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Abstract

The purpose of this thesis is to make a rigorous and approachable introduction to Killing fields and their
applications to any undergrad that is studying or has studied a general relativity course. Applications
range from direct treatment of geodesics in usual metrics like the Schwarzschild, Kerr or FLRW metrics
to applications to optics as an effective theory passing through the more geometrical sides of general
relativity and maximally symmetric spaces.

Additionally, as part of the agreement with Brown university, there is a dedicated section talking
about the internship results on the study of a certain quantum inflationary model and the validity and
asymptotic behaviors of the model.
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1 Motivation and introduction to symmetry
in physics

The cornerstone of modern physics is, without a shadow of a doubt, symmetry. This is thanks to one
of the most beautiful theorems of physics. The Noether theorem.

The Noether theorem establishes a one to one connection between symmetries and conservation laws,
thus explaining the origin of conservation of energy, charge and all other conserved quantities widely
used in physics.

As an example, in classical mechanics, the action is defined as the integral of the Lagrangian [1]

𝑆[𝑞𝑖(𝑡)] = ∫ d𝑡 𝐿(𝑡, 𝑞𝑖, ̇𝑞𝑖) (1.1)

where 𝑞𝑖 are the generalized coordinates of the system and ̇𝑞𝑖 the derivatives of the coordinates.

The equations of motion are obtained by enforcing that the action is stationary for any perturbations
to the trajectory that don’t change the boundary conditions

𝛿𝑆[𝑞𝑖
𝑠, 𝛿𝑞𝑖] = 𝑆[𝑞𝑖

𝑠 + 𝛿𝑞𝑖] − 𝑆[𝑞𝑖
𝑠] = 0 (1.2)

on the other hand, a symmetry is defined as an infinitesimal transformation, meaning it can be seen
as a perturbation to a trajectory, that regardless of the path (even for non physical paths) the action
only changes by some boundary term 𝐾

𝛿𝑆[𝑞𝑖, 𝛿𝑠𝑞𝑖] = ∫ d𝑡 d𝐾
d𝑡

(1.3)

Noether’s theorem allows to obtain a conserved quantity for every symmetry of a system defined as

𝑄 = 𝐾 − ∑
𝑖

𝜕𝐿
𝜕 ̇𝑞𝑖 𝛿𝑠𝑞𝑖 (1.4)

In our case we are going to work with general relativity. A widely different theory from classical
mechanics. The first question that might arise is, What constitutes a symmetry? How do you define it
in this context? A symmetry is a transformation, such as translations, rotations or even of the internal
degrees of freedom a theory might have, that maintains some aspect of the theory invariant.

In the case of classical mechanics the Lagrangian encapsulates the behavior of the system allowing
for the computation of the equations of motion. Therefore a symmetry in classical mechanics is any
transformation to the Lagrangian that doesn’t change the equations of motion.

In our case we will find that the corresponding symmetries en general relativity are those that preserve
the geometry of spacetime, meaning, the metric. The so called isometries. Killing fields are nothing
more than the generators these transformations.
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2 Formalism of general relativity

This section is based on [2] and [3].

In order to understand symmetry and motivate the definition of Killing fields first it is required to
understand is, in the mathematical sense, spacetime and define flows and Lie derivatives.

To do this we will introduce little by little mathematical structure based on the qualities that a spaceB
time should have. At the end of the section we will have motivated the use of a pseudoBRiemannian
manifold as the model for spacetime.

2.1. Continuity
First of all, a spacetime has a notion that it is continuous, further than that, it is path connected,
meaning one can connect any point to any other point by a continuous path¹.

The notion of continuity is defined in the mathematical field of topology A topological space is a pair
of sets (𝑀, 𝜏), the first of these is the set of all the points in the space, the second is called the topology
of the space and represents all of the open sets. The core idea behind having a topology is introducing
a notion of ‘closeness’ without introducing a metric, in our case there will be an additional notion of
closeness defined because of the metric but this idea has to be introduced later. Any topology obeys
the following relations of closure

∅, 𝑀 ∈ 𝜏

𝑈𝑖 ∈ 𝜏 ⇒ ⋃
∞

𝑖=0
𝑈𝑖 ∈ 𝜏

𝑈𝑖 ∈ 𝜏 ⇒ ⋂
𝑛

𝑖=0
𝑈𝑖 ∈ 𝜏

(2.1)

This allows to define what a continuous function is, the idea of continuity is that any two ‘close’ points
in the input of the function will be ‘close’ in the output. On topological spaces the definition is related
to how open sets transform, here a function between topological spaces 𝑓 : (𝑀, 𝜏𝑀) → (𝑁, 𝜏𝑁) is
continuous if ∀𝑉 ∈ 𝜏𝑁 , 𝑓−1(𝑉 ) ∈ 𝜏𝑀  meaning all open sets in the output are open sets in the input.
This definition is inspired by the 𝜀 − 𝛿 definition usually defined for metric spaces², in fact if one uses
the topology defined by the open balls (sets of points closer than some distance) the definitions are
equivalent.

2.2. Coordinates
Whenever one talks about any kind of state in physics it is talked about in a coordinate system. It would
be expected that in spacetimes one can do the same thing and label the points in spacetime. This is
covered in the mathematical field of manifolds. A manifold is a topological space that additionally can
be locally mapped to a cartesian coordinate system, meaning for any open set 𝑉  there is a continuous
bijection 𝜑 from 𝑉  to ℝ𝑛 such that 𝜑−1 is continuous too.

¹This path is not required to be physical, it could be superluminic.
²Spaces with the notion of distance
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2.3. Fields on the spacetime Formalism of general relativity

Additionally it is required that for any two mappings 𝜑1 : 𝑉1 → ℝ𝑛 and 𝜑2 : 𝑉2 → ℝ𝑛 such that
𝑉1 ∩ 𝑉2 ≠ ∅ there has to be a function from 𝜓 : 𝜑1(𝑉1 ∩ 𝑉2) → 𝜑2(𝑉1 ∩ 𝑉2) that is a bijection, continB
uous and has a continuous inverse. This means that one can ‘translate’ one coordinate system to
another if they map the same region.

In the case of physics it is additionally required that 𝜓 is infinitely differentiable, this is the definition
for smooth manifolds. This is necessary because otherwise a smooth function would be smooth on
one coordinate system but it would not be smooth on a different coordinate system because of the
chain rule.

The set of all coordinate systems with a smooth coordinate change is called an atlas or 𝒜.

Another representation for a coordinate system is a collection of 𝑛 functions 𝑥𝜇 : 𝔼 ⟶ ℝ such that
𝑥0 gives the 0Bth component of a coordinate system 𝜑, 𝑥1 the first component and so on. This
representation is more common in physics and will be the main one used in this thesis.

2.3. Fields on the spacetime
Now it is time to start talking about what can we ‘place’ on spacetime.

Scalar fields on spacetimes
A scalar field assigns a number to each point of our spacetime 𝔼. So it will be any function of the form

𝜙 : 𝔼 ⟶ ℝ (2.2)

This function can be ‘placed’ in a coordinate system by defining 𝜙𝜑 : ℝ𝑛 ⟶ ℝ by taking a coordinate
system from the atlas 𝜑 ∈ 𝒜 and applying the inverse to the input 𝜙𝜑 = 𝜙 ∘ 𝜑. From now on 𝜙𝜑 will
be denoted just 𝜙 whenever the coordinate system is clear.

The set of all infinitely differentiable scalar fields on a manifold will be denoted 𝒞∞(𝑀)

Parametric curves
If one wishes to keep track of the path of a particle on a spacetime one would naturally use this kind
of object. A parametric curve may be defined as a function

𝛾 : ℝ ⟶ 𝔼 (2.3)

Again this path can be represented in a coordinate system by composing it with a map 𝜑 ∈ 𝒜,
𝛾𝜑 : ℝ ⟶ ℝ𝑛, 𝛾𝜑 = 𝜑 ∘ 𝛾.

Vector fields on the spacetime
Motivated from the ‘classical’ version of a vector field defined as 𝐹 : ℝ𝑛 ⟶ ℝ𝑛 it might be tempting
to define 𝑋 : 𝔼 ⟶ ℝ𝑛 as a vector field on an 𝑛 dimensional smooth manifold. This definition has one
big problem, it is not coordinate independent.

Imagine one has a 3Bdimensional manifold with a coordinate system {𝑥𝜇} and a primed coordinate
system {𝑥′𝜇} such that 𝑥′0 = 𝑥1, 𝑥′1 = 𝑥0, 𝑥′2 = 𝑥2. Now lets define a constant vector field on the
‘𝑥’ direction 𝑋(𝑝) = (1, 0, 0). In the 𝑥𝜇 coordinate system this field points in the 𝑥0 direction while
on the 𝑥′𝜇 coordinate system points in the 𝑥′0 direction, this would correspond to the 𝑥1 direction by
the coordinate transformations defined. Therefore this definition of a vector field is not independent
of coordinate choice.

There are two equivalent definitions for vectors on a manifold at a point 𝑝 that are coordinate
independent.

The first of these is in terms of tangent vectors of curves, since a curve on the manifold is defined
independently of the coordinate system it would be expected that the tangent vector is coordinate

3



2.3. Fields on the spacetime Formalism of general relativity

independent too. In this way the set of all vectors at a point 𝑝 ∈ 𝔼 is defined as the set of curves 𝛾 such
that 𝛾(0) = 𝑝. Here we will have to add an equivalence relation, similarly to how rational numbers
are not all of the fractions but the fractions with the fact that two fractions are equal when they follow
the relation 𝑎𝑏 ∼ 𝑐

𝑑 ⇔ 𝑎𝑑 = 𝑏𝑐 here two of our vectors will be ‘equal’ if for any 𝜑 ∈ 𝒜

𝛾 ∼ 𝛾̂ ⇔ (𝜑 ∘ 𝛾)′ = (𝜑 ∘ 𝛾̂)′ (2.4)

where ′ is the usual derivative.

The second definitions is via derivations. A derivation at a point 𝑝 is defined as a linear functional

𝐷 : 𝒞∞(𝑀) ⟶ ℝ (2.5)

that also obeys the product rule

𝑓, 𝑔 ∈ 𝒞∞

𝐷(𝑓 ⋅ 𝑔) = 𝑓(𝑝)𝐷(𝑔) + 𝐷(𝑓)𝑔(𝑝)
(2.6)

Any curve can be assigned a derivation via the following definition

𝐷𝛾𝑓 = (𝑓 ∘ 𝛾)′(0) (2.7)

The equivalence of definitions may be proven by first proving both spaces have the same dimension.
After that Eq. (2.7) gives a one to one correspondence on both spaces. When given a coordinate system
the space of derivations has a basis defined by

𝜕𝜇(𝑝) = 𝜕
𝜕𝑥𝜇 (𝑝) (2.8)

Where (𝑝) denotes evaluation of the partial derivative at 𝑝

With any of the two definitions the vector space of all vectors at a point 𝑝 of a manifold 𝑀  is denoted
𝑇𝑝𝑀 .

By defining the set of all vectors tangent to the manifold 𝑇𝑀 = ⋃𝑝∈𝑀 𝑇𝑝𝑀  a vector field may be
defined as

𝑋 : 𝑀 ⟶ 𝑇𝑀
𝑝 ⟶ 𝑋(𝑝) ∈ 𝑇𝑝𝑀

(2.9)

When given a coordinate system a vector field may be written as

𝑋(𝑝) = 𝑋𝜇(𝑝) 𝜕
𝜕𝑥𝜇 (𝑝) (2.10)

So a smooth vector field is defined as a vector field whose component functions, 𝑋𝜇, are smooth.
The set of all smooth vector fields is denoted as 𝔛(𝑀)

For some proofs the notation 𝑋(𝑝, 𝑓) = 𝑋(𝑓)(𝑝) = 𝑋𝜇(𝑝) 𝜕𝑓
𝜕𝑥𝜇 (𝑝) will be useful

Covectors
It is easy now to define covectors. A covector at a point 𝑝 is defined as a linear function

𝜔 : 𝑇𝑝𝑀 ⟶ ℝ (2.11)

so the cotangent space 𝑇 ∗
𝑝 𝑀  is the space of all covectors at a point 𝑝 and the set of all covectors

𝑇 ∗𝑀 = ⋃𝑝∈𝑀 𝑇 ∗
𝑝 𝑀  a covector field is

4



2.3. Fields on the spacetime Formalism of general relativity

𝜔 : 𝑀 ⟶ 𝑇 ∗𝑀
𝑝 ⟶ 𝜔(𝑝) ∈ 𝑇 ∗

𝑝 𝑀 (2.12)

for any basis 𝜕𝜇 the canonical basis for the covector space can be defined as a covector collection such
that d𝑥𝜇(𝜕𝜈) = 𝛿𝜇

𝜈  where 𝛿𝜇
𝜈  is the Kronecker delta.

A covector will be smooth if for a coordinate system the covector has components 𝜔𝜇 defined by

𝜔 = 𝜔𝜇(𝑝) d𝑥𝜇 (2.13)

are 𝒞∞(𝑀) functions

Again the notation

𝜔(𝑝, 𝑋) = 𝜔𝜇(𝑝) d𝑥𝜇(𝑋)(𝑝) (2.14)

will be useful

Tensors
A tensor represents a multilinear map, meaning that for any input slot

𝑇 (𝑎, 𝑏, …, 𝛼𝑐 + 𝛽𝑑, …, 𝑧) = 𝛼𝑇(𝑎, 𝑏, …, 𝑐, …, 𝑧) + 𝛽𝑇 (𝑎, 𝑏, …, 𝑑, …, 𝑧) (2.15)

The most basic definition of a tensor one can come up with is

𝑇 : 𝑉1 × 𝑉2 × … × 𝑉𝑛 → ℝ (2.16)

This is a tensor that takes 𝑛 vectors as input and as output gives a number

It could be also output more vectors defining

𝑇 : 𝑉1 × 𝑉2 × … × 𝑉𝑛 ⟶ 𝑉𝑛+1 (2.17)

however by evaluating the output of 𝑇  with a covector the result is a number representing some
component. So it is common to represent this kind of tensors by

𝑇 : 𝑉1 × 𝑉2 × … × 𝑉𝑛 × 𝑉 ∗
𝑛+1 ⟶ ℝ (2.18)

Therefore the definition of a tensor over a vector space 𝑉  of kind (𝑞, 𝑝) or 𝑞 times contravariant, 𝑝
times covariant is defined as

𝑇 : 𝑉 ∗ × … × 𝑉 ∗⏟⏟⏟⏟⏟
𝑞 copies

× 𝑉 × … × 𝑉⏟⏟⏟⏟⏟
𝑝 copies

⟶ ℝ (2.19)

In our case the corresponding vector spaces are the 𝑇𝑝𝑀  and a tensor field will be a map

𝑇 : 𝑇 ∗𝑀 × … × 𝑇 ∗𝑀⏟⏟⏟⏟⏟⏟⏟
𝑞 copies

× 𝑇𝑀 × … × 𝑇𝑀⏟⏟⏟⏟⏟⏟⏟
𝑝 copies

⟶ 𝒞∞(𝑀) (2.20)

The components of a tensor can be obtained by feeding it some vectors and applying Eq. (2.10) and
Eq. (2.13)

𝑇 (𝜔, …, 𝑋, …) = 𝑇(𝜔𝜇 d𝑥𝜇, …, 𝑋𝜈𝜕𝜈 , …) = 𝜔𝜇𝑋𝜈…𝑇(d𝑥𝜇, …, 𝜕𝜈 , …) ≕ 𝜔𝜇𝑋𝜈…𝑇 𝜇…
𝜈… (2.21)

So a tensor field is called smooth if the component functions 𝑇 𝜇…
𝜈…  are 𝒞∞(𝑀)

Another notation that will be useful is

𝑇 (𝑝, 𝜔, …, 𝑋, …) = 𝜔𝜇1
(𝑝)…𝑋𝜈1(𝑝)…𝑇 𝜇1…

𝜈1… (𝑝) (2.22)
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2.4. Metrics Formalism of general relativity

2.4. Metrics
The last piece for constructing a spacetime is adding a notion of magnitude to our vectors and distance.
This is constructed by adding a tensor field to the spacetime Manifold which we will call the metric.

The metric defines a dot product between vectors

𝑋 ⋅ 𝑌 = 𝑔(𝑋, 𝑌 ) = 𝑋𝜇𝑌 𝜈𝑔𝜇𝜈 (2.23)

also allowing to lower the indices of vectors and tensors by contracting with the metric

𝑋𝜇 = 𝑔𝜇𝜈𝑋𝜈 (2.24)

since we would like to be able to invert the relation it is defined 𝑔𝜇𝜈  such that

𝑔𝜇𝛼𝑔𝛼𝜈 = 𝛿𝜇
𝜈 (2.25)

so 𝑋𝜇 = 𝑔𝜇𝜈𝑋𝜈

A Manifold equipped with a metric is called Riemannian if a metric can be diagonalized with all positive
eigenvalues and pseudoBRiemannian if it can have both positive and negative.

