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1 Introduction

Low-diameter high-radix interconnection networks, such as Dragonflies [20] are used in some
of the largest computers [6]. They offer a compelling combination of high scalability and low
network latency. However, they are susceptible to congestion, particularly when exposed to chal-
lenging traffic patterns, commonly referred to as adversarial. These scenarios can lead to a signif-
icant concentration of traffic on a few specific network links. To address this issue, non-minimal

source-adaptive routing mechanisms can be used, dynamically choosing between minimal and non-
minimal paths for each packet. These mechanisms need to define two key aspects: first, how to
select between minimal and non-minimal path, and second, the specific non-minimal path to be
utilized. Typically, the selection relies on the UGAL mechanism [27], which compares congestion
levels (estimated via next-hop buffer occupancy) in both types of paths. Additionally, the definition
of non-minimal paths often relies on Valiant routing [29], which diverts traffic to an intermediate
switch chosen randomly and then forwards it to its actual destination, using minimal paths for
both stages.

The main drawback of Valiant routing is that it increases the average path length, base latency
and overall network load. Several proposals [7, 26] have aimed to shorten non-minimal paths as
long as it does not introduce network bottlenecks. However, these approaches operate indepen-
dently of traffic-pattern estimations. Nonetheless, the utilization of shortened paths can lead to
pathological congestion and unfairness at certain loads. As a result, most prior proposals have
leaned towards using long non-minimal paths [16].

Proposals like TPR [13] incorporate traffic-pattern adversity estimations based on switch coun-
ters [1, 2]. These estimations are used to adjust the UGAL parameters, biasing path selection ac-
cording to traffic behavior. This approach is very promising, given the widespread availability of
switch counters in current products. However, as discussed later in this article, there are fundamen-
tal limitations in how these routing mechanisms leverage traffic counters for the two key aspects
defined previously. First, optimal routing decisions should be based on offered traffic values, which
represent traffic under the assumption of infinite network resources. However, proposed selection
mechanisms rely on accepted traffic estimations, which depends on previous routing decisions.
These two concepts differ when the network becomes saturated, leading to suboptimal results in
terms of maximum network throughput. Second, traffic counters hold valuable information about
potential congestion points in the network. This information can be used to shorten non-minimal
paths without introducing additional congestion points. Neglecting such data results in unneces-
sary network latency and longer paths.

Based on this analysis, this article introduces LIA: Latency-Improved Adaptive routing. This
routing mechanism for Dragonfly networks relies on UGAL, which selects between minimal or
non-minimal routing paths, and a limited set of local traffic counters at each switch, to determine
when it is safe to shorten non-minimal paths.

To achieve this, extended traffic counters are used to track offered traffic, as opposed to accepted
one, ensuring stable throughput even under saturation loads. Additionally, leveraging a regular

global link arrangement, two small sets of extended counters are computed per switch: global and
remote. Global counters serve a dual purpose: they help modulate the selection between minimal
and non-minimal paths and determine when it is safe to skip the first local hop of non-minimal
paths. Similarly, one or two remote counters are used to ascertain when it is safe to bypass the
second local non-minimal hop, which occurs within a remote group. An overview of the system
is presented in Figure 1.

Overall, LIA represents the first adaptive routing proposal for Dragonfly networks that com-
bines the advantageous features of source routing, local information utilization, stable saturation
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Fig. 1. LIA overview showing counters tables and its impact on packet routing decisions.

throughput, and the utilization of non-minimal paths with only the necessary hops to prevent
congestion. Evaluation results demonstrate that LIA offers the lowest latency across the all load
range and achieves maximum throughput without encountering congestion issues post-saturation,
comparable to the best reference routing in each scenario.

The main contributions of this article are the following:

— We introduce extended counters, which track offered traffic, and global and remote counters,
which estimate the impact (i.e., occurrence of congestion) of using short non-minimal paths.

— We present LIA, a source-based adaptive routing mechanism based on UGAL and the former
counters, which identifies the traffic adversity and selects the most suitable path length,
minimizing latency.

— We show a thorough evaluation of LIA, compared to other oblivious and source-adaptive
routing mechanisms. Results show that LIA improves latency results under all evaluated
traffic patterns, presents stable throughput, avoids unfairness and reduces latency by up to
30% compared to other source-adaptive routings.

2 Background

2.1 Dragonfly Topology

The Dragonfly [20] is a direct low-diameter topology deployed hierarchically in two levels, en-
abling it to adapt effectively to the system’s packaging. Figure 2 shows a block diagram of a net-
work with 5,256 compute hosts using this topology. The first level comprises groups of switches
interconnected following certain intra-group topology by local communication links (L). These
groups are connected by global links (G), according to an inter-group topology.

Topology parameters include the number of compute hosts connected to each switch p, the
number of switches per group a, and the number of global links per switch h. Hence, the number
of ports per switch, or switch radix k , must be k ≥ h +p +a − 1. Each group has a ·p injectors and
a · h global links.

Arbitrary networks can be used in both topological levels; we consider canonical Dragonflies
with a fully-connected graph in both levels and diameter three: one hop in each group plus one
hop in the global interconnect. The relation a = 2p = 2h [20] ensures a balanced use of the links
under a load-balanced traffic. This equals the number of global links departing from a group to
the number of terminals (or injectors). With a single link between pairs of groups, the network
comprises up to д = 1 + a · h = 2h2 + 1 groups. For example, the h = 6 Dragonfly in Figure 2 has 6
terminals per switch, 12 switches per group and up to 73 groups, for an overall 5,256 compute hosts.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 39. Publication date: March 2025.



39:4 M. Benito et al.

Group 0

S0 S1 S2 S3 S11...l-1 l+1

l+2 l-2

g+1g+6g+49g+54g+55g+60g+61g+66g+72 g+67

Other groups (G1 … G72)

Fig. 2. Diagram of a Dragonfly with h = 6 and t = 1 and the notation used in this work.

Multiple global links (global trunking) increase global bandwidth between groups, but reduce the
maximum number of groups to д = 1 + a · h/t = 2h2/t + 1 with t links between groups. For
simplicity, we consider that the global links per group, a · h, is multiple of t .

Considering the previous balance condition, we base our notation on the parameterh. We denote
the switches in the group S0, S1, . . . , S2h−1. We denote with lj ({l±1, l±2, . . . , l±h/t }) the local link
entering switch Si from Si+j (modulo 2h/t ). Note that l+h/t and l−h/t both denote the same offset,
and that local link l+i is denoted l−i in the opposite direction. There are 2ht links of each type li
per group, t entering and leaving from each switch. Figure 2 depicts part of the 2h − 1 local links
entering switch S1.

We consider a Palmtree global link arrangement [10]: without trunking, switch S j (0 ≤ j < 2h)
in group i connects to the h switches S2h−1−j in groups i + h · j + 1, i + h · j + 2, . . . , i + h · j + h
(modulo 2h2+1), this is, h consecutive global links per switch. This is partially depicted in Figure 2.
With trunking, our arrangement also connects consecutive groups in each switch: switch S j+k ·t in
group i connects to the h switches S2h−1−j−k ·t in groups i + h · j + 1, i + h · j + 2, . . . , i + h · j + h
(modulo 2h2/t + 1), with j < a/k ; 0 ≤ k < t .

2.2 Dragonfly Routing

This section presents first the basic minimal, non-minimal and adaptive routing mechanisms. Next,
it introduces two improvements that are key to our proposal: shortened Valiant paths and counter-
based adaptive routing.

