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Abstract

The quantum tunneling effect is the phenomenon where a particle can pass through a potential
barrier that it classically should not be able to cross. This effect is crucial in understanding
various physical processes, like the umbrella inversion in ammonia and the energy splitting
involved with it. On the other hand, the Jahn-Teller effect is the spontaneous distortion of a
molecule or crystal due to the degeneracy of its electronic states. This distortion can lower
the symmetry and lift the degeneracy of the system. The main goal of this work is to analyze
the tunneling dynamics in both JT and non-JT systems and compute the tunneling period
that would allow us to observe the tunneling, a microscopic feature, through a macroscopic
measurement, such as the crystal’s form. In order to achieve this a computational solution
based on a finite difference method has been developed and it has been applied to study the
tunneling dynamics in KCuF3, a prototypical material that exhibits the cooperative Jahn-Teller
effect. In addition to this, the tunneling dynamics of other systems such as impurities in oxides
and triatomic molecules have also been explored.

Keywords: Quantum Tunneling, Jahn-Teller Effect, Ferroelasticity, KCuF3, Perovskite, Finite
Difference Method.

Resumen

El túnel cuántico es el fenómeno por el cual una part́ıcula puede atravesar una barrera de
potencial que, clásicamente, no debeŕıa ser capaz de superar. Este efecto es crucial para com-
prender diversos procesos f́ısicos, como la inversión de la forma de paraguas del amoniaco y
el desdoblamiento de enerǵıas asociado a ella. Por otro lado, el efecto Jahn-Teller consiste en
la distorsión espontánea de una molécula o un cristal debido a la degeneración de sus estados
electrónicos. Esta distorsión puede reducir la simetŕıa y romper la degeneración del sistema.
El objetivo principal de este trabajo es analizar la dinámica de túnel tanto en sistemas con JT
como en sistemas sin JT, y calcular el peŕıodo del efecto túnel, un fenómeno microscópico, a
través de una medida macroscópica, como la forma del cristal. Para ello se ha desarrollado una
solución computacional basada en el método de diferencias finitas, que se ha aplicado al estudio
de la dinámica de túnel en KCuF3, un material protot́ıpico que presenta el efecto Jahn-Teller
cooperativo. Además de esto, también se han explorado las dinámicas de túnel en otros sistemas,
como impurezas en óxidos y moléculas triatómicas.

Palabras clave: Tunelamiento Cuántico, Efecto Jahn-Teller, Ferroelasticidad, KCuF3, Per-
ovskita, Método de Diferencias Finitas.

iv





Contents

1 Introduction 1
1.1 Quantum Tunneling Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why KCuF3: Jahn-Teller Effect and Ferroelasticity . . . . . . . . . . . . . . . . . 3
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Vibronic Coupling Theory 7
2.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Adiabatic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Jahn-Teller systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Warping and higher order terms . . . . . . . . . . . . . . . . . . . . . . . 14

3 Computational Methods 16
3.1 First Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 CRYSTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 22
4.1 Nuclear dynamics in JT systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Non-warped system solution . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Tunneling dynamics in JT systems . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Non-Jahn-Teller Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Computational Solution of the E ⊗ e Jahn-Teller Problem . . . . . . . . . . . . . 28
4.2.1 Finite differences method . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Program output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Obtention of coupling constants and tunneling splitting . . . . . . . . . . . . . . 35
4.3.1 KCuF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 JT in impurities and molecules . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusions 49

A JT System Python Code 50

B Non-JT System Python Code 53

vi





Chapter 1

Introduction

1.1 Quantum Tunneling Effect

Quantum tunneling is one of the most fascinating phenomena in quantum mechanics. It refers
to the ability of a particle to pass through a potential barrier, even if it does not have enough
energy to overcome the barrier classically [1]. This happens due to the nature of quantum
mechanics, where particles are defined with a wavefunction that measures their probability
amplitude. Tunneling is the name of the phenomenon associated to particles having a non-zero
probability of being found on the other side of the barrier. This effect is not a mathematical
artifact, but a real observable property and it has been experimentally verified in many different
systems.

A fundamental example is the tunneling in ammonia molecules (NH3). Ammonia has a
pyramidal structure with a nitrogen atom at the apex and three hydrogen atoms at the base
(See Figure 1.1, Left). The nitrogen ion can be found on either side of the plane formed by the
three hydrogen ions, and the two configurations are equivalent, both of energy E0. Let us denote
by | ↑⟩ the configuration where the nitrogen ion is above the plane and by | ↓⟩ the configuration
where it is below the plane. The shape of NH3 is commonly known as the umbrella shape due
to the resemblance with an umbrella. Classically, the nitrogen atom would need to overcome a
potential barrier to move from one side of the plane to the other, i.e. to transition from | ↑⟩ to
| ↓⟩, but quantum mechanically, it can just tunnel through the barrier. Due to tunneling effect
both states can “communicate” and coexist in a superposition of the two configurations:

|Ψ⟩ = α| ↑⟩+ β| ↓⟩. (1.1)

The tunneling leads to two eigenstates, the stationary states of the system, which are symmetric
and antisymmetric combinations of the two configurations:

|+⟩ = 1√
2
(| ↑⟩+ | ↓⟩), (1.2)

|−⟩ = 1√
2
(| ↑⟩ − | ↓⟩). (1.3)

And these two eigenstates slightly differ in energies, the symmetric state |+⟩ being lower in
energy than the antisymmetric state |−⟩. In particular, the symmetric state |+⟩ has an energy
of E− = E0 − A and the antisymmetric state |−⟩ has an energy of E+ = E0 + A, and the
difference between the two of them is 2A (See Figure 1.1, Right). Therefore, quantum tunneling
can produce a splitting of the energy levels, often called tunneling splitting (and originally
called inversion splitting due to this phenomenon in ammonia as the motion of the nitrogen ion
is known as the umbrella inversion of NH3).

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Left: Pyramidal structure of ammonia (NH3), the continuous line indicates the po-
sition of the nitrogen atom in the | ↓⟩ configuration while the dotted line indicates the equivalent
position of the nitrogen atom in the | ↑⟩ configuration. Right: Tunneling splitting in ammonia.
The figure shows the potential energy surface V (z) that separates both configurations with the
energy barrier in the middle. The energy of the equivalent states E0 is indicated, as well as the
split levels E− and E+, and the energy difference 2A. Figure obtained from [2].

This tunneling splitting in ammonia has an associated energy difference of about 10−4 eV [2],
which corresponds to a frequency of about 24 GHz. This frequency is in the range of microwave
radiation, and it is the basis of the ammonia MASER (Microwave Amplification by Stimulated
Emission of Radiation), a device that produces coherent microwave radiation. The ammonia
MASER was one of the first MASERs ever built, and it was a precursor to the development of
the LASER [3].

Throughout the undergraduate studies, the importance of the Born-Oppenheimer (or adia-
batic) approximation has been much emphasized. This approximation allows for the separation
of electronic and nuclear motions to describe every structure of matter, and the solids in particu-
lar. The basic idea is that since the nuclei are much heavier than the electrons, they move much
more slowly, and thus electrons react almost instantaneously to atomic motions. However, many
systems exhibit phenomena that are impossible to explain if this simplification is considered. In
this work, we will explore situations where this separation is not valid.

The example of ammonia illustrates that quantum tunneling allows atoms to move around
in ways that are not possible in classical mechanics. However, in many cases, these effects are
influenced by the electronic structure of the system. In such systems, where atomic vibrations
and electronic movement are mutually dependent, new phenomena can appear, such as the Berry
Phase.

The Berry phase is the phase acquired by a wavefunction when the system undergoes a
cyclic, slow (adiabatic) process [4]. When a system is subjected to a process in which the
parameters are varied slowly and starts and ends in the same configuration, the wavefunction
may acquire a geometric phase factor, which is not related to any dynamical evolution of the
system and is closely related to the presence of conical intersections (As we will discuss in more
detail in Chapter 2) in the adiabatic potential energy surface (APES) [4]. Therefore being called
a geometrical or topological phase. The presence or absence of this Berry Phase can reverse the
expected tunnel-split energy levels (See Figure 1.2) of a given system [5], and therefore it affects
the tunneling dynamics.
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Figure 1.2: Illustration of the Berry Phase effect in a two-level system. Left: Without Berry
Phase, the A1 state is lower in energy than the E states. Right: With Berry Phase, the E states
are lower in energy than the A1 state.

So far, we have discussed the role of quantum tunneling and the Berry Phase in molecular
systems, but in principle, it could be present in macroscopic systems, like solids. In solids,
the cooperative dynamics of ions could show quantum processes. A paradigmatic example of
a system where this is observed is the KCuF3 perovskite. A crucial aspect is the tunneling’s
frequency: if the coupling between electrons and nuclei is strong enough, the system can os-
cillate between different configurations in an accessible time scale, and maybe being able to
observe it in macroscopic magnitudes such as the lattice parameters. This spontaneous change
of configurations can lead to phenomena like ferroelasticity and the ability to observe quantum
phenomena like superposition in macroscopic objects.

1.2 Why KCuF3: Jahn-Teller Effect and Ferroelasticity

The Jahn-Teller Effect (JTE) is a phenomenon that occurs in molecules and crystals with degen-
erate electronic states. In order to lift the degeneracy, the system undergoes a distortion of its
geometry, generally to a lower symmetry one. For instance, if we consider a system with a cubic
symmetry, the JTE can lead to a spontaneous tetragonal distortion, in the form of elongation
(or compression) of one of the axes of the cube.

KCuF3 is a canonical example of a material where the JTE is significant. It is a perovskite,
that is, a material with the general formula ABX3, where A and B are two different cations and
X is an anion. In KCuF3, the potassium (K) ion is usually in the center of the cubic structure of
the perovskite, the copper (Cu) ions are located at the corners of the cube, and the fluorine (F)
ions are set in the centers of the edges of the cube, forming an octahedron around the copper
(See Figure 1.3).



4 CHAPTER 1. INTRODUCTION

Figure 1.3: Left: Illustration of the KCuF3 crystal structure. The Cu2+ ions are in brown
surrounded by F− ions in red, with K+ ions yellow. Right: Crystalline structure of KCuF3.
Images obtained with software VESTA (Courtesy of M. Solaguren).

In KCuF3, the Cu2+ ions are in a d9 electronic configuration, which leads to a doubly-
degenerate eg state. This is because the d orbitals are split into two sets of energy levels: the
lower-energy, triply-degenerate t2g orbitals and the higher-energy, doubly-degenerate eg orbitals
(See Figure 1.4, Left). Since each energy level can accommodate two electrons (with opposite
spins), the first six electrons will occupy the t2g orbitals, while the remaining three electrons will
occupy the eg orbitals, leaving one vacant state. We are left with four possibilities (See Figure
1.4, Right) for the last electron: a two-fold spatial degeneracy of the eg orbitals, often denoted
θ and ε, and a two-fold spin degeneracy, up and down. This is commonly denoted as 2Eg. For
the first order vibronic terms (See Chapter 2) to be non-zero, the atomic vibrations must also
transform as e-type vibrational modes [4]. Therefore the name E ⊗ e Jahn-Teller problem. In
KCuF3, the e-type vibrational modes correspond to distortions of the CuF4−

6 octahedra, which
can be tetragonal or orthorhombic.

Figure 1.4: Left: Illustration of the t2g and eg energy levels in the Cu2+ ion. Right: All four
possibilities for the last electron in the eg orbitals.

In KCuF3, the cooperative JTE (cJTE) not only determines the local distortions of the
octahedra, but also propagates throughout the crystal, giving rise to collective structural changes
[6–8]. The cJTE in KCuF3 leads to the collective distortion of adjacent octahedra [9], which
can form elongated/compressed pairs, for example (See Figure 1.5). This cooperative effect
leads to intrinsic ferroelasticity, where the whole lattice can be distorted in one spontaneous
deformation. In this sense, the ferroelastic behavior of KCuF3 can be regarded as a macroscopic
manifestation of the same principle that governs quantum tunneling in molecules: the existence
of multiple equivalent minima, think of equivalent elongations of the crystal in each direction,
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in the adiabatic potential energy surface, between which the system may oscillate or switch.
In real crystals, however, defects can break the symmetry and localize the system in a single
minimum.

Figure 1.5: Cooperative Jahn-Teller effect in KCuF3. Figure obtained from ref. [10]

A central question that arises is whether such tunneling processes are observable in solids.
The answer depends on the tunneling frequency, that is, the energy splitting between the states
associated with different lattice configurations. If the quantum effects are strong enough to
prevent the system from being pinned to a single minimum by defects, the tunneling can mani-
fest in measurable macroscopic magnitudes such as the lattice parameters or elastic constants.
Thus, the study of KCuF3 provides not only a canonical example of the cJTE but also a way
to explore how local vibronic instabilities translate into collective ferroelastic properties, and
whether tunneling dynamics can be detected at the macroscopic scale.

1.3 Objectives

The main goal of this work is to investigate the interplay between electronic and nuclear dynamics
in systems where the Born-Oppenheimer approximation breaks down, with particular emphasis
on the Jahn-Teller effect in solids. Specifically, the objectives of this study are:

� To determine the tunneling period in a solid-state system, namely KCuF3. The
cooperative Jahn-Teller effect in this perovskite provides a prototypical case where local
vibronic instabilities can propagate through the lattice. By evaluating the tunneling fre-
quency, we seek to assess whether such processes can be experimentally observable at the
macroscopic scale, for instance in lattice parameters or elastic properties.

� To analyze the influence of electronic motion on quantum tunneling. The objective
is to study how the coupling between electronic and nuclear motions alters the tunneling
process, both in terms of the resulting energy splittings and in the possible inversion of
level ordering due to topological effects such as the Berry phase.

� To develop a computational program that accounts for the simultaneous motion
of electrons and nuclei. The purpose of this code is to construct model Hamiltonians
that incorporate both electronic and nuclear dynamics on equal footing, allowing us to
explore scenarios where the Born-Oppenheimer separation fails and to provide numerical
estimates of tunneling splittings in Jahn-Teller systems.
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1.4 Structure of this work

This work is divided into 5 chapters. Firstly, in this introductory chapter, we have presented
the context and motivation for this study on the Jahn-Teller Effect in KCuF3, as well as the
main objectives of the research.

In the second chapter, we will delve into the theoretical framework of vibronic coupling
(See Chapter 2), providing a comprehensive overview of the key concepts and mathematical
formulations and derivations. In this chapter, the Hamiltonian of a non-adiabatic system will
be introduced, along with the main models used to describe the vibronic interactions.

The third chapter will focus on the computational methods employed in this study (See
Chapter 3). Here, we will discuss the various techniques and approaches used to study many
physical problems. In particular, we will highlight the importance of first-principles methods,
methods that use no other information than fundamental constants, and their role in under-
standing the Jahn-Teller Effect.

The fourth chapter is the core of this work (See Chapter 4). This chapter is divided into three
main sections. The first section will study the theoretical behavior of non-warped and warped
Jahn-Teller systems, providing a detailed analysis of the latter’s tunneling dynamics. The second
section will present a computational solution developed for the Jahn-Teller problem based on
a finite difference method. At last, in the third section, numerical results will be discussed,
comparing the theoretical predictions with the outcomes of the computational simulations.

Lastly, in the last chapter (See Chapter 5), we will summarize the main findings and con-
clusions of this study. We will also discuss the implications of our results and suggest potential
directions for future research in this field.



Chapter 2

Vibronic Coupling Theory

In the context of quantum mechanics, the Schrödinger equation is a fundamental equation that
describes the behavior of a systems in the microscopic world. In our case, we are interested
in studying the coupling between the atomic vibrations and the electronic movement, the so-
called vibronic interaction that takes place in molecular or solid-state systems. The Schrödinger
equation for these problem is given by

Ĥ(r,R)Ψ(r,R) = EΨ(r,R) (2.1)

where r denotes the set of all electronic coordinates, r = {r⃗i : i = 1, . . . , n}, R denotes the set
of all nuclear coordinates, R = {R⃗α : α = 1, . . . , N}. Ĥ is the Hamiltonian operator and E is
the energy of the eigenstate Ψ(r,R). Along this section, we will introduce the vibronic coupling
theory and its implications for the Jahn-Teller effect. The reference [4] has been mainly followed
for this chapter.