In general relativity the equivalence principle can be stated in terms of the metric so that for any point
there is a coordinate system such that

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝒪(𝑥2) (2.26)

where 𝜂 is the Minkowski metric.

This allows to define a distance¹ function between two points of the manifold by denoting Γ(𝑝, 𝑞) the
set of all curves starting at 𝑝 and ending at 𝑞

𝑑(𝑝, 𝑞) = min
𝛾∈Γ(𝑝,𝑞)

∫
𝛾

√𝑔(𝛾′(𝜏), 𝛾′(𝜏)) d𝜏 (2.27)

where 𝛾′ is the tangent vector to 𝛾

¹This will only be a distance function whenever the manifold is Riemannian, for pseudoBRiemannian it is not since it
can be negative, in general relativity the sign will be a way to encode when a path moves in the ‘time direction’, in the
‘space direction’ or like light.
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3 Transformations of manifolds

This section is based on [2], [3] and [4].

In order to study the symmetries of our spacetime one has to first understand how to make a transB
formation.

First will start by defining a smooth transformation between manifolds 𝑀, 𝑁  as a function
𝐹 : 𝑀 → 𝑁  such that for any coordinate system of 𝑀 , 𝜑, that contains 𝑝, and any coordinate system
of 𝑁 , 𝜑′, that contains 𝐹(𝑝), the function 𝜑′ ∘ 𝐹 ∘ 𝜑−1 is smooth.

A diffeomorphism is a smooth map that is also bijective and with a smooth inverse. Any pair of
manifolds that have a diffeomorphism relating them will be called diffeomorphic manifolds.

Diffeomorphic manifolds are equivalent in the sense that any field, may it be scalar, vectorial or
tensorial defined on one of the manifolds. Has an equivalent definition on the other. The operations
that map a field on one of the manifolds to the other are called pullback and pushforward.

3.1. Pullback and pushforward of scalar fields
Given a function 𝐹 : 𝑀 → 𝑁 . A pullback will map fields defined on 𝑁  to fields defined on 𝑀 . The
simplest case is for scalar fields. The pullback of a scalar field 𝑓 ∈ 𝒞∞(𝑁) is defined as

𝐹 ∗𝑓 = 𝑓 ∘ 𝐹 (3.1)

so that 𝐹  maps points of 𝑀  to 𝑁  and then 𝑓  maps it to ℝ so the complete map is 𝑀 → ℝ.

The pushforward is the opposite transformation to the pullback, mapping fields from 𝑀  to 𝑁 . In the
case of diffeomorphisms it can be defined as the pullback by the inverse function. So if one has a
function 𝑓 ∈ 𝒞∞(𝑀) the pushforward by 𝐹  is defined as

𝐹∗𝑓 = (𝐹−1)∗𝑓 = 𝑓 ∘ 𝐹−1 (3.2)

The motivation behind this definition is that, if one pushes forward a function and then pulls it back,
it would be reasonable for the function to remain unchanged therefore 𝐹 ∗𝐹∗𝑓 = 𝑓

It is easy to see that the pullback and pushforward are linear since composition is linear so that

𝐹∗(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐹∗𝑓 + 𝛽𝐹∗𝑔
𝐹 ∗(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐹 ∗𝑓 + 𝛽𝐹 ∗𝑔

(3.3)

Under this definitions diffeomorphisms may be thought rather than as mappings between manifolds,
as coordinate changes, since for any coordinate system on 𝑁 , 𝑥′𝜇, it can be thought of as a coordinate
system on 𝑀  defined as 𝑥𝜇 = 𝐹 ∗𝑥′𝜇. This will come up later in the chapter in the notion of passive
vs active transformations.

3.2. Pullback and pushforward of vector fields
Since a vector field was defined as a collection of derivations, it may be thought of as a function
𝑋 : 𝒞∞(𝑀) → 𝒞∞(𝑀), that maps a function to the directional derivative of the function at that point.
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3.2. Pullback and pushforward of
vector fields Transformations of manifolds

The pushforward of vector fields may be thought of as first pulling back the vector field the correB
sponding function then pushing forward the result, for clarity 𝑋(𝑝, 𝑓) denotes evaluating 𝑋(𝑓) at 𝑝,
𝑝 ∈ 𝑀 , 𝑃 ∈ 𝑁  𝑔 ∈ 𝒞∞(𝑁)

(𝐹∗𝑋)(𝑔) = 𝑋(𝐹−1(𝑝), 𝐹 ∗𝑔) (3.4)

The pullback is defined as the pushforward by the inverse function

𝐹 ∗𝑋 = (𝐹−1)
∗
𝑋 (3.5)

Again pushforward and pullback of vector fields is linear

𝐹∗(𝛼𝑋 + 𝛽𝑌 )(𝑓) = (𝛼𝑋 + 𝛽𝑌 )(𝑓 ∘ 𝐹) = 𝛼𝑋(𝑓 ∘ 𝐹) + 𝛽𝑌 (𝑓 ∘ 𝐹)
= 𝛼𝐹∗(𝑋)(𝑓) + 𝛽𝐹∗(𝑌 )(𝑓)

(3.6)

Also by defining multiplication of vector fields and scalar fields 𝑓𝑋 as

(𝑓𝑋)(𝑝, 𝑔) = 𝑓(𝑝)𝑋(𝑝, 𝑔) (3.7)

the pushforward of this composition is linear in the following sense

𝐹∗(𝑓𝑋)(𝑝, 𝑔) = (𝑓, 𝑋)(𝐹−1(𝑝), 𝐹 ∗𝑔) = 𝑓(𝐹−1(𝑝))𝑋(𝐹−1(𝑝), 𝐹 ∗𝑔)
= (𝐹∗𝑓)(𝑝) ⋅ (𝐹∗𝑋)(𝑝, 𝑔)

(3.8)

where ⋅ denotes the product of real numbers

equivalently for the pullback

𝐹 ∗(𝑓𝑋) = (𝐹 ∗𝑓)(𝐹 ∗𝑋) (3.9)

This equations are coordinate independent, however for computations it is easier to obtain the transB
formations by coordinate systems, in order to obtain the coordinate transformation we will write the
coordinate system of 𝑀  as 𝑥𝜇 and the coordinate system of 𝑁  obtained as the pushforward of 𝑥𝜇, 𝑥′𝜇

Now our vector field 𝑋 ∈ 𝔛(𝑀) can be written

𝑋 = 𝑋𝜇(𝑥𝜇) 𝜕
𝜕𝑥𝜇 (3.10)

by defining a vector field on 𝑁 , 𝑋′ as the pushforward of 𝑋

𝑋′ = 𝐹∗𝑋 = 𝑋′(𝑥′𝜇) 𝜕
𝜕𝑥′𝜇 (3.11)

Since 𝑥′𝜇 = 𝐹(𝑥𝜇) for a function in 𝑓 ∈ 𝒞∞(𝑁) and defining 𝑝 ∈ 𝑀 , 𝑝 ∈ 𝑁  so that 𝑝 = 𝐹(𝑝)

𝐹∗𝑋(𝑝, 𝑓) = 𝐹∗(𝑋𝜇 𝜕
𝜕𝑥𝜇 )(𝑝, 𝑓) = 𝑋𝜇(𝐹−1(𝑝))𝜕𝑓 ∘ 𝐹

𝜕𝑥𝜇 (𝐹−1(𝑝))

= 𝑋𝜇(𝑝)𝜕𝑓 ∘ 𝐹
𝜕𝑥𝜇 (𝑝) = 𝑋𝜇(𝑝) 𝜕𝑓

𝜕𝑥′𝜈 (𝑝)𝜕𝑥′𝜈

𝜕𝑥𝜇 (𝑝)
(3.12)

Therefore by comparing the Eq.  (3.11) and Eq.  (3.12) the resulting transformation on a coordinate
system is

𝑋′𝜇(𝑝) = 𝜕𝑥′𝜇

𝜕𝑥𝜈 (𝐹−1(𝑝))𝑋𝜈(𝐹−1(𝑝)) (3.13)
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3.3. Pullback and pushforward of
covector fields Transformations of manifolds

This equation might seem purely mathematical but it explains the physical transformations that we
will find. These have a translation component, encoded on the term of 𝑋𝜈(𝐹−1(𝑝)), that because of the
𝐹−1 term shifts the position of the 𝑋𝜇(𝑝) vector. The other component are rotations, or expansions,
encoded on the 𝜕𝑥′𝜇

𝜕𝑥𝜈 (𝐹−1(𝑝)), this is because this term mixes the components and allows for changing
the direction of the vector or length of the vector.

For the pullback the result is equivalent by changing 𝑥′𝜇 → 𝑥𝜇, 𝑥𝜇 → 𝑥′𝜇 𝑝 → 𝑝 and 𝐹 → 𝐹−1

so

𝑋′𝜇(𝑝) = 𝜕𝑥𝜇

𝜕𝑥′𝜈 (𝐹(𝑝))𝑋𝜈(𝐹(𝑝)) (3.14)

3.3. Pullback and pushforward of covector fields
Just as we did with vector fields, covector fields map vector fields to scalar fields the definitions and
results are equivalent so for a covector 𝜔

𝐹∗𝜔(𝑝, 𝑋) = 𝜔(𝐹−1(𝑝), 𝐹 ∗𝑋) (3.15)

and for the pullback

𝐹 ∗𝜔(𝑝, 𝑋) = 𝜔(𝐹(𝑝), 𝐹∗𝑋) (3.16)

Again these are linear over addition of covectors and products by real numbers, and by defining the
product of covectors by

(𝑓𝜔)(𝑝, 𝑋) = 𝑓(𝑝)𝜔(𝑝, 𝑋) (3.17)

the pushforward is ‘linear’ over these in the sense that

𝐹∗(𝑓𝜔)(𝑝, 𝑋) = (𝑓𝜔)(𝐹−1(𝑝), 𝐹 ∗𝑋) = 𝑓(𝐹−1(𝑝))𝜔(𝐹−1(𝑝), 𝐹 ∗𝑋)
= (𝐹∗𝑓)(𝑝)(𝐹∗𝜔)(𝑝, 𝑋)

(3.18)

and equivalently for the pullback

𝐹 ∗(𝑓𝜔) = (𝐹 ∗𝑓)(𝐹 ∗𝜔) (3.19)

When given a coordinate system for 𝑀  and 𝑁 , 𝑥𝜇 and 𝑥′𝜇 respectively, then the covector on 𝑀  may
be written as

𝜔 = 𝜔𝜇(𝑝) d𝑥𝜇 (3.20)

and the pushforward

𝜔′ = 𝐹∗𝜔 = 𝜔𝜇(𝑝) d𝑥′𝜇 (3.21)

so by applying the definition of pushforward of a covector field, Eq.  (3.15), one finds by setting
𝑋′ ∈ 𝔛(𝑁)

𝐹∗𝜔(𝑝, 𝑋′) = 𝐹∗(𝜔𝜇 d𝑥𝜇)(𝑝, 𝑋′) = 𝐹∗(𝜔𝜇)(𝑝)𝐹∗(d𝑥𝜇)(𝑝, 𝑋′) = 𝜔𝜇(𝑝) d𝑥𝜇(𝑝, 𝐹 ∗𝑋′)

= 𝜔𝜇(𝑝) d𝑥𝜇(𝑝, 𝑋′𝜈(𝑝) 𝜕𝑥𝛼

𝜕𝑥′𝜈
𝜕

𝜕𝑥𝛼 ) = 𝜔𝜇(𝑝)𝑋′𝜈(𝑝) 𝜕𝑥𝛼

𝜕𝑥′𝜈 d𝑥𝜇(𝑝, 𝜕
𝜕𝑥𝛼 )

⏟⏟⏟⏟⏟⏟⏟
𝛿𝜇

𝛼

= 𝜔𝜇(𝑝)𝑋′𝜈(𝑝) 𝜕𝑥𝛼

𝜕𝑥′𝜈 (𝑝)𝛿𝜇
𝛼 = 𝜕𝑥𝜇

𝜕𝑥′𝜈 (𝑝)𝜔𝜇(𝑝)𝑋′𝜈(𝑝)

(3.22)
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3.4. Tensor pullbacks and pushfor"
wards Transformations of manifolds

now, by feeding the same input to the Eq. (3.21) one obtains

𝜔′(𝑝, 𝑋′) = 𝜔′
𝜇(𝑝) d𝑥′𝜇(𝑋′) = 𝜔′

𝜇(𝑝)𝑋′𝜈(𝑝) d𝑥′𝜇( 𝜕
𝜕𝑥′𝜈 )

= 𝜔′
𝜇(𝑝)𝑋′𝜈(𝑝)𝛿𝜇

𝜈 = 𝜔′
𝜇(𝑝)𝑋′𝜈(𝑝)

(3.23)

by comparing Eq. (3.22) and Eq. (3.23)

one obtains

𝜔′
𝜇(𝑝) = 𝜕𝑥𝜈

𝜕𝑥′𝜇 (𝑝)𝜔𝜈(𝐹−1(𝑝)) (3.24)

The equivalent reasoning for the pullback gives

𝜔𝜇(𝑝) = 𝜕𝑥′𝜈

𝜕𝑥𝜇 (𝑝)𝜔′
𝜈(𝐹(𝑝)) (3.25)

Again here one can identify a translation and a rotation or expansion term, however here the rotation
is inverted.

3.4. Tensor pullbacks and pushforwards
The pushforward of a tensor field, just as we did before with vectors and covectors is defined by pulling
back the vector and covector fields and then pushing forward the results

𝐹∗𝑇 (𝑝, 𝜔, …, 𝑋, …) = 𝑇(𝐹−1(𝑝), 𝐹 ∗𝜔, …, 𝐹 ∗𝑋, …) (3.26)

and equivalently for the pullback

𝐹 ∗𝑇 (𝑝, 𝜔, …, 𝑋, …) = 𝑇(𝐹(𝑝), 𝐹∗𝜔, …, 𝐹∗𝑋, …) (3.27)

Just as proven with the method in the Eq. (3.22) it can be proven that if 𝑇  is a tensor in 𝑀  and 𝑇 ′ is
the pushforward on 𝑁 , and by choosing a coordinate system 𝑥𝜇 on 𝑀  and the pushforward of this
coordinate system to 𝑁 , 𝑥′𝜇, one obtains the relationship between the coordinate systems of both as

𝑇 ′𝜈1…
𝜇1… (𝑝) = 𝜕𝑥′𝜈1

𝜕𝑥𝛼1
(𝐹−1(𝑝))… 𝜕𝑥𝛽1

𝜕𝑥′𝜇1
(𝑝)𝑇 𝛼1…

𝛽1… (𝐹−1(𝑝)) (3.28)

3.5. Isometries
An isometry, is a diffeomorphism between Riemannian or pseudoBRiemannian manifolds,
𝐹 : 𝑀 → 𝑁 , where 𝑔𝑀  is the metric on 𝑀  and 𝑔𝑁  is the metric on 𝑁  then 𝐹  is an isometry if

𝑔𝑁 = 𝐹∗𝑔𝑀 (3.29)

thus preserving the metric.

Any object that only depends on the metric is called intrinsic and is preserved under isometries in
the same sense that the metric is preserved.

A few examples are:
• The LeviBCivita connection (∇𝜇)
• The Riemann tensor (𝑅𝜇

𝜈𝛾𝜎)
• The length of a curve (∫𝛾 √𝑔𝜇𝜈𝛾′𝜇𝛾′𝜈 d𝜏 )
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4 Flows

This section is based on [2].

A flow, intuitively, is described as the movement of a liquid or a gas that at each point moves in one
particular direction.

Mathematically this can be described by a velocity field, that describes the movement of the fluid.

This might not seem relevant to the study of transformations in general relativity, however this concept
is the definition we will use to build all of the transformations.

First we will start by defining a flow as a curve that solves the following differential equation

{
𝜕𝜙
𝜕𝜏 (𝜏, 𝑥0) = 𝑉 (𝜙(𝜏, 𝑥0))
𝜙(0, 𝑥0) = 𝑥0

(4.1)

where 𝑉  is the velocity field and 𝜙 is a curve on the manifold. There are a few interesting properties
of flows that will be important later.

First of all, since 𝑉  is a smooth vector field, the solutions to 𝜙(𝜏, 𝑥0) are unique, this also means that
for any fixed 𝜏  the transformation 𝜙𝜏 : 𝑀 → 𝑀  defined as 𝜙𝜏(𝑝) = 𝜙(𝜏, 𝑝) is a diffeomorphism.

Another property that flow has is that these are defined except by a constant translation on the
parameter 𝜏 . Meaning if 𝜙(𝜏, 𝑥0) is a flow of a field 𝑉  then 𝜙(𝜏 + 𝑠, 𝑥0) is also a flow of the field 𝑉 .

There is an interesting property of flows that can be stated as follows

𝜙(𝑡 + 𝑠, 𝑥0) = 𝜙(𝑡, 𝜙(𝑠, 𝑥0)) (4.2)

this is easy to check since by uniqueness both 𝜙(𝑡 + 𝑠, 𝑥0) and 𝜙(𝑡, 𝑝0) where 𝑝0 = 𝜙(𝑠, 𝑥0) solve
the same initial value problem therefore the equality is true. As a lemma we have that the inverse
diffeomorphism 𝜙−1

𝜏 (𝑝) is equivalent to 𝜙−𝜏(𝑝)
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5 Lie derivatives

This section is based on [2] and [4].

