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ABSTRACT ARTICLE HISTORY
Well-posedness and higher regularity of the heat equation with Robin 11 November 2024
boundary conditions in an unbounded two-dimensional wedge are ~ 10July2025

established in an L2-setting of monomially weighted spaces. A mathe- KEYWORDS

matical framework is developed that allows us to obtain arbitrarily high Robin boundary conditions;
regularity without a smallness assumption on the opening angle of the non-smooth domain;
wedge. The challenging aspect is that the resolvent problem exhibits unbounded domain; higher
two breakings of the scaling invariance, one in the equation and one in regularity; heat equation
the boundary condition.

1. Introduction

We consider for some fixed y € (0, oo0) the inhomogeneous boundary value problem

U —AU=F inRy x Q,

yU+09,U=G onR, x 9'Q, (L.1)

Ujt=o =0 onQ.
Here, Q2 (given in polar coordinates) is the two-dimensional wedge
Q = {r(cosg,sing) : r> 0,9 € (0,0)}

for some given opening angle 6 € (0,27), 3'Q2 is the boundary of Q without the tip
{0} ¢ R? and v is the outer unit normal on 8’SQ2. The functions F = F(t,x) and G =
G(t,x) are given data, while the function U = U(¢, x) is unknown. We note that there is
an extensive literature on boundary value problems for elliptic operators on non-smooth
domains, see e.g. [1-5] and the references therein for general domains and [6-8] for wedge
domains, where techniques based on the Mellin transform have proven to be successful. Also

parabolic boundary problems in the wedge have been studied extensively, see e.g. [9-17] for
a non-exhaustive non-exhaustive list. However, to our knowledge no particular attention is
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attributed to higher-order regularity in the case of non-scaling invariant problems as the one
considered in (1.1). For a bounded domain, the terms with highest scaling are of leading order,
while terms of lower scaling can be treated by perturbative methods. This is not evident in
the case of an unbounded domain and for a non-scaling invariant operator. The application
of the Mellin transform, as applied to the scaling invariant case, does not directly solve the
problem in the inhomogeneous case. We develop a framework to treat such problems. For
simplicity of the exposition, we consider as a model problem the heat equation with Robin
boundary condition as the simplest model with inhomogeneous boundary conditions in the
parabolic setting.

The resolvent problem corresponding to (1.1) is coercive in the unweighted energy norm,
see Lemma 3.4. However, one difficulty to obtain solutions with higher regularity is that the
unweighted energy norm is not suitable for applying standard elliptic regularity theory as the
domain is not smooth. In fact, the Neumann Laplacian exhibits certain resonances, by which
we mean non-trivial elements in the kernel of the Neumann Laplacian which possess a scaling
in the radial variable, see Proposition B.3. In order to avoid scalings of the involved seminorms
which match those of the resonances, weighted norms are natural to use, cf. [18]. Here, the
weights are power weights in the distance to the tip of Q2. To get both existence of weak
solutions as well as higher regularity, we work in intersection spaces where both weighted
and unweighted norms are controlled. This approach necessitates a careful analysis, since the
transition from weak solutions to classical solutions in this setting is surprisingly non-trivial.
This is related to the fact that the spaces of test functions associated with the intersection
type spaces are naturally sum-type spaces. In order to show surjectivity in the test function
space, we solve a test function problem which is similar to the original problem but has a
reduced complexity in terms of scaling invariance. This method was used in related settings
in previous works [19, 20]. In this article, we further develop and highlight this technique for
the model (1.1). In particular, we account for all opening angles which do correspond to a
resonance! via the quantity dist(e + 1, % Z), where r~* is a monomial weight in the radial
variable r. As mentioned above, the non-scaling invariance of our boundary condition does
not allow to use directly the method from [8]. Instead we use an iterative approach where
we successively obtain higher regularity. The test function in this scheme is used to obtain
classical solutions in our intersection spaces as a starting point for the induction argument.

Our first main result provides well-posedness of the problem (1.1) for right hand sides with
base regularity in the framework of weighted, fractional Sobolev norms. These norms have a
monomial weight 7~¢ in the radial variable r and an exponential weight e ~#* in time. We refer
to Section 2.1 for the precise definitions of these spaces. Let us emphasize that the unweighted
spaces are not suited for higher regularity due to resonances. Therefore the condition (1.2) is
natural: The first condition excludes the appearance of such resonances, while the second
condition ensures that tools related to Hardy’s inequality are available. Note that we only
consider the case of negative exponents & € (—1,0) for the monomial weight. This is due
to the fact that we first construct a variational solution in unweighted spaces. The transition
to weighted spaces then necessitates local control of the weighted norms by the unweighted

'For this reason, we include the condition % ¢ Q in Theorems 1.1 and 1.2, which guarantees that for every g € Q
there are unique j € Ng and £ € Z such thatg = j + %(3, where Q is defined in Definition 2.3. In practice we only

work with a bounded subset @ C Q, and the condition % ¢ Q could be weakenend by only demanding that for
every g € Q there are uniquej € Ny and ¢ € Z such thatg = j + %Z.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1101

ones, which translates to negative weights. We emphasize that the estimates are uniform in
the Robin parameter y € (0, 00), but that the norms depend on y in a natural way dictated
by scaling. Indeed, problem (1.1) and correspondingly Theorems 1.1 and 1.2 can be reduced
toy = 1 by means ofthe scaled quantities U := UoSy,F =y %FoS,,and G:=y ~1GoS,,
where S, (£, x) := (t/y2,x/y). It is this scaling which underlies all norms, and we again refer
to Section 2.1 for the precise definitions.

Theorem 1.1. (Well-Posedness). Let 6 € (0,2m) be such that % ¢ Q. Let a; € (0,00) and
suppose that o € (—1,0) satisfies

dist(@(a + 1), t7Z) > oy and Ola| > aj. (1.2)
Lety € (0,00) and 8 > y2 and let

FeF:=Ly(Hy(Q)N Hj 0(LZ(Q))
GeG:= L%(Hg B'Q)NH O(HO(B Q)N H2+4(L2(8S2))
Then there exists a unique solution U € E := Hﬁ’O(HS(Q)) ﬂLé (Hé(Q)) to (1.1), and it fulfills

Ul + v IIUII Sero IIFllF + Gl
(HO(a Q)

Our second main result shows that the solution exhibits higher regularity if the data does.
Roughly speaking, we show that regularity of order £ € N for the data translates into regularity
order ¢ + 2 for the solution. To avoid resonance effects it is natural to make the assumptions
in terms of the scaling sff := 0 — 1. More precisely, we assume that («,£) € (—1,0) x N
satisfies

min { dist(6s +a+2,n’Z) Ols +a+1| 0] J+a|} > o (1.3)

for some a; > O and allj € Ny with j < £.

Theorem 1.2. (Higher Regularity). Let 6 € (0,27) be such that 3 ¢ Q. Suppose that there
are ap, a1 € (0,00) such that (a,€) € (—1,0) x N satisfies (1.3) and |5§2+a+2| < «q. Let
y € (0,00) and B > y?. Suppose that

Y .
L
F ey = |Hjo(H;*(Q),
j=o

GeGyy :_ﬂ (H EARTEY Q))ﬂHZ( D@ Q))HHZ( '(HL(5'Q)).
j=0

Then there exists a unique solution U € Eg4, := ﬂ“z Hﬁ O(H€+2 ](Q)) to (1.1), and it fulfills

IUNE > Sevaos IIFlE, +1Glic,,

Remark 1.3. We are confident that our techniques may be combined with a partial Fourier
transform in lateral directions to treat the problem at hand in an (actual, higher-dimensional)
wedge of the form © x R?. Since the main focus of the article is to introduce a novel method
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treating non-scaling invariant equations, we present the problem in a two-dimensional setup
in order to reduce challenges which relate to known methods to a minimum.

The article is organized as follows. In Section 2, we collect embedding, trace and inter-
polation estimates relating to Sobolev norms with power weights. Section 3 is devoted
to establishing a variational solution to the resolvent equation corresponding to (1.1). In
Section 4, we provide higher regularity results for the resolvent equation and prove Theorems
1.1 and 1.2.

2, Preliminaries
2.1. Notation and definition of spaces

By N we denote the set of natural numbers starting from 1, and we write Ny := N U {0}. Q
represents the rational numbers, R the real numbers and C the complex numbers. We assume
that all functions are by default complex valued. If H and K are two Hilbert spaces with scalar
products (-, )y and (-, -)k, respectively, which are continuously embedded into a common
Hausdorft space V, then we equip H N K with the scalar product (-, -)n + (-, )k, thus turning
H N K into a Hilbert space. For k € Ny, an open subset O ¢ R¥and O C V C O, we
denote by C*(V) the set of k-times continuously differentiable functions on O such that all
derivatives of order up to k have a continuous extension to V. The space Cf(V) denotes the
subspace of all f € C*(V) with support compact in V. We write C*° (V) := ) keNo Ck(V) and
CZ(V) = Ngen, CEV).

We decompose the boundary of the wedge €2 into 9.Q U 92 U 912, where 9.2 := {0} C
R2, and where 8o := {r(1,0) : r > 0} and ;2 := {r(cosf,sin6) : r > 0} are the lower
and upper connected component of 3'Q := 92\9.€2, respectively. For ¢ > 0 we define the
sector X as the set of all z € C\{0} with |argz| < e. For M C R we define the vertical
strip Sy ;== {A € C: ReA e M}.If M = {B} for one B € R, we simply write Sg. For a
scalar-valued function u, we denote by Vu its gradient, and we use the short-hand notation
[Vul?> + |VrVu|? = |9,ul®> + |r’18¢u| + 10,79, ul> + |8,8¢u|2 + Ir’laéulz.

We use weighted Sobolev spaces with integer number of derivatives in the wedge with a
power weight % in the radial variable and their trace spaces on the boundary. Since these
trace spaces have fractional regularity, we define those spaces in terms of the Mellin transform
in the radial variable. For sufficient control of the solution globally in time we use exponential
weights in time. Since we tackle the parabolic equation in terms of its resolvent equation, we
use the Laplace transform in the time variable.

Let H be a Hilbert space and f € Lj (R, H). Then the Mellin transform (at » € C) and
Laplace transform (at i € C) are defined by

—~ d
MFG) =F0) = A L) = HE(p) dt.

1 o° 1 o
— — e
A/ 2T ,/(; A/ 2 /;oo
The complex number A will always refer to the variable in Mellin space related to the radial
variable in physical spaces, while p refers to the variable in Laplace space related to the
temporal variable in physical spaces. We refer to Appendix A for more details about these
transforms and their properties.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1103

The properties of weighted spaces are often dictated by an inherent (dimension-
dependent) scaling. We therefore introduce for o € R the notation

1
Q._ 5 —g — - — %
5, =0 —1, S5 =0 2_50+%' (2.1)
Moreover, we fix the Robin parameter y € (0,00) in the boundary condition of (1.1). As
outlined at the end of the introduction, Theorems 1.1 and 1.2 will follow from the result for
y = 1 by a scaling argument. For this reason, we work with y = 1 in all sections below and
hence do not include the dependence of the norms and spaces on y in our notation.

