conformal time between the initial singularity and the surface of last-scattering
for causal contact to be established. Consequently, in the standard Big Bang model the CMB consists
of a few tens of thousands causally disconnected patches. Figure adapted from Baumann (2022).

Inflation emerges as a compelling solution to these problems by adding a short phase
of decreasing Hubble radius during which the homogeneity and flatness conditions are
established,

d

dt
(aH)−1 < 0. (1.29)

This condition leads to a period of accelerated expansion, ä > 0. The key to solving the
Horizon problem is that inflation makes the particle horizon much larger than the Hubble
radius, allowing regions that appear causally disconnected today to have been in causal
contact in the past. This is possible because inflation is driven by a fluid that violates the
strong energy condition, 1 + 3ω < 0, as dark energy does. In particular, in inflationary
cosmology, the initial singularity is pushed to negative conformal times21, and η = 0 only
marks the transition point, also known as reheating, between inflation and standard Big
Bang theory. This is shown in Figure 1.5.

In inflationary cosmology, flatness is no longer a problem as Ωk = 0 is now an attractor.
Consequently, if inflation lasts long enough, the initial curvature in the Big Bang model
could be sufficiently suppressed to maintain its value below the observational constraint.

21The singularity is still at t = 0, but due to the abrupt expansion the light cones are stretched in such a way
that they overlap before the end of inflation.



1.2. Standard Cosmological Model: ΛCDM and inflation 21

todayη0

recombinationηrec

reheating0

singularity−∞

p q

FIGURE 1.5: Illustration of the inflationary solution to the horizon problem. Inflation pushes the initial
singularity to negative conformal times, which provides enough conformal time for all the points in the
CMB to have overlapping past light cones. η = 0 now corresponds to the reheating period, a transition
between inflationary cosmology and standard Big Bang theory. Figure adapted from Baumann (2022).

Slow-roll inflation

Up to now, we have presented a way to solve the horizon and flatness problems. How-
ever, this generates a new question to answer: What is the physical mechanism driving the
inflationary period?

In the simplest inflationary models, the energy density, and consequently the dynamics
of the Universe, is dominated by a single scalar field, ϕ(t,x), known as the inflaton. In this
section, we focus on the evolution of the background, ϕ(t), of this field22 and the conditions
under which it leads to an accelerated expansion of the Universe.

This field has a potential energy density, V(ϕ), and a kinetic energy, 1
2 ϕ̇

2, so its energy-
momentum tensor takes the form of a perfect fluid with dynamical energy density and
pressure,

ρϕ =
1

2
ϕ̇2 + V (ϕ); pϕ =

1

2
ϕ̇2 − V (ϕ); ωϕ =

pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (1.30)

The equation of state shows that the inflaton behaves as a cosmological constant, driving a
period of exponentially accelerated expansion, when the potential energy dominates over
the kinetic term. The dynamics of the Universe during this epoch are fully determined by

22It is assumed that the field is homogeneous except for small fluctuations, δϕ, which are studied in the next
chapter.
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the Friedmann and Klein-Gordon equations

H2 =
8πG

3

[
1

2
ϕ̇2 + V

]
, (1.31)

ϕ̈+ 3Hϕ̇ = −dV
dϕ

. (1.32)

Both equations are coupled. The energy content of the field determines the expansion rate,
which serves as a friction for the field. Inflation is sustainable as long as the kinetic energy
does not contribute significantly to the total amount of energy. In particular, when the field
slowly rolls down the potential, as occurs between ϕCMB and ϕend in Figure 1.6, inflation
takes place within the so-called slow-roll regime. The conditions for it are satisfied when the
speed and acceleration of the field are small, conditions that are controlled by the slow-roll
parameters,

ϵ ≡ − Ḣ

H2
=

3
2 ϕ̇

2

1
2 ϕ̇

2 + V
; δ ≡ − ϕ̈

Hϕ̇
. (1.33)

The slow-roll approximation is valid when {ϵ, δ} << 1. In this regime, the equations are
simplified and the expansion is exponentially accelerated. Inflation lasts until ϵ = 1, which
is the moment when ωϕ = −1/3 and the accelerated expansion stops. The amount of in-
flation is quantify by the number of e-folds, which corresponds to the number of times the
scale factor increases by a factor of e,

Ntot ≡
∫ ae

ai

d ln a =

∫ te

ti

H(t)dt, (1.34)

where ae and ai are the scale factors at the end and beginning of inflation, respectively, and
ti and te are defined so that ϵ(ti) = ϵ(te) = 1. Even if inflation last outside the slow-roll
approximation23, most of the e-folds are generated in that regime.

At the end of inflation, the field begins to oscillate around the minimum of its potential,
and the energy stored in the field is transferred to SM particles through a process known
as reheating. For this to occur, the inflaton must be coupled to the SM fields. The new
produced particles start interacting with each other and eventually they reach the thermal
equilibrium that characterised the beginning of the Hot Big Bang model. The reheating
temperature, TR, which is the temperature of this new plasma, must be much larger than 1
MeV to allow for baryogenesis after inflation (Baumann, 2022).

Currently, the inflationary landscape contains hundreds of different scenarios (Martin
et al., 2013). Many candidates for the shape of the potential V (ϕ) remain consistent with
observations in the slow-roll single-field framework, and numerous additional models go
beyond the single-field paradigm. Each of them makes different predictions about the prop-

23Between ωϕ = −1 and ωϕ = −1/3 (or equivalently, ϵ << 1 and ϵ = 1) the expansion is accelerated but
deviates from exact exponential growth. It is a transition between slow-roll regime and the end of inflation.
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FIGURE 1.6: Schematic illustration of a slow-roll single-field potential. At the beginning, the field
slowly rolls down the potential and the inflaton behaves as a dark energy source with ωϕ ≈ −1
equation of state, driving an exponentially accelerated expansion. Inflation ends when the kinetic
term starts contributing significantly to the total energy density. Then, the field starts oscillating and
decaying to the SM particles in a process known as reheating. ϕCMB corresponds to the value of
inflaton at the time when the largest observable scales today exited the horizon, ensuring that all the
regions of the CMB were initially causally connected. Figure taken from Baumann (2009).

erties of the primordial perturbations such as ns, non-Gaussianity, and the tensor-to-scalar
ratio.

1.3 Cosmological probes

This section provides a brief summary of the cosmological probes that have provided us
precise measurements of the composition, geometry, and evolution of the Universe. These
include the light element abundance (Section 1.3.1), the large-scale distribution of matter in
the Universe (Section 1.3.2), and standard candles/sirens such as supernovae and gravita-
tional waves (Section 1.3.3).

The CMB stands as one of the most compelling pieces of evidence for the Big Bang
theory. This radiation, generated at the time of recombination, is an emission of uniform
black body thermal energy that permeates the entire Universe, accounting for most of the
radiation energy in the Universe. This section does not include any description about it,
as a comprehensive and extensive discussion is provided in Chapters 2 and 3, with special
attention to the CMB anomalies, the main topic of this thesis.

1.3.1 Big Bang Nucleosynthesis

As previously mentioned in Section 1.1, light elements are produced during BBN, while
heavier elements are the result of nuclear reactions occurring in the stellar cores. The
primordial abundance of light elements can be predicted using well-established nuclear
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physics, with errors primarily arising from uncertainties in the cross sections, which is the
probability of a specific reaction to occur.

There are some key aspects to be taken into account in the BBN. One of the inputs for the
BBN is the neutron abundance. Around T ∼ 1MeV, the weak interactions by which protons
transformed into neutrons, and vice versa, became unlikely, and the neutron abundance is
fixed to 1/6. The other important aspect is the baryon-to-photon ratio, ηb. The first step in
the BBN is the deuterium production (n + p → D + γ). However, due to small baryon-to-
photon ratio the deuterium production is inhibited until the temperature drops well below
its binding energy. This occurs essentially because, even if photons with energies compa-
rable to the binding energy are suppressed, their abundance is so high that nuclei can still
encounter such photons and dissociate (Dodelson, 2003). Therefore, helium production is
delayed until enough deuterium is presented in the Universe. This is known as the deu-
terium bottleneck (Steigman, 2007). In the meantime, the neutron abundance decreased
according to its lifetime (τ = 878.4 ± 0.5 s from Navas et al. (2024)). After deuterium, 4He
is produced, with a small fraction of 3He and 3H. Helium is favored over deuterium as the
binding energy is larger. Finally, small amount of 7Li is produced, and 7Be, but this even-
tually decays. Reaction chains stop and no heavier nuclei are produced, mainly because
there are not stable nuclei with mass numbers equal to 5 or 8. In stars heavier elements
are formed through reactions that involve more than two particles, the triple alpha process
for example. However, during BBN there is not enough time and baryon density for this.
Figure 1.7 shows the evolution of the abundances of different elements produced during
BBN epoch.

Comparing the predictions of BBN with the observed relative abundances of light el-
ements provides a powerful probe of particle physics and cosmology during the first few
minutes after the Big Bang. The key challenge is to identify environments where these
primordial abundances have remained largely unaltered by subsequent astrophysical pro-
cesses (Cooke, 2024). The relative abundance of deuterium can be inferred by exploring
the absorption lines that low metallicity gas clouds imprints in the spectra of high-redshift
quasars (Cooke et al., 2018; Cooke, 2024). The deuterium abundance provides an alternative
way to estimate the baryon density, and its remarkable agreement with the value inferred
from the CMB, as shown in Figure 1.8, stands as one of the strongest confirmations of the
standard cosmological model.

The primordial 4He abundance, Yp, is most commonly determined by analysing the
emission lines from metal-poor H II regions in blue compact dwarf galaxies (Kurichin et al.,
2021). The helium primordial abundance also affects the CMB, in particular the damping
tail (Cooke, 2024), as the electrons recombine with helium before hydrogen. On the other
hand, the measurement of the primordial abundant of 3He is nearly impossible as it is hard
to find environments undisturbed by stellar activity. Finally, the best estimation of the pri-
mordial lithium abundance comes from the study of 7Li absorption in the atmospheres of
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FIGURE 1.7: Evolution of light elements abundances during Big Bang Nucleosynthesis (BBN). Grey
bands correspond to the main BBN stages. From left to right: neutrino (ν) decoupling, neutron-proton
ratio freeze-out and electron-positron annihilation, deuterium bottleneck, and freeze-out of all nuclear
reactions. Figure taken from Pospelov & Pradler (2010).

old metal-poor stars orbiting the Milky Way galaxy (Cooke, 2024). However, the inferred
lithium abundance is significantly lower than the predicted amount from BBN.

1.3.2 Large-Scale Structure

LSS refers to the distribution of matter in the Universe on scales larger than individual
galaxies, including clusters, filaments, and voids, formed by gravitational growth of initial
density fluctuations. It has become an increasingly important source of cosmological infor-
mation, particularly for constraining the nature of dark matter and dark energy. While the
CMB mainly probes the early Universe at time of recombination, it provides limited insight
into the late-time dynamics of these components. Therefore, the CMB needs to be comple-
mented by high-quality measurements of the cosmic expansion history and the growth of
the LSS (Euclid Collaboration et al., 2025).

One of the main observables of the galaxy distribution is the three-dimensional linear
matter power spectrum, Pm(k), which is defined as the variance of the Fourier modes of
the three dimensional distribution of matter. In particular, Figure 1.9 shows the 3D linear
Pm(k) at z = 0. Reconstructing the three-dimensional distribution of matter requires sur-
veys capable of accurately measuring both the angular position and redshifts of hundreds of
thousands of galaxies. Examples of completed surveys that have mapped the LSS include
the Sloan Digital Sky Survey (SDSS) (York et al., 2000), the 2dF Galaxy Redshift Survey
(Colless et al., 2001), SDSS-III’s Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson



26 Chapter 1. An Introduction to the Universe

FIGURE 1.8: The primordial abundance of light elements predicted by BBN (blue curves) for dif-
ferent values of baryon-to-photon ratio, η. The green shaded regions represent the observational
abundance, including their uncertainties. Finally, the grey vertical lines shows the current baryon-to-
photon ratio constraints based on the CMB. Figure taken from Pitrou et al. (2018).
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FIGURE 1.9: Linear matter power spectrum at z = 0 obtained from CMB and LSS surveys. The
solid black line shows the ΛCDM predictions at linear-theory level, while the dotted line includes the
non-linear effects at small scales. Figure adapted from Planck Collaboration et al. (2020a).

et al., 2013), eBOSS (Zhao et al., 2016), and Dark Energy Survey (DES) (Dark Energy Sur-
vey Collaboration et al., 2016). Future and ongoing surveys like J-PAS (Benitez et al., 2014),
DESI (DESI Collaboration et al., 2016), Euclid (Euclid Collaboration et al., 2025), and Rubin
Observatory’s Legacy of Space and Time (LSST) (Ivezić et al., 2019) will improve our un-
derstanding of dark energy. In particular, BAO serve as a standard ruler in cosmology. It
defines a preferred scale in the clustering of matter imprinted by acoustic waves that propa-
gate in the photon-baryon plasma in the pre-recombination Universe (Dawson et al., 2013).
Measuring this characteristic scale across different redshifts enables precise measurements
of the expansion history. In addition, gravitational lensing offers a complementary probe of
dark energy and the distribution of dark matter. As photons from distant galaxies cross the
cosmic web, their paths are deflected by the gravitational potential generated by the matter
distribution along the line of sight. In particular, this effect distorts the observed shapes of
high-redshift galaxies, a phenomenon known as cosmic shear (Kilbinger, 2015), which can
be measured at different redshifts to trace the evolution of LSS over the cosmic time.

On the other hand, it is well known that on small scales the matter fluctuations have
become large and enter a non-linear regime, which is really hard to model. On top of that,
baryonic feedback also provides an extra layer of complexity. This includes star formation,
supernova explosions, and Active Galactic Nuclei (AGN) feedback. Taking into account
that linear theory fails to capture these complex processes, cosmological simulations have
emerged as an essential tool for understanding these effects (Aricò et al., 2021). Millen-
niumTNG (Pakmor et al., 2023) and BAHAMAS (McCarthy et al., 2017) projects are two
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examples of detailed N-body and hydrodynamical simulations.

1.3.3 Supernovae and Gravitational Waves

The present expansion rate of the Universe, H0, can be determined in the local Universe by
measuring distances and redshifts. Unfortunately, measuring cosmological distances is not
an easy task. One of the solutions is based on the standard candles, astrophysical sources
with a known brightness, which can be used to infer luminosity distances24,

dL(z) = (1 + z)
1

H0

∫ z

0

dz′

H(z′)
= (1 + z)

1

H0

∫ z

0

dz′√
Ωr(1 + z′)4 +Ωm(1 + z′)3 +ΩΛ

. (1.35)

Cepheids are excellent standard candles due to their luminosity-period relation, which
can be calibrated using geometric distances from parallax measurements. However, infer-
ring an accurate H0 value requires observing sources far enough so that the redshift is not
affected by peculiar velocities. The cosmic distance ladder is the solution. This term refers
to a collection of techniques that allow one to determine the distance to faraway objects by
using previous steps as calibrators. In this context, type Ia supernovae (SNIa) are excellent
distance indicators, as their luminosity can be standardised. They are among the brightest
phenomena in the Universe, making them detectable even at high redshifts. A SNIa arises
from a thermonuclear explosion of a white dwarf in binary systems, although its mechanism
is still under study (Liu et al., 2023).

The luminosity distance is computed for SNIa using the standarized distance moduli
defined as

µ = 5 log(dL/10pc). (1.36)

One of the ingredients for the distance moduli is the absolute magnitude, which needs to
be calibrated using distance ladders. The most common calibrators are the Cepheids (Riess
et al., 2022) and the Tip of Red Giant Branch (TRGB) stars (Freedman et al., 2024; Hoyt et al.,
2025), which are used to estimate the distance to galaxies hosting SNIa.

Recently, gravitational waves (GW) emitted during neutron star and black hole binary
mergers have begun to be used as standard sirens. They are absolute distance indicators, as
they do not need to rely on any calibrators to infer the luminosity distance (Soares-Santos
et al., 2019). To construct a redshift-distance relationship and measure H0, the redshift is
also needed, and for that, the host galaxy needs to be identified. For some GW events, the
host galaxy can be identified from the electromagnetic counterpart emission (Abbott et al.,
2017, 2021). However, there are sources such as binary black hole (BBH) merges without
EM emission, which are called dark sirens, and even in those cases cosmological parameters
can be inferred.

24It is the distance that accounts how the luminosity of a source is reduced due to the photon travel in an
expanding Universe.
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1.4 Current challenges

Although we have strong observational evidence for the ΛCDM model, there are still some
open questions and tensions suggesting that the model is not complete. In this section, we
summarize some of them (see Di Valentino et al. (2025) for a detailed review). We made a
distinction between fundamental questions/challenges and tensions/anomalies.

Open questions

➪ What is the nature of dark matter? Although the SM of particle physics explains the
fundamental particles and interactions successfully, it does not include dark matter,
which accounts for almost 84% of the matter content in the Universe.

➪ What kind of fluid is dark energy? While understanding DM is already a challenge,
explaining a fluid with a negative pressure is even harder. One of the main goals
of the modern cosmology is to determine the nature and evolution of the DE, which
constitutes the 69% of the total energy density of the Universe.

➪ Inflation: B-mode quest. The level of flatness and homogeneity cannot be explained
without inflation. However, it has yet to be confirmed, and the precise details of how it
occurred remain unknown. Upcoming CMB experiments, such as LiteBIRD (Hazumi
et al., 2020) or The Simons Observatory (SO) (Ade et al., 2019), have been specifically
designed to search for the polarisation B-mode (see Section 2.2.4), an imprint in the
CMB of the GW generated during inflation.

Tensions

➪ Lithium problem: The amount of 7Li/H predicted by the BBN is a factor of 3.6 larger
than the observed one (Cooke, 2024).

➪ H0 tension: The value of the Hubble constant inferred from early- and late-Universe
does not agree. Early-time measurements come mainly from the CMB anisotropies,
BBN abundance, and BAO, which actually do not directly constrainH0, but rather it is
derived from the model. The latest values inferred from the Planck mission, including
lensing and BAO, isH0 = 67.81±0.38 kms−1Mpc−1. Late-time measurements are ob-
tained through different calibrations of the distance ladder. The SH0ES team uses par-
allax to calibrate Cepheids and Cepheids to calibrate SNIa. They infer a value around
H0 = 73 kms−1Mpc−1 with an approximate uncertainty of 1 kms−1Mpc−1 (Riess
et al., 2022). This is around 5σ tension. Additional late-time measurements come from
the TRGB led by The Chicago Carnegie Hubble Program (CCHP). Their latest results
seem to be compatible with the values inferred from CMB, H0 = 69 kms−1Mpc−1

(Freedman et al., 2024). These results indicate that significant work remains to fully
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understand the discrepancies among late-time cosmological measurements. In case
of the tension between late- and early-time Universe being confirmed, resolving the
discrepancy may require new physics beyond the standard ΛCDM model.

➪ S8 tension: This refers to a discrepancy in the S8 parameter between the early- and
late-time measurements. S8 is commonly defined asS8 = σ8

√
Ωm/0.3, where σ8 is the

root mean square of the amplitude of matter perturbations smoothed over 8h−1 Mpc.
A larger value of σ8 means that the matter is more strongly clustered on this scale.
The low redshift probes, which include cosmic shear (Secco et al., 2022; Li et al., 2023)
and galaxy clustering (Philcox & Ivanov, 2022), measured a lower S8 value than ex-
pected from the evolution of the fluctuations observed in the CMB (Tristram et al.,
2024; Madhavacheril et al., 2024). Recent analysis of the final data release from the
Kilo-Degree Survey (KiDS) (Stölzner et al., 2025) shows measurements consistent with
Planck values.

➪ CMB anomalies: Although the CMB data shows an excellent agreement with the
prediction of the ΛCDM model, a set of unexpected features have been found in the
temperature maps at the level of 2-3σ. The study of some of these anomalous features
in the temperature and polarisation maps is the main topic of this thesis. See Section
3 for a review on this topic.
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Cosmic Microwave Background

"The career of a young theoretical physicist
consists of treating the harmonic oscillator
in ever-increasing levels of abstraction."

Sidney Coleman

Over the past 60 years, the CMB radiation has been a fundamental pillar of the cosmolog-
ical standard model, offering a detailed picture of the Universe when it was only 380, 000

years old. It has been observed using balloons, as well as space- and ground-based tele-
scopes, which ultimately led to the detection of anisotropies, tiny fluctuations in the inten-
sity field reflecting perturbations in the density at the time of recombination. The statistical
analysis of these fluctuations has become a cornerstone in modern cosmology, revealing
key properties of the Universe, and a powerful cosmological probe as they are accurately
described within the linear regime. The most recent space mission, Planck, in synergy with
ground-base telescopes, has provided an accurate picture of these anisotropies over a broad
range of angular scales. In recent years, the attention has shifted towards the precise obser-
vation of the CMB polarisation anisotropies, particularly the accurate measurement of the
B-mode, a smoking-gun of cosmic inflation. This chapter provides a brief review of these
topics, while the next one offers an overview of CMB anomalies, which constitute the main
topic of the work I carried out during my PhD.
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2.1 History

After the discovery of the CMB radiation in 1965 by A. Penzias and R. Wilson (Penzias &
Wilson, 1965), the first goal was to measure its spectral energy distribution and compare it
to a blackbody spectrum as predicted by the Big Bang model. The Far-Infrared Absolute
Spectrophotometer (FIRAS) instrument aboard the COsmic Background Explorer (COBE)
(Mather et al., 1994) satellite, launched by NASA in 1989, was the first mission to do so.
FIRAS measured the CMB spectrum with high precision, finding excellent agreement with
a blackbody spectrum at 2.726 ± 0.010 K.This temperature corresponds to the redshifting
of the photons released at recombination around z ≈ 1100 when the Universe was at a
temperature close to 3000K. Additionally, COBE/FIRAS was the first mission putting upper
limits on the CMB spectral distortions, which are tiny deviations from a perfect blackbody
spectrum induced by processes that inject energy in the CMB photons.

Although the CMB is remarkably homogeneous, it is not perfectly smooth. It presents
small anisotropies, temperature variations, which provide a snapshot of the density pertur-
bations in the photon-baryon plasma at the time of recombination. The strongest anisotropy
is the dipole, which is actually mainly produced by the Doppler effect due to the motion
of the Solar System with respect to the CMB rest frame. COBE/FIRAS measured a dipole
with an amplitude of 3372 ± 14 µK, which is compatible with the current value provided
by Planck of 3366.6 ± 2.7µK (Planck Collaboration et al., 2020f). Apart from the dipole,
there are fainter anisotropies, at the level of 10−5 K, of different angular sizes. These angu-
lar scales are conveniently described in terms of spherical harmonics, with smaller angular
features corresponding to higher multipole moments ℓ. In particular, the shape of the an-
gular power spectrum of these anisotropies, discussed in detail in Section 2.2.1, encodes
information about the primordial fluctuations and the photon-baryon plasma physics be-
fore recombination, and therefore, provides valuable information about the composition
and evolution of the Universe. The Differential Microwave Radiometer (DMR) instrument
aboard COBE measured, for the first time, temperature variations on large angular scales
(Wright et al., 1996).

The early 2000s were characterised by numerous ground-based and balloon-borne ex-
periments that measured temperature anisotropies at smaller angular scales and across dif-
ferent frequency bands. BOOMERanG (Masi, 2002) was the first ballon-borne experiment
dedicated to observing the CMB with high angular resolution. It provided the first clear de-
tection of the first acoustic peak in the angular power spectrum and a hint of the second and
third peaks. BOOMERanG was the first experiment discovering that the geometry of the
Universe is close to flat. These results were confirmed by the MAXIMA balloon (Lee et al.,
2001), and the DASI (Halverson et al., 2002) and the Very Small Array (VSA) (Scott et al.,
2003) ground-based telescopes, which detected the second and third acoustic peaks. In par-
ticular, DASI was the first experiment detecting the CMB polarisation, which measured the
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amplitude ofE-mode at the level of 4.9σ (Leitch et al., 2002), result that was improved later
to 6.3σ (Leitch et al., 2005). The Cosmic Background Imager (CBI) (Sievers et al., 2003) and
the Arcminute Cosmology Bolometer Array Receiver (ACBAR) (Kuo et al., 2004) ground-
based telescopes provided complementary information by measuring higher-order peaks
and the Silk damping tail (Silk, 1968) over a more extended multipole range. In particular,
CBI revealed the theE-mode angular power spectrum shows peaks and valleys shifted half
a cycle with respect to those observed in the temperature spectrum (Readhead et al., 2004).

After COBE, the next generation space satellite dedicated to the CMB observation was
the Wilkinson Microwave Anisotropy Probe (WMAP) (Hinshaw et al., 2013), a NASA space-
craft operating from 2001 to 2010. It observed the CMB in 5 frequency bands spanning in the
23−94 GHz range, providing a full-sky measurement of temperature anisotropies. WMAP
played a key role establishing the ΛCDM model. It detected an anticorrelation in the TE
cross-power spectrum on large angular scales, around ℓ ≈ 150, which is a signature of
adiabatic superhorizon fluctuations at the time of recombination (Peiris et al., 2003), and a
prediction of the inflationary models.

After COBE and WMAP, the third, and currently the latest, generation of space satel-
lite for CMB was the Planck mission (Planck Collaboration et al., 2020a), a European Space
Agency (ESA) spacecraft operating from 2009 to 2013. It carried two instruments: the Low
Frequency Instrument (LFI), observing at 30, 44, and 70 GHz, and the High Frequency In-
strument (HFI), observing at 100, 143, 217, 353, 545, and 857 GHz, with a combined resolu-
tion of 5 arcmin. Thanks to this, Planck provided cosmic variance limited (see Section 2.2.1)
measurements of the temperature power spectrum up to ℓ ≈ 1600, and a highly precise
determination of the cosmological parameters. There have been four official data releases:
Planck 2013 (PR1), 2015 (PR2), 2018 (PR3), and the most recent one PR4/NPIPE 1 (Planck
Collaboration et al., 2020f). Figure 2.1 shows the Planck 2018 SMICA temperature map.

Regarding ground-based telescopes, there are several ongoing and future experiments
with the aim of measuring with high precision the CMB polarisation, particularly the B-
mode, on degree and sub-degree angular scales. These are the BICEP/Keck Array (The
BICEP/Keck Collaboration et al., 2024), the Simons Observatory (SO) (Ade et al., 2019), the
South Pole Telescope2 (SPT) (Zebrowski et al., 2025), Atacama Cosmology Telescope (ACT)
(Louis et al., 2025), Polarbear (Adachi et al., 2022), and CMB-S43 (Abazajian et al., 2016). In
synergy with these experiments, LiteBIRD (LiteBIRD Collaboration et al., 2023) will be the
next generation satellite mission to measure the CMB polarisation on large angular scales.
Figure 2.2 shows the current state of the art, highlighting the synergy between space mis-
sions and ground-based experiments in reconstructing both the large and small scales of

1In PR4, the two Planck instruments have been processed jointly which has effectively reduced the large-
scale systematics on polarisation data.

2The first goal for the SPT was a survey to search for clusters of galaxies using the Sunyaev-Zel’dovich (SZ)
effect.

3Recently, the U.S. Department of Energy (DOE) and the National Science Foundation (NSF) have jointly
decided that they can no longer support the CMB-S4 Project.
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FIGURE 2.1: Planck 2018 SMICA temperature map. Grey line shows the Planck mask, which is the
region where the residuals from foreground emission are expected to be non negligible. This region
is inpainted for illustrative purposes. Figure adapted from Planck Collaboration et al. (2020a).

the anisotropies.

2.2 Theory of CMB anisotropies

The CMB is the unique cosmological observable providing direct information about the
Universe when it was just 380, 000 years old. Studying the correlations of its anisotropies
and, more generally, their statistical properties, offers a powerful tool to describe the early
Universe and constrain the standard cosmological model. For instance, the angular corre-
lations above degree scale probe directly the primordial quantum conditions due to their
superhorizon nature at the time of recombination. On the other hand, sub-degree angu-
lar correlations probe the propagation of acoustic waves in the primordial photon-baryon
plasma, and the damping tail caused by the photon diffusion. These are the “primordial
anisotropies", which are generated at the last scattering surface during decoupling. Apart
from them, there are also the so-called “secondary anisotropies", which refer to signals
generated after decoupling due to physical processes affecting the photons on their way
towards us. Weak gravitational lensing, caused by the deflection of the photons due to the
matter distribution, the Sunyaev-Zel’dovich effect, which produces distortions in the CMB
spectra, and the integrated Sachs-Wolfe (ISW) effect, which arises from the time variation
of gravitational potentials along line of sight, are some examples.

The following sections provide a brief review on the theory of CMB anisotropies. Section
2.2.1 introduces the statistics used to describe the temperature anisotropies. The origin and
evolution of the anisotropies is presented in Section 2.2.2, including a brief description of
the secondary anisotropies. Polarisation anisotropies are introduced in Section 2.2.3, and
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FIGURE 2.2: Compilation of CMB angular power spectrum measurements with different experiments.
It includes temperature (TT ), polarisationE-andB-modes, and TE cross power spectra. The dashed
grey line corresponds to the best-fit ΛCDM model to the combination of ACT with the Planck large-
scales data. Figure adapted from Louis et al. (2025).
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finally, Section 2.2.4 summarizes the main challenges of the CMB.

2.2.1 Statistics of CMB temperature anisotropies

The CMB shows small perturbations of the order of 10−5 K above the background tempera-
ture, T̄CMB = 2.7255± 0.0006 K (Fixsen, 2009). Therefore, the CMB temperature measured
by an observer in a direction n̂ = (θ, ϕ) in the sky is equal to

T (n̂) = T̄CMB[1 + Θ(n̂)], (2.1)

where Θ(n̂) is the fractional temperature fluctuation. As already mentioned, the largest
anisotropy in the CMB is a dipolar feature that comes from the motion of the solar system
with respect to the CMB rest frame,

δT (n̂)/T = n̂ · v = v cos θ. (2.2)

For δT = 3366µK (Planck Collaboration et al., 2020f) the inferred velocity is v ≈ 370 km/s.
Once the mean temperature and the dipole are subtracted, the anisotropy field can be sta-
tistically studied.

Since the anisotropies originate from primordial quantum fluctuations of a Gaussian
field (see Section 2.2.2), they are fully characterised by their two-point correlation function,

C(θ) = ⟨Θ(n̂)Θ(n̂′)⟩ , (2.3)

where cos θ = n̂ · n̂′, and the average is over an ensemble of Universes.

An equivalent and more common description of the statistical properties of the tempera-
ture anisotropies is provided in harmonic space. Given that the anisotropies are defined on
the celestial sphere, it is convenient to expand the temperature field in a spherical harmonic
basis,

Θ(n̂) =

∞∑
ℓ=2

ℓ∑
m=−ℓ

aℓmYℓm(n̂), aℓm =

∫
Θ(n̂)Y ∗

ℓm(n̂)dΩ, (2.4)

where the coefficients aℓm are the multipole moments. The sum starts at ℓ = 2, the
quadrupole, because ℓ = 0, 1 corresponds to the monopole (T̄CMB) and the dipole, respec-
tively. All the cosmological information is encoded in the distribution of these coefficients.
They follow a Gaussian distribution with zero mean and variance given by the angular
power spectrum, Cℓ, which is the equivalent in the Fourier space of the two-point correla-
tion function in real space,

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′CTTℓ , C(θ) =
∑
ℓ

2ℓ+ 1

4π
CTTℓ Pℓ(cos θ), (2.5)
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where the average is done over an ensemble of Universes, and Pℓ are the Legendre polyno-
mials. The Kronecker deltas reflect two key properties: statistical isotropy, implying that
the power spectrum is independent of the magnetic quantum number (m); and the statisti-
cal independence of different multipole moments. Essentially, the Cℓ’s quantify the power
of temperature fluctuations in the CMB on different angular scales. A higher Cℓ for a par-
ticular ℓmeans that there are larger temperature variations, more pronounced hot and cold
spots, at that angular size. Usually, it is common to work withDℓ’s instead ofCℓ’s as shown
in Figure 2.2,

Dℓ =
ℓ(ℓ+ 1)

2π
Cℓ. (2.6)

So far, the two-point correlation function and the angular power spectrum have been
defined as an average over an ensemble of Universes. However, we live in one Universe and
we can only observe that realisation. The solution is the statistical isotropy. Given that all
the aℓm’s for a given ℓ have the same variance, for a fixed multipole we have 2ℓ+1 moments
to estimate the corresponding Cℓ,

ĈTTℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2. (2.7)

This estimator is unbiased, but it has a non-zero sampling variance which is commonly
known as cosmic variance,

∆Cℓ
Cℓ

=

√
1

ℓ+ 0.5
. (2.8)

As expected, the uncertainty is larger at low multipoles because there are less independent
moments to build up the estimator.

Finally, it is worth mentioning that the effect of the solar system motion with respect to
the CMB rest frame also induces second-order effects that lead to distortions at both low
and high multipoles. These include a frequency-dependent dipolar-modulation of the CMB
anisotropies and an aberration effect on small angular-scales (Challinor & van Leeuwen,
2002).

2.2.2 From quantum fluctuations to CMB

This section provides a brief introduction to the initial curvature perturbations generated
during inflation, and presents the key equation that relates these primordial perturbations
to the observed power spectrum of CMB anisotropies. The objective is to offer a qualita-
tive explanation for the origin of the (scalar) CMB anisotropies without entering into the
full details, which would require the complete derivation and solution of the perturbed
Boltzmann-Einstein equations. Typically, this task is performed using specific software
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such as camb4(Lewis et al., 2000) or CLASS5(Blas et al., 2011) Boltzmann solvers. All of this
is done at linear order, consistent with the small amplitude of the anisotropies observed
in the CMB. For a more detailed description, the reader is referred to Baumann’s textbook
Baumann (2022) or Ma & Bertschinger (1995); Lesgourgues (2013).

Primordial perturbations

Inflation theory not only provides a solution to the horizon and flatness problems but also
offers a natural mechanism for the generation of primordial scalar and tensor perturba-
tions. The scalar perturbations, in particular, serve as the initial seeds for the formation of
structures in the late Universe.

In linear perturbation theory, scalar perturbations in the energy-momentum tensor are
coupled to scalar metric perturbations through the linearized Einstein equations. These
together with the continuity and Euler equations determine the whole evolution. How-
ever, the perturbation variables are sensitive to the choice of coordinates in both space and
time. This freedom, known as the gauge freedom, means that, depending on the coordi-
nate choice, the energy density perturbations can be removed and transferred into metric
perturbations or vice versa. This issue can be addressed either by fixing a specific gauge
and consistently tracking all perturbations, or by working with gauge-invariant quantities.
A particularly useful example is the curvature perturbations, ζ and R, which for adiabatic
perturbations take the following form in Newtonian gauge,

ζ = Φ− δρ

3(ρ̄+ P̄ )
, R = Φ−Hv, (2.9)

whereΦ is the Newtonian gravitational potential6 andH = aH is the conformal Hubble pa-
rameter. Both curvature perturbations become equal on superhorizon scales, i.e., on wave-
lengths larger than the Hubble radius (k << aH), and more importantly, they are conserved
for adiabatic perturbations. This makes R a perfect variable to connect the inflationary era
to the post-inflationary Universe.

As discussed earlier, inflation is driven by the inflaton field, ϕ(t). In addition to its clas-
sical behavior, it also exhibits small quantum fluctuations above the classical background
arising from the uncertainty principle,

ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗). (2.10)

Expressing the curvature perturbation R as a function of the inflaton perturbation, we

4https://camb.readthedocs.io/en/latest/
5http://class-code.net/
6It is also one of the Bardeen potentials, which is one of the gauge-invariant variables for the metric pertur-

bations.

https://camb.readthedocs.io/en/latest/
http://class-code.net/
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have
R = Φ− H

ϕ̇
δϕ. (2.11)

By considering the flat gauge (Φ = 0), it is possible to relate the curvature perturbation to
the inflaton one. Since these inflaton fluctuations can be interpreted as local time shifts in
the evolution of the background, in this picture primordial fluctuations arise from spatial
variations in the time at which inflation ends. Therefore, different regions of space undergo
slightly different amounts of inflation, leading to small variations in their energy densities.

After inflation, inflaton field decays to the SM particles during reheating. In the single-
field inflation model, the initial condition for the perturbations of all the cosmological
species is determined from the same curvature perturbation R. This is one of the main
predictions of the simplest inflationary model, the primordial fluctuations are purely adi-
abatic, a prediction that has been tested with the Planck data (Planck Collaboration et al.,
2020e). This condition can be expressed, for two species a and b, as

δa
1 + ωa

=
δb

1 + ωb
. (2.12)

where δi ≡ δρi/ρi is the density contrast of component i, and ωi ≡ Pi/ρi is its equation of
state parameter, with i = a, b.

