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ABSTRACT: Regional climate models (RCMs) are essential tools for simulating and studying regional climate variability
and change. However, their high computational cost limits the production of comprehensive ensembles of regional climate
projections covering multiple scenarios and driving Global climate models (GCMs) across regions. RCM emulators based
on deep learning models have recently been introduced as a cost-effective and promising alternative that requires only
short RCM simulations to train the models. Therefore, evaluating their transferability to different periods, scenarios, and
GCMs becomes a pivotal and complex task in which the inherent biases of both GCMs and RCMs play a significant role.
Here, we focus on this problem by considering the two different emulation approaches introduced in the literature as per-
fect and imperfect, that we here refer to as perfect prognosis (PP) and model output statistics (MOS), respectively, follow-
ing the well-established downscaling terminology. In addition to standard evaluation techniques, we expand the analysis
with methods from the field of explainable artificial intelligence (XAI), to assess the physical consistency of the empirical
links learnt by the models. We find that both approaches are able to emulate certain climatological properties of RCMs for
different periods and scenarios (soft transferability), but the consistency of the emulation functions differs between ap-
proaches. Whereas PP learns robust and physically meaningful patterns, MOS results are GCM dependent and lack physi-
cal consistency in some cases. Both approaches face problems when transferring the emulation function to other GCMs
(hard transferability), due to the existence of GCM-dependent biases. This limits their applicability to build RCM ensem-
bles. We conclude by giving prospects for future applications.

SIGNIFICANCE STATEMENT: Regional climate model (RCM) emulators are a cost-effective emerging approach
for generating comprehensive ensembles of regional climate projections. Promising results have been recently obtained
using deep learning models. However, their potential to capture the regional climate dynamics and to emulate other pe-
riods, emission scenarios, or driving global climate models (GCMs) remains an open issue that affects their practical
use. This study explores the potential of current emulation approaches incorporating new explainable artificial intelli-
gence (XAI) evaluation techniques to assess the reliability and transferability of the emulators. Our findings show that
the different global and regional model biases involved in the different approaches play a key role in transferability.
Based on the results obtained, we provide some prospects for potential applications of these models in challenging
problems.
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1. Introduction

Regional climate models (RCMs, Giorgi 2019) are sophisti-
cated tools widely used to produce high-resolution regional
climate projections. They work by numerically solving a set of
physical equations representing regional atmospheric pro-
cesses and interactions with other components, such as land,
over a limited continental region. RCMs are driven at their
boundaries by the coarse output of a global climate model
(GCM; Phillips 1956), a process often referred to as dynami-
cal downscaling. A variety of studies (Rummukainen 2016;
Soares and Cardoso 2018; Molina et al. 2022; Cardoso and
Soares 2022) have assessed the added value of RCMs, point-
ing to a better representation of the local scale as compared
to their driving GCMs. Therefore, RCM simulations consti-
tute a valuable line of evidence in assessing the risks and

adaptation strategies related to climate change at the regional
scale (IPCC 2022).

The Coordinated Regional Climate Downscaling Experi-
ment (CORDEX) coordinates the generation of regional cli-
mate projections worldwide, based on multimodel ensembles
of RCM simulations spanning different sources of uncertainty,
including those arising from the driving GCM or the emission
scenario, among others (Jacob et al. 2020; Diez-Sierra
et al. 2022). However, covering the large number of potential
scenario–GCM–RCM combinations is an enormous computa-
tional challenge. As a result, the limited availability of CORDEX
simulations in some regions hinders the comprehensive assess-
ment of uncertainty in regional climate modeling (Kendon et al.
2010; Fernández et al. 2019). This has led the regional climate
modeling community to look for alternatives to these costly sim-
ulations, especially as they approach the kilometer scale.

Empirical–statistical downscaling (ESD) has traditionally
been a cost-effective alternative/complement to dynamical down-
scaling (Maraun and Widmann 2018). ESD techniques rely
on observations to learn the relationship between large-scaleCorresponding author: Jorge Baño-Medina, bmedina@ifca.unican.es
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meteorological fields (typically from reanalysis datasets) and lo-
cal surface variables of interest, such as temperature and
precipitation.

