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entonces superaŕıa la extensión máxima permitida en este documento. A todos, esta
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vividos juntos.

i



ii



Abstract:
The aim of this work is to derive a theoretical formalism to compute the one- and

two-point Probability Distribution Functions (PDFs) of the brightness temperature mea-
sured through Line-Intensity Mapping (LIM) experiments. We begin by introducing the
conceptual framework, presenting the standard cosmological model together with the fun-
damentals of LIM and its significance in modern cosmology. We then describe in full detail
the mathematical construction of the formalism. Focusing on the one-point PDF, we vali-
date the formalism by comparison with the temperature distribution of matter realizations
on some simple scenarios, finding very good agreement between them. This demonstrates
the robustness of the theoretical formalism and sets the stage for extending the validation
to the two-point PDF. The results we obtain show that this approach consistently probes
the statistical properties of the LIM signal, opening the possibility of applying it to more
complex and realistic scenarios.

Keywords: cosmology, dark-matter halos, power spectrum, Line-Intensity Mapping,
galaxy clustering.

Resumen:
El objetivo de este trabajo es desarrollar un formalismo teórico para calcular la función

de distribución de probabilidad (PDF) a uno y dos puntos de la temperatura de brillo me-
dida mediante experimentos de Line-Intensity Mapping (LIM). Se comienza introduciendo
el marco conceptual, presentando el modelo cosmológico estándar además de los funda-
mentos de LIM y su importancia en cosmoloǵıa moderna. Posteriormente, se describe
con todo detalle la construcción matemática del formalismo. Centrándose en la PDF a
un punto, se valida el formalismo por comparación con la distribución de temperatura de
realizaciones de materia en algunos casos simples, encontrando muy buena concordancia
entre ellos. Esto demuestra la robustez del formalismo teórico y sienta las bases para
extender la validación a la PDF a dos puntos. Los resultados obtenidos muestran que este
enfoque explora de manera consistente las propiedades estad́ısticas de la señal de LIM,
abriendo la posibilidad de aplicarlo a escenarios más complejos y realistas.

Palabras clave: cosmoloǵıa, halos de materia oscura, espectro de potencias, Line-
Intensity Mapping, agrupamiento de galaxias.
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Chapter 1

Introduction

1.1 Motivation

The study of the Universe gives us the opportunity to test our understanding of funda-
mental physics, from which the union of theoretical and observational efforts has produced
the standard cosmological model. However, much remains to be known, and the large-scale
structure provides a very good testing ground for this. The best way to study the large-
scale structure is by using various summary statistics, which are statistical descriptions
of its properties. The most used summary statistics, because they are easy to calculate
theoretically and measure robustly, are the two-point correlations such as the correlation
function or the power spectrum, but they do not capture all the information. The Voxel In-
tensity Distribution (VID), which we use in this work, has much of this information. Here
it appears Line-Intensity Mapping, which is emerging as a promising technique because
it is not based on the resolution of individual galaxies but on the mapping of integrated
spectral line emission. In this context, LIM provides access to epochs that are otherwise
difficult to analyze with older methods.

The statistical description of intensity maps such as the ones LIM offers is essential
for extracting cosmological information. Particularly, the one- and two-point Probability
Distribution Functions of the LIM signal are useful to evidence the global properties of
the temperature distribution. In this work, we develop a theoretical formalism to compute
these functions. Furthermore, we validate this formalism for some specific and simplified
cases, comparing the temperature distributions obtained from it with the ones obtained
making Poissonian and Gaussian realizations on the sky.

This work is structured as follows. In Chapter 1 we introduce what is the Λ Cold Dark
Matter cosmological model, the FLRW metric and how the Universe is structured at large
scales. Moreover, we introduce what is LIM, which is the technique we based the work on,
describing its main target lines and on what consists its measurable signal and defining
what we understand as VID. Chapter 2 is the bulk of this work, where we describe with
full detail the derivation of the one- and two-point PDF of the brightness temperature. In
Chapter 3 we introduce some assumptions we made in order to simplify the computational
implementation of the theoretical formalism and we explain how we made realizations of
the sky so that we can validate the formalism for four different cases. In Chapter 4 we
carry out this validation, making a comparison between the theoretical VID and the one
obtained from realizations for the four cases analyzed. Finally, in Chapter 5 we make
some conclusions of the work, introducing as well some future work to be done to continue
verifying the validity of the formalism developed.

1



2 CHAPTER 1. INTRODUCTION

1.2 Standard Λ Cold Dark Matter cosmological model

The standard Λ Cold Dark Matter (ΛCDM) cosmological model is the theoretical
model most favored by the data we have nowadays to describe the components of the
Universe ([1], [2]), since it is the one which best reproduces the observations while being
the simplest. It is defined by a set of assumptions, such as that general relativity is
the correct theory that describes gravity on cosmological scales, and establishes that the
Universe is dominated today by non-baryonic cold dark matter (CDM) and a cosmological
constant, with initial perturbations generated by inflation in the very early Universe. In
addition to CDM and the cosmological constant, the Universe also consists of radiation
(photons, neutrinos at early times) and ordinary matter (baryons and leptons). This
model of cosmology has become known as ΛCDM. First, the word “cold” in CDM comes
from requiring the dark-matter particles to clump efficiently in the early Universe. Second,
in relation to the cosmological constant, evidence from several sources suggests that there
must be dark energy besides ordinary matter and radiation which, unlike dark matter, does
not cluster strongly. The most believed option nowadays is that this form of energy remains
constant with time, but there is still a lot of controversy over its value, because the value
we can approximate making use of theory and vacuum fluctuations is much larger than
the value required to explain cosmological observations. For this reason, the cosmological
constant remains a puzzle for modern cosmology. Third, inflation is the mechanism that
most likely generated the initial perturbations that grew into the structure observed today,
and it consists of a brief epoch very early in the Universe during which it expanded very
rapidly.

Besides, as explained in [3], the Cosmological Principle establishes that the Universe is
isotropic and homogeneous. On the one hand, observations of several different cosmological
probes show evidence that we observe the same properties looking at different directions on
the sky. On the other hand, there is nothing to believe that we are located at a privileged
point of the Universe. Therefore, the Universe must be isotropic around all observers in
any point of the Universe. This means that, in addition to isotropic, the Universe must
be homogeneous (invariant under translations). Regarding general relativity, time is also
another coordinate. It is important to remark that the Cosmological Principle applies
only for spatial coordinates. In fact, we have plenty of evidence that the Universe may
evolve in time, but this is not in contradiction with the Cosmological Principle because
the speed of light is finite. In this way, the information we obtain from distant objects
corresponds to information in the past, since light has to travel until we observe it.

Isotropy and homogeneity are found by a set of observers at rest with respect to the
cosmic fluid, which are referred to as fundamental observers. Cosmic fluid is a math-
ematical abstraction that represents all the energy and matter in the Universe. Note
that, however, an observer with proper motion with respect to the cosmic fluid will find
velocity-dependent observational effects, as for example a Doppler boost.

As we have explained, the ΛCDM cosmological model assumes general relativity as
the theory that describes gravity and, particularly, spacetime. In this context, they are
also assumed two postulates ([3]): the laws of physics take the same form in all inertial
frames of reference, and the speed of light is finite and constant. As a consequence of the
second postulate, if we consider an object with a relative velocity with respect to a given
observer, the observed wavelength and the wavelength emitted by the object are related
by a factor known as the redshift z, which is defined as

1 ` z “
λobs
λemit

“
νemit
νobs

. (1.1)
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In this way, if the object is moving away from the observer, we have λobs ą λemit and the
redshift is positive, but if the object is moving towards the observer, we have λobs ă λemit
and the redshift is negative.

1.3 Comoving coordinates and the FLRW metric

Assuming a homogeneous and isotropic Universe, we can use the fundamental observers
to define a cosmic time as a parameter with respect to which the spatial hypersurfaces that
are homogeneous and isotropic for them evolve ([3]). In this way, we can use the position
of the fundamental observers to define the spatial coordinate system and the direction of
their four-velocities to define the temporal coordinate, so that this reference frame moves
with the cosmic fluid because the fundamental observers are at rest with it. This set of
coordinates are known as comoving coordinates.

The geometry of an isotropic and homogeneous, expanding spacetime is described
by the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric, which in spatial spherical
coordinates is given by

ds2 “ c2dt2 ´ a2ptq

„

dr2

1 ´ κr2 ` r2pdθ2 ` sin2 θdϕ2q

ȷ

, (1.2)

where κ is the sign of the curvature of the Universe (spherical if k “ `1, flat if k “ 0,
hyperbolic if k “ ´1) and aptq is the scale factor.

The scale factor relates the comoving distance given by the comoving coordinates with
the actual physical distance between two objects in the expanding Universe. The scale
factor is defined to be a0 “ 1 today, so that if the comoving distance today between
two points is x0, the physical distance between them at some earlier time t was aptqx0
([3]). Therefore, it can be used as an evolution coordinate because, for a monotonically
expanding Universe, each value of the scale factor univocally corresponds to a moment in
the evolution of the Universe. Likewise, the light that we would receive today from an
emitter in our past lightcone is redshifted due to the expansion of the Universe. This is
what is called the cosmological redshift.

It is easy to show ([4]) through the FLRW metric (1.2) that, since for radiation we
have ds2 “ 0, the cosmological redshift can be expressed as

1 ` z “
apt0q

apteq
“

1
apteq

, (1.3)

where t0 is the time for an observer at the present so that we have assumed apt0q “ 1 and
te is the time when a photon was emitted.

Note that in this work we assume flat Universe and the standard ΛCDM cosmology,
with best fit parameter values from the full Planck analysis [5].

1.4 Distance measures

There are different cosmological distance measures we can deal with and give formu-
lae for them, which are all defined in [6]. In last section, we introduced the comoving
coordinates due to the fact that, since the Universe is in constant expansion, the distance
between two objects is constantly changing. Although there are several distance measures
that are function of time (or equivalently, redshift) and are crucial to derive the bright-
ness temperature expression which we use as LIM signal as explained in section 1.6, in
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this work we only focus on one, the comoving line-of-sight (or radial) distance, which is
denoted by χ.

If we consider two nearby objects in the Universe, the small comoving line-of-sight
distance δχ between them is the distance between them which remains constant with time
if the objects are in rest with the cosmic fluid. In other words, since the cosmological
redshift is defined by equation (1.3), it is the proper distance between the two objects
multiplied by the factor p1 ` zq. Therefore, the total comoving line-of-sight distance
between us and a distant object is computed by integrating the infinitesimal contributions
between nearby objects along the radial ray from z “ 0 (us, the observer) to the object. It
is explained in [6] that the comoving line-of-sight distance can be obtained by the following
expression

χpzq “ c

ż z

0

dz1

Hpz1q
, (1.4)

where c is the speed of light and Hpzq is the Hubble parameter, defined by Hpzq “ 9a{a
where 9a denotes the derivative of the scale factor with respect to cosmic time. It is common
to write it as function of time instead of as function of redshift, but this is equivalent as
demonstrated by equation (1.3).

1.5 Large-scale structure

In this section we make a brief description about how we can understand the Universe
to be structured at large scales, as well as an introduction of what dark-matter halos are
and the most relevant aspects for the statistical studies of clustering.

As discussed in [7], nowadays it has become clear that much of the mass in the Universe
is dark, and that this mass was initially rather smoothly distributed. For this reason, we
can think of the luminous galaxies we see today as biased tracers of the dark-matter
distribution, which means that the relation between the number of galaxies in a randomly
placed cell and the amount of dark matter the same cell contains may be complicated.
Linear and higher order perturbation theory descriptions of gravitational clustering from
Gaussian initial fluctuations have been developed, because there is evidence that the initial
fluctuation field was very close to a Gaussian random field. These describe the evolution
and slightly non-linear clustering of the dark matter but they do not work when the
clustering is highly non-linear, and they do not provide rigorous framework for describing
how the clustering of galaxies differs from that of the dark matter, either.

A way to study the non-linear evolution of the dark-matter distribution is using nu-
merical simulations of the large-scale structure clustering process, which has been done
extensively. As shown in Figure 1.1, these simulations demonstrate that an initially smooth
matter distribution evolves into a complex network of lines and knots. The dense knots
are often called dark-matter halos, which correspond to situations in which dark-matter
overdensities collapse in a gravitationally bound structure. If distinct halos can be identi-
fied, then it is likely that they are small compared to the typical distances between them.
Simulations such as the cited show that the halo abundance, spatial distribution, and
internal density profiles are closely related to the properties of the initial fluctuation field,
so that these provide a way to analyze the spatial statistics of the dark-matter density
field from the linear to highly non-linear regimes.

The idea that galaxies form within these dark-matter halos has gained increasing cre-
dence, so that a halo based description of the dark-matter distribution of large-scale struc-
ture is very useful. The physical properties of galaxies are determined by the halos in which
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Figure 1.1: Left: complex distribution of dark matter found in numerical simulations.
Right: distribution of dark-matter halos, where all the information is contained. Obtained
from [7].

they form, hence the statistical properties of a given galaxy population are determined by
the properties of the respective halo population. As explained in [3], although the proper-
ties and dynamics of individual halos can be very complicated, their average properties are
simple and can be characterized by only their mass at a given time. For this reason, it is
very useful to predict the abundance of dark-matter halos for each mass. This is known as
the halo mass function, which will be denoted by dn{dM in the following, and represents
the differential number density of halos of a given infinitesimal interval of halo mass. This
quantity, since halos formed from regions in the initial density field which were sufficiently
dense that they later collapsed, can be estimated from the number density of regions in
the initial fluctuation field which were dense enough to collapse ([3], [7]). The halo mass
function will be very important in next chapter to derive the probability of having a halo
with some specific mass affecting to a specific point in a region of the Universe.