We now turn to the statistical properties of curvature perturbations. The evolution of
the inflaton fluctuations can be obtained by perturbing at linear order the metric and the
inflaton field in the Klein-Gordon equation. This gives rise to the well-known Mukhanov-
Sasaki equation (Baumann, 2022),

f ′′ +

(
k2 − z′′

z

)
f = f ′′ + ω(τ, k)2f = 0, (2.13)

where the Mukhanov variable is defined as f ≡ aδϕ and z ≡ aϕ̄′

H , with ϕ̄′ denoting the
derivative of the homogeneous field with respect the conformal time. This is the equation
of a harmonic oscillator with a time dependent frequency. This equation can be evaluated in
two regimes. At early times, in the limit where k2 >> z′′/z, all the scales are well inside the
horizon and the fluctuations follow the standard harmonic oscillator with a fixed frequency
ω = k. As comoving Hubble radius shrinks, modes exit the horizon. In the limit where
k2 << z′′/z, the solutions for the Mukhanov-Sasaki equation are a growing mode f ∝ z

and a decaying mode f ∝ z−2. In particular, the growing mode corresponds to the frozen
curvature perturbations.

The power spectra of the curvature perturbation R is given by

∆2
R =

(
H
˙̄ϕ

)2

∆2
δϕ, (2.14)
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where ∆δϕ denotes the spectrum of the Bunch–Davies vacuum quantum fluctuations of the
inflaton field. Since the origin of the primordial perturbations are quantum vacuum fluc-
tuations, it is necessary to quantize the Mukhanov variable following the canonical quan-
tization from quantum mechanics. In this picture, Mukhanov-Sasaki equation describes a
quantum oscillator. By imposing the Bunch-Davies vacuum as initial condition, the spec-
trum of inflaton fluctuations is found to be

∆2
δϕ ≈

(
H(t)

2π

)2 ∣∣∣∣
k=aH(t)

. (2.15)

For each Fourier mode, the spectrum is evaluated at the time when it crosses the horizon.
In the limit case where H does not evolve in time, the expected spectrum should be scale-
invariant, but this would mean eternal inflation. Since H is evolving, this leads to a slight
scale dependence. In particular, under the slow-roll approximation, the power spectrum is
given by

∆2
R(k) =

1

8π2ϵ

H2

M2
Pl

∣∣∣∣
k=aH

, (2.16)

whereMPl is the reduced Planck mass. This expression provides the amplitude of quantum-
generated curvature perturbations, evaluated at the moment of horizon crossing. The pri-
mordial power spectrum is usually modelled as

∆2
R(k) = As

(
k

k∗

)ns−1

, As =
1

8π2ϵ∗

H2
∗

M2
Pl

(2.17)

where As and ns are the cosmological parameters described in 1.2.1, andH∗ and ϵ∗ are eval-
uated at the time when the reference scale k∗ crosses the horizon. The near scale-invariance
of this spectrum reflects the quasi-de Sitter expansion during inflation, and its slight tilt
encodes information about the slow-roll parameters

ns − 1 ≡ d ln∆2
R(k)

d ln k
≈ −2ϵ− κ, κ =

ϵ̇

Hϵ
. (2.18)

Current constraints exclude the exact scale-invariant scenario by ≈ 8.8σ (Tristram et al.,
2024). Since the slow-roll parameters vary in time, ns could also exhibit time evolution,
which is parametrized by the spectral running index defined in 1.25. Therefore, ns is eval-
uated at the time when the reference scale k∗ crosses the horizon.

To summarize, the quantum fluctuations of the inflaton field (δϕ) are stretched to macro-
scopic scales by inflation, generating the cosmological curvature perturbations (R). This
process is a consequence of the rapid accelerated expansion of space during which the co-
moving Hubble radius shrinks, allowing perturbation modes to exit the horizon, freeze,
and become classical fluctuations. Once outside the Hubble radius, these modes remain
frozen until they re-enter during the post-inflationary expansion.
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Inflation also predicted a spectrum of primordial gravitational waves that arise from the
freezing and amplification of the quantum fluctuations in the tensor perturbations of the
spacetime metric. It can be probed that the action for the tensor perturbations is just two
copies of the action of a scalar field, the same for each of the two polarisation modes (h+, h×).
By solving the corresponding Mukhanov-Sasaki equation, where now the Mukhanov vari-
ables are f+,× = aMPl√

2
h+,×, it can be found that the power spectrum of tensor fluctuations

is

∆2
h(k) = ⟨hijhij⟩ = 2∆2

h+(k) + 2∆2
h×(k) =

= 2

(
2

MPl

)2

∆2
δϕ(k)

∣∣∣∣
k=aH

=
2

π2

(
H

MPl

)2 ∣∣∣∣
k=aH

.
(2.19)

This power spectrum is also modelled as a power law,

∆2
h(k) = At

(
k

k∗

)nt

, At ≡
2

π2
H2

∗
M2

Pl

, nt ≡ −2ϵ∗, r ≡ At

As
, (2.20)

where we define the tensor-to-scalar ratio as the ratio between both amplitudes. An impor-
tant aspect is that the amplitude is a direct measure of the expansion rate during inflation
and the energy scale of inflation.

From primordial perturbations to now

As shown in the previous section, the power spectra of the primordial curvature perturba-
tion is featureless and well described by a simple power law. However, the CMB angular
power spectrum shows a non-trivial structure characterised by a series of peaks and valleys.
Actually, it is the transfer function Tℓ(k) that relates ∆2

R(k) to Cℓ by capturing the evolution
of perturbations in the photon-baryon plasma, the free streaming of photons after decou-
pling and their projection onto the sky,

Cℓ = 4π

∫
d ln k T 2

ℓ (k)∆
2
R(k). (2.21)

While the primordial spectrum encodes information about As and ns, the transfer function
contains information about the baryon and cold dark matter content, as well as the geometry
of the Universe.

After decoupling, photons free-stream and maintain their distribution function, a Bose-
Einstein spectrum perturbed by small temperature fluctuations,Θ(n̂). The Boltzmann equa-
tion links the evolution of this temperature fluctuations to the evolution of the photon energy
in an inhomogeneous spacetime, which is governed by the geodesic equation,

dΘ

dη
=
d ln (aE)

dη
= −dΨ

dη
+Φ′ +Ψ′. (2.22)
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By integrating this equation from recombination up to the present time, the relation between
the observed temperature fluctuations in the n̂ direction and the fluctuations in the last-
scattering surface becomes

δT

T̄
(n̂) =

(
1

4
δγ +Ψ

)
∗
− (n̂ · vb)∗ +

∫ η0

η∗

dη(Φ′ +Ψ′), (2.23)

where * indicates that those terms are evaluated at the last-scattering surface. The three
contributions in the right-hand side are the Sachs-Wolfe term, the Doppler term, and the
integrated Sachs-Wolfe term, respectively. So far, instantaneous recombination has been
assumed. This means that before decoupling photons are tightly coupled to baryons, so
vb ∼ vγ , and instantly they become free. A more careful calculation requires one to take
into account the thickness of the last-scattering surface by including the visibility function
that quantifies the probability of a photon being last scattered between η and η+ δη. Let us
briefly discuss each of the three effects.

➪ Sachs-Wolfe (SW) effect (Sachs & Wolfe, 1967): It combines the temperature
anisotropy associated to the intrinsic photon fluctuations (δγ/4) with the gravitational
redshift (Ψ) due to the potential fluctuations at the last-scattering surface. According
to the first one, regions with a larger (lower) photon density are slightly hotter (colder).
The second effect indicates that an overdensity, which corresponds to Ψ < 0, leads to
a temperature decrement as the photons lose energy climbing out of a potential well.

➪ Doppler effect: This accounts for the temperature anisotropies associated with the
fluctuations in the bulk velocity of electrons at the recombination time. The local pe-
culiar velocity of the electrons scattering photons in the last-scattering surface induces
a Doppler shift in the photon energy, resulting in temperature fluctuations propor-
tional to pγ · ve. Here, pγ denotes the momentum of the scattered photon and ve the
velocity of the electron, with can be substituted by vb.

➪ Integrated Sachs-Wolfe (ISW) effect: The last term accounts for the extra gravita-
tional redshift due to the evolution of the metric potentials along the line-of-sight. A
photon gains energy when it falls in a gravitational potential well and loses an equiva-
lent amount when climbing it out. However, if the potentials evolve while the photon
is crossing the well, the net effect will not be zero. The gravitational potentials evolve
during the radiation- and dark-energy-dominated eras, remaining approximately con-
stant during the matter-dominated era, and changing gradually during the transitions
from radiation to matter domination and from matter toΛdomination. At early times,
during the matter-dominated era, a residual radiation component contributed to the
total energy density, which results in a non-zero early ISW effect. At late times, dark
energy dominates the energy density, producing a late ISW effect.
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FIGURE 2.3: Contribution of the Sachs-Wolfe, Doppler, and early and late time integrated Sachs-
Wolfe effects to the CMB temperature power spectrum using the following cosmological parameters:
H0 = 67.81, Ωch

2 = 0.1186, Ωbh
2 = 0.02229, As = 2.1073×10−9, ns = 0.969, τ = 0.06. Note that

the sum of individual terms does not add up to the total spectrum (black line) since the cross terms
also contribute, positively or negatively. Figure made with A. Lewis’ camb.symbolic package7.

The contribution of each effect to the CMB power spectrum is shown in Figure 2.3. The
free streaming of photons after decoupling relates the fluctuations on the last-scattering
surface to the observed temperature variations in the sky (eq. 2.23). Determining the cor-
relations between the temperature in different directions of the sky requires tracing the
evolution of the photon perturbations in the primordial plasma from the initial conditions
to the last-scattering surface. This is best studied in Fourier space where each Fourier mode
evolves independently in the linear regime. The contributions from all modes are then
summed and projected onto the sky. This entire process is encoded in Tℓ(k). Let us discuss
briefly how these effects and the physics of the photon-baryon plasma affect different scales
in the angular power spectrum. Large angular scales (ℓ < 100) are created by superhori-
zon fluctuations, i.e. modes that were outside the Hubble horizon at the recombination
time. The SW effect is the dominant contribution to the temperature anisotropies on these
angular scales, with a small contribution from the late ISW. For the adiabatic initial condi-
tions, since decoupling occurs during matter era, the superhorizon limit implies δγ ≈ −8

3Φ.
Consequently, the CMB temperature fluctuations on large angular scales are,

δT

T̄
(n̂) ≈ 1

5
R∗. (2.24)

This means that these scales did not evolve before decoupling and probe directly the initial
conditions. Additionally, on these scales the gravitational redshift is more relevant than the
intrinsic temperature, so hot (cold) spots actually correspond to underdensity (overdensity)

7https://camb.readthedocs.io/en/latest/ScalEqs.html

https://camb.readthedocs.io/en/latest/ScalEqs.html
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regions.
Multipoles above ℓ ≈ 100 are sourced by sub-Hubble horizon modes whose non-trivial

evolution must be taken into account. Before recombination, the Hubble horizon grows
with time, allowing Fourier modes of the primordial curvature perturbations to cross and
enter the horizon. Once a mode enters, its evolution is governed by the dynamics of the
tightly coupled photon-baryon plasma. Gravitational potential wells, sourced by dark mat-
ter, attract baryons and induce compression. At the same time, since photons are coupled to
the baryons, they are dragged into these wells. The resulting increase in radiation pressure
counteracts gravity, generating oscillations in the plasma, the sound waves propagating in
the photon-baryon fluid. These dynamics can be described by the equation for the photon
density contrast that takes the form of a damped driven harmonic oscillator. At recombina-
tion, modes with different wavelenghts are captured at different moments in their evolution.
Modes that have reached maximum compression (rarefaction) at that time are imprinted as
odd (even) peaks in the CMB angular power spectrum. Additionally, the Doppler effect
contributes most significantly when the velocity is maximal, which typically occurs at the
zero-crossing of the density contrast. This is the reason why the Doppler effect appears out
of phase with respect to the SW effect in Figure 2.3.

Above ℓ ∼ 1100 the CMB fluctuations are exponentially damped. There are two rea-
sons for this: the Silk damping (Silk, 1968) and the Landau damping. The first one is a
consequence of the photon diffusion, which is important for modes deep inside the Hubble
radius. This effect arises by going beyond the leading order in the tight-coupling approx-
imation, which introduces a friction term that includes thermal conduction and effective
photon viscosity. The second effect arises by considering that recombination is not instan-
taneous, which has an impact for short-wavelength fluctuations.

So far, we have considered the temperature fluctuations generated by primordial scalar
perturbations. However, tensor perturbations can also produce temperature fluctuations
because of the presence of primordial gravitational waves that affect the temperature
anisotropies at the last-scattering surface. Taking into account that the amplitude of grav-
itational waves decays inside the horizon, this signal is mainly expected on large scales.
In particular, the strongest constraints on the tensor-to-scalar ratio from Planck data alone
come from large angular scales.

Excluding the ISW effect, we have described the primary anisotropies of the CMB, i.e.
those generated at the last-scattering surface. However, as CMB photons travel towards us,
they are further affected by various processes that give rise to secondary anisotropies. In
the following, we describe the most relevant ones:

➪ Reionisation: After recombination, CMB photons propagate freely as there are no
free electrons in the medium to be scattered with. This transparency persists through
most of the cosmic history, until z ∼ 6, when the ultraviolet light from the first stars
and galaxies reionises the intergalactic medium. Using the definition of optical depth
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in Equation 1.23, which assumes that the scattering from decoupling to reionisation
is negligible, the probability that a photon reaches us without being scattered is e−τ ,
while (1 − e−τ ) is the probability of being scattered. Since the electrons are not rela-
tivistic, Thomson scattering redistributes photons’ direction but does not modify their
energy. As a result, the scattered photons only contribute to the monopole and lose
their directional anisotropic imprint. The observed temperature today in a given di-
rection is

T0(n̂) = T̄0[1 + Θ(n̂)]e−τ + T̄0(1− e−τ ) = T̄0[1 + Θ(n̂)e−τ ]. (2.25)

This expression shows that the anisotropies are suppressed by a factor of e−τ , and
therefore the power spectrum on scales smaller than the horizon at recombination (ℓ >
10) is reduced by a factor of e−2τ . Since the optical depth simply rescales the amplitude
of the power spectrum, it is highly correlated with the amplitude of primordial scalar
perturbations, As. Breaking the degeneracy requires the measurement of the CMB
polarisation.

➪ Sunyaev-Zeldovich effect: Among the processes that generate secondary
anisotropies are the thermal (tSZ) and kinetic (kSZ) Sunyaev-Zeldovich effects
(Sunyaev & Zeldovich, 1970), as well as gravitational lensing (Lewis & Challinor,
2006). Thermal SZ arises from the interaction of the CMB photons with the electrons
in the hot gas inside galaxy clusters. As CMB photons go through the hot gas, inverse
Compton scattering with the free electrons boosts their energy, resulting in a spectral
distortion of the CMB blackbody spectrum. Accordingly, the tSZ signal appears in
the CMB temperature maps as a cold (hot) spot at frequencies below (above) 217

GHz centred around the position of galaxy clusters. In contrast, the kSZ effect is
produced by the bulk motion of the free electron gas. It mainly produces is a shift in
the blackbody temperature that is proportional to the line-of-sight peculiar velocity
of the scattering electrons (v||),

θkSZ(n̂) = σT

∫
nev||dl. (2.26)

In particular, a cluster moving away from the observer produces a negative shift,
θkSZ(n̂) < 0, while an approaching cluster results in θkSZ(n̂) > 0. Both effects may
have relativistic corrections when the electron temperature or velocities become large
enough.

➪ Gravitational lensing: As CMB photons travel through the Universe, their trajectories
can be deflected due to the large-scale structure. This effect, known as gravitational
lensing, is predicted by the general relativity theory, which states that light trajectories
are curved when passing near massive objects. Given that the deflection angles are
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small, this effect is typically studied in the weak lensing approximation. Essentially,
lensing produces that a photon coming from the direction n̂ is deviated to the position
n̂ + ∇ϕ(n̂), where ϕ is the lensing potential, i.e. the line-of-sight projection of the
gravitational potentials,

ϕ(n̂) = −2

∫ χ∗

0
dχ

SK(χ∗ − χ)

SK(χ∗)
Ψ(χn̂; η0 − χ). (2.27)

In this equation, SK is the transverse comoving distance defined in Equation 1.4, and
χ∗ and χ are the radial comoving distances to the last-scattering surface and to the
position of the gravitational potential Ψ, respectively. The deflection angles cause
distortions on the CMB power spectrum and add some non-Gaussianity. In particular,
it smooths out the acoustic peaks on small angular scales. Additionally, it rotates the
polarisation of the CMB photons in such a way that some amount of power from theE-
mode is leaked into the B-mode (see Section 2.2.3). As will be shown later in Section
2.2.4, this acts as a foreground that complicates the detection of the primordial B-
mode. The power spectrum of the lensing potential, Cϕϕℓ , is also a cosmological probe
by itself (Madhavacheril et al., 2024).

Impact of the cosmological parameters on the CMB temperature power spectrum

The CMB power spectrum has a rich structure, whose shape depends on the cosmological
parameters. In this section, we show how these parameters affect the position and ampli-
tude of the acoustic peaks, which allows us to constrain them by using the measured Planck
power spectrum. The main problem of having such a multidimensional parameter space
is the existence of degeneracies, which means that the effect of one parameter in the power
spectrum can be mimicked by varying others in a certain way. These degeneracies require
using external data or polarisation measurements to break them. Let us now consider the
effect of some of the cosmological parameters in the temperature power spectrum.

We start with the parameter that governs the geometry of the Universe, Ωk. By modify-
ing this, we effectively modify the angular diameter distance to the last-scattering surface.
The positions of the acoustic peaks are closely related to the angular size of the sound hori-
zon at the recombination epoch8, θ∗. This quantity, as shown in Equation 1.22, is defined as
the ratio between the comoving size of the sound horizon, rs(z∗), and the angular diameter
distance, DA(z∗). By fixing H0 and the physical densities Ωbh2 and Ωch

2, we fix rs. In this
case, varying Ωk, we modify θ∗ throughDA(z∗), and therefore, the positions of the acoustic
peaks are shifted in multipole space. In particular, in an open (close) Universe, the physical
scales are projected onto a smaller (larger) angular scales, shifting the peaks to larger (lower)
multipoles. Note that in this case, ΩΛ is adjusted accordingly to satisfy the Friedmann equa-

8The Fourier modes that most contribute to the acoustic peaks are the ones that are in the maximum and
minimum of the oscillation.
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FIGURE 2.4: Impact of spatial curvature Ωk (left panel) and dark energy density ΩΛ (right panel)
on the temperature angular power spectrum. The red dots represent the binned power spectrum as
measured by the Planck mission, while the black curve corresponds to the best-fit ΛCDM model.
The other cosmological parameters are fixed to the best-fit model. Note that in the right panel, H0

cannot be fixed independently when the physical matter densities and Ωk are fixed. Plots generated
using camb (Lewis et al., 2000; Lewis & Challinor, 2011) software9.

tion (see Eq. 1.18). The shift in the peak locations can also be mimicked in a flat Universe
by varying the dark energy content. As curvature does, dark energy primarily affects the
CMB by altering the distance to the last-scattering surface. They are partially degenerate as
both influence the late-time Universe. This is shown in Figure 2.4, which also includes the
binned Planck measurements.

We now focus onAs, ns, and τ . ChangingAs means rescaling allCℓs by an overall factor.
The same effect can be obtained by modifying the optical depth to reionisation. As shown in
Equation 2.25, the effect of τ is a suppression of the anisotropies by a factor of e−τ . The large
angular scales are not affected by τ as they have entered the horizon recently. However,
these scales are dominated by the cosmic variance and cannot break the degeneracy by
themselves. Additionally, shifting ns → ns + α modifies the tilt of the primordial power
spectrum (see Eq. 2.17). Figure 2.5 shows the impact of these three parameters in the Cℓs.

Finally, we discuss the effect of the baryon and CDM densities. Both parameters mainly
affect the pre-recombination physics by modifying the size of the sound horizon, rs(z∗).
Consequently, they also produce a shift in the locations of the acoustic peaks through a
modification of θ∗. Additionally, they have an impact on the expansion history and the
angular diameter distance, which are more sensitive to the dark matter content due to its
greater contribution to the total matter density. Both densities also affect the diffusion scale,
and thus, the damping tail.

The baryon content is mainly constrained from the relative amplitude between the odd
and even peaks. Essentially, baryons add inertia to the photon-baryon fluid, which enhances
the compression (odd peaks) relative to the rarefactions (even peaks). Physically, this occurs
because they contribute to the gravitational pull, but not to the radiation pressure.

9See https://camb.readthedocs.io/en/latest/ for documentation.

https://camb.readthedocs.io/en/latest/
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FIGURE 2.5: Impact of the amplitude (top left panel) and spectral index (bottom panel) of the primor-
dial density fluctuations, and optical depth to reionisation (top right panel) on the temperature angular
power spectrum. The red dots represent the binned power spectrum as measured by the Planck
mission, while the black curve corresponds to the best-fit ΛCDM model. The other cosmological
parameters are fixed to the best-fit model. Plots generated using camb (Lewis et al., 2000; Lewis &
Challinor, 2011) software.
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FIGURE 2.6: Impact of the physical baryonic (left panel) and cold dark matter densities (right panel)
on the temperature angular power spectrum. The red dots represent the binned power spectrum as
measured by Planck mission, while the black curve corresponds to the best-fit ΛCDM model. The
other cosmological parameters are fixed to the best-fit model. Plots generated using camb (Lewis
et al., 2000; Lewis & Challinor, 2011) software.

CDM, in turn, governs the gravitational wells into which baryons fall, and consequently,
the driving force for the acoustic oscillations. In particular, reducing CDM content delays
the matter-radiation equality, causing more modes to enter the horizon during the radiation
era. During this epoch, the gravitational potential decays, resulting in a time-dependent
driving force that enhances the amplitude of the oscillations. The shift in the equality time
also affects the early ISW, boosting the height of the first acoustic peak. All of these effects
are shown in Figure 2.6.

2.2.3 CMB polarisation

The CMB polarisation is an almost independent source of information that can be used,
among other things, to better constrain the cosmological model, test CMB anomalies pre-
sented in the temperature data, and probe cosmic inflation through the polarisation B-
mode. In this section, we briefly introduce the mechanism that polarised the CMB radia-
tion, followed by a discussion of the statistical information it provides and the challenges
that we face for the detection of primordial B-mode.

CMB polarisation is generated when an electron, scattering photons through Thomson
scattering, experiences a quadrupolar anisotropy in the incoming radiation field (Hu &
White, 1997; Cabella & Kamionkowski, 2004; Baumann, 2022).

The differential cross section of the Thomson scattering is

dσ

dΩ
=

3σT
8π

(ϵ̂ · ϵ̂′)2, (2.28)

where ϵ̂ and ϵ̂′ are the incident and scattered polarisation vectors, respectively. Under cer-
tain conditions, Thomson scattering can induce linear polarisation in the scattered radia-
tion. If the radiation is isotropic, then the outgoing radiation will remain unpolarized as
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FIGURE 2.7: Schematic illustration of how CMB polarisation is generated through Thomson scatter-
ing. Left panel: If the incoming radiation is isotropic, i.e., it has equal intensity from all directions, the
scattered radiation remains unpolarised. Right panel: In the presence of a quadrupolar anisotropy in
the radiation field, the scattered radiation will be partially linearly polarised.

orthogonal polarisation stages, coming from directions separated by 90◦, will balance each
other. In particular, in the presence of a quadrupolar anisotropy of the radiation field, these
components do not cancel perfectly, resulting in a net linear polarisation. This is shown in
Figure 2.7, where the radiation coming from the left is larger than that coming from the top.
From a mathematical point of view, given the angular dependence of the differential cross
section of the Thomson scattering, the orthogonality of the spherical harmonics guarantees
that only the quadrupole moment can generate polarisation (Baumann, 2022).

Before recombination, during the tight coupling regime, quadrupole anisotropies are
suppressed by the frequent scattering of the photons. Just before recombination, the mean
free path of photons increases, and the electrons start seeing a quadrupole moment in the
radiation field. Consequently, polarisation is only generated near recombination, through
Thomson scattering of a radiation field with a quadrupole moment at the last-scattering
surface. Given the sharp drop in the free electron density, there is only a narrow window
in which Thomson scattering can effectively produce polarisation. As a result, the CMB
polarisation fraction is approximately 10%.

Statistics of CMB polarisation

The statistical properties of the CMB polarisation field can be described in a very similar
way as for temperature. The polarisation of electromagnetic radiation propagating in the z
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direction is described by the Stokes parameters

I ≡ |Ex|2 + |Ey|2,
Q ≡ |Ex|2 − |Ey|2,
U ≡ 2|Ex||Ey| cosφ,
V ≡ 2|Ex||Ey| sinφ.

(2.29)

The first Stokes parameter, I , measures the intensity10, while Q, U , and V determine the
polarisation state. For unpolarised light,Q = U = V = 0, whereas fully polarised radiation
satisfies the relation I2 = Q2 + U2 + V 2. In particular, the Stokes parameter V describes
circular polarisation, while Q and U characterise the linear polarisation. Specifically, Q
represents the difference between the intensity along the x and y axes, and U quantifies the
difference around two axes rotated by 45 degrees. In the CMB case, due to the nature of
the Thomson scattering, the radiation is linearly polarised, with a polarisation fraction of
around 10%,

P

I
=

√
Q2 + U2

I
< 10%, (2.30)

and has no V component (see Eimer et al. (2024) for the current constraint on CV Vℓ ). For
each point in the sphere, the linear polarisation is described by the Stokes parameters Q
and U , which provide the amplitude P 2 = Q2 + U2 and orientation ϕ = 1

2 arctan (U/Q).
The main problem is that these quantities are not independent of the choice of coordinates.
Under a rotation of angle ψ in the tangent plane at the direction n̂, Q and U transform as

Q′ = Q cos 2ψ + U sin 2ψ,

U ′ = −Q sin 2ψ + U cos 2ψ,
(2.31)

or in a compact form,
Q′ ± iU ′ = e∓2iψ(Q± iU). (2.32)

This shows that the polarisation field behaves as a spin-2 quantity, and therefore, its de-
composition in the spherical harmonic space must be made in terms of the spin-weighted
spherical harmonics,

(Q± iU)(n̂) =

∞∑
ℓ=2

ℓ∑
m=−ℓ

±2aℓm±2Yℓm(n̂), (2.33)

10Intensity fluctuations can be converted to temperature fluctuations of a blackbody using the Planck’s law.
It is more practical to describe the amplitude of the radiation in terms of temperature since, in that way, CMB
is signal is frequency independent.
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where ±2aℓm coefficients are calculated like

±2aℓm =

∫
(Q± iU)(n̂)±2Y

∗
ℓmdΩ. (2.34)

Note that the summation starts in ℓ = 2 as polarisation has neither monopole nor dipole.

Instead of describing CMB polarisation in terms of Q and U , it is more convenient to
decompose it in terms of E- and B-mode, which are rotationally invariant quantities. The
E/B decomposition is similar to the decomposition of a vector field in terms of a curl-
free gradient part and a divergence-free curl part, which also explains the names of E-
mode and B-mode in an analogy with the electrostatic field decomposition in electric E⃗
and magnetic B⃗ fields. The harmonic coefficients in Eq. 2.34 can be linearly combined to
get the coefficients for the E/B-modes (Zaldarriaga & Seljak, 1997),

eℓm = −(2aℓm + −2aℓm)/2,

bℓm = −(2aℓm − −2aℓm)/2i.
(2.35)

These two quantities behave differently under a parity transformation. While E-mode is
parity-even (E(−n̂) = E(n̂)) and remains unchanged, B-mode is parity-odd (B(−n̂) =

−B(n̂)) and changes sign. These harmonic coefficients can be combined with the spin-0
spherical harmonics to get the scalar E-mode and pseudo-scalar B-mode maps,

E(n̂) =
∞∑
ℓ=2

ℓ∑
m=−ℓ

eℓmYℓm(n̂),

B(n̂) =
∞∑
ℓ=2

ℓ∑
m=−ℓ

bℓmYℓm(n̂).

(2.36)

As for temperature, the statistical properties of the CMB radiation can be fully described,
under the Gaussian assumption, in terms of the variances of the spherical harmonic coeffi-
cients,

⟨eℓme∗ℓ′m′⟩ = δℓℓ′δmm′CEEℓ ,

⟨bℓmb∗ℓ′m′⟩ = δℓℓ′δmm′CBBℓ ,

⟨aℓme∗ℓ′m′⟩ = δℓℓ′δmm′CTEℓ ,

(2.37)

where CEEℓ and CBBℓ are the angular power spectra of E-mode and B-mode, respectively,
and CTEℓ the cross spectrum between temperature and E-mode. The other two possible
cross spectra,CTBℓ andCEBℓ , vanish becauseB-modes have opposite parity to T andE, and
the standard cosmological model does not include any parity-violating processes. There-
fore, only four power spectra are needed to fully characterise the statistical properties of the
CMB.



2.2. Theory of CMB anisotropies 53

Scalar perturbations do not produce B-modes, but these are produced by primordial
gravitational waves and by the conversion from E-to-B due to gravitational lensing. Both
will be briefly discussed in Section 2.2.4. In absent of tensor modes, the E-mode power
spectrum and its cross spectrum with the temperature anisotropies are

CEEℓ ∝
∫ ∞

0
d ln k|Eℓ(k)|2∆2

R(k),

CTEℓ ∝
∫ ∞

0
d ln k|Tℓ(k)E∗

ℓ (k)|∆2
R(k),

(2.38)

where Tℓ(k) and Eℓ(k) are the intensity and polarisation transfer functions. In particular,
the polarisation transfer function depends on the quadrupole moment of the photon field
at the last-scattering surface.

Breaking the degeneracies

In the previous section, we mentioned that the degeneracies between parameters can be
broken using the CMB polarisation data. Here, we present an example for the As-τ degen-
eracy. Figure 2.8 shows the impact of these parameters on the E-mode power spectrum.
Although the effect seems quite similar at multipoles above ℓ > 10, there is a clear distinc-
tion on large scales. The first feature we observe is that the acoustic peaks in the E-mode
spectrum are out of phase with those in the temperature spectrum. This is because the
E-mode is sourced by a gradient in the photon-baryon fluid velocity. Apart from that, we
also observe a bump at low multipoles, which is sourced by the re-scattering of quadrupole
anisotropy by the free-electrons during reionisation. This feature depends directly on the
optical depth to reionisation, making the polarisationE-mode large scales a powerful probe
for breaking the degeneracy with the amplitude of the scalar perturbations.

2.2.4 CMB challenges and B-mode quest

The measurement of the CMB radiation, and in particular its polarisation, is an enormous
challenge due to the astrophysical foregrounds and instrumental systematic effects. In ad-
dition to the CMB, other astrophysical processes, located between us and the last-scattering
surface, emit in the microwave frequency range. In particular, the galactic emission is the
strongest contaminant, but there is also an extragalactic contribution. The standard ap-
proach to deal with these foregrounds is to clean the data using component separation
algorithms (Planck Collaboration et al., 2020b). These methods exploit the frequency de-
pendence of foregrounds to extract the CMB signal. For this to be possible, a broad fre-
quency coverage is needed. The Figure 2.9 shows the Spectral Energy Distribution (SED)
for the different astrophysical components in brightness temperature units, which also in-
clude the frequency bands of the Planck mission. In Planck, foreground cleaned CMB maps
were mainly used for consistency checks and Gaussianity and statistical isotropy analy-
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FIGURE 2.8: BreakingAs−τ degeneracy with polarisationE-mode large scales. Top panels: Impact
of the amplitude of primordial density fluctuations (left panel) and optical depth to reionisation (right
panel) on the polarisation E-mode angular power spectrum. Bottom panels: Same but restricted to
the large angular scales. The red dots represent the binned power spectrum as measured by the
Planck mission, while the black curve corresponds to the best-fit ΛCDM model. Plots generated
using camb (Lewis et al., 2000; Lewis & Challinor, 2011) software.
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FIGURE 2.9: Spectral Energy Distribution (SED) of the main astrophysical components in tempera-
ture (left panel) and polarisation (right panel). The vertical grey bands indicate the frequency channels
of the Planck mission. Figure taken from Planck Collaboration et al. (2020a).

ses (Planck Collaboration et al., 2020d). Some of these methods also derived foreground
products, which were later used to characterise and model these components. In general,
cosmological parameters were extracted from power spectrum based likelihoods, where
frequency power spectra 11 were used (Planck Collaboration et al., 2020c; Tristram et al.,
2024). In this case, the frequency maps were partially masked, and foregrounds and in-
strumental effects were modelled by nuisance parameters, which were marginalised over.

In intensity, the main foregrounds are Galactic diffuse components: synchrotron emis-
sion, free-free, thermal dust emission, and anomalous microwave emission (AME). Addi-
tionally, the cosmic infrared background (CIB), and extragalactic point sources also con-
tribute. In polarisation only synchrotron and thermal dust seem to be polarised, although
the polarisation of AME is still an open debate (Génova-Santos et al., 2017; González-
González et al., 2025). Some point sources also exhibit some degree of polarisation. Ther-
mal dust refers to the light emitted by interstellar dust grains when they are heated by UV
and optical photons, while synchrotron emission corresponds to the radiation generated by
relativistic cosmic ray electrons spiralling around the Galactic magnetic field lines.

Most of the component separation algorithms operate on multi-frequency maps, and
they can be classified into parametric and non-parametric methods. Non-parametric meth-
ods do not assume any physical model of the sky components, while parametric meth-
ods assume the components SED’s to fit for. In Planck analysis, four component separa-
tion methods were considered: one parametric, Commander (Eriksen et al., 2008), and three
non-parametric, SMICA (Cardoso et al., 2008), NILC (Basak & Delabrouille, 2012), and Sevem
(Fernández-Cobos et al., 2012).

In particular, primordial B-mode detection will be experimentally challenging as we

11Typically, the channels where CMB signal is less affected by foregrounds, i.e. 100-, 143-, and 217-GHz
channels.
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are searching for a very faint signal whose amplitude is still unknown. This signal is highly
contaminated by polarised Galactic foregrounds, which dominate over all frequencies and
sky regions. Therefore, cleaning the sky through the component separation algorithms
will be crucial, especially if we want to achieve the sensitivity in r expected for the next
generation experiments such as LiteBIRD, r95% ≲ 0.001. This requires, first, a better un-
derstanding and modelling of the foregrounds, and second, optimal component separation
methodologies. A non-proper treatment of foregrounds could bias our results and lead to
a false claim of primordial gravitational waves detection, as it happened with BICEP2 col-
laboration (BICEP2 Collaboration et al., 2014; BICEP2/Keck Collaboration et al., 2015). In
particular, RadioForegroundsPlus project 12 aims to combine data sets of different experi-
ments to provide the best possible characterisation of the physical properties of polarized
emission in the microwave frequency range.

Planned and future experiments will achieve such high-sensitivity that it will require
unprecedented systematics control through an accurate modelling of the instrument. Some
of the systematics are:

➪ Polarisation angle: Uncertainties in the polarisation angle of detectors bias the
tensor-to-scalar ratio r by mixing the E- and B-mode signals. In particular, LiteBIRD
will need to calibrate the polarisation angles to the arcminute level in the most sensi-
tive frequency band (Vielva et al., 2022) to achieve the proposed sensitivity on r.

➪ Beam characterisation: An imperfect modelling of the beam is a potential source of
systematic effects. In particular, the uncertainty in the beam far side-lobe is expected
to be one of the main systematics in future CMB observations (Leloup et al., 2024).

➪ Half-wave plate (HWP): Measuring polarisation signal requires new sophisticated
technologies that include the use of fast-rotating HWP. This approach modulates
the linear polarisation to 4 times the frequency of the HWP, allowing a quasi-
instantaneous measurement of Stokes parameters by each detector (Patanchon et al.,
2024). This helps reducing the intensity to polarisation leakage and the 1/f noise.
However, HWP can introduce new systematics. Imperfections in the HWP can bias
the tensor-to-scalar ratio (Patanchon et al., 2024; Monelli et al., 2024).

As already stated in the previous section, primordial scalar perturbations can not pro-
duce B-mode polarisation signal. This signal is only generated from tensor perturbations,
which also produce imprints in the temperature and E-mode power spectra as shown in
Figure 2.10. Primordial gravitational waves induce time-varying distortions in spacetime
that affect the propagation of photons. As they propagate, the two polarisation states, h+
and h×, stretch and compress the space along orthogonal directions, with a relative orien-
tation of 45◦, as Figure 2.11 illustrates. This distortion induces a quadrupole anisotropy in
the radiation field, leading to linear polarisation.

12https://research.iac.es/proyecto/radioforegroundsplus/

https://research.iac.es/proyecto/radioforegroundsplus/
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FIGURE 2.10: Temperature and polarisation angular power spectrum induced by scalar (left panel)
and tensor (right panel) perturbations. A tensor-to-scalar ratio of 0.1 has been considered. In the case
of scalar perturbations,BB spectrum corresponds to lensing inducedB-modes. Plot generated using
CLASS (Blas et al., 2011) software.
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FIGURE 2.11: Illustration of CMB polarisation induced by gravitational waves. As the wave propa-
gates, it stretches and compresses the space along orthogonal directions, generating a temperature
quadrupole in the photon distribution. The two polarisation states of the gravitational wave, + and
×, produce linear polarisation patters rotated by 45◦ with respect to each other. Figure adapted from
Baumann (2022).
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TheB-mode power spectrum is characterised by two peaks, the reionisation and recom-
bination bumps. The first peak is located at ℓ < 10, and is caused by the re-scattering of the
CMB photons at reionisation. It depends on both the tensor-to-scalar ratio and the optical
depth to reionisation. The second peak depends on r and is located at ℓ ≈ 100. Above this
multipole the signal decays. While the reionisation bump is only reachable from space, the
recombination peak is the main target of ground-based experiments. However, this peak
is hidden by the lensing B-mode. Weak lensing leaks power from E- to B-mode (Lewis &
Challinor, 2006) in such a way that it produces a lensed B-mode power spectrum which
effectively acts like ∼ 5µK · arcmin white noise up to ℓ ≈ 1000 (see Fig. 2.10). Delensing
techniques are the standard way to mitigate this effect. Lensed B-mode has been already
detected by several experiments as shown in Figure 2.2.