Recent advances in deep learning (DL) techniques, such as
deep convolutional neural networks (CNNs; LeCun and
Bengio 1995), have driven the development of deep downscal-
ing methods (see Rampal et al. 2024; Sun et al. 2024; Molina
et al. 2023, for a review) and their application to downscale
global climate projections over large areas (Baño-Medina
et al. 2021). However, the lack of sufficient observed data
available for training in many regions remains as one of the
main drawbacks of ESD that limits its applicability, particu-
larly as finer spatial resolutions are considered.

An alternative approach recently introduced to overcome
this problem is RCM emulation leveraging DL techniques.
These models do not rely on observations. Instead, they re-
quire an existing relatively short RCM simulation (driven by
a particular GCM) to train the emulator, which learns the
mapping between upper-air large-scale fields and surface tar-
get variables from the RCM. Two different RCM emulation
approaches have been recently introduced in the literature,
referred to as “perfect” and “imperfect” (Erlandsen et al.
2020; Boé et al. 2023; Hobeichi et al. 2023). Both use surface
high-resolution RCM variables (typically temperature and/or
precipitation) as targets, or predictands, but differ in the pre-
dictors used. The perfect approach uses a set of informative
upscaled large-scale variables from the same RCM and can be
therefore considered a hybrid implementation of the perfect
prognosis (PP) downscaling approach, using observations (in
this case pseudo-observations within the RCM world) for
both predictors and predictand (Maraun and Widmann 2018).
This approach maximizes the day-to-day correspondence and
physical consistency between the input–output pairs, as both
come from the same model. Here, we use well-established ter-
minology in ESD and refer to this approach as “PP” (from
perfect prognosis). On the contrary, the so-called imperfect
approach uses the driving GCM fields as predictors, thus cop-
ing with the lack of perfect day-to-day correspondence and
model biases in the learning process. Similarly to the previous
case, using standard terminology, we refer to this approach as
“MOS,” in an analogy with the model output statistics (MOS)
downscaling approach, which deals with model biases during
learning (see, e.g., Gutiérrez et al. 2019).

Several studies have analyzed both emulation approaches
independently (Doury et al. 2023; Hobeichi et al. 2023) or
jointly (Boé et al. 2023; van der Meer et al. 2023), based on
the comparison of particular evaluation metrics/indices be-
tween the emulated and target RCM fields. These studies
show promising results to emulate an intermediate temporal
period for the same GCM–RCM pair, particularly for the
MOS approach, since the PP one inherits GCM–RCM biases
that affect the emulated fields. However, evaluating emulators
is a challenging task due to the complexity (“black box” na-
ture) of the underlying deep models, so it is important to be
able to analyze the inner functioning of these models (e.g., to
analyze the predictor–predictand patterns learned) to contex-
tualize the results. Not including this type of analysis may
lead to an incomplete assessment of the emulation capabilities

of both PP and MOS approaches. Some recent studies have
explored the application of explainable artificial intelli-
gence (XAI) in conventional downscaling tasks to, e.g., assess
the physical consistency of the predictor patterns used by the
models for inference (González-Abad et al. 2023; Baño-Medina
2020; Balmaceda-Huarte et al. 2024; Rampal et al. 2022). This
new evaluation dimension allows for a better understanding of
the capabilities and limitations of CNNs and may allow us to in-
terpret how the different GCM and RCM biases may affect
both emulation approaches.

One of the most promising aspects of emulators is that they
could be applied to complete the scenario–GCM–RCM ma-
trix from partial simulations, ideally from a single scenario–
GCM pair. Ideally, the emulator should capture the regional
climate dynamics of the RCM and be transferable. This
means that it should be able to emulate other periods, emis-
sion scenarios, or even driving GCMs than those considered
in the training phase. However, this remains an open issue
that affects the practical use of RCM emulators for climate
change applications (see, e.g., Rampal et al. 2024; Molina et al.
2023; Sun et al. 2024).