Another important quantity that we will use throughout this work is the halo bias.
As we have seen, dark-matter halos are collapsed objects that form in the highest peaks
of the density field. Therefore, although their clustering is expected to be related with
the clustering of matter, in practice it cannot be the same. For this reason, we consider
a relation between the matter perturbations and the halo number density perturbations,
which we call bias ([3]):

δh “ Frbsδm. (1.5)

In this equation, Frbs is a general functional of the bias. Although non-linear terms should
be considered in order to faithfully reproduce the halo distribution, in this work we only
consider a linear bias in order to simplify calculations, making sure that a linear bias
approximation is accurate enough for our objective.

Now, we are going to introduce two important quantities that are used in the statistical
description of any density distribution at large scales. To deal with these quantities,
we will sometimes need to work in Fourier space, so we first introduce the convention
followed throughout. For a d-dimensional Fourier space variable u being the conjugate of
a configuration space variable v, the direct and inverse Fourier transforms of a function f
and its Fourier counterpart rf will be given by
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rfpuq “

ż

ddv fpvqe´iv¨u (1.6)

fpvq “
1

p2πqd

ż

ddu rfpuqeiv¨u, (1.7)

where the tilde denotes Fourier space functions.
The quantities we are introducing are two-point quantities, this means they are defined

between any two points in space, and their values depend on the position of these two
points. However, these quantities can also be generalized to be defined between any n
points in space, where n is any natural number. The first quantity is the so-called two-
point correlation function ([7]), and is defined by

xδpxqδpx1qy “ ξpx ´ x1q, (1.8)

where δ represents the number density perturbations (or overdensity field) which can be
related to the average number density as explained in next chapter, and the brackets
denote the average over realizations of δ. The two-point correlation function represents
the probability of finding two contributions to the density separated by a distance vector
x ´ x1 with respect to a uniform distribution, and can be related to different types of
physical content of the Universe depending on what density we consider, such as halo
density or any kind of matter density. Regarding the number density perturbations δpxq

in configuration space, they can also be represented as a sum over Fourier modes of its
Fourier transform rδpkq.

Making use of the number density perturbations in Fourier space, rδpkq, we can intro-
duce the second quantity that helps in the statistical description of any density distribu-
tion, which is known as the power spectrum ([7]) and is defined by

xrδpkqrδpk1qy “ p2πq3δDpk ` k1qP pkq, (1.9)

where δD represents the three-dimensional Dirac delta. The power spectrum is a way of
measuring the magnitude (or variance) of the density distribution fluctuations as a function
of Fourier modes, and as stated in [1] if there are lots of very under- and overdense regions
it will be large, whereas it is small if the density distribution is smooth.

There exists a relation between the two-point correlation function and the power spec-
trum, which is that they are Fourier transform pairs. Therefore, considering xδpxqδpx `

rqy “ ξprq we can write

ξprq “
1

p2πq3

ż

d3k eik¨rP pkq. (1.10)

Since the power spectrum P pkq has units of k´3, assuming that it is isotropic (i.e.
P pkq “ P pkq and it only depends on the magnitude of the modes), to make representations
of P pkq as function of the modes k we often use the dimensionless quantity

∆pkq “
k3P pkq

2π2 ,

which is a good indicator of the clumpiness on scale k ([1]). Figure 1.2 shows ∆pkq as
function of k for a galaxy distribution, where it can be compared the theoretical prediction
with the measured data. It can be seen that on large scales (small k) the variance is smaller
than unity, whereas in small scales (larger k) the variance is close to unity.
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Figure 1.2: The variance ∆pkq of the Fourier transform of the galaxy distribution as a
function of scale. The solid line is the theoretical prediction from a model in which the
Universe contains dark matter, a cosmological constant, with perturbations generated by
inflation. The dashed line is a theory with only baryons and no dark matter. Obtained
from [1].

Finally, as explained in [7], under the approach that the mass in the Universe is par-
titioned up into halos and that the halos are small compared to the usual distance there
exist between them, the distribution of the mass can be studied in two steps. On the one
hand, the statistics of the mass density field on small scales are determined by the spatial
distribution within halos, in a way that the precise manner in which the halos themselves
are organized into large-scale structures is not important. On the other hand, on large
scales what it is important is the spatial distribution of the halos, in a way that the details
of the internal structure of the halos are not significant if the scales are larger than a typ-
ical halo. The halo model takes into account this distinction, and its formalism separate
terms between those which describe the distribution of mass within each halo, and those
which describe the spatial distribution of the halos themselves. In this way, regarding
the two-point correlation function and the power spectrum, they are separated into two
terms, which are called the one- and two-halo term, and account for the case in which the
two contributions to the density are from the same halo and for the case in which the two
contributions are from different halos, respectively. This means the two-point correlation
function and the power spectrum can be expressed as

ξpx ´ x1q “ ξ1hpx ´ x1q ` ξ2hpx ´ x1q and P pkq “ P 1hpkq ` P 2hpkq,

where the superscript 1h means one ´ halo and the superscript 2h means two ´ halo. We
will follow a similar formalism in next chapter when we derive the two-point PDF of the
brightness temperature measured by LIM experiments.

As we have discussed, matter distribution in the Universe is determined by the Uni-
verse’s evolution and the underlying physics that drive all interactions. However, we can
not measure directly the mass distribution because it is mostly dark matter, hence we
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need tracers. One of them is galaxy clustering and Line-Intensity Mapping is another, as
we describe in next section.

1.6 Line-Intensity Mapping

In this section we are going to introduce what is Line-Intensity Mapping, why it is
useful to extract information from the observable Universe and what it is based on. The
references consulted here are [8], [9], [10], [11] and [12], where it is possible to find further
and deeper information than the presented in this work.

1.6.1 What is Line-Intensity Mapping? Its main target lines

Line-intensity mapping is an exciting and emerging technique to survey the Universe.
Unlike galaxy surveys, which determine the large scale distribution of mass by locating
huge numbers of galaxies, intensity mapping measures the integrated emission of sev-
eral spectral lines originating from individually unresolved galaxies and the intergalactic
medium (IGM) with relatively low-aperture instruments. Mapping the intensity fluctua-
tions of an array of lines offers a unique opportunity to probe redshifts well beyond the
reach of other cosmological observations (such as galaxy surveys) over potentially huge
three-dimensional volumes of the Universe, access regimes that cannot be explored other-
wise and exploit the potential of cross-correlations with other measurements. The reason
why LIM can use smaller aperture instruments compared to the ones used by galaxy sur-
veys is because it does not require very high-resolution detections since it uses all incoming
photons from any source within the field of view, obtaining tomographic line-of-sight in-
formation from targeting a known spectral line at different frequencies. Furthermore, this
allows LIM experiments to be carried out with modest experimental budgets.

To help uncover the potential of LIM, we introduce here an example of its capability
compared to that of the galaxy surveys. Figure 1.3 shows a comparison between the
galaxies detected in a small sky patch by the Very Large Array (VLA), an advanced
radio telescope observatory, and the intensity map detected by the carbon-monoxide (CO)
intensity mapping instrument (COMAP). While the VLA detects only a small amount
of the total number of CO-emitting galaxies, COMAP produces a map of the intensity
fluctuations, which is sensitive to emission throughout the field.

As it has been shown in Figure 1.3, LIM holds promise to become a key tool in
advancing our understanding of cosmology and astrophysics, as the Cosmic Microwave
Background (CMB) and galaxy surveys have been until now. Moreover, in terms of access,
LIM is great positioned to probe crucial epochs in the history of the Universe. For example,
it is able to directly probe the epoch of reionization (EoR, the transition from a Universe
filled with neutral hydrogen to one that is mostly ionized as it is today), the IGM, the
interstellar medium (ISM) and the formation of stars. Figure 1.4 shows the epochs of
the Universe that LIM is able to probe. Furthermore, extending the reach of a survey to
higher redshifts increases the volume observed significantly. This enables the exploration
of larger scales, potentially reaching scales of the order of the horizon, where imprints of
inflation might be detectable.

Regarding the spectral emission lines that can be targets of LIM experiments, there
exists a variety of them ranging from the microwave to the ultraviolet (UV) bands, which
can be used to probe different phases of the IGM and ISM. We now briefly describe some of
them. First, we consider CO emission lines. CO is the most common molecule in Universe
besides diatomic molecular hydrogen (H2) and is the most used tracer of molecular gas.
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Figure 1.3: Left: a simulated 2.5 deg2 field with galaxy positions, where the most bright
galaxies detected by the VLA are marked in red. Right: CO intensity map detected by
COMAP. Obtained from [10].

Figure 1.4: Different redshift volumes within reach of galaxy surveys, LIM and the CMB.
Intensity mapping of multiple line emissions provides access to volumes otherwise in-
accessible. MD=RD and DE=MD denote the redshifts of matter-radiation and dark
energy-matter equality, respectively, and kNL is an estimation of the scale at which matter
clustering becomes non linear, specified in units of Mpc´1. Obtained from [9].

Some of the brightest rotational line emissions in galactic spectra are those of CO and can
be observed by terrestrial telescopes targeting the sub-mm wavelength range. Although
one of the drawbacks CO emission has is that it is very sensitive to the environment, it can
be useful to estimate the amount of stellar mass and the star-formation rate in galaxies.
Second, we consider ionized carbon (CII) lines. Atomic and ionic fine-structure lines in the
infrared are important drivers of the cooling process of interstellar gas, among which the
[CII] 158 µm fine-structure line is the brightest. It provides a target for LIM experiments to
trace the star-formation history, specially at high redshifts due to its brightness. This line
suffers from CO lines contamination as foreground line-interlopers because its frequency
lies just above the ladder of CO lines. Third, other atomic fine-structure lines provide
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different targets for LIM experiments, such as silicon SIII lines, oxygen OI and OII lines,
and nitrogen NII lines, which can be used to probe ISM physics. These lines and the ratios
between them and other lines are useful to measure different parameters to characterize
galaxies. Fourth and finally, several optical and ultraviolet hydrogen lines provide targets
for LIM experiments, too. Among them, we highlight the Lyα, Hα and Hβ lines, emitted
in the ultraviolet (UV) and optical and redshifted to wavelengths down to the infrared.
These lines can be used to extract information about star formation within galaxies, among
other uses.

1.6.2 LIM signal

LIM experiments, as explained in [8] and [9], measure the specific intensity Iν per unit
of observed frequency νobs, which can be derived from the line-luminosity density ρL per
comoving volume given the line luminosity L. This way, Iν can be calculated from

Iνpxq “
c

4πνHpzq
ρLpxq, (1.11)

where ν “ νemit. This equation allows to obtain the specific intensity as function of the
line luminosity density ρL. However, experiments covering small frequencies (below some
tens of GHz) usually employ the brightness temperature using the Rayleigh-Jeans relation

T pxq “
c2Iνpxq

2kBν2
obs

“
c2p1 ` zq2

2kBν2 Iνpxq, (1.12)

where kB is the Boltzmann constant. Through equation (1.11), we can express the bright-
ness temperature as function of the line luminosity density as

T pxq “
c3p1 ` zq2

8πkBν3Hpzq
ρLpxq “ XLTρLpxq, (1.13)

where we have defined XLT as a redshift-dependent multiplicative factor to simplify the ex-
pressions. During this work we will use the brightness temperature as variable to describe
line-intensity maps, but our approach is equally applicable to specific intensities.

1.6.3 Voxel Intensity Distribution

As we have explained in last section, the correlation function and the power spec-
trum are two useful statistical quantities that help analyze density distributions at large
scales. However, since they are used to compute the variance of the distributions, they
can only describe the Gaussian part of these distributions. This poses a problem when
working with line-intensity maps, because as described in [8], since line-intensity fluctua-
tions trace the non-linear, non-Gaussian large-scale structure, they are very non-Gaussian.
For this reason, a significant part of the information contained in line-intensity maps is
not captured by power spectrum measurements, hence it is not useful anymore. Accessing
non-Gaussian information motivate the development of alternative summary statistics. In
this context, one-point statistics are one of the best solutions to this problem, because
they depend directly on the LIM PDF, hence on the full distribution of non-Gaussian
intensity fluctuations and the whole line-luminosity function.

The one-point statistics that we are going to use is the actual estimator of the PDF,
known as Voxel Intensity Distribution in the context of LIM. Imagine we have a region of
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the Universe partitioned into smaller regions, known as voxels, as we will explain in next
chapter when we introduce the practical considerations. In this situation, the VID is the
histogram of the measured brightness temperature in each voxel normalized by the total
number of voxels, and its relation with the observed PDF is

Bp∆Tiq “

ż

∆Ti

d∆T Pobsp∆T q, (1.14)

where the integral is limited to the temperature interval centered on ∆Ti. Here, we
normalize by the total number of voxels in order to deal with an intensive quantity, the
value of which does not depend on the size of the survey. Furthermore, the observed PDF
(Pobs in equation (1.14)) is a convolution between the astrophysical PDF (Pastro), which
represents the PDF of the line-luminosity signal, and the instrumental noise PDF (Pnoise),
since there is no perfect experiment without noise, so that

Pobsp∆T q “ pPastro ˚ Pnoiseqp∆T q.