3
CMB anomalies

"Every question leads to new answers, new
discoveries, and new smarter questions."

Bill Nye

The cosmological principle, which states that the Universe is statistically isotropic and
homogeneous on large scales, is a fundamental pillar of the ΛCDM model. This model re-
lies on the assumption that the geometry of the Universe on large scales is well described
by the FLRW metric, and it is strongly supported by the simplest inflationary models and
CMB observations. In particular, data from the WMAP and Planck satellites have provided
a very accurate confirmation of the base ΛCDM model. However, these observations have
also revealed deviations from statistical isotropy in the temperature maps. These features,
often referred to as CMB anomalies, have been found at modest levels of statistical signif-
icance (i.e., 2–3σ), and have the potential to challenge fundamental assumptions. Their
importance lies in their large-scale nature, which is a common property for most of them.
Large angular scales offer a window into the initial conditions of the Universe, and there-
fore, CMB anomalies have the potential to probe new physics in the very early Universe,
particularly during the epoch of inflation. This chapter aims to provide a brief review on
the CMB anomalies, which constitute the main topic of this thesis.
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The main purpose of this chapter is to summarise the current state of the large-scale CMB
anomalies, the features suggesting a potential deviation from the statistical isotropy and
Gaussianity assumptions. It is important to note that these two properties are what allow
all cosmological information to be encoded in the CMB power spectra (see Eq. 2.5) (Planck
Collaboration et al., 2016c). The first anomaly dates back to the COBE DMR data, where
they found a surprisingly low value for the quadrupole moment and a lack of correlation for
angular scales above 60 degrees (Hinshaw et al., 1996a,b). The most important anomalies
are: a low-ℓ power deficit and a low variance ; a lack of correlation on large angular scales in
the angular 2-point correlation function; alignment between the quadrupole and octopole
moments; a hemispherical power asymmetry; a parity asymmetry; and an anomalous “Cold
Spot" on angular scales of approximately 10◦. Most of them emerged during the analysis of
WMAP first-year data (Bennett et al., 2003; Eriksen et al., 2004b; Schwarz et al., 2004; Vielva
et al., 2004; Hansen et al., 2009), and were later confirmed by the Planck satellite (Ade et al.,
2014, 2016; Planck Collaboration et al., 2020d).

There are three plausible explanations for the origin of these mild tensions. The most ex-
citing one is a potential cosmological origin, which implies new physics beyond the standard
model. Some attempts have been made to explain the anomalies. For instance, a cutoff in the
primordial power spectrum, P(k), could account for the lack of correlation and the low vari-
ance, while a modulation of the spectrum could produce the observed asymmetry (Contaldi
et al., 2003; Planck Collaboration et al., 2020e). Although it is relatively straightforward to
construct models in which a fast-roll phase preceding slow-roll inflation naturally explains
the lack of power at large angular scales, it is considerably more difficult to develop infla-
tionary models that predict the phenomenological modulations (Planck Collaboration et al.,
2016c, 2020e). Standard slow-roll models in the single-field inflation context simply cannot
produce such asymmetry (Erickcek et al., 2008).

More exotic models have therefore been explored. Examples include multi-field infla-
tion. The inclusion of an isocurvature superhorizon perturbation in the curvaton field (Er-
ickcek et al., 2008, 2009) can produce the observed scale-dependent asymmetry without vio-
lating the small scales constraints coming from high redshift quasars (Hirata, 2009). Other
phenomenological modulations are those studied in Zibin & Contreras (2017), Contreras
et al. (2017), Contreras et al. (2018), and Dai et al. (2013). However, these mechanisms have
their own weaknesses and none of them is favoured by Planck measurements (Planck Col-
laboration et al., 2020e).

A second explanation is that these anomalies could result from foreground or systematic
effects. However, this is highly unlikely (Schwarz et al., 2016), as they have been observed
by two independent space missions with differing scanning strategies, systematic uncer-
tainties, and frequency coverage. Moreover, the frequency independence of the observed
anomalies and the fact that the anomalies show up at similar statistical significance in the
four foreground cleaned CMB maps produced by Planck are strong arguments against a
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foreground related origin. Recent work (Jung et al., 2024) has attempted to quantify the
impact of the Sunyaev-Zeldovich (SZ) signal from the local Universe on large-scale CMB
anomalies, concluding that the local tSZ and kSZ effects can not account for the observed
deviations from isotropy. In parallel, recently a hint of a potential new foreground detec-
tion (Luparello et al., 2023; Hansen et al., 2023; Cruz et al., 2025) has been proposed as a
possible explanation for large-scale CMB anomalies. By stacking the CMB observations, an
indication of a temperature decrement has been identified around local galaxies.

A third possibility is that the anomalies are either statistical flukes, or that the derived
significance levels are not properly computed in absent of a well-motivated theoretical
model. The main discussion here is that the significance of large-scale anomalies may be
subject to a posteriori corrections (Bennett et al., 2011; Bennett et al., 2013), the well-known
“look-elsewhere" effect. Another interesting debate is their statistical independence. A re-
cent work suggests that their joint probability is above 5σ (Jones et al., 2023), and claims that
the Universe is not isotropic. Given that intensity measurements have reached the cosmic
variance limit, the largely independent information provided by large-scale polarisation is
needed to clarify the origin of these anomalies. However, it is well established that the large
angular scales in the PlanckE-mode measurements are limited by systematic effects. There-
fore, future polarisation observations, such as those from LiteBIRD, will provide valuable
insights into this topic.

3.1 Current state of art

In this section, we review the main CMB anomalies, excluding the hemispherical power
asymmetry (HPA), which will be discussed in more detail in Section 3.2, given its particular
relevance to this work. The statistical significance of these anomalies lies around 2 − 3

σ, depending on the estimator used. All of them are well documented (see, for example,
(Schwarz et al., 2016; K. Aluri et al., 2023) and references therein).

Low variance

Previous analyses of WMAP (Monteserín et al., 2008; Cruz et al., 2011; Gruppuso et al., 2013)
and Planck (Ade et al., 2014, 2016; Planck Collaboration et al., 2020d) data have reported an
anomalous low variance in the temperature maps compared to the simulations based on
the ΛCDM model.

In Planck Collaboration et al. (2020d) the unit variance estimator, described in Cruz et al.
(2011), is applied to the Planck 2018 component-separated maps to measure the variance,
skewness, and kurtosis. The method works in the following way1,

1Skewness and kurtosis require appropriate normalization.
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➪ The normalized CMB temperature is given by,

uTi =
Ti√

σ20 + σ2i,N

, (3.1)

where Ti is the observed temperature at pixel i, σ20 is the variance of the CMB signal,
which is the same for all the pixels, and σ2i,N is the variance of the noise for that pixel,
which is computed from the Monte Carlo (MC) simulations.

➪ The variance of the CMB, σ20 , is then estimated by finding the value that minimizes
the deviation of the normalized map’s variance from unity,

σ̂20 = s20 : min ||var(u(s20))− 1||. (3.2)

This estimator was found to be more optimal than the estimator that minimizes the
standard Kolmogorov-Smirnov distance (Cruz et al., 2011).

Once the variance is estimated, the lower-tail probability is computed by comparing the
value obtained from the data with the distribution obtained from simulations. The p-
value2 was computed for different resolutions, finding consistent results among the four
component-separated CMB maps. The results show a decreasing lower-tail probability with
decreasing resolution, highlighting the presence of lack of power on large angular scales.
Furthermore, the p-value was slightly larger, around 1% against the 0.5% reported in previ-
ous analysis. They attributed this difference to the fact that the PR3 common mask keeps a
larger sky fraction compared to the PR2 common mask. In Gruppuso et al. (2013) and Ade
et al. (2014), it was already reported that the lower-tail probability depends on the mask,
with the variance appearing more anomalously low when a mask covering larger fraction
of the sky was applied. The skewness and kurtosis were compatible with a Gaussian field.
Similar results were obtained for the Sevem frequency-cleaned CMB maps (70, 100, 143, and
217 GHz), which suggest that foreground contamination is not the reason for the observed
low variance.

In Cruz et al. (2011), an hemispherical dependence of the low variance was also found,
which was later confirmed in Ade et al. (2014). By analysing the variance separately in each
hemisphere, it was found that the northern ecliptic hemisphere exhibited an anomalously
low variance, while the southern hemisphere remains consistent with the MC simulations.
Similar results were obtained using the Galactic hemispheres. They also investigated the
potential link with the quadrupole-octopole alignment, concluding that the data were fully

2In general, the p-value is defined as the fraction of simulations with a value of a given estimator equal
to or more extreme (either higher or lower depending on the context) than that observed in the data. In this
section, the terms p-value and lower-tail probability are used interchangeably. Note, however, that the p-value
is a broader concept, and in some cases it corresponds to the upper-tail probability, even if this is not explicitly
stated.
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compatible with simulations after quadrupole and octopole moments were subtracted. This
indicates a potential common origin for both features.

In Planck Collaboration et al. (2020d) the low variance in polarisation data was also
tested. They follow a different approach due to the low signal-to-noise ratio, and they
checked the variance and the cross-variance between odd-even (OE) and half-mission (HM)
splits3 for the component-separated polarisation CMB maps, for the Sevem frequency-
cleaned maps, and also for the cross-variance between pairs of frequencies. In general,
they found a reasonable consistency with MC simulations, but they also claimed that the
low signal-to-noise ratio of Planck polarisation data and the uncertainties in the noise char-
acterization limited the detection of potential anomalies.

A more recent work (Billi et al., 2024) has studied this anomaly using the latest PR4
data release, and a new class of optimised estimators in harmonic space that are able to test
the anomaly considering only temperature, only polarisation, or jointly. They confirmed
the presence of lack of power applying the new estimator to the PR3 (PR4) data set, with a
p-value≤ 0.33%(1.76%). The results using only polarisationE-mode data are fully compat-
ible with ΛCDM, although they found significant differences between both data sets due
to different levels of systematics. The joint estimator provides similar results to the ones
obtained with only temperature data.

Lack of correlation at large scales

The non-Gaussianity of the temperature and polarisation data was also studied in Planck
Collaboration et al. (2020d) using the N-point correlation functions, which is defined as the
average product of the temperature or polarisation field at N directions,

CN (θ1, ..., θ2N−3) = ⟨X(n̂1)...X(n̂N )⟩ . (3.3)

Under the statistical isotropy assumption, this function depends only on the relative angles
between directions (θ1,...,θ2N−3). In particular, the 2-point function and some configura-
tions4 for the 3-point function were considered in Planck Collaboration et al. (2020d). De-
viations from zero in the 3-point function are used to test non-Gaussianity. Actually, MC
simulations already showed some level of deviation which indicates that the modelled sys-
tematics can induce some non-Gaussianity. Using a χ2 statistic to quantify the agreement
between data and simulations, they found no statistical evidence of non-Gaussianity. How-
ever, the results for the TT correlation function (see Fig. 8 in Planck Collaboration et al.
(2020d)) confirmed the existence of a lack of correlation for large angular separations, for

3In the Planck data analysis, odd-even splits refer to dividing the data according to alternating stable pointing
periods (or rings), while half-mission splits separate the observations into two halves corresponding to the first
and second parts of the mission. These splits are commonly used to test for internal consistency and to identify
potential residual systematics.

4The 2-point function only depends on a single parameter, the angular distance between the two pixels,
while the 3-point correlation function depends also in the relative position between three pixels.
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FIGURE 3.1: Two-point correlation functions from Planck 2018 temperature and polarisation data.
Solid coloured lines show the results for the four component-separation methods, Commander, NILC,
Sevem, and SMICA, ordered from top to bottom. The black dot-dashed line corresponds to the mean
correlation function from the FFP10 simulations, while shaded grey regions indicate the 68% and 95%
confidence intervals, also obtained from simulations. Figure taken from Planck Collaboration et al.
(2020d).

angles above ∼ 60◦, as previously noted in Hinshaw et al. (1996b), Bennett et al. (2003), and
Copi et al. (2015b). This is shown in the first column of Figure 3.1.

To quantify this lack of correlation on large angular scales typically the S1/2 statistic is
used, first proposed in Spergel et al. (2003) and extended to consider TE correlation in Copi
et al. (2013). The most general statistic is defined by

SXY (θ1, θ2) =

∫ cos θ1

cos θ2

[Ĉ2
XY

(θ)]2d(cos θ), (3.4)

where X,Y ≡ {T,Q,U}, and Ĉ2
XY

(θ) denotes the estimated 2-point correlation function,
which can be calculated either in real space (Planck Collaboration et al., 2020d) or in har-
monic domain using the (pseudo-)power spectrum, as in Eq. 2.5 (Copi et al., 2013; Grup-
puso, 2014; Copi et al., 2015b). For temperature, the S1/2 statistic was defined by a posterior
choice of θ1 = 60◦ and θ2 = 180◦. In particular, depending on the analysis choices, the
reported statistical significance of this statistic has been between 0.1% and 0.5% in both
WMAP and Planck data (Copi et al., 2007, 2009; Gruppuso, 2014; Copi et al., 2015b; Ade
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et al., 2016; Planck Collaboration et al., 2020d). In some cases even below 0.01% (Grup-
puso, 2014) using nine-year WMAP data. As reported in Gruppuso (2014), similar to the
case of the low variance anomaly, a more conservative masking procedure was found to
increase the significance of the lack of power.

The four component separation methods used in Planck Collaboration et al. (2020d)
showed p-values of< 0.1% for temperature analysis. In order to avoid the “look-elsewhere"
effect, the Planck team defined a global p-value, which was found to be of the order of ∼ 1%.
This p-value increased to ∼ 13%− 14% when the quadrupole was subtracted from the data
prior to computing the statistic, highlighting the connection between the low quadrupole
amplitude and the lack of power. Taking into account that the shape of the 2-point correla-
tion function for θ > 60◦ is dominated by the large angular scales or the lowest multipoles
in the harmonic domain, it seems natural to link both. This was already pointed out in
Gruppuso (2014). The p-values obtained in Planck Collaboration et al. (2020d) using polar-
isation data were not statistically significant, and the inconsistency in p-values shown be-
tween different component-separated maps rather indicated the presence of different levels
of residuals. Additionally, the inferred STQ value, which was shown in Copi et al. (2013) to
be an appropriate quantity to test for the fluke hypothesis5, did not allow one to rule it out.

In Ade et al. (2016), the Planck team also used an alternative χ2 statistic to test the
anomaly, obtaining a slightly smaller p-values (see Table 13 in Ade et al. (2016)) of around
2%. This approach was adopted to address the criticism that the S1/2 statistic does not
account for correlations between bins in the 2-point correlation function.

Quadrupole and octopole alignment

The quadrupole and octopole (Q-O) alignment was first explored in de Oliveira-Costa et al.
(2004). They found that the cosmic octopole is anomalously planar, which means that most
of the octopole’s power is concentrated in the aℓm coefficients with |m| = 3, or, in other
words, that the hot and cold spots of the octopole lie predominantly near a single plane, in
this case, close to the Galactic plane. Furthermore, they found that the preferred axes, n̂2

and n̂3, for the quadrupole and octopole are anomalously aligned. These axes are the axis
n̂ that maximised the angular momentum dispersion,∑

m

m2|aℓm(n̂)|2, (3.5)

where aℓm(n̂) denotes the spherical harmonic coefficients computed in a rotated frame
where the z-axis is aligned with the n̂ direction. Using the dot product between both axes,
|n̂2 · n̂3|, as a statistic to quantify the alignment, they found a strong alignment with a p-

5Under the fluke hypothesis, the observed lack of correlation in the temperature data is not a hint of new
physics, but rather a rare statistical fluctuation within the ΛCDM model.
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value6 of 1.6%. This is highly unexpected under the statistical isotropy assumption, as the
multipole moments are uncorrelated. Consequently, n̂2 and n̂3 are expected to be random
realisations drawn from a uniform distribution in which all directions are equally probable.

Other works have studied this anomaly using alternative statistics for the alignment
(Schwarz et al., 2004; Copi et al., 2007, 2015a). A useful tool is the decomposition of the
CMB sky in terms of multipole vectors as described in (Copi et al., 2004),

ℓ∑
m=−ℓ

aℓmYℓm ≈ A(ℓ)
ℓ∏
i=1

(v̂(ℓ,i) · ê), (3.6)

where v̂(ℓ,i) is the ith multipole vector of the ℓth multipole. In this picture, the quadrupole
and octopole are described in terms of two and three multipole vectors, respectively. The
usual way of comparing the multipole vectors to test the Q-O alignment is as follows:

➪ For each ℓ compute the ℓ(ℓ − 1)/2 cross products, w(ℓ,i,j) ≡ ±(v̂(ℓ,i) × v̂(ℓ,j)). These
are also called area vectors. In particular, the quadrupole and octopole have 1 and 3

area vectors, respectively.

➪ The dot products between the quadrupole area vector and the three octopole area
vectors are computed.

A1 ≡ |w(2,1,2) ·w(3,1,2)|,
A2 ≡ |w(2,1,2) ·w(3,2,3)|,
A3 ≡ |w(2,1,2) ·w(3,3,1)|.

(3.7)

➪ An S statistic is defined as the sum of the dot products, S = 1
n

∑n
i=1Ai.

➪ The S statistics can be modified to quantify the alignment of the area vectors with a
fixed direction in the sky, ê,

S ≡ 1

n

n∑
i=1

|wi · ê|, (3.8)

where the sum is over a set of area vectors.

Using the S statistic, a p-value of 0.13 for the Q-O alignment was found in the first-year
WMAP maps. Surprisingly, both multipoles were also found to lie within the ecliptic plane
and close to the dipole axis, with p-values below 1% and 0.4%, respectively.

The unusual Q-O alignment persisted in the other WMAP releases and also in Planck
data. In Copi et al. (2007), a p-value of 0.4% was found for the alignment after removing
the kinetic quadrupole (KQ) component, which corresponds to the Doppler contribution to

6In this context, the p-value is referred to the upper tail probability, i.e., only 1.6% of simulations exhibited
a dot product above the one observed in the data.
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FIGURE 3.2: Combined quadrupole and octopole pattern from the Planck 2013 SMICA map, after
correcting for the Doppler induced quadrupole. Multipole vectors for the quadrupole (octopole) are
indicated by red (black) circles, labelled as Qv (Ov). The directions of the area vectors, w(ℓ,i,j), are
shown by red (black) squares for the quadrupole (octopole). In the quadrupole case, this coincides
with the direction that maximises the angular momentum dispersion. The black star indicates the
direction that maximises the angular momentum dispersion of the octopole. Additionally, the red
diamond displays the direction that maximises the angular momentum dispersion of the quadrupole
before applying the KQ correction (DQ in the figure). Figure taken from Copi et al. (2015a).

the quadrupole. In particular, the alignment was found to becomes even more anomalous
after KQ correction, something that was confirmed later by Planck (Ade et al., 2014). They
also confirmed the alignment with the dipole axis, with a p-value of around 0.3% and an
unexpected alignment with the Galactic poles at the level of ∼ 1%, while the significance of
the correlation with the ecliptic plane decreased to 4%. In Ade et al. (2014), the Planck team
used the angular momentum dispersion statistic to test the Q-O alignment in the first data
release, obtaining a p-value of ∼ 1% for all the component-separated maps after KQ correc-
tion (see Table 18 in Ade et al. (2014)). Similarly, in Copi et al. (2015a), they applied both
statistics, the angular momentum dispersion and the S statistic, finding p-values consistently
below 0.6% for the WMAP’s ILC7 7yr, 9yr, and Planck’s first release maps. In particular, the
p-values for the alignments with the ecliptic plane, the Galactic poles, and the dipole axis
were found to be around 3%, 1%, and 0.2%, respectively. The p-value for these alignments
increased above 6% when considering ΛCDM realisations with the Q-O alignment at least
as close as in the data. Figure 3.2 shows the combined quadrupole-octopole SMICAmap for
Planck first release data, including the mutipole and area vectors, and the maximum angular
momentum dispersion directions.

Computing the multipole vectors from a cut-sky introduces significant uncertainties
that affect the statistics. Therefore, the alignment analyses are usually performed in the

7Internal Linear Combination (ILC) is a foreground-cleaning method that combines linearly the CMB fre-
quency maps with a set of weights that are chosen to minimize the foreground contamination while preserving
the CMB signal.
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component-separated full-sky maps (Copi et al., 2007), which makes our ability to remove
foregrounds the main limitation to measure the alignment. Foreground contamination as
the origin of the alignment does not seem to be a satisfactory explanation as the anomaly
persists in the data even after applying different component-separation methods. More
importantly, in Bennett et al. (2011), it was shown that the alignment is not dominated by
one or two discrete regions.

A recent work (Patel et al., 2025) tested the low-ℓ alignment using the five-year WMAP
data and the Planck PR1, PR2, and PR3 data releases. As an alignment statistic, they used
the dot product between the principal eigenvectors (PEV) of the power tensor. Essentially,
the PEV is the direction that maximises the angular momentum dispersion. The analysis
confirmed the presence of the alignment across all data sets. Furthermore, Jung et al. (2024)
reported a p-value below 1% using the latest PR4 Sevem and Commandermaps.

Parity asymmetry

In this section, we focus on the point-parity or even-odd asymmetry. Motivated by the
potential impact of the galactic foregrounds on the observed large-scales anomalies, an es-
timator for the point-parity symmetry, based on the even and odd multipoles of the power
spectrum, was introduced in Land & Magueĳo (2005). It was applied to the WMAP data
to search for foreground residuals, which were found to favour even multipoles. However,
contrary to expectations, the analysis revealed a preference for odd parity, although not at
a statistically significance level.

The CMB temperature field can be decomposed in terms of its positive and negative
parity components,

T (n̂) = T+(n̂) + T−(n̂), (3.9)

where
T±(n̂) =

T (n̂)± T (−n̂)

2
. (3.10)

The positive and negative parity components are constructed only from even or odd multi-
poles, respectively. Similarly for polarisation field. On large angular scales the Sachs-Wolfe
plateau ensures that both parity modes have a comparable amplitude. Therefore, testing
for a relative amplitude difference between them enables the detection of a possible even or
odd point-parity preference.

An odd-parity preference was detected in WMAP data (Kim & Naselsky, 2010b,a; Grup-
puso et al., 2011), with p-values below 0.5%, depending on the analysis choices, such as
whether the power spectrum was estimated from full-sky or cut-sky maps, or on the adopted
maximum multipole (ℓmax).
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The point-parity anomaly is typically quantified using the following estimator,

RTT (ℓmax) =
CTT+ (ℓmax)

CTT− (ℓmin)
, (3.11)

where CTT± are given by

CTT± (ℓmax) =
1

ℓ±tot

+,−∑
ℓ=2,ℓmax

ℓ(ℓ+ 1)

2π
CTTℓ , (3.12)

with ℓ±tot is the total amount of even and odd multipoles considered in the sum. The power
spectrum can be computed straightforwardly in the full-sky case. For the cut-sky case, it
can be done by using an optimal Quadratic Maximum Likelihood (QML) estimator, as pro-
posed in Gruppuso et al. (2011), or a pseudo-Cℓ estimator (Hivon et al., 2002), as applied
in Kim & Naselsky (2010a). In particular, Kim & Naselsky (2010a) reported a p-value of
0.3% for the WMAP seven-year map. This value decreased up to 0.2% using the whole sky.
These results were later confirmed by Planck analyses (Ade et al., 2014, 2016; Planck Collab-
oration et al., 2020d), which also showed that the significance depends on the maximum
multipole considered (see Figure 25 in Planck Collaboration et al. (2020d)). In particular,
the significance peaks for ℓmax ≈ 20−30. In Planck Collaboration et al. (2020d), the p-value
was found to be ∼ 1% in that range using the Planck 2018 common mask. This result was
consistent among the four component-separated CMB maps. An additionally considered
case, which used the power spectrum obtained from the Commander code, showed a slightly
smaller p-value with a minimum probability of 0.2% for ℓmax = 24. Correcting for the “look
elsewhere" effect, this value increased to 1.6%.

For polarisation analysis, the following alternative estimator was considered to avoid
problems in the denominator

DX(ℓmax) = CX+ (ℓmax)− CX− (ℓmax), (3.13)

where X corresponds to TE andEE. No anomalous lower-tail probability was found, being
the low signal-to-noise of Planck polarisation data the main limitation.

The Cold Spot and other large-scale peaks

The Cold Spot (CS) is an unusual cold region of around 10◦ in the southern hemisphere,
at Galactic coordinates (ℓ, b) = (209◦,−57◦), surrounded by a hot ring. The CS has been
extensively analysed using a variety of statistical estimators designed to trace non-Gaussian
features (see Vielva (2010) for an overview). It was first detected in Vielva et al. (2004) by
performing a spherical wavelet analysis on the first-year WMAP data. The methodology
was the following one:
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➪ They filtered the map with the spherical Mexican hat wavelet (SMHW) using different
scales. As pointed out in Vielva et al. (2004), wavelets were found to be more efficient
for detecting certain non-Gaussian features, and most importantly, they made possible
to identify the angular scales in which the non-Gaussian signature was more promi-
nent. The SMHW is described in detail in Martínez-González et al. (2002), where it
was demonstrated to be more efficient than other wavelets for detecting non-Gaussian
features.

➪ For each scale, three statistics were defined: the variance σ2(R), the skewness S(R),
and the kurtosis (R),

σ2(R) =
1

NR

NR∑
i=1

wi(R)
2,

S(R) =
1

NR

NR∑
i=1

wi(R)
3/σ(R)3,

K(R) =
1

NR

NR∑
i=1

wi(R)
4/σ(R)4 − 3,

(3.14)

where NR is the number of wavelet coefficients wi(R) that depends on the mask.

➪ Using 104 simulations, the acceptance intervals for each statistic were computed. An
excess of kurtosis was detected forR = 4◦.17 andR = 5◦ scales, with a right-tail prob-
ability of ≈ 0.4%, which means that only 40 simulations showed a kurtosis value as
large as the one observed in the WMAP data. In particular, a dedicated SMHW analy-
sis in each hemisphere showed that the excess was located in the southern hemisphere,
with a p-value of ≈ 0.1%− 0.2%. No foregrounds, systematics, or uncertainties in the
fiducial model were found to be responsible for that non-Gaussian detection.

➪ Analysing the SMHW coefficients, a very cold spot was identified as the possible
source of non-Gaussianity, with a value of −4.57σ for R = 4◦.17 scale at (ℓ, b) =

(209◦,−57◦). Furthermore, it did not show a frequency dependence.

These results were also confirmed in Cruz et al. (2005). They applied six estimators
on seven regions, confirming the presence of a big cold spot in the south-west region. In
particular, they found that the probability of observing a spot similar to the CS is ≈ 0.2%.
A similar p-value was obtained applying an area estimator to the SMHW coefficients. After
masking the CS region, this probability increased by a factor of about 100, and the kurtosis
decreased, making the data much more compatible with the Gaussian hypothesis.

An alternative analysis based on the Higher Criticism (HC) statistic was performed in
Cayón et al. (2005). This statistic was found to be optimal for detecting non-Gaussian fea-
tures, and also valuable for identifying their origin by determining the portion of the data
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FIGURE 3.3: Inpainted Planck 2018 Commander map. The black circles indicate the locations of the
large-scale peaks, labelled form 1 to 5 (Cold Spot). Figure taken from Planck Collaboration et al.
(2020d).

that contributes most to the deviation. Using 5000 simulations, a p-value of 0.54%was found
in the WMAP data set. Furthermore, a ring centred in (ℓ, b) ≈ (209◦,−57◦) containing 490

pixels was localised as the origin of such deviation. These pixels are part of the CS pointed
out in previous works.

A morphological study of the CS revealed that it has an almost circular shape (Cruz
et al., 2006). To account for the “look-elsewhere" effect, a new test was performed in Cruz
et al. (2007b) to eliminate a posteriori choices. Using this approach, the p-value obtained
from the skewness and kurtosis estimators was 1.85%.

The CS was later confirmed by the Planck mission (Ade et al., 2014, 2016; Planck Collabo-
ration et al., 2020d). In Ade et al. (2014) an excess of kurtosis was detected on wavelet scales
of around 5◦ with p-values of ≈ 1%. Furthermore, applying the area estimator, an anoma-
lous cold area was detected with a minimum p-value of 0.1%. This result was robust across
different component-separated maps and masks. Most recently, the most prominent peaks
on the sky have been studied using the Planck data. In Marcos-Caballero et al. (2017a) a mul-
tiscale analysis of the CMB temperature field was done through its derivatives up to second
order. In particular, by looking to extreme deviations in the derivatives field, the CS was
detected as an extreme value on the curvature parameter, which is given by the Laplacian of
the temperature field. As mentioned in the paper, studying the curvature at different scales
(by filtering the temperature field with Gaussian function of varying widths), is equivalent
to performing a multiscale analysis using the SMHW. This is because the SMHW is the
Laplacian of a Gaussian, and therefore, the anomalous curvature corresponds to the same
underlying signature represented by the anomalous wavelet coefficients observed in Vielva
et al. (2004) and Cayón et al. (2005). Furthermore, in the same work a statistical connection
between the CS and the low variance anomaly was found. The curvature appeared more



72 Chapter 3. CMB anomalies

anomalous when the covariances obtained from the data were used, while the statistical
significance decreased using the covariances from the best-fit model. Surprisingly, all ex-
treme values of the derivatives field were found in the southern hemisphere, particularly
on the western side, indicating a potential connection with the observed power asymmetry
(see the next section).

In Marcos-Caballero et al. (2017b), a multipolar profile analysis was performed for the
most prominent peaks in the temperature field, including the CS. These are shown in Figure
3.3, where CS is labelled by 5. The study found that the CS anomaly is mainly caused by its
large curvature in the centre, which exhibits a 4σ deviation (see Figure 2 in Marcos-Caballero
et al. (2017b)). In particular, when both the peak height and curvature were conditioned
to the value observed at the centre, the angular profile of the CS was found to be com-
patible with the predictions of the ΛCDM model, even reproducing the surrounding hot
ring. However, when only the peak height was conditioned, the profile presented a 4.7σ

deviation. In Planck Collaboration et al. (2020d), the same analysis was performed on the
polarisation data. However, no peaks could be detected because of the low signal-to-noise
ratio, highlighting that more sensitive polarisation data would be required.

In summary, the origin of the CS remains unclear and is still an active research area under
investigation. Its frequency independence makes an origin in systematics or foregrounds
highly unlikely, and also rules out a SZ origin. Some authors have tried to explain the CS
through the void hypothesis, suggesting that the presence of a supervoid could produce the
observed CS through the ISW and the Rees-Sciama effects (Inoue & Silk, 2006; Finelli et al.,
2016). However, in Marcos-Caballero et al. (2016), it was shown that a very rare void would
be required as the ISW effect within the standard model cannot reproduce the anomalous
CS profile. Other physical mechanisms, including cosmic textures (Cruz et al., 2007a, 2008),
have also been proposed, but none have provided a fully satisfactory explanation.

3.2 Hemispherical power asymmetry

In this section, an overview of the Hemispherical Power Asymmetry (HPA) is provided.
The first evidence of a hemispherical asymmetry was observed in the analysis of the first-
year WMAP data (Eriksen et al., 2004a; Hansen et al., 2004) by studying the angular power
spectrum on opposing hemispheres. In particular, two complementary analyses were per-
formed. First, the sky was divided into 164 slightly overlapping discs of 9.5◦ radius. In
each disc the power spectrum was locally estimated in bins of width 3 and compared to the
spectra derived from an ensemble of 6144 simulated maps. This analysis revealed that the
amplitudes of fluctuations in discs located in the northern (southern) Galactic hemisphere
were, in general, lower (higher) in the WMAP data than in simulations. The analysis was
then extended by estimating the power spectrum in the northern and southern hemispheres
defined by 82 different directions. For each of the 164 hemispheres, the total power was es-
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FIGURE 3.4: Temperature angular power spectrum from WMAP. Black crosses represent the binned
power spectrum computed from the northern hemisphere, while grey dots correspond to the southern
hemisphere. The hemispheres are defined with respect to the axis that maximises the asymmetry.
The thin solid black line denotes the best-fit WMAP power spectrum, and grey bands indicate the 1σ
and 2σ confidence regions derived from simulations. The dashed line shows the power spectrum
computed from the masked WMAP data. Figure taken from Eriksen et al. (2004a).

timated as Chemisphere =
∑

bCb, and the asymmetry quantified by the ratio between the two
hemispheres for each of the 82 orientations. This approach made it possible to identify the
axis that maximised the asymmetry without introducing bias from a priori choice of hemi-
spheres. The results showed that, over the multipole range ℓ = 2− 40, the ratio observed in
the WMAP data exceeded that of at least 99.7% of the simulations, corresponding to a more
than 3σ detection of hemispherical asymmetry. Additionally, it was found for some multi-
pole cuts that the axis maximising the asymmetry lied close to the north ecliptic pole. As
shown in Figure 3.2, the quadrupole and octopole already contribute to such asymmetry.
Figure 3.4 shows the first evidence of the asymmetry, as shown in Eriksen et al. (2004a).

A simple statistically anisotropic model can be constructed by modulating an isotropic
map in the following way

δTsky(n̂) = (1 +M(n̂))δTiso(n̂), (3.15)

where δTiso(n̂) is the underlaying statistically isotropic field, and M(n̂) is the modulating
field. The simplest case is a dipolar modulation (Gordon et al., 2005; Gordon, 2007),

M(n̂) = Ad̂ · n̂, (3.16)

where A and d̂ are the amplitude and direction of the modulation, respectively. Neverthe-
less, a higher-order modulation may also be considered, such as a quadrupolar modulation.
Alternatively, a modulation in k-space (Zibin & Contreras, 2017) has also been proposed
in an attempt to reconcile the observations with the cosmological model, which in practice
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could be more related to the potential physics behind this anomaly. The dipolar modulation
parametrisation has been extensively studied in both WMAP (Eriksen et al., 2007; Hansen
et al., 2009; Hoftuft et al., 2009; Akrami et al., 2014) and Planck data (Akrami et al., 2014;
Ade et al., 2014, 2016; Marcos-Caballero & Martínez-González, 2019; Planck Collaboration
et al., 2020d; Gimeno-Amo et al., 2023), and provides a framework within which Bayesian
analysis can be performed. In fact, in Eriksen et al. (2007), the hemispherical power asym-
metry was studied in the three-year WMAP data by applying a Bayesian analysis. The
WMAP data suggested a dipolar distribution of the power with a best-fit modulation am-
plitude of around 12% in the direction (ℓ, b) = (225◦,−27◦). The probability of finding
such modulation in the corresponding simulations was only ∼ 1%, and a Bayesian log evi-
dence8 difference, ∆ logE = logE1 − logE0, of around 1.5− 1.8. These results were robust
against sky cuts and frequency channels, suggesting that the observed asymmetry was not
affected by foregrounds or masking effects. The same analysis was performed with the
five-year WMAP data (see Hoftuft et al. 2009) finding a best-fit modulation amplitude of
A = 0.072± 0.022 in the direction (ℓ, b) = (224◦,−22◦)± 24◦. In this analysis, the Bayesian
log-evidence difference increased to 2.6 showing a strong evidence for the dipolar modula-
tion model.

In the first studies, dipolar modulation was found to mainly affect large angular scales
(ℓ ≤ 64). In Hansen et al. (2009), the analysis presented in Eriksen et al. (2004a) was ex-
tended to determine whether the asymmetry persists at higher multipoles. A strong correla-
tion was found among the directions of the fitted dipoles characterising the power distribu-
tion across six independent multipole ranges between ℓ = 2 and ℓ = 600. These directions
appeared to be anomalously aligned, indicating that the HPA extends across a broader range
of angular scales. Furthermore, the dipole amplitude was found to vanish on small angular
scales, for multipoles above ℓ ∼ 600, indicating that the modulation is scale-dependent,
A→ Aℓ. These results were confirmed in Axelsson et al. (2013) using the nine-year WMAP
data, where variations in cosmological parameters across the sky were also explored. In a
more recent work (Marcos-Caballero & Martínez-González, 2019), a scale-dependent mod-
ulation model was fitted to the data, finding that the Bayesian evidence supports it against
a scale-invariant model. Additionally, the Q-O alignment was found to be more likely in the
dipolar modulation scenario than in the standard model, suggesting a potential connection
between both phenomena.

The Planck team also investigated the HPA using a variety of statistical estimators (Ade
et al., 2014, 2016; Planck Collaboration et al., 2020d), assuming that the asymmetry arises
from a dipolar modulation. These estimators include: fitting a dipole to the variance map;
performing a Bayesian fit of the dipolar modulation model to the temperature map; mea-

8The Bayesian evidence is given byE ≡
∫
P (d|θ,H)P(θ|H)dθ, whereP (d|θ,H) is the likelihood andP (θ|H)

the priors. Essentially, it is the average of the likelihood over the prior volume. By computing this quantity for
two hypotheses, H1 and H2, the difference can be used to test if one of the models is preferred by the data over
the other.
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suring the coupling between adjacent multipoles, ℓ and ℓ+1, as induced by the anisotropic
model; and testing for potential alignments in the directions of power distribution across
different multipole intervals. Each of these approaches is described in more detail in the
following list.