In this work, we assess the transferability of PP and MOS
deep RCM emulators based on state-of-the-art CNNs. To this
aim, we combine both standard and new XAI-based evalua-
tion techniques, which allows us to measure the trustworthi-
ness of the emulators while deepening into the understanding
of the transferability of each approach to other time periods
or emission scenarios (soft transferability), or driving GCMs
(hard transferability). Based on the current state of knowl-
edge, we conclude by giving some perspectives for future
applications of these methods in problems where they can
facilitate progress as an alternative (or complementary) to
RCMs.

2. Data and methods

a. Study area and datasets

This study focuses on a region covering the Alps (Fig. 1), a
mountain range situated in Central Europe. The distinctive
features of this area enable us to assess the ability of emula-
tors to replicate specific fine-scale atmospheric processes well
reproduced by RCMs, such as the effects of topography and
coastal temperature gradients.

Following previous work (Doury et al. 2023; Boé et al.
2023), we use the ALADIN63 RCM simulations over Europe
at a spatial resolution of 0.118, provided by EURO-CORDEX
(Jacob et al. 2020). In particular, we use the historical experi-
ment (1980–2005) and the RCP8.5 scenario (2006–2100),
thereby encompassing a wide range of climatic conditions.
These simulations are available at the Earth System Grid Fed-
eration (ESGF) for a total of four driving GCMs: NorESM1-M
(Bentsen et al. 2013), CNRM-CM5 (Voldoire et al. 2013), MPI-
ESM-LR (Müller et al. 2018), and HadGEM2-ES (Martin et al.
2011). Here, we consider the first three, to which we will here-
after refer by the names of their respective modeling institutions
for brevity: NorESM, CNRM, and MPI. Note that HadGEM2
was not included in the study because the other three models
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were already downloaded at the time of the study and were suf-
ficient to illustrate the key messages of the manuscript.

b. Predictors and predictand

For the predictands, we use daily fields of near-surface air
temperature from ALADIN63, driven by the corresponding
GCM under both historical and RCP8.5 scenarios. In this
study, we only consider the land area, resulting in 8836 predic-
tand locations/grid boxes on the 0.118 grid.

For the predictors, we selected 14 daily mean atmospheric
variables which have been typically used as predictors in
many downscaling applications (Brands et al. 2013; Gutiérrez
et al. 2013, 2019; Baño-Medina et al. 2020; Quesada-Chacón
et al. 2022): geopotential height (500 and 700 hPa), specific
humidity, air temperature, and both zonal and meridional
wind velocities at three different pressure levels (500, 700, and
850 hPa). For the sake of comparison, we regridded the pre-
dictor datasets using a first-order conservative remapping to a
common spatial resolution of 1.58, which is representative of
CMIP5 GCMs, and is also a consensus among the GCMs uti-
lized in this study. This leads to N samples of three-dimensional
(latitude, longitude, and variable) predictor fields of dimensions
103 133 14, whereN is the number of days in the dataset.

The predictors were standardized at a grid-box level, using
the mean and standard deviation of the training dataset.

c. Emulation approaches

We analyze and compare two approaches introduced in the
literature for RCM emulation, termed as imperfect and
perfect (Boé et al. 2023). In this study, we adhere to well-
established terminology in statistical downscaling and refer
to them as “MOS-emulator” and “PP-emulator,” respectively,

based on their connection to the MOS and PP downscaling ap-
proaches (see Maraun andWidmann 2018, for more details).

Figure 1 provides a schematic illustration of both approaches.
Note that hereafter we use the terms MOS-emulator and MOS
(PP-emulator and PP), indistinctly. This figure also includes a sche-
matic diagram of the CNNmodel used to establish the relationship
between the predictands and the predictors (see section 2e).

The MOS-emulator approach aims to learn the relationship
between the target variable of the RCM and the set of predic-
tors that are directly taken from the driving GCM (Fig. 1a,
pink lines). The main shortcoming of this approach is the mar-
ginal temporal correspondence between predictors and pre-
dictand fields, since the RCM is driven by the GCM at the
boundaries of the domain, but develops its own dynamics
within the domain.

