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Abstract

Background: Obstructive sleep apnea (OSA) is a risk factor for metabolic syndrome (MetS) in
adults, but its association in prepubertal children is still questionable due to the relatively

limited cardiometabolic data available and the phenotypic heterogeneity.

Objective: To identify the role of OSA as a potential mediator of MetS in prepubertal children.

Methods: 255 prepubertal children from the Childhood Adenotonsillectomy Trial were
included, with standardized measurements taken before OSA treatment and 7 months later.
MetS was defined if three or more of the following criteria were present: adiposity, high blood
pressure, elevated glycemia, and dyslipidemia. A causal mediation analysis was conducted to

assess the effect of OSA treatment on MetS.

Results: OSA treatment significantly impacted MetS, with the apnea-hypopnea index (AHI)
emerging as mediator (»p=0.02). This mediation role was not detected for any of the individual
risk factors that define MetS. We further found that the relationship between MetS and OSA is
ascribable to respiratory disturbance caused by the apnea episodes, while systemic
inflammation as measured by C-reactive protein, is mediated by desaturation events and
fragmented sleep. In terms of evolution, patients with MetS were significantly more likely to
recover after OSA treatment (OR=2.56, 95%CI 1.20-5.46; RR=2.06, 95%CI 1.19-3.54) than

the opposite, patients without MetS to develop it.

Conclusion: The findings point to a causal role of OSA in the development of metabolic
dysfunction, suggesting that persistent OSA may increase the risk of MetS in prepubertal
children. This mediation role implies a need for developing screening for MetS in children

presenting OSA symptoms.
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1. Introduction

Obstructive sleep apnea (OSA), along with other sleep disorders resulting in
fragmented sleep, has emerged as a risk factor for cardiometabolic comorbidities (1,2). When
persistent over time, particularly when excessive daytime sleepiness is manifest, OSA promotes
the risk of cardiovascular diseases (CVD), such as hypertension or hypercholesterolemia (3—6).
In the pediatric population, OSA is also associated with an increased risk of obesity, insulin

resistance and systemic inflammation (7-9).

Metabolic syndrome (MetS) is a cluster of conditions encompassing central obesity,
impaired fasting glucose, dyslipidemia, and hypertension (10). In adults, the criteria and
definition of MetS are well established (10—12). Furthermore, MetS is directly associated with
CVD risk, insulin resistance, type 2 diabetes mellitus, and overall mortality (6,13). In studies
that assessed the association of MetS in childhood with adult CVD years later (13,14), children

with MetS were significantly more likely to manifest an increased risk of CVD in adulthood.

Compared to the abundant body of adult data, very few experimental studies
examining metabolic sequelae of sleep perturbations have been conducted in children and
adolescents (15—17). In general, OSA seems to be associated with increased risk of metabolic
dysfunction in overweight and obese children (18,19). Metabolic dysfunction is more prevalent
in pediatric patients with known insulin resistance and dyslipidemia (20), and in those with one
of the individual components of MetS, either the presence of elevated systemic blood pressure
or higher blood glucose levels (21,22). However, the extant studies have yielded inconsistent
findings at times, and the divergence from the findings in adults may be due in part to the
several competing definitions of MetS in children, but also to longer lags between disease onset
and development of MetS-related sequelae (23—26). From this point of view, an important
study (IDEFICS) by Ahrens et al. (27), classified children according to different definitions of

MetS in a population-based survey of 18,745 healthy European children, aged 2 to 11 years,
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which resulted in the proposal of standard specific cut-off values for each of the MetS

components according to percentiles in non-obese children.

Here, we hypothesized that there is an interaction between pediatric OSA and MetS,
especially in children with higher OSA severity. Consequently, screening for MetS components
may be indicated in children with OSA. Causal mediation analysis (CMA) is a powerful
technique that enables determination of mediators affecting a particular disease (28). Of
relevance to the current study, CMA allows for assessing whether a treatment has a measurable
effect, while also detecting possible causal pathways through which a treatment influences
changes in an outcome. However, CMA has not been systematically employed to study the

mediators of OSA and their interactions with MetS outcomes.