➪ Variance asymmetry: The Local-Variance method was first introduced in Akrami et al.
(2014), where it was applied to the nine-year WMAP and Planck 2013 temperature data
to study the HPA. It was found that none of the 1000 isotropic simulations exhibited
a variance asymmetry as large as the one observed in the SMICA temperature map.
For WMAP, the statistical significance was slightly smaller, but with a direction fully
consistent with that derived from Planck data. Additionally, it was found that only
the dipole component exhibited an anomalous amplitude in the power spectrum of
the variance map.

The methodology includes two free parameters, the input resolution of the CMB map
and the disc size considered for the analysis. In Ade et al. (2016) it was found that
the significance levels dropped when larger discs were considered due to the cosmic
variance introduced by the largest-scales. By filtering out the low multipoles they
showed that the variance asymmetry was well detected in the Planck 2015 data (p-
value ≤ 0.1%) for all discs sizes with directions closely aligned.

The local-variance method was first applied to the polarisation E-mode in Aluri &
Shafieloo (2017), finding a power asymmetry with a p-value around 3% and a pre-
ferred direction closely aligned with the CMB dipole.

The Planck 2018 data were analysed in Planck Collaboration et al. (2020d), finding
results consistent with previous studies and among the four component-separated
maps. Using 1000 simulations to define the probabilities, the p-value was found to be
below 0.1%, i.e., none of the simulations exhibited a local-variance dipole amplitude
as large as that observed in the data. Taking advantage of the improved control of
polarisation systematics, the analysis was extended to the E-mode maps. The result-
ing p-value was found to vary significantly across component-separated maps, with
Commander and Sevem providing values as low as 0.7% and 0.4%, respectively, while
NILC and SMICA exhibited values above 5%. These differences suggested the presence
of residual systematic effects in the component-separated maps. Surprisingly, the di-
rection of the local-variance dipole was found to be closely aligned with that of the
temperature analysis. This is shown in Figure 3.5. The probability of finding such
alignment in simulations was below 1%− 2% for three component-separated maps.

Full details of the methodology are provided in Chapter 4, where we present the re-
sults for the variance asymmetry analysis performed on PR4 data set.

➪ Dipole modulation: The basic model adopted in the dipole modulation approach is
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FIGURE 3.5: Dipole directions estimated using the local-variance method in temperature (left panel)
and polarisation(right panel) from Planck 2018 data set. Different colours correspond to different
component separation methods: Commander (red), NILC (orange), Sevem (green), and SMICA (blue).
For reference, the black dot, labelled as low-ℓ, indicates the direction obtained from QML estimator.
Figure adapted from Planck Collaboration et al. (2020d).

similar to those presented in Eriksen et al. (2007) and Hoftuft et al. (2009). The sky is
described as follows,

d(n̂) = B(1 +M(n̂))diso(n̂) + n(n̂), (3.17)

where M(n̂) is the dipolar modulation described in Eq. 3.16, and B and n refer to
the convolution by the instrumental beam and the instrumental noise, respectively.
In Ade et al. (2016), the Planck 2013 temperature data were directly fitted to this model
using a multivariate Gaussian likelihood,

L(A, d̂, q, n) ∝ e−
1
2
dtC−1d√
|C|

, (3.18)

where C is the covariance matrix, given by

C = BMSisoM
TBT +N, (3.19)

withMij = (Ad̂ ·n̂i)δij. Here, Siso andN denote the covariance matrices of the underly-
ing isotropic signal and noise, respectively. In particular, the covariance matrix for the
isotropic signal, Siso was analytically computed from the power spectrum, modelled
as

Cℓ(q, n) = q

(
ℓ

30

)n
Cℓ,fid, (3.20)

where Cℓ,fid is the best-fit power spectrum. These two parameters, q and n, were in-
cluded to accommodate the low variance of low-ℓ. As already mentioned in Section
3.1, the significance of the CS was larger by considering the anomalous low variance.
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FIGURE 3.6: Marginal posteriors on the dipolar modulation amplitude (left panel) and (q, n) param-
eters modelling the power spectrum in Eq. 3.20 (right panel), derived from Planck 2015 temperature
data. Constraints for Commander (red), NILC (orange), Sevem (green), and SMICA (blue) are provided.
Figure adapted from Ade et al. (2016).

The analysis was carried out at low resolution, using a HEALPix9 (Górski et al., 2005)
pixel resolution of Nside = 32, and smoothing with a Gaussian function with a full
width at half maximum (FWHM) ranging from 5◦ to 10◦. The analysis also included
a set of foreground templates in the covariance matrix to marginalise over. The sig-
nificance was found to vary with the smoothing scale. In fact, the largest significance
was found for 5◦, with all the the component-separated maps exhibiting significances
∼ 3σ − 3.5σ, and amplitude and direction values of ∼ 7% and (ℓ, b) = (226◦,−16◦),
respectively. Furthermore, these results were consistent with those derived from
WMAP.

The analysis was updated with the Planck 2015 data set (Ade et al., 2016), confirming
the results of the previous data release, i.e., best-fit dipole modulation amplitude of
6 − 7% and a deficit of around 3 − 5% of power in low-ℓ compared to the best-fit
ΛCDM model. Figure 3.6 shows the marginalised constraints for dipolar modulation
and power spectrum parameters taken from Ade et al. (2016).

➪ Bipolar spherical harmonics (BipoSH) formalism: As previously mentioned, the
power spectrum only contains all the statistical information under the statistical
isotropy and Gaussianity assumptions. In this scenario, the 2-point correlation func-
tion only depends on the distance, and can be estimated by averaging all the temper-
ature products, δT (n̂1)δT (n̂2), between all pairs of pixels with the same angular sep-
aration, θ. In harmonic space, this translates to null off-diagonal terms of the covari-
ances ⟨aℓm, aℓ′,m′⟩. In Hajian & Souradeep (2003), a κℓ statistic, based on the Bipolar

9Hierarchical Equal Area isoLatitude Pixelation (HEALPix) is a scheme for partitioning the sphere into equal-
area pixels, commonly used in CMB analyses. The resolution is specified by the parameter Nside, where the
total number of pixels on the sphere is given by Npix = 12N2

side. Larger values of Nside correspond to higher
angular resolution.
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Spherical Harmonic (BipoSH) formalism, was introduced to quantify the breakdown
of statistical isotropy.

If statistical isotropy does not hold, the 2-point correlation function becomes direction-
dependent and poorly determined, since only one product is available for each pair
of pixels for a single sky realisation. To extract rotationally meaningful information
about potential statistical isotropy violation, the 2-point correlation function is ex-
panded in the BipoSH basis,

C(n̂1, n̂2) =
∑

ℓ,ℓ′,L,M

ALMℓℓ′ {Yℓ(n̂1)⊗ Yℓ′(n̂2)}. (3.21)

The ALMℓℓ′ are the BipoSH coefficients,

ALMℓℓ′ =
∑
mm′

⟨aℓma∗ℓ′m′⟩ (−1)m
′CLMℓmℓ′−m′ , (3.22)

where CLMℓmℓ′−m′ are the Clebsch-Gordan coefficients.

The BipoSH provides a complete framework for characterising any deviation from
statistical isotropy. This decomposition allows simultaneously to identify the nature of
the anisotropy described by the bipolar multipole L, and determine if it is concentrated
in a specific multipole range. In particular, for a dipolar anisotropy the information is
encoded in L = 1, while quadrupolar anisotropy corresponds to L = 2, octopolar to L
= 3, and so on. The standard angular power spectrum corresponds toA00

ℓℓ coefficients
since the correlations between different multipoles vanish.

The BipoSH coefficients for the model described in Eq. 3.16 are given by the following
expression (Ade et al., 2016),

A1M
ℓℓ+1 = Ā1M

ℓℓ+1 +m1MG
1
ℓℓ+1,

G1
ℓℓ+1 =

Cℓ + Cℓ+1√
4π

√
(2ℓ+ 1)(2ℓ+ 3)

3
C10
ℓ0(ℓ+1)0,

(3.23)

wherem1M are the spherical harmonic coefficients of the modulation field, and Ā1M
ℓℓ+1

the BipoSH coefficients of the underlying unmodulated CMB field10. The m1M coef-
ficients can be obtained using a minimum variance estimator as done in Ade et al.
(2014), and in fact, it can be done over specific angular scales. Furthermore, the
amplitude of the modulation field is related to the power in the modulation field,
m1 = (|m11|2 + |m10|2 + |m1−1|2)/3, by A = 3

2

√
m1/π.

This formalism was used in Ade et al. (2014) using the Planck 2013 data. A dipole
modulation signal (L = 1) was detected between 3σ and 4σ level (see left panel in Fig-

10This term includes the cosmic variance, and the bias introduced by the mask, which can be quantified
through simulations.
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FIGURE 3.7: Left panel: Significance of themL for different bipolar multipoles estimated from Planck
2013 data. Dipolar modulation (L = 1) is detected with a significance between 3 and 4σ. Right panel:
Dipole modulation power across different multipole bins. Figure adapted from Ade et al. (2014).

ure 3.7) on large angular scales (ℓ ≤ 64) with an amplitude (A ∼ 0.07) and direction
compatible with those inferred from the direct fitting. As shown in the right panel of
Figure 3.7, no significance amplitude was detected for higher multipoles. Addition-
ally, the left panel also displays the significance of the modulation power for other
bipolar multipoles. All values are within 2σ, and in particular, no quadrupolar mod-
ulation was observed.

These results were confirmed in Ade et al. (2016) using the Planck 2015 maps. For
the SMICA map the estimated modulation amplitude and direction were found to be
A = 0.069 ± 0.022 and (ℓ, b) = (228◦,−18◦) ± 30◦, respectively. Similar values were
obtained for the other component-separated CMB maps. The analysis was also per-
formed using the Sevem cleaned frequency maps, finding no evidence for frequency
dependence. Even if no statistical evidence was found for the amplitude on higher
multipoles, the directions were seen to be clustered together.

➪ Quadratic Maximum Likelihood (QML) analysis: An analysis closely related to the
BipoSH formalism was performed in Ade et al. (2016). In this case, the couplings
between ℓ and ℓ±1 modes in the CMB covariance matrix, induced by a scale-invariant
dipolar modulation, were investigated using a QML approach (see Section 7.2 and
Appendix C of Planck Collaboration et al. (2020d) for further details). In the multipole
range ℓ = 2− 67, a p-value of 0.9%− 1.0% was reported, which increased to 10% after
accounting for the “look-elsewhere" effect.

This method also allows for the estimation of both the amplitude and the direction of
the modulation. The values obtained from the QML analysis were found to be fully
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Table 3.1: Dipolar modulation amplitude and direction from Planck 2018 SMICA map. Values taken
from Planck Collaboration et al. (2020d). The errors are calculated from the FFP10 simulations 11,
including the systematic effects and statistical uncertainties.

Data Amplitude Direction (ℓ, b) [deg]

SMICA (TT ) 0.070+0.032
−0.015 (221,−22)± 31

SMICA (TT , TE, EE) 0.068+0.032
−0.015 (221,−19)± 31

consistent with those derived from the BipoSH and Bayesian approaches. For in-
stance, using the SMICAmap, the inferred modulation amplitude wasA = 0.062+0.026

−0.013,
with a corresponding direction of (ℓ, b) = (213◦,−26◦)±28◦, where uncertainties were
estimated from statistically isotropic CMB realisations.

The analysis was extended to polarisation in Planck Collaboration et al. (2020d). The
results obtained from the temperature data were found to be consistent with previous
analysis, while the addition of polarisation data alongside temperature had a minimal
impact on the inferred dipolar modulation amplitude and direction, as shown in Table
3.1. No evidence for dipolar modulation was found when analysing the polarisation
data alone. Finally, the amplitude inferred from temperature in the multipole range
ℓ = 2 − 220 was found to be around a factor of 3 smaller than that obtained in the
ℓ = 2− 64 range.

➪ Angular clustering of the power distribution: The first indications of angular clus-
tering were found in Hansen et al. (2009) by computing the local power spectrum in
discs binned in 6 independent blocks of multipoles, ranging from ℓ = 2 to ℓ = 600,
and fitting for a dipolar asymmetry in the resulting maps. The six dipoles pointed to
a similar direction.

The Planck team adopted an alternative model-independent estimator to quantify an-
gular clustering (Ade et al., 2014, 2016; Planck Collaboration et al., 2020d). A detailed
description of the methodology is provided in Chapter 6. In summary, the method fits
dipoles to maps that encode the spatial variation of power within specific multipole
intervals, and then, quantifies the degree of alignment among the resulting dipole
directions. The level of alignment in the data is compared to that obtained from sim-
ulations in order to assess its statistical significance. In fact, this analysis does not
focus on the amplitude of the dipoles, which may be consistent with the expected
distribution of values for isotropic CMB realisations, but rather on whether there is
a preferred direction. The presence of such alignment constitutes a clear signature
of power asymmetry. In the standard cosmological model, the multipoles are uncor-
related, and consequently, the power distribution associated with different multipole

11A set of end-to-end simulations produced by the Planck team incorporating realistic models of the instru-
ment, noise properties, foreground emission, scanning strategy, and CMB signal.
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intervals are expected to be statistically independent, with their preferred directions
randomly oriented across the sky. Note that the significance of the clustering should
not be affected by noise properties and systematic effects, as long as those are correctly
included in the simulations.

Applying this analysis to the Planck 2013 data revealed a clear alignment between
dipole directions up to ℓmax = 600, with none of the simulations exhibiting a mean
alignment between all dipoles as that observed in the data. Remarkably, all directions
were found to lie close to the HPA axis reported in previous works. These results
were shown to be robust across different component-separated maps. The analysis
was also performed on the Sevem 143 GHz cleaned frequency map, corrected by the
Doppler modulation effect12, showing that the statistical significance of the asymme-
try decreases above ℓmax ∼ 600. The robustness of these results was further supported
by applying three global statistics, all of them finding strong evidence for asymmetry.

The analysis was also extended to the Planck 2015 data in Ade et al. (2016), where the
Rayleigh statistic was introduced to quantify the alignment of dipole directions. A
detailed description of this statistic is provided in Chapter 6. In this case, the p-values
were found to remain low even for ℓmax > 750. After applying different analysis
choices, playing with the ℓmin and ℓmax, it was finally concluded that the measured
clustering was a consequence of the existing correlations between directions of both
high and low multipoles, with the effect extending up to ℓmax = 1500. Remarkably,
for ℓmax < 100, the p-values did not indicate a low-ℓ asymmetry, in contrast to the
results obtained with the previously described methods. In fact, this discrepancy
may be related to the high variance of the Rayleigh statistic in this regime, which is a
consequence of the limited number of available bins.

In Planck Collaboration et al. (2020d), the analysis was extended to polarisation by
analysing the Planck 2018 data. The temperature results confirmed those obtained
in the Planck 2015 analysis, with p-values consistently below 1% for multipoles up to
ℓmax ≈ 1200. For the OE and HM data splits, the p-values started to be above 1% for
ℓmax < 1000, which may be attributed to the inclusion of the unobserved pixels mask.
For the polarisation E-mode signal, a hint of alignment was observed at multipoles
around ℓ = 150 − 250, with p-values reaching levels below 1%. A similar trend was
observed by analysing the correlations between directions obtained from TT andEE
analysis, while the TE was consistent with simulations.

In Chapter 6, we present the results of the angular clustering analysis using the PR4
temperature and polarisation maps. We extend the analysis to search for dipolar fea-
tures in the cosmological parameters, mainly motivated by the observed anomalous
anisotropic distribution of the power in temperature data, as well as by recent studies

12Unlike aberration effect, Doppler modulation was not included in the simulations.
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(Fosalba & Gaztañaga, 2021; Yeung & Chu, 2022), where a directional dependence of
the cosmological parameters is claimed.

3.2.1 Inpainting CMB data

As discussed in Section 2.2.4, one of the main issues in characterising the CMB anisotropies
is how to deal with extragalactic and Galactic foreground emissions such as synchrotron,
free-free, or thermal dust. These are astrophysical emissions between the last scattering
surface and us. The CMB has been measured in several frequency channels to exploit their
different frequency response and to allow component-separation algorithms to subtract an
important part of them.

However, certain regions, such as the Galactic plane and the locations of bright extra-
galactic point sources, remain strongly contaminated and are not suitable for statistical anal-
yses, even after applying component-separation techniques. In these regions, foreground
emissions are too intense and complex to be effectively cleaned. The standard approach is
to mask such regions using the confidence masks provided by each component-separation
method. In practice, this leads to a loss of information and other technical difficulties. For
example, it prevents accurate characterisation of large angular scales, which is crucial for
the study of CMB anomalies.

In the case of polarisation, masking presents even more complications, not just at har-
monic level but also in real space. In particular, masking Q and U Stokes parameters intro-
duces an undesired mixing between E- and B-modes (Tegmark & de Oliveira-Costa, 2001;
Lewis, 2003), commonly referred to as E-to-B leakage. This is critical for the detection of
the primordial B-mode signal since the E-mode signal is significantly larger. In real space,
the lack of full-skyQ andU maps prevents an accurate reconstruction ofE- andB-modes as
a result of the non-local nature of the transformations. In fact, this challenge motivates the
work described in Chapter 5. Reconstructed maps are of interest for studies of isotropy and
statistics, including the anomalies present at large angular scales. It is worth noting that for
power spectrum estimation in masked skies, other standard techniques are available. For
example, in Alonso et al. (2019) a very fast algorithm is described (NaMaster), based on the
pseudo-Cℓ formalism, to estimate the angular power and cross-power spectra. This imple-
mentation is applicable to both spin-0 and spin-2fields and is able to correct for the coupling
between multipoles induced by the mask. Nevertheless, it is known to be suboptimal on
large angular scales. An alternative approach is the QML method (Tegmark, 1997; Tegmark
& de Oliveira-Costa, 2001; Bilbao-Ahedo et al., 2021), which is optimal for low multipoles
but computationally demanding. Given these constraints, two strategies can be adopted
for the statistical analysis of CMB anomalies: (1) adapt the estimators to partial sky maps,
which in general are more complicated and numerically expensive, or (2) fill the maps using
the so-called inpainting algorithms.

Inpainting techniques aim to reconstruct a full-sky CMB map statistically coherent with
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the observed data. Inpainting is not a novel concept, it was already used in image processing
to fill in missing pixels and restore blurred photographs (Masnou & Morel, 1998). This idea
was extended to the Cosmology field and applied to fill the CMB sky (Abrial et al., 2008;
Inoue et al., 2008; Perotto et al., 2010; Bucher & Louis, 2012; Kim et al., 2012). The simplest
approach is a diffuse inpainting, where the algorithm iteratively fills the masked pixels by
averaging the neighbouring unmasked pixels. More sophisticated methodologies have also
been developed, such as the purified inpainting employed in (Planck Collaboration et al.,
2020d), which does not assume any underlying cosmological model.

In Chapter 5, we consider an alternative approach based on Gaussian constrained real-
isations (Hoffman & Ribak, 1991; Bucher & Louis, 2012; Kim et al., 2012; Benoit-Lévy et al.,
2013; Marcos-Caballero & Martínez-González, 2019). Assuming that the field is Gaussian,
we use the best-fit power spectrum to estimate the pixel correlations and fill the missing
pixels drawing samples from the corresponding conditional probability distribution. This
is explained in more detail in Chapter 5. Although an exact implementation is not feasible
for high-resolution maps, where correlations for millions of pixels are needed, this method
can be useful for low-resolution maps, up to Nside = 64 and ℓmax = 192. In fact, this range
covers the full range of the reionisation and the recombination peaks of theB-mode. In this
context, such an approach could be a powerful tool for future experiments, such as Lite-
BIRD. The use of Neural Networks has also been proposed as an alternative way to inpaint
the CMB (Puglisi & Bai, 2020).

An implementation of this inpainting technique has been employed in Chapter 4 to study
the HPA in the E-mode maps.
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The second part of this thesis presents my contributions to the cosmology field. Except
for the abstracts, which have been adapted to align with the structure of the thesis, Chapters
4, 5, and 6 reproduce the content of the following publications Gimeno-Amo et al. (2023,
2024, 2025):

➪ P.1: Gimeno-Amo, C., Barreiro, R.B, Martínez-González, E., & Marcos-Caballero,
A. (2023). Hemispherical power asymmetry in intensity and polarization for Planck
PR4 data. Journal of Cosmology and Astroparticle Physics, JCAP12(2023)029.

➪ P.2: Gimeno-Amo, C., Martínez-González, E., & Barreiro, R.B, (2024). CMB-PAInT:
An inpainting tool for the cosmic microwave background. Journal of Cosmology and
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During the thesis I have performed three studies in the context of the CMB anomalies
and the statistical isotropy of the universe. In particular, I have studied the HPA by apply-
ing the local-variance estimator to the PR4 temperature and polarisationE-mode maps. For
this, it was necessary to implement an optimal inpainting approach. I did that in my second
publication by developing a Python code, CMB-PAInT, based on the Gaussian constrained
realisation method. Finally, I have also studied the HPA from the angular clustering es-
timator perspective, where I also include an analysis on the isotropy of the cosmological
parameters by studying their spatial distribution across the sky.

Apart from these works, as an active member of the LiteBIRD collaboration, I have con-
tributed to several studies which are out of the scope of this thesis. These contributions
include:

➪ Development of an optimal likelihood approach for the future detection of the polar-
isation B-modes.

➪ Study of the impact of HWP-related systematic effects on the calibration of polarisation
angles.

➪ Forecasting activities:

– Bayesian analysis of cosmological parameters using a MCMC sampler with the
reconstructed lensing-only spectrum. The results of this activity are reported in
Ruiz-Granda et al. (2025).
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– An analysis on LiteBIRD’s capability to test CMB anomalies using polarisation
E-modes. This work is directly related to the topic covered in this thesis. The
aim of this work is to investigate the ability of cosmic variance limited E-mode
measurements to constrain the fluke hypothesis, i.e., the possibility that the CMB
temperature anomalies are statistical fluctuations. We use several estimators de-
scribed in Chapter 3, and in particular, the CMB-PAInT code is applied. The results
of this activity are reported in Banday et al. (2025).



4
Hemispherical power asymmetry in intensity and polarisation

for Planck PR4 data

The purpose of this chapter is to study and characterise the hemispherical power asymme-
try on the new Planck Data Release 4 by performing an asymmetry analysis on both inten-
sity and polarisation maps. We apply the local-variance estimator introduced in Chapter
3. As a first step, we reanalyse the PR3 data inpainted using a method based on Gaussian
constrained realisations, which is described in detail in Chapter 5. The results are consis-
tent with those previously reported by the Planck collaboration. For PR4, using the Sevem
component-separated maps, we find that the p-value is slightly reduced to 2.8%, i.e., only
2.8% of the E2E simulations exhibit a local-variance dipole amplitude in theE-mode as large
as that observed in the data, while the dipole direction remains close to the that derived in
PR3. Furthermore, we identify a hint of a potential T -E alignment between the asymme-
try axes at the level of approximately 5%. Our results indicate that more sensitive all-sky
CMB polarisation data, such as those expected from the future LiteBIRD experiment, will
be necessary to reach a more robust conclusions on the possible existence of deviations from
statistical isotropy in the form of a hemispherical power asymmetry.

4.1 Data and Simulations

In the present analysis we have used the Planck data1 from the latest two releases, the Planck
2018 full-mission release (PR3) (Planck Collaboration et al., 2020a), and the fourth release
(PR4), which has been processed by the NPIPE pipeline (Planck Collaboration et al., 2020f).
Both pipelines use the LFI and HFI raw and uncalibrated data to generate frequency maps
in the HEALPix (Górski et al., 2005) format, 9 in the case of temperature and 7 for Q and

1Planck space telescope, operated by the ESA, had two instruments, the Low Frequency Instrument (LFI)
and the High Frequency Instrument (HFI), with the goal of measuring the total intensity and polarisation of
CMB photons in a wide frequency range from 30 to 857GHz (30 to 353 for polarisation). This range was covered
by 9 different frequencies, with the three lowest frequencies measured by the LFI (30, 44 and 70 GHz) and the
rest by the HFI (100, 143, 217, 353, 545 and 857 GHz).
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U Stokes parameters as the two highest frequency channels were not sensitive to polarisa-
tion. These frequency maps are propagated through the component separation methods
(Planck Collaboration et al., 2020b), Sevem (Fernández-Cobos et al., 2012), SMICA (Cardoso
et al., 2008), NILC (Basak & Delabrouille, 2012), and Commander (Eriksen et al., 2008), which
generate each a clean CMB map. For PR3 we have used the data from the four separation
algorithms. For PR4, clean CMB maps have been provided only by Sevem and Commander.
We use both maps for the analysis in intensity and only Sevem products for polarisation.2

All the data and simulations are available at NERSC3 at full resolution4 (Nside = 2048), and
have been downgraded (to Nside = 64) in harmonic space, according to

aoutℓm =
boutℓ poutℓ

binℓ p
in
ℓ

ainℓm, (4.1)

where the superscripts in and out refer to the HEALPix resolution of the input and output
maps, respectively, the aℓm’s are the harmonic coefficients of the considered maps, the pℓ’s
give the corresponding pixel window functions, and the bℓ’s are the Gaussian smoothing
functions with a FWHM of 5′ for the original cleaned CMB maps and of 160′ for the down-
graded maps. The output aℓm’s are then converted to a pixel map considering a maximum
multipole ℓmax = 3Nside − 1. For this procedure, we have used the Healpy package5 (Zonca
et al., 2019), which is basically a Python wrapper for HEALPix. Sevemmaps for both Planck
releases are shown in Figure 4.1. Differences in polarisation between both releases are ap-
parent, mainly due to the reduction of large-scale systematics in the PR4 data. Conversely,
intensity maps are very consistent.

All the details of the PR4 processing and the differences with respect to PR3 are given in
Planck Collaboration et al. (2020f). Most notably, while previous Planck pipelines process
LFI and HFI in an independent way, PR4 was designed to process them simultaneously
which produces a significant improvement in the calibration of both instruments. In addi-
tion, PR4 reduces the noise by including the data from the repointing manoeuvres, which
is around 8% of the total mission. These differences, together with other added features
and modifications, have the net effect of reducing especially the polarisation systematics at
large scales as well as the level of noise. However, the signal at the smallest multipoles is
also reduced due to the resulting transfer function (see Section 4.2.4 and Figure 4.6).

In order to test the null hypothesis, we have used as the reference point the FFP10 PR3
and NPIPE Monte Carlo (MC) simulations, provided by the Planck collaboration along with
the data maps. This set of simulated maps includes realisations of the CMB signal, the

2Although Commander polarisation products are also available for PR4, we have not included them in this
work, since the associated simulations were not well suited for our analysis (see Section 4.3.3).

3National Energy Research Scientific Computing Center (NERSC), https://www.nersc.gov/, is a primary
scientific computing facility operated by Lawrence Berkeley National Laboratory, located in California. It pro-
vides high-performance computing and storage facilities where Planck latest data and simulations can be found.

4Data is also available at Planck Legacy Archive (PLA), https:/pla.esac.esa.int/.
5https://healpy.readthedocs.io/en/latest/

https://www.nersc.gov/
https:/pla.esac.esa.int/
https://healpy.readthedocs.io/en/latest/
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FIGURE 4.1: Sevem component-separated CMB maps at 160′ resolution. The first column shows
T , Q, U , and E-mode maps for the Planck 2018 pipeline (PR3), while the second column shows the
same maps for NPIPE (PR4). E-mode maps are derived from the full-sky StokesQ and U maps. The
grey lines indicate either the temperature or the polarisation Planck component separation confidence
mask (Planck Collaboration et al., 2020b).
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instrumental noise and the systematics, which try to capture the characteristics of the full
data processing such as the scanning strategy, the detector responses, or the calibration
errors introduced during data reduction. For both PR3 and PR4, a number of realisations
of the CMB sky are generated according to a fiducial CMB power spectrum based on the
cosmology described in Table 6 of Planck Collaboration et al. (2020f). These sky realisations
include lensing, Rayleigh scattering, and Doppler boosting. Additionaly, they are convolved
by the frequency-specific beam. In contrast, noise simulations have been obtained following
a more complex approach (see Section 4 of Planck Collaboration et al. (2020d) and Section
5 of Planck Collaboration et al. (2020f)), processing them using the same algorithm as for
the real data via an end-to-end (E2E) pipeline, including instrumental noise and systematics.
For PR3, after propagating E2E simulations through component-separation pipelines, the
final product is a set of 999 CMB and 300 noise simulations for each of the four methods.
On the other hand, for the PR4 pipeline, 600 CMB and noise realisations are available for
Sevem, while 100 simulations are provided for intensity in the case of Commander.

Regarding masks, we use the PR3 intensity and polarisation component separation con-
fidence masks downgraded to Nside = 64, which retains the 71.3% and 72.4% of the sky,
respectively. Following Planck Collaboration et al. (2020d), to generate lower resolution
binary masks, we first smoothed them according to Eq. 4.1 and then set a threshold of 0.95.
All the pixels with a value below the threshold are set to 0, while the remaining ones are set
to 1. Masks atNside = 2048 are available in the Planck Legacy Archive6 (PLA). The intensity
mask is used without modification for the local variance analysis in the temperature maps.
On the other hand, the polarisation mask is used as the starting point for the inpainting of
the Q and U maps and to generate a set of extended customised masks for the analysis of
the E- mode map, as explained in Section 4.2.2.

4.2 Methodology

In this section, we first present an overview of our analysis and then explain in detail the
different steps of the methodology in the corresponding subsections. In the current work
we perform an exhaustive analysis of the hemispherical power asymmetry anomaly for
intensity and polarisation following the methodology of Planck Collaboration et al. (2020d),
where the local-variance estimator is used to find dipolar-like features. The estimator is
introduced in Subsection 4.2.3, and essentially the output is the amplitude and direction of
the local-variance dipole, which can be use as a tracer of the modulation.

To apply this analysis to the polarisation data, we first need to construct an E-mode
map. This is a non-local quantity, and ideally we need full-sky maps of theQ and U Stokes
parameters to have an accurate reconstruction of the E-mode map. However, since CMB
observations are strongly contaminated by residual foregrounds in certain regions of the

6https://pla.esac.esa.int/

https://pla.esac.esa.int/
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sky, we cannot consider in the analysis those pixels excluded by the polarisation confidence
mask. To solve this problem, a useful approach is to carry out inpainting in the contaminated
regions, a process that assigns new values to the excluded pixels such that they are more
consistent with the rest of the CMB map. In particular, we have implemented a method
based on Gaussian Constrained Realisations (GCR) which is used to inpaint the regions masked
by the polarisation confidence mask in the Q and U data maps. In Subsection 4.2.1 the
inpainting method is described in more detail. We note that this technique requires the
knowledge of the covariance matrix of all the components present in the map. For the CMB
signal, this can be obtained analytically given a cosmological model, whereas for the noise
and systematics component, we compute it from the E2E noise simulations. However, to
avoid overfitting (due to the lack of convergence of the estimated matrix because of the
relatively small number of simulations), the simulations considered in the analysis must be
independent from those used to compute the covariance matrix. Therefore, we are forced
to split the simulations in two halves, the first set used to estimate the covariance matrix
and the second one to obtain the distribution of the amplitudes of the local-variance dipole
and the corresponding p-value.7 Different partitions of the simulations are also considered
in order to test the robustness of the results. In particular, Subsection 4.2.2 describes how
the p-value is estimated taking into account the different data splits.

Another important step is to check the validity of the E-mode map constructed from
the inpainted Q and U data maps. In particular, using the E2E simulations, we generate an
extended customised mask by imposing a threshold in the pixel error of the reconstruction
of the E-mode map. This mask is then used for the analysis of the polarisation data (see
Subsection 4.2.2 for details on how this mask is constructed).

Finally, Section 4.2.4 presents some tests to validate our methodology. We check with the
E2E simulations that the estimated amplitude and direction of the local-variance dipole are
not biased as a consequence of the inpainting process. We also give a comparison between
the inpainting scenario and the one where E-modes are derived from a simple masking
of the Q and U Stokes parameters. Furthermore, assuming a dipolar modulation model
(Eq. 3.16), we obtain some interesting results such as the sensitivity of the method taking
into account the realistic Planck noise and systematics.

4.2.1 Inpainting using Gaussian constrained realisations

One of the main issues when analysing the CMB is how to deal with foreground emissions
such as dust, free-free, or synchrotron. Although component separation algorithms are
able to reduce these emissions significantly, some residuals are expected to remain near the
Galactic plane and in the locations of point sources, where the sky is strongly contaminated.
The standard approach is to mask these regions, but, as mentioned before, this leads to other

7Note that the p-value is defined in an frequentist way as the fraction of simulations with an amplitude of
the estimator equal or larger than the one obtained from the data.
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difficulties. This is especially the case when dealing with polarisation data, since masking
Stokes parameters introduces an undesired mixing between E- and B-mode (Tegmark &
de Oliveira-Costa, 2001; Lewis, 2003). This effect has an impact when reconstructing the
E-mode map, but it can be minimized by using an optimal inpainting technique. Inpaint-
ing consists on replacing the contaminated pixels by values which are somewhat consistent
with the cleaned data, keeping as much as possible the statistical properties of the under-
lying field. Different inpainting approaches have been considered in CMB analyses. For
instance, diffuse inpainting, which consists on replacing the value of the contaminated pix-
els by averages of those of the neighbouring pixels, works acceptably well to inpaint small
regions, such as those corresponding to point sources (Planck Collaboration et al., 2020b).
A second more sophisticated approach is purified inpainting, which constructs a full-sky
polarisation map from a masked one where most of the pureE- andB-modes are projected
out in order to minimize the leakage. It has been used in the Isotropy and Gaussianity anal-
yses performed by the Planck Collaboration (Planck Collaboration et al., 2020d), including
the study of the hemispherical power asymmetry. In the present work, we use an alternative
approach based on GCR. This technique was introduced in Marcos-Caballero & Martínez-
González (2019) for temperature, but we have extended it here for the Stokes parameters.

GCR is a method that works in the pixel domain. The idea is to fill the masked pixels by
sampling from the conditional probability distribution, p(d̂|d), where d̂ is the vector of the
inpainted field and d is the vector of the available pixels. Assuming that the field is Gaussian,
which is a very good approximation for the CMB, all we need is the pixel covariance matrix.
For the CMB signal, this can be computed from the theoretical power spectra8 following, for
instance, the Appendix A9 of Tegmark & de Oliveira-Costa (2001), whereas for the noise plus
systematics part, we need to rely on simulations. We present a full description of the method
in Chapter 5. Although, in principle, this method is able to fill the contaminated pixels with
a realisation that is perfectly consistent with the remaining data according to the assumed
statistical properties of the underlying field, it presents two main limitations. First of all,
this approach is very demanding from the computational point of view, since it requires the
computation and storage of the pixel covariance matrix, whose dimension is 2Npix × 2Npix

when considering the inpainting of the Q and U Stokes parameters (3Npix × 3Npix if also
TE correlation is considered). Hence the resolution at which we can work is limited by
the required memory. Due to this constraint, we have carried out our analyses at a Healpix
resolution of Nside = 64. The second limitation comes from our lack of knowledge of the
part of the covariance matrix coming from noise and systematics in the Planck polarisation
data, which needs to be characterised using simulations. In the case of the Sevem method
for PR4, we have a total of 600 E2E simulations (600 for the CMB and 600 for the noise and

8We use the ΛCDM best fit power spectra available in the PLA.
9Note the small typo in equation A7 of the appendix where the proportionality constant is negative, not

positive. Thus, in equation A8, the negative sign corresponds to the case where z component of the vector r̂ij
is positive, and vice versa.
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systematics). As previously mentioned, to avoid overfitting10 in the inpainting process, we
need to split them into two sets of 300 independent simulations, such that the first set is
used to characterise the noise contribution to the covariance matrix, while the second one
is used to obtain the distribution of the amplitude of the local-variance dipole that will
be compared with the data. The limited number of E2E noise simulations is not enough
to achieve a good convergence of the noise covariance matrix, and consequently, matrix
elements, especially the off-diagonal terms, are significantly noisy. Indeed, using semi-
realistic noise simulations11, we have found that the number of simulationes required to
achieve convergence is at least of a few thousand. Another approximation is to ignore the,
in general, non-Gaussian behaviour of systematics, that is not taken into account in the
inpainting. However, in spite of these limitations, we find that this proposed inpainting
procedure is still very useful for our purpose. Indeed, it is not necessary to reproduce the
full statistical properties of the inpainted pixels in order to minimise significantly theE-to-B
leakage due to incomplete sky.