2.1 The Hamiltonian

The Equation (2.1) has generally no analytical solution and so we need to apply some approxi-
mate method to solve it. First, let us write the Hamiltonian operator as follows:

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn, (2.2)

T̂e = −
n∑

i=1

ℏ2

2me
∇2

ri , (2.3)

T̂n = −
N∑

α=1

ℏ2

2Mα
∇2

Rα
, (2.4)

V̂ee =
1

2

∑
i̸=j

e2

| r⃗i − r⃗j |
, (2.5)

V̂en =
∑
i,α

− e2Zα

| ri −Rα |
, (2.6)

V̂nn =
1

2

∑
α̸=β

e2ZαZβ

| Rα −Rβ |
(2.7)

where me is the mass of the electron and Mα is the mass of the nucleus α. These terms are
the electronic (Eq. (2.3)) and nuclear (Eq. (2.4)) kinetic energy operators, as well as the classic
electron-electron (Eq. (2.5)), electron-nuclear (Eq. (2.6)), and nuclear-nuclear (Eq. (2.7))
Coulomb interaction potentials.

7
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In order to study the vibronic coupling we would like to be able to use the symmetry of the
system. To do so, first we need to define a reference geometry for the nuclear positions, which
we will denote as R⃗0. This reference geometry is usually chosen as the geometry with highest
symmetry [4]. If we recall the case of ammonia in Chapter 1, ammonia has two equivalent stable
states in the shape of a pyramid (C3v symmetry). We could take, for our reference configuration,
the non-stable configuration in which the ammonia molecule is perfectly flat, with an equilateral
triangle of hydrogen atoms and the nitrogen atom at the center of the triangle (D3h symmetry).
The reference configuration R⃗0 is a vector in the Cartesian space R3N that encodes the positions
of all the nuclei in this high-symmetry configuration.

We can now define a Cartesian displacement vector as q⃗ := R⃗ − R⃗0. This vector q⃗ also
belongs to the space R3N and encodes the displacements of all the nuclei from their positions
in the reference configuration, but note that some of them are redundant: this basis accounts
for the three translations and three rotations (two for linear molecules) of the molecule as a
whole, which do not change the internal structure of the molecule. Therefore, we can reduce the
number of coordinates to 3N − 6 (or 3N − 5 for linear molecules) by transforming to normal
mode coordinates, which are linear combinations of the Cartesian displacements that correspond
to independent vibrational modes of the molecule. These normal mode coordinates are usually
denoted as Qα, where α = 1, . . . , 3N − 6, and form a basis of the vibrational space of the
molecule. If we go back to the ammonia molecule once again, the normal modes of vibration
can be classified according to the irreducible representations of the D3h point group. In Figure
1.1, the potential energy on the right is with respect to the movement on the z coordinate of
the nitrogen, but might as well have been with respect to a QA1 vibrational coordinate, as they
are equivalent for this molecule.

With this in mind, we will rewrite the Hamiltonian and group its terms by their nature:

Ĥ = Ĥel + ĤQ + V̂vib, (2.8)

Ĥel = T̂e + V̂ee + V̂ (0)
en + V̂ (0)

nn , (2.9)

ĤQ = T̂n, (2.10)

V̂vib = V̂en − V̂ (0)
en + Vnn − V̂ (0)

nn , (2.11)

V̂ (0)
en = V̂en(r, R⃗0) = V̂en(r,Q = 0), (2.12)

V̂ (0)
nn = V̂nn(R⃗0) = V̂nn(Q = 0). (2.13)

To transform the potential energy from the Rα coordinates to the Qα coordinates, we can
express it as a Taylor expansion:

V̂vib(Q) =
∑
α

∂V

∂Qα

∣∣∣∣
Q=0

Qα +
∑
α,β

∂2V

∂Qα∂Qβ

∣∣∣∣
Q=0

QαQβ + . . . (2.14)

2.2 Adiabatic approximation

To solve the Schrödinger Equation (2.1), that tells us about the system’s dynamics, we will now
introduce the adiabatic approximation. First, we will write the total wavefunction as a product
of an electronic wavefunction φk(r, Q) and a nuclear wavefunction χk(Q), where k denotes the
electronic state:

Ψ(r, Q) =
∑
k

φk(r, Q)χk(Q), (2.15)

and we will choose those electronic states φk(r, Q) to be the eigenstates of the electronic Hamil-
tonian Ĥel.

(Ĥel + V̂vib)φk(r, Q) = εk(Q)φk(r, Q) (2.16)
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The adiabatic approximation is a method used to simplify the Schrödinger equation by
assuming that the nuclear motion is much slower than the electronic motion, allowing electrons
to adjust instantaneously to the nuclear positions. Suppose that our system is in the reference
position Q = 0 and that we ignore the effect of the nuclear motion over the electrons. This is
equivalent to ignoring the effect of HQ (that accounts for the kinetic energy of the nuclei) on
the electronic wavefunction.

HQφk = 0 (2.17)

We define the electronic Hamiltonian matrix elements as

Hαβ = ⟨φα|Ĥel + V̂vib|φβ⟩. (2.18)

The adiabatic approximation essentially lets us diagonalize the electronic Hamiltonian matrix
Hαβ to find the adiabatic potential energy surfaces (APES) as the eigenvalues of Hαβ.

If we substitute the total wavefunction (Eq. (2.15)) into the Schrödinger Equation (2.1), we
obtain

(Hel +HQ + V̂vib)
∑
k

|φk(r)⟩|χk(Q)⟩ = E
∑
k

|φk(r)⟩|χk(Q)⟩ (2.19)

Multiplying by ⟨φm(r)| and integrating, we get

∑
k

⟨φm|
(
He +HQ + V̂vib − E

)
|φk⟩|χk(Q)⟩ = 0, (2.20)

∑
k

(
⟨φm|Hel + V̂vib|φk⟩+ ⟨φm|HQ|φk⟩ − E⟨φm|φk⟩

)
|χk(Q)⟩ = 0, (2.21)∑

k

(εk(Q)δkm +HQδkm − Eδkm) |χk(Q)⟩ = 0, (2.22)

(εk(Q) +HQ − E)|χk(Q)⟩ = 0. (2.23)

Where in Equation (2.22) we have applied the adiabatic approximation (Eq. (2.17)). And lastly,
in Equation (2.23) we have obtained a Schrödinger equation for the nuclear wavefunctions. Also
in Equation (2.23) the εk(Q) is the adiabatic potential energy surface (APES) of the system.

This approximation is only valid when the separation between energy levels is sufficiently
large. When the energy levels are close together, or even degenerate, the adiabatic approximation
breaks down [4], and we need to go beyond it. This is the case in the Jahn-Teller systems.

2.2.1 Jahn-Teller systems

In Jahn-Teller systems, more specifically in this work, in E ⊗ e systems (See Chapter 1), the
vibronic interaction is not negligible [4], and the adiabatic approximation is not valid. In such
cases, the Schrödinger equation must be solved taking into account the vibronic interaction,
therefore considering the non-diagonal terms of the Hamiltonian matrix. In a JT system, we
consider the electronic states that are degenerate as the basis for Equation (2.23). The simplest
case of degeneracy that we can consider is a two-fold degeneracy, as is the case for the unpaired
electron in the of the Cu2+ ion like we discussed in Chapter 1. In the case of considering an E
(doubly degenerate) state in Oh symmetry, for the first (linear) term in V̂vib in Equation (2.14) to
be non trivial, the vibrational modes must also transform as the same irreducible representation
as the electronic states.
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Figure 2.1: Displacements of atoms in octahedral XY6 molecules. Left: Orthorhombic Qε

displacement, Right: Tetragonal Qθ displacement. Figure obtained from [4].

The two vibrational modes (See Figure 2.1) are usually denoted as θ (tetragonal distortion)
and ε (orthorhombic distortion), and their respective coordinates are denoted as Qθ and Qε and
represent the following displacements:

Qθ =
1√
12

(2z1 − 2z4 − x2 + x5 − y3 + y6) (2.24)

Qε =
1

2
(−x3 + x4 + y5 − y6) (2.25)

(2.26)

We can then write the total wavefunction (Eq. (2.15)) as

Ψ(r,Q) = φθ(r)χθ(Qθ) + φε(r)χε(Qε). (2.27)

And the Hamiltonian matrix in the φθ and φε basis, Hαβ = ⟨φα|Ĥ|φβ⟩, should then be written
as

Ĥ =

(
εθ(Q) +HQ Hθε

Hεθ εε(Q) +HQ

)
. (2.28)

Since we expect the system to oscillate around the reference geometry, we can truncate the
expansion (2.14) to the second order. We need to obtain the matrix elements of the vibronic
interaction operator now. To do so, we can make use of the Wigner-Eckart theorem and the
Clebsch-Gordan coefficients. This will allow us to relate the matrix elements of the vibronic
interaction operator to the coupling coefficients of the vibrational modes [4]. The Wigner-
Eckart theorem states that for any physical operator XΓγ

that transforms as γ (where γ can be

θ, ε, a1, a2) of the representation Γ (where Γ here can be E, A1, A2), we have

⟨Γγ |XΓγ
|Γ′

γ′⟩ = ⟨Γ||XΓ||Γ
′⟩⟨ΓγΓ

′
γ′ |Γγ⟩, (2.29)

where ⟨Γ||XΓ||Γ′⟩ is the reduced matrix element and ⟨ΓγΓ
′
γ′ |Γγ⟩ is the corresponding Clebsch-

Gordan coefficient in Table 2.1.
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A1 A2

a1 a2 θ ε

θ θ 1√
2

· − 1√
2

·
ε ε 1√

2
· 1√

2
·

θ ε · 1√
2

· 1√
2

ε θ · − 1√
2

· 1√
2

E × E
E

Table 2.1: Clebsch-Gordan coefficients for E ⊗ e products for the octahedral group. [11]

The linear terms of the vibronic interaction operator are given by the columns under the
E representation and the left columns tell us about the states that are being multiplied. For
example, if we wanted to know the matrix element

⟨φθ|
∂V (r,Q)

∂Qθ
|φθ⟩, (2.30)

we would look on the table and look for the coefficient corresponding to the θ coordinate: − 1√
2
.

The same can be done for the rest of the combinations. One can easily see that the εε element
has the opposite sign to the θθ element and the two cross elements are zero. Therefore, the
linear terms can be expressed as matrices in the following way:

H
(1)
θ :=

〈
∂H

∂Qθ

〉
= V

(
−1 0
0 1

)
, (2.31)

H(1)
ε :=

〈
∂H

∂Qε

〉
= V

(
0 1
1 0

)
, (2.32)

where the constant V absorbs the 1/
√
2 factors. These terms should be attached to Qθ and

Qε, respectively. For the higher order terms, instead of obtaining the coefficients that are
associated with each of the higher order terms, we can use the table and obtain the higher
order perturbations as follows: Instead of looking at the table by rows, we can look at it by
columns, and the left-most column tells us what Qi are being multiplied. Thus, we will obtain
the coefficients associated with these vibrational modes.

Q
(2)
a1 =

1√
2
(Q2

θ +Q2
ε), (2.33)

Q
(2)
a2 =

1√
2
(QθQε −QεQθ) = 0, (2.34)

Q
(2)
θ =

1√
2
(Q2

ε −Q2
θ), (2.35)

Q(2)
ε =

2√
2
(QθQε). (2.36)

Following this notation, it is obvious that Q
(1)
i = Qi, for i = θ, ε. From these, we can obtain

their corresponding matrix elements:
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H
(2)
a1 = K


1√
2

0

0
1√
2

 , (2.37)

H
(2)
a2 = 0, (2.38)

H
(2)
θ = 2F


−1√
2

0

0
1√
2

 , (2.39)

H(2)
ε = 2F

 0
1√
2

1√
2

0

 (2.40)

We can therefore summarize the vibronic interaction operator using the Pauli matrices,
yielding the following expression:

Hvib = E0 − V (Qθσ̂z −Qεσ̂x) +
K

2
(Q2

θ +Q2
ε) + F ((Q2

θ −Q2
ε)σ̂z + 2QθQεσ̂x), (2.41)

where E0 is the energy of the system at the reference position of the nuclei, the σ̂0 or identity
matrix has been omitted and the Pauli matrices involved are

σ̂z =

(
−1 0
0 1

)
, σ̂x =

(
0 1
1 0

)
. (2.42)

Note that this representation shows that this operator is symmetric with real valued coefficients,
and therefore the eigenvalues of this operator are real. This is to be expected, since this oper-
ator represents the potential energy of the system, and therefore its eigenvalues should be the
adiabatic potential energy surfaces of the system (See Eq. 2.23). Let us recall that for any
symmetric 2× 2 matrix of the form

H =

(
a b
b c

)
, (2.43)

there always exists a closed form solution for the eigenvalues, given by

λ± =
a+ c±

√
(a− c)2 + 4b2

2
. (2.44)

Thus, we can obtain the two sheets of the potential energy surface for this model by substi-
tuting the coefficients of the vibronic interaction operator (2.41) into (2.44). The result is the
following expression for the Jahn-Teller potential energy surface:

E± = E0 +
K

2
(Q2

θ +Q2
ε)±

√
(V Qθ − F (Q2

θ −Q2
ε))

2 + (V Qε + 2FQθQε)2. (2.45)

We can change to polar coordinates, where Qθ = ρ cos(ϕ) and Qε = ρ sin(ϕ), and the potential
energy surface can be expressed as

E± =
1

2
Kρ2 ±

(
V 2ρ2 + F 2ρ4 + 2V Fρ3 cos(3ϕ)

)1/2
. (2.46)

The effect of the vibronic interaction associated to the second order vibronic coupling coef-
ficient, F , is to introduce anisotropy in the potential energy surface, that is, it introduces angle



2.2. ADIABATIC APPROXIMATION 13

dependence in the potential energy surface, effectively creating minima in the surface. Should
we disregard this term, the potential energy surface becomes radially symmetric, i.e.,

E± = E0 +
K

2
ρ2 ± V ρ, (2.47)

whose lower sheet forms a shape commonly known as Mexican hat potential (See Figure 2.2).

Figure 2.2: Mexican hat potential energy surface (See Eq. 2.47). Figure obtained from [4]

In this representation, the solution of the Schrödinger equation is no longer given by the |θ⟩
and |ε⟩ states and their linear combination, but rather by the eigenstates that diagonalize the
vibronic interaction operator, which are{

|+⟩ = sin
(
Ω
2

)
|θ⟩+ cos

(
Ω
2

)
|ε⟩,

|−⟩ = cos
(
Ω
2

)
|θ⟩ − sin

(
Ω
2

)
|ε⟩,

(2.48)

where the angle Ω is related to the coefficients via the following Equation [4]:

tan(Ω) =
V sin(ϕ)−Kρ sin(2ϕ)

V cos(ϕ) +Kρ cos(2ϕ)
. (2.49)

The solution wavefunction is then given by the linear combination of these eigenstates, where
the coefficients are again the nuclear wavefunctions |χ±⟩, now in the basis of the eigenstates of
the vibronic interaction operator:

|Ψ⟩ = |χ+⟩|+⟩+ |χ−⟩|−⟩. (2.50)

Note that when the system makes a 2π radian rotation, the electronic eigenstates, |+⟩ and
|−⟩, change sign. This phenomenon is known as Berry phase [12]. This means that the system
has a non-trivial topology, and therefore the eigenstates are not simply related to the original
states |θ⟩ and |ε⟩, but rather they are related to them through a non-trivial transformation, as
shown in Equation (2.48). This acquisition of a Berry phase, of exp(iπ) = −1 in this case, is
characteristic of JT systems and is due to the conical intersection [4] in the potential energy
surface in ρ = 0 (See Figure 2.2).
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2.2.2 Warping and higher order terms

Instead of accounting for the second order vibronic coupling term in the vibronic interaction
operator as the source of anisotropy in the potential energy surface, we may consider a third
order term in the expansion of the potential energy surface [13] that has been proved through
first principles calculations to be very important. This term would be obtained in the same way
as the ones before, resulting in the following third order term and their corresponding coupling
coefficients:

Q
(3)
a1 = −1

2
Qθ(Q

2
θ − 3Q2

ε), H
(3)
a1 = −2G

(
1 0
0 1

)
, (2.51)

where the -2 factor is introduced in order to cancel the −1/2 factor in the definition of the
third order term, it can be seen as the coupling constant G absorbing the factors. This term is
known as the elastic cubic anharmonicity and is the main term responsible for the warping of
the Mexican hat surface [13]. Since the warping term, is more prominent than the second order
term as proven by first principles calculations[13], we can consider only the warping term as the
source of anisotropy in the potential energy surface.