In addition to MetS, obesity (OB) and C-reactive protein levels (CRP) are also
frequently used as biomarkers for CVD. CRP is a well-established marker of systemic
inflammation and has been found to be a reliable indicator of cardiovascular morbidity in adults
(19,29). In addition, OB is also known to be strongly related to the development of OSA and
MetS in adults, but different studies disagree on their results in children (15,19,30).
Consequently, the main novelty of the study focuses on the evaluation of both the causality of
OSA in the development of MetS and the interactions between OSA, MetS, CRP and OB in

prepubertal children from the Childhood Adenotonsillectomy Trial (CHAT).

2. Materials and Methods

The methodological approaches used herein are divided into three stages. First, we
conducted analysis of MetS in the cohort based on the IDEFICS cutoff values (27). Then, we
applied CMA to assess the putative causal pathways between pediatric OSA and the
development of MetS (31). Finally, the prevalence of MetS was studied and related to the

prevalence of OSA.
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2.1. Sleep data

The CHAT sleep study was a multicentric prospective randomized trial, designed to
evaluate the efficacy of adenotonsillectomy surgery (eAT) versus a strategy of watchful waiting
with supportive care (WWSC) for pediatric OSA treatment (32). The rationale, design, and
primary outcomes for the CHAT study have been previously reported (32). All data are

publicly available at Attps.//sleepdata.org/datasets/chat. The study recruited prepubertal

children between 5 to 10 years of age with OSA symptoms who were scheduled for a baseline
nocturnal polysomnography in a clinical laboratory. After allocation to the corresponding
therapeutic strategy, eAT or WWSC, children completed a follow-up polysomnographic study
7 months later. The legal caretakers of each patient provided the informed consent, and the
CHAT study was judged ethical and approved by all relevant independent review boards. For

more details on the protocol, inclusion-exclusion criteria and ethical considerations, see (32).

The study investigators relied on the apnea—hypopnea index (AHI) to establish OSA
severity according to the American Academy of Sleep Medicine rules (32). Children were
assigned to one of four common severity groups for pediatric OSA, as follows: no OSA (AHI <
1 events per hour of sleep, e/h), mild OSA (1 < AHI <5 e/h), moderate OSA (5 < AHI< 10
e/h), and severe OSA (AHI > 10 e/h). The distribution of patients according to OSA severity is
shown in Tab. 1. OSA resolution was considered for those patients with both AHI <2 e/h and
apnea index (Al) <1 e/h at follow-up (33) (103 patients resolved vs. 152 unresolved). Note that
this criterion considers both obstructive and central apneas, thus defining stringent rules for
disease resolution than the criterion proposed in the original CHAT study (32). Owing to the
study design, all subjects at baseline were diagnosed as suffering from pediatric OSA (Tab. 1),
such that at baseline none of the subjects could be considered with OSA Resolution (AHI <2

e/h and Al <1 e/h) or No OSA (AHI < 1 e/h).
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Table 1. OSA severity definition and prevalence at baseline and follow-up, including OSA resolution
at follow-up.

OSA severity (e/h) Baseline (n) Follow-up (n) OSA Resolution %(n)
No OSA AHI< 1 - 63 -
Mild OSA 1 <AHI<S 107 135 48% (52)
Moderate OSA 5<AHI<I0 90 30 33% (30)
Severe OSA 10 < AHI 58 27 36% (21)
(255) (255) [AHI <2 and Al < 1]

at follow-up*

*All subjects at baseline were diagnosed as suffering from pediatric OSA, such that at baseline none of the
subjects could be considered as OSA Resolution (AHI <2 e/h and AI <1 e/h) or No OSA (AHI < 1 e/h).