Finally after all of the mathematical conundrum we are finally ready to define the Lie derivative. The
Lie derivative is an object that takes in a vector field 𝑉  and some geometrical object, such as scalar
fields, vector fields or tensor fields. And what the Lie derivative represents is, if someone following
the flow of 𝑉 , made a function of how they see these objects change as a function of 𝜏  and then took
a derivative at 𝜏 = 0, what would be the value of that derivative.

This intuitive image of what a Lie derivative wants to answer can be stated in two equivalent ways, and
active way and a passive way. The active way models the path of the observer by keeping coordinates
stationary and transforming the fields so that 𝜑 → 𝜑′ and the Lie derivative would be something
like (𝜑′ − 𝜑)/𝜀. The passive approach transforms the coordinates so that the fields stay still and the
observer is the one moving from this coordinate system. In this case 𝑥𝜇 → 𝑥′𝜇 and the Lie derivative
would take the form of (𝜑(𝑥′𝜇) − 𝜑(𝑥𝜇))/𝜀.

Here we will take the active approach and model the derivative by transforming the fields.

First we will motivate the equation with an example and then will start computing the Lie derivative
in component form of multiple kinds of objects.

To obtain a Lie derivative of some field 𝜑 with respect to some vector field 𝑋, first of all the flow of
𝑋 is computed obtaining 𝜙𝜏(𝑝). Now the manifold 𝑀  is mapped by 𝜙𝜏  to 𝑀 ′ which is nothing else
than the same manifold but with a different coordinate system. Here the interpretation is not that the
coordinate system changed, when we interpret is that the coordinate systems of 𝑀  and 𝑀 ′ are the
same but the fields changed. Now 𝜑′ is a field on 𝑀 ′ so what we can do to compare it with 𝜑 is to pull
it back to 𝑀  and by taking the limit as 𝜏 → 0 one obtains the Lie derivative

ℒ𝑋𝜑 = lim
𝜏→0

𝜙∗
𝜏𝜑 − 𝜑

𝜏
= lim

𝜏→0

𝜙−𝜏∗𝜑 − 𝜑
𝜏

= d
d𝜏

𝜙∗
𝜏𝜑 (5.1)

Now it is possible to compute Lie derivatives of several objects in a coordinate system.

By defining 𝑥𝜇 as a coordinate system on 𝑀  and 𝑥′𝜇 = 𝜙𝜏(𝑥𝜇) then it follows that
𝑥′𝜇 = 𝑥𝜇 + 𝑋𝜇𝜏 + 𝒪(𝜏2).

5.1. Lie derivative of a scalar field
The Lie derivative of a scalar field is the simplest Lie derivative to compute. This is because by Eq. (3.1)
the Lie derivative may be computed as

ℒ𝑋𝑓 = � d
d𝜏

𝜙∗
𝜏𝑓|

𝜏=0

= � d
d𝜏

𝑓(𝜙(𝜏, 𝑥0))|
𝜏=0

= � d
d𝜏

𝑓(𝑥′𝜇)|
𝜏=0

= � 𝜕𝑓
𝜕𝑥𝜈

𝜕𝑥𝜈

𝜕𝑥′𝜇
𝜕𝑥′𝜇

𝜕𝜏
|
𝜏=0

= � 𝜕𝑓
𝜕𝑥𝜈 (𝛿𝜈

𝜇 + 𝒪(𝜏))(𝑋𝜇 + 𝒪(𝜏))|
𝜏=0

= 𝑋𝜇 𝜕𝑓
𝜕𝑥𝜇

(5.2)
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5.2. Lie derivatives of vector fields Lie derivatives

Here one can see that the Lie derivative of a scalar field with respect to some vector field is nothing
else than the directional derivative of 𝑓  in the direction of 𝑋. In general this is not the case, the reason
for this is that scalar fields have no sense of ‘direction’ so they are not affected by rotations, as we will
see now this is not the case for vector fields

5.2. Lie derivatives of vector fields
The same procedure as done in Eq. (5.2) to find the Lie derivative of a vector field. However here the
corresponding pullback equation is Eq. (3.14)

(ℒ𝑋𝑌 )𝜇 = � d
d𝜏

𝜙∗
𝜏𝑌 |

𝜏=0

= � d
d𝜏

( 𝜕𝑥𝜇

𝜕𝑥′𝜈 𝑌 𝜈(𝑥′))|
𝜏=0

= [ d
d𝜏

( 𝜕𝑥𝜇

𝜕𝑥′𝜈 )𝑌 𝜈(𝑥′) + 𝜕𝑥𝜇

𝜕𝑥′𝜈
d
d𝜏

𝑌 𝜈(𝑥′)]
𝜏=0

= [(−𝜕𝑋𝜇

𝜕𝑥′𝜈 + 𝒪(𝜏))𝑌 𝜈(𝑥′) + (𝛿𝜇
𝜈 + 𝒪(𝜏)) d

d𝜏
𝑌 𝜈(𝑥′)]

𝜏=0

= −𝑌 𝜈(𝑥)𝜕𝑋𝜇

𝜕𝑥𝜈 + [(𝛿𝜇
𝜈 + 𝒪(𝜏))d𝑥′𝛼

d𝜏
𝜕𝑥𝛽

𝜕𝑥′𝛼
𝜕𝑌 𝜈

𝜕𝑥𝛽 ]
𝜏=0

= −𝑌 𝜈(𝑥)𝜕𝑋𝜇

𝜕𝑥𝜈 + [(𝛿𝜇
𝜈 + 𝒪(𝜏))𝑋𝛼 𝜕𝑥𝛽

𝜕𝑥′𝛼
𝜕𝑌 𝜈

𝜕𝑥𝛽 ]
𝜏=0

= −𝑌 𝜈(𝑥)𝜕𝑋𝜇

𝜕𝑥𝜈 + 𝑋𝛼 𝜕𝑌 𝜇

𝜕𝑥𝛼

(5.3)

Here there are two terms, the first one is associated with translations. This term is the 𝑋𝛼 𝜕𝑌 𝜇

𝜕𝑥𝛼 . This
is essentially what was obtained in the scalar field case and represents a directional derivative. The
second term, −𝑌 𝛼 𝜕𝑋𝜇

𝜕𝑥𝛼 , represents rotations and dilations. This is because it ‘mixes’ components of
the vector 𝑌  and allows for changing the norm of the vector.

This means that for any two vector fields 𝑋, 𝑌  their Lie derivative applied to a scalar field is

ℒ𝑋𝑌 (𝑓) = 𝑋(𝑌 (𝑓)) − 𝑌 (𝑋(𝑓)) = [𝑋, 𝑌 ](𝑓) (5.4)

5.3. Lie derivatives of tensor fields
Once again, by using these methods one finds the general equation

(ℒ𝑋𝑇 )𝛼1…
𝛽1… = 𝑋𝛼 𝜕𝑇 𝛼1…

𝛽1…

𝜕𝑥𝛼

+𝑇 𝛼1…𝛼𝑖−1𝜎𝛼𝑖+1…
𝛽1…

𝜕𝑋𝛼
𝑖

𝜕𝑥𝜎 + …

−𝑇 𝛼1…
𝛽1…𝛽𝑖−1𝜎𝛽𝑖+1…

𝜕𝑋𝜎

𝜕𝑥𝛽𝑖
− …

(5.5)

This equation also can be written in the following form

(ℒ𝑋𝑇 )(𝐴, 𝐵, …) = ℒ𝑋(𝑇 (𝐴, 𝐵, …)) + 𝑇(ℒ𝑋𝐴, 𝐵, …) + 𝑇(𝐴, ℒ𝑋𝐵, …) + … (5.6)
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6 Killing fields

This section in based on [4], [5] and [6].

Finally we can write the definition of Killing fields. A Killing field, 𝐾 , is a vector field such that the
flow it generates is an isometry. In physical terms, moving along the ‘velocity field’ 𝐾 doesn’t change
the metric tensor

𝜙∗
𝜏𝑔 = 𝑔 (6.1)

that can be written as

(ℒ𝐾𝑔)𝜇𝜈 = 0 (6.2)

In component form the Killing equation may be written in contravariant form as

𝐾𝛼 𝜕𝑔𝜇𝜈

𝜕𝑥𝛼 + 𝑔𝛼𝜈
𝜕𝐾𝛼

𝜕𝑥𝜇 + 𝑔𝜇𝛼
𝜕𝐾𝛼

𝜕𝑥𝜈 = 0 (6.3)

Additionally, whenever a symmetric connection is used, such as the LeviBCivita connection used in
general relativity, the following covariant form is equivalent

∇𝜇𝐾𝜈 + ∇𝜈𝐾𝜇 = 0 (6.4)

6.1. Killing tensors
By analogy to Eq. (6.4) a Killing tensor is defined as a tensor 𝑇 𝛼𝛽𝛾… such that

∇(𝜇𝑇 𝛼𝛽𝛾) = 0 (6.5)

where the parenthesis is the average over all of the permutations of the indices.

6.2. Properties of Killing fields
Killing fields form vector spaces, this is because the Lie derivative is linear on the vector field wrt
which it differentiates

ℒ𝛼𝑋+𝛽𝑌 𝑔 = 𝛼 ℒ𝑋𝑔 + 𝛽 ℒ𝑌 𝑔 = 0 (6.6)

This can easily be seen on the component definitions of Lie derivatives.

Additionally these form a Lie algebra, this is because Lie derivatives have the following property

ℒ[𝑋,𝑌 ]𝑇 = ℒ𝑋 ℒ𝑌 𝑇 − ℒ𝑌 ℒ𝑋𝑇 (6.7)

So that if 𝑋 and 𝑌  are Killing fields, then [𝑋, 𝑌 ] form a Killing field too.

The norm of a Killing vector field is constant along its own flow, this is easily proved by

ℒ𝐾𝐾2 = 𝐾𝜈∇𝜈(𝐾𝜇𝐾𝜇) = 2𝐾𝜈𝐾𝜇∇𝜈𝐾𝜇 = 𝐾𝜈𝐾𝜇(∇𝜈𝐾𝜇 + ∇𝜇𝐾𝜈)⏟⏟⏟⏟⏟⏟⏟
Killing equation

= 0 (6.8)
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6.2. Properties of Killing fields Killing fields

These are also divergenceless tensors. Intuitively one can think of Killing fields as flows of an incomB
presible fluid. One can prove this by multiplying Eq. (6.4) by the metric so that

0 = 𝑔𝜇𝜈∇𝜇𝐾𝜈 + 𝑔𝜇𝜈∇𝜇𝐾𝜈 = ∇𝜇𝐾𝜇 + ∇𝜈𝐾𝜈 = 2∇𝜇𝐾𝜇 ⇒ ∇𝜇𝐾𝜇 = 0 (6.9)

The main property of Killing fields is that it allows us to build conserved quantities on geodesics,
meaning, if 𝑥𝜇(𝜏) is a geodesic and 𝐾𝜇 a Killing field, then

d( ̇𝑥𝜇𝐾𝜇)
d𝜏

= d ̇𝑥𝜇

d𝜏⏟
zero by geodesic

𝐾𝜇 + ̇𝑥𝜇 d𝐾𝜇

d𝜏
= ̇𝑥𝜇 ̇𝑥𝜈∇𝜈𝐾𝜇 = 1

2 ̇𝑥𝜇 ̇𝑥𝜈(∇𝜈𝐾𝜇 + ∇𝜇𝐾𝜈)⏟⏟⏟⏟⏟⏟⏟
Killing equation

= 0(6.10)

It also allows for defining conserved currents for any divergenceless rank two symmetric tensor
because

∇𝜇(𝑇 𝜇𝜈𝐾𝜈) = ∇𝜇𝑇 𝜇𝜈𝐾𝜈 + 𝑇 𝜇𝜈∇𝜇𝐾𝜈 = 1
2
𝑇 𝜇𝜈(∇𝜈𝐾𝜇 + ∇𝜇𝐾𝜈) = 0 (6.11)

as an example of such a tensor the StressBenergy tensor, allowing to define energy and momentum
densities in curved spacetimes.

This same idea can be extended to Killing tensors defined by Eq. (6.5) so that if 𝐴𝛼𝛽𝛾… is a Killing
tensor

d
d𝜏

(𝐴𝛼𝛽𝛾…𝑢𝛼𝑢𝛽𝑢𝛾…) = 0 (6.12)

is also a conserved quantities.

Since fourBmomentums are related by a constant to fourBvelocities the same can be extended to fourB
momentums since the derivative is a linear operator.

Number of Killing fields
A good question now is to ask “How many Killing fields does our space have?”, since this will lead to
the same amount of conserved quantities, simplifying the resulting equations.

As it turns out it is not possible, in general, to know exactly to know how many Killing fields there
are without solving the equations, however, it is possible to place an upper bound on the number of
Killing fields of 𝑛(𝑛+1)

2 , 𝑛 corresponding to translations and 𝑛(𝑛−1)
2  to rotations.

To prove this the starting point is the Riemann tensor

𝑅𝛿
𝛼𝛽𝛾𝐾𝛿 = ∇𝛼∇𝛽𝐾𝛾 − ∇𝛽∇𝛼𝐾𝛾 (6.13)

and the Bianchi identities

𝑅𝛿
𝛼𝛽𝛾 + 𝑅𝛿

𝛾𝛼𝛽 + 𝑅𝛿
𝛽𝛾𝛼 = 0 (6.14)

By multiplying the Bianchi identities by 𝐾𝛿 and applying Eq. (6.13) the result is
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6.2. Properties of Killing fields Killing fields

0 = ∇𝛼∇𝛽𝐾𝛾 − ∇𝛽∇𝛼𝐾𝛾 + ∇𝛾∇𝛼𝐾𝛽 − ∇𝛼∇𝛾𝐾𝛽 + ∇𝛽∇𝛾𝐾𝛼 − ∇𝛾∇𝛽𝐾𝛼 =

∇𝛼∇𝛽𝐾𝛾 − ∇𝛼∇𝛾𝐾𝛽 + ∇𝛽∇𝛾𝐾𝛼 − ∇𝛽∇𝛼𝐾𝛾 + ∇𝛾∇𝛼𝐾𝛽 − ∇𝛾∇𝛽𝐾𝛼 =

∇𝛼(∇𝛽𝐾𝛾 − ∇𝛾𝐾𝛽) + ∇𝛽(∇𝛾𝐾𝛼 − ∇𝛼𝐾𝛾) + ∇𝛾(∇𝛼𝐾𝛽 − ∇𝛽𝐾𝛼) =
Killing equation

2(∇𝛼∇𝛽𝐾𝛾 − ∇𝛾∇𝛽𝐾𝛼 + ∇𝛾∇𝛼𝐾𝛽) = 2(𝑅𝛿
𝛼𝛽𝛾𝐾𝛿 + ∇𝛾∇𝛼𝐾𝛽) ⇒

⇒ 𝑅𝛿
𝛼𝛽𝛾𝐾𝛿 = −∇𝛾∇𝛼𝐾𝛽

(6.15)

This allows, by substituting into the Taylor series to obtain an expression of the solution to the Killing
field equation.

By using the following multiBindex notation

𝛼 = (𝛼1, 𝛼2, 𝛼3, …, 𝛼𝑛) ∈ ℕ𝑛

|𝛼| = ∑
𝑖

𝛼𝑖

𝐷𝛼𝑓 = 𝜕 |𝛼|𝑓
(𝜕𝑥1)𝛼1(𝜕𝑥2)𝛼2…(𝜕𝑥𝑛)𝛼𝑛

𝛼! = ∏
𝑖

𝛼𝑖!

𝑥𝛼 = ∏
𝑖

(𝑥𝑖)𝛼𝑖

(6.16)

The Taylor series in multiple variables is

𝐾𝛿(𝑥) = ∑
∞

|𝛼|=0

𝐷𝛼𝐾𝛿(𝑝)
𝛼!

(𝑥 − 𝑝)𝛼 (6.17)

Now, since Eq. (6.15) gives a linear relationship between the second and zeroth order derivatives, one
can also obtain the third derivative as a linear combination of the first derivatives and the zeroth order
by deriving the equation¹, and so on with higher order derivatives. By defining two linear objects 𝐴
and 𝐵̂ so that

𝐷𝛼𝐾𝛿 = 𝐴 𝛾
𝛿 (𝑝, 𝛼)𝐾𝛾(𝑝) + 𝐵̂ 𝛾𝛽

𝛿 (𝑝, 𝛼)𝜕𝛾𝐾𝛽(𝑝) (6.18)

It is important to note that these objects in general are not tensors, since the left hand side is not a
tensor.

By substituting into the Taylor series one obtains

𝐾𝛿(𝑥) = ∑
∞

|𝛼| =0

𝐷𝛼𝐾𝛿(𝑝)
𝛼!