4.2.2 Performance of the inpainting, confidence mask, and estimation of the p-
value

The performance of the inpainting procedure can be determined by comparing the exact
E-mode map obtained from full-skyQ andU maps of the E2E CMB plus noise simulations,
with that obtained from the sameQ andU maps that have been inpainted in the region given
by the Planck polarisation confidence mask. In particular, we compute the map of E-mode
residuals,∆E, as the difference between the exact and inpainted maps, for the pixels outside
the mask for each of the inpainted simulations. We also obtain the standard deviation of the
residuals at each unmasked pixel (σ∆E) as well as the one of the input E-mode map (σE).
In the case of PR3, this procedure is repeated for the simulations propagated through the
four component separation method, while for PR4 is done for Sevem. A relative error map
δE is then constructed as follows:

δE =

√∑
m σ

2
∆E(m)√∑

m σ
2
E(m)

(4.2)

wherem runs over the different component separation methods used for PR3 or PR4. Note
that for PR4, since only Sevem is considered, this is simply the ratio between the dispersion of
the residuals and that of the inputE-mode map at each pixel. Figure 4.2 shows a comparison
between the map of the relative error in theE-mode map that we get by applying inpainting

10Overfitting arise from the non convergence of the covariance matrix. If we use the same simulations to
estimate the matrix and perform the analysis, the matrix will have exactly the correlations given by the sample
of simulations, and this will produce an overfitting when inpainting is applied on them.

11Gaussian simulations that include anisotropic and correlated noise according to the noise covariance ma-
trix obtained from the Planck noise E2E simulations.
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FIGURE 4.2: Comparison of relative error maps (in percentage) in the reconstruction of the E-mode
for PR4. Left panel: error map obtained with the inpainting approach. Right panel: error map ob-
tained for the simple Q and U masking approach (no inpainting). Grey area corresponds to the PR3
polarisation confidence mask.

to the PR4 data (left panel) and by directly using maskedQ and U maps (right). It becomes
apparent that the inpainting works quite well, especially for point sources and isolated
regions outside the Galactic plane. Moreover, in the ideal case in which the covariance
matrix is perfectly known, we have found that the performance is even better.

Despite having a more accurate reconstruction of the E-mode using inpainting, the
residuals in regions close to the mask boundaries are still significant. One possibility to
reduce these residuals is to extend the polarisation confidence mask. In particular, we de-
fine a set of extended masks by selecting different thresholds in the error map, which are
determined from a compromise between the maximum admissible error and the minimum
extension of the mask. Figure 4.3 shows the variation of the maximum error with fsky12 for
PR4. By removing the pixels more affected by the inpainting, an improvement in the max-
imum error is rapidly achieved, going down to values of δE ∼ 40% with only a moderate
reduction of the sky. However, further improvements require the removal of a significant
fraction of the sky as a trade-off. The complete set of masks will be used to check the ro-
bustness of the results against the considered sky fraction, but we select as reference mask
the one with the threshold of δE = 40% because, for PR4, it leaves a fraction of sky similar
to that of Planck Collaboration et al. (2020d).

This way of generating confidence masks is similar to the one followed in Planck Collab-
oration et al. (2020d), although with some differences. The first one is the resolution, since
in that work the mask is generated at Nside = 1024 and then downgraded to Nside = 64,
while we generate it directly at the final resolution (mainly due to our limitation to work
with high resolution maps). The second difference comes from the way in which the thresh-
old is chosen, since in their work the residuals of both the E and B-modes are considered.
We decided to focus only on theE-mode reconstruction for several reasons: B is consistent
with zero in the Planck data, theE-mode signal is much larger than theB-mode, and finally,

12The sky fraction is actually determined from a combined mask obtained from the study of different splits.
More specifically, the combined mask is obtained as the product of the individual extended masks generated
for each of the considered splits (see below).



4.2. Methodology 97

20 30 40 50 60 70 80
Maximum error [%]

40

45

50

55

60

65

70

75
f s

ky
[%

]

Maximum error: 30.0%, fsky = 57.0%
Maximum error: 32.5%, fsky = 59.4%
Maximum error: 35%, fsky = 61.5%
Maximum error: 37.5%, fsky = 63.2%
Maximum error: 40%, fsky = 64.6%
Maximum error: 42.5%, fsky = 65.9%
Maximum error: 45%, fsky = 67%

FIGURE 4.3: Sky fraction as a function of the allowed maximum error for the PR4 data set. Vertical
lines represent the thresholds for the different masks used in the analysis, covering from 45% to 30%
error. The red star shows the maximum error and the fraction of the sky for our reference mask, which
is used for the main results of this work and plotted in the right panel of Figure 4.4.

we are only applying the estimator to E-mode maps.
Despite the increase in the error of the estimated dipolar modulation parameters due to

the non-convergence of the noise covariance matrix, the amplitudes remain unbiased (see
Section 4.2.4). However, splitting the simulations into two halves introduces additional un-
certainty in the determination of the p-value. Then, the question is: how should we split
the simulations? Although any random split is equally valid, each partition will yield a dif-
ferent p-value due to the slight variation in the amplitude distribution. There are also other
effects that contribute to this dispersion but at a lower level. For example, the estimated
noise covariance matrix is also different, which in turn affects slightly the way in which the
inpainting is performed.

To get some additional insights on which is the best procedure to obtain the required
p-value using the limited number of simulations, we have made some tests (see below)
using semi-realistic noise simulations. These are constructed as Gaussian realisations char-
acterised by the covariance matrix obtained from the full set of 600 E2E noise simulations13.
Therefore, these semi-realistic simulations of anisotropic noise contain the same correla-
tions and statistical information up to second order as the realistic Planck simulations. The
possible presence of non-Gaussianity is the only feature that we cannot simulate. According
to these simulations, a good estimation of the underlying p-value, the one that we would
get if we sampled the distribution of amplitudes using the complete set of 600 simulations,
can be achieved if we proceed as described below (this is detailed for PR4, but a similar
procedure is applied to PR3):

1. We generate 30 random splits from the 600 E2E noise simulations. For each split we
have one pair of independent sets of 300 simulations each, i.e., a total of 60 sets in total.

13More specifically we calculate the Cholesky decomposition of the covariance matrix that is then used to
generate the Gaussian realisations with the required statistical properties (see e.g. (Barreiro et al., 2008)) for
PR4.
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FIGURE 4.4: Left panel: customized mask used for the PR3 data set analysis. It leaves 61.4% of
the sky unmasked. Right panel: customized mask used for the PR4 Sevem data set analysis. It
leaves 64.6% of the sky unmasked. The grey region corresponds to the polarisation confidence mask
provided by Planck, while black region corresponds to the extended area where the relative error in
the E-mode reconstruction is larger than the 40%.

2. For each split, we use the first set to estimate the noise covariance matrix and we apply
inpainting on the second set. We repeat the same procedure but this time estimating
the matrix with the second set and applying it to the first one.

3. For each of the estimated covariance matrices (a total of 60), we construct an inpainted
map from the real data.

4. For each of the 60 inpainted sets, we generate an extended confidence mask by thresh-
olding the residuals as explained previously for the reference case (i.e., maximum δE

of 40 per cent). These are then combined into a single extended mask as the product of
all of them. We repeat this procedure for different thresholds to have a set of extended
confidence masks. Figure 4.4 shows the reference extended masks for PR3 and PR4,
used to obtain the main results of our analyses.

5. For each of the inpainted sets and inpainted data map (in each case inpainted using
the same covariance matrix), and using the combined reference confidence mask, we
apply the local-variance estimator (see Section 4.2.3) to estimate the amplitude of the
dipole. Finally, we define the p-value as the fraction of simulations with an amplitude
equal or greater than the one observed in the data map.

6. We get the mean of the 60 calculated p-values as our estimation of the underlying p-
value. For the direction, we get the mean of each of the vector components, and then,
convert it to Galactic longitude and latitude coordinates.

To establish the validity of the previous approach, the test we performed was the fol-
lowing one.

1. First, we generate 2000CMB simulations modulated inQ andU according to equation
3.16. We use an amplitude (ADM ) and direction consistent with the ones estimated
from the data, ADM = 9% and (ℓ, b) = (235◦,−17.5◦).
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2. We add a semi-realistic noise simulation to each modulated simulation (we call them
modulated set).

3. We generate an independent set of 600 CMB simulations (unmodulated) and we add
semi-realistic noise simulations, also independent from the previous 2000 realisations.

4. Using as reference this set of 600 simulations, we estimate the p-value of each simu-
lation in the modulated set. For this purpose, we apply the local-variance estimator
(explained in Section 4.2.3) to the idealE-mode maps, reconstructed from the full sky
Q and U maps (i.e., without applying inpainting). Just to clarify, we still apply an
extended mask to the E-mode maps for the analysis. We label these p-values as the
true ones, since they are the best possible estimation obtained from the full reference
set, i.e. using all the 600 simulations.

5. Now let us focus on one of the simulations from the modulated data set. We treat it in
the same way as we do for the data, and together with the 600 reference set we follow
the steps described above, i.e., we generate 30 partitions of 300/300 simulations and
we compute 60 p-values for the data (including the inpainting process as described
previously). The same method is followed for the other 1999 simulations from the
modulated set.

6. We get the average value of the 60 p-values, finding that this estimator is a good repre-
sentation of the previously estimated true value. Taking the distribution of differences
between true and average values, we compute the bias as the mean. As expected, the
bias largely depends on the original p-value. In particular, if we restrict ourselves
to simulations whose true p-value is less than 8% (in the real data the p-value varies
between 2− 3%), the bias is below 1/300.14

7. Although the p-values obtained from different splits are strongly correlated as they
are generated from the same set, we provide the range of p-values containing 68% of
the distribution as a rough estimation of the uncertainty.

The same procedure has been followed for the PR3 data set, except that, in this case,
we have only 300 E2E noise simulations to construct the 30 different partitions. Therefore,
for each split, we have one pair of independent sets of 150 noise simulations each (used
to construct the covariance matrix). In addition, we also have 999 CMB simulations, for
which we consider 900 in our study. In this way, we construct sets of 450 simulations that
are used for the analysis, obtained by combining one noise simulation with three different
CMB simulations.

14To test the robustness of this result, we have studied the bias using an independent set of 600 semi-realistic
simulations, finding very consistent results.
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FIGURE 4.5: Left: Sevem PR4 E2E E-mode simulation after applying the transformation given by
Eq. 4.3. The map is masked with an extended mask allowing a sky fraction of 63.2% Right: Local-
variance map generated following the previous steps. The grey region corresponds to those pixels
discarded since more than 90 per cent of the pixels associated to the disc are masked. A disc of 4◦
is used.

4.2.3 Local-variance estimator

As previously mentioned, the estimator we have used to characterise the asymmetry is the
local-variance introduced by Y. Akrami (Akrami et al., 2014). The main motivation is that a
dipolar modulation of the anisotropies would manifest itself as a dipolar structure in a map
generated by computing variances over sky patches. The procedure to obtain the amplitude
and direction of the dipolar modulation is the following:

1. This first step is exclusive to the analysis of polarisation data due to the low signal-to-
noise ratio. As mentioned in Planck Collaboration et al. (2020d), if we apply directly
the method to the data, then the analysis returns local-variance dipoles whose direc-
tions are not uniformly distributed across the sky (see Figure 32 in Planck Collabora-
tion et al. (2020d)). Actually, their distribution is strongly correlated with the structure
of the anisotropic noise. Therefore, we consider the following transformation directly
applied on the input E-mode maps:

X
′
i = (Xi −Mi)/σ

2
i (4.3)

where Xi is the value of the E mode map at pixel i computed from the full-sky in-
paintedQ and U maps. Mi and σi are the mean value and standard deviation at pixel
i obtained from inpainted simulations.

2. We fix a specific HEALPix low resolution and we define a set of discs of a certain radius
centred in the pixel centroids of the HEALPix map. Following previous works, we use
Nside = 16 and discs of 4 degrees for the present analysis.

3. We identify all the pixels of the map at the original resolution (in our case, Nside =

64 for polarisation and Nside = 64 and 2048 for temperature) that are inside each of
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the discs, compute their variance only taking into account the unmasked pixels, and
associate these values to the pixel in the low resolution map. This is what we know
as local-variance map (LVM). If more than 90% of the pixels inside a disc are masked,
then we mask the pixel in the LVM and remove it from the analysis. An example of
one PR4 simulation is shown in Figure 4.5.

4. From the set of the LVM of the simulations, we estimate the mean ȳi and the variance
σ2d,i on each disc, corresponding to one pixel at resolution Nside = 16.

5. Finally, we fit a dipole to each of the local-variance maps by applying a weighted χ2

χ2 =
∑
i

[(yi − ȳi)− d0 − d · r̂i]2

σ2d,i
(4.4)

where yi is the LVM at pixel i; d0 captures the monopole component of the LVM; d =
(dx, dy, dz) is the dipole component; and r̂i is the unit vector pointing to the i-th pixel.
Sum is over all non-masked pixels in the LVM. d0 and d are obtained by minimizing
the χ2, which is analytic in this case.

4.2.4 Sensitivity and validation with simulations

Before going into the results, we assess the sensitivity of the method by considering CMB
simulations that contain a dipolar modulation, taking also into account the realistic E2E PR4
noise and systematics simulations. In particular, we remark that for PR4, a transfer function
that affects only the lowest multipoles of the polarisation is present in the data (see Section
4.3 and Figure 20 from Planck Collaboration et al. (2020f)). In order to take this effect into
account for the E-mode map, we have computed the transfer function over the full-sky15

for the Sevem data as:

fEEℓ =

 1

Nsim

Nsim∑
j=1

C
CMBx(CMB+N)
ℓ,j

CCMB
ℓ,j

2

(4.5)

where CCMB
ℓ,j corresponds to the EE power spectrum of the ith PR4 Sevem CMB simulation

and CCMBx(CMB+N)
ℓ,j to the cross-spectrum between that simulation and the same one after

adding the associated noise and systematics Sevem simulation16. Figure 4.6 shows the full-
sky E-mode transfer function estimated for Sevem.

Starting with the E2E Sevem CMB simulations, we construct modulated maps using Eq.
(3.16). Each simulation is modulated for 14 different amplitudes (going from 5% to 18%)
and using a direction compatible with the one measured in the data (see Section 4.3.3), (ℓ,
b) = (235◦,−17.5◦). The modulation is applied to theQ and U maps, as a direct modulation

15Note that the transfer function is actually anisotropic, but using the full-sky transfer function is a sufficiently
good approximation for our purpose.

16The effect of the transfer function is actually included in the noise and systematics simulation, which
presents therefore a correlation with its associated CMB simulation.
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FIGURE 4.6: Sevem PR4 full-sky E-mode transfer function obtained from equation 4.5.

in the E-mode map is not physically allowed (Kothari, 2018). The transfer function is then
applied to the modulated CMB map17. Finally, the E2E noise simulations are added to the
simulated CMB signal18. All the tests presented here have been done using the customized
mask with fsky = 63.2%. Although the specific results may be slightly different using other
masks, the validation and main conclusions of this subsection still hold.

The results of this subsection have been obtained by combining a number of splits of
the 600 modulated E2E simulations. In particular, as previously explained, we consider 30
different splits, a total of 30 pairs of 300 E2E noise simulations. Just to make it clearer, for
each considered amplitude of the dipolar modulation we enumerate the most important
steps of the procedure:

1. For a given split, we have set A and set B, both of them with 300 CMB and noise simula-
tions. We use one of them, for example set A, to compute the noise covariance matrix,
and we apply inpainting on the set B. This inpainted set is what we call unmodulated
analysis set.

2. From the modulated E2E simulations we keep the ones whose associated noise simula-
tions are not included in the set A. We apply inpainting on them, using the covariance
matrix estimated from set A, and we treat them in the same way as the data (we call
this the modulated data set).

3. We compute the local-variance dipole amplitude and direction for the unmodulated
17Starting at Nside = 2048, we downgrade the maps to Nside = 512 removing the Gaussian beam of 5′ and

the pixel window function. Then, we modulate the Q and U maps, and we downgrade them to Nside = 64
applying to the aℓm the square root of the Sevem E-mode transfer function and the Gaussian beam of 160′. We
go through an intermediate resolution to avoid the numerical errors in the functions that convert from map to
Fourier space.

18Note that the ith CMB simulation is added to an independent noise simulation (the ith+1 one) to avoid
including twice the transfer function.
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set and for the modulated data set, and we estimate the p-value.

4. Then, we can repeat this process but now using set B to estimate the covariance matrix.
Additionally, we repeat the same procedure for the A/B sets of the other 29 splits.
At the end, we get 30 p-values for each modulated E2E simulation19. This means
that for each considered amplitude of the modulation, we have a total of 18000 local-
variance amplitudes and p-values (30 splits x 600 modulated simulations), which are
the values used to generate all the figures of this section. Although these values are
not independent, they provide us with additional information with respect to use a
single split and allow us to construct an approximated distribution of the estimated
amplitudes.

The left panel of Figure 4.7 shows the distribution of the p-value of the estimated ampli-
tude of the dipolar modulation obtained as previously explained. The results correspond
to simulations modulated with an amplitude of 9%, which is close to the value found for the
data (see Section 4.3.3). According to this figure, we would be able to find a p-value lower
than 1% in 39.3% of the cases, while this percentage increases to 61.7% for a p-value lower
than 5%. Additionally, the right panel shows similar information but for all the considered
amplitudes. In particular, the percentage of times that we get a p-value equal to or lower
than 1%, 5% and 32% for each amplitude is given. For Planck PR4 we find a p-value lower
than 1% in at least 95% of the times for amplitudes larger than 16%. The amplitude reduces
to 14% if we consider a p-value lower than 5%. Using the set of modulated simulations we
can also calibrate the method to give a relation between the local-variance and the dipolar
modulation amplitudes (see Section 4.3.3).

We have also checked how well the method performs in estimating the direction of the
dipolar modulation by using the modulated simulations with an amplitude of 9% (selected
taking into account the results from Section 4.3.3). In this case, we consider the ideal case
ofQ and U full-sky maps, to study the performance of the method itself, without including
possible distortions introduced by the inpainting technique. We compare the longitude and
latitude measured in the local-variance maps for the 600 modulated simulations with the in-
put values (fixed to (ℓ, b) = (235◦, −17.5◦)), and compute the angular distance between them.
Figure 4.8 shows the distribution of the angular distance, where bins are not uniformly dis-
tributed, but instead they are selected so the area covered by each of them is constant. As
seen, the dispersion in the estimated direction is quite large, even in this ideal case, although
one should take into account that the considered amplitude is relatively small.

We have carried out a final test to study the specific effect of the inpainting in both
the estimated amplitude and direction of the dipolar modulation. For this, we have esti-
mated those quantities from the 600 (unmodulated) E2E simulations in the ideal case in

19Note that for the case of the real data, since the data are independent of the simulations, we can obtain 2
p-values for each split (i.e. both data sets in the split can be used to construct the covariance matrix) and thus
obtain a total of 60 p-values.
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FIGURE 4.7: Left panel: p-value distribution of the estimated amplitude of the dipolar modulation for
the modulated simulations. We use an amplitude of 9% and a fixed direction of (ℓ, b) = (235◦, −17.5◦).
Right panel: probability curves as a function of the dipolar modulation amplitude with the realistic PR4
noise and systematics. Assuming a dipolar modulation in the Stokes Q and U parameters, we could
claim a detection with a p-value lower than 1% (dashed line) in 95% of the cases if the amplitude was
larger than 16%. Solid (dotted) lines correspond to the probabilities of getting a p-value equal to or
lower than 5% (32%).
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FIGURE 4.8: Distribution of angular distance between the input direction (ℓ, b) = (235◦, −17.5◦) and
the one obtained after applying the LVM estimator on the modulated (ADM = 9%) PR4 simulations.
The ideal case, in which the Q and U full sky maps are known, is considered.
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FIGURE 4.9: Left panel: distribution of ∆ALV , defined as the difference between the amplitude
measured on the inpainted (blue) or masked (green) simulations (denoted as output) and the one
obtained when full-sky simulations are used (denoted as input). Red and black lines correspond to
the mean of the blue (inpainting) and green (masking) distributions, respectively. Right panel: angular
distances (in degrees) between the direction measured on the inpainted simulation and the input ones
(blue). Input values are obtained from the corresponding full-sky (non-inpainted) simulations, so we
remove the dispersion introduced by the estimator itself by making the difference. In green the same
quantity is plotted for the case where a simple mask is applied on the Stokes parameters.
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which Q and U full-sky are considered (that we call input case). Then we have estimated
the same quantities using inpainting. For comparison, a simple masking approach, where
the masked area is simply replaced by zeroes in the Q and U maps, has also been consid-
ered. The left panel of Figure 4.9 displays the distribution of the difference ∆A between
the input amplitude and the one recovered from the inpainting or the simple masking ap-
proaches. It becomes apparent that the inpainting technique improves significantly with
respect to simply masking the data. Indeed, on average, the latter tends to overestimate the
amplitude, while no significant bias is found for the former. Furthermore, the dispersion
of the distribution is significantly larger for masking (0.11) than the one we get when using
our inpainting technique (0.04).

On the right panel, we also display the angular distances for the same scenarios. Again,
we are not using uniform bins. From the figure, it is clear that the inpainting provides a
better reconstruction of the direction than the simple masking. We also note that although
the dispersion introduced by the inpainting in the estimation of this quantity is significant,
it is clearly below the intrinsic dispersion of the method (see Figure 4.8). Furthermore, the
median of the blue (inpainting) distribution is 10 degrees, while for the green one (masking)
is almost 34 degrees.

4.3 Results

In this section, we show the results of the analysis of PR4 intensity andE-mode polarisation
data. For each case, we present the p-values and directions. We also re-examine the HPA
in the PR3 data set using our alternative inpainting approach to check consistency with
previous results.

4.3.1 Intensity results for PR4

Following previous temperature analysis, we present the results of full-resolution, Nside =

2048, PR4 data for a set of discs with radii between 4 and 40 degrees. The p-values are de-
fined as the fraction of simulations with local-variance dipole amplitude larger than the one
observed in the data. Unlike PR3, where cleaned maps were provided for four methods, for
PR4, CMB maps are only available for Sevem and Commander. As expected, both of them are
in good agreement with the Planck 2018 analysis. For Sevem, none of the 600 simulations
have an amplitude as large as the one observed in the data for discs of 4, 6, and 8 degrees.
This means that, under the ΛCDM model assumption, the probability of having such asym-
metry in the temperature sky in that range of angular scales is below 0.17%. For radii larger
than 8◦ the p-value increases systematically. We have checked with simulations that have a
dipolar modulation pattern, with A = 7% and p = (209◦,−15◦), that this increase of the p-
value with the radius of the disc is expected. We obtain the same behaviour for Commander,
where none of the 100 simulations shows an amplitude as large as the one measured in
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FIGURE 4.10: p-values for the asymmetry measured through the local-variance estimator for PR4
Sevem and Commander temperature maps and the two considered resolutions, Nside = 2048 and
Nside = 64. The p-value is inferred by checking how many simulations have a local dipole amplitude
larger than the one observed in the data. The sensitivity depends directly on the number of available
simulations, corresponding to 0.17% for Sevem and 1% for Commander.

the data. Note that due to the lower number of simulations available for Commander, our
sensitivity for the p-value is 1% for this method.

Taking into account that the asymmetry only appears at large angular scales, we repeat
the analysis for low resolution maps, at Nside = 64. Figure 4.10 shows the p-value as a
function of the disc radius for both component separation methods and both resolutions.
For low resolution maps the p-value is computed using discs with radii between 4 and 90

degrees as in Planck Collaboration et al. (2020d). In general, the significance level is lower
than in the full-resolution analysis. Nevertheless, for discs of 4◦ and 6◦, we continue to find
that no simulation has an amplitude equal to or greater than that of the data.

Regarding the direction of the dipole, in Table 4.1 we provide the full-resolution and low-
resolution direction for Sevem and Commander obtained by considering 4◦ discs. In Sevem the
observed direction is in excellent agreement with the previously reported one (see Table 22

from Planck Collaboration et al. (2020d)), while in Commander there is a small discrepancy
of a few degrees, which could be due to the difference in the number of simulations between
releases. In particular, we have checked that the ℓ and b angles have a very large disper-
sion (see Figure 4.8), especially when the amplitude of the modulation is small, making
consistent the values for Commander between both releases.
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(ℓ, b) [deg]
PR4 PR3

Data Nside = 64 Nside = 2048 Nside = 64 Nside = 2048

Sevem (208,−15) (205,−20) (209,−14) (205,−19)
Commander (213,−16) (207,−20) (209,−15) (205,−20)

Table 4.1: Local-variance dipole directions for PR4 Sevem and Commander temperature maps. Direc-
tions are measured in galactic coordinates for both resolutions and using 4◦ discs.

4.3.2 E-mode polarisation results for PR3

In order to compare the performance of our GCR inpainting technique versus the purified
inpainting used in the Planck 2018 analysis (Planck Collaboration et al., 2020d), we have first
carried out the analysis of PR3 data using our method. We have followed the procedure ex-
plained in Section 4.2.2. We recall that, in this case, each component separation algorithm
has in total 300 noise E2E simulations each of them accompanied by 3 independent CMB
skies. We have done 30 splits of two independent sets of 150 noise simulations and com-
puted the covariance matrices as previously explained in Section 4.2.2. Combining the 150

noise simulations with the 450 independent CMB skies, for the analysis we have available
60 sets of 450 simulations.

Table 4.2 summarizes the results of this chapter. For each component-separation al-
gorithm we provide the preferred direction of the local-variance dipole and the p-values
obtained using the reference mask. In addition, in Table 4.3 we give the angular distance
between the temperature and E-mode dipoles, and the p-value associated with this align-
ment. As one would expect, we recover results quite similar to those obtained by the Planck
collaboration, validating also our approach. We can distinguish two groups. While for
Sevem and Commander the p-value of having such a large amplitude is below 1%, for SMICA
and NILC the probability is at the level of 3−4%. Regarding the TE alignment, we are below
6% for all the component separation methods. Again results are overall consistent between
both analyses, although the result for NILC and SMICA becomes less anomalous in our case
(p-values of 5.7% and 2.0% versus 1.9% and 0.9%, respectively). These small deviations
can be explained by the fact that our analysis presents some differences with respect to the
previous one, such as the inpainting technique, a different mask or the use of splits.

In order to test the robustness of the p-value against the mask, we have generated 4

additional masks using thresholds in the maximum reconstruction error (see Section 4.2.2)
ranging from 45% to 35% and with the following allowed fractions of sky: 64.5%, 63%,
59.6%, 57.6%. Figure 4.11 presents the p-values obtained for the four component-separated
E-mode polarisation maps as a function of the fsky. The minimum p-value is obtained for
the mask with fsky = 59.6%. Sevem and Commander are still below 1% and the p-value is even
lower than with the reference mask (fsky = 61.4%). However, SMICA and NILC present still

20Planck Collaboration et al. (2020d)
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Data p-value [%] p-value range [%] (ℓ, b) [deg] p-value [%]
(this work) (from 20)

Sevem 0.22 [<1/450, 0.44] (232,−9) ±4 0.4
Commander 0.70 [<1/450, 1.2] (222,−9) ±4 0.7
SMICA 4.4 [1.8, 6.4] (225,−12) ±4 5.5
NILC 3.4 [1.6, 5.0] (238,−16) ±5 5.8

Table 4.2: Local-variance dipole directions and p-values for the PR3 four component-separated E-
mode polarisation maps, analysed with the inpainting procedure, at Nside = 64, together with the 1σ
interval obtained from the 60 sets as explained in Section 4.2.2. Measured directions are also showed.
The error is estimated from the distribution of the angular distances between the mean direction and
the directions of the 60 data sets, taking into account the contour, with azimuthal symmetry, that
includes 68% of the directions. All the values have been obtained using 4◦ discs. Last column shows
the p-value obtained in the previous work by the Planck collaboration (Planck Collaboration et al.,
2020d).

TE alignment (this work) TE (from 20)
Data cosα p-value [%] cosα p-value [%]
Sevem 0.91 4.2 0.86 6.9

Commander 0.99 0.7 0.99 0.9
SMICA 0.96 2.0 0.99 0.9
NILC 0.88 5.7 0.97 1.9

Table 4.3: Angular distance of alignment between the preferred direction of the local-variance dipole
observed in intensity and the one for the E-mode polarisation data. We use the mean directions
presented in Table 4.2 to compute the angular distance, and the p-value is obtained using the E2E
simulations combining all the results from different splits in a single distribution. The previous results
by the Planck collaboration (Planck Collaboration et al., 2020d) are shown in the last column .
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FIGURE 4.11: p-values for variance asymmetry as a function of fsky for the four PR3 component-
separated E-mode polarisation maps analysed with the inpainting procedure.: SMICA (blue), Sevem
(red), NILC (green) and Commander (orange). All values have been obtained at Nside = 64 and using
4◦ discs. We recall that our reference mask for PR3 corresponds to a fsky=61.4%.
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FIGURE 4.12: Local-variance dipole directions for the four PR3 component-separated E-mode po-
larisation maps analysed with the inpainting procedure.: SMICA (circle), Sevem (cross), NILC (square)
and Commander (triangle). Different colours corresponds to different fsky: red (64.5%), blue (63%),
green (61.4%), orange (59.6%), and black (57.6%). All values have been obtained at Nside = 64 and
using 4◦ discs.
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p-value [%] p-value range [%] (ℓ, b) [deg] TE alignment
cosα p-value [%]

2.8 [1.8, 3.8] (234,−14) ±5 0.91 4.5

Table 4.4: Local-variance dipole direction and p-value for the Sevem PR4 E-mode polarisation map,
analysed with the inpainting procedure, at Nside = 64, together with the 1σ interval obtained from the
60 data sets. Measured directions are also showed. The error is estimated from the distribution of
the angular distance between the mean direction and the directions of the 60 data sets, taking into
account the contour, with azimuthal symmetry, that includes 68% of the directions. All the values have
been obtained using 4◦ discs.

values around or above a few per cent for all the considered masks. Additionally, Figure 4.12
displays the coordinates of the dipole direction as a function of the fsky. All the methods and
masks show certain level of robustness in the sense that all the directions are concentrated
in a small region near (ℓ, b) = (230◦, −13◦). Furthermore, it seems that the latitude (b) is
somehow more robust than the longitude (ℓ).

4.3.3 E-mode polarisation results for PR4

Finally, we present the results for the Sevem PR4 data set using the GCR inpainting 21. We
have followed the same procedure as for PR3with a total of 30 splits of 300/300 simulations.

Table 4.4 summarizes the results, providing the preferred direction of the local-variance
dipole and p-values obtained for the Sevem algorithm using the PR4 reference mask. The
error in the direction is obtained as the 68 per cent (single-tailed) of the distribution of the
angular distance between the mean direction and the direction of the 60data sets. Therefore,
it is only given to provide an estimation of the dispersion in the different considered splits.
In practice the error associated to the estimated direction should be significantly larger,
since this quantity is below the errors inferred from the methodology itself or the effect of
the inpainting. We also give in the same table the angular distance between the temperature
andE-mode dipole directions, and the p-value associated with this alignment. The analysis
shows that the p-value of the amplitude for Sevem PR4 increases with respect to the one
obtained for PR3 (see Table 4.2), increasing from 0.22 to 2.8 per cent. The p-value of the TE
alignment is very similar for both pipelines and remains below 5 per cent.

Another interesting result is the level of the modulation in the data. Using the mod-
ulated simulations described in Section 4.2.4, the relation between the amplitude of the
modulation (given by equation 3.16) and the one measured in the local-variance map can
be estimated. Figure 4.13 shows this relation together with the amplitude observed in the
data local-variance map for the reference mask. According to this, for modulations with am-

21Note that we have not used the Commander PR4 data since CMB and noise simulations are not provided
separately (i.e. only CMB+noise simulations are provided), which makes not possible to compute indepen-
dently the noise covariance matrix. Although, in principle, it would be possible to estimate the total covariance
matrix, this introduces additional uncertainties in the matrix elements. Moreover, only 400 simulations are
available for polarisation, increasing even further the error in the analysis.
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FIGURE 4.13: Relation between the dipolar modulation amplitudeADM (input value in the modulated
simulations) and the one measured in the local-variance map ALV, assuming the realistic PR4 noise
and systematics. For each amplitude, all the 60 inpainted data sets are used to generate a single
distribution. For amplitudes larger than 6%, there is a linear relation between both amplitudes with
a slope of 0.046 (dashed black line). The horizontal black line corresponds to the mean amplitude
(over the 60 data sets) measured in the data local-variance map using the PR4 reference mask. The
measured ALV value corresponds to a modulation at the level of 9%, and it is within the 68% of the
distribution for theADM interval between 6% and 13%. Black dots in the tails of distributions represent
the values outside the 99.7%.

plitudes larger than 6%, the relation is linear, although with a large dispersion due to the
E-mode noise level. Assuming that the modulation model (Eq.3.16) is the correct one, the
asymmetry observed in the data corresponds to a modulation at the level of 9%. Moreover,
the estimated amplitude ALV is within the 68% of the distribution for the dipolar modula-
tion amplitude (ADM) for the range between 6% and 13%.

As before, we test the robustness of the p-value against the different masks. We have
generated 6 additional masks using thresholds in the range from 45% to 30% with the fol-
lowing allowed fractions of sky: 67%, 65.9%, 63.2%, 61.5%, 59.4%, and 57% (we recall that
the reference mask corresponds to fsky = 64.6%). Imposing more strict conditions in the
error of the recovered E-mode map (i.e. lower thresholds) while keeping a reasonable fsky
is possible in this case because a more accurate E-mode reconstruction can be obtained in
PR4. This is due to both, a lower level of systematics and twice the number of simulations
that have been used for estimating the noise covariance matrix. Figure 4.14 presents the
obtained p-values as a function of fsky. The minimum p-value (1%) is obtained for the mask
with fsky = 61.5%. For the 5 smallest masks, allowing a sky between 67% and 61.5%, the
p-value is quite stable with a value below 2.8%, and then it starts to rise with fsky. The
largest mask returns a p-value of 7.4%. This behaviour could be due to the loss of informa-
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FIGURE 4.14: p-values for variance asymmetry as a function of fsky for the PR4 Sevem E-mode
polarisation map analysed with the inpainting procedure. The grey region corresponds to the 68%
interval obtained from the 60 data sets. All values have been obtained at Nside = 64 and using 4◦

discs.

tion as the mask increases, assuming the asymmetry had a cosmological origin. However,
it could also be due to the fact that a larger mask reduces foreground contamination, what
we would expect if the asymmetry were due to the presence of residuals. Additionally, Fig-
ure 4.15 and 4.16 display the directions of the local-variance dipoles and the p-value of the
TE alignment, respectively, as a function of the fsky. In particular, the minimum p-value
(4.6%) is obtained for the reference mask. Finally, Figure 4.17 summarizes in a Mollweide
projection all the directions measured in this chapter.

We have performed a final test where we studied if the difference observed in the p-
value from the PR3 and PR4 processing is consistent with that expected due to differences
in the number of simulations, in the mask, inpainting, TF and noise properties. For this
purpose, we construct two data sets that have the same input CMB sky but different noise
properties. In particular, the first set is formed by the modulated 600 PR4CMB simulations,
plus the corresponding CMB noise (including thus also the TF). The second set consists of
the same modulated PR4 simulations but adding the PR3 noise (repeating two times each
simulation, because only 300 are available). Then, we run the full procedure, using the
corresponding reference mask for each data set, and we compare the output p-values. Note
that for the PR3 case, we have used as reference the PR3 CMB plus noise simulations, i.e.
450 simulations (450 CMB simulations and the 150 noise simulations, repeated three times,
that are not considered in the matrix estimation). The distribution we get from the 600

simulations for the difference between the p-value for PR4 minus the one for PR3 is peaked
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FIGURE 4.15: Local-variance dipole directions for the Sevem PR4 component-separated E-mode
polarisation maps analysed with the inpainting procedure. Different colours corresponds to different
fsky: red (67%), blue (65.9%), green (64.6%), orange (63.2%), black (61.5%), pink (59.4%), and
brown (57%). All values have been obtained at Nside = 64 and using 4◦ discs
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FIGURE 4.16: p-value of the alignment between the dipole axis in PR4 temperature and E-mode as
a function of fsky.
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FIGURE 4.17: Local-variance dipole directions for the PR3 four component-separated E-mode po-
larisation maps analysed with the inpainting procedure: Sevem (red), SMICA (blue), NILC (green), and
Commander (orange). The black dot corresponds to the direction measured using the Sevem PR4
polarisation data. For reference, we also show the CMB dipole direction, and the directions observed
in the temperature data for Sevem PR4 at Nside = 64 (red star) and Nside = 2048 (black star).

at -8.9%, which means that the dipolar asymmetry can be better constrained using the PR4
processing even in the presence of the TF. The difference observed in the data (from 0.22%

to 2.8%) is well within the 68% CL (which corresponds to the range -34.9% to 8.0%), and
thus both values are fully consistent taking into account the differences in the data and in
the analysis. Finally, we also see large tails in the distribution, which is an indication of the
low signal-to-noise ratio as the amplitudes and p-values are significantly affected by noise
and systematics.





5
CMB-PAInT: An inpainting tool for the CMB

Astrophysical emissions in the microwave range force us to apply component separation
algorithms to recover the CMB signal. However, even in the most optimistic cases, certain
regions remain strongly contaminated and must be excluded using a proper mask. Since
many CMB analyses, especially the ones working in harmonic space, need the whole sky
map, it is crucial to develop a reliable inpainting algorithm that replaces the values of the
excluded pixels by others statistically compatible with the rest of the sky. This is especially
important when working with Q and U sky maps in order to obtain E- and B-mode maps
which are free from E-to-B leakage. In this work we study a method based on Gaussian
Constrained Realisations (GCR), that can deal with both intensity and polarisation. Several
tests have been performed to assess the validation of the method, including the study of
the one-dimensional probability distribution function (1-PDF),E- andB-mode map recon-
struction, and power spectra estimation. We have considered two scenarios for the input
simulation: one case with only CMB signal and a second one including also Planck PR4
semi-realistic noise. Even if we are limited to low resolution maps, Nside = 64 if T , Q and
U are considered, we believe that this is a useful approach to be applied to future missions
such as LiteBIRD, where the target are the largest scales.