Definition 2.1. (Regular spaces). Let k,£ € Ny, 8,5 € R. Forv € Llloc(Q) and ¢ € LIIOC(E)Q)
we define

¢ % 00 o, 2 d
() [vllgs = Z/o /0 ‘fﬁ?”(far)faé ]v(r,ga)‘ 7rd<p.
j=0

k
@) Ivlzg = D> _v** 01 1 T
£=0

(i) (Y125 = [V (O + (WO where W (@5 = [reses,,, ME[F 0| dImi.
(V) [Wlig = v*[¥ios + V1

The corresponding weighted inner products are denoted by ((,-))rp and (-,-);5. We
define the Hilbert spaces H g (R2) and H% (3'2) as the completion of C2° (Q\{0}), respectively
C2°(9'2), with respect to the corresponding norms in (ii) and (iv).

We give a corresponding representation of [ [v] ]¢ g in Mellin variables in Lemma 2.5. We
will also show in Lemma 2.12 below that the spaces H B (3’€2) are indeed trace spaces.

For our results in Theorems 1.1 and 1.2, we need to avoid singularities which depend
on the structure of the elliptic operator and also the opening angle. In order to capture the
singularity of our solutions near the origin, we need to allow for polynomial expansions in
terms of the radial variable r at the origin. Since the spaces IEIE(Q) are defined by density,

any v € H;; (2) can be approximated by smooth and compactly supported functions in
each seminorm [ [v] ]gp with 0 < £ < k (and correspondingly for the spaces on the
boundary). The following lemma shows that we have corresponding control for norms of
lower derivates but same scaling. In particular, it implies that {r? e Hf; (R2) for a cut-off
function ¢ € C2°([0,00)) with 1j0,17 < ¢ < ljop] if and only if § > slgr g- For smaller values
of § the singularity at the origin is too strong to approximate the monomial by a smooth
function supported compactly away from the origin.

Lemma 2.2. Letk € Ny and 8 € R with Sprpl = 5,%”3 # 0. Then

. 1 . k—1 . . .
(i) v € L (3) satisfies ) ,_, [v]kf%%’ﬂ% < oo if and only if there is a sequence of

loc
functions v, € C°(992\{0}) such that [v, — V]k—%,ﬂ — 0asn — oo.

(i) v € L; () satisfies le:o[ [V] lk—e,p+¢ < o0 ifand only if there is a sequence of functions
v, € C§°(§\{O}) such that [ [vy, —v] lkg — 0asn — oo.
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Proof. See proof of Lemma C.2 in [19]. O

Throughout the rest of the article, we fix a cut-off function ¢ € CZ°([0,00)) such that
1107 < ¢ < ljozj. The regular spaces only allow for functions which vanish sufficiently
quickly at the origin. For our solutions, however, we need to allow for functions which have
certain singular behaviors close to the origin. Indeed, the Laplace operator with Neumann
boundary condition has an infinite dimensional kernel, cf. Appendix B, consisting of such
singular functions.

Definition 2.3. (Singular spaces). Let 6 € (0,27) be such that % ¢ Q and define the set of
admissible exponents Q := {j + %E : L e No}. For B,s € R and k € Ny we define the
polynomial spaces

D) Py = {p: 2= Clprne) = c04-02 , ag(9)r? with a; € WR2((0,0))},

k+

(ii) Psp = {p R— C|p(r) = qug’qu% aqrd witha, € R},

and equip them with the norms

2 2(s2 ,—q) 2 .
1Pl15e = Yo VP Nagl oy respectively
, qu,q<5,?+ﬂ
2 — 2(55+,37q) 2
ol%, = > v lag|*.
q€Q.q<5s5+p

Moreover, we define the spaces HE(Q) = Hg () ;“73,?/3 and Hf8 = I:I%(B/Q) ® ¢Ps g, and
equip them with the norms

(i) llu+Cpully g == lulli g + Ipullf g,
(V) [V +Cpylipg = |¥lig + lIpylig.

The fact that [1’8]0,,3 = oo for all 8,6 € R shows that polynomials are not in the
regular spaces. There is another element of the kernel of the Laplace operator with Neumann
boundary conditions, namely the logarithm v(r, ) = Inr. Note that the logarithm is not
included in our choice of polynomial expansions. This is because our approach is to first
construct a variational solution which cannot contain a logarithm in its expansion by design,
and then subsequently showing higher regularity results for this variational solution.

Finally, we define parabolic spaces with fractional time derivatives and vanishing initial
data:

Definition 2.4. (Parabolic norms). Let H be a Hilbert space and let 8,s € R. For F € Dy
where

Dy = {p € C(R,H) : ¢(t) = Ofort < 0}
we define the norm
S :
1E N o) = (/ e PN(1delg + ¥ FO I dt) where
: 0

adgF() == L5 (|- PLF)(®).
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The space H;)O(H) is defined as the completion of Dy with respect to | - || HS o (H)- We write
L3(H) == Hp ,(H).

2.2. Different characterizations of norms

Even though we restrict ourselves to integer derivatives for the norms monitoring the size of
the respective quantities in €2, our proof method requires a corresponding characterization
in terms of Mellin variables. We emphasize that in this section and in the rest of the article,
we will always assume y = 1 for the Robin parameter.

Lemma 2.5. (Mellin representation of bulk norm). For £ € No, « € Randv € C (2\{0}) we
have

0
[[ﬂ]@==§ /‘/ |Mwﬁdmxw. (2.2)
0 R

Q
]+m:( € }“:5Z+a

Proof. For any ¢ € (0,0) and j,m € Ny, we calculate with Lemma A.2 (A.2) and (A.2) for

<2
/3 =Sy

IM85TC, ) agsyy = I P a0, v 0 o)

Integrating ¢ over (0, ) and summing over j+ m = £, we get the asserted identity (2.2). O
Lemma 2.6. (Real space representation of boundary norms). Let £ € Ny and let « € R. Let

5j

c= ]_[f=1 min{| SH‘Z [,1} and C = ]_[f=1 max{| 2: |, 1}. Then for ¢ € C°(R4) we have

* d
(i) Wi, = /O st (o) () 7r

(i) ¥ lea < I3 V2w, < Cl¥]ia-

Proof. The identity (2.6) is Plancherel’s identity in Lemma A.2(A.2) in view of Definition
2.1(2.1) and Lemma A.2(A.2). Moreover, by Lemma A.2(A.2) and (A.2) we have MY (h) =
A+DA+2)---(A+ O\ + L), so that

L=+

2 o~
0 ) PTG PdIm .

o e,y = [

ReA=s¢4qy j=1

Consequently, (2.6) follows. O

2.3. Estimates in homogeneous spaces

In this section, we state and prove some basic estimates which are useful when working
with the weighted spaces H and HX (£2). We first recall Hardy’s inequality, see e.g. [21]. The
following version can be found in [22, Lemma 5.1].

Lemma 2.7. (Hardy’s inequality). Let B # 0 and suppose that P +19,v € L*(R, %). We have

i Pv— —1y,B+1
zgﬂg I (v C)||L2(R+>g) = B lr arVHLZ(Rw%).

T
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We provide several estimates relating to the norms in homogeneous spaces:

Lemma 2.8. (Estimates for boundary norms). Let s,«, 8 € R be such that 5., # 0 and
Ssrat+p 7 0. We define ¢ = mln{lser"‘Hg %5, 1} and C = max{lg%j‘jIng, 1}. Forv e
CZ°((0,00)) we have

M Prlse < Wsarp < CUIF Polie, (2.3a)

M Povlse < Wrrarpor < CUIF P 9v1gq, (2.3b)

|5s+a+ﬂ|ﬁ [V]s,oz-i-,B = [V]S—i-ﬁ,a > (2'3C)

MesrarplIr P Wise < [0,V]sarp - (2.3d)

Proof. By an elementary calculation for all z, w € C with | Im z| = | Im w| we have

. Rez z Rez

minil,|— |} < ‘—) < max]1, . (2.4)
Rew w Rew

Observe that 654 + 8 = Ss4a+p, cf. (2.1), and rfﬁ\v(k) =V(A + B), cf. Lemma A.2(A.2), so
that

2 — 2s
[r v, = / 112 (L) 12d Im A
ReA=551048

A

Using the definition of [v]; in Definition 2.1 together with Lemma A.2 and (2.4), we obtain
(2.3a). Estimate (2.3b) follows from (2.3a) applied to rd,v if we observe [rd,v]s 411 = [VIs+1,0-
Similarly,

Py = f P8 [50)2d Im
S Red=5erars |)~|2’3

_ h—B+1 2 2
A Py =/ —— AF A+ 1P PO+ D]*dIm A
i Re}\,=55+a+ﬁ_1 |)"|25|)" + 1|2
These two identities imply (2.3c) and (2.3d), respectively. ]

Lemma 2.9. (Estimates for wedge norms). Let £ € No, o, B € R and let

(Zmax{ / 1}>_1, B,g :=2imax{ 59_

Then for v € C°(Q\{0}) we have with the notation V., = (3, +9,)

€+a

5z+a+ﬁ

bal [ PV Jea < [ V] Jeasp < Bol [r ] loas (2.52)

g1l [ P VeVl loa < [ V] lettratp < Bpral [ P Vipv] loas (2.5b)

[ V] Teatk < 158 qurl 5T V] Tets (2.5¢)

g 1150 1o pll PV Tow < [10V] leatpot- (2.5d)

Moreover, zf&é,”vbog =0forallm € {0, ..., ¢}, then we have

bp1[ [r vl Toe < OL r " 9pv] learpt- (2.5¢)
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Proof. The inequalities (2.5a), (2.5¢) and (2.5d) follow from Lemma 2.8 upon noting that
1 = 5&“ ifj + m = £ and thus by (2.2)

5j+m+ot—§
[T, = Z/ CARTCED)

Jm={

Note that max{[ [70,v] Jea+1,[ [0pV] Jeat1} < [ V] lev1a < [ [70:V] Jewt1 +1 [0pV] les1s
so that (2.5b) follows from (2.5a). For (2.5e) we use 83"17()», o) =[S 8;"+1’17()»,g0)d(p and
Jensen’s inequality to observe

0
~ 2
0570 @) I* < 6 f |9, 0)|” do.
0

This implies

6
/ / |A]8;”'17(A+,3,<P)|2d1mkd(p
Rek—s%_

<92/ / W50 4 B,¢)|* dIm A dg
Reli= 5“_

A+1-p —
=02 / / arl-p (,va'” (r=1o,v) (A, (p)‘ dIm A de.
Rei= 5e+a+ﬁ 1
Summing over j + m = £ gives (2.5¢) in view of (2.2) and (2.4). ]

Lemma 2.10. (Interpolation estimates). Let £ € Ny. For 8, 81,8, € Rwith g1 < B < Ba,
ne(B,B+1)andforanyv e Ccoo(ﬁ\ {0}) we have

P
(i) [V]Z,,B = [V]g/gl "v ]gzﬂz '
.. 1 —
(i) Wy < cy " Vit s
Br—B B—B1

i) [V 1eg < L1155 LI 175"
(i) [ e < cal W11 "LV 10 Y

where ¢ 1= |5g+,3+1|5_'7 if se4p+1 # 0and ¢ == |sp4y [2B=1) otherwise. Furthermore,
cQ = |5§2+ﬂ+1|ﬁ_" ifs%rﬁJrl # 0andcg : |5 |2(ﬂ M otherwise.