(𝑥 − 𝑝)𝛼

= ∑
∞

|𝛼| =0

1
𝛼!

(𝑥 − 𝑝)𝛼(𝐴 𝛾
𝛿 (𝑝, 𝛼)𝐾𝛾(𝑝) + 𝐵̂ 𝛾𝛽

𝛿 (𝑝, 𝛼)𝜕𝛾𝐾𝛽(𝑝))

=
(
(( ∑

∞

|𝛼| =0

1
𝛼!

(𝑥 − 𝑝)𝛼𝐴 𝛾
𝛿 (𝑝, 𝛼)

)
))𝐾𝛾(𝑝) +

(
(( ∑

∞

|𝛼| =0

1
𝛼!

(𝑥 − 𝑝)𝛼𝐵̂ 𝛾𝛽
𝛿 (𝑝, 𝛼)

)
))𝜕𝛾𝐾𝛽(𝑝)

= 𝐴 𝛾
𝛿 (𝑥, 𝑝)𝐾𝛾(𝑝) + 𝐵̃ 𝛾𝛽

𝛿 (𝑥, 𝑝)𝜕𝛾𝐾𝛽(𝑝)

(6.19)

¹As long as the Riemann tensor is smooth
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6.2. Properties of Killing fields Killing fields

Now, from this expression it looks like there should be 𝑛 + 𝑛2 Killing fields since there are that many
free parameters as initial conditions, however there is an additional restriction, the Killing equation.

𝜕𝛼𝐾𝛽 = −𝜕𝛽𝐾𝛼 + 2Γ𝜎
𝛼𝛽𝐾𝜎 (6.20)

so that

𝐾𝛿(𝑥) = 𝐴 𝛾
𝛿 (𝑥, 𝑝)𝐾𝛾(𝑝) + 1

2
𝐵̂ 𝛾𝜎

𝛿 (𝑥, 𝑝)(𝜕𝛾𝐾𝜎(𝑝) + 𝜕𝛾𝐾𝜎(𝑝))

= 𝐴 𝛾
𝛿 (𝑥, 𝑝)𝐾𝛾(𝑝) + 1

2
𝐵̂ 𝛾𝜎

𝛿 (𝑥, 𝑝)(𝜕𝛾𝐾𝜎(𝑝) − 𝜕𝜎𝐾𝛾(𝑝) + 2Γ𝛼
𝛾𝜎𝐾𝛼(𝑝))

= (𝐴 𝛼
𝛿 (𝑥, 𝑝) + 𝐵̂ 𝛾𝜎

𝛿 (𝑥, 𝑝)Γ𝛼
𝛾𝜎)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴 𝛼

𝛿 (𝑥,𝑝)

𝐾𝛼 + 1
2
𝐵̂ 𝛾𝜎

𝛿 (𝑥, 𝑝)
⏟⏟⏟⏟⏟

𝐵 𝛾𝜎
𝛿

(𝜕𝛾𝐾𝜎(𝑝) − 𝜕𝜎𝐾𝛾(𝑝))

= 𝐴 𝛾
𝛿 (𝑥, 𝑝)𝐾𝛾(𝑝) + 𝐵 𝛾𝜎

𝛿 (𝑥, 𝑝)(𝜕𝛾𝐾𝜎(𝑝) − 𝜕𝜎𝐾𝛾(𝑝))

(6.21)

So now we only care about the antisymmetric part of 𝐵 on the upper indices, meaning now there
are only 𝑛 + 𝑛(𝑛−1)

2 = 𝑛(𝑛+1)
2  linearly independent Killing fields. Any space that has all of the Killing

fields it is allowed by its dimension will be called maximally symmetric.

This result is important on its own, however, by categorizing the basis of Killing fields one gains more
insight on the kinds of allowed transformations.

Killing fields of the form

{{
{
{{𝐾(𝛼)

𝛿 (𝑝) = 𝛿𝛼
𝛿

𝜕𝜎𝐾(𝛼)
𝛿 (𝑝) = 0

(6.22)

where (𝛼) acts as a label will be denoted “translations”. The motivation for this definition has two
origins, first, we have the same number of translations as dimensions, so one can assign one translation
to each direction. Secondly, from the way objects transform under isomorphisms one can see that the
components of vector and tensors don’t change under this kind of transformation, but their position
does.

The second family of transformations are the rotations, these have two labels that are antisymmetric,
𝛼𝛽 and are defined by

{{
{
{{𝐾(𝛼,𝛽)

𝛿 (𝑝) = 0
𝜕𝜎𝐾(𝛼,𝛽)

𝛿 (𝑝) = 𝛿𝛼
𝜎 𝛿𝛽

𝛿 − 𝛿𝛼
𝛿 𝛿𝛽

𝜎
(6.23)

There are 𝑛(𝑛−1)
2  distinct rotations, one per unique combination of axis, Since rotations are on a plane

defined by two axis. These rotations are centered at 𝑝 because objects in this point are not translated,
however, objects like vectors are rotated.

Generating geodesics
Since the covariant derivative is an intrinsic object it is preserved under isometries, meaning for an
isometry 𝐹 : 𝑀 → 𝑀̃

∇̃𝜇(𝐹∗𝑋) = 𝐹∗(∇𝜇𝑋) (6.24)

where 𝑋 is any geometrical object. This means that transforming a geodesic by an isometry (for
example those generated by Killing vectors) results in a different geodesic. In fact, this condition
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6.2. Properties of Killing fields Killing fields

can be relaxed and it is not necessary for the transformation to be an isometry, it is enough for the
transformation to be conformal. A transformation 𝐹 : 𝑀 → 𝑀̃ , is said to be conformal if

𝐹∗𝑔 = 𝜅𝑔 (6.25)

where 𝑔 is the metric on 𝑀 , 𝑔 the metric on 𝑔 and 𝜅 is some constant. One can see this by looking at
the action of a free particle

𝑆 = ∫ 𝑔𝜇𝜈 ̇𝑥𝜇 ̇𝑥𝜈 d𝜏 (6.26)

by applying a conformal transformation the resulting action is

𝑆′ = 𝜅𝑆 (6.27)

so 𝛿𝑆′ = 0 ⇔ 𝛿𝑆 = 0

One can generate these transformations via conformal Killing fields defined in an analogous way
to Killing fields as

ℒ𝐾𝑔 = 𝜅𝑔 (6.28)

where 𝐾 is a conformal Killing field.

This allows to generate new geodesics from existing ones and will simplify the computations of
redshifts.
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7 Schwarzschild geodesics

This section is based on [4] and [7].

The Schwarzschild metric is one of the most important metrics in general relativity. By Birkhoff’s
theorem it is known to be the unique spherically symmetric vacuum solution to Einstein field equaB
tions. This means that any spherically symmetric distribution of energy will produce this metric on
the outside (up to gravitational waves). It also is the first prediction of black holes.

By using spherical coordinates (𝑡, 𝑟, 𝜃, 𝜑) so that 𝑡 is the time coordinate, 𝑟 is a radial coordinate such
that the “sphere” defined by fixing 𝑡 and 𝑟 has area of 𝐴 = 4𝜋𝑟2 and 𝜃, 𝜑 are the polar and azimuthal
angles respectively, defined so that the submanifolds of constant time and radius have the induced
metric of a sphere.

The metric on this coordinates can be written as

d𝑠2 = (1 − 𝑟𝑠
𝑟

) d𝑡2 −(1 − 𝑟𝑠
𝑟

)
−1

d𝑟2 −𝑟2 d𝜃2 −𝑟2 sin2(𝜃) d𝜑2 (7.1)

This metric has 4 Killing vectors. One is associated with time translations, the other three are associated
with rotations and obey the SO(3) Lie algebra

[𝑋, 𝑌 ] = 𝑍
[𝑌 , 𝑍] = 𝑋
[𝑍, 𝑋] = 𝑌

(7.2)

In spherical coordinates these can be written as

𝑋 = − sin 𝜑𝜕𝜃 − cot 𝜃 cos 𝜑𝜕𝜑

𝑌 = cos 𝜑𝜕𝜃 − cot 𝜃 sin 𝜑𝜕𝜑

𝑍 = 𝜕𝜑

(7.3)

The Killing vector associated to time translation is 𝑇 = 𝜕𝑡

Since this metric is rotation invariant we are allowed to choose the coordinate system so that both the
initial position and spatial part of the fourBvelocity lie on the 𝜃 = 𝜋

2  plane. Reducing the complexity
of the system. In this plane with the restriction 𝑢𝜃 = 0, this restriction is valid for all time, this can be
proved by looking at the conserved quantities of 𝑋 and 𝑌

{
𝑋𝜇𝑢𝜇 = sin 𝜑𝑟2𝑢𝜃 + 𝑟2 cot 𝜃 cos 𝜑 sin2 𝜃𝑢𝜑 = 0
𝑌𝜇𝑢𝜇 = − cos 𝜑𝑟2𝑢𝜃 + 𝑟2 cot 𝜃 sin 𝜑 sin2 𝜃𝑢𝜑 = 0 (7.4)

Where the equality with 0 comes from the initial condition. Conservation of both quantities leads to
either 𝑟 = 0 or 𝑢𝜃 = 0, since 𝑢𝜃 = 0 for all 𝜏  𝑥𝜃 = 𝜋

2  is valid for all 𝜏

The other two conserved quantities are related to classical quantities. The conserved quantity associB
ated to 𝑇  will be denoted energy
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Schwarzschild geodesics

𝐸 = 𝑇𝜇𝑢𝜇 = 𝑔𝜇𝛼𝑇 𝛼𝑢𝜇 = 𝑔𝜇𝛼𝛿𝛼0𝑢𝜇 = 𝑔00𝑢0 = 𝑔𝑡𝑡𝑢𝑡 (7.5)

this quantity agrees with energy per unit of mass of a free particle in the limit 𝑟 → ∞

The conserved quantity associated with 𝑍 is denoted angular momentum

𝐿 = 𝑍𝜇𝑢𝜇 = 𝑔𝜇𝛼𝑍𝛼𝑢𝜇 = 𝑔𝜇𝛼𝛿𝛼3𝑢𝜇 = 𝑔33𝑢3 = 𝑔𝜑𝜑𝑢𝜑 (7.6)

this quantity can be recognized as the angular momentum per unit mass of a free particle if r is the
radius, however, here 𝑟 is only the “classical radius” in the limit 𝑟 → ∞, so these quantities don’t
exactly agree.

These two quantities allow to know 𝑢𝜑 and 𝑢𝑡 at any point of the geodesic if the initial conditions are
known. Additionally, since ‖𝑢‖2 = {1 for matter

0 for light  one can obtain 𝑢𝑟 as

𝑢𝑟 = ± √‖𝑢‖2

𝑔𝑟𝑟
− 𝐿2

𝑔𝜑𝜑𝑔𝑟𝑟
+ 𝐸2 (7.7)

Importantly this allows for computing quantities such as the three velocity as seen by an observer
at ∞

d𝑟
d𝑡

= d𝑟 / d𝜏
d𝑡 / d𝜏

= 𝑢𝑟

𝑢𝑡 = ± 𝑔𝑡𝑡√
‖𝑢‖2

𝑔𝑟𝑟𝐸2 + 𝐿2

𝑔𝜑𝜑𝑔𝑟𝑟𝐸2 + 1 (7.8)

since in the limit 𝑟 → 𝑟𝑠 𝑔𝑡𝑡 → 0 and 𝑔𝑟𝑟 → −∞ objects stop moving when close to the limit horizon.

Also one can compute how fast things rotate around a black hole as seen at ∞

d𝜑
d𝑡

= d𝜑 / d𝜏
d𝑡 / d𝜏

= 𝑢𝜑

𝑢𝑡 = 𝐿𝑔𝑡𝑡
𝐸𝑔𝜑𝜑

(7.9)

Once again since 𝑔𝑡𝑡 → 0 when 𝑟 → 𝑟𝑠 things stop rotating when close to the Schwarzschild radius.

This method allows us to obtain the equations of motion of the particles without having to compute
the Christoffel symbols.

This result that things stop moving when touching the event horizon can be generalized to moving
black holes by using a Lorentz transformation. The result is that for the case where the black hole
moves, matter and light tend to move with the black hole, dragged by it. This has some interesting
phenomenological effects where certain particles experience forces similar to being pushed away or
forces tangential to the line connecting the black hole and the particle. One might think that these
effects could be explained using a retarded gravitational potential, however for a retarded potential
particles tend to fall behind the atracting object and follow it instead of being dragged with it or even
being pushed. Some animations can be fond in the following link.
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8 Kerr black holes

This section is based on [4] and [7].

The Kerr metric represents a spinning black hole. From this one can already think that spherical
symmetry and time reversal symmetry are going to be broken. The first one because there will be
an “special axis” around which the black hole spins. The second cone because by reversing time the
direction of rotation of the black hole is also reversed breaking the symmetry. To recover the time
reversal symmetry it is necessary to also do an inversion around the axis of symmetry of the solution.
The result is that in the metric there is at least one cross term allowed between time and space.

By using the BoyerBLindquist coordinates, (𝑡, 𝑟, 𝜃, 𝜑) related to Cartesian coordinates by

{{
{
{{𝑥 =

√
𝑟2 + 𝑎2 sin 𝜃 cos 𝜑

𝑦 =
√

𝑟2 + 𝑎2 sin 𝜃 sin 𝜑
𝑧 = 𝑟 cos 𝜃

(8.1)

so that in the limit 𝑟 → ∞ they reduce to usual spherical coordinates.

In this coordinate system the black hole spins around 𝜃 = 0 and the metric can be written as

d𝑠2 = (1 − 𝑟𝑠𝑟
Σ

) d𝑡2 +2𝑟𝑠𝑟𝑎 sin2 𝜃
Σ

d𝑡 d𝜑 −Σ
Δ

d𝑟2

−Σ d𝜃2 −(𝑟2 + 𝑎2 + 𝑟𝑠𝑟𝑎2

Σ
sin2 𝜃) sin2(𝜃) d𝜑2

(8.2)

Where 𝑎 = 𝐽
𝑀  where 𝐽  is the angular momentum of the black hole, Σ = 𝑟2 + 𝑎2 cos2 𝜃 and

Δ = 𝑟2 − 𝑟𝑠𝑟 + 𝑎2

There are two Killing fields in this metric, one associated the axial symmetry 𝑅 = 𝜕𝜑 and the other
with time symmetry 𝐾 = 𝜕𝑡.

Just as with the Schwarzschild geodesics we will call angular momentum and energy to the conserved
quantities

𝐸 = 𝐾𝜇𝑢𝜇 = 𝑔𝑡𝜇𝑢𝜇 = 𝑔𝑡𝑡𝑢𝑡 + 𝑔𝑡𝜑𝑢𝜑 = 𝑢𝑡 (8.3)

and angular momentum

𝐿 = 𝑅𝜇𝑢𝜇 = 𝑔𝜑𝑡𝑢𝑡 + 𝑔𝜑𝜑𝑢𝜑 = 𝑢𝜑 (8.4)

Immediately there is an interesting result, the system of equations above can be solved for either 𝑢𝑡

or 𝑢𝜑 to give
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𝑢𝑡 =
𝐿𝑔𝜑𝑡 − 𝐸𝑔𝜑𝜑

(𝑔𝜑𝑡)
2

− 𝑔𝑡𝑡𝑔𝜑𝜑

𝑢𝜑 =
𝐸𝑔𝜑𝑡 − 𝐿𝑔𝑡𝑡

(𝑔𝜑𝑡)
2

− 𝑔𝑡𝑡𝑔𝜑𝜑

(8.5)

As one can see 𝑢𝜑 is not necessarily zero even if it is at one point in time. This can be interpreted as
the black hole forcing particles to rotate with it. This effect, called frame dragging, is only dependent
on the spacetime being axially symmetric with the timeBaxial inversion symmetry.

In the case of the Kerr black hole there is a region where the 𝑡𝑡 component of the metric becomes
spacelike. This region is called the ergosphere of the Kerr black hole. This region is not enclosed in an
event horizon and particles and light are allowed to go in and out of the ergosphere. This is because
even if 𝑔𝑡𝑡 is zero, the 𝑔𝜑𝑡 is positive, so that the particle can have radial component of four velocity
provided 𝑢𝑡 and 𝑢𝜑 are large enough.

For particles outside the ergosphere the energy is always positive (using (+−−−) signature). This is
because 𝐾 is a time like vector, and, since four velocities are either time like or null, depending on if
the particle has mass or not, the product has to be positive.

To see this we can use the equivalence principle and prove this in Minkowski spacetime. For all non
spacelike vectors in Minkowski spacetime we have that

(𝑢0)2 ≥ ‖ ⃗𝑢‖2 (8.6)

where equality happens for null vectors. Therefore if we have the product of two four vectors and one
of them is time like we have that

𝑢0𝑣0 > ‖ ⃗𝑢‖‖ ⃗𝑣‖ ≥ ⟨ ⃗𝑢, ⃗𝑣⟩ ⇒

⇒ 𝑢0𝑣0 − ⟨ ⃗𝑢, ⃗𝑣⟩ = 𝑔𝜇𝜈𝑢𝜇𝑣𝜈 > 0
(8.7)

so the product is positive.