5.1 Gaussian Constrained Realization

The inpainting technique presented in this work is a pixel domain approach based on a
Gaussian Constrained Realization (GCR) (Bucher & Louis, 2012; Kim et al., 2012). The
followed methodology was already described in Marcos-Caballero & Martínez-González
(2019) for the temperature field, but in this work we extend it to a spin-2 field, i.e., to CMB
polarisation. The idea is to fill the masked pixels by sampling from the conditional prob-
ability distribution, p(d̂|d), where d̂ is the vector of the inpainted field and d is the vector
of the available pixels. The method requires a single assumption, Gaussianity of the field,
which is a good approximation for the CMB data. Under this condition, only the pixel co-
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variance matrix is needed, which can be computed given a theoretical power spectrum1,Cl,
following the next equations (see Appendix A of Tegmark & de Oliveira-Costa (2001) for
the full set of equations):

CTTij = ⟨TiTj⟩ =
∑
ℓ

(
2ℓ+ 1

4π

)
CTTℓ Pℓ(z), (5.1)

CQQij = ⟨QiQj⟩ =
∑
ℓ

(
2ℓ+ 1

4π

)
[F 12
ℓ (z)CEEℓ − F 22

ℓ (z)CBBℓ ], (5.2)

CUUij = ⟨UiUj⟩ =
∑
ℓ

(
2ℓ+ 1

4π

)
[F 12
ℓ (z)CBBℓ − F 22

ℓ (z)CEEℓ ], (5.3)

CTQij = ⟨TiQj⟩ = −
∑
ℓ

(
2ℓ+ 1

4π

)
F 10
ℓ (z)CTEℓ , (5.4)

where z = r̂i · r̂j gives the cosine of the angle between the two pixels. The F functions are

F 10(z) = 2

ℓz
(1−ℓ2)Pℓ−1(z)−

(
ℓ

1−z2 + ℓ(ℓ−1)
2

)
Pℓ(z)

[(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)]1/2
, (5.5)

F 12(z) = 2

(ℓ+2)z
(1−ℓ2)P

2
ℓ−1(z)−

(
ℓ−4
1−z2 + ℓ(ℓ−1)

2

)
P 2
ℓ (z)

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
, (5.6)

F 22(z) = 4
(ℓ+ 2)P 2

ℓ−1(z)− (ℓ− 1)zP 2
ℓ (z)

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)(1− z2)
, (5.7)

where Pℓ are the Legendre polynomials.

The covariance matrix will be arranged by blocks as follows:

M(r̂i · r̂j) =

⟨TiTj⟩ ⟨TiQj⟩ ⟨TiUj⟩
⟨TiQj⟩ ⟨QiQj⟩ ⟨QiUj⟩
⟨TiUj⟩ ⟨QiUj⟩ ⟨UiUj⟩

 (5.8)

Note that the elements of this covariance matrix are referred to a specific coordinate system
where the reference direction points along the great circle connecting the two points. How-
ever, what is needed is the covariance matrix referred to a global coordinate frame where
the reference directions are meridians, so the following rotation matrices are applied (see
Appendix A in Tegmark & de Oliveira-Costa (2001) to find how to compute the rotation

1In the present work we have used as the input power spectra the best fit to the ΛCDM mode provided by
Planck (Aghanim et al., 2020). It can be downloaded from the Planck Legacy Archive: pla.esac.esa.int

pla.esac.esa.int
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angle2 α):
⟨xixtj⟩ = R(αij)M(r̂i · r̂j)R(αij)t, (5.9)

R(α) =

1 0 0

0 cos 2α sin 2α

0 − sin 2α cos 2α

 , (5.10)

where xi = {T,Q,U}.
The effect of the experimental beam and the pixel window function can be added by

smoothing the power spectra in equations (5.1)-(5.4).
The maximum multipole considered in the sum of equations (5.1)-(5.4) should be equal

to the largest multipole accounted for in the map. As default 3Nside is considered. This
approach is only feasible for low resolution maps, up toNside = 64, as the dimension of the
total matrix is 3Npix × 3Npix. Adding a small regularizing noise to the diagonal is needed
to avoid singularities and to ensure that the matrix is positive definite. The noise level
depends on the resolution. ForNside = 64 a noise amplitude of 0.00001% is used. A similar
regularization can be achieved by considering in the sum a maximum multipole of 4Nside

or even larger. For a detailed discussion on the regularity of a CMB covariance matrix see
Bilbao-Ahedo et al. (2017).

Once the matrix is computed and rotated, we reorder the columns and rows in a way
that all the unmasked pixels are in the first entries and the masked ones in the last entries3.
Then, the Cholesky decomposition allows one to sample from the desired distribution by
solving the following system d

d̂

 =

L 0

R L̂

z

ẑ

 . (5.11)

The matrix in the right-hand side is the Cholesky decomposition, where L and L̂ are low
triangular matrices and R a rectangular matrix. The number of rows and columns of the
L matrix is equal to the number of unmasked pixels, while for L̂ is the number of masked
pixels.

Looking at equation 5.11 and taking into account that L is a lower triangular matrix, it
becomes apparent that a matrix inversion is not needed and the vector z can be computed
in a recursive way,

zn =
dn −

∑n−1
k=1 Lnkzk
Lnn

(5.12)

2For those who want to use the equations, there is a small typo in equation A7 of the appendix since the
proportionality constant is negative, not positive. Thus in equation A8, the negative sign corresponds to the
case where the z component of the vector r̂ij , the vector of the great circle connecting the two pixels, is positive,
and vice versa.

3In the case of a full TQU covariance matrix, the order considered is: unmasked T pixels, unmasked Q
pixels, unmasked U pixels, masked T pixels, masked Q pixels and masked U pixels.
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If the model is coherent with the observed data this vector should be a Gaussian random
vector with zero mean and unit variance. Then, a new random vector ẑ, also following a
N (0, 1) distribution, is generated, and the field d̂ is sampled, which has two contributions:
the constrained part and the unconstrained or stochastic part.

d̂ = Rz+ L̂ẑ (5.13)

In this procedure, inpainting is performed simultaneously on theTQU maps. Of course,
if we are only interested in the temperature map, we can just compute the TT block, which
will significantly reduce the computational cost and similarly if one is only interested in
polarisation. However, if the TT , TQ, and TU blocks are not included, the inpainted pixels
will not have the correlation between temperature and polarisation (with comes from TE

correlation in the standard cosmology, or from TE, TB andEB in beyondΛCDM models).
In that scenario the size of the matrix will be reduced to 4/9 if we just take into account Q
and U and to 1/9 if we just want T . Even if the correlation between TE is low, the Q and
U pixels located outside the polarisation mask will further restrict the potential values of
the temperature pixels within the mask, and vice versa for the polarisation pixels inside the
mask.

In principle, the covariance matrix should include all the components present in the
map to be inpainted. Dealing with the Planck polarisation data, the dominant component
is the noise and systematics, and their contribution must be considered. If not, mismatches
between the pixels outside the mask and the covariance matrix introduces artifacts in the
map. As there is not any theoretical model for the noise and systematics, the only way to
estimate the covariance matrix is from end-to-end (E2E) simulations. This can be a lim-
itation of the method: the number of simulations needed for a good characterisation of
the realistic anisotropic and correlated noise and systematics, is at least of a few thousands
(see Appendix 8.4), while the available realistic realisations are usually limited to several
hundreds.

5.2 Signal and noise simulation

In order to validate our method, we generate a single Gaussian isotropic CMB map at a
resolution of Nside = 64. We use the healpy4 function synfast. We smooth the power
spectra with a Gaussian beam of 160′, and we consider a maximum multipole ℓmax = 3Nside.
We generate 1200 inpainting realisations from a single sky realization based on the PR3
ΛCDM best fit model. The same spectra is used to compute the pixel covariance matrix.
Planck 2018 temperature and polarisation confidence masks define the region to be filled.
At Nnside = 64 they respectively leave 71.3% and 72.4% of the sky available.

4https://github.com/healpy/healpy

 https://github.com/healpy/healpy
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FIGURE 5.1: Input TQU semi-realistic noise simulation atNside = 64 and convolved with a Gaussian
beam of FWHM=160′.

In order to validate the method in the presence of correlated and anisotropic noise, we
generate a semi-realistic noise simulation using characteristics from Planck, an ESA satellite
that observed the CMB over the full-sky with an unprecedented sensitivity and frequency
coverage (Planck Collaboration et al., 2011). We start by computing the covariance matrix
from the 600 end-to-end (E2E) Planck Release 4 (PR4) (Planck Collaboration et al., 2020f)
noise simulations, that include also the expected systematics, except foreground residu-
als, propagated through the Sevem component separation pipeline (Fernández-Cobos et al.,
2012). Then, we generate a Gaussian random realization with the proper correlations given
by the E2E simulations5. Following this pixel-based approach we are able to simulate not
only the correlations but also the anisotropy. However, it does not include the presence of
possible non-Gaussianity generated by systematic effects.

Figure 5.1 shows the input semi-realistic noise realization. The polarisation noise level
used in this paper is very large compared to the noise expected for the future experi-
ments, but it mimics the level of instrumental noise and systematics present in the Planck
foreground-cleaned CMB Sevemmap for PR4.

5.3 Tests and Validation

In this section, a series of tests are conducted on a set of inpainted realisations, derived
from a single input sky, to assess the algorithm’s performance. Planck 2018 temperature
and polarisation confidence masks (Planck Collaboration et al., 2020b) are considered to
inpaint the input maps. First, we verify that the mean and variance maps are compatible
with the expected values. Then, some statistics are examined, such as the 1-point probability
density function (1-PDF) in real space or the power spectrum in harmonic space confirming
their consistency with the input values. Furthermore, for each inpaintedQ and U maps, E-
andB-mode maps are generated. By subtracting them from the corresponding input maps,
we compute the mean and standard deviation of the residuals pixel by pixel. This provides

5Actually, this is also done using a Cholesky decomposition. In this case, we obtain the realization as
d′ = L′z′, where L′ is the Cholesky decomposition of the covariance matrix and z′ a Gaussian random vector
with zero mean and unity dispersion.
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information on how the residuals are distributed and on the level of the errors introduced
by the inpainting. In particular, this map can be used as a suitable reference to generate
customized E- and B-mode masks for pixel based estimators.

All of these tests are applied in two different scenarios: the noiseless case where the in-
put sky is just CMB, or the case of CMB plus a semi-realistic noise simulation (constructed
as explained in Section 5.2). The second scenario can also be divided into some subcases
depending on how well the pixel-pixel covariance matrix is characterised. We first study
the ideal case where the correlations between pixels are well known and covariances are
perfectly characterised. This is possible because the semi-realistic noise simulations are
generated from an input covariance matrix. Thus, the performance of the inpainting in the
presence of correlated and anisotropic noise in an ideal case can be studied. However, as
previously mentioned, in a real experiment we do not expect to have a perfect knowledge
of the complex properties of instrumental noise and systematics. The covariance matrix
will need to be estimated from high-cost CPU simulations, limiting the number that can
be produced (typically only several hundreds) and, therefore, our capacity to characterise
it properly. In Appendix 8.4 we study the impact of the matrix convergence varying the
number of simulations used to estimate the covariance matrix. In particular, this can be
used to establish a rough estimation of the number of E2E simulations needed from future
experiments. To study the convergence of the matrix the differences between the input and
estimated matrices can be checked, but other variables can also be studied such as the inter-
mediate z variables (see eq. 5.12). In presence of a mismatch between the covariance matrix
and that of the unmasked pixels, an error is produced which propagates in the calculation
of the z variables. Thus, these quantities are not longer N (0,1) variables as the dispersion
increases, and it can be used as a tracer of the convergence. Additionally, the constrained
part of the inpainting (first term in the right-hand side of Eq. 5.12) is also affected, and this
introduces artifacts within the inpainted region. In any case, the number of simulations
needed for a good convergence inferred from the study of Appendix 8.4 should be taken
as a tentative number. For the realistic E2E simulations there are other effects that can con-
tribute to the mismatch such as the non-Gaussianities, which are not simulated here.

Nevertheless, in the most ideal case we would be interested in no recovering the promi-
nent noise and systematics in the inpainted region, but holding the statistical compatibility
with the unmasked pixels. However, taking into account that not including them in the
methodology generates some artifacts, there is not straightforward way to proceed. Fortu-
nately, there is a situation where this can be avoided. If the noise is negligible compared to
the signal at the map level, which is the case for the Planck temperature maps, its contribu-
tion can be also neglected from the matrix without having to pay the penalty of a significant
mismatch. For the most general case there are other alternatives that we will leave for further
studies. For example, noise and systematics can be isotropised for all the matrix elements
that involve masked pixels, or directly their contribution can be removed and just take into
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account the noise and systematics for the unmasked pixels, where they are expected to be
subdominant. The last option could lead to matrix singularity problems, which will need
the inclusion of regularization noise to be solved. In any case, the optimal solution will de-
pend on the nature of the data and the estimator to be used. For instance, in Gimeno-Amo
et al. (2023) we show that performing inpainting using a noise covariance matrix estimated
from a set of 300 simulations was sufficient to improve significantly the performance of our
estimator with respect to a simple masking approach in Q and U .

5.3.1 Constrained contribution

In this section, we study the mean map within the inpainted region by averaging over the
1200 realisations, and we compare it with the theoretical prediction. We also show an ex-
ample of inpainted maps, including the constrained and unconstrained contributions. We
consider both scenarios, only CMB and adding semi-realistic noise.

From eq. 5.13 it is straightforward to obtain that the mean and covariance of the inpainted
field are

⟨d̂⟩ = Rz = R(L−1d), (5.14)

Ĉ = ⟨d̂d̂t⟩ − ⟨d̂⟩ ⟨d̂t⟩ = L̂L̂t. (5.15)

The mean map is given by the constrained part and it is the dominant contribution to
the inpainting in the regions close to the boundaries of the mask, where the constraints
are tighter. The variance in these regions is close to zero, as these pixels are almost fully
constrained and their value do not vary significantly from one inpainting realization to
another.

In order to check if the mean field of the 1200 inpainted realisations (Nsims) is consistent
with the theoretical prediction, we define the quantity

ϵ =
⟨d̂⟩obs − ⟨d̂⟩th

σ
(
⟨d̂⟩obs

)
/
√
Nsims

, (5.16)

which measures pixel by pixel if the observed difference is compatible with zero given the
expected error. If everything is consistent, ϵ should follow a Gaussian distribution with
zero mean and unit variance, N (0, 1). This is actually seen in Figure 5.2, where we show the
results for theT ,Q andU components for the noiseless scenario. Similar results are obtained
when the case including semi-realistic noise is considered, showing that the method also
works when a well characterised anisotropic and correlated noise is added to the input CMB
sky.

Figure 5.3 shows an example of one inpainted realization for the noiseless scenario: the
input (top panels), inpainted (middle) and difference (bottom) maps are shown for the T
(left column), Q (middle) and U (right) components. An example of the constrained and
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FIGURE 5.2: Distribution of ϵ variable for inpainted T , Q, and U maps. For comparison, the N (0, 1)
distribution is also given (red line).

unconstrained components is showed in Figure 5.4 for the Q component, while Figure 5.5
provides the dispersion maps for the three components. There is a clear gradient pointing
from the central regions of the mask towards the boundaries where the variance tends to
zero. As mentioned before, this is because the pixels in the boundary regions are strongly
constrained.

Additionally, an example for the scenario with noise is given in Figure 5.6. As seen, some
bright anisotropic features of the Galactic plane are actually reproduced in the inpainted
maps. This is due to the fact that a perfectly characterised anisotropic covariance matrix has
much more information than an isotropic one, and therefore, the sampled values are more
constrained.

5.3.2 1-point probability distribution function

In this section, we study the 1-point probability distribution function (1-PDF) of the in-
painted pixels. We also compute the 1-PDF for the E- and B-modes. Figures 5.7 and 5.8
provide the PDFs for the T , Q, and U components and the E- and B-modes, respectively,
in the noiseless scenario. Similar results are obtained for the semi-realistic noise case, as
shown in Figure 5.9.

Inpainting performs well in both scenarios from the point of view of the reconstructed
1-PDF. The difference in each bin between the input value and the average over the 1200

inpainting realisations is within 2σ for almost every point. For the semi-realistic noise sce-
nario, the tails in theQ andU 1-PDF are larger due to the presence of noise and systematics.

5.3.3 E- & B-mode reconstruction

The quality of the recovery of theE- andB-mode maps is another crucial test. The transfor-
mation from Q and U Stokes parameters to more suitable variables E- and B-modes is not
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FIGURE 5.3: Example of an inpainted realization in the case where only the CMB signal is consid-
ered. First row corresponds to input T (first column), Q (second), and U (third) maps. An inpainted
realization is shown in the second row, while the third one shows the difference. All the maps are at
Nside = 64 and have a resolution of 160′.

FIGURE 5.4: Example of an inpainted realization for the Q Stokes parameter in the case where
only the CMB signal is considered. Left and middle panels show the constrained (deterministic) and
unconstrained (stochastic) parts, while the right panel is the sum of both.

FIGURE 5.5: Dispersion of the inpainted maps estimated from the full set of 1200 inpainted realisa-
tions for the T (left panel), Q (middle), and U (right) components.
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FIGURE 5.6: Example of an inpainted realization in the case where semi-realistic noise is added to
the CMB signal. First row corresponds to input T (first column), Q (second), and U (third) maps. An
inpainted realization is shown in the second row while the third row shows the difference. All the maps
are at Nside = 64 and have a resolution of 160′.
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FIGURE 5.7: One-dimensional probability distribution inside the inpainted region for the T (left panel),
Q (middle), and U (right) components considering only the CMB signal. The black histogram corre-
sponds to the input map. Green dots are the average value per bin obtained from the 1200 inpainted
realisations. Orange and blue contours are the 68% and 95% C.L., respectively, obtained from the
distribution of the inpainted maps. Residuals are also shown in the lower panel.
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FIGURE 5.8: Same as Figure 5.7, but for E- and B-modes.
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FIGURE 5.9: Same as Figure 5.7, but for the scenario where a semi-realistic noise realization is
added to the CMB signal.
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FIGURE 5.10: E (first row) and B-mode (second row) reconstruction for different approaches. First
column shows the E- and B-mode maps obtained directly from the full-sky Q and U maps. The
recovery obtained after applying our inpainting technique in the masked area is given in the second
column. The case in which pixels inside the mask are simply replaced by zeros is shown in the third
column. Finally, in the last column, a diffuse inpainting approach is applied on the input Q and U
maps before obtaining the E- and B-mode maps.

local. This means that full-skyQ and U measurements are needed in order to have accurate
E- and B-mode maps free from E-to-B leakage. Moreover, the reduction of this leakage is
one of the main motivations of this work. Precisely, inpainting can fill the maskedQ and U
regions with a signal statistically compatible with the clean sky outside the mask, removing
the potential foreground residuals. This approach is particularly useful in the case of pixel-
based estimators that deal with theE- andB-modes maps. For harmonic-based estimators,
there are alternative methodologies to deal with a mask. For instance to recover the CMB
polarisation power spectra at large scale, the Quadratic Maximum Likelihood method can
be used in order to reduce the E-to-B leakage. Additionally, the pseudo-Cℓ formalism can
be used for high multipoles.

As an illustration, Figure 5.10 shows the E- and B-modes maps obtained directly from
Q and U full-sky maps versus those recovered after inpainting the masked region of the Q
and U maps. For comparison, we also include the E- andB-mode maps generated directly
from the masked Q and U maps, and those obtained after applying a diffuse inpainting
technique6 on the Stokes Q and U parameters. In these two last cases, a strong E-to-B
leakage can be clearly appreciated.

In order to assess the error in the E- andB-mode reconstructions, we compute the map
of the standard deviation of the residuals. Starting from the 1200 T , Q, and U inpainted re-
alisations, we generate the correspondingE- andB-mode maps and compute the residuals
by subtracting from them the input E- and B-mode. We calculate then the standard devia-
tion maps, pixel by pixel, which are shown in Figure 5.11. On the one hand, for theE-mode,
the maximum error outside the polarisation common mask is 0.042 µK which corresponds
to around a 14 per cent of the typical amplitude of the E-mode signal, σE ∼ 0.29 µK at

6Diffuse inpainting consists on filling iteratively the masked pixels taking the average value of the neighbour
pixels until convergence is reached.
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FIGURE 5.11: Standard deviation of the E- (left) and B-mode (right) residuals outside the Planck
2018 polarisation confidence mask at Nside = 64.

the considered resolution. On the other hand, for theB-mode, the maximum error is at the
level of 0.019 µK, which is approximately the expected amplitude of theB-mode signal for
r = 0, σB . However, as Figure 5.12 shows, the error decreases rapidly, and for 60% of the sky
the maximum error is at the level of 20 per cent relative to σB . Concerning the E-mode, it
is interesting to point out that the error is below 5% for more than the 71.7% of the sky, and
then it goes down until it reaches a plateau, where we can not push the maximum residual
to a lower value even if we extend the mask.

We get similar results for the absolute error in the E- andB-mode reconstruction when
we include the semi-realistic noise realization.

5.3.4 Power Spectra

Our final test is related to the power spectra estimation. Given the input T , Q, and U full-
sky maps, we calculate the TT , EE, BB and TE power spectrum, and compare it to the
mean power spectra generated from the 1200 inpainted realisations. In particular, for this
case where 30 per cent of the sky is inpainted, we find that the distribution of the values for
each multipole of the inpainted realisations closely resembles a Gaussian distribution, even
for ℓ < 30. For larger fsky to be inpainted, we expect the distribution to become more like
a χ2. We also calculate the 68% and 95% C.L., as well as the residuals per multipole. The
residuals are computed by taking the differences between input and median values over
the 1200 realisations. Then, we divide by the upper or lower sigma7 to take into account
possible asymmetries in the distributions, especially for low multipoles. Figure 5.13 shows
the TT and TE power spectra, while in Figure 5.14 EE and BB are plotted. Taking into
account that we have a single CMB realization, the input spectra is noisy compared to the
theoretical prediction due to the cosmic variance, both of them also plotted. Indeed, the

7Low sigma is computed by integrating from the median to the 16% of the low tail, i.e. it encapsulate 34%
of the probability. The other 34% is in the upper sigma which is the integration between the median up to the
84%. For instance, if the residuals are positive, which means that the input value is below the median, we use
the low sigma.
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FIGURE 5.12: Evolution of the maximum residual in the E- and B-mode with respect to the available
fraction of sky. The vertical black dash line corresponds to the Planck 2018 polarisation common
mask. The horizontal blue and orange dash lines show the typical value of the E- and B-mode
fluctuations, respectively. Finally, the red solid line is fixed to fsky = 44.8%, where the relative error
on the B-mode reconstruction is below 10%.

mean power spectra obtained from the inpainted simulations follow that of the input CMB,
rather than that of the theoretical model, finding that almost all recovered multipoles fall
within the 95%C.L. Note that for the case of theB-mode, we are considering a scenario with
r = 0 (corresponding to the PR3 ΛCDM best fit model) and, therefore, only the contribution
from lensing is present. However, we have checked that the power spectra is equally well
recovered when starting with a simulation with r different from zero.

Regarding the scenario where semi-realistic noise is included, we also see a good agree-
ment between the input TT , TE, EE, and BB power spectra and the ones recovered from
the inpainted realisations. Note that, as one would expect, in this case the recovered power
spectra for EE and BB is above that of the polarisation CMB signal (see Figure 5.15), due
to the fact that the noise is the dominant contribution of the maps.

Finally, we perform a last test at the B-mode power spectrum level to compare between
our inpainting, diffuse inpainting and a simple masking approach (i.e. put to zero all pixels
inside the mask in the Q and U maps and then transform to E and B). We start by gener-
ating B-mode maps from the different approaches (GCR, diffuse inpainting and masking)
and mask them with the Planck polarisation common mask. We compute then the corre-
sponding power spectrum using the PyMaster package, the Python implementation of the
NaMaster (Alonso et al., 2019) library, which computes the angular power spectrum of a
masked field using the pseudo-Cℓ formalism. In particular, the pseudo-Cℓ are computed
using a C2 apodization with 15 degrees and a uniform binning including 4 multipoles per



5.3. Tests and Validation 131

250

500

750

1000

1250

1500

D
TT

Input
Inpainting (95% CL)
Inpainting (68% CL)
Inpainting (Median)
Cosmic Variance
Theory

5 10 15 20 25 30
250

500

750

1000

1250

1500

D
TT

0 25 50 75 100 125 150 175 200
-3
-2
-1
0
1
2
3

D
TT

-2

-1

0

1

2

3

4

D
TE

5 10 15 20 25 30
2

0

2

4

D
TE

0 25 50 75 100 125 150 175 200
-3
-2
-1
0
1
2
3

D
TE

FIGURE 5.13: TT (left) and TE (right) power spectrum scaled by ℓ(ℓ+1)/(2π) (Dℓ). The solid black
line shows the input theoretical model, while the grey area corresponds to the cosmic variance. The
dashed black line shows the power spectrum from the input noiseless CMB realization. Green dots
correspond to the average value from the 1200 inpainted realisations, while orange and blue contours
are the 68% and 95% C.L., respectively. Residuals are shown in the lower panel.
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FIGURE 5.14: Same as Figure 5.13, but for the EE (left) and BB (right) power spectrum.
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FIGURE 5.15: Same as Figure 5.14, but for the scenario in which CMB plus semi-realistic noise is
considered. As reference, we also plot the power spectrum and the cosmic variance for the CMB
signal.

bin.
Figure 5.16 shows the results. As expected, for a deep transition in the edge of the

mask, i.e. the case where pixels inside the mask are replaced by zeros, the B-mode power
spectrum is completely dominated by theE-to-B leakage (dark orange curve). This leakage
can be reduced by one order of magnitude applying a diffuse inpainting as it smooths the
discontinuity in the Q and U maps. However, the lensing signal is still hidden below the
leakage. Our results show that the GCR is the best approach to recover the input power
spectrum having residuals below the signal for all the multipole range. For comparison, we
also consider the NaMaster pure B approach, which recovers the B-mode power spectrum
starting from the masked Q and U maps. For the considered case, this approach also fails
reproducing the large angular scales of the B-mode. These results show that obtaining the
power spectra from an inpainted map could be used as an alternative to more standard
methods. However, further work is needed to validate the usefulness of this approach. In
particular, in Appendix 8.4 the robustness of the method to recover the input tensor-to-
scalar ratio is tested.

5.4 CMB-PAInT

As part of this work, we have developed a Python package called CMB-PAInT (Cosmic
Microwave Background Polarization Anisotropies Inpainting Tool) to perform inpainting
on an input map in the HEALPix format (Górski et al., 2005). This user-friendly package
has been made publicly available at https://github.com/ChristianGim/CMB-PAInT.

In this section, we briefly describe the software capabilities. As an example, we also

https://github.com/ChristianGim/CMB-PAInT
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FIGURE 5.16: Pseudo-Cℓ for the B-mode maps reconstructed from different approaches. Residuals
are computed using NaMaster and taking as input the difference map. Planck 2018 polarisation
confidence mask is used. For comparison, the solid green line shows the pseudo-Cℓ computed from
masked Q and U maps by applying the NaMaster pure-B technique.

give computational times for the configuration we use at NERSC8 to perform the inpainting
applications shown in Section 5.3. In particular, we consider the case where the inpainting
is performed on the Planck temperature and polarisation common masks region (14113 and
13583 pixels to be inpainted, respectively) on T , Q, and U components at Nnside = 64.
CMB-PAInT can be used in different ways:

➪ To compute the pixel covariance matrix from an input angular power spectrum up to
a certain ℓmax. Depending on the field to be inpainted, it can compute the covariance
matrix of either T , QU , or TQU .

➪ To compute the Cholesky decomposition from an input covariance matrix. The ma-
trix can be just signal, previously computed from an input power spectrum, or the
sum of signal plus some extra component (noise, systematics...). Given the mask it
also performs the required permutations in rows and columns, i.e. it orders first the
unmasked pixels and then the masked ones as explained in Section 5.1.

➪ To compute the z variable and inpaint the map. If the input is a single sky map, it
can generate N different inpainted realisations of the same sky. If the input is a set of

8National Energy Research Scientific Computing Center (NERSC), https://www.nersc.gov/, is a primary
scientific computing facility operated by the Lawrence Berkeley National Laboratory, located in California. It
provides high-performance computing and storage facilities where Planck latest data and simulations can be
found.

https://www.nersc.gov/
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maps, it computes for each of them the z variable and an inpainted realization. It also
includes an optional parameter, Cons_Uncons, to allow one saving the constrained and
unconstrained parts of the inpainting process. If True, they are included in the 0 and
1 fields of the output fits file, while field 2 contains the sum.

This code can run on a NERSC-like cluster that uses slurm scheduling, or on a local
machine, a Jupyter Notebook, or another cluster with different resource management. The
only requirement is to consider the memory limitation. The code needs a configuration
file that contains all the model and software parameters for running it. For example, the
configuration file specifies whether to inpaint the polarisation field or not, or whether to
use an external .sh file. The code creates an instance of the CMB-PAInT class and runs one
of the methods based on the user input: calculate_covariance, calculate_cholesky,
or calculate_inpainting. If the methods run on a cluster without an input .sh file, it
generates a .sh file based on NERSC with the resources from the configuration file, such as
number of nodes, tasks, CPUs per task, time limits, email address, or partition. The code
has two levels of parallelization. It distributes the work among a number of jobs (Njobs)
that are submitted together, and each job uses mpi4py, the MPI standard for Python, to
parallelize the assigned rows or maps. This parallelization is used to calculate the covariance
matrix from an input power spectrum and also to inpaint the maps. In the latter, the total
number of realisations are distributed among the jobs and the tasks per job. Additionally,
the code uses the daskpackage to perform Cholesky decomposition faster than the standard
numpy implementation. The code saves intermediate products in a numpy file format, and
Cholesky decomposition in a HDF5 binary data format.

Regarding computational time, the left panel of Figure 5.17 shows the time taken to
compute the covariance matrix for a map ofNside = 64. We use the following configurations:

1. Njobs = 32 (Single node, 32 tasks, 4 CPUs per task)

2. Njobs = 32 (Single node, 64 tasks, 2 CPUs per task)

3. Njobs = 32 (Single node, 128 tasks, 1 CPUs per task)

Since the covariance matrix is symmetric, we only need to compute the first (i) elements
of the ith row, which are the subdiagonal and diagonal elements. As expected, time cost
increases linearly with the Job ID, because the number of operations increases in the same
way. For the proposed configurations, each job computes 1536 rows (Npix/Njobs), which
are split among the number of tasks. For instance, in configuration (1), the first task of the
first job computes the rows between 0 and 47 (1176 elements), while the last task computes
the rows between 1488 − 1535 (72600 elements). It is straightforward to conclude that the
bottleneck of each job is the last task, which computes the largest number of operations. In
the right panel of Figure 5.17 we display the number of elements/operations that are done by
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FIGURE 5.17: Left panel: Computational time to calculate the covariance matrix for 3 different setups.
Right panel: Number of elements of the last task of each job for the three configurations.
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FIGURE 5.18: Diagram of the workflow in CMB-PAInT for the inpainting algorithm.

the last task of each job. For the configuration (2) the time cost is reduced by almost a factor
of 2, as we assign more tasks per job and leave fewer elements to the last task. In this sense,
the optimal configuration is (3). However, giving some CPUs per task could be necessary
due to memory issues. Additionally, the code could have an extra parallelisation layer for
configurations (1) and (2) if OpenMP API is used, which will improve the performance.

Figure 5.18 shows a diagram of the workflow for the inpainting method once the co-
variance matrix and the Cholesky decomposition9 are computed. In this case, we try the
following configuration:

➪ Njobs = 16 (3 nodes per job, 10 tasks, 4 CPUs per task)

Figure 5.19 shows the time cost of each step in the workflow. The bottleneck is the reading
of the L matrix, which is the largest block in the Cholesky decomposition. It takes less than
300 seconds for most ranks10 and jobs. However, some ranks get stuck and take more than
700 seconds to read it. The next step is computing recursively the z variable, which takes
around 4.5 seconds with slight variations. Reading the R matrix is faster than reading the

9It takes around 30 to 40 minutes to compute the covariance matrix and the Cholesky decomposition in a
Perlmutter node for the considered example: Nside = 64, all the components (T , Q, and U ) and Planck common
masks.

10In the MPI context, every process that belongs to a communicator is uniquely identified by its rank, which
is an integer that ranges from zero up to the size of the communicator minus one.
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FIGURE 5.19: Computational time of each of the steps in Figure 5.18. Upper left: Computational
time per rank and per job to read the L matrix. Upper right: Computational time per job to compute
the z variable. Lower left: Computational time per rank and per job to read the R matrix. Lower right:
Computational time to inpaint each realization (open grey dots). In red the mean time and dispersion
per job (note that each job inpaints Nsims/Njobs realisations).

L matrix, but there is a large variation in this run. On average, this step takes around 30

seconds. The last step is inpainting a map, which takes less than 1.3 seconds on average.



6
Exploring Statistical Isotropy in Planck Data Release 4: Angular
Clustering and Cosmological Parameters Variations Across the

Sky

In this chapter, we test statistical isotropy in Planck Data Release 4 (PR4) by estimating the
temperature and E-mode power spectra across independent sky regions. We find that the
directions with higher local bandpower amplitudes in intensity are clustered for multipoles
between 200 and 2000with clustering probabilities consistently below 1% for all these scales
when compared to end-to-end (E2E) Planck simulations; notably, this range extends beyond
that reported in Planck Data Release 3 (PR3). However, no significant clustering is observed
in the polarisationE-modes. In a complementary analysis, we search for dipolar variations
in cosmological parameters fitted using the previously computed power spectra. When
combining temperature and polarisation power spectra, we identify a potential anomaly in
the amplitude of the primordial power spectrum, As, with only 5 out of 600 simulations
exhibiting a dipole amplitude as large as that observed in the data. Interestingly, the dipole
direction aligns closely with the known hemispherical power asymmetry, suggesting a po-
tential link between these anomalies. All other cosmological parameters remain consistent
with ΛCDM expectations. These findings highlight the need for further investigation of
CMB anomalies to clarify their nature and assess their potential implications for our under-
standing of the early Universe.

6.1 Data and Methodology

6.1.1 Data

We use the data from Planck Public Release 4 (PR4)1, which has been processed by the NPIPE
pipeline described in Planck Collaboration et al. (2020f). This new pipeline reprocesses the
Planck Low-Frequency Instrument (LFI) and High-Frequency Instrument (HFI) in a joint

1Data is available at Planck Legacy Archive (PLA), https:/pla.esac.esa.int/.

https:/pla.esac.esa.int/
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FIGURE 6.1: Planck PR4 detector A and B Sevem cleaned maps. First row shows the IQU maps,
from left to right, for detector A, while the second row shows the B detector maps. All of the maps are
smoothed with 1 degree FWHM Gaussian beam anx presented in Galactic coordinates. The grey area
corresponds to the Planck PR3 confidence mask appropriate to either temperature or polarisation..

analysis, which effectively reduces the noise and systematics in frequency maps. In par-
ticular, we use the A and B detector splits cleaned with the Sevem (Fernández-Cobos et al.,
2012) component separation method. To asses the p-values we use the 600 available Planck
PR4 "end-to-end" (E2E) simulations, which include realisations of the CMB signal, the in-
strumental noise, and the systematics. These simulations try to capture all the character-
istics of the full data processing such as the scanning strategy and the detector responses,
and sky realisations are generated also including effects such as lensing, Rayleigh scatter-
ing, and Doppler boosting. Combining independent sets of detectors allows us to use the
cross-spectrum between maps avoiding noise bias. In order to mask the Galactic residual
foregrounds and the extragalactic point sources, we use the PR3 Planck 2018 confidence
masks described in Planck Collaboration et al. (2020b). These masks leave a fraction of
available sky close to 78% for both temperature and polarisation. In Figure 6.1 we show the
detector A and B PR4 Sevem cleaned maps together with the Planck PR3 confidence masks.

6.1.2 Analysis Pipeline

Our pipeline can be outlined as follows:

1. Power spectrum estimation:

We first estimate the angular power spectrum of each masked map using the well-
known pseudo-Cℓ MASTER estimator (Hivon et al., 2002). The analysis is performed on
full-resolution CMB maps at Nside = 2048. We divide the sky into 12 disjoint and
equal-area regions, corresponding to the base pixels of the HEALPix (Górski et al.,
2005) pixelisation at Nside = 1 (see Fig. 6.2 for the numbering of the patches). For
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Patch 0 1 2 3 4 5 6 7 8 9 10 11

fTsky[%] 7.2 7.3 7.8 7.5 2.3 4.0 3.4 4.9 7.6 7.5 7.3 7.0

fPsky[%] 7.7 7.3 7.7 7.6 2.4 4.5 3.5 5.2 7.8 7.5 7.4 7.5

Table 6.1: Fraction of sky (fsky) for intensity and polarisation for each of the 12 considered patches.