Proof. (i): Letp := andp ﬁz ﬁl Then + ,_land’31+/jz = B and

. 2
Vg = / (P (o v 2D / 5 () ) 1 ) |7
0 r

The claim (i) thus follows from Holder’s inequality.

(i): If s¢4p41 # O, then (ii) is just a combination of (i) and (2.3c). We thus assume
S¢+p+1 = 0. Then sy, # Oforalln € (B, B+ 1). We first show that forn = g +1— 2~ (k+D)
for some k € Ny we have

[T

k+1
[V]Zr] S 2 [V]Eﬂ-‘rl 2— k[ ][J,_],ﬂ'
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Indeed, we write w := (r3,)‘v and obtain from integrating by parts

o dr 1 o0 dr
[%F/rmmW—Z— u/@WMmW—
0 r 25[4_77 0 r
1 o r
= — r2% ey (rdew) —,
Se+n Jo r
so that the assertion follows by an application of the Cauchy-Schwarz inequality and since
[Se4y] = 2=+ in view of S¢yp+1 = 0. Iteratively, we then get the estimate (ii) for n =
B + 1 —2~%+D with a bound
koo —k —k
[2#7 =222 < oktne2h _jg 260,
j=0

where we have used 2k + 2% < (k4+1)(2 = 27%) fork € Ny and 2 — 27% = 5 — B. In view
of (i), the assertion in (ii) follows for all n € (8, 8 + 1).
(iii), (iv): The proofs follow analogously by an additional integration in ¢. O

Lemma 2.11. (Trace estimates). Let £ € N and o € R. Then for all v € C° (2\{0}), we have

, c
sup [v(,¢ )i = (24 )11 Toal 1 1o (2.6)
¢'€[0,0]
where cq 1= Ial_% ifa # 0 and cq := 2 otherwise. Moreover, it holds and
sup [v(, @7 1 < (24 Olsd D)V 17, 2.7)
¢'€[0,0] 2’

Proof. For A € C,%(p) := (A, ¢) and for all ¢’, 9" € [0,60] we have

//

¢
[P, ¢")|* = 2Re / T 9) 3,90 9) dg + [P0, 1)
g0/

We now

(i) integrate over A € S5, and use the generalized Plancherel identity in Lemma A.2(A.2) to
the effect off(;p, Jre A=sq Vd,v dImrdy = f;f, fRek:sa ’17(1—%, @) 0,v(A + %, @) dIm A
de, or

(i) multiply by |A|>*"! € S 52 and then integrate over A € S 2 respectively,

+a (+a

and obtain by the Cauchy-Schwarz inequality and (2.2) the estimates

1
sup [v(, @) 5q < 20 V] lowl [=8pv] low + inf [v( @154
90,6[0,9] r @’6[0,9]

sup [v(, @17 1 < 201000 V] Toeral (0D 0] Togta + inf [v(, )]0
©'€[0,0] 2’ ¢'€[0,0] 2’

A

"
Let now ¢ > 0 and let ¢’ € [0, 0] be such that for all ¢ € [0,0] it holds

(i) [V @N]Ge < V@5, + 6 or
(ii) [V(',fpl)]ﬁ_la = [V(')fﬂ)]z_la + &, respectively.
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In the first case, we obtain

1
VR, < Qf R do+e= TR, +e

Since ¢ > 0 was arbitrary, we arrive at

/1r[1()fg][V( o < —[[ ]]Oa+1 =9

[ Toal V] 1an-

where we have used Lemma 2.10(iv) in the last step. Similarly, in the second case we arrive at

1 1
inf [v(-, ¢ )] < —[ 130V Tosetal [T V] Toa < =1 V] lewl (V] Je—1041-
¢'€[0,0] -0 2]

In both cases the combination of the estimate for the supremum and the infimum (and (2.5¢)
of Lemma 2.9 in the second case) yields the result. O

The boundary norm in Definition 2.1(2.1) can be formulated as a trace norm as the next
lemma shows. We note that the trace estimate in our setting holds in all non-zero integer
scalings.

Lemma 2.12. (Boundary norms as trace norms). For I' € {092,012} and € C2°(T") let Ey,
he the space of functions v € C*(Q\{0}) with vir = . Let £ € Nand a € R be such that
s“_a # 0and 6 |5Z+a| < . Then for all y € C2°(TI") we have

vl 1, < inf[[VIlge < ClYl, 1,
2 veEy, 2

where ¢ := (2 + (9|s?+a|)_1)7% and C := (£ + 1) max {ao cosh? ayg, W}

Proof. Without loss of generality we assume I' = 9;£2. The lower bound follows directly
from (2.7). For the upper bound, we note that for A € C with ReX = 5?+ we have either
(a) | sin(A0)|* > 2 or (b) | cos(A0)|*> > 1 Dependlng on these cases, we choose in Mellin
variables either (a) v = sin(A¢) sm_l(w)w(k) or (b) vV = cos(rg) cos_l(AQ)w(k) Both
definitions yield harmonic extensions v € Ey of . Hence, there are f,g € {cos,sin} such
that

[V )= D /

/ (977> dg d Im A

j+m=¢ Re)”_ﬁua
%
< (t+1) lf(/\w)lj do A 912 dIm
Rer=s2,, Jo 18(A0)]
(C2) -
Ve i dma =y,
Re)L—SZ_W 2

This yields the assertion. O
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3. Variational solution

In this section, we will establish for sufficiently smooth data a variational solution to the
resolvent equation

puu—Au= f inQ,

(3.1
u+dyu=g ond<2,

where u € Cisthe complex variable related to a Laplace transform of (1.1) in time. The idea is
to use a Lax-Milgram argument in an (unweighted) space H (see (3.6)) of sufficient regularity
which ensures that (3.1) is fulfilled not only in a weak sense, but pointwise almost everywhere.
In order to find a suitable sesquilinear form, we test (3.1) with a certain linear combination
of derivatives of v € H which ensures the right amount of smoothness of the solution, see
Definition 3.3. However, in order to use the fundamental lemma of calculus of variations to
identify the Lax-Milgram solution with a distributional solution to (3.1), we show that the
class of these linear combinations of derivatives of v contains CZ°(2) as v runs through H,
and a similar argument is given for functions on the boundary. The outline of this section
is therefore as follows: In Section 3.1 we show that the class of test functions is rich enough
in the above sense. In Section 3.2 we use this richness of the test functions to obtain via a
Lax-Milgram scheme a variational solution u € H which at the same time is a distributional
solution. Finally, in Section 3.3 we update the unweighted information on u to a weighted
estimate.

3.1. Test function problem

In this section, we will provide certain surjectivity results in the space of test functions. In
Section 3.2 we will define a sesquilinear form in terms of the function v, which itself is defined
by a smooth and compactly supported function w via the test function problem

Av=w 1In€,
(3.2)
y=0 ondL,
where A := cr’k + cg — 1(rdy)? — 8(/2) and «, cg, c1,¢; € (0,00) are suitable constants.

The advantage of a sesquilinear form in terms of such a test function is that a Lax-Milgram
argument immediately yields a solution with sufficient regularity such that all terms in (3.1)
are defined pointwise almost everywhere. In this section, we argue that the image of the
operator A (which is acting on the dual side of the problem) is large enough to ensure
uniqueness for the primal objects.

Note that problem (3.2) still has a (single) non-scaling invariance which does not allow for
a pure Mellin approach. We therefore want to employ a Lax-Milgram type argument in the
Hilbert space H, defined as the closure of C2°(2) with respect to the norm

Ivll3, :=K/Q(|v|2+|er|2)dx+/Q(|r_1v|2+|Vv|2+|Ver|2)dx.

Proposition 3.1. (Test function problem). Let «, co, c1,¢2 € (0,00). For w € CZ°(2) there is
a unique solution v € H of (3.2), and it holds

/(K|v|2—|—|K7’V|2—|—K|rVV|2—|—|r_lv|2—|—|VV|2+|VrVV|2)dx < / Ir'w*dx. (3.3)
Q Q
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Proof. We introduce another Hilbert space 7, defined as the closure of C2°(£2) with respect
to the norm

VI, = I3, +« /Q |(rV)?v]? dx.
For a parameter 8 > 0 (specified below) we define B: H x H — C by
Bv,¥) := / r2Av (1= 8(rd,)* — 02) ¥ dx.
Q
Observe that for v, ¥ € C2°(2) we obtain through integration by parts that
[ rmgar=cn [ arta [ rvTacea [ @m @
Q Q Q Q
+ / (r~1a,v) (r 19, v) dx,
Q
— / XAy ((r9,) %) dx = ok / (rd,v) (rd,y) dx+2cok / v (ra, ) dx+co / @,v) (3,¥) dx
Q Q Q Q
+c / (0,79,v) (3#3@) dx + / (81’8(0") (&%W) dx,
Q Q
- /Q r 2 Av (9,9) dx = ok /Q (8yv) (99 dx + co /Q (r18,v) (9, 9) dx
+ ¢ / (3,9,v) (8,9, dx + / (rtoov) (r 102 dx.
Q Q
It follows that there is C > 0 such that |B(v, V)| < Clvil gy forallv € Hand ¥ € .