From the CHAT database, we included 255 subjects who had all the necessary
information to define MetS, both at baseline and follow-up. Among these, 127 subjects were
assigned to eAT and 128 were assigned to WWSC. Tab. 2 shows the demographic and relevant

clinical data at baseline, separated into two groups considering OSA status at follow-up.

2.2. Definition of MetS

MetS consists of a cluster of metabolic disorders that are often associated with chronic
inflammation or with insulin resistance (34). The specific criteria for MetS in adults have been
defined by the National Cholesterol Education Program (NCEP), the Adult Treatment Panel III,
and the World Health Organization (11,12). MetS in adults is defined if three or more of the
following risk factors are present: (1) central obesity, (2) hypertension, (3) dyslipidemia and (4)
hyperglycemia. However, there are different competing definitions of MetS in children, and
each of such proposed criteria has significant limitations. For example, the definition by Cook
et al. (23) corresponds to the NCEP criteria, adapted to adolescents, which restricts its

applicability in younger children.
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Table 2. Clinical and demographic characteristics at baseline in CHAT subjects for whom complete
metabolic information was available. Subjects are separated into two groups considering OSA status at
follow-up, namely those with resolution of OSA and those with persistent OSA at follow-up. Data are
shown as mean (o) or % (n), for each subgroup. Statistically significant differences for the Wilcoxon
rank sum test (p < 0.05) are marked with asterisks (*), comparing values of patients with OSA
resolution against values of patients with OSA at follow.

Patients who resolved OSA Patients with persistent OSA
(baseline values) (baseline values) p-value
Patients (n) 40% (103) 60% (152) -
Treatment Arm (eAT) 65% (67) 39% (60) <0.001%*
Age (years) 6 (1) 7(1) 0.1908
Sex (females) 57% (59) 50% (76) 0. 2544
Race 0.8455
White 35% (36) 33% (50)
Black 52% (54) 59% (90)
Other 13% (13) 8% (12)
BMIz 0.52 (1.34) 1.03 (1.26) 0.0019%
WC (cm) 60 (12) 64 (13) 0.0045*
SBP (mmHg) 96 (8) 98 (9) 0.0805
DBP (mmHg) 62 (7) 64 (8) 0.0167*
CHOL (mg/dL) 159 (27) 158 (23) 0.6012
HDL (mg/dL) 50(12) 52(12) 0.1044
LDL (mg/dL) 95 (22) 92 (21) 0.5922
TRIG (mg/dL) 71 (29) 72 (30) 0.7580
GLUC (mg/dL) 81(8) 81 (6) 0.3725
HOMA 1.58 (1.77) 1.76 (1.66) 0.0637
CRP (ug/mL) 1.33 (2.21) 2.36 (3.66) 0.0913
AHI (e/h) 6.9 (5.6) 8.0(5.7) 0.0114*
Al (e/h) 2.9(2.5) 3.33.1) 0.2596
HI (e/h) 4.0 (4.0) 4.7 (4.1) 0.0182%
ODI (e/h) 6.5(7.0) 7.2(6.2) 0.0305*
TAI (e/h) 8.4 (3.1) 8.2(3.1) 0.6509
Epworth Sleepiness Scale 6.7 (4.8) 7.1(4.7) 0.4526
Obese (n) 28% (29) 42% (64) 0.0235*
HR (bpm) 85 (8) 84(9) 0.5000
Tonsil size, >2+ (n) 78% (80) 70% (107) 0.1986
MetS, > 3 (n) 11%(11) 19% (29) 0.0711
[AHI <2 and AI < 1]

at follow-up

Abbreviations: eAT, early adenotonsillectomy;, WWSC, watchful waiting with supportive care; BMIz: z-scored Body Mass
Index; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; CHOL, Total Cholesterol
level; HDL, High-Density Lipoprotein level; LDL, Low-Density Lipoprotein level; TRIG, Triglycerides level; GLUC, Serum
Glucose level; HOMA, Homeostatic Model Assessment; CRP, C-Reactive Protein level; AHI, Apnea-Hypopnea Index; Al
Apnea Index; HI, Hypopnea Index; ODI, Oxygen Desaturation Index; TAl, Total Arousal Index; HR, Heart Rate; MetS,

Metabolic Syndrome.