FIGURE 6.2: Numbering of the patches in a Healpix map at Nside = 1 resolution, along with the
Planck confidence masks in grey. The left panel shows the intensity mask, while the right panel
presents the polarisation mask.

each region, we compute a single angular power spectrum over the entire multipole
range, applying binning in multipole space with a fixed bin width of ∆ℓ = 30. The
specific bin width is chosen to mitigate the mode coupling induced by the mask2. The
sky fraction, fsky, varies between 2% and 8% depending on the overlap between the
Planck confidence mask and each base pixel region. Due to this reduced sky coverage,
we have very limited information at the largest angular scales. Therefore, we exclude
the first bin (ℓ = 2–31) for most of the analyses. Table 6.1 reports the exact fsky values
for each patch, separately for intensity and polarisation. The maximum multipole
used in the analysis is selected to avoid contamination from unresolved point sources
and to exclude scales where instrumental noise dominates the signal. These are our
default choices:

➪ For TT : 66 bins in the range ℓ = [32, 2011]

➪ For TE: 57 bins in the range ℓ = [32, 1741]

➪ For EE: 48 bins in the range ℓ = [32, 1471]

We applied a 0.3 degree apodization to each mask, effectively reducing correlations
between multipoles at small scales in the TT power spectrum. The reason behind this
choice will be explained later.

2. Angular Clustering:

2This choice yields a correlation matrix that is close to diagonal while preserving a sufficient number of
bins to perform a robust likelihood analysis.
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We then proceed to an analysis of the Planck PR4 data to examine the angular cluster-
ing anomaly previously noted by the Planck collaboration (see Section 7.3 of Planck
Collaboration et al. (2020d)). Specifically, the power spectra were computed locally in
patches for various multipole ranges, and dipoles fitted to maps of the band-power
estimations. Using the Rayleigh Statistic (RS), an anomalous alignment between the
dipoles in the temperature data were found, with a significance level of 2σ–3σ. This
behaviour is not expected in the standard cosmological model, which allows for the
existence of dipolar power distributions but predicts that their directions should be
completely random. Therefore, this alignment could be evidence of a deviation from
statistical isotropy.

Once the binned TT , TE and EE power spectra have been estimated as described
above, we adopt the methodology of Planck Collaboration et al. (2020d).

(a) For each multipole bin of the binned TT , TE, and EE spectra, we construct a
HEALPixmap atNside = 1, assigning the value of the corresponding spectrum in
that bin to each pixel.

(b) A dipole is fitted to this map using inverse-variance weighting. The variances
are computed from simulations. In particular, we are interested in the direction
of the fitted dipole as the amplitudes are found to be fully consistent with the
simulations.

(c) The estimator we use to measure the alignment is the modulo of the sum of all
the normalized dipole vectors up to certain maximum bin,

|v̂| =
√
N +

∑
i ̸=j

cos θij , (6.1)

where N is the number of dipoles, and θij the angle between the i-th and j-th
dipoles. This is essentially the Rayleigh statistic (RS), a statistical measure used
to test uniformity, particularly for assessing whether a set of vectors exhibits any
preferential alignment. Actually, Eq. 6.1 differs from the RS by not including
any amplitude information. As previously mentioned in Planck Collaboration
et al. (2020d), the amplitude of the dipole vectors are not anomalous, so they are
normalized. Apodization of the masks was essential to mitigate the clustering
observed among small-scale dipoles. In simulations, where dipoles are expected
to be uniformly distributed, we found that the RS value starts deviating from ex-
pectation at small scales. This deviation was later identified as artificial cluster-
ing caused by correlations between small-scale dipoles. We selected a 0.3 degree
apodization scale as the minimum value necessary to recover an RS value that
converges to the expected value. Minimizing the apodization scale is crucial to
preserve as much of the sky as possible.
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(d) Finally, we asses the clustering as a function of maximum bin using a p-value
determined as follows. We compute the RS using all the dipoles up to a certain
maximum multipole bin for all the simulations and the data. Then, we define
the p-value as the fraction of simulations with a higher RS than the one observed
in the data. A small p-value means that the directions in the data are clustered in
a way that can only be reproduced in a few simulations. Note that p-values are
correlated as they are defined from a cumulative quantity.

3. Parameter Estimation:

In order to analyse the Planck temperature and E-mode polarisation maps to inves-
tigate possible dipolar variations of the cosmological parameters, we proceed as fol-
lows:

(a) We start with the previously computed binned TT , TE and EE power spectra.
The choice to use these regions for estimating cosmological parameters is guided
by two primary considerations: first, the patches are disjoint eliminating correla-
tions between them, and second, this approach is computationally efficient while
remaining adequate for capturing parameter variations at the dipolar level.

(b) Best-fit cosmological parameters are inferred from the measured Cℓ values in
each patch. In fact, instead of adopting a traditional MCMC method, which
would be computationally expensive, we use iMinuit3 to fit for the maximum
likelihood values. We use a multivariate Gaussian likelihood, which it is a good
approximation for our analysis choices (ℓ ≥ 32),

−2 logL ∝ (Cℓ − C̄ℓ) · C−1
ℓℓ′ · (Cℓ′ − C̄ℓ′)

T , (6.2)

where Cℓ is the observed binned power spectrum, C̄ℓ is the theoretical binned
power spectrum computed from camb4 Boltzmann solver (Lewis et al., 2000;
Lewis & Challinor, 2011), and C−1

ℓℓ′ is the inverse of the covariance matrix of the
power spectrumCℓ. The dimension of the covariance matrix isnTTbins+nTEbins+nEEbins,
nTTbins+n

TE
bins+n

EE
bins). Given the size of the bins used in our analysis (∆ℓ = 30), we

can reasonably assume that the correlations between different bins are minimal.
As a result, we neglect all off-diagonal terms in all the blocks of the covariance
matrix, focusing only on the variances and the covariances between the TT , TE,
and EE components within the same bin.

(c) We fit for the basic flat-space ΛCDM cosmological parameters5 (H0, Ωch2, Ωch2,
As, ns). We fix the optical depth to reionization, τ , to 0.0602, the input value

3https://scikit-hep.org/iminuit/
4https://camb.readthedocs.io/en/latest/
5Note that, in the likelihood, we include some bounds on the parameters to prevent the minimizer from

exploring regions of the parameter space where camb breaks down.

https://scikit-hep.org/iminuit/
https://camb.readthedocs.io/en/latest/
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for the E2E simulations, which is also in good agreement with the latest con-
straints (Tristram et al., 2024). The main reason to fix τ is that the sky fractions
for the individual patches are insufficient to assess the E-mode large-angular
scales, where most of the information about the optical depth is encoded. We
also fix

∑
mν = 0.06 eV, and r = 0.01, which is also the input for the simulations.

We do not expect any impact on results with this choice, as this tensor-to-scalar
ratio is below the sensitivity of Planck. Additionally, following Planck Collab-
oration et al. (2016a) we include two effective foreground residual parameters
(ATTps , AEEps ), which account for residual contamination from unresolved compact
objects. We assume these residuals to behave as shot-noise, modelled asDℓ ∝ ℓ2,
where Dℓ =

ℓ(ℓ+1)
2π Cℓ.

(d) We generate an Nside = 1 map for each of the parameters, from simulations and
data. We fit for a dipole in each of them using an inverse variance weighting
approach, where variances are estimated from the 600 simulations. In this way,
the Galactic low-latitude patches where the fsky is smaller contribute less to the
fit. Finally, the p-value is defined as the fraction of simulations with an amplitude
of the fitted dipole larger or equal to the one observed in the data map.

6.1.3 Pipeline Validation

In order to validate our pipeline for estimating cosmological parameters, we compare the re-
sults that we obtain using MASTER and iMinuitwith those reported in Tristram et al. (2024).
In that work, the parameters were not inferred from high-resolution foreground-cleaned
CMB maps, but instead were based on likelihoods that used the cross-spectra between pairs
of frequency channels. In this work, we are not interested in the absolute value of the pa-
rameters, but on their possible dipolar variation over the sky.

Figures 6.3, 6.4, and 6.5 show the cross-detector power spectra obtained with our
pipeline for the Planck PR4 Sevem cleaned maps masked with the Planck confidence masks,
along with the corresponding best-fit spectra computed using the cosmological parameters
we obtain from iMinuit. The error bars are computed using the 600 E2E simulations.

Tests of the pipeline with simulations revealed a bias in theTT , TE, andEE power spec-
trum estimation, which results in a small bias for the inferred cosmological parameters. We
characterise this by computing the difference between the input fiducial power spectrum
(based on the cosmology described in table 6 of Planck Collaboration et al. (2020f)) and the
average of the output cross-spectra over the 600E2E simulations propagated through Sevem.
Subtracting this bias from each simulation, we are able to recover the input cosmological pa-
rameters. The observed bias can be explained by the mismatch between the realistic beams
used in the simulations and the assumed effective beams in the analysis. Additionally, some
contribution may arise from frequency-dependent effects that are not accounted for in the
component separation pipeline, such as boosting. Another important point is that the bias
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FIGURE 6.5: As Figure 6.3 for EE.

observed in the parameters in the E2E PR4 simulations is similar to that found in the data
when compared to the results of Tristram et al. (2024), where the analysis is performed at
the frequency map level before the component separation pipeline. By this, we mean that
each parameter is biased in the same direction and by a similar amount. The bias is not a
significant concern for our analysis for two reasons. Firstly, it should affect the data and
simulations in the same way. Secondly, the bias is a subdominant effect when working on
small patches because the uncertainties increase given the small sky fraction. Nevertheless,
we have checked the robustness of our results by fitting the parameters in the patches after
debiasing the power spectra, finding consistent results (see Appendix 8.4). In this case, the
bias is determined for each of the patches independently. Table 6.2 summarizes the best-fit
cosmological parameters, where the error bars are estimated from the 600 E2E PR4 simu-
lations. In particular, after correcting for the bias in the power spectrum estimation, our
results (third column) are very consistent with the ones reported in Tristram et al. (2024)
(fourth column). For some parameters we are ∼ 1σ away from the official Planck values, but
this is expected given that we use a more limited ℓ range, different masks, and foreground
cleaned maps. Note that the error in the As parameter is a factor of 4 smaller than in Tris-
tram et al. (2024). This is due to the fact that we are fixing the optical depth at reionization,
which is highly correlated with the amplitude of the scalar primordial perturbations. We
get similar results for the cosmological parameters when considering the weighted average
over the 12 patches.
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Parameter TTTEEE (no debiasing) TTTEEE (debiased) PR4 (TTTEEE)
H0 66.78± 0.50 67.72± 0.50 67.64± 0.52
Ωbh

2 0.02212± 0.00013 0.02237± 0.00013 0.02226± 0.00013
Ωch

2 0.1209± 0.0011 0.1192± 0.0011 0.1188± 0.0012
ln (As · 1010) 3.057± 0.0033 3.055± 0.0033 3.040± 0.014

ns 0.9598± 0.0036 0.9653± 0.0037 0.9681± 0.0039
ATTps 55± 4 56± 4 -
AEEps 0± 1 3± 1 -

Table 6.2: Best-fit cosmological parameters. The second and third columns present the results from
our pipeline without and with bias correction (no debiasing and debiased, respectively). These values
are obtained using the Planck PR3 confidence masks. The fourth column shows the latest cosmolog-
ical parameters derived in ref. Tristram et al. (2024) from the TT , TE, and EE power spectra using
the PR4 dataset. The last two rows provide the results for the nuisance parameters which are given
by their values at ℓ = 3000. The error bar in As for the first and second columns are much smaller
because τ is fixed.

6.1.4 Bayesian Approach

We perform an MCMC analysis on the debiased data as an extra validation of our pipeline.
For this purpose, we use cobaya6 (Lewis & Bridle, 2002; Lewis, 2013; Torrado & Lewis, 2021).
Figure 6.6 shows the posteriors for each of the parameters together with the value inferred
from iMinuit. We use flat priors in the same region where minimization is performed,
and compute the posteriors for two scenarios: fixing τ (red contours), and leaving it free
but with a Gaussian prior N (0.06, 0.006) (blue contours) applied. This test reveals three
key conclusions. First, the minimum found by iMinuit is fully consistent with the position
of the peak in the posterior for all parameters, showing the robustness of the minimizer.
Second, the width of the posterior aligns remarkably well with the standard deviation of
the minimum values obtained from the 600 simulations. Finally, the posterior width for As
is significantly reduced when τ is fixed.

6.2 Results

6.2.1 Angular-Clustering

In this section, we show the results for the angular-clustering analysis. The three panels
in Figure 6.7 show the TT , TE, and EE dipole directions determined in bins of ∆ℓ = 30

for the A/B detector splits of the Sevem PR4 data. The plots are rotated in such a way
that the centre of the image is located at (ℓ, b) = (205,−20) in Galactic coordinates. This
is the direction of the HPA found in the temperature data in Gimeno-Amo et al. (2023).
The left column of Figure 6.8 presents the corresponding RS values as a function of ℓmax,
while the right column shows the associated p-values. We consider as our reference case
that obtained without including the first bin (2 ≤ ℓ < 32), which is given by the green line

6https://cobaya.readthedocs.io/en/latest/

https://cobaya.readthedocs.io/en/latest/
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FIGURE 6.7: Dipole directions for the binned cross power spectrum (∆ℓ = 30) between the detector
A and B splits of the Sevem PR4 cleaned maps, from ℓ = 2 to ℓ = 2011 (TT , left), 1741 (TE, middle),
and 1471 (EE, right). Dipoles are fitted to Nside = 1 maps, with each pixel assigned the value of the
local cross power spectrum in the corresponding bin, using inverse-variance weighting. The direction
for a specific multipole bin is coloured according to the central value of the bin, as shown in the colour
bar. The maps are rotated in such a way that the centre is located in (l, b) = (205, -20) in Galactic
coordinates, which is the preferred direction for the HPA in temperature data (marked with a red star).
Graticule shows the Galactic reference frame.

in the left and right panels. In the same figure, we include the expected RS curve for an
isotropic field, which has been computed from random directions uniformly distributed in
the sky. Additionally, the theoretical expectation, at first and second order, for the average
value across the simulations is included,〈√

N + 2x
〉
≈

√
N − 1

4N3/2
σ2x +O(

〈
x3
〉
), (6.3)

where x =
∑

ij cos θij , and σ2x is the variance of x. We are also assuming<
∑

ij cos θij >= 0.
The significance of the temperature alignment is compatible with previous results up

to ℓmax ≈ 750. From ℓmax ≈ 200 the p-value is essentially below 1% up to the maximum
multipole considered. We also consider two additional cases in which we slightly modify
the first bin included in the analysis. The black curve in the left panels corresponds to the
case where the first bin is included, thus incorporating all the information from ℓ = 2 to
2011. In contrast, the grey line represents the case where we exclude the first three bins. In
both cases, the results appear to be robust, with the p-value remaining below 1% for most
multipoles. Only two regions, around ℓ ≈ 300 and ℓ ≈ 1200, show a slight increase in the
p-value. Since the p-value is a cumulative quantity, this could be due to the dipoles in these
bins being oriented far from the clustering direction, effectively contributing negatively to
the RS. In a previous Planck paper (Planck Collaboration et al., 2020d), the p-value was
found to increase rapidly from ℓmax ≈ 1000. We observe a similar increase in the case
where we do not apodize the mask. Figure 6.9 presents the correlation between the bins in
temperature for both scenarios, with and without apodization. For small scales, we see an
increase of correlations for the non-apodized case, which produces an artificial clustering
in simulations, and thus reduces the significance. Additionally, we note that for ℓmax < 100

the temperature p-values are not anomalous, which is inconsistent with the HPA reported
in the analysis of large angular scales. As mentioned in Planck Collaboration et al. (2020d),
this could simply be due to the high variance of the estimator in this region.
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FIGURE 6.8: Left column: RS estimator for TT (top panel), TE (middle), and EE (lower). Blue
curves correspond to each of the 600 E2E PR4 simulations, while the red curve is their average.
Results for the data are shown by the green curve. The purple curve is the expected value for an
isotropic field. The solid (dashed) black curve is the theoretical expectation at first (second) order.
Right column: Derived p-values for the angular-clustering of the cross-power distribution obtained
from the PR4 detector split maps as a function of ℓmax. The p-values are derived from the fraction
of E2E PR4 simulations with an RS equal to or larger than that observed in the data, hence small
p-values would correspond to an unexpected alignment between dipole directions. The black curve
shows the results starting from ℓ = 2, while the green and grey curves start in ℓ = 32 and ℓ = 92,
respectively. For the TT case, the black dashed line represents the 1% p-value.
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FIGURE 6.9: Correlation matrix between bins of ∆ℓ = 30 for the temperature power spectrum. The
left and right panels show the results for the apodization (0.3◦) and no apodization cases, respectively.

An important step during the dipole fitting is the subtraction of the mean field at each
bandpower. We realized that the mean fields exhibit a dipolar feature pointing in the direc-
tion of the CMB dipole. This could be due to the Doppler boosting effect (Planck Collabo-
ration et al., 2016b; Challinor & van Leeuwen, 2002), which is also simulated in the FFP10
realisations. We assessed the impact of the mean field subtraction on the recovered dipole
directions. The distribution of dipoles exhibits significant non-uniformity when the mean
field is not subtracted prior to the fitting procedure. However, this effect is corrected once
the mean field is removed.

It is evident from the right panel of Figure 6.8 that some p-values for theTE spectrum are
close to 100%. This observation was also reported in the previous Planck analysis. A high
p-value means a low value for the RS statistic, which could also be anomalous. To assess
whether such low values are unusual, we examine the maximum p-value of the RS statistic
for the TE data, which is 99.5%, and scan over the simulations to see in how many of them
we are able to find such high p-values7, but not restricting ourselves to any ℓmax range (to
take into account the look-elsewhere effects). In fact, we find that the maximum p-value in
the data is exceeded in 16% of the simulations. In other words, 16% of simulations show at
least one p-value above 99.5%. Furthermore, we observe in the data that in the multipole
range ℓmax between 900 and 1050, p-values consistently fall above 95%. We analyse the
simulations finding that approximately 6% of them exhibit a range of 7 consecutive bins
with p-values above the 95% threshold. These results indicate that neither of these features
is statistically anomalous, and can be explained by look-elsewhere effect.

For theEE polarisation signal, the p-value is at the 1% level only for a single bin (ℓmax =

7Note that the p-value of the simulations is computed by removing the given simulation from the set and
using the remaining 599 as the reference.
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62−91). For the case where the first bin is included the p-value reaches a minimum p-value
of 0.5% again for a single bin (ℓmax = 92 − 121). However, we do not see any anomalous
behaviour in that range for either TT or TE. Considering that in PR3 the p-value in the
E-modes remained close to 1% for several consecutive bins, whereas here it is observed
in a single bin, which is not statistically significant, most likely the PR3 results were more
affected by systematics at low-ℓ in polarisation. We conclude that the hint of an anomaly in
the E modes observed in PR3 has disappeared in the PR4 data.

Following the analysis performed in Planck Collaboration et al. (2020d), we also tested
whether the directions of theEE dipoles are aligned with the TT dipoles. Here we made a
small change in the statistic described in Section 6.1. In order to avoid using the information
from TT andEE alone, we simply use the mean of the cosine of the angles between all pairs
of dipoles, where one isTT and the other one isEE, i.e.

〈∑
ij cos θij

〉
, where θij = vTTi ·vEEj .

Figure 6.10 shows the p-values for TT -EE alignment. The main motivation for study-
ing such alignment in previous Planck works was the existence of a multipole range below
ℓmax = 250 where the p-value for both TT and EE was below 1%. In this work, such a
situation does not occur, but we still find it interesting to perform the same analysis.

The black curve in Figure 6.10, corresponding to the including the first bin, exhibits
a pattern similar to that shown in Figure 40 of Planck Collaboration et al. (2020d) up to
ℓmax ≈ 1000. This indicates that TT and EE appear to be clustered towards a similar
direction at the level of 1%over a wide range of ℓmax. This is highly unexpected ifTT andEE
are completely independent, even if they were clustered individually. However, we know
that a non-zero TE spectrum induces a correlation between T and E. In the Planck paper,
this was explored with simulations to assess whether the TT -EE alignment is expected in
the case where both TT and EE are individually clustered. In particular, they examine
all simulations having a minimum p-value below 1% for both TT and EE in overlapping
multipole ranges, and then check the correlation between TT and EE directions. They
just found 2 simulations satisfying that criterion, with neither showing a high correlation
between directions. Furthermore, we also explore the TE-EE alignment (magenta line
in Figure 6.10), and do not find anomalous features. The results seem to lose statistical
significance once the first bins are removed (see green and grey lines in Figure 6.10).

Another interesting result is shown in the right panel of Figure 6.10. In this case, only the
cosines between the TT and EE vectors within the same bin are considered, that is, when i
= j. No anomalous alignment behaviour is observed, as the p-value never drops below 10%.
This suggests that the anomaly mainly arises due to the off-diagonal terms.

Our results show a clear anomaly in the TT clustering. On the other hand, TE and
EE seem to be compatible with the Planck E2E PR4 simulations, and only exhibit anoma-
lous behaviour over a very narrow multipole range, which suggests a look-elsewhere effect.
Similarly, the TT -EE alignment indicates, under certain conditions, a clear anomaly with
p-values below 1%. However, the interpretation is not entirely clear, as the statistical signif-
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FIGURE 6.10: Derived p-values for the angular-clustering between TT and EE dipole directions.
Black, green, and grey colours corresponds to the same cases as in Figure 6.9. The magenta line
shows the corresponding correlation between the TE and EE dipole directions in the ℓ = [2-1471]
range. The p-values are derived from the fraction of E2E PR4 simulations with a RS value equal
to or larger than the one observed in the data. The results shown in the left panel are obtained by
averaging the cosines between all the dipole directions (full), whereas the right panel uses only the
cosines between dipoles within the same bin (diagonal).

icance seems to depend slightly on whether the first bins are included or not. Moreover, if
only the cosines between dipoles within the same bin are considered, the statistical signifi-
cance is greatly reduced.

6.2.2 Analysis of Cosmological Parameters

In this section, we show the results for the analysis of the cosmological parameters. We will
consider as reference the case where we do not subtract the bias (see Section 6.1.3) at the
power spectra level. Figures 6.11 and 6.12 show the cosmological and nuisance parameters,
respectively, for patch 4 and 10. These plots provide, for the patch with the smallest sky
coverage and one of those with the largest, a direct comparison between the debiased and
no debiasing cases. For reference, we also include the only temperature scenario, which has
been run without including the TE and EE power spectra. As mentioned in Section 6.1.3,
the bias on the power spectra could have a significant impact on the cosmological param-
eters for large fsky. However, for smaller sky fractions, the bias is subdominant compared
to the statistical uncertainties. In particular, Figure 6.13 shows the distribution of the 5 cos-
mological parameters for all patches for the two no-debiasing cases: only temperature (top
panel) and including polarisation (bottom panel). The impact of the bias on the parameters
can be directly observed in these plots. The parameters are not strongly affected compared
to the large error bars. Note also that most of the patches are biased in a similar way, so the
bias is not expected to produce a dipolar pattern. Nevertheless, such a pattern would be
removed in the dipole fitting process by subtracting the mean field. This is the main reason
why the results are robust against the debiasing (see Appendix 8.4). Note also the depen-
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FIGURE 6.11: Distribution of the cosmological parameters for the 600 E2E PR4 simulations for two
different patches, patch 4 (fsky ≈ 2%) and patch 10 (fsky ≈ 7%). For comparison three different
scenarios are included: temperature only (no debiasing), including polarisation (no debiasing), and
the debiased case (corrected for the bias in temperature and polarisation). The distributions are
normalized to the input values. The boxes represent 68% of the probability, while the large error bars
include 95.4%.

dence of the error bars with the patch index and sky fraction (see Table 6.1 and Figure 6.2).
It is clear from Figure 6.11 that the bias only produces a shift of the distribution while, as
expected, a lower sky fraction leads to a broadening of it. In Appendix 8.4 we perform a set
of robustness tests by running the pipeline for different analysis choices, including the debi-
ased cases and cuts in the ℓmin and ℓmax, showing that the results are in general quite stable.
Note in Figure 6.12 that, in the no debiasing case, the nuisance parameters tend to have
a negative average value. Since point sources have not been simulated, these parameters
should be zero. This reflects how they attempt to absorb the effect of the bias.

An intriguing aspect of the analysis is how Doppler boosting affects the cosmological
parameters, particularly As. Before fitting a dipole to the parameter maps, we calculate
the mean field and standard deviation for each parameter using all simulations, following
the same procedure used for the power spectra in the angular clustering analysis. Notably,
the mean field for As exhibits a dipolar feature aligned with the CMB dipole, as shown
in the left panel of Figure 6.14. We then fit dipoles to the mean fields. The right panel
of Figure 6.14 displays the fitted dipoles along with the directions of the dipoles obtained
from the mean fields of each bandpower of the power spectrum (red dots). For reference,
we also include the direction of the CMB dipole from Planck Collaboration et al. (2020f).
A clear alignment is observed between the As mean field dipole, the CMB dipole, and the
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FIGURE 6.12: Same as Figure 6.11 for the nuisance parameters.

FIGURE 6.13: Distribution of the cosmological parameters computed from 600 E2E PR4 simulations
for the 12 patches in the temperature only case (top panel) and including polarisation (bottom panel).
In both cases, no-debiasing results are shown. The distributions are normalized to the input values.
The boxes represent 68% of the probability, while the large error bars include 95.4%.
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FIGURE 6.14: Left panel: Mean field for the As cosmological parameter, obtained by averaging the
results from the 600 E2E PR4 simulations for each of the 12 patches. Right panel: Directions of the
dipoles fitted on the mean field for each of the five cosmological parameters (blue dots). The dipole
directions for the mean fields of the TT power spectrum bandpowers are also shown (red dots). In
both panels the black cross corresponds to the CMB dipole direction.

dipoles of the bandpower mean fields. However, this effect is mitigated by subtracting the
mean fields prior to the fit. As shown later, the directions in the data are not aligned with
the CMB dipole; in particular, the direction for As is nearly 55 degrees away. This indicates
that Doppler boosting does not influence our estimator. Furthermore, after debiasing, the
mean field for As no longer displays a dipolar pattern, suggesting that Doppler boosting is
a contributing factor to the observed bias.

Figure 6.15 presents the distribution of dipolar amplitudes for the five cosmological pa-
rameters. The green distribution is obtained including polarisation, while the blue distri-
bution is found using only temperature information. The black vertical lines represent the
data, the solid line for the temperature plus polarisation case, and dashed line for tempera-
ture only. It also includes the probability-to-exceed (PTE) values, representing the percent-
age of simulations with an amplitude equal to or larger than that observed in the data. In
particular, for the temperature plus polarisation case, the amplitudes for H0, Ωbh2, Ωch2,
and ns are fully consistent with the ΛCDM predictions. However, there are only 5 simula-
tions from 600 with a larger amplitude for the As dipole than observed in the data. For the
temperature-only analysis, none of the five parameters exhibits an anomalous amplitude.
Two effects contribute to this difference. First, the distribution of amplitudes is broader
for the temperature-only scenario, consistent with the increased uncertainty in the param-
eters. Second, the amplitude observed in the data is slightly larger, a trend common to all
parameters except Ωbh2.

The right panel in Figure 6.16 shows the dipole directions in the data for all the cos-
mological parameters. In particular, As, which is the only one showing an anomalous am-
plitude, is closest to the HPA. The HPA directions used in this analysis are those reported
in Gimeno-Amo et al. (2023). For reference, we present both HPA directions: one inferred
from temperature data alone and the other derived from polarisation E-modes alone. We
also show the direction for the As dipole without the mean field correction. Even if this is
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FIGURE 6.15: Probability distribution of dipole amplitudes for the 600 E2E PR4 simulations for the five
cosmological parameters. Blue distribution represents temperature-only case, while green distribution
includes also the polarisation information. The black lines correspond to the values observed in the
data. Solid line for temperature-only case and dash line for temperature plus polarisation. In each
case the probability to exceed is also provided.

displaced slightly towards the CMB dipole direction, it is not significantly affected by the
Doppler boosting effect, contrary to what happens with the simulations (left panel). More-
over, the PTE is still below 1%. This means that the dipole exhibited by the As parameter is
stronger than the one produced by the Doppler boosting.

Figure 6.17 shows the directions in data for all the cosmological parameters for both
scenarios, temperature only (red dots) and including polarisation (blue dots). An interesting
fact is that even if the amplitude ofAs is no longer anomalous, the direction is still close to the
HPA direction. In particular, the distance between the As dipole direction observed in the
temperature-only fits and the HPA for temperature data alone is quite similar to the distance
between the As dipole inferred including polarisation and the HPA for the polarisation E-
mode signal alone. Additionally, we see that the directions for temperature only are not far
away from the directions obtained including polarisation.

It is well-established that As and τ are degenerate, and the uncertainty in As increases
when τ is not fixed. As a result, the analysis presented here examines the conditioned
distribution forAs, rather than the distribution marginalized over the τ value. However, we
are unable to quantify by how much our results, particularly the PTE for As, might change
if τ is not fixed. The primary limitation is that we cannot extract meaningful information
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FIGURE 6.16: Left panel: Dipole directions of the As parameter for the 600 E2E PR4 simulations
before (red dots) and after (blue dots) mean field subtraction. Right panel: Dipole directions (blue
dots) of the five cosmological parameters observed in the combination of temperature and polarisation
data. The dipole direction forAs before mean field subtraction is also shown (red dot). The black cross
corresponds to the CMB dipole direction, and the blue and green crosses represent the HPA directions
measured in T and polarisation E-modes, respectively.
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FIGURE 6.17: Dipole directions of the five cosmological parameters observed in the data. Green dots
correspond to temperature plus polarisation case, while blue dots are from temperature-only scenario.
The black cross corresponds to the CMB dipole direction, and the blue and red cross represent the
HPA directions measured in T and polarisation E-modes, respectively.
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about τ from such small sky patches.
To address this, we performed a set of tests. First, we run the pipeline with τ as a free

parameter, imposing a reasonable bound iniMinuitbetween 0.03 and 0.09, i.e., ten times the
Planck error bar on τ . In almost all simulations, the τ values clustered near the boundaries of
the allowed range, reflecting that no information can be determined about τ alone. However,
the distribution of Ase−2τ seems to be similar to that obtained by fixing τ . In other words,
the data can constrain the combination fairly well regardless of whether τ is fixed. We also
run this case for the data, finding similar behaviour. The final p-value for the combination
Ase

−2τ is at the level of 2%. Therefore, it seems that there is an anomaly that is best captured
by the combinationAse−2τ , but once τ is fixed, it is propagated toAs, because both quantities
are related by a constant.

Additionally, we run the pipeline with a Gaussian prior on τ . Unlike the Bayesian ap-
proach, the minimizer can not deal with the prior and consistently converged to the maxi-
mum of it, yielding results essentially identical to those obtained with fixed τ . Finally, we
consider the case in which the first bin, covering multipoles between 2 and 31, is included
in the likelihood. Although this bin carries information about τ , the inferred values are
still clustered near the bounds. This is expected, given the small fsky, which produces large
error bars. Moreover, on these scales, the Gaussian approximation on the likelihood is no
longer a good approximation, even if the bin size makes it more Gaussian following the
central limit theorem. For all of these reasons, we decided to focus on the case where τ is
fixed.





7
Conclusions

"What we call the beginning is often the
end. And to make an end is to make a
beginning. The end is where we start
from."

T.S. Eliot

The Cosmic Microwave Background has provided humanity with a deep understanding
on the Universe in which we live. While the ΛCDM model offers a remarkably successful
framework that accurately describes a wide range of cosmological observations, there are
still numerous questions to be addressed, and some measurements that lack a satisfactory
explanation. The nature of dark energy and dark matter, even if they account for approx-
imately 95% of the total energy content of the Universe, is still unknown. Moreover, the
current expansion rate, H0, inferred from early- and late-time probes exhibits a tension ex-
ceeding 5σ. The origin of a set of unexpected features observed in temperature large angular
scales, the so-called CMB anomalies, remains unexplained. While the statistical significance
of these anomalies is still an open discussion, there are no compelling models that could
reconcile the observations with the standard modelThis PhD thesis aims to shed light on
some of these anomalies by analysing them in the most recent Planck Data Release, which
has effectively reduce the systematics effects on large angular scales in polarisation. In par-
ticular, two chapters are dedicated to the study of the statistical isotropy, while one chapter
focuses on the methodological development of an inpainting technique.

In the next sections, the conclusions of Chapters 4, 5, and 6 are presented. At the end, a
summary of the main results and a comment on the future work is provided.
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7.1 Chapter 4

In this chapter, we have applied the local-variance estimator to the latest Planck release data
set (PR4) in both temperature and polarisation, performing a frequentist analysis of the
isotropy assumption. In temperature, we have not found any simulation from a set of 600
with an amplitude as large as the one observed in the data for 4◦, 6◦, and 8◦ discs. This
means that the data exhibits a dipolar-like behaviour across the sky at a level below 0.17%

for that range of angular scales. We have performed the analysis at two different resolutions,
Nside = 64 and Nside = 2048. For low resolution maps the direction points towards (ℓ, b) =
(208◦, −15◦), while for full resolution the direction is (ℓ, b) = (205◦, −20◦). These results are
in good agreement with previous reports, and cannot be explained by residual systematics
since a similar detection is found in WMAP.

Regarding polarisation, we have implemented an alternative inpainting approach in
order to minimize some effects that affect the reconstruction of the E-mode map from the
measured Stokes parameters. This technique works optimally under certain conditions, as
shown in Chapter 5, that are not completely satisfied in the Planck data. The main problem
is the low number of realistic noise simulations, which does not allow to compute in an
accurate way the noise covariance matrix. However, we have checked in this chapter that the
inpainting is not biasing the parameters of the analysis and that also improves significantly
the results compared with a simple masking approach.

First, we have applied the inpainting technique to the PR3 data set and obtained re-
sults in good agreement with those reported by the Planck collaboration using a different
inpainting algorithm. The small differences found can be explained by the large intrinsic
dispersion of the estimated dipole direction, as well as to differences in the considered mask
and inpainting algorithm. In particular, we found that both the p-values and the directions
depend on the choice of mask, with the exception of Sevem, whose p-value is always below
1%.

For PR4, we performed the analysis only on the Sevem cleaned maps, since it is the only
method providing both cleaned maps and simulations that are suitable for the analysis. We
get a p-value that lies between 1% − 3% for sky fractions in the range from 67% to 59.4%.
For smaller fsky the p-value increases rapidly, getting up to 7.4% for fsky = 57%. If the
asymmetry is of cosmological origin, this behaviour is somehow expected due to the loss of
information when the number of available pixels is reduced. However, we cannot discard
that this effect is related to the reduction of foreground contamination in the CMB map
when increasing the mask, as one would expect if residuals were the cause of the observed
asymmetry. Finally, the results are probably even more sensitive to the sky fraction and
geometry of the mask, due to the fact that the estimated direction of the dipole is close to
its boundary.

It is interesting to note that the amplitude of the dipolar modulation for intensity (∼ 7%)
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and polarisation (∼ 9%) are of similar level and point in a similar direction. If the modu-
lation in intensity were simply a statistical fluke such that the standard model still holds,
we would expect a similar pattern in the E-mode map, taking into account the correlation
between T and E. However, since this correlation is small (typically around 10 per cent), a
much lower dipole amplitude in polarisation would be expected and, therefore, this seems
inconsistent with the values found. Even more, we have checked with E-mode maps con-
strained to intensity modulated simulations, that this correlation is expected to increase
the p-value of the alignment by only about 0.5% when realistic E2E noise is included. In
any case, given the large uncertainties associated to the estimated amplitudes, improved
polarisation data is needed before any further conclusion can be established.

Regarding the difference between the p-values for PR3 (0.22%) and PR4 (2.8% for our
reference case), we have verified that both values are compatible when accounting for dif-
ferences between data sets, including the number of simulations, mask, inpainting, noise
properties, and transfer function. One important consideration is the mask. Although we
fix the same threshold in the maximum error of the reconstructed E-modes, this results in
a different sky fraction for PR3 and PR4, which can influence the estimated p-values. In any
case, other factors intrinsic to the data could also contribute to these results. For instance, if
the anomaly were due to systematic effects, a larger p-value would be expected in PR4, given
the improvement in this regard in the data. However, if the anomaly were of cosmological
origin, the increase in the p-value could also be due to the presence of the transfer function,
which suppresses the power at low multipoles in the PR4 polarisation data. Therefore, no
clear conclusion can be drawn, except that a modest detection of asymmetry is still present
in the E-mode polarisation maps.

Unfortunately, the sensitivity of the data is still not sufficiently good to obtain robust
results. In particular, the model-dependent test presented in this chapter shows that the
dipolar modulation model parameters exhibit large uncertainties. Using the Planck polari-
sation E2E simulations, we find that a detection with a p-value below 1% would be possible
in 95% of cases only if the amplitude of the modulation were at the level of 16%, which is
well above the observed value. Therefore, a significant improvement in the sensitivity and
control of systematics in the polarisation data at large angular scales is needed before robust
results can be achieved in relation to a possible violation of isotropy. Future experiments,
such as LiteBIRD, that will be able of measuring cosmic variance limited E-modes over a
very large fraction of the sky, are expected to provide key information on the HPA.