Consequently, 3 has a unique extension to a bounded sesquilinear form B : H x H — C.
Moreover, for v € H it holds

Re B(v,v) > @/ v2 dx 4 Kc28(1 —23)/ |r8,v|2dx+/cc2/ 18,v]? dx
2 Jo Q Q
+CO/ (=" + 819:v* + [r " 0pv)*) dx
Q
e [ Qo+ 010,r0 + 13,3, d
Q
+/ (I~ 9,vI* + 810,0,vI* + |r "0 v[?) dox.
Q

Hence, choosing § := }1 we obtain a constant ¢ > 0 such that

Re B(v,v) > C(K/ (V> + [rVv]*) dx + / (r W2 + [V + [ VrVv]?) dx) > c|[vll3.
Q Q

In conclusion, B : H x H — C is a bounded and coercive sesquilinear form.
Define F: H — C for ¢ € H through

F) = / r 2w (1= 8(rdy)* — 0) ¥ dx.
Q

Then we can estimate

F )] = (/Q|r—1w|2dx)2(/ﬂ|r—l(1—(S(rar)z—a;)vfﬁdx)z < Cullv Il
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fora C,, < oo, that is, F is a bounded anti-linear functional. The Lax-Milgram theorem
entails existence of a unique v € H such that

B, ) =F(@p) forally e H

and
/ (KIVI2 + kP 4 W VYR + |Ver|2) dx < / Ir~1w|? dx. (3.4)
Q Q

Since v € H, due to the definition of # and by taking traces, we conclude that the boundary
condition in (3.2) is satisfied. For ¥ € H we obtain B(v, ) = B(v, ) = F (), so that

/ r A (Av—w) (1 = 8(rd)* = )Y dx =0 forallyr € H.
Q

In order to conclude that tlle first line in (3.2) is satisfied, we thus need to show that for each
® € C°(R) there is Y € H with
(1—-8(r0)* -0y =P inQ,
Y =0 ondQ.

(3.5)

We use the Mellin transform in r and expand in a sine Fourier series in the angle ¢ € (0,6),
that is,

00 6
YOh9) =Y Yr(Mar(p), where Pi(1) =f0 V(%) ar(@)dg  and

k=1

axlg) = /2 sin (¥g),
satisfying (3.5) on taking
() ~ /9 ~
=——— " where ®r(A):= DA, 9) ar(e) de.
1 — 822 — (A2 0 Y Y
Using the Plancherel identity for the Mellin transform and Parseval’s identity for the sine
Fourier series, we have

0 00
||¢||%~/()/0 wr + DY+ ra > + 19,9 1* + |(rap)* Y|
+ [rd0, v * + 1029 1%) < de
0
—<[ [ (@sprengo.pr
0 JReA=-1
+ (14 22 18,9 (R @) P+H929 (3 9)]%) d Im A dgp
0
+ff (A4 AP [ (s @)
0 JReA=0

+ (14 A 18,9 M @) 2 + 1820 (0, 0)[2) dIm & dop

o

=K Zf L+ 1P+ A+ @+ AP B2+ ) [k () dIm A
k=1 Rei=—-1
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oo

+2/ L+ AP+ I+ @+ D ED? + EDY [))> dIm
k=1 ReA=0

|®(—1 + is)|* ds

i/ 3482+t + 2+ ADE)? + (B
=K
(1 -8 — (H)2 4 852 — 2i85)>

| Dy (is) | ds

Z/ 142+t +(1+52)("”)2 (kryt
(%1)24_5 2)2

[e.¢] o0
<y KZ/ |6k(—1+is)|2ds+2/ | Dk (is)|? ds
k=17R k=1 R

=/</ |<I>|2dx+/ 21| dx < oo.
Q Q

Hence, ¥ € 7 and therefore v fulfills (3.2). In particular
lierv]> = & 2|rw — rAv]? < lrwl? 4 |2 4 (V2 + ViV
so that (3.4) updates to (3.3). ]

Lemma 3.2. Let k, cp,c1,c2 > 0. Then for each n € C°(R4.) there is p € C*°(Ry) such that
(CzK +7r2(c) — cl(rar)z))p = 1n and for each £ € Z with 2¢102 < ¢y and each j € Ny it holds

o . 5 dr o ., dr
K / 1r T (rd, Y pl? —+ / 1 (rd, Y p|? — <oo.
0 0

Proof. Introduce the Hilbert space /C as the closure of C2°(IR;.) with respect to the norm
[Illxc, where

o0
lollz = x/ "y / (Il + rd,r o )
0
o0
;ZK/ ) |2 / (o2 + Ir (rop) o )—
0
We define C: K x K — Cby
0 _dr o0 __dr
Clo ) = cax / 22T T @ - al?) / 2T
0 0
o0 — d o0 —d
— 20, / o (ro ) = + o / (rd,r ) (rd,r' ) =
0 r 0 r
Clearly C(p, ¥) < llplicll i, and by Young’s inequality we obtain for all ¢ > 0
o0 , dr
C(p, p) == cak / Ir )2 — +(co—(1+e*2>c162) / |rp| —
0
+a(—eg?) / |rarr€p|2—.
0 r

Choosing ¢ € (0,1) sufficiently close to 1 such that cp — (1 + e c1l? > 0 (recall that
2¢1€% < ¢g by assumption), we may employ the Lax-Milgram theorem and obtain a unique
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p € Ksuchthat C(v, ¥) = [;° r23+2n$d7r forall € K, in particular for all v € C®(R.).

Integrating by parts, we thus learn that
(o + 172 (co — € = 2£c1(rd,) — 1 (rdp)?)rp = r'n

in the sense of distributions, that is (Czl( + r2(cy — a1 (78,)2)) p = 1. Observe that
quantitatively, only the information [ |r[+1n|2d7'

(rd,) p solves

< oo was used. Hence, since pj =

j-r .
(ck + 1720 — a1(rdnH))pj = raYn + &1 m; ( ,jq ) ()" p

for any j € N, the same argument yields iteratively the estimate for the higher derivatives.

O
3.2. Unweighted variational solutions with higher regularity
Fixe € (0,7) and p € ¥;_. For k := || > 0 consider the space
————II'ln
H=Ccr@\) (3.6)

where the norm || - ||y is given by
lull? = K/ (1 + welrul® + |rVu|2> dx + / (|Vu|2 + |VrVu|2) dx
Q Q

n / (|u|2 + ielrul? + |rd,ul? dr).
0

Here we write faszf dr = fooof(r, 0) + f(r,0) dr. We note that the space H does not depend
onx > 0. Note that all terms in the norm have the same scaling if we use parabolic scaling in
the sense that « scales like the square of the inverse length.

Definition 3.3. (Sesquilinear form). For co, ¢1, ¢; € R, we define B: H x C° (Q\{0}) - C
by

B(u,v) = / (1w = Au)(o — c1(rd:)* + el plr? — 85)v dx
Q

+ / (yu+ dyu)(co — c1(rd,)* + ca|p|r*)vdr.
02

Since pu — Au € Llloc(ﬁ\ {oh) and yu+9d,u € LIIOC(BQ \ {0}) for u € H, the sesquilinear
form is well-defined. Using integration by parts we can show that the sesquilinear form has
a unique continuous extension which is coercive on H x H.

Lemma 3.4. (Continuity and Coercivity). Let cy, c1, ¢2 € R and let B be as in Definition 3.3.

(i) There is a unique continuous extension B: H x H — C.

(ii) For u,v € H with vjyo = 0 it holds B(u,v) = fg(uu — Au)(co — c1(rd)? + ca|p|r* —
32)vdx.

(iii) For co > c1 > ¢ > 1, we have |B(u, u)| 2 ||u||%{for allu € H.
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Proof. The proof rests on the identity

B(u,v) = B(u,v) +c; (2/ uuraﬁdx—i—/ urBﬁfdr)
Q 9

@ (3.7)

+262|M|/ rBruT/dx—/(,uu—arzu)Béde
Q Q

with

Blu,v) = co(/QMquer/Qw.de+/muvdr)

T cl< / 10 (rou) (rd,7) dx + / Vrdu- Vro,vdx + / (royu) (r8,7) dr)
Q Q Q2

+ cz|u|(fgmzu7dx+/g(rw)-(rW)der/a rZuT/dr)

Q
+ /Q r20,ud,v dx,

which we will establish for u, v € C° (2 \ {0}) below.

Assuming that (3.7) holds, assertions (i) and (ii) follow immediately by density of C2° (2\
{0}) in H. Furthermore, we note that B(u, u) has the form pa® + b2 with a, b € R (where a, b
depend on |xt|). We thus can use Lemma C.2 to estimate |pa® + b?| > |u|a® + b* and get by
an application of Young’s inequality

Bl Ze ol [ Il + 1V dx+ [l ar)
Q 19]

1 1
+c1(/ 5|u||raru|2—z|u||u|2+|Vraru|2dx+Ef
Q

1
ro,ul® — = |ul? dr)
a0 2

1
wea( [ PP 4 StV = 2l dx [l ar)
Q 2 a0
1 1
+3 /Q r—2|a;u|2 — Pl lul* = rdul? dx.

For cg > ¢1 > ¢, > 1 the negative terms on each line can then be absorbed by positive
terms on the lines above. The positive terms yield the desired lower bound in (iii).

It remains to show (3.7). We define f := pu — Au and g := u + 9,u. Testing f with v we
get

/ﬁdx:/(uu—Au)de:f pLuT/dx+/ Vu-Vvdx — d,uvdr
Q Q Q Q

aQ
By the definition of g this yields

u/u?dx-i—/ Vu~V17dx+/ uvdr = /ﬁdx—i—/ gvdr. (3.8)
Q Q a0 Q 19}

Before we continue, we first note that

/ u(ro,)vdx = / (ro, + 2)uvdx,

/ (royu)vdr = —/ u(ro, + Dyvdr,



1116 M. BRAVIN ET AL.

(ro, + 2)Au = A(rd;)u,
0y (roy)u = (ro, + 1)0,u.

We next test with —(rd,)?v. Using the above identities we get
— / f(ro,)*vdx = — f (uu — Au)(rd,)*vdx = / (rdy + 2) (uu — Au)(rd,)vdx
Q Q Q
= / w(roy + 2)urd,vdx — / (Ard,u)(ro,v) dx
Q Q

= / w(ro, + 2)urd,vdx + f Vro,u - Vro,vdx — (0yro,u)(ro,v) dr
Q Q aQ

= / w(rd, + 2)urd,vdx + / Vro,u - Vro,vdx —|—/ (ro; + Durd,vdr
Q Q aQ

—/ (rd, + 1)gro,vdr.
aQ

Using — f 9o (roy + 1)gro,vdr = f 90 g(rd,;)*v dr and rearranging the terms, we thus learn

u/ (ro; + 2)urd,vdx +/ V(roy)u- V(ro,)vdx + / (ro; + Durd,vdr
Q Q a0 (3.9)

= — / f(rd,)*vdx — / g(rd,)*vdr.
Q 02
We also test with r2v. We calculate

/fr%dx:/(uu—Au)r%dx: M/ rqudx—}—f Vu-V(rZV)dx—/ r*d,uvdr
Q Q Q Q aQ

:/,L/ rzm_/dx—i—/rZVu-Vidx+2fr8,u-7dx
Q Q Q

+/ rzm_/dr—/ rng/dr.
aQ Q

. . . 2
Finally, we test the equation with 9;v to get

—/faf,vdxz —/(Mu—Au)aj,dezf r—zaguajvdx—/(uu—afu)a;vdx.
Q Q Q Q

(3.10)

(3.11)
If we add the identities c¢(3.8) + ¢1(3.9) + cz|u|(3.10) + (3.11) we obtain the asserted
identity. O

In order to apply the Lax-Milgram theorem, it is vital that the process of adding different
derivatives of test functions in the sesqulinear form B still yields a class of functions which
engulfs C2°(2\{0}) and is thus dense in H. This was the purpose of Section 3.1. We make this
precise in the following lemma.