Hvib = E0 − V (Qθσ̂z −Qεσ̂x) +
K

2
(Q2

θ +Q2
ε) +GQθ(Q

2
θ − 3Q2

ε), (2.52)

Since the warping term is diagonal, it can be just added to the potential energy surface, and so
we can write the potential energy surface as

E± = E0 +
K

2
(Q2

θ +Q2
ε)± V

√
Q2

θ +Q2
ε +GQθ(Q

2
θ − 3Q2

ε), (2.53)

or, in polar coordinates,

E± = E0 +
K

2
ρ2 ± V ρ+Gρ3 cos(3ϕ). (2.54)

It can be seen that the warping term introduces the same kind of angular dependence as
the second order vibronic term, but with a different functional form. Without warping, the
potential energy surface’s minima is located as a trough around the origin at a fixed radius,
the warping term introduces a 2π/3 periodic perturbation, which leads to a potential energy
surface with three minima, which are located at the vertices of an equilateral triangle. This is
because in the cubic system the x, y and z directions are equivalent, and therefore the system
can elongate (or compress) in these directions equiprobably. Opposite to the minima, there are
three saddle points. These are located slightly off the radius of the minima due to the warping,
although they can still be considered as being at the same radius as the minima if the warping
is small enough. Due to the warping, this type of potential energy surface is commonly known
as tricorn hat potential (See Figure 2.3). It is easy to notice that the position of the minima
and saddle points is determined by the sign of the warping term, G, and will be swapped if the
sign is changed.
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Figure 2.3: Side and top views of a tricorn hat potential energy surface. Figure obtained from
[13]

Note that this model’s highest order term is the third order warping term. Independent
of the sign of the warping term, along the Qθ axis, the potential energy surface will always
grow to infinity in one direction and to minus infinity in the other. Therefore, the APES and
the associated nuclear wavefunction will not necessarily be bounded if the whole Q-space is
considered. It is known that these wavefunctions are bounded since the distortion is finite, and
thus higher order terms seem to be important.

To ensure the boundedness of the wavefunction, an additional term will be introduced. This
quartic, symmetric term must be understood as a correction to the potential energy surface,
having a small coefficient, H, and just dominating in the asymptotic limit, i.e. when Q → ∞,
without introducing qualitative changes to the surface in the inner region. This term is given
by

Q
(4)
a1 =

1

2
(Q2

θ +Q2
ε)

2, H
(4)
a1 = 2H

(
1 0
0 1

)
. (2.55)

Therefore, the vibronic Hamiltonian is now given by

Hvib = E0 − V (Qθσ̂z −Qεσ̂x) +
K

2
(Q2

θ +Q2
ε) +GQθ(Q

2
θ − 3Q2

ε) +H(Q2
θ +Q2

ε)
2. (2.56)

And, once again, being a diagonal term, it can be just added to (2.54), and so we can write the
potential energy surface as

E± = E0 +
K

2
(Q2

θ +Q2
ε)± V

√
Q2

θ +Q2
ε +GQθ(Q

2
θ − 3Q2

ε) +H(Q2
θ +Q2

ε)
2, (2.57)

or, in polar coordinates,

E± = E0 +
K

2
ρ2 ± V ρ+Gρ3 cos(3ϕ) +Hρ4. (2.58)

This model ensures that the potential well is bounded, since, if H is sufficiently small, the
quartic term will end up leading while still preserving the true shape of the well, namely, not
affecting the depth and position of the minima.



Chapter 3

Computational Methods

3.1 First Principles

In order to simulate particular systems, we need precise descriptions of the APES. Equivalently,
we need precise values of the vibronic coupling constants. We can obtain these values using first
principles methods, which are computational methods that do not rely on empirical parameters,
but rather on the fundamental laws of physics. This section has been based mainly on References
[14–16].

3.1.1 Hartree-Fock

In order to solve the Schrödinger equation for a multielectronic system, let us say of N electrons,
we can use the Hartree-Fock method, which is an approximation that allows us to treat the elec-
trons as particles moving in an mean field created by the other electrons [14, 15]. Hartree’s idea
involved writing the many-body wavefunction Ψ(r⃗1, . . . , r⃗N ) as the product of N single-particle
molecular orbitals (MO) ψi(r⃗i), one for each electron. However, this approach neglects quantum
effects such as the Pauli exclusion principle, since two electrons may have the same quantum
state in this frame. Also, this approach does not treat electrons as indistinguishable particles
[16]. The solution to this problem was brought by Fock, who proposed that the multielectronic
wavefunction should be antisymmetrized, which can be done using a Slater determinant [14, 16]:

Ψ(r⃗1, . . . , r⃗N ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r⃗1) ψ2(r⃗1) . . . ψN (r⃗1)
ψ1(r⃗2) ψ2(r⃗2) . . . ψN (r⃗2)

...
...

. . .
...

ψ1(r⃗N ) ψ2(r⃗N ) . . . ψN (r⃗N )

∣∣∣∣∣∣∣∣∣ . (3.1)

This ensures that a particular electron located in a certain position cannot be associated to
a certain wavefunction. Also, the Pauli exclusion principle is naturally incorporated, as the
antisymmetry of the Slater determinant guarantees that if ψi = ψj , then Ψ = 0, which means
that two electrons cannot occupy the same quantum state [16]. The Hartree-Fock method is an
example of a variational method, which means that the system is defined by a set of variational
parameters, and the solution can be reached by minimizing the energy with respect to these
parameters. In this case, the variational parameters are the one-electron wavefunctions ψi.

To apply a variational method, we first need to obtain an expression for the energy of the
system as a functional of the one-electron wavefunctions. Since our wavefunction is described
with a Slater determinant, we need to obtain the energy of such a function. To do so, we can

16
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first rewrite the Hamiltonian as

Ĥ =
N∑
i=1

ĥ+
N∑
i=1

N∑
j>i

ĝij + Vnn, (3.2)

ĥ = −1

2
∇2 −

∑
α

Zα

|R⃗α − r⃗i|
, (3.3)

ĝij =
1

|r⃗i − r⃗j |
, (3.4)

Vnn =
1

2

∑
α

∑
β

ZαZβ

|R⃗α − R⃗β|
, (3.5)

where ĥ is a one-electron operator, which accounts for the kinetic energy and Coulomb attractive
interaction to the nuclei of individual electrons, ĝij is a two-electron operator, which accounts
for the Coulomb repulsive interaction between pairs of electrons, and Vnn is the nuclear-nuclear
Coulomb repulsive interaction. A lengthy but straightforward calculation yields the following
expression for the energy of a Slater determinant (See [14], Section 3.3, for a detailed derivation):

E =

N∑
i=1

hi +
1

2

N∑
i=1

N∑
j=1

(Jij −Kij) + Vnn. (3.6)

The Jij and Kij terms are the Coulomb and exchange integrals, respectively, defined as

Jij =

∫ ∫ |ψi(r⃗1)|2|ψj(r⃗2)|2

|r⃗1 − r⃗2|
d3r⃗1d

3r⃗2, (3.7)

Kij =

∫ ∫
ψ∗
j (r⃗1)ψi(r⃗1)ψ

∗
i (r⃗2)ψj(r⃗2)

|r⃗1 − r⃗2|
d3r⃗1d

3r⃗2. (3.8)

Or, as operators, as

Ĵi|ψj(r⃗s)⟩ = ⟨ψi(r⃗t)|ĝst|ψi(r⃗t)⟩|ψj(r⃗s)⟩, (3.9)

K̂i|ψj(r⃗s)⟩ = ⟨ψi(r⃗t)|ĝst|ψj(r⃗t)⟩|ψi(r⃗s)⟩. (3.10)

Note that the diagonal terms of the Coulomb and exchange integrals are equal, and even
though the double sum in Equation 3.6 accounts for this terms, they vanish and there is no
self-interaction of electrons.

On the equations above, the shape of the one-electron wavefunctions is unknown. To min-
imize this Slater determinant energy with respect to the shape of the MOs, the variation with
respect to the shape of each MO must be zero. If we want to find a solution such that the MOs
are orthonormal, this minimization must be performed under the constraint

δE

δψi
= 0,∀i, (3.11)∫

ψ∗
i (r⃗)ψj(r⃗)d

3r⃗ = δij . (3.12)

This constitutes a constrained optimization problem, where we need to minimize the energy
functional subject to the orthonormality constraints of the MOs. This can be solved using the
method of Lagrange multipliers, which results in a set of N one body equations, as opposed to
the original N -electron equation. Due to being a quite technical derivation, we will not go into
detail here (See [14], Section 3.3, for a detailed derivation), but the result is the following set of
equations:
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F̂i|ψi(r⃗i)⟩ = εi|ψi(r⃗i)⟩, (3.13)

where F̂i are the Fock operators and εi are the energies of the MOs.

F̂i = −1

2
∇2 −

∑
α

Zα

|r⃗ − R⃗α|
+

∑
i

|ψi|2

|r⃗ − r⃗i|
= ĥi +

N∑
j=1

(Ĵj − K̂j) (3.14)

εi = hi +
N∑
j=1

(Jij −Kij). (3.15)

Now, electrons do not interact with each other in a one-to-one basis, but rather through the mean
field created by all the electrons, therefore sometimes referred as mean-field approximation. This
method usually receives the name of independent electron method as well because each electron
wavefunction is the solution of the one-electron Schrödinger equation (3.13), but it must be
noted that the MOs are still correlated and that electrons are not strictly independent. This
method requires to know all occupied MOs in order to compute the Fock operator for a given
MO, and solve for that MO. This is obviously not possible as a direct solution. However, it can
be approach as an iterative process, where we start with an initial guess for the MOs and then
update them until convergence is reached, therefore being called a self-consistent field (SCF)
method [14].

Note that the sum of the MOs’ energies εi is not equal to the total energy of the system
[16], since they only account for the electron-nucleus interactions and the electron-mean field
interactions, but does not account for the nucleus-nucleus interactions (and overcounts some of
the terms). It is easy to see that the total energy can be expressed as

E =
N∑
i=1

εi −
1

2

N∑
i,j

(Jij −Kij) + Vnn. (3.16)

3.1.2 Density Functional Theory

The Density Functional Theory (DFT) was first introduced by Hohenberg and Kohn in 1964
[17]. In their work, they proposed a method to solve the many-body problem in quantum me-
chanics, the electronic Schrödinger equation, by using the electron density as the fundamental
variable instead of the many-body wavefunction like in Hartree-Fock. This was a significant
breakthrough, as the many-body wavefunction is a complex object that depends on the coordi-
nates of all the electrons in the system, 3N , while the electron density is a function of only three
spatial coordinates. This method is based on two theorems, known as the Hohenberg-Kohn
theorems [17], and the Kohn-Sham equations [18]. In this section, we will provide an overview
of the key concepts and equations of DFT, the proofs and derivations can be found in [19] and
[14].

Let us now delve into the details of this theory, suppose that we have a system of N electrons,
whose behavior is described by the Hamiltonian

Ĥ = T̂ + Û + V̂ , (3.17)

where T̂ is the kinetic energy operator of the electron, Û is the electron-electron interaction
operator, and V̂ is an external potential operator, which usually accounts for the electron-
nucleus interaction. Hohenberg and Kohn treat this system as an inhomogeneous electron gas,
where the electron density ρ(r⃗) is the key variable. The first Hohenberg-Kohn theorem states
that the external potential V̂ is (up to a constant) a unique functional of the electron density
ρ(r⃗)[17, 19], and therefore so is the Hamiltonian and every other property of the system such
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as the ground state. As a result, the ground state electron density uniquely determines all the
properties of the system. If we fix the external potential V [ρ] to the electron-nucleus interaction,
we can write the energy functional as a functional of the electron density as follows:

E[ρ] = T [ρ] + Eee[ρ] + Ene[ρ], (3.18)

where T [ρ] is the kinetic energy functional, Eee[ρ] is the electron-electron interaction functional,
and Ene[ρ] is the external potential functional. Where the electronic interaction can be separated
into the Coulomb and non-classical contributions, such as the exchange and correlation energies
as well as the correction due to self interaction.

E[ρ] = T [ρ] + J [ρ] + Encl[ρ] + Vne[ρ], (3.19)

where J [ρ] and Vne[ρ] can be obtained from the classical expressions for the Coulomb interactions
in terms of the electron density:

J [ρ] =
1

2

∫ ∫
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
d3r⃗d3r⃗′, (3.20)

Vne[ρ] = −
∑
α

∫
Zαρ(r⃗)

|R⃗α − r⃗|
d3r⃗. (3.21)

Note that the kinetic functional T [ρ] and the electron-electron interaction functional Eee[ρ]
are both universally defined functionals of the electron density, meaning that they do not depend
on the specific form of the external potential V [ρ]. With this in mind, we can express the energy
functional as

E[ρ] = −
∑
α

∫
Zαρ(r⃗)

|R⃗α − r⃗|
d3r⃗ + FHK [ρ], (3.22)

where FHK [ρ] is the Hohenberg-Kohn functional, which encodes the universal functional depen-
dence on the electron density:

FHK [ρ] = T [ρ] + Eee[ρ]. (3.23)

Plugging in the ground state electron density ρ0(r⃗) is sufficient to obtain all the properties
of interest1. Fortunately, the second Hohenberg-Kohn theorem is a variational theorem that
guarantees that the functional that returns the energy of the ground state, E[ρ] return the true
ground state energy if and only if the true ground state density ρ0(r⃗) is plugged in.Therefore,
any trial density will yield an upper bound to the true ground state energy, and the equality is
achieved only for the real density [17, 19]. It is clear that any trial density, as well as the true
ground state density, should verify the condition

∫
ρ(r⃗)d3r⃗ = N .

Even before Hohenberg’s and Kohn’s contribution in 1964, many other researchers had tried
to formulate methods based in electron density, laying the groundwork for the development of
DFT. Notable among these are the works of Thomas [20] and Fermi [21], who proposed the first
methods based on constructing a functional in terms of the electron density. However, their
approaches were limited and did not yield satisfactory results. Kohn and Sham [18] proposed a
practical method to implement DFT. There are two terms for which the exact functional form is
unknown, the kinetic energy functional T [ρ] and the non-classical electron-electron interaction
functional Encl[ρ]. Kohn and Sham proposed to treat the system as a non-interacting gas of
electrons that reproduces the same electron density as the real, interacting system. This would
recreate a system like that of the Hartree-Fock model, however now the Slater determinant is
not an approximation to the real wavefunction, but the real solution to this non-interacting

1This is only true for ground state properties, excited states are not directly accessible from DFT, although
excited states do not give information about the distribution of the nuclei either [19].
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system. The potential energy in this reference system would be a local effective potential, VS ,
and the Hamiltonian would be given by

ĤS = −1

2

N∑
i=1

∇2
i +

N∑
i=1

VS(r⃗i). (3.24)

Since the Slater determinant is the exact solution to this N -body problem, the problem can
be transformed to N one-body problems, where each electron moves in the effective potential
VS(r⃗):

f̂KSψi = εiψi, f̂KS = −1

2
∇2 + VS(r⃗), (3.25)

and the effective potential is such that the electron density it generates equals the true ground
state density ρ0(r⃗):

ρS(r⃗) =
N∑
i=1

∑
s

|ψi(r⃗, s)|2 = ρ0(r⃗). (3.26)

This sum over all occupied states makes the connection to the real, interacting system. Since the
kinetic energy of a non-interacting system is not equal to the real system’s, the energy functional
must be rewritten accordingly.

