Journal of Scientific & Technical Research

BIOMEDICAL
>

ISSN: 2574 -1241

DOI: 10.26717/B]JSTR.2021.39.006276

Inflammation In HSC Emergence

Roshana Thambyrajah*
Stem Cell and Cancer Group, IMIM, PRBB, Barcelona, Spain

*Corresponding author: Roshana Thambyrajah, Stem Cell and Cancer Group, IMIM, PRBB, Barcelona, Spain

ARTICLE INFO ABSTRACT

Received: E2 August 28, 2021

Citation: Roshana Thambyrajah. Inflammation In HSC Emergence. Biomed ] Sci & Tech

Res 39(2)-2021. BJSTR. MS.ID.006276.

Published: E2 October 06,2021

Opinion

In our classical view, inflammation is triggered by
environmental changes; may it be pathogens or tissue damage.
The stimuli activate a complex transcriptional program that is both
cell type and stimulus specific. At the cellular level, a complex gene
expression programs that include hundreds of genes is activated
within minutes after the initial activation through a stimulus [1].
But this response can vary not only between cell types [2], but even
within a cell population depending on their niche environment [3].
In response to inflammatory stimuli, several response pathways
can be initiated, including signal transducers and activators of
transcription (STAT) [4], activator protein 1 (AP-1) [5], the nuclear
factor of the k light chain enhancer of B cells (NF-kB) [6], and
interferon regulatory factors (IRFs) [7]. All these triggers have
distinct binding specificities and have different receptor - ligand
interaction that leads to a specific transcriptional output. For
example, cytokines acting primarily through the activation of STAT
TFs such as IFN-y, are in general unable to activate NF-kB and AP-
1, which are broadly responsive to a large panel of inflammatory
stimuli (stretching from LPS and other microbial products to tumor
necrosis factor [TNF]-a) [8]. Inflammation in general, is therefore
essential for survival in the adult. Specifically, the blood system
responds with cell proliferation, HSC self-renewal and progenitor

expansion and differentiation.

Hence, itisall the more striking that these pathways are essential
for the HSC generation in the embryo, although the mammalian
fetus is protected from pathogens by a robust innate immune
system at the maternal/fetal interface [9]. During embryonic
development, the first Transplantable HSCs are detected between
E10.25-E11.5 in the aorta- gonad and mesophephros region (AGM)

[10-12] as residents of Intra-aortic hematopoietic clusters (IAHC)

that are closely associated with the ventral wall of the dorsal aorta
[13-15]. Although to total number of hematopoietic (cKIT) positive
cells in the AGM is believed to total around 600 cells, only a small
fraction is HSCs [10,16]. In general, blood cells trans-differentiation
of specialized endothelial-like cells that can generate blood, termed
hemogenic endothelium (HE), to hematopoietic fate during early
development. This process is called endothelial to hematopoietic
transition (EHT) [17-24]. All the more, it’s remarkable that IL-1RI,
that is a receptor for IL1 and leads to NF-«kB and c-Jun N-terminal
kinase (JNK) activation [25], is expressed by cells in the E11 aortic
endothelial and mesenchymal cells, and at low levels in the IAHC
[26].

Upon stimulation with IL1J3, AGM explants show higher levels
of CXCR4, a chemokine receptor that is specific for stromal cell-
derived factor-1(SDF-1) required for homing of hematopoietic cell
to their niches. The importance of signaling through IL1R1 was
further confirmed in transplantation settings; IL1R1 mutant AGM
cells showed reduced HSC activity [26]. In fact, recent reports show
a correlation of CXCR4 expression and HSC activity in the AGM
[27]. In agreement with these findings, Tnf a and TnfR2 morphant
zebrafish embryos have decreased expression of the hematopoietic
markers runx1 and cmyb, and a NF kB reporter line confirms its
activity within the ventral domain of the aorta [28]. Interestingly,
the authors find aberrant notch signaling, eg decreased levels of
Jagla, which is required for IAHC formation [28,29]. In parallel, a
study on Tlr4, MyD88 and NF kB, a core of inflammatory signaling
axis leading to nuclear p65, came to comparable conclusions; they
found decreased numbers of hematopoietic cells in the aorta of
these morphants, and established a link to aberrant notch signaling
in this study, the authors found a reduced induction of the notch
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downstream effectors Hey1l/2 and her15.1 [30]. If this lower
notch status is due to reduced Jagla expression as suggested by
Espin-Palazon et al. is not known. Interestingly, in the same study,
the authors also investigated the HSC activity in the AGM of TLR4
deficient mouse embryos. TLR4 deficient hematopoietic cells in
the AGM could generate CFU-C, albeit at a reduced number, but
strikingly, almost all HSC activity was diminished in transplantation
assays [30]. These studies highlight the high susceptibility of HSC to
NF kB signaling, but the HSPCs, the more differentiated cells show
a less substantial dependency. Nevertheless, it’s still unclear which
target genes are activated by p65 mediated NFkB signaling in HSCs
and HSPCs.