Hence, B in equation (1.14) represents the total VID measured in the experiment.
The VID, as described in [9], is complementary to the power spectrum beyond its

access to the non-Gaussian information in the map. Combining the power spectrum
and the VID can help break the degeneracy between cosmology and astrophysics and,
as cited in [8], several studies have highlighted the sensitivity of the VID not only to
astrophysical parameters but also to beyond-ΛCDM cosmologies and physics beyond the
standard model.

1.7 Ergodic hypothesis

An important hypothesis we are going to assume to be true throughout this work in the
halo/galaxy structure we are going to analyze is the ergodic hypothesis. This hypothesis,
as described in [13], basically establishes that, given a dynamical system, it is ergodic if
and only if the fraction of time the system spends in a certain region in phase space is equal
to the phase space average of that region. In other words, the ergodic hypothesis states
that, given an observable of the system, averaging it over time is equivalent to averaging
over many copies of the system in different microstates.

In cosmology, it can be understood as that the average over potential realizations of the
Universe for the state in a point is equivalent to the average over the states in all points.
Particularly, in this work we are going to apply the ergodic hypothesis when we deal with
the Fourier transform of the PDF of the brightness temperature for a single emitter, such as
for example in equation (2.1). We are going to use it to write the average over realizations
of the brightness temperature T pxq as an average of the brightness temperature over the
specific observed volume Vobs of the Universe.
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Chapter 2

Theoretical formalism

This chapter presents the bulk of the work done for this project. Here we derive the
formalism for the prediction of the one- and two-point PDFs of the brightness temperature
in LIM experiments. For the latter, we separate it in two terms: the one-halo term and
the two-halo term, depending on wether the temperatures measured correspond both to
positions within the same halo or within two different halos.

In this work, given an emission line whose brightness temperature desires to be studied,
we will neglect its broadening because we assume the spectral resolution is lower than
the width of the line, hence we approximate the latter as a Dirac delta. However, we
will consider the effect of angular and spectral resolutions. The first one refers to the
capability of the temperature measuring instrument to distinguish between two objects
separated by a small angle in the sky (therefore it is transverse to the line of sight),
and the latter refers to the ability of the instrument to distinguish between two closely
spaced spectral lines in wavelength or frequency (therefore it goes along the line of sight,
with varying redshift). We consider spherical coordinates pr, ϕ, θq in configuration space
with origin at each galaxy, where ϕ P r0, 2πq and θ P r0, πs, and we define µ :“ x̂ ¨ ẑ
as the cosine of the angle between x and the z-axis. The z-axis is chosen to be the
line of sight direction. The observed map is the LIM signal (brightness temperature)
convoluted with the resolution and some experimental noise. Therefore, the measurable
signal is not a three-dimensional Dirac delta, but it will have the actual spatial distribution
of the resolution kernel. In this context, we assume that the angular resolution is the
same in every polar direction, this means the brightness temperature T pxq “ T pr, ϕ, θq is
independent of the angle ϕ (it has azimuthal symmetry), and that the spectral resolution
is symmetric with respect to frequency (or redshift), therefore the brightness temperature
has even parity with respect to the variable µ. Hence, the brightness temperature can be
simply expressed as T pxq “ T pr, µq. These symmetries are going to be significant in the
derivation of the one-halo term of the two-point PDF. Analogously, in Fourier space we
can express rT pkq “ rT pk, µkq, where we define µk :“ k̂ ¨ ẑ as the cosine of the angle between
k and the z-axis.

2.1 One-point probability distribution function

The aim of this first section of the chapter is to model the LIM PDF of measuring a
certain brightness temperature in an observed volume of the Universe. In order to do so,
the two main articles we based our formalism on are [8] and [14], but going beyond them
in some aspects.

13
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Since brightness temperature is an additive quantity, the PDF of the aggregate emission
is the convolution of the PDF of each emitter that exists in the observed volume, hence
we need to take into account clustering to measure the PDF of many emitters. This
calculation is much more tractable in Fourier space taking into account the convolution
theorem. This theorem states that the Fourier transform of the convolution of two or more
functions is equal to the product of the Fourier transforms of each function separately,
and can be easily proved as done in [15]. For this reason, we will always try to work in
Fourier space, so that convolutions become multiplications. In this context, τ is defined
as the Fourier conjugate of the brightness temperature T . Hence, the Fourier transform
of a given PDF P of the brightness temperature is

rPpτq “

ż

dTPpT qe´iT τ “ xe´iT τ y “
1

Vobs

ż

Vobs

d3xe´iT pxqτ , (2.1)

where in the second equality angle brackets denote average over realizations. In the last
equality, the ergodic hypothesis can be invoked, taking the average over the observed
volume Vobs.

From now on, we will denote ϑ as the set of astrophysical properties given a halo
mass, as discussed in [16]. The halo mass M is explicitly separated from ϑ, and we
consider an infinitesimal mass bin centered at M . Under these assumptions, the brightness
temperature PDF for the bin is

PpMqpT q “

ż

dϑPpϑ|Mq

”

PpM,ϑq

N“0 δDpT q ` PpM,ϑq

N“1 PpM,ϑq

1 pT q

ı

. (2.2)

In equation (2.2), we marginalize over the conditional multidimensional distribution Ppϑ|Mq.
Moreover, PpM,ϑq

N“x is the PDF of having x emitters (halos) of mass M and set of properties
ϑ contributing to a specific point, and PpM,ϑq

x pT q is the PDF of finding a temperature T
in a point in the space receiving contributions from x emitters with such properties. If
there is no emitter, this is N “ 0, then there is no signal and PpM,ϑq

0 pT q “ δDpT q is the
Dirac delta centered at zero. For an infinitesimal mass bin we can consider PpM,ϑq

Ną1 ” 0,
hence it becomes PpM,ϑq

N“0 “ 1 ´ PpM,ϑq

N“1 .
Therefore, we can express PpMqpT q in equation (2.2) as

PpMqpT q “

ż

dϑPpϑ|Mq

”

p1 ´ PpM,ϑq

N“1 qδDpT q ` PpM,ϑq

N“1 PpM,ϑq

1 pT q

ı

“

“

ż

dϑPpϑ|MqδDpT q `

ż

dϑPpϑ|MqPpM,ϑq

N“1

´

PpM,ϑq

1 pT q ´ δDpT q

¯

. (2.3)

With this, taking into account that
ş

dϑPpϑ|Mq “ 1 and calculating the Fourier transform
of PpMqpT q, we obtain

rPpMqpτq “ 1 `

ż

dϑPpϑ|MqPpM,ϑq

N“1

´

rPpM,ϑq

1 pτq ´ 1
¯

. (2.4)

In relation to rPpM,ϑq

1 pτq, it is the Fourier transform of PpM,ϑq

1 pT q. Although the profile
of the emission extends arbitrarily in space, in practice we can truncate it at some distance
large enough that there is no sizable signal loss. Under this assumption, the signal profile
only covers a finite volume Vprof which depends on M and ϑ, so that we can express

rPpM,ϑq

1 pτq “

ż

d3xdLPpx|M, ϑqPpL|M, ϑqe´iT pxqτ “

“
1

Vprof

ż

Vprof

d3xdL PpL|M, ϑqe´iT pxqτ . (2.5)
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Here, we marginalize over the position (for which Ppx|M, ϑq is uniform over Vprof and zero
otherwise as in the second equality) and PpL|M, ϑq accounts for any distribution of the
line luminosity given the halo mass and the astrophysical properties.

Besides that, assuming Poisson statistics and neglecting clustering from now, PpM,ϑq

N“1
can be expressed as

PpM,ϑq

N“1 “ dM
dn
dMVprofpM, ϑq, (2.6)

where dn{dM is the halo mass function. This is, the number density of halos in the bin
times the volume occupied, which depends on M and ϑ. For infinitesimal bins we can
assume PpM,ϑq

N“1 ! 1, so it is possible to interpret equation (2.4) as the linear expansion of
the exponential and write

rPpMqpτq “ exp
"
ż

dϑPpϑ|MqPpM,ϑq

N“1

´

rPpM,ϑq

1 pτq ´ 1
¯

*

. (2.7)

However, this is the Fourier transform of the PDF for a single halo mass M . We
need to extend this to all halos (i.e., to all possible masses). Considering the convolution
theorem, since the PDF for the whole population of halos is the convolution of the PDFs
for each halo, the Fourier transform of the PDF for the whole population is the product of
the inidvidual Fourier transforms. Hence, the Fourier transform of the PDF for the whole
population without accounting for clustering is

rPpuqpτq “
ź

rPpMqpτq “

“ exp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

*

, (2.8)

where we have substituted the sum of exponents by the integral limit in the second equality
and the superscript u means unclustered, and rPpM,ϑq

1 pτq is given by equation (2.5).
Now, we are including the effect of clustering. For this, first we assume that the

astrophysical properties are uncorrelated with clustering. Clustering varies in scales much
larger than the observed intensity profiles of the sources. Hence, for a specific realization
or position, we can include its effect by adding the halo overdensity field

δh “
nh ´ xnhy

xnhy
(2.9)

to the halo mass function, where nh is the local halo number density. Accordingly, we
promote

dn

dM
Ñ

dn

dM
p1 ` δhpx, Mqq, (2.10)

where x is a specific position of the observed volume, and then the PDF of having one
emitter of mass M and set of properties ϑ contributing to a specific point, this is PpM,ϑq

N“1 ,
is

PpM,ϑq

N“1 “ dM
dn

dM
VprofpM, ϑqp1 ` δhpx, Mqq. (2.11)

Therefore, we can rewrite equation (2.8) taking into account equation (2.11) to obtain the
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Fourier transform of the PDF considering the effect of clustering as

rPpδqpτq “ exp
"
ż

dMdϑPpϑ|Mq
dn

dM
p1 ` δhpx, MqqVprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

*

“

“ exp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

*

ˆ

ˆ exp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

δhpx, Mq

*

“

“ rPpuqpτq exp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

δhpx, Mq

*

. (2.12)

It is important to remark that rPpδqpτq only accounts for clustering for a single realization.
Now, we need to calculate the Fourier transform of the global PDF, which is obtained

performing the average over the realizations of rPpδq. Since rPpuq does not depend on the
overdensities, we can take it out of the average and we are left with the exponential of the
term including δh in equation (2.12) as

rPpτq “ x rPpδqpτqy “

“ rPpuqxexp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

δhpx, Mq

*

y. (2.13)

At this point, we invoke the moment-generating function (see [17]), which states that
for a random variable X,

xeXy “ exp
#

8
ÿ

p“1
xXpy{p!

+

. (2.14)

By definition in equation (2.9), xδhy “ 0. Although gravitational collapse induces non
Gaussianities and higher-order terms should be included, we take a first approximation
and truncate the moment-generating function at p “ 2. Hence, equation (2.13) can be
written as

rPpτq “ rPpuq exp
#

„
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

ȷ2
ˆ

ˆ
xδhpx, Mqδhpx, Mqy

2

+

, (2.15)

where we have applied the considerations described. Furthermore, we relate δh to the
underlying matter density field δm with a linear, mass-dependent halo bias bh so that
δhpx, Mq “ bhpMqδmpxq. This linear bias formula, as developed in [7], is only accurate on
large scales as the considered in this work. Thus, we can calculate the second cumulant
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of the halo distribution as

xδhpx, Mqδhpx, M 1qy “ xbhpMqδmpx, MqbhpM 1qδmpx, M 1qy “

“ bhpMqbhpM 1qx
1

p2πq3

ż

d3k eik¨x
rδmpk, Mqˆ

ˆ
1

p2πq3

ż

d3k1 eik1¨x
rδmpk1, M 1qy “

“ bhpMqbhpM 1q
1

p2πq6

ż

d3kd3k1 eik¨xeik1¨xxrδmpk, Mqrδmpk1, M 1qy “

“ bhpMqbhpM 1q
1

p2πq6

ż

d3kd3k1 eik¨xeik1¨xp2πq3P pkqδDpk ` k1q “

“ bhpMqbhpM 1q
1

p2πq3

ż

d3k P pkq “ bhpMqbhpM 1qσ2, (2.16)

where we have written δmpxq for each mass as the inverse Fourier transform of rδmpkq

in each case. Moreover, in the fourth equality we have made use of the identity (2.3)
in [18], which allows to relate the second cumulant of the matter distribution in Fourier
space with the power spectrum. In the last equality we have also considered σ2, which
is the zero-lag variance of the matter distribution, as the two-point correlation function
evaluated at r “ 0, this is ξp0q “ σ2. With equation (2.16), we can finally obtain the
Fourier transform of the global PDF from equation (2.15), which is given by

rPpτq “ rPpuq exp
#

„
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτq ´ 1
¯

bhpMq

ȷ2 σ2

2

+

.

(2.17)
In this equation, we assume M “ M 1 without loss of generality, hence we have bhpMqbhpM 1q “

pbhpMqq2.
It is important to highlight that this allows to calculate the Fourier transform of the

PDF of the brightness temperature in a specific point of the Universe. However, as we
will see in next chapter, in practice we deal with a discretized map, a voxelized volume
in which voxels are the basic unit of information we have access to. For this reason, halo
overdensities are smoothed over scales of the size of the voxel. Similar to what is done
in [8], we can model this convolving the overdensity field with a window function Wvox of
the voxel, which is a normalized (

ş

d3x Wvoxpxq “ 1) top-hat function with the extent of
the voxel. Furthermore, in practice the signal we can measure in LIM experiments is not
a Dirac delta, it is a Gaussian beam characterized by the angular resolution. This also
induces some smoothness on the overdensity field, which can be modeled also convolving
the overdensity field with another window function Wsmooth. This function, as we have
cited, is a normalized Gaussian centered at zero and with standard deviation given by
the angular resolution. Therefore, in practice we can calculate the overdensity field δv

hpxq

taking into account these window functions as

δv
hpxq “ δhpxq ˚ Wvoxpxq ˚ Wsmoothpxq.