Differently, the PP-emulator (Fig. 1a, blue lines) aims to learn
the model describing the relationship between the target variable
of the RCM and the set of predictors obtained from upscaling
the RCM fields to a lower resolution (RCM-U in Fig. 1). Thus,
both predictors and the predictand are physically consistent and
have perfect day-to-day correspondence (Doury et al. 2023).

Note that a key difference between PP and MOS emulation
approaches is the potential strength of the day-to-day corre-
spondence of predictors and predictand used to train the
models. This is assessed in the results section using daily cor-
relation as a simple and intuitive metric, i.e., how changes in
the predictors over time explain (correlate with) changes in
the target predictand fields (see section 3a).

d. Experimental framework

The experimental evaluation framework comprises two
phases: training (including cross validation) and transferability.
Following the methodology established by Doury et al. (2023),
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FIG. 1. Schematic representation of the DL emulator training workflows for the (a) MOS and
(b) PP approaches. Arrows indicate the workflow. Details on the CNN model used are included
in the figure: numbers on the top of the convolutional layers represent their size (e.g., 103 133 14
in the input layer indicates the latitude, longitude, and variable dimensions, respectively), numbers
between layers represent filter size, and numbers in parentheses indicate the number of filters used.
The term RCM-U refers to the upscaled GCM–RCM fields.
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methods are trained using both the historical period (1996–
2005, historical experiment) and a far-future period (2090–99,
RCP8.5 scenario), as illustrated in Fig. 1. This allows us to sep-
arate the extrapolation capability related to the stationarity as-
sumption from our analysis (Hernanz et al. 2022; Doury et al.
2023), which is actually more relevant for standard ESD meth-
ods, as they rely on observations to project into the future
(Baño-Medina et al. 2022).

The diagram in Fig. 2 represents the training of both MOS
and PP methods (solid lines), using predictors from GCM1 and
upscaled GCM1-driven RCM (GCM1–RCM-U), respectively.
The models resulting from training are used to test transferabil-
ity (dashed lines), considering both soft (changing the period
and/or the scenario) and hard (changing the GCM) transfer-
ability. For convenience, soft transferability is tested in this
work considering an independent midfuture period (2041–50)
far away from the training periods. Soft transferability is re-
quired to fill the gaps in GCM/RCM matrices of existing cli-
mate projections, whereas hard transferability is required for
emulating the RCM for new GCMs.

Note that PP methods used upscaled GCM–RCM predic-
tors (RCM-U) for training. Then, we first test soft transfer-
ability applying the model to the GCM predictors of the same
driving GCM (GCM1). However, large-scale discrepancies
(biases) between GCM and upscaled RCM predictors may in-
fluence the emulated fields (Doury et al. 2023). To overcome
these discrepancies, there is the possibility to bias adjust (BA)
the GCM fields using as reference the upscaled RCM varia-
bles (Boé et al. 2023); these two alternatives are illustrated in
Fig. 2. Bias-adjusted GCM predictors are obtained by a sim-
ple monthly adjustment of mean values relative to GCM1–
RCM-U.

In hard transferability, the models trained with predictors
from GCM1 (MOS) and GCM1–RCM-U (PP) are applied to
the predictors from a new GCM (GCM2) and, in principle,
the emulator is expected to reproduce the GCM2–RCM out-
put; note that this is challenging due to the different biases af-
fecting the training and emulation phases (GCM1 and GCM2,
respectively). Bias adjustment is not straightforward in this
case due to the different biases involved.