OSA resolution, for patients with AHI <2 e/h and an Al < 1 e/h at follow-up.

In the IDEFICS study, the investigators applied and compared three commonly used

definitions of the pediatric MetS, along with a new definition criterion (23-25,27). Based on

the most recent age- and sex-specific percentiles derived from the study, they suggested an
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updated definition of pediatric MetS (27), which is shown in Tab. 3, and summarily consists of
percentiles cutoffs based on statistical criteria adapted for age and sex. Using the IDEFICS
criteria, a considerable proportion of prepubertal children will be designated as MetS compared

to other definitions (27).

Table 3. Definition of pediatric Metabolic Syndrome (27). MetS is present if three or more clusters of
risk factors are met. If one of two conditions exceeds cut-off criteria, the cluster is considered to be
present:

Excess Adiposity Blood Pressure Blood Lipids Blood Glucose / Insulin
WC > 90" PCT SBP > 90" PCT TRIG > 90" PCT HOMA > 90" PCT
DBP > 90" PCT HDL < 10" PCT GLUC >90" PCT

Abbreviations: PCT, percentile; DBP, diastolic blood pressure; HDL, high-density lipoprotein cholesterol; SBP, systolic
blood pressure; WC, waist circumference; HOMA, homeostatic model assessment, for insulin resistance; TRIG, Triglycerides;
GLUC, fasting plasma glucose.

PCT reference values were obtained in non-obese healthy children population, which can be found in the IDEFICS study(27).
Note: All cut-off reference PCT values are dependent on age and sex, but the blood pressure cut-off reference values are
also dependent on height.

Finally, there is also relevance in evaluating the association between OB, OSA and
MetS (15,19,30,35). Therefore, children with body mass index (BMI) z-score values exceeding
the 95™ percentile were classified as fulfilling the criteria for OB, following the
recommendations of the Centers for Disease Control and Prevention

(https://www.cdc.gov/obesity/basics/childhood-defining. html).

2.3. Statistical Analysis

The commonly reported total causal effect (TE) of an intervention evaluates whether a
treatment modifies the outcome of interest. In this work, we implement a CMA, which further
identifies the causal pathways, namely mediators, through which the treatment affects the
outcome. A mediator is an intermediate variable that resides within the causal pathway between
an independent variable (in this case, OSA treatment), and a dependent variable (outcome of

the study, e.g., MetS). It helps to clarify how and why a treatment influences a given outcome.
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In other words, the mediator is influenced by the independent variable (OSA treatment), which
in turn influences the dependent variable (outcome). For example, with a CMA we can evaluate
whether variations in MetS are causally attributable to OSA treatment (28), influenced by AHI
as mediator/pathway of the disease. Then, CMA allows to split the TE of the OSA treatment

into two components (see Fig. 1):

o First, the average causal mediation effect (ACME), represents the indirect effects.
ACME measures the changes in the outcome particularly attributable to changes in a
given mediator, which changed due to the treatment.

e Second, the average direct effect (ADE), reflects the direct effects of the treatment.

ADE measures the changes in the outcome unlinked to the mediator under study.

On the one hand, ACME evaluates the relationships between the after-treatment
variations occurring in the outcome, i.e., the variations of the clinical indicators such as MetS,
z-scored BMI (BM1z), systolic blood pressure (SBP), etc., and the variations in the indicators
representing the disease severity, i.e., the mediators, such as AHI, oxygen desaturation index
(ODI) and so on. The MetS criteria represent an outcome from the disease. On the other hand,
ADE evaluates how treatment affects the outcome through any other (and possibly unknown)

factor(s) different from the mediator. ACME and ADE jointly form the TE.