E[ρ] = TS [ρ] + J [ρ] + EXC [ρ] + Ene[ρ], (3.27)

where TS [ρ] is the kinetic energy functional of the non-interacting system, and EXC [ρ] is the
exchange-correlation functional, which accounts for the difference between the real kinetic energy
and the non-interacting kinetic energy, as well as the non-classical electron-electron interactions:

EXC [ρ] = (T [ρ]− Ts[ρ]) + (Eee[ρ]− J [ρ]). (3.28)

This functional relates to the effective potential VS [ρ] through the relation:

VS [ρ] =

∫
ρ(r⃗′)

|r⃗ − r⃗′|
d3r⃗′ +

δEXC [ρ]

δρ(r⃗)
−
∑
α

Zα

|R⃗α − r⃗|
. (3.29)

It is important to note that the Kohn-Sham method is exact, that is, if the functional EXC [ρ]
were known exactly, the Kohn-Sham equations would yield the exact ground state density ρ0(r⃗)
and energy E0[ρ], since the rest of the terms are well-known. Unfortunately, to this day it is still
one of the main challenges in the field of DFT to find the exact form (or better approximations)
for the exchange-correlation functional. Once this functional is known, the Kohn-Sham equations
can be solved self-consistently to obtain the ground state properties of the system.

3.2 CRYSTAL

CRYSTAL [22] is a computational software that implements HF and DFT methods for calcu-
lating the electronic structure of molecules and periodic systems, such as crystals. The program
outputs the minimum energy configuration of a given system by optimizing an initial system.
This is achieved through a self-consistent field (SCF) procedure, where the electronic density is
iteratively updated until convergence is reached.

This software makes use of Gaussian-type orbitals as the basis set for the electronic wave-
functions, which allows for accurate calculations of the electronic structure. CRYSTAL has been
used to create an energetic profile of KCuF3 by computing its energy for different values of the
tetragonal distortion Qθ. This profile can then be used to fit the parameters of the Jahn-Teller
model described in Chapter 2.
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This program follows an iterative process to reach a minimum energy configuration. The pro-
cess halts when the change in electronic density, atomic displacements, etc. between iterations
are below a certain threshold, indicating that the system has reached a stable configuration.
Finally, many properties of the system are output, such as the energy per unit cell, the forces
on the atoms, and the electronic density.

CRYSTAL offers a fast and efficient implementation of DFT methods at the cost of not
knowing the exact form of the exchange-correlation functional. Regarding this particular work,
a B1WC [23] density functional was employed for the calculations. Additionally, since the
program must discretize the reciprocal space, a 8x8x8 grid [24] was used to sample the Brillouin
zone, that is, each directional axis in the reciprocal space was divided into 8 segments.



Chapter 4

Results

In this chapter, we will develop a computational method to solve the combined electronic-nuclear
problem associated to the E ⊗ e problem described in Chapter 2. Firstly, we will study the
behavior of JT and non-JT systems from a theoretical standpoint. Then, we will overview the
finite differences method used to obtain the results presented in this chapter. Finally, results
from real physical systems will be presented, showing the energy by unit cell, the tunneling
splitting and the characteristic oscillation frequency and period associated to tunneling in Jahn-
Teller and non-JT systems as well as the effects of Berry phase in these systems.

4.1 Nuclear dynamics in JT systems

In order to shed some light on the behavior found by the test runs, we will analyze some aspects
of these systems, such as why the system is arranged doublets when no warping is introduced
and why some doublets split as the warping increases, forming triplets in the extreme case. This
will set the basis to analyze our more complex computational solutions.

4.1.1 Non-warped system solution

First of all, let us study the case of non-warped systems. In this scenario, the potential energy
surface is symmetric and has a simple structure, which leads to the formation of doublets. To
understand this, we can solve the Schrödinger equation for the system

− ℏ2

2m

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2

]
|ψ⟩+ V (ρ)|ψ⟩ = E|ψ⟩ (4.1)

where V (Q) is the potential energy surface E− given by (2.47). Since the potential energy
is independent of the angle ϕ, we can separate the variables and write the wavefunction as a
product of two functions1, one depending on Q and the other on ϕ:

|ψ(Q,ϕ)⟩ = |R(Q)⟩|Φ(ϕ)⟩. (4.2)

Substituting this into the Equation (4.1), and multiplying both sides by ⟨R(Q)|, we obtain

⟨R|H|R⟩|Φ⟩ = ⟨R| − ℏ2

2m

(
1

Q

∂

∂Q

(
Q
∂

∂Q

)
+ V (Q)

)
|R⟩|Φ⟩ − ℏ2

2m
⟨R| 1

Q2
|R⟩ ∂

2

∂ϕ2
|Φ⟩ (4.3)

= V ′|Φ⟩ − ℏ2

2m

〈
1

Q2

〉
∂2

∂ϕ2
|Φ⟩ = E⟨R|R⟩|Φ⟩ = E|Φ⟩, (4.4)

1Since the Hamiltonian is independent of the angle, it commutes with the angular momentum operator Lz,
and therefore have a common base.

22



4.1. NUCLEAR DYNAMICS IN JT SYSTEMS 23

where V ′ = ⟨R| − ℏ2

2m

(
1

Q

∂

∂Q

(
Q
∂

∂Q

)
+ V (Q)

)
|R⟩ is a constant. From there, if we choose Q0

such that ⟨1/Q2⟩ = 1/Q2
0, we have the following equation for the angular part of the wavefunc-

tion:

− ℏ2

2mQ2
0

∂2

∂ϕ2
|Φ⟩ = (E − V ′)|Φ⟩. (4.5)

This equation has a classical solution as a plane wave, that is,

|Φ(ϕ)⟩ = 1√
2π
eikϕ, k2 =

2mQ2
0(E − V ′)

ℏ2
, (4.6)

where the multiplicative factor is a normalization constant, and the energy can be isolated as

E = V ′ +
ℏ2k2

2mQ2
0

. (4.7)

Lastly, our solution wavefunction must exhibit a Berry phase, and therefore fulfill the anti-
periodicity condition |Φ(ϕ + 2π)⟩ = −|Φ(ϕ)⟩, which leads to the condition k ∈ Z + 1

2 , and
thus having two possible values of k for every energy level, ±1/2,±3/2, . . ., which leads to the
formation of doublets. Intuitively, this is because there are two possible directions of rotation
around the trough, two equivalent values of angular momentum, which are degenerate in energy,
and no possible solution for a non-degenerate zero angular momentum state.

Note that this term acts as a new potential energy term for the radial equation. Multiplying
the original Equation (4.1) by ⟨Φ(ϕ)| the following equation for the radial part is obtained:

− ℏ2

2m

(
1

Q

∂

∂Q

(
Q
∂

∂Q

))
|R⟩+

(
V (Q) +

ℏ2k2

2mQ2

)
|R⟩ = E|R⟩, (4.8)

where a new effective potential V (Q)+ℏ2k2/(2mQ2) has been introduced. This new term pushes
the radial wavefunction outwards due to the potential energy growing arbitrarily as the radius
decreases, therefore is often referred to as a centrifugal potential. If anharmonic or warping terms
were considered, the exact separation of variables does not hold, since the potential energy would
depend on the angle as well for higher order terms [4].

4.1.2 Tunneling dynamics in JT systems

In systems with degenerate electronic states, such as the E⊗e we are focusing on, the application
of the adiabatic approximation is not possible, as stated before. Nevertheless, for sufficiently
great quadratic/cubic coupling constants, the system can be approximated with other tech-
niques.

Localized quantum states

As shown in Equation (2.54), when considering the quadratic or cubic warping coefficients, the
potential energy surfaces of the system are not the Mexican hat potential, but rather a tricorn
potential, with 3 minima at equidistant angles. If the minima are sufficiently separated, that is,
the energy barrier between them is high enough, we can consider localized states around each
of the minima.

Let us assume that the system performs small oscillations around the minima. Then, low
energy states, localized around the minima (See Figure 4.1), can be expressed as

χi(r,Q) ≈ ψ−(r,Q)Φ(Q−Q(i)), (4.9)
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where ψ−(r,Q) is the electronic wavefunction of the lower sheet of the APES, and Φ(Q−Q(i)) is
the vibrational wavefunction of the i-th potential energy well, set in the coordinates Q(i). Notice
that this interpretation is only valid around the minima, and great displacements on Q can lead
to large errors in the approximation (See Figure 4.1). Therefore, another approximation could
be included, which is the use of fixed nuclear coordinates in the adiabatic function ψ−(r,Q) ≈
ψ−(r,Q

(i)), and thus,

χi(r,Q) = ψ−(r,Q
(i))Φ(Q−Q(i)). (4.10)

Figure 4.1: Localized states around the three minima of the tricorn potential.

Now, let us suppose that the system’s stationary states can be expressed as a linear combi-
nation of the localized states. Since there are three minima, and therefore three localized states,
then there must also be three stationary states. This stationary states can be written as

Ψi(r,Q) =
∑
α

cα,iχα(r,Q), (4.11)

where cα,i are the coefficients attached to the α-th localized state in the linear combination for
the i-th stationary state. Then, these functions should satisfy the time-independent Schrödinger
equation,

H|Ψi⟩ = Ei|Ψi⟩, (4.12)

where dependence on r and Q is omitted for clarity. Substituting (4.11) into the equation, the
following equation is obtained:

H
∑
α

cα,i|χα⟩ = E
∑
α

cα,i|χα⟩. (4.13)

Multiplying both sides by ⟨χβ|, we obtain the following system of equations, in matrix form:

⟨H⟩c⃗i = E⟨S⟩c⃗i, (4.14)

Since all the localized states are equivalent, any rotation of order 3 keeps the system invariant,
and so does the swapping of two of the states, thus we have some restrictions on the matrices.
The equivalence of the localized states implies that the matrix elements of the form ⟨χα|H|χα⟩
are all equal to a constant, which we will denote as E0. On the other hand, the fact that the
localized states are normalized implies that the matrix elements of the form ⟨χα|χα⟩ are all equal



4.1. NUCLEAR DYNAMICS IN JT SYSTEMS 25

to 1. For the non-diagonal elements of the two matrices, knowing the invariance under cyclic
permutations of order 3 and reflections, every non-diagonal element must be equal to each other,
and thus we can denote them as γ for the Hamiltonian matrix, and s for the overlap matrix,
since localized states are not necessarily orthogonal. Therefore, we can write the matrices as
follows:

⟨H⟩ = ⟨χβ|H|χα⟩ =

E0 γ γ
γ E0 γ
γ γ E0

 (4.15)

⟨S⟩ = ⟨χβ|χα⟩ =

1 s s
s 1 s
s s 1

 (4.16)

In these two matrices, the non-diagonal elements γ of the Hamiltonian matrix represent the tun-
neling energy between two localized states, the higher the value of γ, the stronger the tunneling.
On the other hand, the non-diagonal elements s of the overlap matrix represent the overlap
between two localized states, which is a measure of how much the two states are similar. If the
minima are far apart, the overlap s will be small.

Now, this system of equations does not always have a solution, we are trying to find the
vectors such that their transformation by the matrix ⟨H⟩ is equal to the transformation of the
same vector by the matrix E⟨S⟩, which is not possible for every pair of matrices.

(⟨H⟩ − E⟨S⟩)c⃗i = 0 (4.17)

Nevertheless, given hermitian matrices there will be at least one solution if the kernel of the
matrix ⟨H⟩ − E⟨S⟩ is not trivial, or in other words, if the following condition is satisfied:∣∣∣∣∣∣

E0 − E γ − Es γ − Es
γ − Es E0 − E γ − Es
γ − Es γ − Es E0 − E

∣∣∣∣∣∣ = 0. (4.18)

The set of localized states follows the symmetry of the group C3v ⊂ Oh, which is the symmetry
group of the total system. Then, we can transform the matrix into a diagonal form, by means
of the eigenvectors of the C3v group, which are the following:

ψA1 =
1√
3

1
1
1

 , (4.19)

ψE,1 =
1√
6

 2
−1
−1

 , (4.20)

ψE,2 =
1√
2

 0
1
−1

 . (4.21)

The eigenvectors represent the irreducible representations associated with the symmetry group
of the system. There should be 3 of them, the totally symmetric representation A1, the an-
tisymmetric representation A2 and the doubly degenerate representation E. Another way of
justifying this choice is via the dimension of the matrix and the irreducible representations. A1

and A2 are one-dimensional representations, while E is a two-dimensional representation. The
matrix we are dealing with is a 3× 3 matrix, and thus, the only way to represent the system is
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with one E and one A-type representation, since the matrix is totally symmetric. The resulting
diagonal matrix is the following:

λA1 0 0
0 λE 0
0 0 λE

 , (4.22)

λA1(E) = E0 − E + 2γ − 2Es, (4.23)

λE(E) = E0 − E − γ + Es. (4.24)

Since the determinant must be equal to zero, one of the eigenvalues must be equal to zero, and
thus, we can find the energy levels of the system.


λA1 = 0 ⇒ EA1 =

E0 + 2γ

1 + 2s

λE = 0 ⇒ EE =
E0 − γ

1− s

(4.25)

The associated eigenvectors are trivially the ones in (4.19). Therefore, we have shown that with
the use of the localized states, we can find the energy levels of the system if the symmetry is
known, and the wells are sufficiently separated, even when the adiabatic approximation is not
valid. Summarizing, these are the eigenstates of the system and their corresponding energies:

ΨA1 =
1√
3
(χ1 + χ2 + χ3) (4.26)

ΨE,1 =
1√
6
(2χ1 − χ2 − χ3) (4.27)

ΨE,2 =
1√
2
(χ2 − χ3) (4.28)

EA1 =
E0 + 2γ

1 + 2s
(4.29)

EE =
E0 − γ

1− s
(4.30)

Tunneling Splitting

Tunneling splitting is a phenomenon that occurs in quantum systems when the energy levels of
two or more states split due to the presence of a potential barrier. In the case of our study, we are
considering a system with three minima, and the localized states placed around them. The three
localized states are identical and thus, in the absence of interactions between the functions at the
minima we would expect the ground state to be triply degenerate. However, the presence of the
potential barrier between the minima and the fact that the localized states are not fully isolated
leads to the two type of wavefunctions derived in the previous section: a single A1 state and two
E degenerate states. The tunneling splitting (See Figure 4.2) is the energy difference between
the totally symmetric vibronic level and the doubly-degenerate vibronic level that arise when
the three equivalent minima of the lower adiabatic potential surface are quantum-mechanically
coupled by tunneling.

3Γ = EA1 − EE . (4.31)
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Figure 4.2: Tunneling splitting between the A1 and E states.

Putting in the expressions for the energies, we obtain the following expression for the tun-
neling splitting:

Γ =
γ − E0s

1 + s− 2s2
(4.32)

Now, suppose that the system is set in a localized state, say χ1, and that the system is
allowed to evolve in time. For a given state, Ψ, the system will be in a superposition of the three
localized states, and the time evolution will be described by the time-dependent Schrödinger
equation:

iℏ
∂

∂t
|Ψ(t)⟩ = iℏ

∂

∂t

∑
α

cα(t)|χα⟩ = iℏ
∑
α

ċα(t)|χα⟩ = H
∑
α

cα(t)|χα⟩. (4.33)

The problem can be simplified multiplying both sides by ⟨χβ|, and solving a system of first
order differential equations.

iℏ⟨S⟩ ˙⃗c(t) = ⟨H⟩c⃗(t). (4.34)

However, a simpler approach will be given in this study. Since we do not are not looking
for a general solution to the evolution of any given state, but rather the time evolution of a
localized state, we can do the following. We solved the eigenstates of the Hamiltonian in terms
of the localized states, so we can express the localized states in terms of the eigenstates. The
localized state χ1 is given by:

|Φ⟩(t = 0) = |χ1⟩ =
1√
3
ΨA1 +

√
2

3
ΨE,1. (4.35)

And the time evolution of the system is given by:

|Φ⟩(t) = 1√
3
ΨA1e

−iEA1
t/ℏ +

√
2

3
ΨE,1e

−iEEt/ℏ. (4.36)

From there we can compute the probability of finding the system in the initial state χ1 as a
function of time. This probability is given by

P(Φ(t) = χ1) = |⟨χ1|Φ(t)⟩|2 =
5

9
+

4

9
cos

(
(EE − EA1)t

ℏ

)
. (4.37)

Therefore, the system will oscillate between the localized state and some mixed state and will
be on the initial state with a the following frequency and period:

ω =
3Γ

ℏ
, T =

2πℏ
3Γ

. (4.38)
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As we have seen, what originally seemed to be a triply-degenerate system due to symmetry,
is actually a system where the degeneracy is lifted by tunneling effects, leading to a single A1

state and two E degenerate states. If the warping of the PES is strong enough, the localized
states are less likely to tunnel between the minima, leading again to three equivalent states.
What we see in Figure 4.4 is the continuous transition from a doubly degenerate non-warped
system to a triply degenerate limit-case warped system.