This also has implications when calculating the zero-lag variance of the matter distribution.
It is easy to show, making use of the convolution theorem and the definition of the power
spectrum given by equation (1.9), that the zero-lag variance if we consider the described
window functions becomes to be

σ2
v “

1
p2πq3

ż

d3k W̃ 2
voxpkqW̃ 2

smoothpkqP pkq, (2.18)
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where W̃voxpkq is the Fourier transform of Wvox, which is a sinc function, and W̃smoothpkq

is the Fourier transform of Wsmooth, which is another Gaussian function. In addition to
this, taking into account the window functions also modifies the power spectrum. In a
similar way to the zero-lag variance, the power spectrum can be expressed as

Pvpkq “ W̃ 2
voxpkqW̃ 2

smoothpkqP pkq. (2.19)

We will see an example of how considering the window functions changes the shape of the
power spectrum but applied to the angular power spectrum in next chapter.

With all this, we can obtain the PDF of the brightness temperature in a point by
computing the inverse Fourier transform of equation (2.17) above,

PpT q “
1

2π

ż

dτ rPpτqeiT τ . (2.20)

Finally note, as we explain in detail in next chapter, that in practice we compute the
VID, not directly the PDF, and it is important to discuss here about its covariance. It is
usually assumed ([8]) that the covariance of the VID is that of a multinomial distribution,
this is

Cmultinomial
ab “

$

’

&

’

%

Ba

Nvox
p1 ´ Baq if a “ b

´
BaBb

Nvox
if a ‰ b,

(2.21)

where Nvox is the number of voxels in our discretized map. However, as shown in [8], the
numerical covariance of the VID only agrees well with the multinomial variance in the
diagonal terms. The off-diagonal do not agree well because there exist physical correla-
tions. In this context, the two-point PDF offers an alternative to compute the theoretical
analytic covariance of the VID, as shown in [14]. We now start to derive the theoretical
formalism of the two-point PDF.

2.2 Two-point probability distribution function

The aim of this second section is to model the LIM PDF of measuring two different
temperatures in an observed volume corresponding to two different positions separated
by a certain distance vector. This distance vector is denoted as r in the following. The
main reference used in this section is [14], but most of the work is new compared to this
article. As in the previous section, in order to calculate convolutions in an easier way we
will always work in Fourier space so that they become multiplications. In this context, τa

is defined as the Fourier conjugate of a brightness temperature T , and τb is defined as the
Fourier conjugate of a brightness temperature T 1. Therefore, the Fourier transform of a
given two-point PDF of the brightness temperature PpT, T 1; rq is

rPpτa, τb; rq “

ż

dTdT 1PpT, T 1; rqe´iT τae´iT 1τb “ xe´iT τae´iT 1τby “

“
1

Vobs

ż

Vobs

d3xe´iT pxqτae´iT px`rqτb , (2.22)

where we have invoked the ergodic hypothesis again as in equation (2.1) and we have
related T and T 1 through the equality T 1pxq “ T px ` rq due to the fact that they are
separated by the distance vector r.
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We assume each temperature contribution comes from one and only one halo, and we
will separate the two-point PDF into a one- and a two-halo term so that the two-point
PDF in configuration space becomes

PpT, T 1; rq “ P1hpT, T 1; rq ˚ P2hpT, T 1; rq (2.23)

and the two-point PDF in Fourier space becomes

rPpτa, τb; rq “ rP1hpτa, τb; rq rP2hpτa, τb; rq (2.24)

due to the convolution theorem. Firstly, the one-halo term (denoted by P1h) will account
for the probability of having two different positions with two different temperatures T and
T 1, respectively, separated by r within the same halo of mass M . Secondly, the two-halo
term (denoted by P2h) will account for the probability of having two different positions
with two different temperatures T and T 1, respectively, separated by r within two different
halos of masses M and M 1. A sketch of the situation that represents each of the terms is
provided in Figure 2.1.

(a) One-halo term. (b) Two-halo term.

Figure 2.1: Two-point PDF terms.

In this way, we first compute the one-halo term of the two-point PDF in section 2.2.1
and then the two-halo term of the two-point PDF in section 2.2.2.

2.2.1 One-halo term

As described before, the one-halo term accounts for the possibilities for which the two
different positions of temperatures T and T 1 belong to the same halo of mass M .

Following the same procedure as in modelling the one-point PDF, we denote ϑ as
the set of astrophysical properties given a halo mass and the halo mass M is explicitly
separated from them. We consider an infinitesimal mass bin centered at M , so that the
one-halo term of the two-point PDF of the brightness temperature for the bin is

PpMq

1h pT, T 1; rq “

ż

dϑPpϑ|Mq

”

PpM,ϑq

N“0 δDpT qδDpT 1q ` PpM,ϑq

N“1 PpM,ϑq

1 pT, T 1; rq

ı

, (2.25)

where we again marginalize over the conditional multidimensional distribution Ppϑ|Mq

and PpM,ϑq

N“x has the same meaning as in equation (2.2). However, now PpM,ϑq
x pT, T 1; rq is

the two-point PDF of finding temperatures T and T 1 separated by a distance vector r in
the space receiving contributions from x emitters with set of properties ϑ. If there is no
emitter, this is N “ 0, then there is no signal and PpM,ϑq

0 pT, T 1; rq “ δDpT qδDpT 1q is the
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product of two Dirac deltas both centered at zero. In the same way as in the one-point
PDF, since we are assuming in the one-halo term that the two temperatures T and T 1

are both observed within the same halo, for an infinitesimal mass bin we can consider
PpM,ϑq

Ną1 ” 0 so that PpM,ϑq

N“0 “ 1 ´ PpM,ϑq

N“1 . Therefore, we can express PpMq

1h pT, T 1; rq in
equation (2.25) as

PpMq

1h pT, T 1; rq “

ż

dϑPpϑ|Mq

”

p1 ´ PpM,ϑq

N“1 qδDpT qδDpT 1q ` PpM,ϑq

N“1 PpM,ϑq

1 pT, T 1; rq

ı

“

“

ż

dϑPpϑ|MqδDpT qδDpT 1q`

`

ż

dϑPpϑ|MqPpM,ϑq

N“1

´

PpM,ϑq

1 pT, T 1; rq ´ δDpT qδDpT 1q

¯

. (2.26)

Taking into account that
ş

dϑPpϑ|Mq “ 1 and calculating the Fourier transform of
PpMq

1h pT, T 1; rq, we obtain

rPpMq

1h pτa, τb; rq “ 1 `

ż

dϑPpϑ|MqPpM,ϑq

N“1

´

rPpM,ϑq

1 pτa, τb; rq ´ 1
¯

. (2.27)

Regarding rPpMq

1h pτa, τb; rq, it is the Fourier transform of PpMq

1h pT, T 1; rq. Following the
assumption made before when modelling the one-point PDF, we can truncate the profile
of the emission at some distance large enough that there is no sizable signal loss. Hence,
the signal profile only covers a finite volume Vprof, so that we can express

rPpM,ϑq

1 pτa, τb; rq “

ż

d3xdL Ppx|M, ϑqPpL|M, ϑqe´iT pxqτae´iT px`rqτb “

“
1

Vprof

ż

Vprof

d3xdL PpL|M, ϑqe´iT pxqτae´iT px`rqτb . (2.28)

In this equation, we have again marginalized over the position, for which Ppx|M, ϑq

is uniform over Vprof and zero otherwise, and PpL|M, ϑq accounts for any distribution of
the line luminosity given the halo mass and the astrophysical properties. Now, we define

Kapxq :“ e´iT pxqτa ´ 1 ÝÑ e´iT pxqτa “ 1 ` Kapxq

and analogously we define Kbpx ` rq, so that we can write equation (2.28) as

rPpM,ϑq

1 pτa, τb; rq “
1

Vprof

ż

Vprof

d3xdL PpL|M, ϑqp1 ` Kapxqqp1 ` Kbpx ` rqq “

“
1

Vprof

ż

Vprof

d3xdL PpL|M, ϑqˆ

ˆ p1 ` Kapxq ` Kbpx ` rq ` KapxqKbpx ` rqq. (2.29)

With this, following the same steps as in the one-point PDF, PpM,ϑq

N“1 is given by equation
(2.6) and for infinitesimal bins we can assume PpM,ϑq

N“1 ! 1, so it is possible to interpret
equation (2.27) as the linear expansion of the exponential and write
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rPpMq

1h pτa, τb; rq “ exp
"
ż

dϑPpϑ|MqPpM,ϑq

N“1

´

rPpM,ϑq

1 pτa, τb; rq ´ 1
¯

*

. (2.30)

However, again this is the Fourier transform of the PDF for a single halo mass M . To
extend this to the whole population of halos, we need to make the convolution of the PDFs
for each halo, which in Fourier space becomes a product. Therefore, we obtain

rP1hpτa, τb; rq “
ź

rPpMq

1h pτa, τb; rq “

“ exp
"
ż

dMdϑPpϑ|Mq
dn

dM
VprofpM, ϑq

´

rPpM,ϑq

1 pτa, τb; rq ´ 1
¯

*

, (2.31)

where we have substituted the sum of exponents by the integral limit in the second equality.
It is important to remark that this equation represents the one-halo term of the two-point
brightness temperature PDF. In this term we do not include the effect of clustering as we
did in the one-point PDF. This is because this effect, which originates from the fact that
two or more halos may be close in space, is already taken into account in the two-halo
term of the two-point brightness temperature PDF, as we will discuss in the next section.

Now, taking into account equation (2.29), which gives the expression of rPpM,ϑq

1 pτa, τb; rq,
we observe that the terms of the integral in the last equality corresponding to Kapxq and
Kbpx ` rq are easy to compute, but the term involving the product KapxqKbpx ` rq is
more difficult to calculate computationally because it is a convolution in three dimensions.
In order to make it easier to compute we develop it now alone using Fourier transforms,
properties of the Dirac delta and developments in Legendre polynomials.

It is important to remark that the spatial integral in equation (2.29) is done only over
Vprof as a consequence of the application of the ergodic hypothesis, but that we are going
to consider from now on the integral over the entire tridimensional space. This does not
lead to any problem, because we can always multiply the integrand by a window function
which is zero out of Vprof in order to transform thec integral over Vprof to a integral over
the entire space.

We can regard, firstly, the functions Kapxq and Kbpx ` rq as the inverse Fourier trans-
forms of their counterparts in Fourier space rKapkq and rKbpk1q, respectively. Moreover, we
can use the definition of the three-dimensional Dirac delta, δD, as stated in [18], which
gives

ż

d3x eix¨pk`k1q “ p2πq3δDpk ` k1q.

These expressions can be substituted into the convolution term of the integral in equation
(2.29) to obtain

ż

d3x KapxqKbpx ` rq “

ż

d3x

ż d3k

p2πq3

ż d3k1

p2πq3
rKapkq rKbpk1q eik¨xeik1¨px`rq “

“
1

p2πq6

ż

d3x

ż

d3kd3k1
rKapkq rKbpk1q eix¨pk`k1qeik1¨r “

“
1

p2πq6

ż

d3kd3k1
rKapkq rKbpk1q eik1¨r

ż

d3x eix¨pk`k1q “

“
1

p2πq6

ż

d3kd3k1
rKapkq rKbpk1q eik1¨rp2πq3δDpk ` k1q “

“
1

p2πq3

ż

d3k rKapkq rKbp´kq e´ik¨r. (2.32)
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Now, since the functions Ka and Kb have azimuthal symmetry because they are func-
tions of T pxq, which have azimuthal symmetry, they do not depend explicitly on the
azimuthal angle, so we can express rKapkq simply as rKapk, µkq and rKbpkq as rKbpk, µkq,
where k is the module of the vector k. Therefore, the product rKapkq rKbp´kq can be
redefined as a function Γpkq “ Γpk, µkq :“ rKapkq rKbp´kq.

Developing in Legendre polynomials we can now express the function Γpkq as

Γpkq “ Γpk, µkq “

8
ÿ

l“0
ΓlpkqLlpµkq, (2.33)

where Llpµkq is the Legendre polynomial of degree l depending on the cosine of the angle
between k and the z-axis, µk, and Γlpkq is given by

Γlpkq “
2l ` 1

2

ż 1

´1
dµk

rKapkq rKbp´kqLlpµkq. (2.34)

This is done in order to eliminate the direct dependence of the function Γ on the variable
µk. Therefore, continuing from equation (2.32) we can write

ż

d3x KapxqKbpx ` rq “
1

p2πq3

ż

d3k Γpk, µkq e´ik¨r “

“
1

p2πq3

ż

d3k
8
ÿ

l“0
ΓlpkqLlpµkq e´ik¨r “

“
1

p2πq3

ż

dk k2
8
ÿ

l“0
Γlpkq

ż

dΩk Llpµkq e´ik¨r, (2.35)

where dΩk “ sin θk dθk dϕk. Here θk and ϕk are the polar and azimuthal angles of k,
respectively. This is, µk “ cospθkq.