CMA utilizes regression models to estimate the effects and associations between the
variables: one model is constructed examining the mediator-outcome relationship, other
assessing the treatment-mediator relationship, and a final one exploring the treatment-outcome
relationship. One additional model is calculated to conduct the mediation analysis, which
combines the estimated coefficients from the previous models to calculate the ACME and the
ADE. The software used for the assessment of causal mediation has been extensively validated

in R language (36).

10
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Figure 1. (a) Typical estimation of the total causal effect (33). (b) Causal mediation analysis performed

in the present study.
a) b)
Treatment TE 5 Outcome Treatment ADE _ Outcome
(eAT vs WWSC) (AMetS) (eAT vs WWSC) (AMetS)
| ACME A

Mediator

(AAHI)

In this study, the intervention is represented by one of the treatment arms (either eAT or
WWSC). Five different mediators are included:

e AHI, Al and hypopnea index (HI), as measures of the possible different number

of apneic events, in e/h.

e ODI: oxygen desaturations with events greater than 3% desaturation per hour of

sleep, related to OSA and intermittent hypoxemia (32).

e Total Arousal Index (TAI), as the measure reflecting sleep disturbance and sleep

fragmentation associated with OSA (37).

As outcomes for the analysis, we consider MetS, but also each of the individual

variables included in MetS criteria, namely adiposity: waist circumference (WC); blood

pressure: SBP and diastolic blood pressure (DBP); blood glucose: homeostatic model

assessment (HOMA) and glucose levels (GLUC); blood lipids: triglycerides levels (TRIG) and

high-density lipoprotein levels (HDL). In addition, for comparative purposes, BMIz and CRP

levels were also included (19,29).

Finally, to formulate an accurate interpretation of the ACME, all confounders must be

controlled based on their potential associations with both the exposure (OSA treatment), and

any outcome (MetS, CRP, SBP, etc.). The baseline values of age, race, sex, BMIz, average

overnight heart rate, tonsil size, and OSA severity group are included in the statistical

adjustment procedures (15,33,38). For example, age, sex, and race -related variations in the

11
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metabolic outcomes are incorporated to ensure that any observed effects are not solely driven
by demographic factors (27). In particular, the rationale for including average overnight heart
rate is based on previous research suggesting that increased overnight heart rate is associated
with OSA (39), and that it may be also influenced by many other factors such as age, sex,
physical condition, etc. (40), ensuring too that any observed effects on causal mediation are not
solely attributable to heart rate variations. We additionally computed the Fisher combined
probability, which primarily addresses the potential for Type I errors (false positives), in

multiple independent testing.

3. Results

3.1. Baseline values: comparing OSA resolution vs. persistent OSA

Tab. 2 summarizes the baseline data from children included in the CHAT study,
comparing the baseline values for subjects whose OSA resolved at follow-up and those with
persistent OSA after treatment. Significant differences were found for treatment arm (e AT vs.
WWSC), for BMIz, WC, DBP, AHI and OB. No significant differences emerged for all other
clinical and demographic parameters, such as age, sex, race, glucose levels, HR, tonsil size, and

MetS.

3.2. Causality results

Regarding CMA, statistical significance results of causal mediation are reported in
Tab. 4. Those p-values that preserved statistical significance after correcting for multiple
testing with the combined probability of Fisher are marked in bold with asterisks (*). Mainly,
CMA exhibits no significant ACME with the single constitutive criteria for MetS. Nonetheless,
there was a significant causal mediation effect on MetS with AHI as mediator. Furthermore,

significant ACME was detected for CRP with AHI and ODI-as mediators, and for BMIz with
12



251  TAI as mediator. With TAI as mediator, there was also significant ACME on DPB and WC.
252 Specific values obtained for ACME and ADE can be found in supplementary Tab. S1. Of note,
253 statistically significant differences were found in the change in BMIz from baseline to follow-
254 up (ABMIz = BMIZ"v-w _ BMIzPes¢ine) with TAI as a mediator. However, CMA performed
255  considers BMIz levels at baseline as confounder, thus revealing a robust causal mediation

256  effect of TAI on changes in BMIz, after OSA treatment.