4.1.3 Non-Jahn-Teller Systems

For non-Jahn-Teller systems, an analogous treatment can be applied, although the specifics of
the potential energy surface and the resulting wavefunctions will differ. JT systems have the
aforementioned conical intersection that endows them with their unique properties such as the
Berry phase. If there was no intersection (no degeneracy in Q = 0), and therefore the APES can
be described as a single surface, then, as a consequence of the JT theorem (See Ref. [4], Section
2.5), the linear terms must vanish. If there are no linear terms then the quadratic terms must
be responsible for the minima (K would now be negative), and thus we can express the APES
for a non-JT system as the following potential energy surface, given by Equation (4.39).

E(Qθ, Qε) = −1

2
K

(
Q2

θ +Q2
ε

)
+GQθ

(
Q2

θ − 3Q2
ε

)
+H

(
Q2

θ +Q2
ε

)2
(4.39)

From there, the process is exactly the same as in the JT case. If we consider a non-warped
solutions, G = 0, the potential can be described in terms of the radius exclusively, and therefore
the angular part of the wavefunction contributes to the energy with the same term as Equation
(4.7):

E = V ′ +
ℏ2k2

2mρ20
. (4.40)

However, since this time the system does not acquire a geometrical phase when performing a loop
around the origin, the wavefunction must fulfill the periodicity condition |Φ(ϕ+ 2π)⟩ = |Φ(ϕ)⟩,
which leads to the condition k ∈ Z, and thus having a single ground state (k = 0) and a
doubly-degenerate excited state (k = ±1).

The solution for the warped case follows exactly the same reasoning with the localized states
being affected by the warping of the potential energy surface. This results in the two energy
levels discussed in the previous section, a single A1 state and two E degenerate states, with
the same expressions for the energies. The main difference with the JT case is that the energy
levels are reversed. Since the ground state is now non-degenerate in the non-warped case and
the system is only triply-degenerate for extreme warping, we can conclude the A1 state is now
lower than the E states even in the intermediate warped cases.

4.2 Computational Solution of the E ⊗ e Jahn-Teller Problem

To achieve the goal of this study, a Python script has been developed to compute the vibronic
levels and wavefunctions of a Jahn-Teller system. The script is based on the finite differences
method, which allows us to compute the energies and eigenstates of the system numerically.

4.2.1 Finite differences method

In order to compute the vibronic levels of a Jahn-Teller system, we need to solve the Schrödinger
equation, and to do so numerically, it has to be adapted to its matrix form, which we will then
discretize. Ultimately, we will obtain the wavefunctions of the system on the grid set to discretize
the system.
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Figure 4.3: Discretization of the coordinate space into a grid of 2Npart + 1 points in each
coordinate. The separation between points is given by ∆.

Since our coordinate space is one generated by {Qθ, Qε} coordinates, we will discretize the
space in a grid of points. Thus, let us consider a square region of the coordinate space, such that

Q
(max)
θ = Q

(max)
ε , and discretize it so that there is the same number of partitions Npart on each

side. If the point (0, 0) is to be considered, this yields a total of N = (2Npart+1)2 cells in which
we have separated this region (See Figure 4.3). Our solution wavefunction is fundamentally just
an assignation of values to these N cells:

ψ(Qθ, Qε) =
∑
i,j

cijχij(Qθ, Qε), (4.41)

χij(Qθ, Qε) =

{
1, if Qθ ∈ (Q

(i)
θ , Q

(i+1)
θ ), Qε ∈ (Q

(j)
ε , Q

(j+1)
ε ),

0, otherwise.
(4.42)

If we want to solve for the complete wavefunction, we need to consider both |χθ⟩ and |χε⟩
components, both of them defined on this grid. Since the Hamiltonian matrix operator for each
of these components is of dimension N , the total dimension of the Hamiltonian operator will be
2N .

The general method to solve problems of this kind is to write the Hamiltonian as a matrix
operator and compute the operator’s eigenvalues for the energies and its associated eigenvectors
for the eigenstates. In order to do so, we need to discretize the Hamiltonian operator (2.28),
that is, we must evaluate the Hamiltonian matrix on each point of the grid, although the kinetic
energy operator should be handled with caution.

To discretize the Hamiltonian operator, we need a way to approximate the kinetic energy
operator, and thus the second partial derivative operators2:

[T ] = − ℏ2

2m

([
∂2

∂Q2
θ

]
+

[
∂2

∂Q2
ε

])
, (4.43)

where m is the mass of the nuclei in motion and ℏ is the reduced Planck constant. Let us check
the following approximation, commonly used in the context of finite differences. If we consider
a multivariable function f(x⃗) defined on a grid with spacing ∆, we approximate the second
derivative with respect to xi as

∂2f

∂x2i
(· · · , xi, · · · ) =

f(· · · , xi −∆, · · · )− 2f(· · · , xi, · · · ) + f(· · · , xi +∆, · · · )
∆2

, (4.44)

2We will denote in square brackets in favor of avoiding confusion with the proper operator.
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which converges to the second derivative as ∆ → 0. Being ∆ the step between to consecutive
points on the grid (See Figure 4.3), makes it so that the result is closer to a true derivative the
finer the grid is. In terms of our discretization, Equation (4.44) is represented by the following
matrices:

[Bθ] =



−2 1 0 · · · 0

1 −2
. . .

...

0
. . .

. . . 1 0
... 1 −2 1
0 · · · 0 1 −2


, (4.45)

[
∂2

∂Q2
θ

]
=

1

(∆)2


Bθ 0 0 · · · 0
0 Bθ 0 0
0 0 Bθ 0
...

. . .
...

0 0 0 · · · Bθ

 , (4.46)

[
∂2

∂Q2
ε

]
=

1

(∆)2


−2 · · · 1 · · · 0
...

. . .
. . .

...
1 −2 1
...

. . .
. . .

...
0 · · · 1 · · · −2

 . (4.47)

The second derivative operator with respect to the θ coordinates can be expressed as a diagonal
(2Npart + 1)-dimensional matrix where the elements along the diagonal correspond to a block
(2Npart+1)-dimensional matrix. On the other hand, the second derivative operator with respect
to the ε coordinates can be expressed as a tridiagonal N -dimensional matrix, where the non-
zero elements are located on the main diagonal (index 0) and the secondary diagonals of index
±(2Npart + 1).

The potential energy operator, [V ], consists of a 4-block matrix of diagonal matrices. In
each diagonal element of every block, corresponding to some coordinates of the Q-space, the
numerical value of the potential energy is assigned, according to our model Eq. (2.56). Note
that the model is a 2× 2 matrix, while the numerical potential energy operator is a 2× 2-block
matrix, in which the 4 values associated to the same coordinates should equal the value of the
(2.56) matrix, evaluated at those coordinates. The diagonalized potential energies E± can be
obtained by substituting the 4 blocks of the operator matrix into the eigenvalue Equation (2.44),
this should yield two diagonal matrices, whose elements ought to be the potential energies given
by (2.58) at the corresponding coordinates, depending on the sign of the eigenvalue.

The numerical approximation to the Hamiltonian operator is then given by the sum of the
kinetic and potential energy operators, that is,

[H] = [T ] + [V ]. (4.48)

The eigenstates and energies of the system can then be obtained by solving the eigenvalue
problem. Note that the E0 parameter is not included in the potential energy operator since the
reference energy can be chosen arbitrarily3.

Essentially, the script uses a finite differences method to compute the vibronic levels of a
Jahn-Teller system by discretizing the Hamiltonian operator and solving the resulting matrix

3This term only shifts the energy surface up or down, but the states’ probability distributions and energies,
which are relative to the ground state energy, remain unchanged.
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eigenvalue problem, returning the energies of the local θ and ε vibrational modes, as well as the
eigenstates of the system.

4.2.2 Program output

The developed programs need the user to input the coupling constants V (in eV/Å), K(in
eV/Å2), F (in eV/Å2), G (in eV/Å3) and H (in eV/Å4) that characterize the APES of a given
system, the mobile mass m (in atomic mass units, amu), the maximum simulation distance xmax

(in Å), the number of partitions Npart and the number of selected states to be computed.

Prior to working on real systems, we will test the program with different sets of parameters,
and check that the results are consistent with the theoretical predictions in the previous section.
For the sake of consistency, all the test runs will be performed with the same grid, Npart = 100,
mass, m = 16 amu, maximum simulation distance, xmax = 1 Å, number of selected states, 6,4

and quartic constant, H = 0.001 eV/Å4. The script is conceived to be as flexible as possible,
and although the second order term F is neglected for this work, it is considered but set to zero.

In order to study dependence on the warping term, we will run the program with constant
parameters V = 1 eV/Å, K = 2 eV/Å2 and different values of the warping constant, G, while
keeping the rest of the parameters constant. The results of this test are shown in Table 4.1. The
energy of the first 6 vibronic levels is shown for values of G ranging from 0.00 eV/Å3 to 0.04
eV/Å3 in steps of 0.01 eV/Å3. The energy levels for a warping term of G = 0.1 eV/Å3 are also
shown to illustrate the convergence to the triply-degenerate limit case.

G/eVÅ−3 E0/meV E1/meV E2/meV E3/meV E4/meV E5/meV

0.00 0.000 0.000 1.119 1.119 3.320 3.320
0.01 0.000 0.000 0.596 1.943 3.609 3.609
0.02 0.000 0.000 0.317 2.980 4.321 4.321
0.03 0.000 0.000 0.176 4.093 5.198 5.199
0.04 0.000 0.000 0.101 5.185 6.082 6.082
0.10 0.000 0.000 0.006 10.315 10.453 10.454

Table 4.1: Test of the warping term with different values of G. The energies are in eV, and
the warping term is in eV/Å3.

The results show that for systems without warping, the states are arranged in degenerate
doublets. As the warping term increases, the degeneracy is lifted for some of the states and
splitting occurs, the mean energy of the states increases as well. The results of the test have
been summarized in the Figure 4.4, where the energies of the states are plotted against the
warping term, G.

4This choice may seem arbitrary, but in the previous section we have shown that these states are arranged in
doublets and triplets, and it is believed that this many will be enough to show this behavior.
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Figure 4.4: Test of the warping term with different values of G. The energies are in eV, and
the warping term is in eV/Å3.

Figure 4.4 shows that the splitting of the intermediate states, E3 and E4, shifts them to the
ground state and the next excited state energies, respectively, as the warping term increases.
Since the energy of all the states is increasing with G, convergence of the higher intermediate
state to the excited level might not be as clear as the convergence of other state to the ground
level. Further increasing the warping term shows that convergence is achieved in extreme cases,
namely, when the warping term is very high with respect to V and K. This cannot be shown in
the figure due to not being able to appreciate the energy level differences for lower values of G
otherwise. The convergence of the higher intermediate state can be seen in Figure 4.4 under the
dashed line, where, for G = 0.1 eV/Å3, the energy levels are almost already arranged in triplets.

4.2.3 Polar coordinates

As shown in Equation (2.56), the unwarped Mexican Hat has radial symmetry and can be nicely
expressed in polar coordinates. As a consequence, one might wonder whether the program can
be adapted to work with polar coordinates instead of Cartesian coordinates. From a theoretical
point of view, the answer is yes, just requiring to adapt the potential and kinetic energy operators
to these coordinates. Only the kinetic energy operator would need to be adapted. In polar
coordinates, the kinetic energy operator is given by

T = − ℏ2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2

)
. (4.49)

With this equation, the first problem that arises is that the kinetic energy operator is not
well defined at the origin, ρ = 0, since the second and third terms diverge. The coordinate
transformation to polar coordinates is not well defined at the origin, and therefore, the kinetic
energy operator is not well defined at the origin in polar coordinates. From a computational
standpoint, this problem might not be as relevant, since we need to discretize the space in a grid,
now a polar grid (See Figure 4.5), the origin can be avoided by setting a minimum distance,
ρmin > 0, and the kinetic energy operator can be computed as usual.
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Figure 4.5: Left: Discretization in polar coordinates including the origin. Right: Discretization
in polar coordinates avoiding the origin.

Another issue that arises is the hermiticity of this operator. It is clear that the kinetic energy
operator is hermitian in Cartesian coordinates, but it should also be in polar coordinates. Let
us check that this property still holds in polar coordinates. We say that an operator is hermitian
if it satisfies the following condition:

⟨ψ|Tφ⟩ = ⟨Tψ|ϕ⟩, (4.50)

with respect to the inner product in polar coordinates, defined as

⟨ψ|ϕ⟩ =
∫ 2π

0

∫ ∞

ρmin

ψ∗ϕρdρdθ. (4.51)

Since the kinetic energy operator is linear and, as can be seen in Equation (4.49), there are no
cross derivatives, we can write the kinetic energy operator as

T = Tρ + Tθ, (4.52)

Tρ = − ℏ2

2mρ

(
∂

∂ρ

(
ρ
∂

∂ρ

))
, (4.53)

Tθ = − ℏ2

2mρ2
∂2

∂θ2
. (4.54)

If we prove that both Tρ and Tθ are hermitian, then the kinetic energy operator is hermitian as
well. As for the first term, we have

⟨ψ|Tρϕ⟩ = − ℏ2

2m

∫ 2π

0

∫ ∞

0
ψ∗ 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
ρdρdθ (4.55)

= − ℏ2

2m

∫ 2π

0

[
ψ∗ρ

∂ϕ

∂ρ

]∞
0

dθ +
ℏ2

2m

∫ 2π

0

∫ ∞

0

∂ψ∗

∂ρ
ρ
∂ϕ

∂ρ
dρdθ (4.56)

=
ℏ2

2m

∫ 2π

0
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ρ
∂ψ∗

∂ρ
ϕ

]∞
0

dθ − ℏ2

2m

∫ 2π

0

∫ ∞

0
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ρ

∂

∂ρ

(
ρ
∂ψ∗

∂ρ

)
ϕρdρdθ (4.57)

= − ℏ2

2m

∫ 2π

0

∫ ∞

0

1

ρ

∂

∂ρ

(
ρ
∂ψ∗

∂ρ

)
ϕρdρdθ = ⟨Tρψ|ϕ⟩, (4.58)
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where we have used integration by parts in the second and third equalities, and the fact that
the wavefunctions vanish at the boundaries, therefore Tρ is hermitian. As for the second term,
by a similar argument, we have

⟨ψ|Tθϕ⟩ = − ℏ2

2m

∫ 2π

0

∫ ∞

0
ψ∗ 1

ρ2
∂2ϕ

∂θ2
ρdρdθ (4.59)

= − ℏ2

2m
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0

1

ρ
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]2π
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0

∫ ∞

0

1

ρ

∂ψ∗
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dρdθ (4.60)
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= − ℏ2

2m

∫ ∞

0

(
1

ρ2
∂ψ

∂θ2

)∗
ϕρdρ = ⟨Tθψ|ϕ⟩, (4.62)

where we have used integration by parts in the second and third equalities again, and the fact
that the wavefunctions are 2π-periodic in θ, and their derivatives as well, therefore the integral
vanishes, and thus Tθ is hermitian as well. As a result, the kinetic energy operator is hermitian in
polar coordinates, and therefore the Hamiltonian operator is hermitian as well. It can be shown
that the hermiticity is conserved when discretizing the wavefunction, since it can be written as
a sum of characteristic functions scaled by a constant:

ψ(ρ, θ) =
∑
i,j

cijχij(ρ, θ), (4.63)

χij(ρ, θ) =

{
1, if ρ ∈ (ρi, ρi+1), θ ∈ (θj , θj+1),

0, otherwise.
(4.64)

From the theoretical standpoint, this is really nice, since the system is well behaved in
polar coordinates. However, in the same way that there were no off diagonal terms for the
kinetic energy in Cartesian coordinates, but the potential energy operator mixed the |θ⟩ and |ε⟩
components, in this coordinate system the potential energy is diagonal, and the kinetic energy is
the one that mixes the components. Moreover, while the derivative matrices are symmetric real
matrices, multiplying by the 1/ρ and 1/ρ2 factors (Eq. (4.49)) leads to non symmetric matrices
since matrix multiplication is not commutative, and therefore a non-hermitian operator in these
coordinates. This last issue has been the main deterrent when implementing the program in
polar coordinates, thus the simpler option of Cartesian coordinates has been chosen.