2.2.1 Basic Routing. Minimal (MIN ) routing consists of up to three hops: a local hop in the
source group, a global hop to the destination group, and a local hop to the destination switch. We
denote such path LGL, or L1GL2 to refer to each hop. Shorter paths may occur, depending on the
location of the source and destination switches, such as LG, GL, G, and L.

Under adversarial traffic patterns (discussed in Section 2.3), MIN saturates some network links,
which become a bottleneck. Valiant Load Balancing (VLB) [29] avoids such bottlenecks by ran-
domizing traffic. Valiant routing first sends traffic minimally to a random intermediate switch
(denoted SROOT ) in Phase A; this path is denoted Path A and follows the sequence LGL. In Phase
B, traffic is sent minimally from SROOT to the destination, following another sequence LGL. The
complete path may comprise up to six hops, LGL-LGL (or L1G1L2 − L3G2L4). We consider four
versions of VLB with different Path A lengths: LGL, LG, GL, and G. An example of three of them
is presented in Figure 3.

Source-adaptive routing selects between minimal and Valiant routing at source router. Multiple
alternatives have been proposed. UGAL [27] selects the path at injection based on the next hop
buffer occupancy in each path (QMI N and QV LB , for each buffer occupancy, respectively, in phits).
In the Dragonfly [17], UGAL routes a packet minimally when

QMI N ≤ 2 ×QV LB +T . (1)
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Fig. 3. Three different length VLB routing examples identifying the source, intermediate, and destination
groups.

The threshold T can bias UGAL towards minimal or Valiant routing and although it is typically
a constant, it can also be calculated dynamically [13, 19]. This selection can be improved using
remote information [9, 17, 30], but this makes the routing more complex. Alternative mechanisms
also support in-transit non-minimal adaptive routing [16–18].

2.2.2 Valiant Path Length. While Valiant routing prevents network bottlenecks, it employs
paths that may be unnecessarily long and imposes an excessive load on the network. Shorter paths
may be generated using Restricted Valiant [7], which employs a shortened version of Path A such
as LG, GL, or G. Short non-minimal paths have been employed previously, such as the LG Path
A in [17, 20]. However, under certain adversarial traffic patterns (studied in Section 3.2), it does
not randomize traffic enough and certain links (local links in the intermediate group) become a
bottleneck. Thus, the key goal is to find short Valiant paths that do not introduce pathological
performance limitations.

ACOR [7] dynamically adapts the length of non-minimal paths. Switches maintain an ACOR

level that indicates the specific Path A used, following the sequence G ↔ GL ↔ LGL. This level
increases or decreases based on an indirect estimation of congestion. While ACOR adapts Path
A length, it requires that congestion propagates to the source and is agnostic to the actual traffic
pattern, reacting only to the estimated traffic load.

2.2.3 Counter-based Adaptive Routing. Traffic pattern-based adaptive routing (TPR, [13])
improves UGAL by detecting the adverseness of the traffic pattern. TPR implements counters, sim-
ilar to those available in current products [1, 2, 12], that measure both local and non-local intra-
group and inter-group traffic forwarded through each port.

TPR defines multiple levels of traffic intensity, from “benign” to “adversarial”. Each level corre-
sponds to certain switch counters values, this is, the amount of traffic sent to a certain destination
group. Thresholds that separate consecutive levels are obtained empirically. When sending traffic
to a given destination, TPR modulates UGAL parameters based on the intensity level associated
to such destination, so that under intense adversarial traffic patterns it is more likely to forward
traffic non-minimally and vice-versa.

2.3 Traffic Patterns

This section presents different traffic patterns that have been identified to cause distinct levels of
adverseness. Under random uniform (UN ) traffic, the destination of each packet is uniformly se-
lected among all nodes in the network. MIN routing is appropriate for such traffic, since it naturally
balances traffic over all the network links.
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Fig. 4. ADV+i and ADVc in a Dragonfly network with h = 6, t = 1. On the left, traffic from each source group
s goes to group s + i through t global links and on the right, it goes to the next h = 6 consecutive groups
through the circled links.

Figure 4(a) presents adversarial shift (ADV+i) traffic, in which all nodes in each group send
their traffic to a destination group placed i groups away. The t global links between these two
groups become a bottleneck under MIN routing, limiting throughput to t/a ·h = t/2h2 (note t = 1
in Figure 4(a)). To avoid it, non-minimal routing should be employed. Valiant routing, explained in
Section 2.2.1, randomizes traffic and avoids jams. However, the additional hops of Path A, where
packets are diverted to a random SROOT , increase the average path length (up to LGL − LGL) and
base latency. The adverseness of ADV+i with different versions of Path A is discussed in Section 3.2.

Figure 4(b) depicts an example of adversarial-consecutive (ADVc) traffic [14], in which all
nodes of a source group (s) send traffic to the h consecutive groups (s + 1, s + 2, . . . , s + h, mod
2h2 + 1). Minimal paths concentrate traffic in t (t = 1 in the figure) switches denoted Sout in the
source group, complicating congestion detection and limiting throughput to t/(2h). While global
links are not as much saturated as in ADV+i, ADVc introduces fairness issues, since nodes in Sout

and nodes in different switches observe very different local traffic conditions.

3 Analysis and Motivation

This section studies limitations of prior works: counter-based traffic detection and impact of short
non-minimal paths.

3.1 Traffic Counters Measure Carried Traffic

TPR [13] relies on multiple traffic counters to modulate the selection between minimal and non-
minimal routing at the source. Some counters track the amount of packets for a given destination
group that are forwarded from the injection ports, per interval. These counters do not measure
offered traffic (the one that would be sent in a network with infinite resources), but carried traffic,
which is influenced by the routing mechanism. This cyclic dependency may lead to misleading
results in the adaptive routing mechanism at saturation, explained in the following example.

Figure 5 shows the throughput vs. applied load plot for a Dragonfly under ADVc traffic us-
ing TPR routing mechanism and different arbitration policies: round-robin (RR) as our baseline,
least-recently served (LRS) and age-based (AGE, [3]). At saturation the switch queues may get
completely full, transiently stalling forwarding. Then, traffic counters may fall below the “high
intensity” threshold, mislabeling intensity as “medium” and biasing routing towards MIN routing.
This increases the bottleneck problem and further reduces both injected traffic and the counters for
the given destination group. Overall, this results in reduced throughput after the saturation point,
as observed in Figure 5(a). This effect depends on the counter implementation, so it is observed
in the three arbitration policies considered. This congestion is not uniform across all switches, as
observed in Figure 5(b), which depicts maximum, average and minimum traffic sent to group 1 per
switch using the RR arbitration policy that allows us to see the variability. The difference between
the highest and lowest injecting nodes grows with the offered load after saturation, leading to a
significant imbalance.
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Fig. 6. Accepted throughput for each switch of group 0 under ADVc traffic with offered load 45%, comparing
two path lengths using oblivious VLB and adaptive TPR.

3.2 Impact of Valiant Phase A Path Length

This section explores the impact of the length of Path A in a Dragonfly. If both source and destina-
tion were in the same group, Path A would be a single local hop L, but we focus on global traffic.
When the destination is in a remote group, the non-minimal global hop G is clearly required to
remove the bottleneck in the global link otherwise caused by adversarial traffic. Therefore, four
paths for Valiant Phase A may be considered: -GL, LGL, LG-, and -G-. Note that with two global
hops in the path, throughput is limited to 50%. Next subsections analyze the impact of saving each
local hop in Path A by selecting an appropriate SROOT .