Table 4. P values and statistical significance from the Causal Mediation Analysis, assessing treatment
effects on change in clinical variables (follow-up - baseline) through different mediators.

Mediators: AAHI AAI AHI AODI ATAI
ACME ADE ACME ADE ACME ADE @ ACME ADE ACME ADE

AMetS 0,02* 0,88 0,03 0,91 0,43 0,80 0,41 0,77 0,17 0,88

AWC 0,12 0,60 0,83 0,96 0,12 0,86 0,18 0,76 | <<0.01* 0,52

ASBP 0,93 0,95 0,35 1,00 0,97 0,44 0,83 0,95 0,20 0,86
ADBP 0,41 0,41 0,73 0,83 0,76 0,91 0,75 0,84 0,02* 0,77
ATRIG 0,42 0,28 0,22 0,24 0,97 0,36 0,68 0,23 0,06 0,33
AHDL 0,32 0,95 0,77 0,66 0,15 0,60 0,51 0,83 0,41 0,82
AHOMA 0,09 0,08 0,40 0,02%; 021 0,03 0,14 0,04 0,99 0,02*
AGLUC 0,65 0,36 0,09 0,47 0,85 0,26 0,02°* 0,44 0,41 0,22
ACRP 0,02* 0,43 0,13 0,57 i 0,046 0,56 0,02* 0,39 0,03 0,40

ABMIz 0,10 0,08 0,65 0,046 0.07 0,02%* 0,48 0,06 0,02* 0,12

Statistically significant effects (p-value <0.05) are highlighted with blue and green color for ACME and ADE, respectively.

(*) Significant effect after correcting for multiple testing with the combined probability of Fisher.

(!) Significant effect only for WWSC arm.

ACME: Average Causal Mediation Effect; ADE, Average Direct Effect.

Mediators: AHI, Apnea-Hypopnea Index; Al, Apnea Index; HI, Hypopnea Index; ODI, Oxyhemoglobin Desaturation Index 3%; TAl, Total Arousals
Index.

Outcomes: MetS, Metabolic Syndrome; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; TRIG,
Triglycerides levels; HDL, High- Density Lipoprotein levels; HOMA, Homeostasis Model Assessment; GLUC, Serum Glucose levels; CRP, C-
Reactive Protein levels; BMIz: z-scored Body Mass Index.

257 No differences in analytical outcomes were detected when only obstructive apnea and
258  hypopnea events were analyzed with respect to when both central and obstructive events were
259  included. Therefore, the results for AHI, Al and HI are shown considering both central and

260  obstructive events. The significant ADE obtained with different mediators and, e.g., HOMA as
261  outcome, means that OSA treatment significantly affected HOMA through mediators other than

262  those evaluated in the present study.
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The original CHAT study found high OSA resolution rates in both treatment arms
(32). These findings have led researchers to analyze CHAT based on OSA resolution rather
than relying on treatment arm (33,38,41). However, for CMA, it is mandatory to conduct an
initial preliminary analysis, to ascertain if there are interactions between the type of treatment
and the outcomes. In general, no significant effects of interactions between treatment types on
the outcomes were detected, and therefore the average joint effect (ACME) for the two
treatment arms is reported (36). Only ODI-GLUC results in an interaction effect, and causal

mediation effect is provided for the treatment arm for which there is significant effect.

3.3. Prevalence, odds ratio, and risk ratio of MetS

In order to further explain the relationship between OSA and MetS, Fig. 2 presents a
proportion plot with the prevalence and evolution of MetS from baseline to follow-up. At first
glance, we can see that the number of patients with MetS increased from baseline to follow-up
(61 subjects at follow-up with at least 3 cardiovascular risk factors compared to 40 subjects at
baseline). However, note that the two categories (MetS vs. no MetS) are not balanced. Upon
closer examination, patients with MetS at baseline were more likely to recover at follow-up
(32%, 13 patients) as compared to those without MetS at baseline developing MetS at follow-
up (16%, 34 patients). As shown in supplementary Tab. S2 (b), there is evidence that among
the children who did not recover from MetS after OSA treatment, the number of MetS risk
factors decreased. Only 2 out of the 27 patients worsened in terms of the number of risk factors

at follow-up, while 17 patients improved.