All of these problems do not arise in the case of Cartesian coordinates, although there are
other issues that need to be addressed. The main issue is that the potential energy surface has
a very important radial dependence, but in a Cartesian grid, our simulation space is a square.
This could lead to a situation where a minimum distance of simulation is needed, but deep wells
form in the corners, deeper that the predicted three minima (See Figure 4.6). This results in
the wavefunction being spread out in the corners as a consequence of the third term growing
faster than the second term and changing signs due to the cosine depending on the angle (See
Eq. (2.58)). It is not a problem caused by need of more simulation distance and hence explains
the reason why the quartic term is introduced.
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Figure 4.6: Test run corresponding to the set of fixed parameters used for Table 4.1 with
G = 3.0 eV/Å3. Left: Potential energy surface with minimum values in the corners. Right:
Wavefunction of the first three states of the system, showing the wavefunction being spread out
in the corners.

4.3 Obtention of coupling constants and tunneling splitting

In this section, we will obtain the coupling constants of various systems with different methods.
We will focus on a classical JT system, KCuF3, for which coefficients will be obtained via sim-
ulations with CRYSTAL (See Chapter 3). In addition to this, we will also obtain the tunneling
splitting of the system and the characteristic period of oscillation of a localized state in the
system. Furthermore, other compounds will be considered (Triatomic molecules and impurities
in crystals), although the coupling coefficients will be obtained from data previously collected
in Refs. [25] and [13] instead of performing new calculations.

4.3.1 KCuF3

In order to obtain the coupling coefficients for a KCuF3 crystal, we will use the CRYSTAL
program to perform a series of calculations that provide us with an accurate representation
of the APES. Essentially, we will plot a section of the potential energy surface, along the Qθ

coordinate, to be precise. This axis corresponds to Qε = 0 in Equation (2.57). By obtaining the
value for a set of energies on this surface, we can fit the parameters of the JT model.

Notice that the energy values do not show a continuous behavior, as the more central region
exhibits a leap in energies (See Figure 4.8). This is due to the fact that in this crystal the
Cu2+ ion is in a d9 configuration, which is separated into a full t2g shell (6 electrons) and an
almost full eg shell (3 electrons) (See Figure 4.7). Due to JT distortion, the energy levels split,
producing a lower energy level and a higher energy level. On regular conditions, the electrons
would populate the lower energy level first and then the higher energy level. However, since
this is a highly symmetric cubic system, near the reference configuration, the splitting is not
as high. Moreover, solids do not form well-defined energy levels, they exhibit a band structure
instead. Therefore, this leads to the bands overlapping near the reference configuration, and
thus, the states populating higher energy levels resulting in a metal state that is not observed
in experiments (i.e. it is an artifact of the calculations).
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Figure 4.7: d9 configuration of the Cu2+ ion in KCuF3. The eg is split into two bands, instead
of two discrete levels.

We can fit the data corresponding to the lower sheet of the APES to the model given by
Equation (2.57) with Qε = 0,

E(Qθ) = E0 ± V Qθ +
K

2
Q2

θ +GQ3
θ +HQ4

θ, (4.65)

and obtain the values for the coupling coefficients for this solid.

Figure 4.8: Least squares fit of the Jahn-Teller model to the KCuF3 experimental data. Ob-
tained parameters: E0 = −0.42 eV, V = −1.26 eV/Å, K = 9.25 eV/Å2, G = −2.80 eV/Å3,
H = 41.67 eV/Å4.

In KCuF3, the unit cell undergoes an elastic distortion that leads to the change of the lattice
parameters of whole sections of the crystal. In a sense, the distortion of a unit cell pushes
the atoms in the surrounding cells, therefore the mass of the unit cell has to be accounted for
in the energy calculations. Plugging in the values obtained from the fit (V = −1.26 eV/Å,
K = 9.25 eV/Å2, G = −2.80 eV/Å3, H = 41.67 eV/Å4) and the mass per unit cell of KCuF3

(m = 159.6395 amu) into the python script, we obtain the energy density values for the KCuF3

crystal. With the data for the first three energy levels, we can also get the value for the tunneling
splitting and oscillation period of a localized state, or in other words, the oscillation period of
an electron located in one of the minima of the potential energy surface. The results are shown
in Table 4.2 and Figure 4.9.

Apart from the energy of the vibrational modes and the distribution of the wavefunctions, the
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Figure 4.9: Image of the resulting wavefunctions of the first three states of the KCuF3 crystal
(top) and the corresponding APES (bottom).

vibronic Hamiltonian also plays a crucial role in determining the properties of the system. For
this system, with xmin = 0.3 Å and Npart = 100, the radius of the minima is about ρ0 = 0.118 Å.
Keep in mind that this method is strongly dependent of the simulation distance and number of
partitions chosen. A coarser grid may cause the radius to be poorly estimated.

E(1) (meV) E(2) (meV) 3Γ (meV) ω (rad/ps) T (ps)

0.000 0.954 0.954 1.447 4.343

Table 4.2: Results for the unit cell energy of the first two excited states, tunneling splitting
and angular velocity and period of oscillations in a KCuF3 crystal. Ground state energy is not
shown since energies are set relative to the ground state energy.

In addition to the energy values of the lower sheet of the APES of the system along the
Qθ axis, the values of the energies around the circumference defined by the minima of the
potential energy surface can also be studied. This “circumference” in the Q-space is called a
pseudorotation because the system is, in a sense, rotating around the center, from minimum
to minimum in a periodic manner. This is not an actual rotation of the complex but rather
a motion in the Q-space that produces a periodic oscillation of the distorted configurations
of the system, from one distorted configuration to another [4]. The values are obtained by

performing a series of calculations with the CRYSTAL program, where the angle ϕ is varied and
the energy is computed for each angular value (Eq. (2.58)). As for how these values have been
gathered, since CRYSTAL needs to be given the numerical values of the unit cell’s parameters,
the lattice parameters in terms of the angle ϕ have been obtained beforehand. The JT distortions
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only transform our system from its cubic structure in the reference position to a tetragonal or
orthorrombic structure (See Figure 4.10), all three angles of the unit cell remain unchanged.
Thus, only the cell constants need to be adjusted. We can think of the system as having a cubic
structures with a lattice parameter a0 = b0 = c0 = R0. A Qθ distortion will lead to a tetragonal
structure with a = b = R0 −Qθ and c = R0 +2Qθ, according to Figure 2.1. On the other hand,
a Qε distortion will lead to a tetragonal structure with a = R0 +Qε, b = R0 −Qε and c = R0,
according to Figure 2.1 as well.

Figure 4.10: Tetragonal (Left) and orthorhombic (right) distortions of the unit cell of KCuF3.

The path followed by a pseudorotation can then be expressed in terms of the angle ϕ as
follows:


a = R0 − 2

√
12α cosϕ+ 4β sinϕ

b = R0 − 2
√
12α cosϕ− 4β sinϕ

c = R0 + 4
√
12α cosϕ

(4.66)

Due to the system being 2π/3-periodic, the data has been gathered for the first 60 degrees,
which is enough to cover the whole circumference by reflection and repetition. The data can be
reflected, namely, assigning the energy value for 65º as the one for 55º, and the one for 70º as
the one for 50º, and so on, until the 120º value is reached; and then extended to make the full
rotation. This time, the data can be fitted to the model given by Equation (2.58) for the lower
sheet setting Q = Q0, the radius of the minima. This yields the simple model

E(ϕ) = C +A cos(3ϕ), (4.67)

where C = E0 +
K

2
ρ20 + Hρ40 and A = Gρ30, which are the constant to be fitted. The radius

of the minima can be obtained from the fit by solving for ρ0 in the expression for A, which is
obtained numerically.

Figure 4.11 shows that the fitting is quite good, with few points deviating from the model.
The reason to this discrepancy may be caused by the change of symmetry at maxima and
minima that changes the accuracy of CRYSTAL solutions at these points compared to others.
The maxima would correspond to the saddle points of the APES, which are not stable critical
points, thus the system would spontaneously distort at these points. This time, the radius of
the minima is about 0.135 Å, which is a bit higher than with the previous method.
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Figure 4.11: Least squares fit of the Pseudorotation model to the KCuF3 experimental data.
Obtained parameters: C = 6.46 meV, A = −6.83 meV, Q0 = 0.135 Å.

Non-Jahn-Teller Approximation

Although KCuF3 is widely known to be a prototypical example of a Jahn-Teller system, it is
interesting to see how the results would change if we were to ignore the Jahn-Teller coupling in
the system. This can be done by using a model that does not exhibit a conical intersection, and
therefore no geometrical phase.

In order to do so, we can fit (See Figure 4.12) the experimental data obtained from the
energetic profile to the model given by Equation (4.39).

Figure 4.12: Least squares fit of the Non-Jahn-Teller model to the KCuF3 experimental data.
Obtained parameters: E0 = −0.47 eV, K = 5.15 eV/Å2, G = −2.80 eV/Å3, H = 195.69 eV/Å4.

Plugging these parameters into the model allows us to obtain the energy density values for
the KCuF3 crystal in this approximation. The results are shown in Table 4.3 and Figure 4.13.
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E(1) / meV E(2) / meV 3Γ / meV ω / rad/ps T / ps

1.020 1.020 1.020 1.549 4.055

Table 4.3: Results for the unit cell energy of the first two excited states, tunneling splitting and
angular velocity and period of oscillations in a KCuF3 crystal using a non-JT model. Ground
state energy is not shown since energies are set relative to the ground state energy.

Figure 4.13: Resulting wavefunctions for the KCuF3 crystal using a non-JT model.

From the results obtained (Table 4.3), we can see that the non-Jahn-Teller approximation
shows a resemblance to the Jahn-Teller case as for the magnitude of the energy splitting, and
therefore frequency and period. However, the absence of Jahn-Teller coupling in this model
leads to differences in the energy levels. It is easy to see that the energy levels correspond to
a degeneracy of the first excited state, as opposed to the ground state in the JT case. This
is in agreement with what was expected from the theoretical analysis, since the lack of conical
intersection, and therefore geometrical phase, leads to a reversal of the energy level ordering.

On the other hand, the wavefunctions obtained (Figure 4.13) might seem different to those
of the Jahn-Teller case (Figure 4.9), particularly in terms of their spatial distribution. However,
note that in the JT case there are two sheets of the APES, while in the non-JT case there is
only one. These two sheets make it so that the total wavefunction is a linear combination of the
wavefunctions from each sheet, |+⟩ and |−⟩. This two wavefunctions are connected to the |θ⟩
and |ε⟩ electronic states by Equation (2.48). The wavefunctions shown in Figure 4.9 correspond
to the wavefunctions in terms of the |θ⟩ and |ε⟩ states, but if we were to transform them to
their lower/upper sheets counterparts, we would obtain spatial distributions similar to Figure
4.13 for those attached to |−⟩. This is in fact predicted by Equations (4.26), (4.27) and (4.28),
where for both the JT and non-JT cases, the wavefunctions can be expressed in terms of the
same basis states.

4.3.2 JT in impurities and molecules

The same methodology could certainly be implemented for other systems exhibiting Jahn-Teller
distortions, as long as the properties of the system are comparable to those of KCuF3, such as the
presence of similar electronic configurations and local symmetries. However, in this section, we
will try to obtain the same data as for KCuF3 (Energy of the first two excited states, tunneling
splitting and oscillation period) for other systems without performing CRYSTAL simulations.

Instead of relying on directly performing the calculations, where via simulations we have
obtained data of the APES and fitted said data to extract the coupling coefficients of the
model, we will use the data gathered in Refs. [25] and [13] to obtain the coupling coefficients
and afterwards calculating the corresponding energy values. The data has been summarized
in Table 4.4. In order to be consistent with other results in KCuF3, only the data obtained
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with DFT have been considered. In the original work, the coupling coefficients are named V1e,
V2a and V3a, they have been renamed to V , K and G to match with the used notation in this
work. Table 4.4 summarizes the obtained coupling coefficients for Rh2+-doped NaCl, Cu2+- and
Ag2+-doped MgO and CaO oxides, and Na3, K3, Cu3 and Ag3 molecules.

Compound m / amu V / eV/Å K / eV/Å2 G / eV/Å3

NaCl:Rh2+ 35.45 1.17 1.93 -0.72
MgO:Cu2+ 16.00 1.13 7.12 5.09
MgO:Ag2+ 16.00 1.38 10.00 11.89
CaO:Cu2+ 16.00 1.16 3.78 -0.96
CaO:Ag2+ 16.00 0.78 4.51 3.05

Na3 22.99 0.44 0.52 -0.24
K3 39.10 0.28 0.26 -0.09
Cu3 63.55 1.07 5.10 -6.23
Ag3 107.87 0.87 2.61 -2.14

Table 4.4: Data for the coupling coefficients of various oxides and molecular systems. Data
extracted from Refs. [13, 25]. The masses of the moving nuclei are also included.

These values do not offer the complete set of coupling coefficients for the model constructed,
it lacks the limiter fourth-order coefficient H. Plugging in these values directly into the program,
setting H = 0, does not yield accurate results. Since the system is not necessarily bounded due
to fourth-order term being zero, many of these systems will not converge when the simulation
box is large. A clear indication of this behavior for this is finding the wavefunctions spread out
in the corners of the simulation box, and if doing a series of simulations with increasing box
size, the energy values become more negative with each iteration. One could not directly rule
out a simulation just by looking at the energies or the wavefunctions being spread out, since the
real minima could be located out of the simulation box, but performing successive simulation
might give the insight needed to identify the issue. The simulation will yield good results as
long as the warping coefficient is small enough. However, many of the warping coefficients are
comparable to the harmonic coefficients, which leads to the system not converging most of the
times. In order to avoid this issue, it is crucial to include the fourth-order term H in the model.

Obtaining H from available data

As can be seen in Table 4.4, the data does not include an estimation for H. Thus, we will
try to find a reasonable one here. One first approach is to just try to estimate the value of H
numerically, by performing a series of simulations with different values of H and finding the
smallest for which the minima are not located on the sides of the simulation box (an indication
of non-convergence). The trial values for H ran from 0 up to 40, with increments of 0.05. This
method did not give satisfactory results, some of the runs did not converge, even for large values
of H, while other runs converged when H was big enough to strongly perturb the shape of the
APES.

Another approach is to use a more refined and delicate criterion. For example, taking the
equation that gives us the model (Eq. (2.58)), we can take the derivative on ρ and set it to
zero. This results in a cubic polynomial, therefore there must be at most 3 solutions. We know
that one of them is the real minimum ρ = ρ0, so we can factor a (ρ− ρ0) out of the polynomial,
leaving us with a quadratic equation that can be managed more easily:

0 = −V +Kρ+ 3Gρ2 + 4Hρ3 = a(ρ− ρ0)(ρ
2 + bρ+ c). (4.68)
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By performing a simple euclidean division, we find that a = 4H, b = 4Hρ0 + 3G and c =
4Hρ20 + 3Gρ0 + K. And from there, the two other solutions to the equation, in terms of the
first, are the solution to the resulting second degree polynomial:

ρ′± =
−4Hρ0 − 3G±

√
9G2 − 48H2ρ20 − 16KH

8H
. (4.69)

Ideally, we would like to find H such that ρ′± are not real numbers, therefore leaving only one
solution. This approach, although mathematically sound, is numerically very unstable, and thus
not really promising. Another way is thinking of H as a perturbation of some kind. In order
to relate this parameter to the other coefficients, or at least to some of them, we can do the
following: first we need to find the two critical points, ρ1 and ρ2 with |ρ1| < |ρ2|, of the APES
on the positive Qθ axis by differentiating and setting to zero,

−V +Kρ+ 3Gρ2 = 0. (4.70)

Then, we will choose H such that it satisfies the condition

3Gρ22 + 4Hρ32 = 0, (4.71)

and as a result we obtain

H = − 3G

4ρ2
. (4.72)

This condition may seem arbitrary, but it originates from considering both G and H as pertur-
bations of the system, this will be tackled in more detail in the following sections. The results
produced with this method are collected in the Table 4.5.