Note that predictors are standardized throughout all phases
of the evaluation process: soft or hard transferability. This
means that we consistently scale the testing predictor fields
based on the mean and standard deviation of the training
series.

e. Deep learning models

DL models have achieved impressive results in many data-
driven applications in the last decade and had revolutionized
a number of fields, including weather and climate (see, e.g.,
Watson-Parris 2021). DL models aim to fit a set of coefficients
to a set of predictor–predictand pairs by optimizing a loss
function (e.g., mean squared error) by means of the gradient
descent method and the backpropagation algorithm. This ulti-
mately means that the coefficients are progressively driven to-
ward values of lower error in the loss surface, with a step
regulated by the learning rate [see Goodfellow et al. (2016)
for more details about DL]. In this work, we use CNNs, a spe-
cific type of DL models which are able to automatically infer
complex spatial patterns from the input fields. In particular,
we use the implementation proposed in Baño-Medina et al.
(2020), known as DeepESD. This model has been successfully
used for downscaling purposes in the European continent for
both precipitation and temperature fields (Baño-Medina et al.
2020, 2022). Additionally, DeepESD has been analyzed with
XAI techniques and proved able to learn plausible and coher-
ent predictor–predictand links when trained with observa-
tional data (Baño-Medina 2020). Explainability is a key
element of this study, used to understand the advantages and
limitations of the two RCM emulator approaches.

DeepESD is a CNN composed of three convolutional
layers (of 50, 25, and 10 filter/feature maps, respectively) fol-
lowed by a single dense layer; the particular configuration
used is shown in Fig. 1. We use “zero-type” padding, i.e., we
add rows/columns of 0s to preserve the spatial dimensions af-
ter each convolutional operation. Each convolutional layer is
followed by a set of rectified linear units (ReLUs) to allow
the emulator to learn complex nonlinear atmospheric predic-
tor patterns. The feature maps of the last hidden layer are flat-
tened to build a dense connection with the output neurons,
which correspond to the 8836 land grid boxes of ALADIN63
fields over the Alpine domain. The input layer is a stacked 4D
(sample day21, latitude, longitude, and variable) predictor
field, which feeds the hidden structure of the CNN.

On the more technical side, we use an Adam optimizer
(Kingma and Ba 2014) to minimize the mean squared error
between the model outputs and the RCM (groundtruth), with
a batch size of 100 and a learning rate of 1E-4. The resulting
DL models (i.e., one per emulator approach and GCM) con-
tain 11.515.521 training parameters. We lean on a single NVI-
DIA Tesla V100 GPU with 32 GB of memory to perform
both calibration and inference, with computation times of the
order of a few minutes.

We perform early stopping with a patience of 30 epochs by
randomly separating 10% of the training data as our valida-
tion dataset to avoid overfitting. That is, when the loss in the
validation dataset does not decrease in the next 30 epochs,
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(b) Hard transferability

MOS training

MOS 

(a) Soft transferability

PP training

TrainingPP 

RCM-U 

GCM2-RCM

GCM1-RCM
GCM1 

GCM2 

Transferability

BA
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FIG. 2. Experimental framework used to assess (a) soft and
(b) hard transferability (dashed lines) using the models resulting
from training (solid lines). Colors indicate the approach (consistent
with Fig. 1: blue for PP and pink for MOS). Note that in the case of
soft PP transferability, the GCM1 predictors can be used with or
without BA relative to the predictors used for training (RCM-
upscaled predictors, represented as RCM-U instead of GCM1–
RCM-U for simplicity).
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then the network stops training. Note that DeepESD contains
hyperparameters (e.g., number of layers or filter maps per
layer) that were optimized in an extensive intercomparison
study of deep learning topologies for conventional downscal-
ing (i.e., using observational sources of records) by means of
grid search (Baño-Medina et al. 2020).

f. Explainable artificial intelligence (XAI)

Neural networks are seen as black boxes due to the com-
plex operations occurring in their hidden layers, hindering in-
terpretability and raising distrust in the results these models
produce. To overcome this aspect, several XAI techniques
have been recently developed to gain understanding about
the underlying patterns inferred by deep neural networks
(Došilović et al. 2018). This is key to the task explored in this
study, where the community aims to develop trustworthy and
consistent RCM emulators to replace physics-based models.
Particularly, we lean on saliency maps, which are spatial rep-
resentations of the relevance of the input features to the
model predictions.