3.2.1 Impact of the First Local Hop in Valiant Phase A. Unbalance may occur in a group when a
switch has to forward traffic received from its neighbors. We analyze this case using ADVc traffic.
Figure 6 shows throughput per switch in a group under ADVc traffic, using oblivious VLB and
adaptive TPR, with Valiant paths -GL and LGL. Using VLB, all injectors randomize traffic and all
their traffic is accepted with either Path A, -GL or LGL. With adaptive TPR, part of the traffic from
switches 0–10 is sent minimally to switch 11 (Sout ) according to the ADVc pattern in Figure 4(b).
This traffic is forwarded by the h global links in switch 11. With the -GL path, S11 employs these
same h global links for traffic from its own h injectors, so injection in S11 is reduced causing un-
fairness. By contrast, when using LGL S11 may employ all the global links in the group, avoiding
unfairness.

3.2.2 Impact of the Second Local Hop in Phase A. We consider here an homogeneous traffic,
in which all switches inject with the same pattern. This traffic can be seen as the sum of multiple
ADV+i traffic patterns, one per global offset in the original pattern. We analyze the congestion gen-
erated by each ADV+i traffic independently. Figure 7 shows accepted load under ADV+i traffic for
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Fig. 7. Throughput with offered load of 50% on ADV+i in a Dragonfly using Valiant routing with different
path lengths in Phase A.

each possible i in an h = 6, t = 1 canonical Dragonfly with an offered load of 0.5 phits/node/cycle
and VLB. There are д = 2h2/t +1 = 73 groups, so i ∈ {±1, . . . ,±36}, in abscissas. Lines depict mea-
sured throughput for each Path A. Results for TPR adaptive routing, omitted for brevity, are similar.

Eliminating the hop L2 significantly reduces throughput: both GL and LGL almost reach the
maximum throughput 0.5, but shorter paths G and LG fall significantly lower. This motivates the
use of G or LG when the load is low to reduce latency, and GL or LGL when the load is above a given
threshold, which depends on the offset i, to avoid network saturation. The threshold varies with
the offset of the ADV+i pattern, with minimum values for i being multiples of h, and maximum
values for intermediate values of i .

We introduce an approximate model to determine this threshold without trunking (t = 1), and
discuss t > 1 at the end. Consider ADV + (k · h +m) traffic with 0 ≤ m < h and k ≥ 0; neg-
ative values are symmetric. With the Palmtree arrangement employed in LIA, traffic received in
the intermediate group through switch Si needs to leave to the destination group through switch
Si+k or Si+k+1 (mod 2h). Therefore, the traffic received in switch Si is forwarded by only two local
links lk and lk+1 in the hop L3. Specifically, flows received by m global links leave through local
link lk+1 and the remaining traffic from h −m links is forwarded by local link l+k .1 The largest
of m and h − m determines which type of local link saturates first and upper bounds accepted
load, since both lk and lk+1 can only accept 1 phit/node/cycle. ADV + (k · h) (m = 0) provides
the lowest throughput since local link lk receives the aggregated throughput of all the h incom-
ing global links in Si , limiting throughput to 1/h on average. The highest throughput is obtained
when the global offset is the intermediate value between k · h and (k + 1) · h because traffic is
evenly distributed between both local links. Note also that k = 0 implies that part of the traffic
employs l+1 and part of the traffic leaves directly without any local hop (there is no l+0), reducing
congestion.

Figure 8 depicts the example ofADV +8 = ADV + (1 ·h+2) traffic using a G Valiant Path A in an
h = 6 Dragonfly. Traffic fromm = 2 global links is forwarded through local link l+2 whereas traffic
from h −m = 6 − 2 = 4 global links is forwarded through local link l+1. This limits throughput to
1/4 = 25% under this traffic. Results in Figure 7 are close to this limit, with the difference owing
to additional local hops in the source and destination groups.

1When the intermediate group is between the source and destination groups, this result is displaced by one unit. This

tiny detail has been deliberately ignored in this analysis because it would make the model more complex with a negligible

impact on performance. However, it explains the tiny drift of the minimal throughput values observed in Figure 7 for large

offsets.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 39. Publication date: March 2025.



LIA: Latency-Improved Adaptive routing for Dragonfly networks 39:9

Intermediate group – G0

...
G18 G13G17G16 G14G15G24 G19G23 G20G22 G21

l1

G30 G25G29 G26G28 G27

l2

global outbound links

S8 S9S7...

global 
inbound links

Fig. 8. Bottleneck at local links of intermediate group under ADV+8 traffic pattern in a Dragonfly with h = 6
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With trunking t > 1 there are t times less intermediate groups, 2h2/t , so each group receives t
times the traffic load from each source group. With the global link arrangement in Section 2.1, each
intermediate group receives traffic through t different switches, so the load per switch remains.
However, each switch has t local links of each type li , so the pathological congestion is spread
through t links, reducing its impact by a factor of t . This implies that a network with trunking
t > 1 employs a threshold t times higher, allowing for a wider load range in which the second
local hop L2 is omitted from Valiant paths without introducing pathological congestion.

4 Latency-Improved Adaptive (LIA) Routing for Dragonfly Networks

This section introduces the LIA routing for Dragonfly networks. After an initial overview, it details
extended counters and non-minimal path selection.

4.1 LIA Overview

LIA implements source adaptive routing. First, source switches select appropriate intermediate
nodes SROOT based on a restricted version of Valiant routing, which may skip each of the two
local hops L1 and L2 in their Path A. Next, the selection of a minimal or non-minimal path relies
on the occupancy of each path, based on a variant of UGAL. In both cases, decisions depend on an
estimation of the current offered traffic, which relies on traffic counters.

Traffic counters combine information from injected traffic per interval and instantaneous
amount of traffic in injection queues, as explained in Section 4.2. Since they extend the simple
implementation of a traffic counter, these are denoted extended counters. LIA employs two sets of
extended counters per switch: global and remote counters. Global counters are employed to deter-
mine whether it is safe to skip the first local hop L1 and to modulate UGAL, whereas remote counters

are used to skip L2. Counter values are calculated locally in each switch; no counter information
is distributed.

First, 2h2/t global counters {G±1,G±2, . . . ,G±h2/t } (one for each remote group) per switch mea-

sure the offered traffic towards each of the 2h2/t remote groups. Their values are obtained from
the switch injection ports. Source switches determine when to skip L1 based on these counters, as
defined in Section 4.3.1.

Second, 2h/t remote counters {R±1, R±2, . . . ,R±h/t } (one per type of local link, with the termi-
nology introduced in Section 2.1) estimate the load that would be received on the local links in
intermediate groups if the non-minimal routing omitted the L2 local hop (-G- or LG-). The value
of each counter Ri represents the individual contribution of the switch traffic to the congestion in
remote local links of type li .

A Remote Congestion Threshold (RCTh) is determined empirically, such that the links li
saturate when all the switches reach the RCTh value in their counterRi . When theRi value exceeds
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this threshold, theL2 link is employed in Path A for all non-minimal traffic associated to the counter
Ri (based on the destination group, as defined in Section 4.3.2), diverting traffic away from links
li ; otherwise, the L2 link is skipped, shortening Path A. This avoids the contribution of the current
switch to the load of links li , only when such contribution could congest the links. Note that the
traffic pattern or load level often varies per switch: some switches might employ a shortened Path
A without L2 (because their corresponding Ri counter is below the threshold) while others employ
the long version (because their Ri counter is larger). Each of these counters Ri is derived from
the values of a subset of the global counters, as defined in Section 4.3.2. Section 6.1.2 presents an
example of empirical threshold selection.