Inside the ergosphere we can solve for d𝜑
d𝑡  obtaining

d𝜑
d𝑡

= 1
𝑔𝜑𝑡

( 𝐸
𝑢𝑡 − 𝑔𝑡𝑡) (8.8)

and, since 𝐸, 𝑢𝑡 and −𝑔𝑡𝑡 are positive and 𝑔𝜑𝑡 has the sign of the angular momentum of the black hole,
this means that any particle that goes into the ergosphere has to rotate with the black hole.

If we wanted to obtain the equations of motion like how we did in the Schwarzschild metric we would
find a problem. In the Schwarzschild metric we had three Killing fields that, when combined with the
norm of the four velocity allowed to solve for the derivatives. Here we only have two Killing fields.
Fortunately there is an additional Killing rank 2 tensor 𝜎 defined as

𝜎𝜇𝜈 = Σ2(𝑙𝜇𝑛𝜈 + 𝑙𝜈𝑛𝜇) + 𝑟2𝑔𝜇𝜈

𝑙𝜇 = 1
Δ

(𝑟2 + 𝑎2, Δ, 0, 𝑎)

𝑛𝜇 = 1
2Σ2 (𝑟2 + 𝑎2, −Δ, 0, 𝑎)

(8.9)

the associated conserved quantity is called the Carter constant and is usually denoted 𝐶 . The system
of equations Eq. (8.9) together with Eq. (8.5) allows to solve for 𝑢𝑟 and with these three constants it
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Kerr black holes

is possible to finally obtain 𝑢𝜃 from the norm of the fourBvelocity and obtain the equations of motion.
However the equations obtained, although straightforward to obtain, are quite lengthy and don’t have
any really give any insights on the geodesics.
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9 FLRW Metric

This section is based on [5] and [3].

In cosmology the most widely used metric to describe spacetime at big scales is is the FLRW (Friedmann
Lemaitre Robertson Walker) metric. Even in contexts where general relativity is modified this is the
case, this is because the principles that lead towards this metric are, to some degree, independent of
general relativity.

The fundamental principle behind this metric is the observed homogeneity and isotropy of the universe
at big scales. In more formal terms this means that there have to be a family of spacelike surfaces that
are isometric under translations in all spatial directions and rotations around any point.

The usual ways to write this metric are

d𝑠2 = − d𝑡2 +𝑎2(𝑡)( d𝑟2
√

1 − 𝑘𝑟2
+ 𝑟2 dΩ2)

= − d𝑡2 +𝑎2(𝑡)(d𝜒2 +𝑆2
𝑘(𝜒) dΩ2)

(9.1)

Where 𝜒 is the comoving distance, dΩ represents the angular part of the metric and 𝑎(𝑡) is the so
called scale factor and whose value is obtained via the Einstein field equations in general relativity or
the equations of motion of the metric in other gravitational theories.

Since this is going to be a math intensive chapter here an outline of how to prove the form of the
metric is outlined here.

1. First prove that the metric is separable, meaning d𝑠2 = − d𝑡2 +𝑔𝑖𝑗 d𝑥𝑖 d𝑥𝑗 and then prove that
d𝑠2 = − d𝑡2 +𝑎2(𝑡)ℎ𝑖𝑗 where ℎ is independent of time

2. After this prove that since 𝑡 = const are maximally submanifolds 𝑔𝑖𝑗 is a constant sectional curvaB
ture space

3. By applying the KillingBHopf theorem [3] the spatial submanifolds have to be isometric to a 4B
sphere, 4Bhyperboloid or a flat space.

9.1. Separability of the metric
The separability of the metric at any given point is trivial, if our spacetime is the manifold 𝕄, by
picking a coordinate system 𝑥𝑖 on a maximally symmetric submanifold 𝔼, this coordinate system can
be extended to a global coordinate system by first picking a normal vector to the surface 𝑛. This can
be done by taking the basis of 𝑇𝑝𝔼 generated by our coordinate system and then by GramBSchmidt
algorithm extend it to basis of 𝑇𝑝𝕄 and picking 𝑛 to be normal to 𝔼, this normal vector can be extended
to a normal vector field by doing this process at every point and making the field smooth forces an
orientation. After this the coordinate system 𝑥𝑖 can be extended by adding an additional coordinate 𝑥0,
that we will denote 𝑡, defined as the parameter of the geodesics starting at 𝑥𝑖 with initial four velocity
𝑛¹. In this way the set of points of constant 𝑥𝑖 is defined as the points that the geodesic goes through

¹Here we are assuming geodesic completeness, this is fine because it is assumed that our space is complete and the
HopfBRinow theorem, gives an equivalence between both statements.
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9.1. Separability of the metric FLRW Metric

and as a time variable the arclength of the geodesic is chosen¹. An intuitive way to see this coordinate
system is to imagine that we place an observer at each point of our surface and assign a coordinate to
each of them, after this we allow all of the observers to evolve and take as a time coordinate the time
they measure with their clocks.

To check that the coordinate system we have actually has 𝑔0𝑖 = 0 we use that the Christoffel symbol
Γ𝑖00 is related to the metric by

Γ𝑖00 = 1
2
(2𝜕0𝑔0𝑖 − 𝜕𝑖𝑔00) (9.2)

and since 𝑔00 = ‖𝑛‖2 = −1 that means that

Γ𝑖00 = 𝜕0𝑔0𝑖 (9.3)

so that by proving that Γ𝑖00 = 0, 𝑔0𝑖 = 0 is also proven. To compute Γ𝑖00 we can use the geodesic
equation and remember that our coordinate system is defined by geodesics so that

̈𝑥𝑖 = 0 = −Γ𝑖
𝜇𝜈 ̇𝑥𝜇 ̇𝑥𝜈 = −Γ𝑖

𝜇𝜈𝛿𝜇
0 𝛿𝜈

0 = −Γ𝑖
00 ⇒

⇒ Γ𝑖00 = 0
(9.4)

.

Now that have a coordinate system that has the initial form we wanted. Next, it is important to check
that in this coordinate system all spatial slices are maximally symmetric. Right now we have only
assumed that the initial slice is maximally symmetric, however that doesn’t tell us anything about the
structure of all of the spatial slices. This is an interesting question because it could be the case where
some spaces start maximally symmetric but at some point they stop being symmetric. As we will see
this is not the case.

To do this first we extend the Killing vectors on the slice to Killing vectors of all of space by the
insertion map of the slice defined as

𝑖(𝑣𝑖) = (0, 𝑣𝑖) = 𝑣𝜇 (9.5)

So that the tangent vectors on the slice are tangent when mapped to the manifold. Therefore in this
coordinate system the Killing fields on the initial surface take the following form 𝐾0(𝑡 = 0, 𝑥𝑖) = 0.
To check that the Killing fields are Killing fields in all of the constant time surfaces first we use the
(0, 0) component of the Killing equation

2𝑔00𝜕0𝐾0 + 𝐾0𝜕0𝑔00 = 0 ⇒ 𝜕0𝐾0 = 0 (9.6)

This with the initial condition of 𝐾0(𝑡 = 0) = 0 shows that the Killing fields are tangent to constant
time slices.

Now we are close to proving that all spatial slices are maximally symmetric, since the differential
equation has unique solutions as long as the metric is enough well behaved this looks like is enough
to prove that the slices have the same number of Killing fields as the initial one, so they are maximally
symmetric too. However there is an edge case, that being whenever a Killing field becomes zero. To
prove this is not the case it is easy to use the (0, 𝑖) components of the Killing equation.

𝐾𝛼𝜕𝛼𝑔0𝑖 + 𝑔0𝛼𝜕𝑖𝐾𝛼 + 𝑔𝛼𝑖𝜕0𝐾𝛼 = 𝑔𝑗𝑖𝜕0𝐾𝑗 = 0 ⇒ 𝜕0𝐾𝑗 = 0 (9.7)

¹Accounting for backwards evolution to be negative
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9.1. Separability of the metric FLRW Metric

The equality between the first and second expression might not be completely clear unless one
remembers that the spatial part of the metric is positive definite so that in matrix it is a nonBsingular
matrix.

Just as before this implies that the spatial parts of the Killing vectors are constant in time. Therefore
all slices are maximally symmetric.

To show that the spatial part has the form of 𝑔𝑖𝑗 = 𝑎2(𝑇 )ℎ𝑖𝑗 where ℎ𝑖,𝑗 is independent of time.

The path it to use two properties of the Lie derivative with respect to a Killing field.

These are:
1. For any symmetric tensor 𝑇𝛼𝛽 in a maximally symmetric manifold

ℒ𝐾𝑇𝛼𝛽 = 0 ⇒ 𝑇𝛼𝛽 = 𝑇
𝑛

𝑔𝛼𝛽 (9.8)

where 𝑇 ≔ 𝑇 𝛼
𝛼  is the trace of the tensor and 𝑛 is the dimension of the space

2. In this coordinate system

ℒ𝐾 ̇𝑔𝑖𝑗 = 0 (9.9)

and with these two facts the resulting differential equation has as a solution

𝑔𝑖𝑗 = 𝑒𝑓(𝑡)𝑔𝑖𝑗(𝑡 = 0) (9.10)

proving the form of the metric we expected.

Proving Eq. (9.9) is easy by direct computation

0 = d
d𝑡

(ℒ𝐾𝑔𝑖𝑗) = d
d𝑡

(𝐾𝛼𝜕𝛼𝑔𝑖𝑗 + 𝑔𝛼𝑗𝜕𝑖𝐾𝛼 + 𝑔𝑖𝛼𝜕𝑗𝐾𝛼)

= 𝐾𝛼𝜕𝛼 ̇𝑔𝑖𝑗 + ̇𝑔𝛼𝑗𝜕𝑖𝐾𝛼 + ̇𝑔𝑖𝛼𝜕𝑗𝐾𝛼

+𝐾̇𝛼𝜕𝛼𝑔𝑖𝑗 + 𝑔𝛼𝑗𝜕𝑖𝐾̇𝛼 + 𝑔𝑖𝛼𝜕𝑗𝐾̇𝛼

= ℒ𝐾 ̇𝑔𝑖𝑗

(9.11)

The Eq. (9.8) is proven by proving the stronger statement restricted to only isotropic manifolds. By
choosing a rotation around a point 𝐾 one has:

ℒ𝐾𝑇 = 𝑇𝛾𝛽𝜕𝛼𝐾𝛾 + 𝑇𝛼𝛾𝜕𝛽𝐾𝛾 + 𝐾𝛾𝜕𝛾𝑇𝛼𝛽 =
𝜕𝛼𝐾𝛾=∇𝛼𝐾𝛾

𝑇 𝛾
𝛽𝜕𝛼𝐾𝛾 + 𝑇 𝛾

𝛼 𝜕𝛽𝐾𝛾 = 0 (9.12)

The last expression can be rewritten as

𝑇 𝛾
𝛽𝜕𝛼𝐾𝛾 + 𝑇 𝛾

𝛼 𝜕𝛽𝐾𝛾 = (𝑇 𝛾
𝛽𝛿𝜎

𝛼 + 𝑇 𝛾
𝛼 𝛿𝜎

𝛽)𝜕𝜎𝐾𝛾 = 0 (9.13)

since rotations are antisymmetric on 𝜎 and 𝛾 that means that

𝑇 𝛾
𝛽𝛿𝜎

𝛼 + 𝑇 𝛾
𝛼 𝛿𝜎

𝛽 = 𝑇 𝜎
𝛽𝛿𝛾

𝛼 + 𝑇 𝜎
𝛼 𝛿𝛾

𝛽 (9.14)

and by contracting 𝛽 and 𝛾 the resulting expression is

𝑛𝑇 𝛾
𝛽 + 𝑇 𝛾

𝛽 = 𝑇 𝛾
𝛽 + 𝛿𝛾

𝛽𝑇 ⇒

⇒ (𝑛 − 1)𝑇 𝛾
𝛽 + 𝑇 𝛾

𝛽 = 𝛿𝛾
𝛽𝑇

(9.15)

and finally by multiplying both sides by 𝑔𝛼𝛾  the theorem is proven
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(𝑛 − 1)𝑇𝛽𝛼 + 𝑇𝛼𝛽 = 𝑛𝑇𝛼𝛽 = 𝑔𝛼𝛽𝑇 (9.16)

Now that we know that the metric has the form

d𝑠2 = − d𝑡2 +𝑎2(𝑡)ℎ𝑖𝑗 d𝑥𝑖 d𝑥𝑗 (9.17)

the next step is to prove that maximally symmetric manifolds are constant curvature spaces. By proving
that they are we can apply the KillingBHopf theorem and now the submanifolds are isometric to either
flat space, a 3 hyperboloid or a 3 sphere. Allowing to get the components ℎ𝑖𝑗 and obtaining the final
form of the metric.

But first we will introduce the notion of the sectional curvature.

9.2. Sectional curvature and maximally symmetric spaces
Sectional curvature is defined as a generalization of Gaussian curvature. In ℝ3 surfaces can be assigned
a curvature that is related to the Riemann tensor by

𝑅𝑎𝑏𝑐𝑑 = 𝐾(𝑔𝑎𝑐𝑔𝑏𝑑 − 𝑔𝑎𝑑𝑔𝑏𝑐) (9.18)

by choosing two linearly independent vectors tangent to the surface 𝑢 and 𝑣 and multiplying both
sides by 𝑢𝑎𝑣𝑏𝑣𝑐𝑢𝑑 (the only nonBzero combination of two vectors) one obtains

𝐾 = 𝑅𝑎𝑏𝑐𝑑𝑢𝑎𝑣𝑏𝑣𝑐𝑢𝑑

⟨𝑢, 𝑣⟩2 − ⟨𝑢, 𝑢⟩⟨𝑣, 𝑣⟩
(9.19)

generalizing this formula to any other space is easy just by making 𝐾 a 2Bcovariant tensor so that it
takes in two vectors and plugs them into Eq. (9.19). The KillingBHopf theorem states that any pair of
manifolds with constant sectional curvature are isometric if their sectional curvatures are equal. So by
proving that maximally symmetric spaces have a Riemann tensor of the form Eq. (9.18) with constant
𝐾 will give us the metric on the spatial slices.

9.3. Riemann tensor on maximally symmetric spaces
To obtain the form of the Riemann tensor we start from the fact that the Riemann tensor is intrinsic,
therefore, the Lie derivative of the Riemann tensor with respect to one of the rotations at any given
point must be zero. This gives the following equation

ℒ𝐾𝑅 = 𝐾𝛼𝜕𝛼𝑅𝜇𝜈𝛾𝜎 + 𝑅𝛼𝜈𝛾𝜎𝜕𝜇𝐾𝛼 + 𝑅𝜇𝛼𝛾𝜎𝜕𝜈𝐾𝛼 + 𝑅𝜇𝜈𝛼𝜎𝜕𝛾𝐾𝛼 + 𝑅𝜇𝜈𝛾𝛼𝜕𝛿𝐾𝛼 =

= 𝑅𝛼𝜈𝛾𝜎𝜕𝜇𝐾𝛼 − 𝑅𝛼𝜇𝛾𝜎𝜕𝜈𝐾𝛼 + 𝑅𝛼𝜎𝜇𝜈𝜕𝛾𝐾𝛼 − 𝑅𝛼𝛾𝜇𝜈𝜕𝜎𝐾𝛼 =
∇𝛼𝐾=𝜕𝛼𝐾
for rotations = 𝑅𝛼

𝜈𝛾𝜎∇𝜇𝐾𝛼 − 𝑅𝛼
𝜇𝛾𝜎∇𝜈𝐾𝛼 + 𝑅𝛼

𝜎𝜇𝜈∇𝛾𝐾𝛼 − 𝑅𝛼
𝛾𝜇𝜈∇𝜎𝐾𝛼 =

= (𝑅𝛼
𝜈𝛾𝜎𝛿𝜀

𝜇 − 𝑅𝛼
𝜇𝛾𝜎𝛿𝜀

𝜈 + 𝑅𝛼
𝜎𝜇𝜈𝛿𝜀

𝛾 − 𝑅𝛼
𝛾𝜇𝜈𝛿𝜀

𝜎)∇𝜀𝐾𝛼 = 0

(9.20)

since the covariant derivative of a Killing field is antisymmetric this equation is solved for all of the
rotations if and only if

𝑅𝛼
𝜈𝛾𝜎𝛿𝜀

𝜇 − 𝑅𝛼
𝜇𝛾𝜎𝛿𝜀

𝜈 + 𝑅𝛼
𝜎𝜇𝜈𝛿𝜀

𝛾 − 𝑅𝛼
𝛾𝜇𝜈𝛿𝜀

𝜎 =

= 𝑅𝜀
𝜈𝛾𝜎𝛿𝛼

𝜇 − 𝑅𝜀
𝜇𝛾𝜎𝛿𝛼

𝜈 + 𝑅𝜀
𝜎𝜇𝜈𝛿𝛼

𝛾 − 𝑅𝜀
𝛾𝜇𝜈𝛿𝛼

𝜎
(9.21)