The relevance of a variable is predominantly measured by
computing the gradients of the output space relative to the in-
put space. These gradients are back-propagated through the
hidden layers of the network and visually displayed in the
form of saliency maps. Here, we follow previous work in
climate-related applications (Kondylatos et al. 2022; González-
Abad et al. 2023) and compute the saliency maps using the inte-
grated gradient (IG) algorithm (Sundararajan et al. 2017). This
method integrates the gradient along the path between the input
x and a baseline x′. In this study, we employ as baseline an array
filled with zeros (see Mamalakis et al. 2023), representing the cli-
matological or mean values of the standardized predictors fed
into the model.

In alignment with earlier studies (Toms et al. 2021; Mamalakis
et al. 2022), we postprocess the “raw” output of the XAI tech-
nique to enable a comparison across samples per day. To com-
pute the saliency map of a particular day, we follow four steps
(Toms et al. 2021; Mamalakis et al. 2022; González-Abad et al.
2023): 1) we take the absolute value since we are interested in the
relevance of the features regardless of their sign. Then, 2) we
compute the percentage for each saliency map individually by di-
viding the value of each feature by the total sum of all features.
To avoid gradient shattering, 3) we filter out the lowest values us-
ing a threshold of 1.5E-3, which corresponds to 0.15% relevance.
After removing the lowest gradients, the saliency maps no longer
sum up to 100%. Therefore, 4) we recompute the percentage of
each saliency map to ensure consistency.

Finally, we aggregate the saliency maps by averaging the
values over the training period, resulting in a collection of
maps with the same dimensions as the input features, which
are 4D arrays in our case, each representing a predictor vari-
able. These saliency maps can be computed for each predic-
tand grid box. In this study, we illustrate the changing
relevance patterns of the spatial predictors by focusing on
four predictand grid boxes out of the 8836 covering the pre-
dictand domain. These grid boxes are located over France,

the Southeastern Alps, Sardinia, and Poland, representing dif-
ferent behaviors and climates within the study domain.

3. Results

a. Predictor–predictand correlation

As already mentioned, a key difference between MOS and
PP emulation approaches is the potential strength of the day-
to-day correspondence of predictors (from the driving GCM
for MOS or from the RCM for PP) and predictand (RCM
near-surface temperature) used to train the models.

Figure 3 shows the daily temporal correlations between the
(driving GCM or RCM) predictor fields and the predictand
for the NorESM-driven ALADIN63 experiment (similar re-
sults are obtained for other driving models). In particular, we
computed the correlation of surface temperature at each
RCM grid box with the full predictor fields, retaining the max-
imum values}usually corresponding to a nearby predictor
grid box}as the best estimate of the local potential link
strength. We removed the seasonal cycle (monthly means)
before computing the correlations, which were calculated
separately for winter (DJF, columns 1–2) and summer (JJA,
columns 3–4).

As expected, in general, upper-air, large-scale temperature
fields show the highest correlation with near-surface tempera-
ture. Moisture (hus850) shows also widespread high correla-
tions, while winds show lower correlations and a seasonal
pattern. This is consistent with, e.g., westerlies (positive
ua850) advecting relatively warm air from the ocean in winter
and cool air in summer.

Apart from the overall correspondence of the different pre-
dictors with the target variable, predictors from the GCM
(second and fourth columns) show systematically lower corre-
lations than those from the upscaled RCM (first and third col-
umns). To aid in the comparison, the maximum correlation
attained and the spatial mean are shown for each panel. Mois-
ture in summer is the only exception to the degradation of the
predictor–predictand relationship in the GCM. The overall
pattern with a higher correlation over northeastern Europe
appears shifted to central Europe in the GCM predictors.

These results reveal that, in general, the predictors from
the PP approach are more informative for the deep emula-
tor methods used in this work than those from the MOS ap-
proach. However, the latter may have some advantages
since the deep model is learning directly the relationship be-
tween the driving GCM and the target RCM variable. In
this way, the different biases can be accounted for directly,
in analogy to the MOS approach for statistical downscaling
(Maraun and Widmann 2018).

b. Training

The different models are trained using historical (1996–
2005) and far-future RCP8.5 (2090–99) simulations, consider-
ing as predictors the upscaled RCM large-scale fields (PP ap-
proach) or the GCM fields (MOS approach) and using the
corresponding RCM near-surface temperature as predictand.
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Note that training is conducted using a cross-validation inter-
nal approach implemented for early stopping.