As such, the odds ratio (OR) of changing the health state after OSA treatment from
having MetS at baseline to not having MetS at follow-up, with respect to worsening from no
MetS to MetS was 2.56 (confidence interval (CI) 95%: 1.2031 - 5.4606); and the risk ratio

(RR) was 2.06 (CI195%: 1.1943 - 3.5364). Accordingly, despite the increased total number of
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subjects with MetS after treatment for OSA (40 vs. 61, respectively), the probability of
recovering from MetS was significantly higher (2.06-fold), than the probability of developing
MetS. Similarly, the odds of not having MetS after OSA treatment if the patient had MetS at
baseline were also significantly higher (2.56-fold), than the odds of having MetS after OSA

treatment if the patient did not have MetS at baseline.

Figure 2. Proportion plot showing prevalence and evolution of MetS from baseline to follow-up. Units
are % (N). Prevalence is summarized by having or not MetS (number of risk factors > 3).
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MetS
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3.4. MetS and OSA severity

The prevalence of MetS in our sample is presented in Fig. 3 according to OSA severity
groups and baseline or follow-up. As mentioned above, a higher MetS presence was found after
OSA treatment. However, Fig. 3 shows that its prevalence increases with OSA severity: no-
OSA (19%), mild-OSA patients (22%), moderate-OSA (27%), and severe-OSA patients (41%),
thus suggesting persistent OSA as a risk factor for MetS and gradual relationship with OSA

severity.

Further detailed results and analysis, including OSA prevalence, results by treatment
strategy, and the proportion of different combinations of MetS, can be found in the
Supplementary Material. In particular, supplementary Tab. S3 shows the evolution of MetS for

children with and without OB at baseline and at follow-up further illustrating the known impact
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of obesity on prevalence of MetS over time. Supplementary Tab. S4 exhibits the relationships

between OSA severity and the evolution of MetS from baseline to follow-up.

Figure 3. Prevalence of Metabolic Syndrome (MetS) according to OSA severity categories based on AHI
criteria, at baseline and at follow-up.
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4. Discussion

Using CMA, we assessed and established the putative causal pathways and the
contribution of various OSA mediators to the development of MetS in prepubertal children.
Furthermore, the present study revealed improvements in MetS as being causally attributable to
OSA treatment. In fact, causal mediation was found only for MetS, but not for any of the
constitutive elements used to define MetS. In particular, an improvement trend in MetS after
OSA treatment can be ascribed to a reduction in the frequency of apnea events during sleep
(AI). In addition, a trend of greater presence of systemic inflammation, as illustrated by CRP
levels, was causally attributable to the hypopnea index, thereby corroborating previous studies
(42). Furthermore, our findings support the existence of an interrelationship between MetS,
OSA, and OB in children, although such associations are less robust than in adults. These novel
results may help enhance the putative and unique value of phenotyping pediatric OSA patients
with the designated goals of improving patient selection and treatment along with their overall

short-term and long-term outcomes.
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Fundamentally, CMA revealed that the changes in the number of cardiovascular risk
factors of MetS are causally attributable to the changes in the frequency of respiratory events
after OSA treatment. Indeed, the causal contribution of OSA to metabolic dysfunction in
prepubertal children persisted even after adjusting for confounders. Thus, the association
between OSA and MetS is consistent, independent, and not influenced by age, sex, BMIz at
baseline, or by other confounders. The mediation results are significant for MetS as outcome
when AHI (p=0.02%*), is examined as OSA mediator. However, no causal effects emerged for
MetS as outcome and ODI as a mediator. Contrary to what has been reported in adults,
intermittent hypoxia as reflected by the ODI does not appear to be a causal contributor for
MetS in children. This could be due to the relatively minor hypoxic burden frequency found in
pediatric OSA when compared to adults with OSA. In contrast, causal mediation effects were

found for AHI (p=0.02*), and ODI (p=0.02%*) as mediators of CRP levels.