At this point, we make use of the identity (A12) in [18], which allows to write the
integral over the solid angle Ωk as a product of a spherical Bessel function and a Legendre
polynomial. This identity is

ż

dΩx eix¨y Llpx ¨ zq “ 4π iljlpxyqLlpŷ ¨ ẑq, (2.36)

where x is the module of the vector x, y is the module of the vector y and jlpxyq denotes
the spherical Bessel function of order l in the variable xy. In addition to this, note that

Llp´xq “ p´1ql Llpxq, (2.37)

which is going to be useful in the next steps of the derivation. This property means that
the Legendre polynomial of degree n is an even function if n is an even number, and it is
an odd function if n is an odd number. Now, continuing from equation (2.35) and taking
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advantage of the identity from equation (2.36) we can obtain

1
p2πq3

ż

dk k2
8
ÿ

l“0
Γlpkq

ż

dΩk Llpµkq e´ik¨r “

“
1

p2πq3

ż

dk k2
8
ÿ

l“0
Γlpkq 4π iljlpkrqLlp´r̂ ¨ ẑq “

“
1

p2πq3

ż

dk k2
8
ÿ

l“0
Γlpkq 4π p´iqljlpkrqLlpr̂ ¨ ẑq “

“
1

p2πq3

ż

dk k2
8
ÿ

l“0

2l ` 1
2

ż

dµk
rKapkq rKbp´kq Llpµkq 4π p´iqljlpkrqLlpr̂ ¨ ẑq, (2.38)

where we have also used the property of the Legendre polynomials given by equation
(2.37) and the expression of the coefficients Γlpkq given by equation (2.34). It is possible
to develop both expressions rKapkq and rKbp´kq in equation (2.38) as a sum of Legendre
polynomials as

rKapkq “

8
ÿ

l1“0

rKpl1q
a pkqLl1pµkq (2.39)

rKbp´kq “

8
ÿ

l2“0

rK
pl2q

b pkqLl2p´µkq, (2.40)

where the coefficients rK
pl1q
a pkq and rK

pl2q

b pkq are given by

rKpl1q
a pkq “

2l1 ` 1
2

ż

dµk
rKapkqLl1pµkq (2.41)

rK
pl2q

b pkq “
2l2 ` 1

2

ż

dµk
rKbp´kqLl2p´µkq. (2.42)

We can now substitute these expansions in Legendre polynomials in equation (2.38) and,
reordering the sums, we obtain

4π

p2πq3

ż

dk k2
8
ÿ

l“0

8
ÿ

l1“0

8
ÿ

l2“0

2l ` 1
2 ˆ

ˆ

ż

dµk
rKpl1q

a pkq Ll1pµkq rK
pl2q

b pkq p´1ql2Ll2pµkq Llpµkqp´iqljlpkrqLlpµq “

“
1

2π2

ż

dk k2
8
ÿ

l“0

8
ÿ

l1“0

8
ÿ

l2“0

2l ` 1
2 ˆ

ˆ rKpl1q
a pkq rK

pl2q

b pkqp´1ql2

p´iqljlpkrqLlpµq

ż

dµk Ll1pµkqLl2pµkq Llpµkq. (2.43)

At this point, we can make use of the property proved in [19] which allows to evaluate
the definite integral of the product of three Legendre polynomials, giving the result

ż

dµk Ll1pµkqLl2pµkq Llpµkq “ 2
ˆ

l l1 l2

0 0 0

˙2
, (2.44)

where
ˆ

l l1 l2

0 0 0

˙

is a Wigner’s 3-j symbol, whose general expression is also shown in [19].

There, the integral is done in the variable θk, but it is analogous in the variable µk because
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dµk “ ´ sin θdθ and there is another minus one coming from the change of variable in the
limits of integration. It is important to highlight that, since m1 “ m2 “ m3 “ 0 in the
expression of the general Wigner’s 3-j symbol, in order the Wigner’s 3-j symbol in equation
(2.44) to be different from zero, it is needed the sum l`l1 `l2 to be an even integer. Hence,
this Wigner’s 3-j symbol is invariant under any permutation of its indexes, as we should
expect since it is obtained from a definite integral of a product of three polynomials, whose
result does not change if the order of the polynomials is changed.

Therefore, substituting in equation (2.43) the result of the integral from equation
(2.44), we can write
ż

d3x KapxqKbpx ` rq “

“
1

2π2

ż

dk k2
8
ÿ

l“0

8
ÿ

l1“0

8
ÿ

l2“0
p2l ` 1q rKpl1q

a pkq rK
pl2q

b pkqp´1ql2

p´iqljlpkrqLlpµq

ˆ

l l1 l2

0 0 0

˙2
.

(2.45)

Regarding the functions rK
pl1q
a pkq and rK

pl2q

b pkq, they are the coefficients of the decompo-
sition in Legendre polynomials of the functions rKapkq and rKbp´kq, respectively, as shown
in equation (2.39) and equation (2.40). Kapxq and Kbpxq are both even functions with
respect to the variable µ since they are functions of T pxq. Hence, rKapkq and rKbp´kq,
which are their direct Fourier transforms, are both even functions, too, because the Fourier
transform of an even function is an even function. Therefore, taking into account the ex-
pressions of the coefficients rK

pl1q
a pkq and rK

pl2q

b pkq of equation (2.41) and equation (2.42),
these are going to be equal to zero if l1 and l2 are both odd integers since then the Legendre
polynomials Ll1pµkq and Ll2p´µkq would be both odd functions, so that the integrals in
those equations would be zero, considering that the variable µk goes from minus one to
one. In conclusion, in order to be the expression in equation (2.45) different from zero, we
need l1 and l2 to be both even integers.

From now on, the indexes l1 and l2 will be considered to be both even integers, and
since l ` l1 ` l2 must be an even integer so that the Wigner’s 3-j symbol is different from
zero, the index l will be even, too. Hence, the expression in equation (2.45) can be written
as

ż

d3x KapxqKbpx ` rq “

“
1

2π2

ż

dk k2
8
ÿ

l“0

8
ÿ

l1“0

8
ÿ

l2“0
p2l ` 1q rKpl1q

a pkq rK
pl2q

b pkq iljlpkrqLlpµq

ˆ

l l1 l2

0 0 0

˙2
. (2.46)

This expression is a function of the position r, so that we can denote it as Bprq and
we can decompose it as a sum of Legendre polynomials, leading to

ż

d3x KapxqKbpx ` rq “

“
1

2π2

ż

dk k2
8
ÿ

l“0

8
ÿ

l1“0

8
ÿ

l2“0
p2l ` 1q rKpl1q

a pkq rK
pl2q

b pkq iljlpkrqLlpµq

ˆ

l l1 l2

0 0 0

˙2
“

“ Bprq “

8
ÿ

l“0
BplqprqLlpµq, (2.47)
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where r denotes the module of the vector r. Moreover, since the Legendre polynomials
form a basis of the functions defined in the interval r´1, 1s, it is possible to obtain the
coefficients Bplqprq of the decomposition of Bprq directly as

Bplqprq “
2l ` 1
2π2 il

8
ÿ

l1“0

8
ÿ

l2“0

ż

dk k2
rKpl1q

a pkq rK
pl2q

b pkq jlpkrq

ˆ

l l1 l2

0 0 0

˙2
(2.48)

From here, in order to compute equation (2.48) in an easier way, we can obtain relations
between the coefficients rK

pl1q
a pkq and rK

pl2q

b pkq and their counterparts in configuration space,
K

pl1q
a pxq and K

pl2q

b pxq, respectively. To do this, consider a general function depending on
the vector x, Kpxq, and take its direct Fourier transform, given by

rKpkq “ rKpk, µkq “

ż

d3x Kpx, µqe´ik¨x “

ż

dx x2
8
ÿ

l“0
Kplqpxq

ż

dΩx e´ik¨xLlpµq “

“

ż

dx x2
8
ÿ

l“0
Kplqpxq 4πp´iql jlpkxqLlpµkq, (2.49)

where the function Kpxq has been decomposed in Legendre polynomials as Kpxq “
ř8

l“0 KplqpxqLlpµq and we have also used the property in equation (2.36). Developing
also rKpkq “

ř8
l“0

rKplqpkqLlpµkq as a sum of Legendre polynomials and comparing with
equation (2.49), we get

rKplqpkq “ 4πp´iql

ż

dx x2Kplqpxqjlpkxq, (2.50)

which gives the relation desired between the coefficients in Fourier space and the coeffi-
cients in configuration space. Therefore, we obtain

rKpl1q
a pkq “ 4πp´iql1

ż

dx x2Kpl1q
a pxqjl1pkxq (2.51)

and analogously we obtain rK
pl2q

b pkq. Considering that l1 and l2 are both even integers and
substituting the expressions of rK

pl1q
a pkq and rK

pl2q

b pkq in equation (2.48), we can express
Bplqprq as

Bplqprq “
2l ` 1
2π2 il

8
ÿ

l1“0

8
ÿ

l2“0

ż

dk k2
ż

dx x2 Kpl1q
a pxq jl1pkxq 4πp´iql1

ˆ

ˆ

ż

dx1 x12 K
pl2q

b px1qjl2pkx1q 4πp´iql2

jlpkrq

ˆ

l l1 l2

0 0 0

˙2
“

“ 8p2l ` 1q il
8
ÿ

l1“0

8
ÿ

l2“0
il1`l2

ˆ

ˆ

ż

dx dx1 x2x12 Kpl1q
a pxq K

pl2q

b px1q

ˆ

l l1 l2

0 0 0

˙2 ż

dk k2jlpkrqjl1pkxqjl2pkx1q.

(2.52)

As we can observe, an integral of a product of three Bessel functions appears. This
integral can be computed using the theory developed in [20], where it is shown that
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it can be expressed in terms of a sum of associated Legendre polynomials. This way,
the convolution term in equation (2.29) can be computed calculating the coefficients in
equation (2.52) and making the sum multiplying by the Legendre polynomials in equation
(2.47).

2.2.2 Two-halo term

Now, we are going to find and expression for the two-halo term of the LIM two-point
PDF of the brightness temperature. As described before, the two-halo term accounts for
the possibilities for which the two different positions of temperatures T and T 1 belong to
two different halos of masses M and M 1, respectively. This situation can be observed in
Figure 2.1.

Following the same procedure as in modelling the one-point PDF and the one-halo
term of the two-point PDF and since we are now dealing with two different halos, we
denote by ϑ the set of astrophysical properties of the halo of mass M and by ϑ1 the set of
astrophysical properties of the halo of mass M 1. We consider two infinitesimal mass bins,
one centered at M and another centered at M 1, so that the two-halo term of the two-point
PDF of the brightness temperature for the bins is

PpM,M 1q

2h pT, T 1; rq “

ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qˆ

ˆ

”

PpM,M 1,ϑ,ϑ1q

N“0 δDpT qδDpT 1q ` PpM,M 1,ϑ,ϑ1q

N“2 PpM,ϑq

1 pT qPpM 1,ϑ1q

1 pT 1q

ı

.

(2.53)

In this equation, we have made some assumptions. Firstly, we marginalize over the two
conditional multidimensional distributions Ppϑ|Mq and Ppϑ1|M 1q to account for the astro-
physical properties of both halos. Secondly, we assume that PpM,M 1,ϑ,ϑ1q

N“1 is equal to zero,
because as defined before this is the PDF of having one emitter contributing to a specific
point, but in this term we consider two emitters (halos) contributing. That is the reason
why we now have PpM,M 1,ϑ,ϑ1q

N“2 , which is the PDF of measuring, given a temperature T in a
specific position within a halo of mass M and set of properties ϑ, another temperature T 1

separated by a distance vector r from T within a different halo of mass M 1 and set of prop-
erties ϑ1. Thirdly, we assume that the probability of observing a temperature within one
halo is independent of the probability of observing another temperature within another
halo, hence PpM,M 1,ϑ,ϑ1q

2 pT, T 1; rq “ PpM,ϑq

1 pT qPpM 1,ϑ1q

1 pT 1q. Besides these assumptions, if
there is no emitter, this is N “ 0, then there is no signal and PpM,M 1,ϑ,ϑ1q

0 “ δDpT qδDpT 1q

is the product of two Dirac deltas both centered at zero.

Furthermore, since we are assuming in this term that the two temperatures T and T 1

are observed within two different halos, for two infinitesimal mass bins we can consider
PpM,M 1,ϑ,ϑ1q

Ną2 ” 0 so that, since we also have that PpM,M 1,ϑ,ϑ1q

N“1 is equal to zero, PpM,M 1,ϑ,ϑ1q

N“0 “

1 ´ PpM,M 1,ϑ,ϑ1q

N“2 prq. Therefore, we can write PpM,M 1q

2h pT, T 1; rq as
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PpM,M 1q

2h pT, T 1; rq “

ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qˆ

ˆ

”´

1 ´ PpM,M 1,ϑ,ϑ1q

N“2

¯

δDpT qδDpT 1q ` PpM,M 1,ϑ,ϑ1q

N“2 PpM,ϑq

1 pT qPpM 1,ϑ1q

1 pT 1q

ı

“

“

ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qδDpT qδDpT 1q `

ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qPpM,M 1,ϑ,ϑ1q

N“2 ˆ

ˆ

´

PpM,ϑq

1 pT qPpM 1,ϑ1q

1 pT 1q ´ δDpT qδDpT 1q

¯

. (2.54)

With this, taking into account that
ş

dϑdϑ1Ppϑ|MqPpϑ1|M 1q “ 1 and calculating the
Fourier transform of PpM,M 1q

2h pT, T 1; rq, we obtain

rPpM,M 1q

2h pτa, τb; rq “ 1 `

ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qPpM,M 1,ϑ,ϑ1q

N“2 ˆ

ˆ

´

rPpM,ϑq

1 pτaq rPpM 1,ϑ1q

1 pτbq ´ 1
¯

. (2.55)

In this equation, as in the one-halo term τa is the Fourier conjugate of T and τb is the
Fourier conjugate of T 1.