Crystal V / eV/Å K / eV/Å2 G / eV/Å3 H / eV/Å4

NaCl:Rh2+ 1.17 1.93 -0.72 0.41
MgO:Cu2+ 1.13 7.12 5.09 -6.46
MgO:Ag2+ 1.38 10.00 11.89 -23.36
CaO:Cu2+ 1.16 3.78 -0.96 0.88
CaO:Ag2+ 0.78 4.51 3.05 -3.64

Na3 0.44 0.52 -0.24 0.15
K3 0.28 0.26 -0.09 0.04
Cu3 1.07 5.10 -6.23 11.35
Ag3 0.87 2.61 -2.14 2.57

Table 4.5: Data from Table 4.4 along with the derived H coefficients from Equation 4.72.

It is easy to spot the issue with these derived values: some of them are negative, and the
system is not necessarily bounded. However, this is caused due to H having the opposite sign to
G, and because we chose the positive Qθ axis to derive the values. The negative axis could have
been chosen instead. Recall that the sign of G determines if the minimum is on the positive axis
(G < 0) or negative (G > 0) axis. Taking absolute values would account for this discrepancy
and solve the issue. The energies have been calculated using these values, and they have been
collected in Table 4.6.

These values may look promising, despite the disparity between some of the compounds,
since the oscillation periods are in the order of picoseconds (as in the case of KCuF3) and
nanoseconds (a usual timescale for nuclear motions). However, they need to be consistent with
the data before applying the perturbation from which theH term has been obtained (Eq. (4.72)),
that is, keeping the radius of the minima near the original value. Unfortunately, numerically
calculating these radii gives values two to three times larger than the original ones. Therefore,
this results should be disregarded.
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Crystal E(1) (meV) E(2) (meV) 3Γ (meV) ω (THz) T (ps)

NaCl:Rh2+ 0.003 0.003 0.003 0.004 1650
MgO:Cu2+ 0.001 1.849 1.849 2.809 2.237
MgO:Ag2+ 0.001 2.124 2.124 3.228 1.947
CaO:Cu2+ 0.000 0.047 0.047 0.071 88.732
CaO:Ag2+ 0.002 1.695 1.695 2.575 2.440

Na3 0.001 0.001 0.001 0.001 5865
K3 0.001 0.001 0.001 0.001 6488
Cu3 0.001 0.001 0.001 0.001 5937
Ag3 0.002 0.002 0.001 0.002 2674

Table 4.6: Results for the unit cell energy of the first two excited states, tunneling splitting
and angular velocity and period of oscillations in some crystal systems. Ground state energy is
not shown since energies are set relative to the ground state energy.

Approach by Interpolation

One could be tempted to obtain the coupling coefficients from a direct method at this point, in
the same way as it was done for KCuF3. However, we can try to reobtain them from existing
data. We would need to find a method to obtain all of them, instead of criteria to add H from
the others. Table 4.7 shows the radius of the two local minima of the APES along the Qθ axis,
for the extended configuration a = b < c and the contracted configuration a = b > c, along with
the energy drop for those configurations for the crystal systems listed before.

Compound Qe (Å) Ee (eV) Qc (Å) Ec (eV)

NaCl:Rh2+ 0.321 0.227 0.230 0.164
MgO:Cu2+ 0.080 0.035 0.008 0.039
MgO:Ag2+ 0.069 0.045 0.069 0.053
CaO:Cu2+ 0.118 0.038 0.107 0.032
CaO:Ag2+ 0.087 0.032 0.087 0.031
SrO:Cu2+ 0.146 0.047 0.159 0.035
SrO:Ag2+ NC NC 0.173 0.136

Na3 0.86 1.783·10−5 0.33 1.079·10−5

K3 0.85 1.266·10−5 0.42 9.99·10−6

Cu3 0.15 8.679·10−6 0.09 5.94·10−6

Ag3 0.27 1.196·10−5 0.14 7.699·10−6

Table 4.7: Data for the distance to the minima for extended and contracted tetragonal dis-
tortions in a number of JT impurities and molecules and their energy. NC stands for ”Not
Converging”.

The problem at hand is how to recover the coefficients, which characterize the curve of the
APES, from a few points on said curve. This can be achieved if we relate the minima to the
energy drops with the equations of the model (2.57) with Qε = 0. Since they are minima, they

must also be solutions to the equation given by the derivative set to zero,
∂E

∂Qθ

∣∣∣∣
Qθ=Qe,Qε=0

=

∂E

∂Qθ

∣∣∣∣
Qθ=Qc,Qε=0

= 0. This leaves a system of four equations with four unknowns5:

5The E0 term is just zero, since the energy drop is in relation to the reference distortion.
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

Ee = −V Qe +
K

2
Q2

e +GQ3
e +HQ4

e,

Ec = V Qc +
K

2
Q2

c +GQ3
c +HQ4

c ,

0 = −V +KQe + 3GQ2
e + 4HQ3

e,

0 = V +KQc + 3GQ2
c + 4HQ3

c .

(4.73)

Solving this system of equations gives the values for the coupling coefficients shown in Table 4.86.

Crystal V (eV/Å) K (eV/Å2) G (eV/Å3) H (eV/Å4)

NaCl:Rh2+ 3.309 36.976 7.486 -89.479
MgO:Cu2+ -9.248 -956.089 7.889·103 -4.112·104
MgO:Ag2+ 1.418·1015 6.167·1016 0 -2.16·1018
CaO:Cu2+ -0.266 3.943 2.179 -125.159
CaO:Ag2+ 1.084·1014 3.739·1015 0 -8.23·1016
SrO:Cu2+ -1.664 -25.645 1.7249 158.259
SrO:Ag2+ — — — —

Na3 -4.674·10−5 1.374·10−3 -1.675·10−3 9.779·10−4

K3 -1.052·10−5 5.643·10−4 -6.251·10−4 3.520·10−4

Cu3 -1.919·10−5 7.192·10−3 -4.022·10−2 0.120
Ag3 -2.554·10−5 3.999·10−3 -1.343·10−2 0.023

Table 4.8: Coupling coefficients for the different structures obtained from solving system of
equations (4.73).

These results also show some issues with the numerical values. In particular, half of the
quartic coefficients are negative. Additionally, some of the coefficients are really large, which is
not expected for any real physical system. This method gives results that match the original
data, at the cost of possibly introducing some unphysical values. Let us think of this method
in an analogous way to an interpolation. Given a set of points on the APES, we can find a
polynomial, or in this case two related polynomials, that pass through those points. However,
there is no way of ensuring that the quartic coefficient is positive, or that any of the coefficients
explode7. This is therefore not a reliable method, once again. Energy values have been calculated
for SrO:Cu2+, Na3, K3, Cu3, and Ag3, which are the only systems that showed reasonable results.
This data has been gathered in Table 4.9.

Crystal E(1) (meV) E(2) (meV) 3Γ (eV) ω (THz) T (ps)

SrO:Cu2+ 0.013 0.883 0.001 1.342 4.681
Na3 0.002 0.778 0.001 1.182 5.316
K3 0.000 0.444 0.0004 0.675 9.315
Cu3 0.000 1.515 0.0015 2.302 2.729
Ag3 0.000 0.567 0.0006 0.862 7.290

Table 4.9: Results for the unit cell energy of the first two excited states, tunneling splitting
and angular velocity and period of oscillations in some crystal systems. Ground state energy is
not shown since energies are set relative to the ground state energy.

6The coupling coefficients for SrO:Ag2+ have not been calculated because the original data lacked information
about the extended configuration.

7Values in the order of 1015 or 1016 are commonly labeled as numerical overflow, same as values in the order
of 10−15 being a numerical zero or underflow, due to operations to them lose significative value.
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This time, the results are more consistent with what was expected, the ones that could be
worked on at least. All the oscillation periods are in the order of picoseconds, which is the
same scale as the one for KCuF3. The energy values for the ground state doublet seem to be
close, which suggests that the approximations are good (There should be two degenerate ground
states, this may not happen due to numerical approximations, but the energy difference should
still be as low as possible). Nevertheless, not all systems could be analyzed with this method,
therefore the search for a more reliable approach continues.

Approach by Correction

The last proposed method consists of using the data of Table 4.7 to construct a Mexican hat-like
model and then get the warping from applying a perturbation to the model. The idea is to start
with a simple double quadratic model, given by the equation:

E(Q) = ±V Q+
K

2
Q2. (4.74)

This model has two minima, which, ideally, should correspond to the two minima in Table 4.7,
Qe and Qc. However, this model is symmetric with respect to the Q = 0 axis, therefore the two
minima are located at equal distances from the origin. We are going to consider that distance

to be the mean value of the two minima, Q0 =
Qe +Qc

2
. The energy drop for those positions

should be the mean value of the two energy drops, E0 =
Ee + Ec

2
. This gives two conditions to

be satisfied:

E0 = E(Q0) = E(−Q0), (4.75)

0 =
∂E

∂Q
(Q0) =

∂E

∂Q
(−Q0). (4.76)

On the other hand, the warping can be introduced with a perturbation of the form

E′(Q) = GQ3 +HQ4, (4.77)

which is the same perturbation we used before. This perturbation breaks the symmetry of the
model and introduces warping, moving one of the minima downwards and the other upwards
(See Figure 4.14). Note also that changing the sign of G acts like a reflection with respect
to the Q = 0 axis, then if G → −G, then E′(Q) → E′(−Q), and the minima are swapped.
Therefore, we can assume that the deeper minima is located at Q0 > 0 just for calculation
purposes, and choose the sign of G accordingly. One can easily show that this choice ensures
that ∂2E′/∂Q2 > 0 at Q0. The perturbation will unavoidably shift the position of the minima,
but the overall shape of the potential will remain similar.



46 CHAPTER 4. RESULTS

Figure 4.14: Diagram of the idea to obtain the coupling coefficients from the minima of the
APES. It illustrates in red the base symmetric model, in blue the perturbation and in black the
final model as the sum of both.

In order to obtain the coupling coefficients, we just need to solve the system of equations
given by the base model and the perturbation, and their derivatives at the minima. For the
perturbation, the condition imposed is that the difference of energies at the minima is equal to
the difference of energy drops. This gives us the following system of equations:

−E0 = −V Q0 +
K

2
Q2

0, (4.78)

0 = −V +KQ0, (4.79)

∆E = E(−Q0)− E(Q0) = −2GQ3
0, (4.80)

0 = 3GQ2
0 + 4HQ3

0. (4.81)

Solving this system of equations will give us the values of the coupling coefficients V , K, G, and
H:

V =
2E0

Q0
, (4.82)

K =
2∆E

Q2
0

, (4.83)

G =
Ee − Ec

2Q3
0

, (4.84)

H = − 3G

4Q0
. (4.85)

Substituting the data in Table 4.7 into these equations gives the results shown in Table 4.10.

Final Results

Plugging the values from Table 4.10 into the python script resulted in the energy values, tun-
neling splitting and oscillation period of a localized state for these crystal systems, which are
presented in Table 4.11.

All of the results seem to correspond well to what is expected for dynamics of Jahn-Teller
systems. For starters, there is a good separation of energy levels, between the degenerate ground
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Crystal V (eV/Å) K (eV/Å2) G (eV/Å3) H (eV/Å4)

NaCl:Rh2+ 1.4189 5.1503 -1.515 4.124
MgO:Cu2+ 1.6822 38.2317 25.470 434.154
MgO:Ag2+ 1.4213 20.5984 11.133 121.016
CaO:Cu2+ 0.6238 5.5446 -2.177 14.513
CaO:Ag2+ 0.7225 8.3047 -0.847 7.304
SrO:Cu2+ 0.5341 3.5025 -1.730 8.510
SrO:Ag2+ 1.5766 9.1135 13.170 57.095

Na3 0.3879 0.6519 -1.672·10−5 2.107·10−5

K3 0.2877 0.4531 -5.205·10−6 6.148·10−6

Cu3 0.9825 8.1875 -7.928·10−4 4.955·10−3

Ag3 0.7737 3.7739 -2.475·10−4 9.056·10−4

Table 4.10: Coupling coefficients obtained from the APES minima.

Compound E1 (meV) E2 (meV) 3Γ (meV) ω (THz) T (ps)

NaCl:Rh2+ 0.000 0.026 0.026 0.0388 162.074
MgO:Cu2+ 0.000 76.015 76.015 115.487 0.054
MgO:Ag2+ 0.040 44.049 44.049 66.922 0.094
CaO:Cu2+ 0.014 19.051 19.051 28.944 0.217
CaO:Ag2+ 0.001 26.053 26.053 39.582 0.159
SrO:Cu2+ 0.001 11.356 11.356 17.253 0.364
SrO:Ag2+ 0.002 4.385 4.385 6.6632 0.943

Na3 0.000 0.548 0.548 0.833 7.541
K3 0.000 0.280 0.280 0.425 14.781
Cu3 0.000 5.371 5.371 8.160 0.770
Ag3 0.000 1.026 1.026 1.559 4.030

Table 4.11: Results for the unit cell energy of the first two excited states, tunneling splitting
and angular velocity and period of oscillations in some compounds. Ground state energy is not
shown since energies are set relative to the ground state energy.

E states (Reference energy and E1 in Figure 4.11) and the non-degenerate A1 state (E2). This
is the expected behavior in systems that exhibit a geometrical phase [5].

As for the oxides, they exhibit the shortest oscillations among the studied compounds. MgO
is the stiffest lattice amongst the ones considered [26], while CaO and SrO follow with softer
lattices. This is reflected in the fact that their distortion radii (Qe, Qc in Table 4.7) are the
shortest. Stiff lattices favor a higher tunneling splitting (3Γ), and therefore a higher oscillation
frequency. This is an indicative that the energy barrier may be lower than in other compounds
and thus the potential energy surface is more akin to a mexican hat. Thus the state is almost
free to move along the trough of the APES, and the oscillation is faster. In these cases, the
main contribution to total energy is from the kinetic energy more than the potential energy [26,
27]. Although the values for the tunneling splitting are higher than the ones obtained in the
references [26, 27], they are within the order of magnitude. Qualitatively, stiffer lattices seem
to have faster oscillations, possibly due to the ligands being barely affected by impurities, and
almost no local distortion is observed. This trend is observed in the oxides selected, showing that
the softer the lattices the longer the oscillations. It is worth noting that, generally, Cu2+-doped
oxides seem to have higher tunneling splittings than their Ag2+-doped counterparts, except for
CaO. This behavior is also supported in references [26, 27], where even CaO exhibits a similar
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trend. Further research in this topic is recommended, with energy profiles obtained from scratch
instead of existent data.

For triatomic molecules, lower tunneling splittings, and their corresponding longer oscillation
periods, are observed with respect to the oxides. The shortest oscillation is found in Cu3, which
is similar to that of Cu2+-doped SrO, the softest of the oxides. These oscillations span a few
picoseconds. Although they are still faster than typical vibrational modes in larger molecules,
they are significantly slower than the oscillations observed in the oxides. The fast oscillation
frequency may be caused by the small barrier of these compounds in Table 4.10. In these
compounds the kinetic energy is probably the main contributor to the tunneling splitting as
well, however, having softer bonds than the ionic bonds in the oxides (larger distortion radii),
the oscillation is slower. Amongst the trimer molecules selected, K3 shows the slowest oscillation.