7.2 Chapter 5

In this chapter, we have presented an inpainting technique based on Gaussian Constrained
Realisations, that can be applied to CMB temperature and polarisation data. The algorithm
uses the Cholesky decomposition to sample from a conditional probability distribution. We
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have also developed a Python user-friendly package, CMB-PAInT, which is publicly available
at https://github.com/ChristianGim/CMB-PAInT. We used this package to obtain all the
inpainted realisations of this chapter.

In order to asses the performance of the methodology, a series of tests have been done in
two different scenarios: (1) CMB signal only, and (2) CMB signal with semi-realistic noise
simulations based on Planck Data Release 4. In particular, we check that the constrained part
of the inpainted maps is consistent with that expected from the model. We have also studied
the one-dimensional probability distribution of T , Q, and U , as well as those of the E- and
B-modes. In both scenarios, they agree well with the input values within the expected
errors. Our methodology is also able to reconstruct accurately systematics and noise from
an anisotropic field if they are included in the covariance matrix. However, this requires
that all the correlations between pixels of the anisotropic field are perfectly characterised.
Otherwise, artifacts would appear due to a mismatch between the statistical properties of
the pixels outside the mask and the assumed model. This can be verified by inspecting
the intermediate z variables, which should follow a normal distribution if everything is
consistent.

For certain applications, further studies may be needed in order to minimise the presence
of prominent systematics in the inpainted region while, at the same time, not introducing
a statistical mismatch between observed pixels and the covariance matrix. In any case, the
optimal strategy will depend on the nature of the data and estimator to be studied.

The most interesting tests involve the E- and B-mode reconstruction and the corre-
sponding power spectra. Both tests show that we can remove well the E-to-B leakage.
For the first scenario, at the map level, we are able to reconstruct the E-mode map with a
relative error below 5% for a sky fraction of 71.7 per cent, covering almost all the sky out-
side the polarisation confidence mask (which allows 72.36 per cent of the pixels). In the
case of theB-mode, the relative error is around 10% for fsky = 45%, due to its weaker signal.
At the power spectra level, we reproduce the input TT , TE, EE, and BB power spectra
up to ℓmax = 192, covering the full range of the reionization and the recombination peaks
of the B-mode. The residuals between the input and reconstructed spectra are consistent
with zero within the dispersion obtained from the 1200 inpainted realisations. In the sec-
ond scenario, the method reproduces the input power spectra that were strongly affected by
systematics and noise. Furthermore, we perform a comparison between our methodology
and other techniques (diffuse inpainting, masking and the NaMaster pure-B approach),
finding that the GCR was the only method able to recover the input B-mode spectrum for
all the considered multipole range.

This inpainting approach is limited to low resolution maps due to computational mem-
ory requirements, but it is enough to target the polarisation largest scales, which is the main
goal of future observations, searching for the primordialB-mode. In view of the present re-
sults, we believe that this will be a useful and powerful algorithm for the analyses of future

https://github.com/ChristianGim/CMB-PAInT
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CMB experiments, such as LiteBIRD (LiteBIRD Collaboration et al., 2023).

7.3 Chapter 6

In this chapter, we perform two complementary analyses on the Planck PR4 CMB maps
(in particular, detector splits), which were cleaned using the Sevem component separation
method, in order to test the statistical isotropy of the Universe. Our approach employs
well established techniques for both power spectrum estimation (MASTER) and cosmological
parameter fitting (iMinuit). In both analyses, we use the binned TT , TE, and EE power
spectra computed over 12 independent sky regions, corresponding to the 12 pixels of the
Nnside = 1 HEALPix scheme. These patches overlap with the Planck confidence mask, so the
effective fsky for each region varies between 2% and 8%.

The first analysis focuses on the angular clustering feature. Previous Planck releases re-
ported an unexpected alignment in directions derived from temperature power distribution
maps over a wide range of angular scales, up to ℓ ≈ 1000. We confirm this alignment over
a broader multipole range. The p-value, defined as the fraction of simulations exhibiting
a Rayleigh statistic greater than that observed in the data, is below 1% for multipoles be-
tween ℓ = 200 and 2000. We suggest that the apparent discrepancy with earlier results for
ℓ > 1000may be due to artificial clustering caused by the lack of apodization in the previous
analysis, which introduces correlations between adjacent multipole bins. Additionally, the
hint of an anomaly in the E-modes that was present in PR3 disappears, with only a couple
of bins showing p-values below 1%. In particular, this occurs in the same multipole range
where TT and the alignment between TT and EE begins to exhibit anomalous behaviour.
However, the interpretation remains unclear, as removing the first bin or considering only
the cosines between dipoles within the same bin reduces the statistical significance. Given
that the anomalous behaviour in theE-modes takes place within a narrow multipole range,
it is most likely a consequence of the “look elsewhere" effect. A similar reasoning can be
applied to a few bins close to 100% for TE.

In our second analysis, we examine the potential presence of dipolar variations in the
cosmological parameters across the sky. Using iMinuit, we maximise the likelihood in
each of the 12 independent patches using the previously computed binned TT , TE, and
EE binned power spectra. Given the limited sky fraction available in each of these patches,
we can not access the large scale E-modes and τ needs to be fixed. Fitting a dipole on the
resulting maps reveals that all parameters, except for As, are consistent with the standard
cosmological model. A hint of anomalous behaviour is detected inAs, with only 5 out of 600
simulations showing an amplitude as extreme as that observed in the data. This anomaly
appears to be associated with the combination ofAs and τ , Ase−2τ , as it is the quantity best
constrained by the data. Once τ is fixed, the anomaly propagates toAs. The direction of the
dipole is close to that of the hemispherical power asymmetry, and it is also located in the



164 Chapter 7. Conclusions

region where the intensity power spectrum bandpower dipoles are clustered, suggesting a
potential link between these anomalies. Although the anomaly remains robust to variations
in the choice of ℓmin and ℓmax (see Appendix 8.4), it disappears when theTE andEE spectra
are excluded.

An additional outcome validating our pipeline is the successful detection of the Doppler
boosting effect in simulations, which is observed both at the power spectrum level and in the
spatial distribution of As parameter. This effect can be effectively encoded and subtracted
in the mean field prior to dipole fitting, and it is unlikely to be the origin of the anomaly
given that the direction observed in As is approximately 55 degrees away from the CMB
dipole direction.

Our results do not agree with some previous analyses that claim a strong evidence for a
violation of the cosmological principle of isotropy, as indicated by variations in cosmological
parameters across the CMB sky. This may be attributed to methodological differences. In
particular, our analysis uses completely independent sky regions and relies on covariances
fully derived from the Planck provided end-to-end simulations. Finally, the evidence for
an anomaly in Ase−2τ combination is modest and not entirely conclusive. Future analyses
with improved polarisation data will be crucial to further clarify these findings.

7.4 Summary and future work

An HPA is confirmed in the temperature data from PR4 using the local-variance estima-
tor, with a p-value below 1%. After applying an inpainting technique based on Gaussian
constrained realisations to the Stokes Q and U parameters, the reconstructed E-mode map
exhibits a similar asymmetry at the 1% − 3% level, with an axis closely aligned with that
found in temperature. Interestingly, by fitting a dipole to the spatial distribution of the
power in each bandpower of the temperature angular power spectrum, we find an anoma-
lous clustering of preferred directions, which also align remarkably well with the HPA axis.
No analogous clustering is observed in the polarisation data. Motivated by these findings,
we explored dipolar signatures in the spatial distribution of cosmological parameters. Most
parameters are consistent with ΛCDM expectations, except forAs, which shows an anoma-
lous dipole amplitude at the ∼ 1% level, with a direction again closely aligned with the
HPA. Notably, Mukherjee et al. (2016) identifiedAs and ns as the parameters most suscepti-
ble to acquiring spatial dependence in the presence of a cosmic hemispherical asymmetry,
in agreements with our results.

While there is no doubt about the observed asymmetry in temperature in Chapters 4
and 6, the large uncertainties in the polarisationE-mode results prevent any robust conclu-
sive statement. The origin of these uncertainties are both the large-scale systematic effects
present in the Planck data and the low signal-to-noise ratio.

Since the Planck temperature measurements are already cosmic variance limited up to
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ℓ ∼ 1600, future temperature data are not expected to significantly impact the study of CMB
anomalies, except potentially through an increased sky fraction. However, a substantial
improvement is expected in polarisation analyses. A natural and promising continuation
of this work would be to apply the same methodology to the forthcoming high-precision
polarisation data.
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Conclusiones

"Lo importante es no dejar de hacerse
preguntas."

Albert Einstein

El Fondo Cósmico de Microondas ha dotado a la humanidad con un gran conocimiento
sobre el Universo en el que vivimos. El modeloΛCDM ofrece un marco teórico que describe
de manera precisa las observaciones. A pesar de ello, todavía existen un gran número de
incógnitas que carecen de una explicación satisfactoria. La materia y energía oscuras son
aún desconocidas a pesar de contribuir al 95% del contenido total de energía del Universo.
Además, existe una discrepancia entre las estimaciones de la constante de Hubble obtenidas
a partir de observaciones del Universo temprano y aquellas derivadas del Universo tardío.
El origen de las anomalías a gran escala del FCM carece de explicación. Si bien la signif-
icancia estadística de estas anomalías sigue siendo objeto de debate, no existen modelos
convincentes, basados en física fundamental, que puedan reconciliar las observaciones con
el modelo estándar. Esta tesis doctoral tiene como objetivo arrojar luz sobre algunas de es-
tas anomalías mediante su estudio en los datos más recientes de Planck, los cuales han sido
procesados de tal forma que se han reducido los efectos sistemáticos a grandes escalas an-
gulares en polarización. En particular, dos capítulos de la presente tesis están dedicados a
estudios de isotropía estadística, y uno dedicado al desarrollo metodológico de una técnica
de inpainting.

Las siguiente secciones presentan las conclusiones de los capítulos 4, 5 y 6. Al final, se
incluye un breve resumen de los principales resultados y se comentan las perspectivas de
trabajo futuro.
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8.1 Capítulo 4

En este capítulo hemos realizado un análisis frecuentista de la hipótesis de isotropía estadís-
tica aplicando el estimador de varianza local al conjunto de datos más reciente de Planck
(PR4), tanto en temperatura como en polarización. En el caso de temperatura, ninguna de
las 600 simulaciones presenta una amplitud del dipolo de varianza local tan elevada como
la observada en los datos para discos de 4◦, 6◦ y 8◦, lo que indica un comportamiento de
tipo dipolar con un p-value inferior al 0.17% en dicho rango de escalas angulares. El análisis
se ha realizado para dos resoluciones, Nside = 64 y Nside = 2048. En los mapas de baja
resolución, la dirección del dipolo se orienta hacía (ℓ, b) = (208◦,−15◦), mientras que en los
mapas de máxima resolución se encuentra en (ℓ, b) = (205◦,−20◦). Estos resultados están
de acuerdo con estudios previos y no pueden atribuirse a efectos sistemáticos residuales,
dado que los datos de WMAP muestran una detección similar.

En lo que respecta a la polarización, se ha implementado una técnica alternativa de in-
painting con el objetivo de mitigar ciertos efectos que dificultan la reconstrucción del mapa
de modosE. Tal y como se detalla en el capítulo 5, esta técnica ofrece un rendimiento óptimo
bajo determinadas condiciones que, sin embargo, no se cumplen en los datos de Planck. La
principal limitación radica en la escasez de simulaciones realistas de ruido, lo que impide
estimar con precisión la matriz de covarianzas del ruido. No obstante, se ha comprobado
que el procedimiento de inpainting no introduce sesgos en los parámetros analizados y que,
además, mejora de forma significativa los resultados frente a una estrategia basada en uti-
lizar una máscara.

Primero, hemos aplicado la técnica de inpainting a los datos de polarización de PR3,
y hemos comprobado que los resultados son compatibles con los publicados por la cola-
boración, a pesar de haberse empleado un algoritmo de inpainting distinto. Las pequeñas
discrepancias observadas pueden atribuirse a la dispersión intrínseca que muestra la es-
timación de la dirección del dipolo, así como a las diferencias en la máscara y el metodo
de inpainting. En particular, se ha comprobado que tanto los valores p como las direcciones
obtenidas dependen de la máscara considerada, con la única excepción del caso Sevem, cuyo
valor p se mantiene siempre por debajo del 1%.

En el caso de los datos de PR4, el análisis se ha realizado únicamente con los mapas
de Sevem. Se obtiene un valor p comprendido entre el 1% y el 3% para fracciones del cielo
entre el 67% y el 59.4%. Para cielos más enmascarados, el valor p aumenta rápidamente,
alcanzando un 7.4% cuando la fracción del cielo es del 57%. Si la asimetría tuviera un origen
cosmológico, este comportamiento sería en cierto modo esperable, dado que la pérdida
de píxeles observados implica un aumento en el error estadístico. No obstante, no puede
descartarse que este efecto se deba, en realidad, a una menor contaminación galáctica al
ampiar la máscara, como cabría esperar si la asimetría fuese causada por residuos de dicha
contaminación. Por último, es probable que los resultados sean incluso más sensibles tanto
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a la fracción de cielo como a la geometría de la máscara, dado que la dirección estimada del
dipolo se encuentra próxima al borde de la región enmascarada.

Resulta relevante señalar que la amplitud de la modulación dipolar en intensidad (∼ 7%)
y en polarización (∼ 9%) es similar, y que ambas direcciones están casi alineadas. Si la mod-
ulación en intensidad fuera una fluctuación estadística, se esperaría un patrón similar en
el mapa de modos E, debido a la correlación existente entre T y E. Sin embargo, dado
que la correlación es débil (del orden del 10%), cabría esperar una amplitud significativa-
mente menor en polarización, lo que resulta dificil de reconciliar con los valores observados.
Además, al emplear mapas de modosE condicionados a simulaciones moduladas en inten-
sidad, se ha comprobado que dicha correlación solo incrementa el valor pde la alineación en
aproximadamente un 0.5% al considerar ruido realista. En cualquier caso, debido a las ele-
vadas incertidumbres asociadas a las amplitudes, será necesario disponer de mejores datos
de polarización antes de poder extraer conclusiones robustas.

En cuanto a las diferencias entre los valores p obtenidos para PR3 (0.22%) y PR4 (2.8%
en nuestro caso de referencia), se ha verificado que ambos son compatibles al tener en
cuenta factores como el número de simulaciones, la máscara empleada, las diferencias en
las propiedades del ruido o la función de transferencia. Un aspecto a tener en cuenta es
la máscara. Aunque se fije el mismo umbral en el error máximo de los modos E recon-
struidos, esto da lugar a fracciones del cielo distintas en PR3 y PR4, lo que puede afectar a
las estimaciones. En cualquier caso, también podrían intervenir factores intrínsecos a los
propios datos. Por ejemplo, si la anomalía se debiera a efectos sistemáticos, cabría esperar
un mayor valor p en PR4, dado la mejora de este tipo de efectos. Sin embargo, si el origen
fuera cosmológico, el aumento del valor p podría deberse a la función de transferencia, que
atenúa la señal de la gran escala en los datos de polarización de PR4. Por lo tanto, no puede
extraerse una conclusión definitiva, más allá de que se mantiene una detección moderada
de asimetría en los modos E de polarización.

Lamentablemente, la sensibilidad de los datos actuales aún no es suficiene para obtener
resultados concluyentes. En particular, uno de los tests realizados en este capítulo muestra
que los parámetros del modelo presentan grandes incertidumbres. Utilizando las simula-
ciones realistas de Planck, se ha comprobado que solo sería posible una detección con un
valor p inferior al 1% en el 95% de los casos si la amplitud de la modulación fuera del orden
del 16%, un valor muy superior al observado. Por tanto, se requiere una mejora significa-
tiva tanto en la sensibilidad como en el control de los efectos sistemáticos en polarización
para poder establecer resultados sólidos en relación a una posible violación de isotropía.
Se espera que futuras misiones como LiteBIRD, capaces de medir modos E limitados por
varianza cósmica en una fracción amplia del cielo, proporcionen información clave sobre la
HPA.
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8.2 Capítulo 5

En este capítulo se ha presentado una técnica de inpainting basada en realizaciones gaus-
sianas condicionadas, que puede ser aplicada tanto a datos de temperatura como de po-
larización. El algoritmo emplea la descomposición de Cholesky para rellenar los píxeles
enmascarados con valores generados a partir de una distribución gaussiana condicionada
al resto de los datos observados. Asimismo, se ha desarrollado un paquete de Python,
CMB-PAInT, el cual está disponible en https://github.com/ChristianGim/CMB-PAInT.
Este paquete ha sido utilizado para generar todas las realizaciones empleadas en este capit-
ulo.

Con el fin de evaluar el rendimiento de la metodología, se han realizado una serie de
pruebas en dos escenarios distintos: (1) únicamente se incluye la señal del CMB, y (2) se
añade ruido semi-realista basado en las simulaciones de PR4. Se ha comprobado que la
parte condicionada de los mapas con inpainting es coherente con lo esperado según el mod-
elo. También se ha analizado la distribución de probabilidad unidimensional de T , Q y U ,
así como la de los modosE yB, observándose en ambos casos una buena concordancia con
los valores de entrada dentro de los márgenes de error esperados. Nuestra metodología
también permite reconstruir de forma precisa sistemáticos y ruido anisótropo y correla-
cionado si se incluyen estos también en la matriz de covarianzas. No obstante, esto solo
es posible si se conocen con precisión todas las correlaciones entre píxeles. De no ser así,
podrían aparecer artefactos debido a discrepancias entre las propiedades estadísticas de los
píxeles fuera de la máscara y las asumidas por el modelo. Este posible desajuste puede
verificarse inspeccionando las variables intermedias z, que bajo condiciones ideales deben
seguir una distribución normal.

Para ciertas aplicaciones, podrían ser necesarios estudios adicionales con el fin de mini-
mizar la presencia de sistemáticos prominentes en la región reconstruida mediante inpaint-
ing sin introducir, al mismo tiempo, una discrepancia estadística entre los píxeles obser-
vados y la matriz de covarianza. En cualquier caso, la estrategia óptima dependerá de la
naturaleza de los datos y del estimador que se desee analizar.

Las pruebas más relevantes son las relacionadas con la reconstrucción de los modos E
y B, así como sus respectivos espectros de potencia. En ambos casos se demuestra que
es posible eliminar eficazmente la contaminación de E a B. A nivel de mapa, se logra
reconstruir el mapa de modos E con un error relativo inferior al 5% para una fracción del
cielo del 71.7%, practicamente tode el cielo fuera de la máscara de polarización. En el caso de
los modosB, el error relativo es del orden o inferior al 10% para el 45% del cielo. A nivel de
espectro de potencias, se recuperan con precisión los espectrosTT , TE,EE yBB de entrada
hasta ℓ = 192, cubriendo por completo el rango correspondiente a los picos de reionización
y recombinación de los modos B. Los residuos son compatibles con cero dentro de los
errores esperados para 1200 realizaciónes. En el segundo escenario, el método es capaz

https://github.com/ChristianGim/CMB-PAInT
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de recuperar los espectros de entrada incluso en presencia de ruido y efectos sistemáticos.
Asimsismo, se ha llevado a cabo una comparación con otras metodologías que incluyen,
entre otros, el diffuse inpainting o el metodo de purificación de NaMaster. Los resultados
muestran que el método basado en realizaciones condicionadas es el único que consigue
recuperar el espectro de modos B en todo el rango de multipolos considerado.

Este enfoque de inpainting está limitado a mapas de baja resolución debido a los requi-
sitos de memoria. No obstante, resulta suficiente para analizar las escalas más grandes en
polarización, que constituye el principal objetivo de futuras observaciones orientadas a la
busqueda de los modosB. A la luz de los resultados obtenidos, consideramos que este será
un método útil y eficaz para los análisis de los futuros experimentos del CMB, como puede
ser LiteBIRD.

8.3 Capítulo 6

Con el objetivo de poner a prueba la isotropía estadística del Universo, en este capítulo se
llevan a cabo dos análisis complementarios. Para ello se utilizan los mapas de detectores
de los datos más recientes de Planck, limpiados por Sevem. Empleamos técnicas conocidas
tanto para la estimación del espectro de potencias (MASTER) como para el ajuste de pará-
metros cosmológicos (iMinuit). En ambos análisis se utilizan los espectros de potencias
TT , TE yEE agrupados en intervalos de multipolos (bines), y calculados sobre 12 regiones
independientes del cielo. Estas regiones corresponden a los 12 píxeles definidos por el es-
quema HEALPix con Nside = 1. Al incluir la máscara de Planck, la fracción efectiva del cielo
en cada una de las regiones varía entre un 2% y un 8%.

Trabajos previos de la colaboración Planck identificaron un alineamiento anómalo entre
las direcciones derivadas de mapas de distribución de potencia en temperatura, abarcando
un amplio rango de escalas angulares. En el primer análisis cuantificamos este alineamiento
en los datos más recientes de Planck a través del estadístico de Rayleigh, confirmando la exis-
tencia de un agrupamiento sobre un intervalo aún más amplio de multipolos. En particular,
el valor p, definido como la fracción de simulaciones con un estadístico de Rayleigh superior
al observado en los datos, es inferior al 1% para multipolos comprendidos entre ℓ = 200 y
ℓ = 2000. El uso de una máscara no apodizada podría explicar la discrepancia observada
con respecto a trabajos anteriores para ℓ > 1000, dado que esto puede inducir correlaciones
entre bines adyacentes y dar lugar a un agrupamiento artificial. Asimismo, el indicio de
anomalía observado en los modos E de polarización en PR3 desaparece en estos nuevos
datos, con solo un par de bines mostrando valores p inferiores al 1%. Esto sucede para el
mismo intervalo de multipolos en el que TT y el alineamiento entre TT y EE comienzan a
mostrar un comportamiento anómalo. No obstante, su interpretación no es concluyente, ya
que carece de robustez cuando se realizan pequeñas modificaciones en el estimador. Dado
que la anomalía en los modos E de polarización se restringe a un número muy limitado de



172 Chapter 8. Conclusiones

bines, lo más probable es que se trate de una fluctuación estadística. El mismo razonamiento
se aplica al espectro de TE que muestra algunos valores p próximos al 100%.

En el segundo análisis se estudia la posible presencia de variaciones dipolares en la
distribución espacial de los parámetros cosmológicos. Para ello, se estiman los paramétros
en cada una de las 12 regiones maximizando la función de verosimilitud con iMinuit. En
particular, la función de verosimilitud utiliza los espectros calculados en el análisis previo.
Dado que la fracción del cielo en cada parche es muy limitada, no es posible acceder a los
multipolos más bajos y, en consecuencia, es necesario fijar el valor de τ .

Al ajustar un dipolo sobre los mapas resultantes, se observa que, salvo As, el resto de
parámetros son consistentes con las predicciones del modelo ΛCDM. En el caso deAs, solo
5 de las 600 simulaciones muestran una amplitud igual o superior a la observada en los
datos. Esta anomalía parece estar presente en la combinación Ase

−2τ , que es la cantidad
mejor determinada por los datos. Al fijar τ , la anomalía se manifiesta en As. La dirección
del dipolo es próxima a la de la HPA, y se sitúa en la región del cielo donde se agrupan
los dipolos ajustados sobre los mapas de potencia. Esto sugiere una posible conexión entre
estas anomalías. A pesar de que la anomalía siga presente al realizar diferentes cortes en
ℓmin y ℓmax, desaparece al excluir los espectros de potencias que involucran los datos de
polarización.

La detección, en simulaciones, del boosting generado por el efecto Doppler es un resultado
que valida nuestra metodología. Este efecto no puede ser el origen de la anomalía obser-
vada, dado que la dirección del dipolo de As se encuentra aproximadamente a 55 grados
de la dirección del dipolo del FCM.

Nuestros resultados difieren de los obtenidos en estudios recientes que afirman haber
encontrar evidencia de variaciones significativas de los parámetros cosmológicos a lo largo
del cielo. Esta discrepancia podría deberse a diferencias metodológicas. En particular, nues-
tro análisis utiliza regiones del cielo completamente independientes y la matriz de cova-
rianzas es derivada íntegramente a partir de simulaciones realistas de Planck. Por último, la
evidencia de una posible anomalía en la combinaciónAse−2τ es moderada y no concluyente.

8.4 Resumen y trabajo a futuro

Se confirma la presencia de una HPA en los datos de temperatura de PR4 mediante el esti-
mador de varianza local, con un valor p inferior al 1%. Tras aplicar una técnica de inpainting
a los parámetros de StokesQ y U , el mapa reconstruido de modosE muestra una asimetría
similar con una significancia entre el 1% y el 3%, y un eje casi alineado con el observado en
temperatura. Sorprendentemente, al ajustar un dipolo sobre la distribución espacial de la
potencia en banda del espectro angular de potencias de temperatura, se observa un agru-
pamiento anómalo de las direcciones, alineadas de forma notable con el eje de la HPA. No
se detecta un agrupamiento análogo en los datos de polarización. En base a estos resulta-
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dos, se investiga la distribución espacial de los parámetros cosmológicos. La mayoría de
ellos son compatibles con las predicciones del modelo ΛCDM, a excepción de As, que pre-
senta una amplitude dipolar anómala con una significancia estadística del orden del 1%,
con una dirección nuevamente próxima a la de la HPA. Cabe destacar que en Mukherjee
et al. (2016) identificaron los parámetros As y ns como los más susceptibles de adquirir
una dependencia espacial en presencia de una asimetría hemisférica, en concordancia con
nuestros resultados.

Aunque no hay duda sobre la asimetría observada en temperature en los capítulos 4 y
6, las grandes incertidumbres en los resultados de los modos E de polarización impiden
extraer conclusiones robustas. Estas incertidumbres se deben tanto a los efectos sistemáticos
a gran escala como a la baja relación señal-ruido inherentes a Planck.

Dado que las medidas de temperatura de Planck ya están limitadas por la varianza cós-
mica hasta ℓ ∼ 1600, no se espera que futuros datos de temperatura tengan un impacto
significativo en el estudio de las anomalías del FCM, más allá de un aumento en la frac-
ción de cielo limpio de contaminantes. Sin embargo, se espera una mejora sustancial en
los análisis de polarización. Una continuación natural y prometedora de este trabajo sería
aplicar la misma metodología a los futuros datos de polarización de alta precisión.





Appendix A:
Convergence of the covariance matrix

In Section 5.3, we show the performance of the inpainting for two different scenarios: (1)
CMB signal only and (2) CMB signal plus a semi-realistic noise realization. In the second
case, the methodology is able to reconstruct accurately the systematics and noise. However,
this is only possible if the full anisotropic covariance matrix is well characterised. In a more
realistic case, where a limited number of simulations are used to compute the matrix numer-
ically, the non-convergence of the matrix induces a mismatch between the matrix and the
pixels outside the mask. This introduces some artifacts in the inpainted realizations. Figure
8.1 shows an example of the input and output T ,Q, and U maps using just 20 semi-realistic
noise simulations to compute the covariance matrices. Even if the mismatch is mainly for
the polarisation field1, strong cold and hot spots are induced in the inpainted temperature
map through the TE correlation.

The mismatch is even more clear in Figure 8.2, where the probability distribution of the
z variables (see Eq. 5.12) is plotted for T , Q, and U . For comparison, a Gaussian curve with
the same standard deviation is plotted. In all the cases shown in Figure 8.2, the variable
zT , corresponding to the temperature field, follows a Gaussian distribution with zero mean
and unit variance, N (0, 1). This is because there is not a mismatch between the statistical
properties of the pixels and those encoded in the matrix. In this case, even if we are not
including correctly the noise and systematics on the matrix, the mismatch is simply masked
by the regularization noise. However, the mismatch strongly affects the polarisation field.
In particular, since Q and then U are computed recursively, this effect is most notable for
the z variables associated to U , which is found to be the broadest one. The zQ and zU

distributions become effectively N (0, 1) when several thousand of noise simulations are
considered to construct the matrix.

1For temperature the noise is much smaller than the signal and, even if it were not well modelled in the
covariance matrix, its effect is negligible as the error in the z variables is masked by the regularization noise.
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FIGURE 8.1: Example of a T (left), Q (middle), and U (right) inpainted realization in the case where
20 semi-realistic noise simulations are used to characterise the noise covariance matrix. The top and
bottom panels correspond to the input and inpainted maps, respectively.
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FIGURE 8.2: Distribution of the z variable associated to the T , Q, and U fields for different number of
simulations used to estimate the noise covariance matrix. For comparison, a Gaussian with the same
standard deviation is also given in each case.





Appendix B:
Robustness of the inpainting against the model

In Section 5.3, we generate a pixel covariance matrix that match perfectly the input simula-
tion. In a real situation this is not possible. Here, we introduce a small mismatch between
the model used for the input simulation and the one used for the pixel covariance matrix es-
timation. As described in Section 5.1, we use the best fit to the ΛCDM model to generate the
input CMB simulation. We introduce a small deviation in the input parameters taking into
account the correlation matrix of the estimated parameters inferred from the Planck 2018

data. In Table 8.1, we show the best fit parameters and the modified ones. The alternative
parameters were obtained as a Gaussian random realisation of the parameters centred in
the best-fit model and following the correlation matrix. Therefore, they are also consistent
with the Planck data within the estimated errors.

We compute the relative error with respect cosmic variance in the E- and B-mode re-
construction using the 1200 inpainted realizations, as explained in Section 5.3.3, for both
cases, the exact and the modified model. Then, we get the differences between previous
errors, which are on average at the level of 0.1% (errors are slightly larger in the modified
case) as it is shown in Figure 8.3.

ΛCDM best fit Modified ΛCDM

Ωbh
2 0.02238280 0.02244959

Ωch
2 0.1201075 0.1194516

H0 67.32117 67.57953

τ 0.05430842 0.05744905

ln(1010As) 3.044784 3.056551

ns 0.9660499 0.9654136

Table 8.1: Cosmological parameters. Left: ΛCDM best fit. Model used for the input simulation.
Right: Modified model according to the Planck 2018 errorbars and correlations.
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FIGURE 8.3: Distribution of differences of the errors relative to the cosmic variance of the exact minus
the modified model for E-mode (left) and B-mode (right).

FIGURE 8.4: Value of r assumed in the fiducial model versus the inferred value. Grey shaded region
corresponds to the 1σ interval of the posterior for the input simulation, which is generated assuming a
tensorial modes with r = 0.004. Solid black line corresponds to the value where the posterior peaks for
the input simulation, which by chance corresponds to the same value as the model. Dots corresponds
to the values of r where the mean posterior peaks for each assumed model in the iterative process.
Error bars are the 1σ interval of the mean posterior.
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Similar results are found at the power spectra level. This is expected taking into account
that the differences between models in this multipole range (ℓ = 2 − 192) is much smaller
than the cosmic variance, so smaller than the differences between different realizations of
the same model.

As an extra test, we consider a special scenario where tensor-to-scalar ratio (r) is equal
to 0.004. In this case, most of the constraining power is encoded in theB-mode large scales,
so differences in the model can impact and bias the r estimation. We demonstrate that an
iterative process can be a good approach to this issue. Taking into account that tensorial
modes have not been detected yet, it is reasonable to start with a model where r = 0. We
generate 1200 inpainted realizations assuming r = 0 model and we estimate for each of
them the posterior (using a flat prior) of r using the following exact likelihood in harmonic
space:

− logL =
∑
ℓ

[
Ĉℓ
Cℓ

+ log Cℓ −
2ℓ− 1

2ℓ+ 1
log Ĉℓ

]
, (8.1)

where Ĉℓ is the B-mode power spectrum of the realization, Cℓ is the theoretical spectrum,
and the sum is done up to ℓ = 2Nside. We generate the mean posterior by averaging the -
logL, and then, we use the value of r where the mean posterior peaks to generate the model
for the next iteration. Results for the different iterations are shown in Figure 8.4, where the
blue contour corresponds to the 1σ interval obtained from the posterior distribution of the
input simulation (a uniform prior is used for r). Red error bars corresponds to 1σ interval
of the mean posterior. It becomes apparent that after a few iterations the correct value of
r is recovered. Therefore, when using the inpainting technique, a comparison between the
assumed model and the one recovered from the inpainted maps is recommended in order
to test the consistency of the results.

We finally show a comparison between the B-mode power spectrum obtained using
different models. Left panel of Figure 8.5 shows DBB

ℓ of the input simulation (red), the
theoretical curve of the input model (black), and the estimated D̃BB

ℓ for the different fiducial
models (corresponding to different iterations), which are described by the median of the
distribution of the 1200 spectra, obtained from each of the inpainted realizations, and the
68% C.L (error bars). In the right panel we show βℓ defined as,

βℓ =
xℓ
σℓ
, (8.2)

where xℓ is the difference between the input spectrum and the median, and σℓ is the 68%

two sided C.L, thus allowing asymmetric error bars for low ℓ. It is clear that a bad choice
of the model has a bigger impact on the first multipoles, corresponding to the reionization
bump, than in the lensing dominated range.
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FIGURE 8.5: Left panel: DBB
ℓ for the input simulation (in red), theoretical curve for r = 0.004 (in black),

and D̃BB
ℓ for different fiducial models, obtained from the distribution of 1200 inpainted realizations.

Error bars are also derived from the 68% C.L of that distribution. Right panel: βℓ for different models.
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Robustness of results on cosmological parameters

In order to test the robustness of the results on the anomalous amplitude ofAs, we consider
a set of pipeline runs while modifying some parameters. We run the following cases:

➪ Debiased case (TTTEEE): Same pipeline as in the main analysis but subtracting
the unknown transfer function from TT , TE, and EE. Remember that these transfer
functions are calibrated with the simulations. The main goal of this run is to vali-
date that the transfer function is not introducing any anisotropy in the cosmological
parameters.

➪ Debiased case (only T ): Same pipeline but only for the temperature data.

➪ Different τ : In this case, we modify the value to which τ is fixed. We fix τ to 0.0544,
which was the best-fit value inferred from Planck Data Release 3 (Planck Collaboration
et al., 2020c), instead to the input value used for the E2E simulations. In this sense, we
can check if the anomaly persists when the fixed value is not the correct one, which
may be the case for the data.

➪ ℓmax = 1000: In this case we remove some multipole bins for TE and EE. In partic-
ular, we consider ℓTEmax ∼ 1500 and ℓEEmax ∼ 1000.

➪ ℓmin = 62: In this final case, we remove the large angular scale bins, and start at ℓ = 62

for TT , TE, and EE.

The values of the PTEs for the five cosmological parameters are shown in Table 8.2, to-
gether with the values obtained in the main analysis. Notably, both main and debiased cases
produce very similar results, finding again that the PTE for As is below 1% if polarisation
is included. The results also remain very stable when using an alternative value of τ . Fur-
thermore, it appears to be robust against different choices of multipole cuts. In particular,
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Scenario PTE (H0) PTE (Ωbh
2) PTE (Ωch

2) PTE (As) PTE (ns)
Main (Inc. Pol) 13.3% 81.0% 10.2% 0.83% 5.8%
Main (Only T) 85.5% 60.7% 81.0% 33.0% 38.8%

Debiased (Inc. Pol) 14.3% 81.3% 10.8% 0.83% 6.0%
Debiased (Only T) 86.8% 62.7% 81.7% 33.5% 38.5%

τ = 0.0544 13.5% 80.7% 10.3% 0.83% 5.8%
ℓmax = 1000 21.2% 86.3% 11.7% 1.5% 10.2%
ℓmin = 62 22.0% 79.2% 18.8% 2.7% 12.8%

Table 8.2: PTEs of the five cosmological parameters for seven different scenarios as a test of robust-
ness.

if the last 500 multipoles of the E modes are removed, and only the first 1000 multipoles
are considered, the PTE remains below 2%. If the first bin, which contains multipoles be-
tween ℓ = 32 and ℓ = 61, is removed, the PTE increases to 2.7%. Although this decrease
in significance may be attributed to the loss of statistical information when excluding some
multipoles, it may also suggest that the anomaly has a stronger contribution from large
scales. Notably, it is precisely at large angular scales where the known CMB anomalies are
observed in the temperature data, particularly the HPA.

We pay particular attention to the case where τ is fixed to a different value. In this sce-
nario, the other cosmological parameters remain largely unaffected except for As, which is
expected given their correlation — a smaller τ produces a smallerAs, and vice versa. How-
ever, because τ is fixed to the same value in all patches, As is shifted uniformly, leaving the
dipole amplitude unchanged. In other words, fixing τ to the same values for all patches al-
lows the same amount of fluctuations inAs independently of the fixed value. Consequently,
we obtain a similar PTE.

Figure 8.6 shows results for the five cosmological parameters with two fixed values of
τ , computed for patch number 4. It is clear that, except forAs, the other parameters remain
unaffected, while As is reduced. However, the input value is still within 1σ. Similarly, the
left panel of Figure 8.7 shows the shift in As. As previously mentioned, this shift does not
affect the dipole amplitudes, as shown in the right panel.
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on patch number 4 (fsky ≈ 2%) and fixing τ to two different values. Distributions are normalized to
the input values. The boxes represent 68% of the probability, while the whiskers include 95%.
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FIGURE 8.7: Left panel: Distribution of the As parameter for the 600 E2E simulations fixing τ to
0.0602 (in red) and 0.0544 (in blue). The black dashed line corresponds to the input As value for the
simulations. Right panel: Distribution of the dipole amplitudes ofAs for the 600 E2E PR4 simulations.
Again the red colour is for τ = 0.0602, while blue is used for τ = 0.0544.
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