In relation to PpM,ϑq

1 pτaq and PpM 1,ϑ1q

1 pτbq, these are the Fourier transforms of the
one-point PDFs of T and T 1 within the halo of mass M and within the halo of mass
M 1, respectively. Consequently, we can calculate them as we did when we modeled the
one-point PDF, this is

rPpM,ϑq

1 pτaq “

ż

d3xdL Ppx|M, ϑqPpL|M, ϑqe´iT px´x1qτa “

“
1

Vprof

ż

Vprof

d3xdL PpL|M, ϑqe´iT px´x1qτa (2.56)

and analogously for rPpM 1,ϑ1q

1 pτbq. This way, Vprof is the volume which the signal profile
corresponding to T covers, V 1

prof is the volume which the signal profile corresponding to
T 1 covers, x1 is the center position of the halo of mass M and x2 is the center position
of the halo of mass M 1. There exists a difference with respect to the analogous definition
in the one-point PDF, which is that in each case we center the temperature profile in the
position where it is the center of the halo. Besides that, we marginalize over the position,
for which Ppx|M, ϑq is uniform over Vprof and zero otherwise and Ppx1|M 1, ϑ1q is uniform
over V 1

prof and zero otherwise. We also marginalize over the line luminosity, for which
PpL|M, ϑq and PpL1|M 1, ϑ1q account for any distribution of the line luminosity given the
halo mass and the astrophysical properties, in each case.

Now, assuming Poisson statistics, we can define PpM,M 1,ϑ,ϑ1q

N“2 in equation (2.55) as

PpM,M 1,ϑ,ϑ1q

N“2 “ dM
dn

dM
VprofpM, ϑqdM 1 dn

dM 1
V 1

profpM
1, ϑ1qˆ

ˆ

ż

d3x1

ż

d3x2 Ppx ´ x1, M, ϑqPpx1 ´ x2, M 1, ϑ1qp1 ` ξ px1 ´ x2qq .

(2.57)

This is, as stated before, the probability of measuring a temperature T 1 within a halo of
mass M 1 given a temperature T in a specific position within a halo of mass M , with T and
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T 1 separated by a distance vector r “ x ´ x1. In equation (2.57), the term 1 ` ξpx1 ´ x2q

accounts for the possibilities of finding two halos separated by a distance vector x1 ´ x2,
so that it is equal to one if we do not consider clustering and the distribution of the halos
is therefore uniform, since ξpx1 ´ x2q is the halo two-point correlation function. Note that
if we consider the window functions Wvox and Wsmooth as we explained in the one-point
PDF section, since the power spectrum is modified due to the effect of these functions
and becomes to be Pvpkq, taking into account equation (1.10) the two-point correlation
function would be affected by these window functions, too. Moreover, in equation (2.57)
we integrate over x1 and x2 to account for any position of the halos of masses M and M 1,
and we multiply by Ppx ´ x1, M, ϑq and Ppx1 ´ x2, M 1, ϑ1q, which are given by

Ppx ´ x1, M, ϑq “

#

1{Vprof if ∥x ´ x1∥ ď Vprof

0 otherwise
(2.58)

Ppx1 ´ x2, M 1, ϑ1q “

#

1{V 1
prof if ∥x1 ´ x2∥ ď V 1

prof,

0 otherwise ,
(2.59)

so that they act as window functions over Vprof and V 1
prof, respectively. Furthermore,

we can assume for infinitesimal bins that PpM,M 1,ϑ,ϑ1q

N“2 ! 1, so it is possible to interpret
equation (2.55) as the linear expansion of the exponential and write

rPpM,M 1q

2h pτa, τb; rq “

“ exp
"
ż

dϑdϑ1Ppϑ|MqPpϑ1|M 1qPpM,M 1,ϑ,ϑ1q

N“2

´

PpM,ϑq

1 pT qPpM 1,ϑ1q

1 pT 1q ´ 1
¯

*

. (2.60)

At this point, we need to make an assumption in order to obtain a computable expres-
sion for rPpM,M 1q

2h pτa, τb; rq. Following the argument described in [7], if ξprq varies slowly
on scales which are larger than the typical extent of a halo, as we assume in this work,
Ppx ´ x1, M, ϑq and Ppx1 ´ x2, M 1, ϑ1q can be considered to be Dirac delta functions
centered each one at the respective center position of the halo as they become to be
extremely sharped compared to the scales in which ξprq varies. Hence, we can assume
Ppx ´ x1, M, ϑq « δDpx ´ x1q and Ppx1 ´ x2q « δDpx1 ´ x2q. Moreover, like in the one-
point PDF and the one-halo term of the two-point PDF, rPpM,M 1q

2h pτa, τb; rq is the two-halo
term of the two-point PDF of only two halos of masses M and M 1. In order to obtain the
two-halo term of the two-point PDF of the whole population of halos, we need to make a
convolution with each of the masses M and M 1 we can have. Therefore, as we are working
in Fourier space, we need to multiply by the PDF of each of the masses we can have. This
means we obtain
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rP2hpτa, τb; rq “
ź

rPpM,M 1q

2h pτa, τb; rq “

“ exp
#

ż

dM dM 1dϑdϑ1Ppϑ|MqPpϑ1|M 1q
dn

dM
VprofpM, ϑq

dn

dM 1
V 1

profpM
1, ϑ1qˆ

ˆ

ż

d3x1 d3x2

«˜

ż

Vprof,V 1
prof

d3x d3x1Ppx ´ x1, M, ϑqPpx1 ´ x2, M 1, ϑ1qˆ

ˆ
`

1 ` ξpx1 ´ x2q
˘e´iT px´x1qτae´iT px1´x2qτb

VprofV 1
prof

¸

´

´ Ppx ´ x1, M, ϑqPpx1 ´ x2, M 1, ϑ1q
`

1 ` ξpx1 ´ x2q
˘

ff+

“

“ exp
#

ż

dMdM 1dϑdϑ1Ppϑ|MqPpϑ1|M 1q
dn

dM
VprofpM, ϑq

dn

dM 1
V 1

profpM
1, ϑ1qˆ

ˆ

«

ż

Vprof,V 1
prof

d3xd3x1 p1 ` ξprqq
e´iTx“x1 pMqτae´iTx1“x2

pM 1qτb

VprofV 1
prof

´ p1 ` ξprqq

ff+

“

“ exp
#

ż

dMdM 1dϑdϑ1Ppϑ|MqPpϑ1|M 1q
dn

dM
VprofpM, ϑq

dn

dM 1
V 1

profpM
1, ϑ1qˆ

ˆ pe´iTx“x1 pMqτae´iTx1“x2
pM 1qτb ´ 1qp1 ` bhpMqbhpM 1qξmprqq. (2.61)

In the second equality we have substituted the expressions for PpM,M 1,ϑ,ϑ1q

N“2 , rPpM,ϑq

1 pτaq and
rPpM 1,ϑ1q

1 pτbq, and in the third equality we have first integrated over x1 and x2 considering
that Ppx ´ x1, M, ϑq and Ppx1 ´ x2, M 1, ϑ1q are assumed to be Dirac delta functions.
Therefore, ξpx1 ´ x2q becomes ξprq “ ξpx ´ x1q, T px ´ x1q becomes Tx“x1pMq, which is
the temperature measured in the center of the halo of mass M , and T px1 ´ x2q becomes
Tx1“x2pM 1q, which is the temperature measured in the center of the halo of mass M 1.
Finally, in the last equality we have integrated over x and x1, which allows to simplify
Vprof and V 1

prof since the integrand does not depend on either x or x1. Besides that, we
have related the two-point correlation function ξprq to the underlying matter correlation
function ξmprq with a linear, mass-dependent halo bias as we did in the one-point PDF.
This means we have considered

ξprq “ bhpMqbhpM 1qξmprq.

Finally, regarding the expression obtained in the last equality of equation (2.61), we
can define some quantities to make it more compact. Firstly, we define four quantities,
which have the subscript a if they depend on the variable τa and have the subscript b it
they depend on the variable τb. We define

αa :“
ż

dMdϑPpϑ|Mq
dn

dM
Vprof bhpMq e´iTx“x1 pMqτa (2.62)

and analogously for αb, and we define

βa :“
ż

dMdϑPpϑ|Mq
dn

dM
Vprof e´iTx“x1 pMqτa (2.63)
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and analogously for βb. Secondly, we define an integrated bias over the halo mass M in
Vprof as

btot :“
ż

dMdϑPpϑ|Mq
dn

dM
Vprof bhpMq (2.64)

and analogously we define an integrated bias b1
tot over the halo mass M 1 in V 1

prof. Therefore,
we can write equation (2.61) as

rP2hpτa, τb; rq “ exp
"

βaβb ´

ż

dMdϑPpϑ|Mq
dn

dM
Vprof

ż

dM 1dϑ1Ppϑ1|M 1q
dn

dM 1
V 1

prof `

` αaαb ξmprq ´ btotb
1
totξmprq

*

“

“ exp
␣

βaβb ´ xnVprofy xn1V 1
profy ` αaαb ξmprq ´ btotb

1
totξmprq

(

,

where n and n1 are the number of galaxies per unit of volume in Vprof and V 1
prof, respectively.

Once we have calculated both the one-halo term and the two-halo term of the two-
point PDF in Fourier space, we can simply multiply them to obtain the global two-point
brightness temperature PDF and make the inverse Fourier transform in both variables τa

and τB to obtain the two-point PDF in configuration space, this is

P pT, T 1; rq “
1

p2πq2

ż

dτadτb
rPpτa, τb; rqeiT τaeiT 1τb . (2.65)



Chapter 3

Computational implementation

In this chapter we are going to explain first how we computationally implement the
theoretical model developed (in previous chapter) in order to calculate the PDF of the
brightness temperature measured in LIM experiments. Second, we describe how we make
realizations of the population of galaxies for a projected field on the sky, so that we can
later obtain the PDF from them and compare the realizations with the predictions made
by our theoretical model, in order to validate whether it is correct or not, which is our
final goal.

Note that, although the realizations made can be used to validate both the theoretical
model for the one-point PDF and the theoretical model for the two-point PDF, in this work
we restrict ourselves to analyze only the one-point PDF of the brightness temperature,
due to the scope of this work and the time available. The two-point PDF will remain
simply as a theoretical model developed in previous chapter, and its validation through
realizations will be left for future work.

3.1 Computational approach

In this section, we explain how we manage to computationally approach our work,
describing the assumptions made and the cosmological parameters considered.

First highlight that, although the theoretical model developed in previous chapter is
valid for computing the PDF of the brightness temperature in a three-dimensional region
of the Universe, in order to facilitate its computational implementation and validation with
realizations we will consider a projection in two dimensions of a three-dimensional slice of
the Universe, eliminating the dimension along the line of sight. In order to do this, we will
need to adapt the derivation in previous chapter to the two-dimensional case. Furthermore,
we will assume several properties (simplifications) that make the implementation simpler
and faster. These assumptions are that all galaxies in the sky have the same luminosity,
the same mass, the same bias relating galaxy density and matter density and the same
redshift (they are observed from the same distance).

Similar to what is done in [8], the derivation in previous chapter allows computing the
PDF of the brightness temperature in a specific point of the Universe (or of the sky, as it is
done in this work). In practice, however, we work with a discretized map (it is actually the
only thing we can measure) in which each cell or voxel (two- or three-dimensional pixels,
depending on if we work with a region of the Universe or with the sky) corresponds to a
comoving volume, and where we measure the brightness temperature from observations.
As we will see, discretizing the map will be relevant in several stages of the computational
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implementation of the model, as it has been shown in previous chapter when we considered
the pixel window function affecting the computation of the zero-lag variance and the power
spectrum, for example.

The VID, as explained before ([8]), depends not only on the intrinsic signal but also
on the experimental setup of the LIM experiment, through the noise, the resolution and
the voxel volume, for example. For this reason, it is crucial to take into account the
experimental limitations the LIM survey has, giving values to its defining parameters.
Particularly, in this work we consider a spectral line emitted at νemit “ 115.271 GHz (it
would correspond to the CO(1-0) line) and observed at νobs “ 76.847 GHz (z “ 0.5) with
θFWHM “ 1 deg, which corresponds to the angular resolution. Since we are considering
a slice of the Universe projected on the sky, eliminating the information along the line
of sight, we do not have any spectral resolution. The redshift width of the slice of the
Universe considered is DZ “ 0.01, which will be useful to calculate comoving volumes.
Moreover, we consider a noise-per-voxel standard deviation of σN “ 0.2 µK. Regarding
the line we focus on, we assume we can distinguish it from any other, so that we do not
have any line interloper nor correlations with other emission lines (no contaminants other
than noise).