Figure 4 shows the evaluation metrics (annual and sea-
sonal biases and RMSE, in rows) for emulated surface tem-
perature over the training period for the ALADIN63
(RCM) simulations driven by the NorESM model (GCM).
The first two columns show the training results for the MOS
and PP approaches.

The PP approach attains lower RMSE values (around
18C) than the MOS approach (28–38C) due to the higher
correlations exhibited between predictors and predictand
(see section 2a). Annual biases are generally low, but, for
the MOS approach, they are the result of an average of
larger seasonal biases of opposite signs in many locations.
Note that the emulators are trained on an annual basis, in-
cluding no specific predictor for the annual cycle.

c. Soft transferability

The last three columns in Fig. 4 show the results corre-
sponding to soft transferability using predictors from the
same GCM for a new middle-future period: 2041–50. For the
case of the PP approach, results are included using raw
(fourth column) and bias-adjusted (last column) predictors.

The results show RMSE correlation patterns remarkably
similar for the PP and MOS approaches (due to the lower cor-
relation of GCM and RCM predictors). Annual and seasonal
biases are larger, particularly for the PP case, which exhibits
different spatial patterns. As we show below (see Fig. 5), this
occurs due to the biases between the training upscaled RCM
and their counterpart test GCM fields, as already identified in
previous studies Doury et al. (2023), Boé et al. (2023). There-
fore, these biases could be alleviated by adjusting the GCM
predictor biases (GCM-BA) relative to the upscaled RCM
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fields (RCM-U). Indeed, using GCM-BA as input (last col-
umn in Fig. 4), the emulator shows smaller biases, overall
slightly smaller than those of the MOS approach (third col-
umn in Fig. 4).

Qualitatively similar results are obtained for the emulators
trained on the other GCM-driven simulations. We illustrate
this through Fig. 5 and the large-scale temperature (ta850), as
is the most informative predictor in this study (see section 3a).
Note that for other variables, such as precipitation, the inter-
pretation of the biases would be obscured by the combined ef-
fect of several relevant predictors on the target variable. The
diagram of Fig. 5 helps in better understanding the role that
biases play, by representing linear transfer functions between
two ordinate axes displaying the spatial averages of the pre-
dictor (ta850) and the predictand (tas), respectively. For in-
stance, in the case of the NorESM-driven simulations, Fig. 5
shows the bias (b1) of the GCM (1) relative to the corre-
sponding upscaled RCM predictor (2) that was used to train
the EMU1 model and how this bias is reflected in the bias of
the predictand (b2) when comparing the resulting model out-
put (3) with the target RCM values (4). Results for CNRM5-
driven simulations are also shown in Fig. 5 (labels 5–8 and
b3–b4). Note that the two GCM predictors exhibit opposite
biases when compared to the corresponding RCM upscaled

predictors (b1 and b3). These biases are preserved to a large
extent in the resulting predictions when comparing the emu-
lated and actual RCM signals (b2 and b4, respectively). The
maps on the sides display the corresponding spatial biases, re-
inforcing the idea that the large-scale biases in the predictors
are inherited by the emulated surface temperature. Thus,
these biases are reduced when adjusting the biases of the
GCM predictors relative to the upscaled RCM fields, as indi-
cated by the black and gray dots on the right “y” axis, corre-
sponding to the results emulated from bias-adjusted GCM
predictors, which are closer to the target RCM values.

These results illustrate the effect of model biases in emula-
tors and show that MOS and PP-BA approaches seem to be
suitable for emulating RCM outputs. This makes these mod-
els suitable for emulating RCM results in new periods and for
new scenarios, at least when the new predictors fall into the
range of variability used for learning.

d. Hard transferability: Emulating from new GCMs

Hard transferability tests whether an emulator trained with
a particular GCM-driven simulation can emulate the output
that the RCM would have when driven by a different GCM.
In this case, the model trained using data from GCM1–RCM
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is applied to a different GCM (GCM2) with the goal of repro-
ducing the GCM2–RCM target (see Fig. 2d).