Lemma 3.5. (Variational solution). Let ¢ € (0,m) and u € Xp_,. Suppose that f €
C°(Q2\{0}) and g € C(d'Q). Then there exists a unique classical solution u € H to (3.1),
and it holds

lulleg + [ [Au] Too + [dvudoo S [IfT Too + [ [f] Jo,—1 + [gloo + [g1,—1-
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Proof. Let ¢y, c1, ¢z > 0 be as in Lemma 3.4. Define a bounded anti-linear form F on H via

(F,v) = /f(co — c1(r0y)? + calp|r? — 9))vdx +/ g(co + car*|pl)vdr
Q Q2

+ ¢ / (rdr + 1)grovdr.
Q2

By the definition of H we have ||Fllgr S T [f] oo + [ [f] Jo—1 + [glo,0 + [g]1,—1- By Lemma
3.4 and the Lax-Milgram theorem, there is hence a unique u € H such that for all v € H we
have B(u,v) = (F,v) and |lu|lg < ||F|lg. For w € C2°(£2) we solve the test function problem
in Proposition 3.1 with « := |u|, i.e.

(co —a(rd)? + czlulr2 - aé)v = w, inS,
vy=0 ondQ.

This yields a v € ‘H with vj3q = 0, so that v € H and thus Lemma 3.4(ii) gives
/ (hu— Au—fwdx =0 Vw € CZ(R).
Q

It follows that pu — Au = f in Q. In order to verify the boundary condition, we choose
n € C°(0p<2) arbitrary. Consider the solution p € C*°(9p€2) from Lemma 3.2 to

(co — c1(rdp)? + car’ul)p = ,

and set v(r, @) := p(r)¥ () for some ¥y € C*°([0,0]) with 1jgy/) < ¥ < Igpr for0 < ¢’ <
¢” < 6. Consequently, we have by the definition of B(u, v) and the rapid decay of v towards
the tip and due to pu — Au = f in ©, that for all n € C2°(9p€2) it holds

(u+0yu—gndr= / (u+ dyu — g)(co — c1(rd,)> + cor*|p|)vdr
3QQ a0Q
= B(u,v) — (F,v) =0,

so that u+9,u = g on 9pQ2. By analogy we also have u+9d,u = gon 9, Q. Using —Au = f —u
and 0, u = g — u we also obtain the additional estimate. O

3.3. Weighted estimates

Next, we show that the unique classical solution u# € H from Lemma 3.5 is contained in a
weighted space. We use a negative weight which imposes less control near the tip but more
control at infinity. Recall that the definition of H involves a parameter x > 0.

Lemma 3.6. Letk > 0. Then for allu € H and a € [—1,0) it holds

[ [u] ]O,a + [ [Vu] ]O,a + [“]0,0: SK llullg < oo

and

loe°[ [1] Jow+1 < [ [ul Tgg L [Vl 165%.
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Proof. The estimate r=2% < 1+ 2 gives
[ [u] oo + [ [Vul Jow + [ulow S [l Joo + [ [ru] Joo + [ [Vu] loo
+ [ [rVul Joo + [uloo + [rudoo Se lulla-

For o = —1, this is already the complete statement, since [ [u] log+1 = [ [4] Jo < lullH-

Ifa € (—1,0), we use Lemma 2.10(iv) applied with £ = 8 = 0 and n = « + 1, so that
|5€+n|2 = 2, and obtain for all v € C°(Q\{0})
WLV By < [V 1o L [VV] 1557 (3.12)

By the definition of H there is {u};>, C COO(Q\{O}) with |u — u,||g — 0, in particular
[ [u—uul Joo + [ [Vu — Vu,] Joo - 0asn — oo, and u, — u pointwise almost
everywhere Using (3.12) with u, — u,,, we see that {u}>° | is Cauchy in the Banach space

H, +1 (£2), and by the pointwise almost everywhere convergence u, — u, its limit is u. Hence
the claimed estimate follows by approximation. O

Lemma 3.7. (Weighted Laplace). Let ¢ € (0,7), t € Xy_s, ¢ € [—1,0], and let u € H with
[ [Au] Joo + [Ovulon < 00. Then it holds

/Q r 2 fudx + /8 . r2gudr = pl [ul 1o + [Vl 15 — 2071 (4] I gy + (Ul
where f :== pu — Auand g .= u+ d,u.
Proof. Let u, € C° (Q\{0} with lim,,_, o |t — un||g = 0. Then integration by parts yields
/ r 2 (— Au)it, dx = / Vi - V(r~2*u,) dx — / 2 (Byu) ity dr
Q Q Q2

:/ rzo‘Vu-Vu_ndx—Za/ 2718, 0, dx
Q Q

+ / 2 (3, u) 0, dr.
Q2

Letting n — 00, we may use [ [Au] Joo + [dvulo,e < 00 to infer

/rZa(_Au)adx:/ r2“|w|2dx—2a/ rzaluarﬁdx—l—/ r 2 @ywudr.
Q Q Q

a2

Additionally, we observe by another approximation (using [ [#] loe+1 + [ [Vul Joo S
lullag < o0)

n—-oo

=2¢? lim / / =22y, 2 drde
n—oo

=20? lim 272, dx
n—oo Q

=2a2/ r2021y)% dx,
Q

so that the assertion follows upon writing 0,4 = ¢ — u and rearranging the terms. O

—204/ r 21y, udx = —2a lim 2y, 8y, x—a/ / 3 (r 7 |uy|*) drdg
Q
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From the above lemmas, we derive the following estimate on the weighted norms.

Lemma 3.8. (Weighted variational solution). Let ¢ € (0,7), u € Ey_¢, and ¢ € [—1,0].
Then for any f € C°(2\{0}) and g € CZ°(32\{0}) the solution u € H to (3.1) from Lemma
3.5 satisfies the estimate

I [ Tog + 120 IV6] Tog + [ [AU] Tog + 1112 ([ulow + [Byul0g)
Sew L1 Tog + 113 [g10e + 1217 (L 1F1 Too + 11213 glo).

For ay > 0 the implicit constant can be chosen uniformly in || > o;.

Proof. We note that by Lemma 3.6 and Au = pu — f all terms on the left-hand side of the
claimed estimate are finite. Testing (3.1) with Co|u|“u + r~22% for some large Cp > 0, we
obtain from Lemma 3.7

/Qf(comwa + 20 dx + /BQ g(Colpl®a+r2u)dr = z — 20*[ [u] 1oy, (3.13)

where — in order to deal with the complexity of the problem and in particular © — we have
introduced the complex number

z:= colm"‘(u[ [1] 1o + [ [Vul 5o + [u]é,o) + ul [ B + [ VUl T + [1] 4

We have the form z = pa? + b? for a, b € R and by Lemma C.2 we get |z| =, (Ju|a® + b?),
ie.

121 Ze Coliet” (Il 1l B + 1 [Val B+ yluldp) + iall 1] B + [ (V1] B + [T
The remaining term on the right hand side of (3.13) can be estimated via Lemma 3.6 by

@ Ll Bosy < [Iul 120 IV oo™ < 1l (1) Top + [ [Vl 129)-

For sufficiently large Cy(a, &) := a2co(e), this term can be absorbed into |z|, and we can
estimate the right hand side of (3.13) using the triangle inequality from below. Applying the
Cauchy-Schwarz inequality and Young’s inequality to the left-hand side of (3.13), we have for
6>0

\/Qf<co|u|“a+r‘2°‘mdx) < Cslpl ™ (Coll® L IF1 o + L IF1 o)
+8(Colp|“ T[] 10 + 1210 [1] 15,0
]AQg(CO\u|“ﬂ+ r72%) dr| < Cslul ™2 (Colual (T3 0 + 818,00 + 811412 (Colpal* [T o + [u13,0)

-1 ap, 12 2
< Cslul ™2 (Colul®Ig g + 813 )
+ 8(Colpel® (1ull [u] g + [ [l o) + Iall [u] By + [ 1] o),

where we have used |M|%[M]o,,3 < |M|%[ [u] Jo,s + [ [u] 11, for B € {@, 0} in view of (2.6) in
Lemma 2.11. Absorbing the corresponding solution terms, we obtain

Colpnl* (112l [ B + [ [Vl BB+ [T ) + Il (4] By + [ [Vt By + (13,

Sew 1T AT Bo + LI o) + 1l ™2 (AnlIg 130 + 13-
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In particular, this yields the claimed estimate after multiplying by | 1| and using the equation
in order to get the corresponding control on Au and || 3 0, u as well. O

4. Resolvent problem and parabolic equation
4.1. Maximal regularity for resolvent equation

In this section, we improve the regularity results from Lemma 3.8 iteratively by writing
—Au = f — puand d,u = g — u, and using elliptic regularity.