At this point, note that in order to make the realizations we need to obtain the dis-
tribution of the brightness temperature in the sky, we will use Hierarchical Equal Area
isoLatitude Pixelization (HEALPIX) of the sphere. In this pixelization, the sphere is tes-
sellated into curvilinear quadrilaterals in a way that all pixels at a given resolution have
the same area and allowing to make faster computations than other pixelizations. The
lowest resolution partition is comprised of twelve base pixels, and the resolution increases
dividing each pixel into more new ones. At each resolution increment, each pixel is divided
into a grid of Nside ˆ Nside new pixels. Therefore, Nside is a number that characterizes the
resolution of each pixelization, and is always a power of two. In this way, the total number
of pixels in which the sphere is divided at each resolution is Npix “ 12N2

side. Particularly,
in this work we will consider Nside “ 256, so that Npix “ 786432. With this pixelization,
the side length of each pixel is pix side “ 13.751 arcmin.

Through all these parameters, we obtain the following characterization of the distri-
bution of galaxies in the sky. First, the mean number density of galaxies is n “ 0.125
galaxies/Mpc3, and the linear bias relating galaxy density with matter density is bh “

1.362. Second, the mean temperature of the sky is Tmean “ 1.863 µK. Taking into account
the redshift and the redshift width of the slice of the Universe considered, we get a co-
moving volume of the full sky of V “ 4πχ2pzqrχpz ` DZ{2q ´ χpz ´ DZ{2qs “ 1.612 ¨ 109

Mpc3, hence a total number of galaxies equal to Ngal “ 2.015 ¨ 108 galaxies. In addition to
this, regarding the pixelization chosen, we obtain a mean number density of galaxies per
pixel of n̄ “ 255.668 galaxies/pixel, hence each galaxy has a luminosity of Lgal “ 29006.41
Ld, where Ld refers to the luminosity of the Sun. Finally, each pixel has a volume of
Vpix “ 2049.821 Mpc3, which allows to calculate the total contribution of each galaxy to
the temperature measured in a pixel through equation (1.13), obtaining Ttot “ 0.007 µK.

Lastly, since we are working with the two-dimensional sky instead of with a three-
dimensional volume, the power spectrum explained in Chapter 1 and Chapter 2 becomes
to be slightly different because now it measures the variance of a density distribution in
two dimensions instead of three. This new power spectrum is known as angular power
spectrum. As explained in [3], if we consider matter perturbations as function of position
n̂ on the sky (similar to what we did in three dimensions with δpxq), we can decompose



3.2. VIDS FROM REALIZATIONS 33

this perturbation distribution δpn̂q in spherical harmonics so that

δpn̂q “

8
ÿ

ℓ“0

ℓ
ÿ

m“´ℓ

aℓmYℓmpn̂q. (3.1)

This way, the aℓm are the coefficients of the decomposition of the matter perturbation
distribution, about which we can only predict their ensemble average, not the value of a
specific coefficient. The angular power spectrum, in this case, is given by the covariance
of the coefficients aℓm:

xaℓma˚
ℓ1m1y “ Cℓδℓℓ1δmm1 . (3.2)

In practice, it is usually represented the quantity ℓpℓ ` 1qCℓ{2π as function of ℓ in order
to predict the variance of the perturbation distribution on different scales (large scales are
equivalent to low ℓ and small scales are equivalent to high ℓ). Furthermore, as we described
in Chapter 2 for the power spectrum, we also need to take into account the analogous in
two dimensions of Wvox and Wsmooth, the voxel and smoothing window functions. In two
dimensions, they depend on ℓ and will be written as W pix

ℓ and W smooth
ℓ , respectively. It

is explained in [21] that they can be calculated by

W pix
ℓ “ sincp

ℓ ¨ pix side

2π
q (3.3)

W smooth
ℓ “ e´ℓpℓ`1qσ2

FWHM{2, (3.4)

where σFWHM is the standard deviation of the Gaussian beam profile. As an example of
how taking into account the window functions changes the shape of the angular power
spectrum, we consider the value of pix side given and σFWHM “ 0.007 rad given by
θFWHM. We first calculate the angular power spectrum through Code for Anisotropies in
the Microwave Background (CAMB) given the cosmological parameters assumed in this
work. This angular power spectrum is what we call Cℓ,1. After that, we calculate the
angular power spectrum Cℓ,2 “ pW pix

ℓ q2Cℓ,1 smoothed with W pix
ℓ , and the angular power

spectrum Cℓ,3 “ pW pix
ℓ W smooth

ℓ q2Cℓ,1 smoothed with both W pix
ℓ and W smooth

ℓ . These
three different angular power spectrums are shown in Figure 3.1, where we represent
the adimensional quantities lpl ` 1qCℓ,i{2π with i P t1, 2, 3u as function of ℓ in order to
compare their shapes. As we can observe, as we add window functions to the angular
power spectrum it decreases faster with increasing ℓ. This is due to the fact that if we add
window functions which smooth the overdensity field, there are less fluctuations hence the
variance decreases, specially in small scales (large ℓ).

3.2 VIDs from realizations

In this section we explain how we make realizations populating the sky with galax-
ies with the parameters described before and how we obtain the brightness temperature
distribution from them. We will distinguish four different cases: Poissonian realization,
smoothed Poissonian realization, Gaussian realization and smoothed Gaussian realization.
We make Poissonian and Gaussian realizations in order to analyze how the clustering af-
fects the temperature distribution. On the one hand, Poissonian realizations do not include
the effect of clustering, assuming that there are no spatial correlations. On the other hand,
the Gaussian realizations do include the effect of clustering because they are made from
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Figure 3.1: Comparison between lpl`1qCℓ,i{2π with i P t1, 2, 3u as function of ℓ. Cℓ,1 is the
angular power spectrum with no window functions, Cℓ,2 is the angular power spectrum
considering W pix

ℓ and Cℓ,3 is the angular power spectrum considering both W pix
ℓ and

W smooth
ℓ .

the angular matter power spectrum, which accounts for the spatial correlations, hence the
clustering, too.

First, note that we assume there exists some noise coming from the LIM experiment,
and we add it to all realizations we make. In this case, we compute it by taking random
samples from a normal distribution with zero average and a standard deviation given by
σN and adding them to the temperature map we have in each case, so that we add one
value accounting for noise to each pixel.

For the first two maps, which correspond to the Poissonian realization and the smoothed
Poissonian realization, we start from a null temperature map and what we do is populate
it randomly, in a manner that we add the Ngal galaxies to random pixels in the map. Since
Ngal ą Npix, we will have pixels with more than one galaxy, but we could have pixels with
no galaxies at all, too. Furthermore, for the smoothed Poissonian realization, we smooth
the map considering that the signal profile is a Gaussian beam with standard deviation
given by θFWHM, this is σFWHM “ 0.007 rad. This is different from the Poissonian re-
alization, in which we assume the signal profile is a Dirac delta centered at each galaxy.
In reality, the non-smoothed case is not possible to have because the LIM experiment
will always have some finite angular resolution. The full-sky temperature maps obtained
through HEALPix for the Poissonian realization and the smoothed Poissonian realization
are shown in Figure 3.2 and Figure 3.3, respectively.

Regarding the maps in Figure 3.2 and Figure 3.3, we would expect the one corre-
sponding to the smoothed case to have less contrast in colors than the non-smoothed one,
because the smoothness makes the highest temperatures to drop and the lowest temper-
atures to rise. As we can observe in those figures, this is visible especially in the legend
showing the range of temperatures present, because the range in the smoothed case is
shorter than in the non-smoothed one. In addition to this, regarding the VIDs that we
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will obtain from these maps, the VID from the smoothed one is expected to be narrower
and higher than the VID from the non-smoothed one. This is because as we have explained
the highest and lowest temperatures disappear, and the temperatures close to the mean
temperature become more numerous.

Figure 3.2: Full-sky temperature map for the Poissonian realization, including the exper-
imental noise given by σN.

Figure 3.3: Full-sky temperature map for the smoothed Poissonian realization, including
the experimental noise given by σN.

For the last two maps, which correspond to the Gaussian realization and the smoothed
Gaussian realization, we start from the angular power spectrum Cℓ,1 shown in Figure 3.1
and we create a full-sky perturbation map making a Gaussian realization with HEALPix
with angular correlations given by Cℓ,1. After that, we populate the pixels of this map
with galaxies with luminosity equal to Lgal. In order to do that, similar to what is done
in [22], we calculate the expected number density of galaxies per pixel as n̄p1 ` bhδpn̂qq,
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where δpn̂q is the matter perturbation map obtained from the angular power spectrum
and bh is the galaxy bias relating galaxies with matter distribution. With this, we make a
Poissonian realization with parameter given by this expected number density of galaxies
per pixel, so that each pixel is associated with a number of galaxies with temperature
Ttot. In addition to this, just like we did in the smoothed Poissonian realization, for the
smoothed Gaussian realization we smooth the map considering that the signal profile is a
Gaussian beam with standard deviation equal to σFWHM. These two full-sky temperature
maps are shown in Figure 3.4 (Gaussian realization) and Figure 3.5 (smoothed Gaussian
realization).

Figure 3.4: Full-sky temperature map for the Gaussian realization, accounting for cluster-
ing and including the experimental noise given by σN.

Figure 3.5: Full-sky temperature map for the smoothed Gaussian realization, accounting
for clustering and including the experimental noise given by σN.

Similar to what happened in the Poissonian realizations, the map which represents the
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Gaussian realization has more contrast in colors than the smoothed one. It is even clearer
than in the Poissonian realizations that the map which represents the smoothed Gaussian
realization appears to be blurred compared to the non-smoothed one. Moreover, if we
observe the legend showing the range of temperatures present, it is visible that the range in
the smoothed case is way shorter than the range in the non-smoothed case. Furthermore, if
we compare the maps representing the Gaussian realizations with the maps which represent
the Poissonian realizations, we observe that the ranges of temperatures in the cases of
Gaussian realizations are longer than in the case of Poissonian realizations, something
that is also directly visible in the maps, since the maps for the Gaussian realizations have
more contrast in colors than the maps for the Poissonian realizations. These differences
between the Poissonian and Gaussian realizations will be also observable in the VIDs, in
a way that the VIDs of the Gaussian realizations are expected to be lower and wider than
the VIDs of the Poissonian realizations. This is because since the Gaussian realizations
consider clustering of matter, there are areas with less matter, hence less galaxies and
lower temperatures (and conversely, too), while the Poissonian realizations has all pixels
with the same expected number of galaxies.

Once we have the four different maps, we can calculate the VIDs simply computing
the histogram of each map. In this way, we obtain the VID for each of the maps of the
Poissonian and Gaussian realizations. These VIDs, normalized by the number of pixels,
are shown in Figure 3.6 so that we can compare them and analyze their differences.

As we expected, if we observe Figure 3.6 in both Poissonian and Gaussian realizations
the VID for the smoothed case is higher and narrower than the VID for the non-smoothed
case. Furthermore, comparing the Poissonian VIDs with the Gaussian ones, we observe as
we explained that the Gaussian VIDs are wider and lower due to the fact that the ranges of
temperatures in these cases are longer than in the cases of the Poissonian realizations. We
will return to these VIDs in next chapter, when we compare them with the ones obtained
through the theoretical formalism so that we can validate it .

Figure 3.6: Voxel intensity distributions obtained from the four maps representing the
Poissonian and Gaussian realizations made.
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Chapter 4

Validation of the theoretical
formalism

We have obtained in last chapter the VIDs calculated from four different realizations
of a full-sky temperature map. The ultimate goal, which is discussed in this chapter, is to
validate the VIDs we can compute from the theoretical formalism explained in Chapter
2 with these ones. For this, we first analyze the assumptions considered and the real-
izations carried out in Chapter 3 in order to obtain explicit theoretical equations which
allow to compute the VIDs from this formalism. Later, we compare these VIDs with the
ones obtained from realizations, validating in this way wether the theoretical formalism is
correct or not. To do that, we divide the discussion in four sections, one for each of the
realizations made, in increasing complexity.

4.1 Results for the VID

We start from equations (2.5) and (2.17), which allow to compute the Fourier transform
of the one-point PDF of the brightness temperature. First, as we have assumed to be
working with the sky instead of with a three-dimensional volume, we need to replace
the three-dimensional vector x with the two-dimensional angle on the sky n̂. Now, we
analyze the assumptions made over the galaxies considered in order to simplify the cited
equations. On the one hand, since all galaxies have the same luminosity, equation (2.5)
can be rewritten as

rP1pτq “

ż

d2n̂ Ppn̂|M, ϑq e´iT pn̂qτ , (4.1)

where we have taken the conditional probability distribution PpL|M, ϑq to be a Dirac delta
centered on Lgal. On the other hand, since all galaxies have the same mass, the integral
over the masses of galaxies multiplied by the halo mass function in the expression of the
Fourier transform of the unclustered one-point PDF of equation (2.8) can be replaced
directly by n, the mean number density of galaxies. Moreover, bhpMq can be replaced
directly by bh because we only consider one possible galaxy mass. Therefore, under these
assumptions we can write

rPpuqpτq “ exp
!

nVprofp rP1pτq ´ 1q

)

. (4.2)
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Analogously, the Fourier transform of the one-point PDF including the effect of clustering
given by equation (2.17) can be rewritten as

rPpτq “ rPpuq exp
"

”

nVprofp rP1pτq ´ 1qbh

ı2 σ2

2

*

. (4.3)

Furthermore, we have added to all realizations made in Chapter 3 some noise coming
from the LIM experiment, which we have modeled to be Gaussian. To take into account
this noise when computing the theoretical temperature distribution, we convolute the
PDF of the brightness temperature in each case with a normalized Gaussian function in
one dimension with null average and standard deviation given by σN, which becomes a
multiplication in Fourier space. In this way we have

rPnoisepτq “ e´τ2σ2
N ,

which is the Fourier transform of the Gaussian function characterizing the noise, and we
multiply it by rPpτq to obtain the total one-point PDF. We do this in each of the four
cases analyzed.