The easiest way to obtain a relationship between the Riemann tensor and the metric from here is
to make contractions that give Ricci tensors. This is because since the Ricci tensor is intrinsic and
symmetric by Eq. (9.8)

𝑅𝛼𝛽 = 𝑅
𝑛

𝑔𝛼𝛽 (9.22)
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Contracting 𝜀 and 𝜇 gives

LHS = 𝑅𝛼
𝜈𝛾𝜎𝛿𝜇

𝜇 − 𝑅𝛼
𝜇𝛾𝜎𝛿𝜇

𝜈 + 𝑅𝛼
𝜎𝜇𝜈𝛿𝜇

𝛾 − 𝑅𝛼
𝛾𝜇𝜈𝛿𝜇

𝜎

= 𝑛𝑅𝛼
𝜈𝛾𝜎 − 𝑅𝛼

𝜈𝛾𝜎 + 𝑅𝛼
𝜎𝛾𝜈 − 𝑅𝛼

𝛾𝜎𝜈

= (𝑛 − 1)𝑅𝛼
𝜈𝛾𝜎 + 𝑅𝛼

𝜎𝛾𝜈 + 𝑅𝛼
𝛾𝜈𝜎⏟⏟⏟⏟⏟⏟⏟

Bianchi identity

= (𝑛 − 1)𝑅𝛼
𝜈𝛾𝜎 − 𝑅𝛼

𝜈𝜎𝛾

RHS = 𝑅𝜇
𝜈𝛾𝜎𝛿𝛼

𝜇 − (𝑅𝜇
𝜇𝛾𝜎𝛿𝛼

𝜈 )⏟⏟⏟⏟⏟
𝑅𝛼𝛽𝛾𝜎=−𝑅𝛽𝛼𝛾𝜎

+ 𝑅𝜇
𝜎𝜇𝜈𝛿𝛼

𝛾 − 𝑅𝜇
𝛾𝜇𝜈𝛿𝛼

𝜎

= 𝑅𝛼
𝜈𝛾𝜎 + 𝑅𝜎𝜈𝛿𝛼

𝛾 − 𝑅𝛾𝜈𝛿𝛼
𝜎

= −𝑅𝛼
𝜈𝜎𝛾 + 𝑅𝜎𝜈𝛿𝛼

𝛾 − 𝑅𝛾𝜈𝛿𝛼
𝜎

LHS = RHS + Eq. (9.22) ⇒

⇒ 𝑅𝛼
𝜈𝛾𝜎 = 𝑅

𝑛(𝑛 − 1)
(𝑔𝜎𝜈𝛿𝛼

𝛾 − 𝑔𝛾𝜈𝛿𝛼
𝜎 ) ⇒

⋅ 𝑔𝛼𝛽 ⇒ 𝑅𝛽𝜈𝛾𝜎 = 𝑅
𝑛(𝑛 − 1)

(𝑔𝜎𝜈𝑔𝛽𝛾 − 𝑔𝛾𝜈𝑔𝛽𝜎)

(9.23)

Our sectional curvature is 𝐾 = 𝑅
𝑛(𝑛−1)  and is independent of the orientation of the surface. The only

remaining fact to prove is that this is constant through space. To do this we use that the Ricci scalar is
intrinsic and by taking the Lie derivative with respect to a translation

ℒ𝐾𝑅 = 𝐾𝛼𝜕𝛼𝑅 = 0 (9.24)

therefore the sectional curvature is constant.

9.4. Geodesics on the FLRW metric
The Killing fields on this space [8] are defined by 6 parameters 𝛿𝑎𝑥, 𝛿𝑎𝑦, 𝛿𝑎𝑧, 𝛿𝑏𝑥, 𝛿𝑏𝑦 and 𝛿𝑏𝑧 and their
components are

𝜉𝑡 = 0

𝜉𝑟 =
√

1 − 𝑘𝑟2(sin 𝜃(cos 𝜙𝛿𝑎𝑥 + sin 𝜙𝛿𝑎𝑦) + cos 𝜃𝛿𝑎𝑧)

𝜉𝜃 =
√

1 − 𝑘𝑟2

𝑟
[cos 𝜃(cos 𝜙𝛿𝑎𝑥 + sin 𝜙𝛿𝑎𝑦) − sin 𝜃𝛿𝑎𝑧] + (sin 𝜙𝛿𝑏𝑥 − cos 𝜙𝛿𝑏𝑦)

𝜉𝜙 =
√

1 − 𝑘𝑟2

𝑟
[ 1
sin(𝜃)

(cos 𝜙𝛿𝑎𝑦 − sin 𝜙𝛿𝑎𝑥)] + cot 𝜃(cos 𝜙𝛿𝑏𝑥 + sin 𝜙𝛿𝑏𝑦) − 𝛿𝑏𝑧

(9.25)

Since the spatial slices are maximally symmetric we can work without the loose of generality in a
coordinate system where the initial position is in the ray defined by 𝜃 = 𝜋

2  and 𝜙 = 0 and the fourB
velocity has only a time and radial component.

By choosing the Killing field generated by 𝛿 ⃗𝑎 = 0 and 𝛿𝑏𝑥 = 𝛿𝑏𝑧 = 0 and 𝛿𝑏𝑦 = 1, that we will denote
𝐾 the components of the Killing field are

𝐾 = − cos(𝜙)𝜕𝜃 (9.26)

therefore the conserved quantity

28



9.4. Geodesics on the FLRW metric FLRW Metric

𝐾𝜇𝑢𝜇 = −𝑎2(𝑡)𝑟
√

1 − 𝑘𝑟2 cos 𝜙𝑢𝜃 = 0 (9.27)

enforces 𝑢𝜃 = 0 for all time as long as 𝜙 ≠ ± 𝜋
2 .

Similarly by taking 𝛿 ⃗𝑎 = 0 and 𝛿𝑏𝑥 = 𝛿𝑏𝑦 = 0 𝛿𝑏𝑧 = −1 and calling this Killing field 𝜔 we find that

𝜔 =
√

1 − 𝑘𝑟2

𝑟
𝜕𝜙 (9.28)

giving as a conserved quantity

𝜔𝜇𝑢𝜇 = 𝑎2(𝑡)𝑟
√

1 − 𝑘𝑟2 sin 𝜃𝑢𝜙 = 0 (9.29)

therefore once again 𝑢𝜙 = 0 as long as 𝜃 ≠ 𝑛𝜋 with 𝑛 ∈ ℤ.

With these two conditions we can see that the 𝜃 and 𝜙 components will be constants. This leaves us
with the choice of 𝛿𝑎𝑥 = 1, 𝛿𝑎𝑦 = 𝛿𝑎𝑧 = 𝛿 ⃗𝑏 = 0 giving the Killing field we will denote Ξ that can be
written as

Ξ =
√

1 − 𝑘𝑟2𝜕𝑟 (9.30)

and the associated conserved quantity is

𝑃 = Ξ𝜇𝑢𝜇 = 𝑎2(𝑡)𝑢𝑟 (9.31)

This, already gives an interesting result. By inspecting the metric it might seem like for 𝑘 = 1 (spherical
universes) the surface at 𝑟 = 1 is some kind of event horizon and that 𝑢𝑟 → 0 preventing matter or
light from crossing it. However as we see in Eq. (9.31) this is not the case. The reason for this is that
the 𝑟 coordinate chosen here would be the equivalent to the distance from some point on a sphere to
the 𝑧 axis. And the region at 𝑟 = 1 would be the equator. The apparent singularity appears because
close to the equator the distance to the z axis is constant, not allowing 𝑟 to be a valid variable.

By also using the condition of the normalization of 𝑢 we can obtain following differential equation

d𝑟
d𝑡

= 𝑢𝑟

𝑢𝑡 = 𝑢𝑟

√1 + 𝑎2(𝑡)√
1−𝑘𝑟2 (𝑢𝑟)2

= 𝑃𝑎−2

√1 + 𝑃 2 𝑎−2(𝑡)√
1−𝑘𝑟2

= 𝑃

√𝑎4(𝑡) + 𝑃2𝑎2(𝑡)√
1−𝑘𝑟2

(9.32)

as we can see as the universe increases in size matter slows down since as 𝑎 increases d𝑟
d𝑡  decreases.

29



10 Computation of redshifts

This section is based on [6].

The redshift is the quantity that relates the frequency of a light wave when it was emitted at a point
𝐴 and when it is measured at a point 𝐵. The redshift, denoted 𝑧 is usually defined as

1 + 𝑧 = 𝜆𝐵
𝜆𝐴

= 𝑓𝐴
𝑓𝐵

= 𝑇𝐵
𝑇𝐴

= 𝐸𝐴
𝐸𝐵

(10.1)

where 𝜆 is the wavelength, 𝑓  the frequency, 𝑇  the period and 𝐸 the energy of each photon.

So far we have been talking about the geodesics and how Killing fields generate conserved quantities,
in particular we have seen that when there is a timeBlike Killing field we can define energy for
particles. It would be nice if we could extend this idea to photons, and since photon energy is related
to the frequency obtain gravitational redshifts with it. This direct argument has a problem. Energy is
not a scalar quantity in relativity since it is the 0th component of the fourBmomentum. The energy
we defined with the Killing field is a scalar because is the energy someone at infinity measures and
thats why it doesn’t depend on the observer. However, here we actually want to know how different
observers measure different energies and how that gives a redshift.

This can be achieved by using Killing fields in a different way. The Killing fields are used to define who
is an stationary observer.

Imagine we have two observers, Alice and Bob. Alice is emitting light from the curve¹ 𝑥𝜇
𝐴(𝜏) to Bob,

who is in curve 𝑥𝜇
𝐵(𝜏). A way to compute the redshift is to take two geodesics that start at 𝑥𝜇

𝐴 and
end 𝑥𝜇

𝐵. To compute 𝑇𝐴 and 𝑇𝐵 would therefore be the proper time interval between the intersection
points of the light geodesics on the observer geodesics.

This approach works but requires to know both the geodesics of the emitter, the observer and the light.
This requirement can be dropped by using Killing fields.

Assume we have a timeBlike Killing field 𝐾 . Now we define stationary observers as those whose fourB
velocity is proportional to 𝐾 .

Now let Alice and Bob be stationary observers and call 𝐴0 and 𝐵0 the initial two points connected by a
null geodesic. Now, since their fourBvelocities are proportional to the Killing field, they move through
the flow of the Killing field. Therefore their geodesics for some small Δ𝜏  is

𝑥𝜇
𝐴(Δ𝜏) = 𝜙Δ𝜏(𝐴0) = 𝐴0 + 𝐾𝜇Δ𝜏 (10.2)

more importantly, since the Killing field generates an isometry it preserves geodesics. Therefore since
𝐴 and 𝐵 are connected by a null geodesic so are 𝑥𝜇

𝐴(Δ𝜏) and 𝑥𝜇
𝐵(Δ𝜏) for all Δ𝜏 . Therefore the period

as measured by 𝐴 would be

¹Since observers move through time.
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𝑇𝐴 = ∫
Δ𝜏

0
√± 𝑔𝜇𝜈 ̇𝑥𝜇

𝐴(𝑠) ̇𝑥𝜈
𝐴(𝑠) d𝑠 = ∫

Δ𝜏

0
√± 𝐾𝜇𝐾𝜇 d𝑠 ≈ √± 𝐾𝜇𝐾𝜈Δ𝜏 (10.3)

where the ± depends on the chosen signature and ensures the quantity in the square root is positive
as long as 𝐾 is timeBlike. The same expression can be found for 𝐵. By substituting this expression on
the redshift formula we obtain the following relationship between redshift and Killing fields.

1 + 𝑧 = √
𝐾𝜇(𝐵0)𝐾𝜇(𝐵0)
𝐾𝜇(𝐴0)𝐾𝜇(𝐴0)

(10.4)

In the case of the of stationary metrics, using the Killing field 𝐾𝜇 = 𝛿𝜇
𝑡  we obtain the well known

formula

1 + 𝑧 = √𝑔00(𝐵)
𝑔00(𝐴)

(10.5)

This also applies for the Kerr black hole, however an interesting result comes out. With this formula
the border of the ergosphere is an infinite redshift surface. This is surprising because we saw that this
surface is not an event horizon and we should be able to see through it. The problem here is that the
stationary observers we picked doesn’t take into account that our metric is not static, we are picking
as a stationary observer, someone that doesn’t rotate with the black hole. Inside the ergosphere that
means someone moving faster than light, thus by a Lorentz doppler effect we get an infinite redshift.
The trick here is to use a combination of the time and axial Killing fields 𝐾 = 𝜕𝑡 + Ω𝐻𝜕𝜑 where Ω𝐻
makes it so that the Killing field is null at the exterior event horizon. This way stationary observers
do rotate with the black hole giving a finite redshift between the interior and exterior regions of the
ergosphere.

This shows that one has to be careful when picking the Killing field used to compute redshifts since
it doesn’t tell the hole story and might give infinite redshifts on surfaces that are not infinite redshift
surfaces and not give infinite redshifts on surfaces that actually are infinite redshift surfaces.

Some metrics are not stationary. As an example, for the FLRW metric for an arbitrary 𝑎(𝑡) there aren’t
any timeBlike Killing fields.

However there is a way to extend this kind of method to some of these spaces by using conformal
Killing fields defined in Eq. (6.28).

Since these kind of vector fields also preserve geodesics under the transformations they generate the
same argument applies by using these. For example, in the case of the FLRW metric there is one
Homothetic Killing field

𝐻 = 𝑎(𝑡)𝜕𝑡 (10.6)

that after applying Eq. (10.5) the resulting redshift is

1 + 𝑧 = 𝑎(𝐵)
𝑎(𝐴)

(10.7)
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11 Optics

A similar metric than the one proposed by Walter Gordon in 1923 is used here [9].

Classical geometrical optics treat light as rays that move at a certain speed and bend by Snell law.
General relativity treats light rays in a similar way but uses geodesics to shape their path. Treating
geometrical optics as an effective theory of general relativity gives an insight on the origin of the
Snell law.

In some medium, because of the light matter interactions, light moves at a speed different from the one
it would have when left unperturbed. This is usually modelled by assigning a number to each material
called index of refraction defined as

𝑛 = 𝑐
𝑣

(11.1)

where 𝑣 is the speed of light on the medium.

In general relativity the speed of light is obtained by the condition of the fourBvelocity of the light
being a null vector. This allows to give an index of refraction to each point in spacetime by using the
following metric

d𝑠2 = 𝑐2 d𝑡2 −𝑛2(d𝑥2 + d𝑦2 + d𝑧2) (11.2)

as it can be seen the speed of light in any of the three Cartesian directions is

𝑐2 d𝑡2 −𝑛2 d𝑥2 = 0 ⇒ (d𝑥
d𝑡

)
2

= 𝑐2

𝑛2 = 𝑣2 (11.3)

as expected.

First lets start with a simple case where we have some material on one side and vacuum on the other.
To do this we will pick

𝑛(𝑥) = 𝑛𝜃(𝑥) + 𝜃(−𝑥) (11.4)

where 𝜃 is the Heaviside function.

It is easy to see that for this space there are four Killing fields.

𝑇 = 𝜕𝑡

𝑌 = −𝜕𝑦

𝑍 = −𝜕𝑧

𝜔 = −𝑧𝜕𝑦 + 𝑦𝜕𝑧

(11.5)

Y and Z allow to shift both the 𝑦 and 𝑧 coordinates and 𝜔 generates rotations on 𝑦 and 𝑧 coordinates,
thus without losing generality we will pick the light ray to start with 𝑢𝑧 = 0. This condition remains
valid for all of the path of the light ray since the conserved quantity generated by 𝑍 is 𝑛𝑢𝑧 and since
it starts being zero it requires 𝑢𝑧 = 0 for all time.

32



Optics

The conserved quantities generated by 𝑇  and 𝑌  are

𝑇𝜇𝑢𝜇 = 𝑐2𝑢0

𝑌𝜇𝑢𝜇 = 𝑛2𝑢𝑦 (11.6)

Since combinations of conserved quantities is also conserved we can see that the quantity

𝒮 = 𝑛2

𝑐2
d𝑦
d𝑡

= 1
𝑣2

d𝑦
d𝑡

(11.7)

is conserved. Since the spatial part of the metric is euclidean d𝑦
d𝑡  is equivalent to the classical 𝑦

component of the velocity of the light ray. Therefore

d𝑦
d𝑡

= 𝑣 sin(𝜃) (11.8)

where 𝜃 is the classical angle between the light ray direction and the 𝑥 axis. After making this
substitution we get

𝒮 = sin(𝜃)
𝑣

(11.9)

Since this is conserved, it is equal on the vacuum and the material. Therefore by making the equality
on both sides and multiplying by 𝑐 we get Snell’s law

𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2) (11.10)

This argument can also be extended to other geometries since, close to the point of contact of the light
ray with the boundary, by taking a small enough neighborhood of the contact point the surface will
be flat and the same three Killing fields will be valid giving the same law.

This also allows us to work on more complex results.