Theorem 4.1. (Base regularity for homogeneous norm). Let ¢ € (0,7), 0 € Xy_e with |u| >
1, and a € (—1,0). Suppose that (1.3) is fulfilled with £ = 0. Then for f € C°(Q\{0}) and
g € CX(I'Q), thereisp, € stfa such that the unique solution u € H of (3.1) from Lemma 3.5
satisfies

[l [u] loo + |ll«|%[ [t] lio + [ [u—pul Lo + ||Pu||7:§a + |M|%[M]o,a Saoane X1,
where

X0 = [ Tow + 1811 + |1l5lgloa + 1113 A (1100 + 1l 7[gloo) (1)

Proof. By Lemma 3.8 (and since [ [Vu] Joo = [ [u] ]1,¢) it suffices to find p, € st?a such
that [ [u — py] Jo S X(w). Since u is a classical solution of the resolvent problem (3.1) with
Robin boundary conditions, it is also a solution of the elliptic problem

Av = ]? in €,
=g on d'Q,

with data f := —Auand § := g — u. Observe that
[ 0w + [8]1 4 Saven [LAU] o+ [g]1  + (4], -

E)
Since u € Hé(Q) by Lemma 3.6 and Lemma 2.2, the trace estimate in Lemma 2.11 yields
U]y, < @+ @l ™[] e Sar [ [u] T1a so that

~ (2.7)
[ Jow+[8l1g S ager 18U Joe + [g]1, + (18] o Sagne X(), (4.2)

la
where the last estimate follows by Lemma 3.8. As u € H and thus in particular u € Iilg () for
all B € [—1,1) by Lemma 3.6 and Lemma 2.2, we obtain from Proposition B.3 and 5? =0a
generalized polynomial® p,, € ker?f%" such that u — p, € H2() and
(B7) - (4.2)
(=Pl ba S aper [ o0+ (21, S apare X0
Observe that p,(r,¢) = a + blnr + q,(r, @) with q,(r, ¢) := ane(%zm(o,s%ﬂ) U™ (@) 1"k,

Since u™*(¢) = ™ cos(mke) for some constant c™* € C by the proof of Proposition B.3, we
have [[W™ [lw22(0.0)) S 14 ll1200)) < 00 and thus [lqullpe < 9ullpg, , < oc. Before

2For the definition of kerﬁ 92 see Definition B.2. The word generalized refers to the fact that at this point we have not

yet excluded a possible logarithmic contribution.
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estimating this quantity more precisely, we observe that by [ [u] ]10 < coanda + 1 > 0t
holds

0 1 d 0 1 d 0 1 d
b/ / 179, In r2— dgag/ / Iro,ul> = d<p+/ / P20+ 1y (4 — po) 2 dg
0o Jo r 0o Jo r 0o Jo r

0 1 dr
+/ / |qu(r, )|*— dg
0o Jo r

<Ll o+ [ = pul g + ldullpg,

(2.5¢) ) )
S [ [u] ]1,() + [ [u—pul ]2),1 + ||qu||7329a < 00,

where we have used 5, , # 0 in the application of (2.5¢). Since fog fol |rd, In r|2% dy = oo,
this necessitates b = 0. Thus p,, (7, ¢) = a+q,(r, ¢). Finally, for this polynomial p,, we obtain
from Lemma B.4

”pu”PZS,Za < ||13u||7>(§’2wr2 Sl Jowtr + [ v = pul Joas2
S lie + [ = pul l2e < X(w).

Corollary 4.2. In the situation of Theorem 4.1, the solution u satisfies u € H2(Q) and

2
i 1 a 1
D Inlz lullza Saoare Wflloa + 1811 4 + 117 1gloa + 1112 ([f [0 + 111glo0)-
j=0

Proof. Letp, € 732%1 be as in Theorem 4.1. Since p,, contains only terms of scaling between
55, and s5 5, and since supp ¢ C [0,2] and supp(1 — ¢) C [2, 00), we obtain

[ [;pu] ]O,a + [ [{pu] ]l,oz +1 [(1 - C)pu] ]Z,a S ”pu“P{la S X(M)

Thus, writing u = (u — {py) + Py, we conclude by Theorem 4.1

lull2e S U1y = &pul loo + [ 11 = Epul Tuo + [ 1 = Epul lo + IPullpg,

S [ [u] ]O,a + [ [gpu] ]0,a + [ [u] ]l,a + [ [gpu] ]l,a + [ [u-— pu] ]2,0{
T A = Opul o + lIpullpg, < X,

where we have used || > 1 in the last step. Since |u|||ullo = ||l [4] Jo,« and |u|% lullie <
[l [u] oo + |u|%[ [u] 1, in virtue of || > 1, we obtain by Theorem 4.1

2
j
D Il e Sapene X(1).
j=0

This gives the result, since X () is trivially controlled by the right-hand side of the claimed
estimate. O

Proposition 4.3. Lete € (0,7), u € Ep_ with || > 1, and o € [—1,0]. Suppose £ € N
and (a, £) satisfy (1.3). Let f € C§°(§\{0}) and g € C°(3'QQ). Then for all 0 < m < { there
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isp, € 772+2,a such that unique solution u € H of (3.1) from Lemma 3.8 satisfies the estimate

m
l o
[l = pul Itz + Ipullpg,,  Soaaee D 102" (L1 o+ [g)41,)
j=0

1l ? (112l gloe + il 7 [glia)-

Q
Proof. We argue by induction. By Theorem 4.1 we obtain a polynomial p,» € ker?\}s”” such
that u — p,» € H2(RQ) and the estimate is valid for m = 0. By application of the elliptic

Q Q
regularity estimate of Proposition B.3 there is p, 3 € kerf\,z“"ﬁ”" such that u — p,, 3 € H>(Q)
and

[ [u— Pu2 — pu,3] ]3,0: SG,ao,al [ [f] ]l,oz + |M|[ [u] ]1)05 + [g]%’a + [u— pu,z]%)a
Soeper [f] ] + [g]%,a + |M|%X(;L),

where we have used the trace estimate [u — p,, 2] W So.a0e L[4 — puzl l2e from Lemma
2.11,and |p| > 1 in the last step. By the same argument as in the proof of Theorem 4.1 the
polynomial p,, 5 + p,,3 does not contain a contribution of In 7 or 1, and is estimated by

w2 + puslipg, S e + 0lu = puz — Pusl e < [If] e + [g]%’a + T X ().

Q Q
Analogously, we get p, 4 € kerls\f”’ﬁ”" such that u — p, 4 € H2(Q) and

[[u—pu2 —Pu3 — Pu4l l4a Se,ao,al [f] e + Il [u — pu2] o + [g]%’a +[u—pu2 — pu,S]%)a
Soaver [ 1Le +[g]s o + [ T + 8] + 101X,

as well as
”pu,Z + Pu3 + pu,4||73i2a 59,0(0,011 [ [Ll] ]1,01 + [ [u —Pu2 —Pu3z — pu,4] ]4,a
Soanen L1 1a + [g]3y + 111 T2a + [g]5, + 111X ().

Iteratively, this yields for 0 < m < ¢ the asserted estimate, if one also observes that || X ()
is included in the right-hand side, since by Lemma 2.10 we have

2 (LI Too + 11718100) Saper [IF] Tow + 1l 20 [F] Tra + 1217 [glow + It 7 (g1
O

Corollary 4.4. In the situation of Proposition 4.3, the solution u satisfies u € H,™2(Q) and

42 £

- i < i 4 1

> il ullerz-jo Sapare 2 (Uf le—jier +181e—j1 1 o)+ Liel2 (L1l #1g o
j=0 j=0

1
+ Il #1gl1e)-

Proof. The proof is analogous to Corollary 4.2, if one replaces the application of Theorem 4.1
by that of Proposition 4.3. O
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Proposition 4.5. (Polynomial problem). Let ¢ € (0,7), 4 € Xr_, and « € [—1,0]. Suppose
¢ € Nand (a, ) satisfy (1.3). Let py € 732“, pg € P£+%,a' Then there exists a solution p, €

772_2,“ to (3.1), and we have

Zow Ipullpe, 5a0a1e92(;|u| (Iprllpe, + IPglip,_,y,)-
j= =

Proof. Since 7 ¢ Q, we may decompose each ¢ € Q uniquely into n,m € Ny with g =
n + 7 m. Matching like terms, we are led for each g = n +xm < 5&2 4 to the problem

(@ + 9u™" (9) = f"72" (@) — """ (),
_a(pun,m(o) — gn—l,m _ un_l’m(O),
awuﬂ,WL(Q) — gn—l,m _ ui’l—l,ﬂ’I(e).
For n = 0 all terms on the right-hand side vanish leading to u%™(¢) = 0. For n # 0 we
may use Lemma B.1 with A := g, and obtain iteratively the estimate noting that n + Zm <
Sy jtlia ifandonlyifn — 1 + %m < 5?_j+a, and that
")+ [WTEO) S 1" lwrz ).
Observe that ||pu||7>52 = ||pu||7;.s2 = 0 due to 51+a < 0, which explains why the sum on the
left-hand side of the claimed estimate runs only to £ instead of £ 4 2. O

Theorem 4.6. (Higher regularity). Let & € (0,7), i € Xy_g with || > 1, and a € [—1,0].
1

Suppose £ € N and (a, £) satisfy (1.3). Let f € H,(Q) and g € H£+2 (02). Then there is a

unique solution u € H.*2(Q2) of (3.1), and it satisfies the estimate

€42

> Il 2 ulle—jaza Soapane Zw (1 lle—ja + 18le—j 1.0

j=0 j=0

L1 _1
+ w2 (el *gloe + [l #1g110)-

Proof. Write f = f; + {py with f; € HY(Q2) and pr € Pﬁx’ and similarly ¢ = g1 + ¢pg

o g+1
with g1 € HO(+2 (0'Q) and pg € P, 1. Denote by p,, € PZQH“ the solution to (3.1) from
3 S
Proposition 4.5. Observe that

pn(&pu) — ACpy) = Cps+9qf in€2,

Epu+ 0(Epu) = Cpg on d'Q,
with qf == —V¢Vp, — (A)py. From supp V¢ C [1,2] and since the polynomials p,
have coefficients which are contained in W¢22((0,6)), we obtain that q; € H(Q) with
Yo 2l 4] oo S X000
from Proposition 4.3 with data f— qr and g1 By Corollary 4.4 we have urg € Hfl“(Q),

and U := upeg + Py € H§+2(Q) solves (3.1). Moreover, the claimed estimate follows from
Corollary 4.4 and Proposition 4.5. O

Ak Ipullpg. - Now let reg € H{ () be the solution
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4.2. Proofs of the main theorems

In this section we give the proof of Theorems 1.1 and 1.2. As noted in Section 1, we may
restrictto y = 1.

Proof of Theorem 1.1. We extend F and G to negative times by 0. For © € CwithRe u = g let
®[f, g] be the solution operator of the resolvent problem from Theorem 4.1 with right-hand
side f := LF and g := LG. We note that f = f(u) and g = g() depend on the parameter
w and also the solution operator ® = ®(u) of the resolvent problem depends on the (same)
parameter y € C, but we will suppress this dependence in our notation. Since || > 8 > 1,
we may apply Theorem 4.1 and Corollary 4.2 to u := ®[f, g], which yield

2

J 1 1
D Iullullzja + 1117 uloa Savaro Ifloa + 18114 + 1417 1gloq
j=0

12 (g + 121 gloo).