Lastly, for the Rh2+ impurities in NaCl, the oscillation periods are significantly longer than
those observed in the oxides and triatomic molecules. Local distortions for this complex are
larger than those in the other systems, which contributes to the longer oscillation periods.
Moreover, since the value of |G| in Table 4.10 is comparable to V and K, it is expected to have
a significant energy barrier.



Chapter 5

Conclusions

In this work, we have studied the nuclear dynamics associated to Jahn-Teller systems as a
central phenomenon in various materials, highlighting its impact on the electronic structure and
vibrational dynamics. In particular, we have studied the vibronic coupling theory necessary to
the understanding of the E⊗e Jahn-Teller problem, which has been the central part of the work,
as well as the computational methods employed to analyze the tunneling dynamics in different
systems from a theoretical and computational standpoint, providing insights into their behavior
and properties. A computational solution was developed to account for the vibronic coupling
effects in the studied systems.

The main results of this work include a comprehensive analysis of the tunneling dynamics
and the obtention of the frequency of oscillatory JT distortions in various materials, including
perovskites, impurities in oxides, and triatomic molecules. The results indicate that the oscilla-
tion periods vary significantly among the studied systems, ranging from picoseconds in oxides
to hundreds of picoseconds in impurities like Rh2+ in NaCl. These findings suggest that the
dynamics of Jahn-Teller systems can manifest differently depending on the material’s properties,
such as lattice stiffness.

Regarding KCuF3, the prototypical example of a Jahn-Teller system, an energetic profile was
obtained by doing a number of simulations with the CRYSTAL software. This profile was used
to obtain precise values of the coupling coefficients that characterize the system’s APES. Two
studies have been carried out on KCuF3: one focusing on the JT nature of this solid-state system
and the other studying the influence of electronic motion over the nuclear tunneling dynamics
with respect to a non-JT counterpart. The numerical values obtained from these studies suggest
that frequency of the oscillations is of the same order as in a non-JT model, but the physical
properties inherent to a JT system, such as the geometrical phase, cannot be captured by such
a model.

As for the other systems studied, they exhibit a range of behaviors that highlight the di-
versity of the dynamics of Jahn-Teller systems across different materials. The oxides studied
show a trend where stiffer lattices lead to faster oscillations. Triatomic molecules, on the other
hand, display slower oscillations, making them more amenable to experimental observation. The
frequency of oscillations for KCuF3 falls within the intermediate range of a few picoseconds ob-
served for the triatomic molecules, with a period of T = 4.343 ps. The Rh2+ impurities in
NaCl, with their significantly longer oscillation periods, represent the slowest dynamics among
the systems studied, making them the most viable for detection with standard experimental
techniques.

This work highlights the importance of electronic properties of the system in determining
energy barriers, and therefore the tunneling dynamics and the manifestation of the tunneling
Jahn-Teller dynamics, on materials. Additionally, elastic properties like lattice stiffness also play
a crucial role in shaping the potential energy surfaces.
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Appendix A

JT System Python Code

1 """

2 Programa que calcula los estados y energ ı́as de un sistema Jahn -Teller.

3 @author: Pablo Miguel Rubio

4 @date: Junio 2025

5 """

6 import numpy as np

7 import matplotlib.pyplot as plt

8 from scipy.sparse import diags , kron , bmat , csr_matrix

9 from scipy.sparse.linalg import eigsh

10

11 # Constantes fı́ sicas

12 cons_V = 1 # eV/Å

13 cons_K = 1 # eV/Å^2

14 cons_V2 = 0.0 # eV/Å^2

15 cons_G = 1 # eV/Å^3

16 cons_H = 1 # eV/Å^4

17 masa = 1 # UMA

18 x_max = 1 # Å

19

20 N_part = 100

21

22 # Lista de estados a graficar

23 estados_elegidos = range (3)

24 n_estados = len(estados_elegidos)

25

26

27

28 # Pasar a UA

29 cons_V *= (0.529177249) /27.2117 # Ha/Bohr

30 cons_K *= (0.529177249 ** 2) /27.2117 # Ha/Bohr^2

31 cons_V2 *= (0.529177249 ** 2) /27.2117 # Ha/Bohr^2

32 cons_G *= (0.529177249 ** 3) /27.2117 # Ha/Bohr^3

33 cons_H *= (0.529177249 ** 4) /27.2117 # Ha/Bohr^4

34 masa *= 1822.88839 # masa en unidades at ó micas

35 x_max /= 0.529177249 # Bohr

36

37 N = (2 * N_part + 1) ** 2 # Número de puntos en la malla

38

39 x = np.linspace(-x_max , x_max , 2 * N_part + 1)

40

41 # Para graficar en Å ngstroms

42 x_angstrom = x * 0.529177249

43 X_ang , Y_ang = np.meshgrid(x_angstrom , x_angstrom)

44

45 delta=x[1]-x[0]

46 kin = 0.5/ masa/delta **2

47

50



51

48 # Operadores de derivadas segundas

49 bloque_D2x = diags([-2, 1, 1], [0, 1, -1], shape =(2 * N_part + 1, 2 * N_part +

1))

50 D2x = kron(diags ([1], [0], shape =(2 * N_part + 1, 2 * N_part + 1)), bloque_D2x)

51 D2y = diags([-2, 1, 1], [0, (2 * N_part + 1), -(2 * N_part + 1)], shape=(N, N))

52 T_cin = -kin * (D2x + D2y)

53

54 def construir_bloque(f):

55 """

56 Construye un bloque diagonal a partir de una funci ón f(x, y).

57 """

58 bloque = np.zeros ((N,))

59 for j in range (2 * N_part + 1):

60 for i in range(2 * N_part + 1):

61 idx = j * (2 * N_part + 1) + i

62 x = (i - N_part) * delta

63 y = (j - N_part) * delta

64 bloque[idx] = f(x, y)

65 return diags(bloque)

66

67 # Construcci ón de los bloques del Hamiltoniano

68 H_th_th = construir_bloque(lambda x, y: -cons_V * x + (cons_K /2) * (x**2 + y**2)

+ cons_G * x * (x**2 - 3 * y**2) + cons_V2 * (x**2 - y**2) + cons_H * (x**2

+ y**2) **2)

69 H_th_eps = construir_bloque(lambda x, y: cons_V * y + 2 * cons_V2 * x * y)

70 H_eps_eps = construir_bloque(lambda x, y: cons_V * x + (cons_K /2) * (x**2 + y

**2) + cons_G * x * (x**2 - 3 * y**2) - cons_V2 * (x**2 - y**2) + cons_H * (

x**2 + y**2) **2)

71

72 # Hamiltoniano completo

73 Hamiltoniano = bmat ([[ T_cin + H_th_th , H_th_eps], [H_th_eps , T_cin + H_eps_eps

]], format=’csr’)

74

75 autovalores , autovectores = eigsh(Hamiltoniano , k=n_estados , which=’SA’)

76 autovalores = (autovalores - autovalores [0]) * 27.2117 * 1000 # Convertir a meV

77

78

79 print("Energies (meV):")

80 for i, energia in enumerate(autovalores):

81 print(f"State {i}: {energia :.8f} meV")

82

83 TresGamma = (autovalores [2] - autovalores [0])/1e3 # Convertir a eV

84 frecuencia = TresGamma / (4.135667696e-15* 1e12 /(2*np.pi))

85 periodo = 2 * np.pi / frecuencia

86 print(f"3Gamma: {TresGamma :.8f} eV")

87 print(f"Frecuencia de oscilaci ón: {frecuencia :.8f} rad/ps")

88 print(f"Per ı́odo de oscilaci ón: {periodo :.8f} ps")

89

90

91 # Graficar los estados

92 n_cols = n_estados

93 n_rows = 2

94 fig , axes = plt.subplots(n_rows , n_cols , figsize =(5 * n_cols , 10))

95 axes = axes.flatten ()

96

97 for idx , estado in enumerate(estados_elegidos):

98 estado_vector = autovectores [:, estado]

99

100 # Chi_theta

101 estado_matriz_superior = np.reshape(estado_vector [:N], (2 * N_part + 1, 2 *

N_part + 1))

102 vmax = max(abs(estado_matriz_superior.min()), abs(estado_matriz_superior.max

()))
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103 ax_superior = axes[idx]

104 ax_superior.set_title(f"State {estado} - θ \nEnergy: {autovalores[estado ]:.8

f} meV")

105 c1 = ax_superior.imshow(estado_matriz_superior , cmap="seismic", extent =[

x_angstrom [0], x_angstrom [-1], x_angstrom [0], x_angstrom [-1]], origin=’lower

’, interpolation=’none’, vmin=-vmax , vmax=vmax)

106 fig.colorbar(c1, ax=ax_superior)

107

108 # Chi_epsilon

109 estado_matriz_inferior = np.reshape(estado_vector[N:], (2 * N_part + 1, 2 *

N_part + 1))

110 vmax = max(abs(estado_matriz_inferior.min()), abs(estado_matriz_inferior.max

()))

111 ax_inferior = axes[idx + n_cols]

112 ax_inferior.set_title(f"State {estado} - ε \nEnergy: {autovalores[estado ]:.8

f} meV")

113 c2 = ax_inferior.imshow(estado_matriz_inferior , cmap="seismic", extent =[

x_angstrom [0], x_angstrom [-1], x_angstrom [0], x_angstrom [-1]], origin=’lower

’, interpolation=’none’, vmin=-vmax , vmax=vmax)

114 fig.colorbar(c2, ax=ax_inferior)

115

116 plt.tight_layout(pad =4.0)

117 plt.show()

118

119

120 # plotear H_vib

121 H_th_th_diag = H_th_th.diagonal ()

122 H_th_eps_diag = H_th_eps.diagonal ()

123 H_eps_eps_diag = H_eps_eps.diagonal ()

124

125 # Calcular la hoja inferior

126 H_vib_matrix = 0.5 * (H_th_th_diag + H_eps_eps_diag - np.sqrt(( H_th_th_diag -

H_eps_eps_diag)**2 + 4 * H_th_eps_diag **2))

127

128 # Busca los indices del valor minimo

129 min_index = np.argmin(H_vib_matrix)

130

131 x_min = (min_index % (2 * N_part + 1) - N_part)

132 x_min_angstrom = x_min * delta * 0.529177249 # Convertir a Å ngstrom

133 y_min = (min_index // (2 * N_part + 1) - N_part)

134 y_min_angstrom = y_min * delta * 0.529177249 # Convertir a Å ngstrom

135 Radio_min = np.linalg.norm([ x_min_angstrom , y_min_angstrom ])

136 print(f"x_min: {x_min_angstrom :.8f} Å, y_min: {y_min_angstrom :.8f} Å, Radio mı́

nimo: {Radio_min :.8f} Å")

137

138

139 # Reformatear para graficar

140 H_vib_matrix = H_vib_matrix.reshape ((2 * N_part + 1, 2 * N_part + 1))

141

142 # Graficar H_vib

143 fig , ax = plt.subplots ()

144 contour = ax.contour(X_ang , Y_ang , H_vib_matrix , 1000, cmap="viridis")

145 ax.set_aspect(’equal ’, adjustable=’box’)

146 # ax.set_title (" Hamiltoniano Vibracional $H_{vib}$")

147 fig.colorbar(contour , ax=ax)

148 plt.show()
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Non-JT System Python Code

1 """

2 Programa que calcula los estados y energ ı́as de un sistema no Jahn -Teller.

3 @author: Pablo Miguel Rubio

4 @date: Junio 2025

5 """

6 import numpy as np

7 import matplotlib.pyplot as plt

8 from scipy.sparse import diags , kron

9 from scipy.sparse.linalg import eigsh

10

11 # Constantes fı́ sicas

12 cons_K = 5.15404493 # eV/Å^2

13 cons_G = -2.80444636 # eV/Å^3

14 cons_H = 195.6886573 # eV/Å^4

15 masa = 159.6395 # UMA

16 x_max = 0.3 # Å

17

18 N_part = 100

19

20 # Lista de estados a graficar

21 estados_elegidos = range (3)

22 n_estados = len(estados_elegidos)

23

24

25

26 # Pasar a UA

27 cons_K *= (0.529177249 ** 2) /27.2117 # Ha/Bohr^2

28 cons_G *= (0.529177249 ** 3) /27.2117 # Ha/Bohr^3

29 cons_H *= (0.529177249 ** 4) /27.2117 # Ha/Bohr^4

30 masa *= 1822.88839 # masa en unidades at ó micas

31 x_max /= 0.529177249 # Bohr

32

33 N = (2 * N_part + 1) ** 2 # Número de puntos en la malla

34

35 x = np.linspace(-x_max , x_max , 2 * N_part + 1)

36 # Para graficar en Å ngstroms

37 x_angstrom = x * 0.529177249

38 X_ang , Y_ang = np.meshgrid(x_angstrom , x_angstrom)

39

40

41 delta=x[1]-x[0]

42 kin = 0.5/ masa/delta **2

43

44 # Operadores de derivadas segundas

45 bloque_D2x = diags([-2, 1, 1], [0, 1, -1], shape =(2 * N_part + 1, 2 * N_part +

1))

46 D2x = kron(diags ([1], [0], shape =(2 * N_part + 1, 2 * N_part + 1)), bloque_D2x)

53
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47 D2y = diags([-2, 1, 1], [0, (2 * N_part + 1), -(2 * N_part + 1)], shape=(N, N))

48 T_cin = -kin * (D2x + D2y)

49

50 def construir_bloque(f):

51 """

52 Construye un bloque diagonal a partir de una funci ón f(x, y).

53 """

54 bloque = np.zeros ((N,))

55 for j in range (2 * N_part + 1):

56 for i in range(2 * N_part + 1):

57 idx = j * (2 * N_part + 1) + i

58 x = (i - N_part) * delta

59 y = (j - N_part) * delta

60 bloque[idx] = f(x, y)

61 return diags(bloque)

62

63

64

65 H_vib = construir_bloque(lambda x, y: - cons_K * (x**2 + y**2) + cons_H * ((x**2

+ y**2) ** 2) + cons_G * x * (x**2 - 3 * y**2))

66

67 # Hamiltoniano completo

68 Hamiltoniano = T_cin + H_vib

69

70 autovalores , autovectores = eigsh(Hamiltoniano , k=n_estados , which=’SA’)

71 autovalores = (autovalores - autovalores [0]) * 27.2117 * 1000 # Convertir a meV

72

73 print("Energies (meV):")

74 for i, energia in enumerate(autovalores):

75 print(f"State {i}: {energia :.8f} meV")

76

77 TresGamma = (autovalores [2] - autovalores [0])/1e3 # Convertir a eV

78 frecuencia = TresGamma / (4.135667696e-15* 1e12 /(2*np.pi))

79 periodo = 2 * np.pi / frecuencia

80 print(f"3Gamma: {TresGamma :.8f} eV")

81 print(f"Frecuencia de oscilaci ón: {frecuencia :.8f} rad/ps")

82 print(f"Per ı́odo de oscilaci ón: {periodo :.8f} ps")

83

84 # Graficar los estados

85 n_cols = (n_estados)

86 n_rows = 1

87 fig , axes = plt.subplots(n_rows , n_cols , figsize =(5 * n_cols , 4))

88 axes = axes.flatten ()

89

90 for idx , estado in enumerate(estados_elegidos):

91 estado_vector = autovectores [:, estado]

92

93 estado_matriz = -np.reshape(estado_vector , (2 * N_part + 1, 2 * N_part + 1))

.transpose ()

94 vmax = max(abs(estado_matriz.min()), abs(estado_matriz.max()))

95 axis = axes[idx]

96 axis.set_title(f"State {estado} \nEnergy: {autovalores[estado ]:.8f} meV")

97 c1 = axis.imshow(estado_matriz.T, cmap="seismic", extent =[ x_angstrom [0],

x_angstrom [-1], x_angstrom [0], x_angstrom [-1]], origin=’lower’,

interpolation=’none’, vmin=-vmax , vmax=vmax)

98 fig.colorbar(c1, ax=axis , orientation=’vertical ’)

99

100 plt.tight_layout(pad =4.0)

101 plt.show()
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