As an example for moving matter along the x axis with with speed 𝛽 = 𝑣
𝑐 . By using special relativity

we can do a Lorentz transformation on the stationary reference frame to obtain the equations when
the block moves. By calling the frame where block moves 𝑥′𝜇 and the frame where the matter doesn’t
move.

The Lorentz transformation in this case is

{{
{{
{{
{𝑐𝑡 = 𝛾(𝑐𝑡′ − 𝛽𝑥′)

𝑥 = 𝛾(𝑥′ − 𝛽𝑐𝑡′)
𝑦 = 𝑦′

𝑧 = 𝑧′

(11.11)

The first quantity we are interested in is the norm of the fourBvelocity which can be Lorentz transB
formed to give

𝛾2(𝑐𝑢′𝑡 − 𝛽𝑢′𝑥)2 − 𝑛2(𝛾2(𝑢′𝑥 − 𝛽𝑐𝑢′𝑡)2 + (𝑢′𝑦)2) =

𝛾2𝑐2(1 − 𝛽2𝑛2)(𝑢′𝑡)2 + 2𝛽𝑐𝛾2(𝑛2 − 1)𝑢′𝑡𝑢′𝑥 + 𝛾2(𝛽2 − 𝑛2)(𝑢′𝑥)2 − 𝑛2(𝑢′𝑦)2 = 0
(11.12)

As we can see the resulting material behaves as if it was anisotropic, by defining
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d𝑥′

d𝑡′
= 𝑣′(𝜃′) cos(𝜃′)

d𝑦′

d𝑡′
= 𝑣′(𝜃′) sin(𝜃′)

(11.13)

We can obtain the speed of light depending on the direction, the resulting expression is

𝑣′(𝜃′) =
2𝛽𝑐(𝑛2 − 1) cos(𝜃′) ± √Δ(𝜃′)

2(𝛾2(𝑛2 − 𝛽2) cos2(𝜃′) + 𝑛2 sin2(𝜃′))

Δ(𝜃′) = 2𝛽𝑐(𝑛2 − 1) cos2(𝜃′) + 4𝑐2𝛾2(1 − 𝑛2𝛽2)(𝛾2(𝑛2 − 𝛽2) cos2(𝜃′) + 𝑛2 sin2(𝜃′)
(11.14)

Restricting to only positive solutions of 𝑣 we see that there are two cases.

The range where 𝛽2 > 1
𝑛2  and the range where 𝛽2 < 1

𝑛2 .

If the material moves more slowly than the light rays all angles of movement are allowed. However
light tends to go faster in the direction of the material. On the other hand when the material goes faster
than the light inside of it only certain 𝜃′ are allowed. This is because the material is dragged with the
material similarly how black holes drag light when moving or when rotating.

To obtain the equivalent to Snell law in this frame of reference we can Lorentz boost the Killing fields
obtaining

[𝑇 ′
𝜇] = (𝑐2𝛾, −𝛽𝑐𝛾, 0, 0)

[𝑌 ′
𝜇 ] = (0, 0, 𝑛2, 0)

(11.15)

And by the same process as the one used to find 𝒮

𝒮′ = 𝑛2𝑢′𝑦

𝑐2𝛾(𝑢′𝑡 − 𝛽
𝑐 𝑢′𝑥)

= 𝑛2𝑢′𝑦

𝑐2𝛾𝑢𝑡(1 − 𝛽
𝑐 𝑣′(𝜃′) cos(𝜃′))

= sin(𝜃′)
𝑣′(𝜃′)𝛾(1 − 𝛽

𝑐 𝑣′(𝜃′) cos(𝜃′))
(11.16)
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12 Quantum inflation and cosmology

As part of the agreement of the University of Cantabria and University of Brown this project was
developed the summer of 2025.

12.1. Theory
Introduction to the Ashtekar variables adapted from [10].

Inflation is a proposed mechanism where at the big bang there was a big expansion before the
observed big bang explaining the observed flatness and isotropy of the universe. Multiple mechanisms
for inflation have been proposed, and usually involve adding a field coupled to general relativity that
drives inflation.

One of these proposals is by Stephon Alexander in his 2003 paper [11] where the cosmological constant
is replaced by the potential of a scalar field in the action.

The resulting action would look something like the following

𝑆 = ∫[ 1
2𝑘

(𝑅 − 2𝑉 (𝜙)) + 1
2
𝜕𝜇𝜙𝜕𝜇𝜙]√𝑔 d4𝑥 (12.1)

In the paper Ashtekar variables are used. To understand what these are first is necessary to introduce
ADM and tetrad formalism. From now on natural units with 𝑙𝑝 = 𝑐 = ĩℎĩ = 1 are used.

In tetrad formalism is based on the idea of using the equivalence principle to work on a “Minkowski
like space”. What is meant by this is that the metric becomes the Minkowski metric but the coordinate
system is no longer holonomic, meaning the basis for the tangent space is no longer the partial
derivatives with respect to the coordinate system. Formally a tetrad are four vectors of the tangent
space labeled by what we will call internal indices 𝑖, 𝑗, 𝑘… (not to be confused with indices that only
involve spatial components those will be called 𝑎, 𝑏, 𝑐… from now on) so that

𝑒𝑖 = 𝑒𝜇
𝑖𝜕𝜇 (12.2)

is a basis for the tangent space. That additionally has the following property

𝑒𝑖 ⋅ 𝑒𝑗 = 𝜂𝑖𝑗 (12.3)

so that the metric of the internal space is the Minkowski metric.

The tensor components of the tetrad allow to define a map between “normal” and “internal” spaces by
defining

𝑣𝑖 = 𝑒𝜇
𝑖𝑣𝜇

𝑣𝑖 = 𝑒 𝑖
𝜇 𝑣𝜇

(12.4)

The transformation tensors with upper and lower indices are defined as inverses so that
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12.1. Theory Quantum inflation and cosmology

𝑒𝜇
𝑖𝑒

𝑗
𝜇 = 𝛿𝑗

𝑖

𝑒𝜇
𝑖𝑒 𝑖

𝜈 = 𝛿𝜇
𝜈

𝑒 𝑖
𝜇 𝑒𝜈𝑖 = 𝑔𝜇𝜈

𝑒𝜇
𝑖𝑒𝜇𝑗 = 𝜂𝑖𝑗

(12.5)

Internal indices work under the Minkowski metric and normal indices under the usual metric. ThereB
fore, while the usual metric will be used to raise and lower normal indices internal indices will be
raised and lowered by a Minkowski metric.

On the other hand ADM formalism takes spacetime and slices it into a family of spaceBlike surfaces
that represent the state of spacetime at a given time. These spaceBlike surfaces will have an induced
metric 𝑞𝑖𝑗, in ADM formalism this metric is treated as a dynamical variable that evolves in time.

Both formalism can be combined by taking a tetrad such that 𝑒0 is orthonormal to the surface and 𝑒𝑎
are tangent to each slice. Thus we will call

𝑛 = 𝑒0 (12.6)

As the time coordinate evolves not only we change from one slice to another we also could be shifted
on the coordinates.

Therefore we have

𝜕𝑡 = 𝑁𝑛 + 𝑁𝑎𝑒𝑎 (12.7)

where 𝑁  is the lapse function and 𝑁𝑎 are the shift functions.

Now we have a gauge choice, we pick the coordinate system so that 𝑛 only has a time component
and each of the 𝑒𝑎 only have spatial components. Therefore internal indices are only spatial from now
on. This also has the effect, since internal indices are spatial, that the metric on internal indices is the
Kronecker delta. Therefore upper and lower internal indices are equivalent.

To be able to take covariant derivatives of tensors expressed in terms of internal coordinates the spin
connection 𝜔 𝑖

𝜇 𝑗 is defined so that the connection is compatible with the internal space so that

∇𝜈𝑽 = (∇𝜇𝑉 𝜈)𝜕𝜈 = (∇𝜇𝑉 𝑖)𝑒𝑖 (12.8)

so the required condition is

∇𝜈𝑒𝜇
𝑖 = ∇𝜈𝑒 𝑖

𝜇 = 0 (12.9)

giving as a solution

𝜔 𝑖
𝜇 𝑗 = 𝑒 𝑖

𝜌 Γ𝜌
𝜇𝜈𝑒𝜈

𝑗 − 𝑒𝜈
𝑗𝜕𝜇𝑒 𝑖

𝜈 (12.10)

We also have to define the extrinsic curvature of the spatial slices similarly to how Gaussian curvature
is defined giving

𝐾𝑎𝑏 = ∇𝑎𝑛𝑏 (12.11)

From these quantities we can define the Ashtekar variables. The first one is the densitized triad defined
as

𝐸𝑎
𝑖 = det(𝑒)𝑒𝑎

𝑖 (12.12)
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12.1. Theory Quantum inflation and cosmology

where det(𝑒) is the determinant of the matrix whose indices are 𝑒 𝑖
𝑎

so that

det(𝑔𝑎𝑏)𝑔𝑎𝑏 = 𝐸𝑎𝑖𝐸𝑏
𝑖 (12.13)

and the associated conjugated momentum

𝐴𝑖
𝑎 = 𝜀𝑖𝑘𝑙𝜔𝑎𝑘𝑙 + 𝑖𝐾𝑎𝑏𝑒𝑏𝑖 (12.14)

.

Lastly we define the curvature of 𝐴 𝑖𝑗
𝑎 ≔ 1

2𝜖𝑖𝑗𝑘𝐴𝑘
𝑎

𝐹 𝑖𝑗
𝑎𝑏 = 2𝜕[𝑎𝐴 𝑖𝑗

𝑏] + 𝐴 𝑖𝑘
𝑎 𝐴 𝑗

𝑎𝑘 − 𝐴 𝑖𝑘
𝑏 𝐴 𝑗

𝑎𝑘 (12.15)

And define

𝐹 𝑖
𝑎𝑏 = 𝜖𝑖𝑗𝑘𝐹 𝑗𝑘

𝑎𝑏 (12.16)

With these variables the usual Hamiltonian has the following form

𝐻 = ∫ d3𝑥 𝑁ℋ + 𝑁𝑎ℋ𝑎 + 𝜆𝑖𝒢𝑖 (12.17)

where ℋ is the Hamiltonian density and enforces the time diffeomorphism invariance, ℋ𝑎 are the
spatial constraints and enforce the spatial diffeomorphism invariance and 𝒢 are the Gauss constraints
and enforce the 𝑆𝑂(3) gauge invariance of the triad.

Now that we have defined all relevant quantities the Hamiltonian density used in [11] is the following

ℋ = 1
𝑙2𝑝

𝜖𝑖𝑗𝑘𝐸𝑎𝑖𝐸𝑏𝑗(𝐹 𝑘
𝑎𝑏 + 𝐺𝑉 (𝜙)

3
𝜖𝑎𝑏𝑐𝐸𝑐𝑘) + 1

2
𝑝2

𝜙 + 1
2
𝐸𝑎𝑖𝐸𝑏

𝑖 𝜕𝑎𝜙𝜕𝑏𝜙 (12.18)

where 𝑝𝜙 is the momentum of the scalar field. Notice that the first term is the usual general relativity
gravitational Hamiltonian with the cosmological constant dependent on the field.

In the total Hamiltonian the Gauss constraints are not included since these are boundary terms and
in this model a boundary for the universe is not considered. The diffeomorphism constraints are not
included by choosing a coordinate system so that 𝑁𝑎 = 0. In this way the total Hamiltonian is

𝐻 = ∫
𝒮

𝑁ℋ (12.19)

where 𝒮 is the corresponding spatial slice.

By taking the value of the scalar field as a time variable 𝑇 = 𝜙 and defining 𝑁 = d𝑡
d𝜙  where this

enforces the lapse function to be

𝑁 = 𝑘
𝑝𝜙

(12.20)

where 𝑘 is some constant. Without losing generality 𝑘 = 1 is picked.

By the equation of motion generated by 𝑁  we have the Hamiltonian constraint that enforces

ℋ = 0 (12.21)

with this equation we can find that
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12.1. Theory Quantum inflation and cosmology

𝑝𝜙 = ±
√

−2ℋ (12.22)

and substituting into the lagrangian we get

𝐻 = ∫
𝑆

𝑝𝜙 (12.23)

To apply this to the deSitter spacetime homogeneity and isotropy together with a flat space give as a
result

𝐴𝑎𝑖 = 𝑖𝛿𝑎𝑖𝐴(𝑇 ) 𝐸𝑎𝑖 = 𝛿𝑎𝑖𝐸(𝑇 ) (12.24)

The resulting metric is

d𝑠2 = −𝑁2 d𝑇 2 +𝐸(𝑇 )(dΣ2) (12.25)

where dΣ is the spatially flat metric and 𝐸 takes the role of the scale factor, 𝑎2 of cosmology.

Since the spatial slice is infinite the integral would diverge, to avoid this problem the theory is built
over a compact region of the slice and take this region as a finite representation of the whole spacetime.

We define the “side length”, 𝑅, so that the volume of the region to be integrated over is 𝑅3. The
resulting Hamiltonian is

𝐻 = 𝑅3√12𝐸2(𝐴2 − 𝑉 (𝑇 )
3

𝐸) (12.26)

where 𝐺 has been absorbed into 𝑉 .

To obtain solutions HamiltonBJacobi theory is used arriving to a Hamilton principal function

𝑆(𝐴, 𝑇 , 𝛼) = 𝑅3𝐴3

3𝑉 (𝑇 )
(1 + 𝑢(𝑇 )) (12.27)

where 𝑢 solves the initial value problem

{{
{
{{ ̇𝑢 = (1 + 𝑢)( ̇𝑉

𝑉 + 18
√

−3𝑢)
𝑢(𝑇0) = 𝛼

(12.28)

by using the second constant

𝛽 = 𝜕𝑆
𝜕𝛼

(12.29)

since the Hamilton principal function is related to 𝐸 by

𝐸 = 3
𝑅3

𝜕𝑆
𝜕𝐴

(12.30)

one can obtain equations of motion for 𝐴 and 𝐸 by inverting Eq. (12.29) resulting in

𝐸(𝑇 ) = 35/3𝛽2/3(1 + 𝑢)
𝑅2𝑉 1/3 (𝜕𝑢

𝜕𝛼
)

−2/3

(12.31)

It is also possible to obtain the lapse function
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12.2. Results Quantum inflation and cosmology

𝑁 = 𝑅3

18𝛽(1 + 𝑢)
√

−3𝑢
(𝜕𝑢

𝜕𝛼
) (12.32)

This equation together with Eq. (12.28) and Eq. (12.31) enforce the conditions

−1 < 𝑢 < 0 (12.33)

since we need 1 + 𝑢 > 0 for the metric to be Lorentzian and the lapse function to be finite and 𝑢 < 0
for Eq. (12.28) to be real.

From this model a quantum cosmological model is developed by a quantum miniBsuperspace. A miniB
superspace in quantum gravity refers to an approximation where, instead of the full path integral of the
metric, only certain components are quantized. In this case the spatial metric is quantized by making
a quantum theory of the 𝐸 and 𝐴 parameters.

To do this 𝐴 is upgraded to a multiplicative operator and 𝐸 to an operator via

𝐸̂ = − 𝑖
𝑅3

𝜕
𝜕𝐴

(12.34)

The evolution of the quantum state is defined by a schrödinger equation

𝑖𝜕Ψ
𝜕𝑇

= 𝐻̂Ψ (12.35)

whose Hamiltonian is the quantized version of Eq. (12.26) with ordering

𝐻̂ = 𝑖
√

12 𝜕
𝜕𝐴

(𝐴√𝐽) (12.36)

where

𝐽 = 1 − 𝑖𝑉
𝑅3𝐴2

𝜕
𝜕𝐴

(12.37)

The solutions are

Ψ𝑢(𝐴, 𝑇 ) = 𝑒6
√

3 ∫𝑇
𝑇0

√−𝑢(𝑠) d𝑠 +𝑖𝐴3𝑅3
3𝑉 (1+𝑢) (12.38)

12.2. Results
From this model the objective of the internship at Brown was proving the attractor behavior of
Eq. (12.28), the asymptotic behavior of 𝐸 in the limits 𝑢 → −1 and 𝑢 → 0 and check how well behaved
the quantum model was.

The attractor behavior of Eq.  (12.28) refers to the result that, for certain kinds of potentials, the
solutions are almost independent of the potential of choice.