We define U := EEI [¢]. Then by construction we have ;U—AU = FonRxQ, U490, U =G
on R x 92, while the Hilbert-space valued Paley-Wiener Theorem [23, Theorem 1.8.3] shows
that U = 0 for negative times. By Plancherel’s identity for the Laplace transform (Lemma
A.4(A.4)) we obtain

2

2
J
_ ) < 13 .
nwm—§wuhézﬁ ULy S D Bl g,

7o(Ho () Hj((HY (') P

1
+ - 12 ull2sg m0 0r0) Seoend 1fllz2ess,mo) gl 1
1285, HO (') Seoard [ l12¢sp,m0) 18 L5y E )

1
+ - 128l 2 s, (7 22))

IFllr + IGllG-
This proves the result. O

+ - 2f||L2(s,3 2@ H - | 2g||L2(s,g 2o9) S

Proof of Theorems 1.2. The proof is analogous as the one before, but we replace the applica-
tion of Theorem 4.1 by the application of Theorem 4.6, so that we have for u := ®[f, g] we
have

£+2

S Il lle—iza Sananoe j{:l#¢2<ﬂfﬂz]a-+|gu_j+ o)

j=0 j=0
Lol _1
1tz (121 1gloe + 1™ % Igl)-
We define U := Lgl [u]. As in the proof of Theorem 1.1, U satisfies the equation, and we have

{+2 42

J
1UNEe, = ol < - 12ul,, i
Z H,g()(H“ T @) g L?(Sp.Ho ()

J J
< .|z ; .2
Sevar 0. EKM|4mmM¢“m+u|vmymHhﬂ)
j=0
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1 _1
01 glaspmey + 1T 1728l 2ssm1))
4
<2 (e G oy )
]; HE o (HS (@) Ho(Hy "2 (0 2)
+ Gl 1.1 + |Gl 1,1
19,4 ch 1A

= |IFllr, + IIGIIGH%,

which is the desired bound. O
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A. integral transforms

In this section we provide known properties of the Mellin transform and Laplace trans-
form, which constitute an important tool in our analysis. It will be convenient to have
these transforms defined for Hilbert space valued functions. We recall that given 8 €
R, we write Sg for the line {A € C: ReA = B}, and more generally S(g, g,) for the strip
{LeC: ReX € (B1,P2)}if B1 < Ba. We recall Bochner spaces of vector-valued integrable
functions, and the concept of vector-valued analytic functions, see e.g. [23, Chapter 1.1 and
Appendix A].
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Definition A.1. (Mellin transform). Let H be a Hilbert space.

(i) Fory e Llloc(RJr’ H) and A € C we define

o~

d
MY = §() = “hy(r) {

1 o0
’
2 /0
Whenever this integral converges, we call it the Mellin transform of ¢ at A.
(ii) For B e R, ¢ € L} (Sg,H) and r € R, we define

loc

Mglgo(r) = o) dIm A. (A1)

1

21 JRea=p
Whenever this integral converges, we call it the inverse Mellin transform of ¢ at r
(along Sg).

For general functions ¢ € Lll0 (R4, H), the Mellin transform might fail to converge for
certain A € C. However, if it is well defined for some A1, A, € CwithReA; = 1 andRe A, =
B2, then convergence is also guaranteed on the so called strip of convergence Sg,,5,) C C. For
functions on the wedge Q2 we apply the Mellin transform in the radial direction and consider
the angular variable as a parameter, i.e., for ® € C°(2\{0}, H) we write

(N, @) = (1, ) d_rr for(A, ) € C x [0,0].

1 o0
r
V2T /0
The Mellin transform has several useful properties which are listed below.

Lemma A.2. (Properties of Mellin transform). For ¢ € C2°(R4., H) the Mellin transform v is
an entire function. Furthermore, we have

(i) Y0y = U —p) forall R 1eC.

(ii) ragg(k) = Ay (A). q

(iii)/ r 2P (N () { = /R ﬁ%(xw)%@ — ) dIm A for all Y1,y €
0 er=

CER4,H) and B,y € R. In particular, for B € R the Mellin transform can be
continuously extended to a linear operator

Mg {2 r P iy e PR H)) — L2(Sp,H). (A.2)
(iv) For every B € R the map (A.2) is an isometric isomorphism. Whenever the integral in
(A.1) converges, it yields the inverse of the map (A.2).
(v) IfB1,B2 € R, B1 < Ba, and rﬂl_%w, 1"32_%1// € L>(R,H), then 1///\ is analytic on the strip
S(1.p2)-

Proof. We refer to e.g. [8, Chapter 6] in the scalar case. The arguments carry over verbatim
to the Hilbert space case. Parseval’s identity in the generalized form can be found e.g. in [24,
Theorem 73]. O

For time-dependent functions we use the Laplace transform. Since all functions have an
extension to negative times by zero, it will be possible to use the two-sided Laplace transform.
In our convention, it is given as follows:
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Definition A.3. (Laplace transform). Let H be a Hilbert space.
(i) Forf e Llloc(R’ H) and u € C we define

Lf(p) = TR dt.

1 o0
— e
W21 \/—oo

Whenever this integral converges, we call it the Laplace transform of f at u.
(ii) For B € R, g € L} (Sp,H) and r € R, we define

loc

E;lg(t) = e*g(uu) dIm . (A.3)

1
A/ 21 JRe n=p
Whenever this integral converges, we call it the inverse Laplace transform of g at t (along
Sp).

We note that the Mellin transform is given by the composition of the Laplace transform
and the change of variables t = Inr. In particular, we get the corresponding properties as for
the Mellin transform also for the Laplace transform if we replace the factor r by ef* and %

by dt.

Lemma A.4. (Properties of Laplace transform). Let H be a Hilbert space. For € CZ°(R,H)
the Laplace transform 1 is an entire function. Furthermore, we have
(i) LEPY)W) = Ly (u—p) forall p e R,
(i) Loy () = 1Ly (.
(iii) f e Py (DY () dt = / ﬁ/lllfl(ﬂ + V)L — y) dImp for all Y1, 9, €
—00 Re u=
CF(R,H) and B,y € R. In particular, for B € R the Laplace transform can be
continuously extended to a linear operator

Lg: v : e Py e P(RH)} — L3S, H). (A4)

(iv) For every B € R the map (A.4) is an isometric isomorphism. Whenever the integral in
(A.3) converges, it yields the inverse of the map (A.4).
) IfB1, B2 € R, B1 < Bo, and e Py, e P2ty € L2(R, H), then Ly is analytic on the strip

S(B1.8)-

B. Neumann problem on the wedge

In this section, we consider the elliptic boundary problem with Neumann conditions, i.e.

Av=f in ,
, (B.1)
=g on 9'2.
Observe that the direction of the outer normal vector yields 9, = — % dyondp2and 9, = %8(/,

on ;2. We note that elliptic problems of the form (B.1) have been studied in the literature,
see e.g. [19, 8, 25]. Since we treat higher regularity beyond the regime of the first resonance,
we include details here for the convenience of the reader. We first give a solution of the
corresponding system to (B.1) in Mellin variables.
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Lemma B.1. (Neumann problem in Mellin variables). Let 6 € (0,27), f € C*([0,0]), and
01,92 € C. Then for any A € C with . ¢ % Z, there is a unique classical solution v(1,-) to the
boundary-value problem

(A + 000, 9) = f9)  forg € (0,6), (B.2a)
—9,0(2,0) = g, (B.2b)
A0 (X, 0) = ga. (B.2¢)

The function v(-,¢) : C — C is meromorphic for each ¢ € [0,0] with all poles contained in
7 Z. The pole at .. = 0 is at most of order 2 and all other poles are simple. The solution v can be
represented as

0
(%, 0) = —G(X, 9,0)g1 + G(A, ¢,0) g + /O G @, @)Hf(@") de', (B.3a)

where the meromorphic Green’s function G(-, @, ¢") to (B.2) is given by

1 { cos(A(0 — ¢)) cos(rp) forg € [0,¢'],
Asin(A0) | cos(rg”) cos(A(0 — ) forp € (¢',0].

Furthermore, if g, 01 > 0 and £ € Ny, then whenever 6 [Re A| < o and dist(Or, 7Z) > «y,
we have
9 .
> f A 800G 0) | d
j+m=t+270

[%
Separt Y / ILZ10]75(0) P de + AP (g1 P + |gal®). (B4)
. 0
jHm=¢{

G(hp,¢') = (B.3b)

Proof. The claim about the pole set follows directly from the formula for G. For A6 ¢ nZ it
follows from standard ODE arguments that v(, -) is the unique solution to (B.2). If f = 0,
(B.4) follows from the representation of v and Lemma C.1. In the following, we hence assume
g1 = g2 = 0. For g; = g2 = 0, we test (B.2a) with b to get

% 0 0 %] 0
/ ofdp = / Ba;ndgo+,\2/ o] dp = —/ |a¢,n|2d¢+,\2/ 0] dg.
0 0 0 0 0

We take the real part and absorb the term on the left hand side using Young’s inequality. If A
has a large imaginary part 6 [Im A| > 2, we have Re(12) ~ — |A|?, which implies

6 0
2 _
[ (2 10 + ol ) do < a1 [ 17 o (85)
0 0
If 0 ImA| < 20 (and hence 0 |A| < 3ag < 1), we have ’XG(A,-,(p/) , |8¢G(A,-,(p/)‘ <1

since the sine and cosine are bounded on B(y_g/5s By C B3y, C C and since by the
assumptions on A

|sin(@A)|* = sin®(6 Re A) + sinh?(9 Im &) > sin®(§ ReA) =4, 1.

With Jensen’s inequality we estimate

’ 2102 2 (B30) ’ 2 2 ’ 2 -2 ’ 2
| (oo ool ) g 57 o( [ iide)” < o [idg s i [ ik dg,
0 0 0 0

(B.6)
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where we have used 6 |A| < 1 in the last step. By multiplying (B.5) and (B.6) with |+]? and
using equation (B.2a) once more, we obtain the corresponding bound on 8(/2)0, thus proving
(B.4) for £ = 0.

Now assume that the assertion holds for £ € Ny. Multiplying (B.2) by A, we obtain from
(B.4)

o 5
> [ el a
0

Jm=0+2
0
<> / () Pdp + (A g2 4 A gy
j+m=00
Using 950 = —2205+10 + 9/ !§ by virtue of (B.2a), we obtain the assertion for £ 4 1 and
can conclude by induction. O

The above solution gives us information about the kernel of the Laplace operator with
Neumann boundary condition.

Definition B.2. (Formal kernel). For 6 € (0,2) and k € Z, we write

_km
0
and define the kernel of the Laplace operator A for the Neumann problem (B.1) by

Ty

kery := span <{ln r} U {r”" cos(mip) : k€ Z}) € span(ln r) @ Pq.
For 01,072 € R we define the kernel of limited scaling width by

ker}/” := span <{1,ln r} U {r™ cos(mrp) : 7k € [01,02] U [02,011} >

Proposition B.3. (Elliptic Neumann problem). Let 6§ € (0,27), f € C° (Q\{0}) and g€
C2°(9'Q2). Then the following assertions hold.