Based on the values of the global and remote counters, LIA determines a suitable SROOT for
each packet, selected such that the Path A adapts to the determined non-minimal path. Finally, the
value of the global counter associated with the destination of the packet, which represents traffic
intensity, is used to modulate UGAL. It biases the result towards minimal or non-minimal routing
by modifying the threshold parameter T in Equation (1). Three load levels are defined, each with
its own threshold T .

4.2 Traffic Estimation Using Extended Counters

Section 3.1 identifies the limitations of estimating traffic using the amount of packets that are
injected (forwarded) from each input injection queue. Extended counters consider both newly
injected packets (inji ) and packets transiently stored in input injection queues (stori ). The average
number of stored packets is very small before the saturation point, and grows quickly when the
load exceeds this point, because traffic cannot be delivered as fast as it is generated and packets
get stalled in the input queues.

Extended counters combine information from both injected and stored packets. The dynamic
range of the original injection-based counters depends on the sampling interval. By contrast, the
range of stored packets depends on the size of the input buffers. The calculation of extended coun-
ters relies on a parameter w used to weight the two types of counters, as follows:

extendedi = inji +w × stori . (2)

The parameter w needs to be set so that (i) uniform traffic under saturation is not confused
with adversarial traffic, and (ii) adversarial traffic after saturation is not mistaken with medium or
low-intensity traffic, as seen in Section 3.1.

4.3 Non-minimal Paths in LIA

This section presents the mechanisms used by LIA to determine when and how to shorten non-
minimal paths, based on estimations of traffic.

4.3.1 Global Counters and First Local Hop. Section 3.2.1 discussed the necessity of the first
local hop L1 in non-minimal paths. In particular, consider a shortened path without L1 (−GL2

or −G−). Since the first non-minimal hop is global, the selection of the intermediate group is
limited to the groups directly connected to the source switch by one of its global links. When
minimal paths also employ these global links, there may be not enough resources to accom-
modate traffic from other switches, such as the minimal traffic from other links observed in
Section 3.2.1.

To avoid this problem, LIA uses the hop L1 when several global links in the source switch would
receive too much load if MIN routing were used. This is obtained from the extended global counters
discussed in Section 4.2. Specifically, each switch tracks the global counters associated to the h
groups directly connected to it. When several counters (specified by a parameter Saturated Global
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Counters) exceeds a Global Port Saturation Threshold, then L1 is used. Otherwise, the non-minimal
path intermediate group is restricted to directly connected groups (i.e., L1 not used).

4.3.2 Remote Counters and Second Local Hop. This section details remote counters, which es-
timate the extent of intermediate-group pathological congestion with the current traffic, and how
to use them to determine when it is safe to skip the hop L2. Section 3.2.2 explains how skipping the
hop L2 in non-minimal paths concentrates traffic in certain local links used for the hop L3, causing
congestion. Specifically, for traffic with global offset k ×h +m, with 0 ≤ m < h, hop L3 exclusively
employs local links of type lk or lk + 1, proportionally to (h −m) andm, respectively.

LIA employs 2h/t remote counters per switch, one per each minimum value in the -G- through-
put line in Figure 7, i.e., each possible global destination offsetADV +(k ·h+m) withm = 0. Each of
these counters estimates the load imposed in one type of local link li , should the hop L2 be omitted
from a non-minimal path.2

A packet with global offset k × h + m contributes to congestion in links lk and lk+1. LIA ac-
counts for it in both corresponding counters Rk and Rk+1, proportionally to their probability of
use (h − m)/h and m/h, respectively. Therefore, flows with different but relatively close global
offset contribute to congestion in the same type of local links: All 2h − 1 flows with global offset
(k−1)×h+1 to (k+1)×h−1 contribute to congestion in links of type lk , and have to be accounted
for in the remote counter Rk .3

Global counters already track the offered load to each destination group (i.e., global offset).
Therefore, remote counters are directly calculated from their values Gi , with the following
operation:

Rk =

+(h−1)∑
j=−(h−1)

(
h − |j |

h

)
·Gk ·h+j (mod 2h2+1). (3)

For example, in an h = 6 Dragonfly the derived counter R3 is obtained from global counters as
follows: R3 =

1
6G13 +

2
6G14 +

3
6G15 +

4
6G16 +

5
6G17 +

6
6G18 +

5
6G19 +

4
6G20 +

3
6G21 +

2
6G22 +

1
6G23.

Remote counters are used to evaluate at injection if omitting L2 from a non-minimal path is safe,
or if L2 should be included to avoid congestion, as follows. For each packet sent to a destination
group with global offset k × h +m, the source switch checks the two remote counters Rk and (if
m > 0) Rk+1 associated with the destination global offset. If neither of them exceeds an empirical
threshold (RCTh), then pathological congestion is not considered relevant and L2 is skipped from
Path A; otherwise, L2 is included in Phase A to avoid congestion.

5 Evaluation Methodology

This section presents the methodology used to evaluate LIA. Section 5.1 describes the simulation
infrastructure, Section 5.2 the implementation of the routing mechanisms used and Section 5.3 the
traffic employed.

5.1 Simulation Infrastructure

LIA and other reference routings have been implemented in FOGSim, an open-source phit level
cycle-accurate interconnection network simulator. Our FOGSim models employ combined input-
output queued (CIOQ) switches [24] operating at 1 GHz with RR arbitration for both input and

2Both minimums associated with global offsets ±h2 correspond to saturation of the local link l+h ; these offsets are consec-

utive due to the modulo function, and both appear because of the aforementioned case of choosing the intermediate group

between the source and destination groups.
3These flows also affect counters Rk−1 and Rk+1.
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output arbiters. The minimum number of virtual channels (VCs) required has been employed to
avoid routing deadlocks, following an increasing order to visit them [20].

We simulate a Dragonfly network with Palmtree global link arrangement with p = h = 6 hosts
and global links per switch, a = 12 switches per group and t = 1. The network can be built with
24-port switches and comprises more than 5K hosts and almost 1K switches arranged in 73 groups.

We model HPC switches with a 90 ns port-to-port latency. The latency of network links is set
to 15 ns for electrical and 150 ns for optical ones. Buffers are properly dimensioned for link length
and we set a 2× internal speedup.

Each point of the results represents the average of ten simulations, in which network statistics
are collected for 60k cycles after 60k cycles of warm-up. Unless otherwise noted, all experiments
employ the parameters in Table 1.

5.2 Routing Mechanisms

Oblivious mechanisms, MIN and VLB routings employ 2/1 and 4/2 VCs in local/global ports re-
spectively. These routing mechanisms provide the best performance under uniform or worst-case
traffic patterns, respectively. Four variants of VLB with different Path A lengths are considered:
LGL, LG-, -GL, and -G-.

Universal Globally-Adaptive Load-balanced Global (UGAL-G, [20, 27]) is a per-packet
source adaptive routing that chooses between MIN and VLB paths by comparing the queue length
of the corresponding global output ports, with a 2× penalty factor for VLB paths. Additionally,
a constant T can bias the routing towards MIN or VLB to adjust performance for benign or ad-
versarial traffic patterns. So, a packet is routed minimally if QMI N ≤ 2 × QV LB + T is satisfied.
Instantaneous knowledge of queue lengths for all global ports in the source group (including the
ones in other routers) allows UGAL-G to balance the load in global ports. However, its implemen-
tation is impractical.