In an elegant study by Li et al. the authors subjected E10.5
embryos that express GFP under the Ly6a/Scal promoter, a marker
of HSPCs, including HSCs, to different cytokines [31]. Here they
found moderate increases in Scal expression after treatment
with IL1B, IL6 and TnfA in the AGM region, but treatment the Inf
a4 or Infy lead to a huge increase of Scal expression in the AGM,
including the aorta. The increase in Ly6aGFP+ was due to both,
higher expression of ScalGFP, and enhanced proliferation [31].
In order to determine if there were HSPCs that can receive both
Ifny and Tnfa simultaneously, combinatorial MO knockdown of
Ifna and Tnfy was used in zebrafish embryos. Knockdown of both
cytokines together caused a greater decrease in hematopoietic
gene expression (runx1) in the dorsal aorta than the knockdown of
either gene alone, indicating that multiple inflammatory cytokines
can cooperate in the formation and expansion of embryonic HSPCs
in the absence of pathological stimulation.

Interestingly, blood flow is needed for the expression of ifng1-2,
as ifng1-2 was nearly absent from the axial vessels of tnnt2 (silent
heart) morphants that don't have a blood circulation [32]. The
reason for this curious observation was not further clarified, but
recent studies might provide a plausible explanation. Blood flow
might be needed to enhance the sources of inflammatory cytokines
to the dorsal aorta.

Detailed analysis of the cellular composition of the AGM
microenvironment using mass cytometry (CyTOF) revealed the
presence of yolk sac derived macrophages closely associated
with IAHC [33]. Prior to HSPC generations in the AGM, the yolk
sack produces HSC independent blood progenitors, including
macrophages that express different receptors to interact with
their niche cells, including Cx3crl and Csfrl [34,35]. Time course
analysis with a Csflr:GFP transgenic mouse model that labels
Yolk sac derived macrophages, the study elegantly demonstrates
their arrival in the AGM from E9.5 and significantly increasing in
abundance by E11.5, ie in time for the HSPC and HSC emergence
[33]. Cx3crl, a chemokine receptor was identified on the
macrophages, whereas the possible interacting ligand, Cxcl12, was

highly expressed by HE cells. Ablation of Cx3cr, or pharmacological
of macrophages with BLZ945, an inhibitor of the colony stimulating
factor 1 receptor (CSF1R) reduced CFU-C numbers and HSC activity
in transplantation assays. The authors further identified a sub-
population of macrophages based on their cell surface expression
of CD206 that specially upregulate cytokine expression of Tnf,
Ccl24, Ccl9, Igf1, Bmp2, Pf4, Ccl2, and Ccl7, Whereas Ifna, Ifny, and
IL1B expression was observed in all AGM macrophages [33].

In summary, inflammatory signaling pathways are essential
for hematopoiesis in the AGM in general, and most importantly,
positively influence HSC activity. There is some evidence that
some cells are susceptible to more than on the cytokine stimulus
at a time [32]. In summary, during development, inflammatory
signaling pathways are activated to establish cell identity. It will
be important to study the impact of cytokines individually or
combined in different cell populations in order to understand the
gene expression changes that they inflict. Perhaps the multitude
of single cell data sets on AGM cells can give us more clues. Here,
we can readily distinguish between the blood cell types and profile
their gene expression for inflammatory signaling members. In fact,
several single cell data sets of AGM derived cells showed enrichment
of inflammatory signaling pathway activation in HE and IAHC [36-
38]. Further, detailed analysis of these data sets can help to improve
our understanding of these stimuli in HSC emergence and helps us
to improve in vitro approaches to generate HSC by artificially fine
tuning these cytokines in culture conditions.
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