This can be seen by making a plot of ̇𝑢 against 𝑢.
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12.2. Results Quantum inflation and cosmology

Figure 12.1: In this figure the value of ̇𝑢 is represented as a function of 𝑢 for ̇𝑉
𝑉 = −0.2. The result is

that solutions tend to follow ̇𝑉
𝑉

As can be seen ̇𝑢 becomes zero when 𝑢 = −(− 1
𝜆

̇𝑉
𝑉 )

2
 where 𝜆 = 18

√
3. Additionally, solutions tend

towards this value since solutions with higher values of 𝑢 than this have a negative negative derivative
and solutions with a smaller value have a positive derivative. This makes it so that the solutions have
an attractor behavior towards 𝑢 = 0 as long as ̇𝑉

𝑉 ≪ 𝜆 and 𝑉  is strictly decreasing. This condition is
called the slow rolling condition. Solutions will be well behaved with the following requirements

• The potential follows the slow rolling condition and is strictly decreasing in a simply connected set
of points 𝒯

• The initial condition is chosen to be between −1 < 𝑢(𝑇0) < −( 1
𝜆

̇𝑉
𝑉 )

2
 with 𝑇0 ∈ 𝒯

• The allowed time for the evolution of the solutions is −∞ < 𝑇 < sup(𝒯)

The region where the potential follows the slow rolling condition prevents solutions from becoming
complex when evolved forward in time. However nothing prevents us from evolving the solutions
backwards in time, and since 𝑢 = −1 is a stationary solution and the EDO of 𝑢 are unique (since ̇𝑢 is
𝒞∞ on 𝑢 in the valid range for 𝑢) the condition of 𝑢 > −1 is secured.

Since we wanted to give an upper bound on the time where the solutions are valid the result we
enforce 𝒯 to be simply connected. Otherwise we could have “holes¹” where solutions become complex.
Therefore, just to be safe, we take a conservative upper bound for time.

To check this numerically we simulated Eq. (12.28) for some different potentials using RungeBKutta
3/8 rule. The results can be seen in Fig. 12.2. The results are pretty similar even if the potentials are
different.

¹For example we could have 𝒯 = (0, 1) ∪ (3, 4)
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Figure 12.2: In this figure multiple simulations of 𝑢 with different potentials are shown. As can be
seen the result is really similar for all of them. The initial conditions for the differential equations

are 𝑢(−1) = −0.999.

Now, from Eq. (12.31) 𝐸 is well defined as long as both 𝑢 and 𝜕𝑢
𝜕𝛼  are well defined since all of the other

quantities involved are well defined. To do this first we define the density of solutions as

𝜌 = (𝜕𝑢
𝜕𝛼

)
−1

(12.39)

so that 𝐸 depends on 𝜌. To obtain 𝜌 we make use of Eq. (12.28) to obtain the following differential
equation

{{
{
{{ ̇𝜌𝑢 = −𝜌𝑢(𝑉 ′

𝑉 + 𝜆
√

−𝑢 − 𝜆 (1+𝑢)
2
√

−𝑢)
𝜌𝑢(𝑇0) = 1

(12.40)

where 𝑢 is previously computed from Eq. (12.28). Once again the equation has unique solutions, this
ensures that 𝜌 is positive for all time since 𝜌 = 0 is a stationary solution. From this we can see that in
the limit 𝑢 → −1 or equivalently 𝑇 → −∞ the differential equation for 𝜌 can be approximated as

̇𝜌𝑢 = −𝜌𝑢(𝑉 ′

𝑉
+ 𝜆) ≈ −𝜌𝑢𝜆 ⟹ 𝜌𝑢 ≈ 𝐶𝑒−𝜆𝑇 (12.41)

when substituting this into Eq. (12.31) we obtain

𝐸 ∝ 1 + 𝑢
𝑉

𝑒𝜆𝑇 (12.42)

and differentiating wrt time we obtain

̇𝐸 ∝ 𝐸(𝑉 ′

𝑉
+ 𝜆

3
) ⇒ 𝐸 ∝ 𝑒𝛼𝑇 (12.43)

therefore in the limit 𝑇 → −∞ we have 𝐸 → 0.
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12.2. Results Quantum inflation and cosmology

In the limit 𝑢 → 0 𝜌 can be approximated as

̇𝜌𝑢 ≈ 𝜌𝜆 1
2
√

−𝑢
⟹ 𝜌 ≈ 𝐶𝑒

𝜆
2 ∫ 1

√−𝑢(𝑠) d𝑠 (12.44)

so that

𝐸 ∝ 𝐶
𝑉

𝑒
𝜆
2 ∫ 1

√−𝑢(𝑠) d𝑠 (12.45)

so the evolution of 𝐸 is exponential when 𝑢 ≈ 0 and faster than exponential when 𝑢 → 0. This last
condition happens when 𝑉 ′

𝑉 → 0 since the point where ̇𝑢 = 0 goes to zero, this moment is also where
the gauge of 𝜙 as a time variable breaks down since for these models 𝑁 → 0 and after that we
would expect for 𝜙 to remain at the minimum of the potential so that the Hamiltonian includes the
cosmological constant.

To compute numerically the values of 𝐸, at first, I tried computing two similar solutions and tried to
estimate 𝜌 from finite differences. However, this method had one issue, since the density of solutions
got so large eventually solutions reached the same value because of floating point precision. The
solution for this problem was using the numerical results on Fig. 12.2 and integrating the right hand
side of Eq. (12.40) with the trapezoidal rule since the solution is

𝜌 = exp(∫
𝑇

𝑇0

𝑉 ′(𝑠)
𝑉 (𝑠)

+ 𝜆√−𝑢(𝑠) − 𝜆(1 + 𝑢(𝑠))
2√−𝑢(𝑠)

d𝑠) (12.46)

With these values 𝐸 could be computed and the results can be found in Fig. 12.3

Figure 12.3: In this figure simulations of 𝐸 using Eq. (12.31). As we can see the fourth order potential
is the only one that has a faster than exponential behavior since it is the only one reaching the end
of the inflationary epoch. The initial values for 𝐸 are 𝐸(0) = 1 and the solutions for 𝑢 are the ones

in Fig. 12.2.

The quantum mechanical approximation solution is in terms of 𝐴 as a variable. To change to 𝐸
representation we have to take the fourier transform of the wavefunction.
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Ψ̃𝑢(𝐸, 𝑇 ) = 1√
2𝜋

∫
∞

−∞
d𝐴 𝑒−𝑖𝑅3𝐸𝐴Ψ𝑢(𝐴) = 1√

2𝜋
∫

∞

−∞
d𝐴 𝑒−𝑖𝑅3𝐸𝐴𝑒𝛼ℰ𝑢+𝑖𝛾𝑢

𝐴3
3

=
𝐵=−𝛾1/3𝐴

𝛾1/3
𝑢 𝑒𝛼ℰ𝑢

1√
2𝜋

∫
∞

−∞
d𝐵 exp(−𝑖(−𝑅3𝐸

𝛾1/3 𝐵 + 𝐵3

3
))

=
[12]

𝛾1/3
𝑢 𝑒𝛼ℰ𝑢 Ai(−𝑅3𝐸

𝛾1/3
𝑢

)

(12.47)

where 𝛼 = 6
√

3, 𝛾 = 𝑅3

𝑉 (1 + 𝑢) y ℰ𝑢 = ∫𝑇
𝑇0

√−𝑢(𝑠) d𝑠 and Ai is the Airy function of the first kind.
An example of the norm of the wavefunction, by using the fourth order potential in Fig. 12.3 and as
initial condition for 𝑢 taking 𝑢(0) = −0.999 using 10000 steps in time is represented in

Figure 12.4: In this figure the norm of a solution to the Hamiltonian Eq. (12.36) with 𝑢(0) = −0.999 and
100000 steps in time. As we can see the solution is analytic through 𝐸 = 0 into the Euclidean spaces.

This result is similar to the quantum version of a parabolic trajectory of a particle in a linear
potential since the solutions to that system are also in terms of Airy functions of the first kind. The
main difference between the two is that in the linear potential case the solutions are of the form
𝜓𝑢(𝑥) = Ai(𝑥 + 𝛽𝑥) while our solutions are of the form 𝜓𝑢(𝑥) = Ai(𝛽𝑢𝑥). This difference prevents
the solutions from being delta normalizable since the inner product of two distinct solutions can be
written as

⟨Ψ𝑣|Ψ𝑢⟩ = ∫∞
−∞

d𝐸 𝑒𝛼(ℰ𝑣+ℰ𝑢) 1√
2𝜋 ∫

𝐶
d𝐴 exp(−𝑖(−𝑅3𝐸𝐴 + 𝛾𝑣

𝐴3

3 )) 1√
2𝜋 ∫

𝐶
d𝐵 exp(𝑖(−𝑅3𝐸𝐵 + 𝛾𝑢

𝐵3

3 ))

=
𝐸→𝑅3𝐸

𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅32𝜋 ∬
𝐶

d𝐴 d𝐵 exp(𝑖(𝛾𝑢
𝐵3

3 − 𝛾𝑣
𝐴3

3 )) ∫∞
−∞

d𝐸 exp(𝑖𝐸𝐴 − 𝐵)

= 𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋 ∬
𝐶

d𝐴 d𝐵 exp(𝑖(𝛾𝑢
𝐵3

3 − 𝛾𝑣
𝐴3

3 ))𝛿(𝐴 − 𝐵)

= 𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋 ∫
𝐶

d𝐴 exp(𝑖(𝛾𝑢 − 𝛾𝑣)𝐴3

3 )

where 𝐶 is a path that starts at complex value 𝑧−∞ with |𝑧−∞| → ∞ and 2
3𝜋 ≤ arg(𝑧−∞) ≤ 𝜋 and

ends at 𝑧∞ with |𝑧∞| → ∞ and 0 ≤ arg(𝑧∞) ≤ 𝜋
3 . By choosing the path that goes through the real

line we can see that the integral is equivalent to twice the real part of the integral over the negative
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real axis¹. The result is that the integral reduces to an integral from 0 to ∞ with the argument of the
curve stays between 23𝜋 and 56𝜋. Therefore we can write

⟨Ψ𝑣|Ψ𝑢⟩ = 𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋
2 Re(∫

𝐶−

d𝐴 exp(𝑖(𝛾𝑢 − 𝛾𝑣)
𝐴3

3
))

( Variable change
𝐵=−𝑖 |𝛾𝑢−𝛾𝑣|

3 𝐴3 ) = 2𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋
Re(

3
√

𝑖
3√32|𝛾𝑢 − 𝛾𝑣|

∫
𝐶−

d𝐵 𝐵1
3−1𝑒−𝐵)

= 2𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋
Re

(
((

3
√

𝑖
3√32|𝛾𝑢 − 𝛾𝑣|

�Γ(1
3
, 𝑧)|

𝑧=0

|𝑧|→∞)
))

= 2𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋
Re(

3
√

𝑖
3√32|𝛾𝑢 − 𝛾𝑣|

Γ(1
3
))

= 𝑒𝛼(ℰ𝑣+ℰ𝑢)

𝑅3
√

2𝜋
Γ(1

3)
3
√

3 3√|𝛾𝑢 − 𝛾𝑣|

(12.48)

where Γ(1
3 , 𝑧) is the lower incomplete gamma function, Γ(1

3) is the gamma function and the absolute
value on 𝛾𝑢 − 𝛾𝑣 when defining 𝐵 together with picking the integration path 𝐶+ ensures that 𝐵 has
positive real part. This is necessary for the incomplete gamma function to converge to the gamma
function.

Similarly, the ⟨𝐸⟩ diverges towards positive infinity. Something interesting is that since the integral
over the negative values of 𝐸 is finite while the integral over the positive values of 𝐸 is infinite, and
the provability of a certain value of 𝐸 is related to the area of the square norm of the function this
means that the predicted provability of finding Euclidean, instead of Lorentzian, spaces is zero. This
also implies that the provability of finding a singularity with zero scale factor is also zero.

However infinite values are most certainly not the desired result. Fortunately it is possible, by building
wave packets of these plane waves, to find states with well defined values. To do this we define

𝜑(𝐸, 𝑇 ) = ∫
0

−1
d𝑣 𝑓(𝑣)Ψ̃𝑢(𝐸, 𝑇 ) (12.49)

where 𝑓  is a function with support on (−1, 0). The expected value of 𝐸 and norm of 𝜑 can be computed
in terms of all of the defined quantities as

⟨𝜑|𝜑⟩ = ∫
0

−1
d𝑣 ∫

0

−1
d𝑤 𝑓∗(𝑣)𝑓∗(𝑤)⟨Ψ𝑣|Ψ𝑤⟩

=
Γ(1

3)
𝑅3 3

√
3
√

2𝜋
∫

0

−1
∫

0

−1
d𝑣 d𝑤 𝑓∗(𝑣)𝑓(𝑤) 𝑒𝛼(ℰ𝑣+ℰ𝑤)

3√|𝛾𝑢 − 𝛾𝑣|

(12.50)

and

¹Since 𝑧 + 𝑧∗ = 2 Re(𝑧)
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⟨𝜑|𝐸|𝜑⟩ = 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 ∭

∞

−∞
d𝐴 d𝐵 d𝐸 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

2𝜋
𝐸𝑒𝑖(−𝑅3𝐸𝐴+𝑅3𝐸𝐵+𝛾𝑣

𝐴3
3 −𝛾𝑤

𝐵3
3 )

= 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 ∬

∞

−∞
d𝐴 d𝐵 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

2𝜋
𝑒𝑖(𝛾𝑣

𝐴3
3 −𝛾𝑤

𝐵3
3 ) ∫

∞

−∞
d𝐸 𝐸𝑒𝑖𝑅3(𝐵−𝐴)𝐸

= 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 ∬

∞

−∞
d𝐴 d𝐵 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6
√

2𝜋
𝑒𝑖(𝛾𝑣

𝐴3
3 −𝛾𝑤

𝐵3
3 )𝛿′(𝐵 − 𝐴)

= 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6
√

2𝜋
∫

∞

−∞
d𝐴 𝛾𝑤𝐴2𝑒𝑖(𝛾𝑣−𝛾𝑤)𝐴3

3

(Variable change
𝐶= 1

⟨𝜑|𝜑⟩𝛾𝑤
𝐴3
3

) = 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6
√

2𝜋
∫

∞

−∞
d𝐶 𝑒𝑖( 𝛾𝑣

𝛾𝑤
−1)𝐶

= 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6 𝛿( 𝛾𝑣
𝛾𝑤

− 1)

(12.51)

Now, since

𝜕
𝜕𝑣

( 𝛾𝑣
𝛾𝑤

− 1) = 𝜕𝑣𝛾𝑣
𝛾𝑤

= 1
𝛾𝑤

(𝑅3

𝑉
𝜕𝑣(1 + 𝑢)) = 𝑅3

𝑉 𝜌𝑣𝛾𝑤
(12.52)

applying 𝛿(𝑓(𝑥)) = 1
|𝑓′(𝑥0)|𝛿(𝑥 − 𝑥0) to Eq. (12.51)

⟨𝜑|𝐸|𝜑⟩ = 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑣 d𝑤 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6 𝜌𝑣(1 + 𝑢𝑤)𝛿(𝑣 − 𝑤)

= 1
⟨𝜑|𝜑⟩

∬
0

−1
d𝑤 d𝑣 𝑓(𝑣)𝑓∗(𝑤)𝑒

𝛼(ℰ𝑣+ℰ𝑤)

𝑅6 𝜌𝑣(1 + 𝑢𝑤)𝛿(𝑣 − 𝑤)

= 1
⟨𝜑|𝜑⟩

∫
0

−1
d𝑤 |𝑓(𝑤)|2 𝑒2𝛼ℰ𝑤

𝑅6 𝜌𝑤(1 + 𝑢𝑤)

(12.53)

By using a uniform distribution between −0.7 and −0.2 at time 𝑇 = 0.3

𝑓(𝑣) = {2 if − 0.7 ≤ 𝑣 ≤ −0.2
0 otherwise (12.54)

and the fourth order potential from Fig. 12.3 we can simulate the results. The norm and expected values
can be found in Fig. 12.5 and Fig. 12.6.

As we can see the norm of the wavefunction is not a constant. This can be traced to the chosen
Hamiltonian, since the Hamiltonian is not Hermitian, the time evolution operator [13]

𝑈(Δ𝑡) = exp(−𝑖𝐻̂Δ𝑡/ĩℎĩ) (12.55)

is not unitary. Therefore the norm is not a conserved quantity.

It is also interesting to note how Fig. 12.6 and the fourth order potential solution in Fig. 12.3. This
can be understood by remembering that 𝑢 = −1 is an attractor when time runs backwards. Since the
wave packet defines the initial conditions at 𝑇0 = 0.3 when evolved backwards the values of 𝑢 will be
clumped close to −1, so that the evolution is similar to a state with only one value of 𝑢 corresponding
to the solution represented in Fig. 12.3.
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Figure 12.5: In this figure the norm of the wave packet described in Eq. (12.54) is computed by using
Eq. (12.50). The number of steps in time was of 10000 and for the initial conditions in 𝑢 was 100.

Figure 12.6: In this figure the expected value of 𝐸 is computed from Eq. (12.53). using the distribution
in Eq. (12.54). The number of steps in time for integration was of 10000 and in the initial conditions

for 𝑢 was 100.

12.3. Conclusions
As show here the classical model predicts inflation for slow rolling potentials at the end of the
inflationary epoch. Additionally the quantum model allows to define well defined wave packets and
compute quantities in agreement with the expected values.

Additional work could find a Hermitian Hamiltonian and the solutions would fix the nonBconstant
norm problem of the solutions.
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Appendix: Code

All of the code can be found in github.
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https://github.com/asaltanubes/TFG-Killing-vector-fields
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