Note that once we have the Fourier transforms of the four one-point PDFs taking
also into account the Gaussian noise, we need to make their inverse Fourier transform
and obtain the VIDs from them so that we can compare with the ones obtained from
realizations. In order to do so we use the library FINUFFT, which computes efficiently
Nonuniform Fast Fourier Transforms (NUFFT) in up to three dimensions. Particularly,
we use a code which allows computing type 1 NUFFT, which starts from nonuniform
(arbitrary) values of the Fourier conjugate τ and obtains the inverse Fourier transform
of a given function evaluated in uniform (equally spaced) values of the temperature T .
We use NUFFT instead of simply Fast Fourier Transforms (FFT) because we usually
need to cover large variable ranges, hence the regular FFT would be computationally too
expensive. This way, we can in the end obtain the desired PDFs in configuration space
of the variable T , from which we compute the VIDs easily implementing equation (1.14).
We now proceed to validate the four cases analyzed.

4.1.1 Poissonian VID validation

In this first case, as we explained, clustering is not considered, this means σ2 “ 0 and
we assume the signal profile is a Dirac delta centered at each galaxy. Therefore, at the
center of each galaxy there is a temperature equal to Ttot and we obtain

rP1pτq “

ż

d2n̂ δDpn̂ ´ n̂iqe
´T pn̂qτ “ e´T pn̂iqτ “ e´Ttotτ , (4.4)

where n̂i refers to the position of any galaxy. Furthermore, since the smallest volume we
can resolve is Vpix and the signal profile is a Dirac delta, we get in this case Vprof « Vpix
so that

rPpτq “ exp
!

nVpixp rP1pτq ´ 1q

)

“ exp
!

n̄p rP1pτq ´ 1q

)

. (4.5)

This way we obtain the Fourier transform of the theoretical one-point PDF for the Pois-
sonian case. As explained, all that remains to be done is to add the Gaussian noise, to
do the inverse Fourier transform and to compute the VID from it. Figure 4.1 shows this
theoretical VID obtained as well as the VID obtained from the Poissonian realization so
that we can compare them.



4.1. RESULTS FOR THE VID 41

Figure 4.1: Comparison between the theoretical VID obtained for the Poissonian case and
the VID obtained from the Poissonian realization. The y-axis is on logarithmic scale and
we plot the error band on the same axis.

As we can observe, both VIDs match almost perfectly, validating for this particular
case the theoretical formalism followed. The error band, which we obtain filling the region
between the theoretical VID minus the theoretical error and the theoretical VID plus the
theoretical error, is only slightly observable on the lowest and highest temperatures. The
theoretical error, particularly, is obtained calculating the square root of the diagonal terms
of the covariance of the VID, given by equation (2.21).

4.1.2 Smoothed Poissonian VID validation

In this second case we assume σ2 “ 0, too, but now we assume the signal profile is
Ttot times a normalized Gaussian beam with null mean and standard deviation given by
σFWHM. Here, we compute equation (4.1) in a different way than the case before. We
consider the Gaussian profile to be covering a specific number of pixels counts (we assume
a radius equal to five times the standard deviation), and we do the integral in the equation
cited in a discrete way. We first calculate the temperature in each pixel of the profile by

T
pjq

pix “

ż

A
pjq

pix

d2n̂ T pn̂q, (4.6)

where T pn̂q is the Gaussian beam multiplied by Ttot, because the temperature integrated
over the profile needs to be equal to Ttot. In this equation, A

pjq

pix denotes the area of each
pixel, i.e. the region we integrate over. This integral is that of a two-dimensional Gaussian,
which can be separated as a multiplication of two integrals in one dimension. Since the
integral of a Gaussian in one dimension is analytical, we can easily compute in this way
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the temperature for each of the pixels in the profile. Note that we center the pixels in the
origin, where the galaxy is in each case. Then, we calculate rP1 as a normalized sum by

rP1pτq “
ÿ

j

countspjq

counts
e´iT

pjq

pixτ , (4.7)

where countspjq accounts for the number of times a pixel has temperature T
pjq

pix , so that
we only sum over the different temperatures of the pixels. We need to compute rP1pτq like
this because Ttot depends on the pixelization, so we can not do the integral of equation
(4.1) the same way we did in the Poissonian case.

Once we have rP1pτq, we calculate rPpτq from equation (4.2). To do so, we consider
that nVprof is the number of galaxies covered by the signal profile, so in this case we can
calculate it multiplying nV {4π (the number of galaxies per steradian) by the area of the
pixels covered by the profile, which is obtained doing pix side2 ¨ counts (pix side2 is the
area of one pixel). The final expression for rPpτq is

rPpτq “ exp
"

nV

4π
pix side2counts p rP1pτq ´ 1q

*

. (4.8)

All that remains to be done is to add the Gaussian noise, to do the inverse Fourier
transform and to compute the VID from it. Figure 4.2 shows this theoretical VID obtained
as well as the VID obtained from the smoothed Poissonian realization so that we can
compare them.

Figure 4.2: Comparison between the theoretical VID obtained for the smoothed Poissonian
case and the VID obtained from the smoothed Poissonian realization. The y-axis is on
logarithmic scale and we plot the error band on the same axis.

As we can observe, both VIDs match almost perfectly. Although there are some
discrepancies in the highest temperatures (due to noise in the realization), this comparison
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allows us to validate for the smoothed Poissonian case the theoretical formalism developed
in Chapter 2. The error band is obtained with the same procedure as the previous case
and it is only slightly observable on the lowest and highest temperatures.

4.1.3 Gaussian VID validation

In this third case, we again consider the profile to be a Dirac delta centered at each
galaxy, so that we can obtain rP1pτq through equation (4.4) as we did in the Poissonian
case. The difference is that now we need to consider clustering, so we have to calculate σ2

and make use of equation (4.3), where rPpuqpτq can be calculated through equation (4.5).
In order to calculate σ2, we note that under the assumptions made it is the zero-lag

variance in two dimensions instead of three, because the information along the line of sight
is projected into the angular power spectrum. It is calculated from the so-called angular
two-point correlation function wpθq, which is the inverse harmonic spherical transform of
the angular power spectrum, simply evaluating wp0q. As explained in [1] and assuming
isotropy and homogeneity, the angular two-point correlation function can be expressed as

wpθq “
1

2π

ż 8

0
dℓ ℓCℓJ0pℓθq, (4.9)

where J0 is the ordinary Bessel function of order zero. However, as we work with a
pixelated map of the sky, in practice we deal with the window function W pix

ℓ given by
equation (3.3), which smooths the angular power spectrum. This function can also be
directly computed with HEALPY and it depends on ℓ due to the decomposition in spherical
harmonics. Therefore, the zero-lag variance for this particular case is calculated by

σ2 “ wp0q “
1

2π

ż 8

0
dℓ ℓCℓpW

pix
ℓ q2J0p0q, (4.10)

and we obtain σ2 “ 0.045. With this value, we calculate the inverse Fourier transform of
the one-point PDF by

rPpτq “ rPpuq exp
"

”

n̄p rP1pτq ´ 1qbh

ı2 σ2

2

*

, (4.11)

where rPpuqpτq is calculated through equation (4.5). Then, we add the Gaussian noise, we
do the inverse Fourier transform and we compute the VID from it. Figure 4.3 shows this
theoretical VID obtained as well as the VID obtained from the Gaussian realization so
that we can compare them.

As we can observe, both VIDs match perfectly, validating the theoretical formalism
followed for this particular case. The error band, which is imperceptible, is obtained with
the same procedure as before.

4.1.4 Smoothed Gaussian VID validation

In this last case, we again need to take into account clustering, but the difference with
the previous case is that now we consider the signal profile to be Ttot times a normalized
Gaussian beam as we did in the smoothed Poissonian case. Therefore, starting from
equation (4.3), in this case rPpuqpτq is equal to the Fourier transform of the PDF given by
equation (4.8), which corresponds to a uniform distribution without clustering. Then, the
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Figure 4.3: Comparison between the theoretical VID obtained for the Gaussian case and
the VID obtained from the Gaussian realization. The y-axis is on logarithmic scale and
we plot the error band on the same axis.

Fourier transform of the one-point PDF for the smoothed Gaussian case can be obtained
by

rPpτq “ rPpuq exp
#

„

nV

4π
pix side2countsp rP1pτq ´ 1qbh

ȷ2 σ2

2

+

, (4.12)

where rP1pτq is obtained from equation (4.7).
However, σ2 is different from the one computed in the Gaussian case, because now we

need to take into account the window function originated from the smoothing, W smooth
ℓ ,

in addition to W pix
ℓ . Hence, in this case we calculate σ2 from

σ2 “ wp0q “
1

2π

ż 8

0
dℓ ℓCℓpW

pix
ℓ W smooth

ℓ q2J0p0q, (4.13)

obtaining σ2 “ 0.011. It makes sense that the zero-lag variance in this case is smaller than
in the Gaussian case, because adding a smoothing window function implies that structure
on scales smaller than the beam size is undetectable as cited in [1], hence it reduces the
variance. In a clumpy Universe, the smaller the scales we resolve the largest the variance,
but as we smooth the matter distribution, the perturbations become smaller and so their
variance.

Once we compute the Fourier transform of the PDF through equation (4.12), it only
remains to add the Gaussian noise, to do the inverse Fourier transform and to compute the
VID from it. Figure 4.4 shows this theoretical VID obtained as well as the VID obtained
from the smoothed Gaussian realization so that we can compare them.
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It is clear from the figure that both VIDS match perfectly, allowing us to validate
also for this fourth case the theoretical formalism followed. The error band is again
imperceptible and it is computed as before.

Figure 4.4: Comparison between the theoretical VID obtained for the smoothed Gaussian
case and the VID obtained from the smoothed Gaussian realization. The y-axis is on
logarithmic scale and we plot the error band on the same axis.
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Chapter 5

Conclusions and future work

The main aim of this work has been to develop a theoretical formalism which enables
to compute the one- and two-point PDFs of the brightness temperature measured in Line-
Intensity Mapping experiments, and check its validity in cases that are simple to implement
computationally.

After introducing all the necessary contents to understand the object of study, such as
the principles of the standard Λ Cold Dark Matter cosmological model and how the LIM
technique works, we have focused on describing the theoretical formalism which allows to
obtain the desired temperature distributions. We have developed in two separated parts
the one- and two-point PDFs, differentiating as well in the case of the latter between
the one-halo term and the two-halo term. This work is the first step towards a robust
modeling of the two-point PDF, for which there is no analytic modeling so far. As a
first step, we have focused on the validation of the theoretical one-point PDF under some
simplifications. These simplifications have been, among others, that we have assumed
to be working with the projected full-sky instead of with a three-dimensional volume.
We have computed Poissonian and Gaussian realizations of the distribution of galaxies
on the sky so that we managed to obtain the temperature distributions from them to
compare with the ones computed with the theoretical formalism, taking into account
some Gaussian noise due to the experimental limitation of measuring instrumentation. In
all four cases analyzed we have succeed on validating our theoretical formalism, clarifying
that the temperature distributions obtained from it match almost perfectly with the ones
we have computed from realizations. Our simplifications regarding the distribution of
masses and luminosities were aimed for reducing the computing time and accelerate the
validation, but there is nothing to indicate that accounting for such distributions (always
that the distributions are precise) would make our modeling break. Highlight that, since
we obtain an actual estimator of the PDF, we can extract non-Gaussian information from
the temperature distribution unlike if for example we used the power spectrum, which
only makes Gaussian descriptions of the fields.

This work shows one of the areas of application of LIM techniques, although there are
many others as we cited in Chapter 1. Regarding the possible future work to be done,
the first extension of this work would be to validate also the theoretical formalism for the
two-point PDF of the brightness temperature under the same assumptions followed when
validating the one-point PDF. Note, for example, that this means dealing with temper-
ature distributions in two-dimensions, what we can understand as heat maps. Following
this, it would be also interesting to analyze the case in which we still work with the sky
instead of a volume of the Universe but eliminating some of the assumptions made re-

47
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garding the properties of the galaxies. For example, considering different galaxy masses
and luminosities and accounting for more complicated and realistic clustering and bias
distributions.

The most difficult case to implement computationally would be considering a finite
volume of the Universe, hence an extra dimension along the line of sight, which would
mean working with three dimensional vectors and integrals as developed in the theoretical
formalism of Chapter 2. In this case it would be interesting to reduce the computational
cost of operations as much as possible, and that is why we do when deriving the one-halo
term of the two-point PDF in Chapter 2 all the expansions in Legendre polynomials of the
convolution term. It would be crucial, thus, to find more ways of easing the computational
implementation and costs.

In conclusion, we have fulfilled the purpose of this work, developing a theoretical
formalism for the one- and two-point PDFs of the brightness temperature and validating
it for some simple cases. This paves the way to validating more complex cases, closer to
what actually happens in the Universe, so that the significant role of LIM in this context
becomes clearly proved.
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