As compared to adults with OSA, prepubertal children with OSA have less
pronounced and less severe desaturation profiles likely related to the decreased collapsibility of
their upper airway (43). These differences may explain why desaturation events do not directly
impact on MetS in prepubertal children and may count for children requiring increased OSA

treatment duration before they exhibit cardiovascular risk symptoms.

Redline et al. quantified the association between MetS and sleep disordered breathing
(SDB, AHI > 5) in adolescents (15). They found that MetS is significantly more prevalent in
subjects with SDB (59% in SDB vs. 16% if no SDB). Our current findings in prepubertal
children are closely aligned with the results reported by Redline and colleagues, suggesting the
need for MetS screening not only in adults and adolescents but also in children (27). Of note,
the criteria for MetS in children should be implemented using IDEFICS normative reference

values to avoid discrepancies across different ages (27).
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In supplementary Tab. S4, we exhibit how OSA and MetS interactions are less
prominent in children with persistent OSA at follow-up. However, we should also remark that
those children with persistent OSA are more likely to develop MetS, especially when residual
OSA remains moderate to severe (Fig. 3). As such, it seems likely that although treatment of
OSA in these instances did not result in normalization of respiratory parameters, although the
latter were improved relative to the baseline disease severity, and as such their impact on MetS
may have consequently been mitigated leading to a reduced effect size that nevertheless
persists over time and ultimately promotes the emergence of MetS. Notwithstanding, it is
suggested that children presenting any of the conditions of MetS, OSA, or OB should be

screened and if needed, comprehensively evaluated.

As shown by Redline et al. (15), OB is a strong risk factor for adult OSA, and is also a
major risk factor for snoring or OSA in pediatric populations (35,44,45). Accordingly, as
illustrated in Tab. 2, we found significant differences between the OB prevalence of children
with resolved OSA after treatment and those with persistent disease. However, CMA did not

uncover a causal mediation effect of OSA over the changes in BMIz.

In the extant literature, there is conflicting evidence about the relationship between OB
with OSA and MetS in children (15,19,30). In the current study, OB children were more likely
to exhibit MetS at baseline as well as at follow-up (as depicted in supplementary Tab. S3),
further emphasizing the interdependencies between OB and OSA as causal mediators
contributing either additively or synergistically to the risk of MetS. It is also likely that the
conflictive findings may be due to the different definitions of MetS. Therefore, we strongly
endorse the need for general adoption of the percentile approaches to MetS criteria proposed in

the IDEFICS study (27).

As discussed above, one of the important strengths of the current analyses is the

utilization of the IDEFICS criteria to define MetS in children (27) along with the
18
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implementation of CMA. Another important observation in this study is the fact that isolated
components of MetS do not emerge as being causally mediated by OSA and that only when
these elements are coalesced into MetS criteria, does the causal mediation then become
significant. Thus, MetS appears to be an independent and complementary biomarker of
pediatric OSA, which may provide insights into long-term cardiometabolic risk in these
children. The major limitation of the present study is that it included sufficient representation of
only some ethnic groups, and that no complementary population cohort was available for
confirmatory purposes. Therefore, prospective studies similar to CHAT in larger cohorts are
needed. In addition, the original study (CHAT) has not been designed for the hypothesis of this

reanalysis, therefore different sources of bias cannot be excluded.

5. Conclusion

We found that treating OSA in prepubertal children causally reduces the probability of
developing MetS and its severity. This effect was independent of age, sex, body mass index and
other confounding factors, and was mediated by the decrease in the frequency of respiratory
events. Causal mediation effects were not significant for each of the components of MetS and
only became apparent when these elements were combined into the definition of MetS, using

more epidemiologically robust approaches (i.e., IDEFICS-derived percentiles (27)).
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