Piggyback (PB) routing [17] implements per-packet source adaptive routing, relying on state
information for each global channel in the group. PB denotes a global channel д as saturated when
Qд > F × Q̄ + Z , where Qд is the queue occupancy of д, Q̄ is the average occupancy of all the
global channels of the switch, F is a tuning parameter and Z is a threshold to filter out transient
variations in minimal paths. Saturation information is distributed among switches of the group.
PB employs LGL for Path A and 4/2 VCs to avoid deadlocks.

Piggyback-ACOR (PB-ACOR) extends PB based on ACOR [7], defined in Section 2.2.2. PB-ACOR

increases the length of Phase A paths when packets are blocked several times at the head of the
injection buffers. The Phase A paths follow the sequence −G− ↔ −GL ↔ LGL. Two thresholds
are used to increase (IT1, IT2) and decrease (DT1,DT2) the non-minimal path length. A hysteresis
cycle (HI ) avoids oscillations. The length is extended when the blocked packet counter exceeds
the corresponding increase threshold, or reduced if it is lower than the decrease threshold after
the HI interval.

Traffic Pattern-based Adaptive Routing (TPR, [13]) is based on UGAL and has been briefly
explained in Section 2.2.3. Our implementation of TPR employs two load thresholds (LIl and LIh )
and three traffic regions to modulate the UGAL threshold T , focused on global inter-group traffic.
TPR requires 4/2 VCs, the same as PB. The TPR’s window size for each counter is 200 cycles and
the counters are implemented using a ring buffer. The parameters employed (presented in Table
1) have been selected after sweeping different configurations for the best performance.

LIA routing employs the extended traffic counters explained in Section 4.2, implemented as
a ring buffer with a window size of 200 cycles. The remote counters are updated each cycle
according to Equation (3). LIA modulates the length of the VLB path of Phase A as described in
Section 4.3, and employs the UGAL thresholds defined in Table 1 (same values as those in TPR),
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Table 1. Simulation Parameters

Parameter Value

N
et

w
o

rk
co

n
fi

g
u

ra
ti

o
n

Total end terminals N = 5, 256 hosts
Topology Canonical Dragonfly
Global link arrangement Palmtree
Switch degree 23 ports
Global trunking t = 1
Link speed 200 Gbps
Packet size 250 bytes
Switch frequency 1 GHz
Switching mechanism Virtual Cut-through
Arbitration policy RR
Internal crossbar speedup 2×
Forwarding latency 90 ns
Local/Global link latency 15/150 ns (3/30 m)
Injection queue size 126 KBytes
Local/Global transit queue size 18/45 KBytes
Local/Global/Injection VCs 2/1/1 (MIN), 4/2/1 (Other)

UGAL threshold constant T = 0 flits

P
B Global link state calculation F = 120%, Z = 5

UGAL threshold constant T = 0 flits

P
B

-A
C

O
R PB routing parameters F = 120%, T = 0, Z = 5

Switch hysteresis interval HI = 500 ns
First/Second increase IT1 = 15, IT2 = 50
First/Second decrease DT1 = 5, DT2 = 15

T
P

R

History window HW = 200 cycles
Inter low/high injection thresholds LIl = 3, LIh = 5
UGAL threshold T values (packets) benign=15, mix=-3, adv.=-15

L
IA

History window HW = 200 cycles
Inter low/high injection thresholds LIl = 3, LIh = 5
UGAL threshold T values (packets) benign=15, mix=-3, adv.=-15
Counters mode Extended, w = 0.1 (Equation (2))
Saturated Global Counters SGC = 3
Global Port Saturation Threshold GPSTh = 5
Remote Congestion Th. RCTh = 20

with the implementation introduced in Section 4.1. The w and RCTh parameters are derived from
the analysis in Sections 6.1.1 and 6.1.2, respectively, whereas SGC and GPSTh are selected by
systematically sweeping different values.

5.3 Traffic Patterns

We employ UN, ADV+i, and ADVc synthetic traffic patterns, and two application models, All-to-all

and Graph500. In synthetic traffic each node injects packets following a Bernoulli process modu-
lated by an injection probability.
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The best and the worst cases for this topology are examined with UN and adversarial shift

with offset i (ADV+i). According to the analysis in Section 3.2.2, two particular offsets have been
considered: 1 and h, resulting in ADV+1 and ADV+6, respectively. They represent the least and
the most congestion-prone cases, respectively, with respect to the use of the second local hop in
Path A.

ADVc traffic is employed because it presents throughput unfairness if nonminimal paths are not
selected properly, since the bottleneck switch (Sout in Figure 4(b)) gets all its global links occupied
by the traffic routed minimally from all other switches in the group. ADVc requires non-minimal
routing, but is less adversarial in terms of throughput than ADV+i using MIN routing (limited to
h/(a · p) and 1/(a · p) phits/node/cycle, respectively).

All-to-all traffic models a collective communication where each host sends a message to every
other host in the network. Our implementation follows a linear shift exchange pattern [25], imple-
mented in multiple MPI frameworks. This pattern performs communication on N − 1 consecutive
rounds; node i in round j communicates with node (i + j)(modN ). Because all hosts use the same
offset in each round, when using MIN routing the All-to-All traffic becomes a series of consecutive
adversarial traffic patterns, with varying offset per round. To address this effect, we employ two
different placements of tasks to nodes: consecutive and random. The random placement reduces
congestion and presents significantly better performance under MIN routing.

Graph500 traffic is implemented according to the model introduced in [15] for the Graph500
benchmark [23]. This is a BigData benchmark that is based on the execution of a breadth-first

search (BFS) over a graph. Graph500 distributes a graph between the compute nodes. In each
round, the BFS algorithm explores one additional level in the graph, performing point-to-point
communications with the required destination compute nodes, according to the distribution of
the graph vertices. Overall, the communication pattern is uniform within each phase (level explo-
ration), and an all-reduce operation is used at the end of each phase for synchronization. Following
the notation in [15], we simulate a graph of scale s = 20 and edgefactor fe = 16 with a coalescing
size of cs = 256, the maximum number of levels to explore is restricted to 5 and the number of
edges connected to the root vertex is dr = 3.

Halo 3D traffic implements a 27-point stencil discretization application model presented in [22],
derived from common HPC physics workloads. This pattern appears in parallel applications such
as Lattice Quantum ChromoDynamics (QCD). Following the details in [22], our implementa-
tion employs a random placement policy to assign stencil sub-cubes to network endpoints.

6 Results

6.1 Extended Global and Remote Counters

6.1.1 Extended global Counters in LIA. We explore and compare six counter models: Injected is
a traditional implementation in which the counter tracks forwarded traffic; Stored only considers
the packets that transiently stay in the input queues, and is only presented as a reference; and
our Extended mechanism, using four different weight values w = {1, 0.5, 0.2, 0.1} as defined in
Equation (2). To isolate the impact of the counter model, all mechanisms rely on longest paths
for non-minimal routing (pure Valiant with LGL) and global counters are used to modulate UGAL.
Figure 9 shows the traffic counter value and throughput for ADV+1, ADVc, and UN traffic. ADV+h,
omitted, is similar to ADV+1.

The Injected counter model reflects the limitations analyzed in Section 3.1: Over the saturation
point, input queues get full because traffic cannot be forwarded as fast as it is generated and the
injected counter value decreases. This situation causes an incorrect estimation of the traffic adver-
sity, considering that the network load is less adverse and incorrectly biasing UGAL towards MIN.
Hence, the saturation throughput starts to fall.
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(f) UN traffic

Fig. 9. Impact of extended counters. Global counter value (top) and throughput (bottom) for six implemen-
tations of traffic counters and three traffic patterns.