(1) Let(¢,a) € Ny ><]Rfulﬁllﬁ%wr2 ¢ % Z. Then there exists a classical solution v € H£+2 (2)
to (B.1) with Zf:o[ V] le—jt2,04j < 00

(i) Let (£1,B1), (£2, B2) € No x R fulfill 0j := 52+ﬁj+2 ¢ %Zforj € {1,2}. Then for two

classical solutions vi, vy to (B.1) with [ [vi] le,42, < 00 and [ [v2] le,42,8, < 00 we

have vy — v, € kery”.

(iii) Let g, 1 > 0. If (¢, @) € Ny x R fulfills dist(65?+a+2,nZ) > o, 9|5§2+a+1| > «ay (and
9|5§2+a| > ay if £ > 0) as well as 9|5?+a+2| < g, then we have

[0 Jes20 Savant [ Jew + (8] sty - (B.7)

(iv) Let ag,a¢1 > 0, 81,52 € Rand © € (0,1) with dist(9,{0,1}) > ;. Write B :== (1 —
9)p1 + OPa. Let 1,42 € No fulfill dist(Os, 5 1, 7Z) = a1, Olsg 5 | > a1 (and

Q . Q . orl142
9|5€j+ﬁj| > ayif £ > 0) aswella59|5€j+ﬂj+2| <agforje{l1,2},andletv; € Hﬁi (RQ),

V) € IZI/%H(Q) be the corresponding classical solutions to (B.1). Define £ :== (1 — 9)€; +
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9y If 01 < 03 for oj := 52+ﬁj+2’ and if vi—v, € ker}*”? does not contain a contribution
from ({1,Inr}), then it holds

2
“Vl - V2||7>[fi2ﬁ 50[0,051,&9 Z ([ [f] ]Zj,ﬂj + [g]gj_;’_%,ﬁj )
=1

Proof. (i):Forfixed¢ € Nypando € Rwith6({+a+1) ¢ wZ we definev : (0,00) x[0,60] —
R via

0%, @) dIm A, (B.8)

1
(@) == —— /
V21 JReA=t+a+1

where v(A, -) is given by (B.3a) with data f := 1’/2}()», ), 81 = @(k, 0),and g, := @(A, 9).
Observe that for all ¢ € [0,0], v(-, ¢) is meromorphic with its only poles in %Z, and that for
a € Rand m € Ny, there are M, ¢,8 € (0,00) such that for all A € S|_g 4 and [Im A| > M it
holds

970 (A, @)| < se=em A, (B.9)

Indeed, for all m € Ny and ¢ € (0,0) the functions 8$ﬂ7(-,¢), (/rg\)(-,O), and (/rg\)(-,Q)
are analytic with exponential decay as [Imi| — oo as in (B.9). Since [sin(Ap)| ~
lcos(Ap)| ~ e?M* a5 [Im A| — o0, the Green’s function G(X, @, ¢') is bounded on the set
{A € S—ga) : [ImA| > M}, so that the exponential decay is transferred to A +— 8;”0@, ®)
as claimed. By Plancherel’s theorem in form of Lemma A.2(iii) and the exponential decay of
X = r"o(A, @) on Re A = £+« + 1, we obtain that all derivatives (rar)ja(;”v are contained in

leoc (22\ {0}). Hence, v is smooth. Moreover, by (A.1) in Lemma A.2 it holds v(A, 9) = v(%, ¢)
forallp € [0,0] and all A € Spyg+1.
Next we verify that v does indeed solve (B.1). Note that by Lemma B.1, we have for all

A € Spta+1
(A +02)90.9) = (PN0.9) for ¢ e (©,0),

as well as —9,v(%,0) = @(k, 0) and (A, 0) = g(%,0). Since the Mellin transform induces
an isomorphism between {u : ety e 12 (R4, C)}and L?>(S¢4a+1, C), cf. Lemma A.2(jii),
we conclude that v solves problem (B.1) by Lemma A.2(ii). This proves that v is a classical
solution to (B.1).

ForRe A = 51552+oz+2 = 5€+a+% = ¢+ +1, the assumptions on A in Lemma B.1 are fulfilled,
so that from (B.4) and the Mellin representation of the norms we get for all ag, ; > 0 with
dist(@sﬁraﬂ,nZ) > o and9|51§2+a+2| < agp,and forall 0 < j < ¢ that

[0 Jeji2ati Savene [P dejarjin + (18] it gy < 00 (B.10)

In particular v € H.*2(3'Q2) by Lemma 2.2.

(ii): By classical methods two classical solutions v, and v, with at most polynomial growth
differ only by elements in kery, cf. [26, 27]. Suppose first that o1 = 05. Since [ [v] 1¢, 42,8, =
oo for all v in the span of {r"* cos(mkp) : k € Z\ {0}} and [ [v] I¢, 42,8, = O for ker}} ™' =
span ({1, In r}) (the set equality being a direct consequence of (1.3)), we obtain the result for
o1 = 0.
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Suppose now o7 # 03. By the result for 61 = o3, v; and v, are uniquely determined
up to elements in span({l,ln r}). We can hence assume that v; and v, are given via (B.8)
corresponding to (£1, 1) and (£2, B2), respectively. Without loss of generality we assume £; +
B1 > £y + Ba. Since A > r*v(A, @) is meromorphic with the uniform exponential decay
(B.9), the values of v; (1, @) and v, (r, ¢) differ by the sum of the residues of ¥ (1) := 0 (%, ¢)
evaluated at the poles 7;, = kr 'k € 7 which lie between o} and o, that is

7)
vi(r,p) —va(r,p) = Z Resy, (7rg). (B.11)
k(5 Z)N(02,01)
Since all poles at A 7 0 are simple, the residue for k # 0 is calculated with help of
1 (=F
O cos(mid) 0

cos(mk (0 — @) = (=1 cos(mrp),  Resy/sin(ia) (k) =

via the definition of v in (B.3a) and (B.3b) as
Resy (k) = "™ Resy () (k)
= DO gy + (D) + | " costm it e |
For k = 0, we observe that G(-, ¢, ¢’) is even in A and holomorphic away from A = 0 so that
Resg(.,p,4)(0) = 0.

Since Res,, (0) = Res, (0)v(0) + (A2u(1)d;)|r—ov if u possesses a pole of order at most two
at A = 0 and v is holomorphic in 0, we have

Resy (0) = (MG, ¢,0)83) a—o(—"g1 (1) + A2G(h, 9, 0)33) =0 (F*g2(1))

0
+ /0 WG, 0,93 =0 (P (1, @) dg")

1 0
= 5(lnr + 3,\)[ —01(0) + g2(0) + / f(0, 90/)6190/]-
0
Thus (B.11) gives vi — v, € kery”>.
(iii): Estimate (B.7) follows from (B.10), Lemma 2.8 and Lemma 2.9: Indeed, applying
Lemma 2.9 with 8 = 2, we have that

Q
Sttat2
Q
5€+ot

j
,1}[ 1 1ea Sapere [ [llea.

£
(2.5a)
[P leass = 3 max |
j=0

On the other hand, applying Lemma 2.8 with ¢ replaced by £ + % and 8 = 1, we have with

_ .0 _ .0
Se4lratp = Sttast2 and Se4lia = Setat that

o+
(2.3a) 52 2
(+at2 <
[rg]é+%,a+l = max{ 2 ’1} [g]€+%,a ~eo,a1, [g]€+%,o{'

(iv): Follows from (B.11) and the representation of Resy, (7rx) for k # 0 in the proof of part
(if), if one observes Lemma B.4 below. O

Finally we give a lemma which is a multiplicative variant of a corresponding lemma in [28].
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Lemma B.4. Let B1 < B < p. Then there is Cg < 00, such that for any v € Lloc(Q) and
ce Ll ((0,6))
-8 B-P1
lel2 00y S Cpl V] ] ’31 [Iv—erP119%," (B.12)

as long as both factors on the right hand side are ﬁnzte.

Proof. We may assume [ [v] lo,g,,[ [v — crP] lo,g, € (0,00). LetR > 0and Qg = (%R, R) x
(0,60). Then

_ dr _ dr
N2 oy S8 R f P —dp Sp R /Q IvI? —dp
R

QR
d
+ CgR™%F / lv — crP|? —rdga
Qr r
Sp ROPLIG g + CeR PP v — crP1 15 4. (B.13)

Estimate (B.12) follows by minimizing the right hand side in R, ie. with RF27P1 .=
[[v] Jo,p O

[v—cPTlog,
C. Auxiliary estimates

Lemma C.1. (Auxiliary estimate). Let g > 0, a1 € (0, Z]. Then there is ¢ > 0 such that for
all® > 0, for allf,g € {sin, cos}, and for all . € C with 6 |Re A| < ap and

dist(6| Re |, ({0) = a1

we have
0 < sin(op) < |g(k9)| < cosh(f Im \) (C.1)
and
(r)|? 209 cosh?(ag) g + sinh(ag) cosh(ag)
[\ lf goz de < max 0 5 0, 0 ;) 0 (C.2)
o |1g(A0)] sin“ (o) sinh? &g

Proof. By a straightforward calculation, we have the elementary formula
[f(z) \2 = f(Re 2)? + sinh?(Im 2) forf € {sin, cos}. (C.3)
By the symmetry properties of sin and cos and the condition «; € (0, 5] this gives both
[f(z)|2 < 1+ sinh’(Imz) = cosh?(Im2),
8AO)* = g0 Rer)* = sin’*(ay) > 0,

which together proves (C.1).
For the proof of (C.2) we consider two cases: We first assume that 8 [Im A| < «g holds.
In particular [Ap| < O|A| < 2 for ¢ € (0,6) and hence [f(k(p)|2 < coshz((p ImA) <

cosh? () by (C.1) and the symmetry and monotonicity of cosh. Using (C.1) we get

o [f(kgo)i v < choshz(ao) - 2000 coshz((xo).
lg(10)]

A
0

sin(e;) —  sin?(a)
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It remains to consider the case when 0 |ImA| > «p > 6 |ReA|. Then [A|] < 2|ImA| and
by (C.3) we get |g()»6)|2 > sinh?(9 Im A). Since h(f) := (¢t + sinh(¢) cosh(f))/ sinh?(¢) is

monotonically decreasing for t > 0, we arrive at

9 2
M/ fool . 1x
0

’g(kg)|2 ¢ ~ sinh?(0

|A]

I .
zumﬂh@ImXDShww

| / R
cosh“(¢ImA) dp =
— (¢ ) do
O
For the proof of the coercivity estimate, we note the following simple fact:

Lemma C.2. Let w € [0, Z]. Then for all z,w € C\ {0} with | argz — arg w| < 2w there holds

|z + w|
————— > cosw.
2] 4 [w]
Proof. After rotation we may assume that Re z, Rew > 0 with %Z = lev‘l” = cos ¥ for some

¥ € [0, w]. Therefore we have

(Jz| + |w]) cosw < (|z| + |[w|) cosy = Rez+ Rew = Re(z+ w) < |z + w|.
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