Regarding stored counters, prior to saturation nearly all packets are immediately forwarded
resulting in an insignificant average value for the counter. This value grows quickly when the
offered load exceeds the saturation point. This happens because packets cannot be delivered as
fast as they are generated, so they are received in the buffer at the injection rate and are delivered
at the accepted load rate, quickly accumulating at the injection queues. This has two problems for
traffic estimation: first, it is difficult to differentiate UN traffic at saturation from adversarial traffic
at medium or high loads, as observed in the poor throughput curves with severe congestion under
UN after saturation; second, they only pass the traffic thresholds after the saturation point, but the
routing should react before this point. Latency results (omitted for brevity) show poor results for
stored counters under adversarial traffic.

Extended counters combine injection and stored counters weighted by the parameter w , as
explained in Section 3.1. Extended counters prevent the lack of information of using only the
injection counter and avoid the problem caused on UN throughput by having only a stored counter.
The weight w needs to be large enough to avoid congestion after saturation in adversarial traffic
patterns, but small enough to prevent the congestion in UN. Figure 9 presents four options
for tuning the parameter w . With large values w = {1, 0.5, 0.2}, the large value of the stored

component produces the undesired behavior under UN traffic pattern, because counter values
at saturation become too large to consider UN traffic as benign. Hence, the misled routing
mechanism sends the traffic following VLB paths and as it can be seen in Figure 9(f), congestion
appears. A small value w = 0.1 lowers the extended counter value to the same range of the
injection counter under UN traffic, as seen in Figure 9(c). Hence, the throughput obtained in this
case under UN is similar to using injection counters and the throughput under ADV+1 and ADVc
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(b) R+1 counter value for two different
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(c) R+1 and R+2 counters under combined

adversarial traffic patterns ADV+9 and

ADV+11.

Fig. 10. Remote counter analysis, using non-minimal paths -G- and -GL. Saturation using {−G−} occurs
for similar counter values in all cases, indicated by the red line. These sub-figures exemplify three different
cases. Case (a) showcases isolated adversarial traffic patterns. Case (b) represents two traffic combinations
in which the R+1 counter increases at the same rate in both mixes of traffic. The traffic mix in case c) affects
two remote counters, which increase at different rates; the most restrictive one (R+2, which is the first that
crosses the red line), determines the need of the second local hop in the Path A of non-minimal routing.

remains stable after saturation thanks to the effect of the queued packets. Other values for the
history window and buffer size may lead to different optimal values for w .

6.1.2 Remote Counters in LIA. This section explores how remote counters determine when the
L2 non-minimal hop is required as part of Path A. Figure 10 presents the evolution of the rele-
vant remote counters for different traffic patterns and load. Two different non-minimal paths are
considered: -G- and -GL, without and with the L2 hop.

The first experiment in Figure 10(a) considers adversarial traffic pattern ADV+i, with different
global offset i from 1 to h = 6. According to the analysis in Section 3.2.2 and the values in Figure 7,
each of these traffic patterns gets a progressively lower saturation point when using Path A -G-,
but -GL is always close to the 50% limit. This occurs because -G- concentrates traffic on one or
two remote local links. Remote counters track the load in such links, so their value at saturation
should be the same regardless of the traffic. Results confirm the previous analysis: all the different
traffic patterns saturate at different loads, but the value of remote counters at the turning point
is similar in all cases, around 17 phits/interval. Saturation is identified when counter values using
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Fig. 11. Sensitivity analysis of different parameters of LIA under ADVc traffic.

-G- paths shoot up because input queues start to fill, but when using paths -GL they continue to
grow steadily. Before this saturation point, counters for both paths match.

The application of Remote counters is not restricted to adversarial patterns with a single destina-
tion group. The two traffic patterns considered in Figure 10(b) divides traffic evenly between two
destinations: groups +2 and +4 in one case and groups +3 and +9 in other case. In both situations
the saturation occurs at the same turning point as before, around 17 phits/interval. Additionally,
the R+1 counter value overlaps in both traffic mixes because when the non-null corresponding
values are replaced in Equation (3) using h = 6, both cases match, since R+1 =

2
6G2 +

4
6G4 and

R+1 =
3
6G3 +

3
6G9. Since traffic is divided evenly,G2 = G4 andG3 = G9, then R+1 grows at the same

rate in both cases.
Finally, Figure 10(c) presents another situation where traffic is divided evenly between desti-

nation groups +9 and +11. Both values lie between h = 6 and 2h = 12, so these flows increase
remote counters R+1 and R+2 as follows: R+1 =

3
6G9 +

1
6G11 and R+2 =

3
6G9 +

5
6G11. Based on

the previous equations, R+2 is expected to grow faster than R+1 because the traffic is distributed
evenly to G9 and G11. As a result, the former is the counter that determines the saturation point
of the path -G-. The results in Figure 10(c) confirm this, since R+2 grows faster and crosses the
reference threshold at around 22% of the offered load. After this point, the values of both coun-
ters increase suddenly for paths -G-, since injection is restricted after local link l+2 saturates and
packets accumulate at the input queues; this does not occur using paths -GL.

These results confirm that remote counters effectively point out the necessity of the L2 local hop
in Path A for non-minimal routing when any of the counter values crosses the defined threshold.

6.1.3 Sensitivity Analysis of Other Parameters in LIA. Figure 11 presents an analysis of the im-
pact of three LIA parameters, using ADVc traffic. GPSTh and SGCTh are used to determine when
to omit the first local hop in non-minimal paths. As observed in Figure 11(a) and (b), unless the
parameters always force to use the first local hop, the impact of the parameter value is negligible.
Figure 11(c) shows latency with different values of RCTh, which determine when to omit the second
local hop. As observed in Figure 10, the value of this parameter should range around 17. The opti-
mal latency in Figure 11(c) is obtained using RCTh = 23, but we select a more conservative value
of RCTh = 20 to be on the safe side. Indeed, using a low value for RCTh is safe (it never introduces
pathological congestion), but it may lead to using longer paths when it is not really necessary.

6.2 LIA Performance and Fairness

This section evaluates the performance of LIA, comparing to other oblivious and adaptive routings,
and considering latency, throughput, and fairness.
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(a) ADV+1 lat.
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(b) ADV+h lat.
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(c) ADVc lat.
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Fig. 12. Average latency and throughput under ADV+1, ADV+h ADVc, and UN traffic patterns, comparing
LIA with oblivious routings.

6.2.1 LIA Compared to Oblivious Routings. For the comparison, MIN has been selected as the
baseline reference under UN traffic pattern because it achieves the best behavior on both latency
and throughput. For VLB routing the four non-minimal paths considered in this work have been
employed: -G-, -GL, LG-, and LGL. VLB(LGL) presents the best randomization to avoid any patho-
logical congestion, but with the highest base latency. Figure 12 presents average latency and
throughput of these mechanisms and the proposed LIA under different traffic patterns.

Performance results under UN traffic pattern are as expected: VLB with different paths present
different base latencies and a throughput close to 50%. By contrast, LIA routing predominantly
sends the traffic following minimal routes, like MIN, and achieves the same latency and throughput.

Using MIN under adversarial patterns, saturation is reached at very low load because global
links become a bottleneck, and only a small part of the traffic can be delivered using minimal
routes, specifically 1/(2h2) � 1.38% and 1/(2h) � 8.33% under ADV+i and ADVc, respectively.
Before these low saturation points, optimal latency is obtained using MIN. VLB improves these
saturation values, to different levels depending on the non-minimal path length used. LIA raises
that point close to 50% in all adversarial patterns, presenting the best average latency for the whole
range of load.

Under ADV+1, VLB variants from 1 hop -G- to 3 hops LGL in Phase A obtain different base
latencies, but the saturation point is near 50% in all cases. After this point, only VLB(LG-) suffers
congestion. LIA obtains the best latency, like VLB (-G-) (Figure 12(a)) and a stable throughput very
close to 50%. Under ADV+h, pathological congestion in local links limits throughput to 1/h � 16%
for -G- and LG-. The two other VLB cases are near the 50% limit throughput. LIA throughput
is close to the 50% limit and it achieves the best overall latency: at different increasing loads it
approximates the latency of MIN up to 1.38%, VLB(-G-) up to 16.6% and VLB(-GL) up to 50%.

Results for ADVc follow the same trend as ADV+h. The saturation point is around 25% for -G-

and LG-, and 50% with the second local hop. Again, LIA achieves the best latency because it adapts
paths to the network conditions. Additionally, Figure 13 shows the average accepted load for each
switch in group 0, under an offered load of 50% and ADVc traffic. VLB(-G-) and VLB(LG-), besides
reduced throughput, suffer significant unfairness effects. By contrast, when -GL or LGL paths are
used, VLB is fair, with a similar accepted load in all switches. LIA is totally fair, with the same
accepted load in all switches.
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Fig. 13. Throughput accepted for each switch Si of group 0 under ADVc traffic with an offered load of 50%,
comparing LIA with oblivious routings.
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(a) ADV+1 lat.
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Fig. 14. Average latency and throughput under ADV+1, ADV+h, ADVc, and UN patterns, using LIA and other
source-adaptive routings.

6.2.2 LIA Compared to Other Source Adaptive Routings. This section compares the performance
of LIA with other source-adaptive routings: PB as the baseline reference; UGAL-G [20] as an ideal
UGAL balancing the use of global ports; TPR, which relies on traffic counters and modifies the
UGAL offset; and PB-ACOR, which blindly adapts non-minimal path to network load to reduce
latency. Figure 14 presents the performance of these mechanisms under different traffics.

In terms of latency, PB, UGAL-G and TPR employ complete non-minimal paths, so under ad-
versarial traffic patterns in Figure 14(a)–(c) they quickly catch up with the latency of VLB(LGL)

presented in Figure 12. Even at a low load of 10%, LIA reduces latency by more than 25% over PB,
UGAL-G and TPR under ADV+1 traffic. PB-ACOR also improves latency at low loads, but it adapts
the path length to absolute network load only, whereas LIA considers the detected traffic pattern
and load. At an intermediate load of 30%, LIA reduces PB-ACOR latency by 30% under ADV+1 traffic.
Under UN traffic all routings are competitive.

In terms of throughput, TPR has a peak result close to 50% under adversarial traffic patterns
in Figure 14(e)–(g). However, after this saturation point its throughput falls, as explained in
Section 3.1, down to the result obtained by PB, which is the lowest in our evaluations. PB-ACOR

and LIA obtain a stable throughput over saturation very close to the theoretical maximum of 50%.
Again, under UN traffic all routings are competitive.

Figure 15 shows the average accepted load grouped by switch with an offered load of 50%. PB

routing suffers from pathological unfairness under ADVc, as identified in [14]. TPR and UGAL-G
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Fig. 15. Averaged throughput accepted for each switch of group 0 under ADVc traffic with an offered load
of 50% comparing LIA with other source-adaptive routings.
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Fig. 16. Average accepted throughput using LIA for each switch in group 0, divided into MIN and the four
possible misrouting policies. ADVc traffic with a load of 50%.

also exhibit this problem but it is less pronounced. Whereas ACOR adapting the non-minimal
path length is fair [7], PB-ACOR inherits the unfairness issue of PB since it is based on the latter
to select between minimal or non-minimal routes. As shown, LIA exhibits a perfect throughput
fairness between all switches within the group.

In conclusion, the best overall latency result is achieved by LIA and the throughput is very close
to the theoretical maximum for each pattern.

6.2.3 Fairness and Use of the Hop L1. This section analyses the behavior of LIA considering
the use of the hop L1, according to the implementation described in Section 5.2. Figure 16 breaks
the accepted load for each switch by the path followed, either minimal or any of the non-minimal
paths considered in this work.

Section 2.3 explains that ADVc unfairness comes from traffic concentrating in switch S11 (in our
example) to be forwarded to the h consecutive groups. For this reason, short non-minimal paths
that omit the hop L1 should not be used by the terminals connected to the bottleneck switch Sout .
This is solved by LIA as explained in Section 4.3.1. Figure 16 shows how S11 sends traffic using non-
minimal paths with the hop L1, because it identifies its global queues as saturated. Other switches
continue using minimal or non-minimal paths without this hop L1. In conclusion, LIA adapts the
routing per switch to send the traffic minimally or non-minimally and to modify the length of the
VLB Phase A path based on the network and particular switch conditions.

6.3 LIA Performance Under Transient Loads

Figure 17 shows the average packet latency under the transition between two different traffic
patterns for the source-adaptive routing mechanism compared. It shows a change from UN to
ADVc traffic patterns on the left and vice versa on the right. When the traffic pattern dynam-
ically changes adversarially, from UN to ADVc in Figure 17(a), the latency of UGAL-G and PB
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Fig. 17. Average packet latency at t = 0 from UN to ADVc traffic patterns and vice versa in (a) and (b) and
boxplot of packet latency at injection time equals to 210 ns of the transitory from UN to ADVc.

grows quickly because it increases the amount of non-minimally routed packets to adapt to the
adversarial traffic pattern. The latency result of TPR before t = 0 explains that the amount of
non-minimally traffic injected by TPR during the UN phase is lower than by PB. The same can
be concluded for PB-ACOR and LIA. After that change, these routing algorithms start to route
the packets through non-minimal paths, deduced from the increment on the average packet
latency. LIA offers the best result, keeping the latency stable and as low as possible. Conversely,
in Figure 17(b) the behavior is similar.

Figure 17(c) depicts the quartile boxplot for the latency of all the packets injected during the time
interval from 181 to 210 ns, which is the range where the stabilization happens. The results show
that LIA and PB-ACOR latency is quite lower than for the other routing mechanisms evaluated.
Moreover, the amplitude between the 1st and 3rd quartile of TPR, PB-ACOR and LIA is significantly
lower than in PB. However, the latency values reported by TPR are bigger, as seen in Figure 17(a).

6.4 LIA Performance with Multiple Traffic Patterns

This section evaluates LIA using different traffic patterns in different areas of the network. Nodes
in each network area only communicate with other nodes in the same area, following the traffic
pattern of their area. Note that non-minimal routing can always divert traffic through other areas
of the network. We have evaluated two traffic combinations: C1 defines four areas, each with 25%
of the nodes, and traffic patterns UN, ADV+1, ADV+h, and ADVc, respectively;C2 defines two areas
interleaving the nodes, so odd nodes send to ADV+1 and even ones send to ADV+h.

Figure 18 shows average latency and throughput. These results are aligned with previous
sections, in which LIA achieves the best or a very competitive performance. Additionally, they
prove that LIA, using only information local to the switches, appropriately adapts path length
even in presence of different traffic patterns and when a single group can’t know about all traffic
going to a group.

6.5 Application Execution Time

This section evaluates LIA using realistic application traffic patterns: All-to-all, with consecutive
and random task placement, Graph500 and Halo 3D. Tasks run to completion and performance is
measured from the execution time. Values are normalized to the result of MIN routing in each case
and Figure 19 presents the speedup of each routing mechanism.

The consecutive task placement in Figure 19(a) is not well suited for All-to-all. With the linear
shift exchange pattern, global links become bottlenecks and the All-to-all communication requires
350 972 cycles to finish with MIN routing. The four Valiant variants present a very significant
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(a) C1 Average packet latency
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(b) C2 Average packet latency
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Fig. 18. Average latency (above) and average throughput (below) under C1 : {UN, ADV+1, ADV+h, ADVc}

andC2 : {ADV+1, ADV+h} traffic cases comparing LIA with oblivious (left) and other source-adaptive (right)
routings.
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(d) Halo 3D

Fig. 19. Execution time speed-up of oblivious and source-adaptive routing algorithms over MIN under All-

to-all, using consecutive (-CTP) and random (-RTP) task placement, Graph500 and Halo 3D traffic patterns.

speedup, by removing this bottleneck with the traffic randomization. Additionally, PB and
PB-ACOR behave similarly and LIA achieves a competitive mark against them and considerably
improves the result of TPR in both applications. By contrast, under random task placement in
Figure 19(b), MIN performs nicely in All-to-all, reducing the completion time to 75 555 cycles. In
this case, the randomization introduced by Valiant is counter-productive in both applications. In
All-to-all LIA is the only routing mechanism that improves the result of MIN. Under Graph500,
Valiant is effective and adaptive routings perform even better. LIA outperforms all other mech-
anisms, by at least 4% with respect to TPR and PB, which do not shorten non-minimal paths, or
10% with respect to PB-ACOR, which is not aware of the traffic pattern. Under Halo 3D, Valiant
performs worse than MIN routing as expected based on its implementation although the evaluated
adaptive routings outperforms oblivious algorithms by using non-minimal routes when those are
required. LIA performs like PB and better than TPR.

7 Discussion

Is the number of counters required by LIA feasible? The number of counters required in LIA

is affordable, corresponding to the number of groups plus local links per group. Considering the
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Dragonfly-based Frontier supercomputer (currently in the Top-3), 73 global and 31 remote counters
per switch would be required, which is affordable [1, 2]. Comparatively, current switches employ
hundreds of traffic counters for routing and congestion control tasks [5, 12]. Note that these are
traditional counters, not the extended counters that are introduced in this work, but its number
clearly exceeds the requirements of LIA.

What are the implementation challenges of extended counters? Although the implementa-
tion of LIA counters requires to store more transient values for the history window (HW = 200
cycles in our evaluations, according to the parameters in Table 1), the amount of storage can be
proportionally reduced if each transient value accumulates the traffic forwarded during multiple
cycles, instead of saving one value per cycle. LIA leverages these counters for routing, but their
calculation and distribution within the switch is not in the packet critical path: counters are up-
dated periodically, and a small delay only affects the response to traffic changes, which is typically
in the order of microseconds.

Does LIA need to adapt its parameters to different workloads? Tuning parameters depend
on the network characteristics (network size, switch buffer sizes, history window, etc.) and not
depend on the specific workload traffic. Hence, they do not need to be modified for different
workloads.

What are the limitations of LIA with respect to a progressive adaptive routing? LIA is con-
servative and it only skips the second local hop (by selecting an appropriate intermediate Valiant
node) when it is certain that doing it does not introduce congestion. However, this is estimated
at the source switch based on its own counter values derived from its local nodes traffic, without
remote information. Depending on the traffic pattern of other switches, there could be a situation
in which a large remote counter suggests the use of long paths in a switch, but a shorter path
would be safe (because other switches are not loading the corresponding local links). A progres-
sive mechanism might re-evaluate this decision in the intermediate group, selecting the shortest
possible path in all cases.

8 Related Work

Previous works have considered the use of traffic counters to modify routing based on a central
controller, such as Hedera [4]. They work on a per-flow granularity and their adaptation time is
significantly larger than in LIA. LIA employs extended traffic counters to estimate offered traffic
instead of carried traffic. Hedera relies on an iterative algorithm instead. TPR [13] employs traffic
counters to modify UGAL thresholds, but it fails to estimate offered traffic and does not shorten
non-minimal paths.

Like TPR, our proposal LIA employs some counters and thresholds to adapt routing to the net-
work traffic conditions. DGB [19] delegates the task of adaptive routing parameter tuning to a gra-
dient descent optimization algorithm, and implements reinforcement learning techniques (specif-
ically, the epsilon-greedy algorithm) to apply this mechanism. The application of reinforcement
learning for parameter tuning in LIA could be considered as a future line of research.

Several mechanisms have proposed shortened variants of Valiant for the Dragonfly. The original
proposal by Kim et al. in [20] selects a random intermediate group, instead of a switch, (LG-) with
our terminology. Paths with a single non-minimal hop (-G-) have been used in previous work [8].
Both alternatives introduce pathological performance issues [16], analyzed in Section 3. ACOR [7]
reduces the path length, but falls back to the complete path under high injection loads to avoid
pathological issues. However, ACOR is oblivious to the traffic pattern and requires congestion
to propagate to the source, leading to suboptimal results in certain cases. That work introduces
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a Restricted Valiant mechanism employed here and the concept of restrict Valiant intermediate
nodes is also employed in BoomGATE [21] to create subsets of VLB paths for deadlock avoidance.
Similarly, T-UGAL [26] employs a subset of VLB paths with shorter average length. Then, it reduces
the hops in both Phases A and B. However, it relies on an offline computation of paths, without
adapting to the traffic pattern.

The use of short non-minimal Valiant paths has been also considered in different topologies.
Yébenes et al. identified the turn-around problem [31] in Valiant in the Slim Fly, topology, and
shortened the Valiant path to avoid it. However, they do not focus on other cases where path
shortening improves performance and does not introduce congestion. Multiple short non-minimal
paths are employed in other cases. For example, the Jellyfish [28] random topology relies on a k-

shortest path algorithm [32] to find a set of paths (minimal and non-minimal) to each destination.
However, it does not study path selection techniques, leaving that task to the congestion control
mechanism. Moreover, it would never consider maximum-length Valiant paths, which are required
in some cases as observed in this work.

Extended counters avoid congestion after saturation due to counter value miscalculation. How-
ever, a throughput drop can be observed in other cases such as oblivious Valiant. This effect, which
has been observed before in the literature [11, 30], might have different root causes such as differ-
ent load received on different network links. An analysis of the impact of the deadlock avoidance
mechanism on these congestion issues is presented in [11].

9 Conclusions

Our adaptive routing LIA employs UGAL and introduces extended traffic counters, which leverage
the Palmtree global link arrangement to estimate offered load and shorten non-minimal paths in
Dragonfly networks.

The results show that extended counters correctly identify network traffic, leading to accurate
routing under both uniform and adversarial traffic patterns. LIA performs equal to or better than
the best oblivious routing for each traffic pattern analyzed. In those conditions, LIA also provides
the lowest latency, given that non-minimal paths with less hops are used when VLB is required to
avoid congestion. This feature allows latency reductions up to 30% over PB source-adaptive rout-
ing. Furthermore, its throughput is very close to the theoretical maximum for each traffic pattern
analyzed, which makes it very competitive against state-of-the-art adaptive routings. Moreover,
LIA does not present obvious effects of routing unfairness.
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