Figure 6 shows the biases resulting from hard transfer ex-
periments (in columns) corresponding to the different combi-
nations of different pairs of train and test GCMs from the set
of available models (NorESM, CNRM, and MPI). The first
two rows show annual biases for the PP and MOS methods,
respectively. The other rows show the corresponding seasonal
results for winter and summer. In most of the cases, the result-
ing biases exhibit a similar spatial pattern for the PP and
MOS approaches, with smaller intensity for the former. Also,
the sign of the bias reflects the influence of the GCM on the
emulated fields, with opposite biases when reversing the
train–test GCMs (cf. columns 1–3, 2–5, and 4–6). This could
reflect that the spatial structure of emulator biases is a conse-
quence of the different biases of the GCMs used for training
and prediction.

In the case of soft transferability, the biases between the
GCM and the upscaled RCM large-scale predictors were an
avoidable source of error for RCM emulators. However, bias
adjustment is not applicable for hard transferability, since ad-
justing GCM2 predictors relative to GCM1 would effectively

yield a target output close to GCM1–RCM, instead of the de-
sired target GCM2–RCM.

The key here is that the biases between the upscaled RCM
and the driving GCM can have opposite signs, as is shown in
Figs. 5b1 and 5b3. Thus, adjusting the biases across GCMs
can be catastrophic for the emulator. Figure 7 illustrates the
effect of this hard transferability on the spatial average. As in
Fig. 5, emulators are depicted as linear transfer functions be-
tween two ordinate axes representing the spatial average
ta850 (most informative predictor) and tas (predictand). In
this case, we also depict the MOS-emulator (EMU3) trained
with raw NorESM GCM predictors and NorESM-RCM tas.
On the spatial average, the emulators behave close to their
linear representation, indicated in the plot by a simple shift of
the emulator to the new test predictors (thin dashed lines),
preserving the slope. For instance, when applied to the CNRM
GCM, the relatively strong slope of the MOS-emulator (10)
and the slighter one of the PP-emulator (9) are preserved. But
both positive slopes bring the emulator predictions far from
the target (8).

Adjusting for the GCM bias would only worsen the results,
since the emulator is already providing warm tas estimates
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FIG. 5. Soft transferability of the perfect approach for NorESM and CNRM GCM driving simulations. The left axis shows the spatial
mean values of the large-scale temperature (the “ta850” predictor) for the upscaled RCM predictors used to train the emulators
(RCM-U; 2 and 6) and their driving GCMs (1 and 5). The right axis shows the spatial means of the near-surface mean temperature
(the “tas” predictand) resulting from the emulated models using GCM predictors (3 and 7) and the target RCM values (4 and 8). The
solid black and gray lines are linear representations of the ta850-tas relationship learned by the emulator for the NorESM (EMU1) and
CNRM5 (EMU2), respectively. The thin dashed lines represent simple emulator extrapolated results for the GCM predictors (shifted
EMU1 and EMU2). The different biases are indicated by b1–b4 notations and are accompanied by their corresponding spatial map repre-
sentations. The results when bias-adjusted predictors are considered in the testing phase are represented by solid black and gray dots on
the right axis.
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using colder ta850 inputs from CNRM5. If these inputs are
adjusted to the warmer NorESM fields, the emulator would
provide even stronger warm tas biases. For the PP-emulator,
the true adjustment to apply would be b3, which accounts for
the difference between the upscaled RCM and the new GCM
fields (CNRM5) provided as test input. This adjustment
would nudge the predicted fields in the right direction. Note,
however, that this adjustment cannot be done in practice,
since the aim of this hard-transferability exercise is to avoid
the RCM simulation nested into a second GCM. And, if this
simulation is available, it is always more worthwhile to train a
new emulator (EMU2 in Fig. 7) on these new data than trying
to adjust the inputs of an emulator (EMU1) trained on a dif-
ferent GCM.

e. Explainability

Figure 8 shows the aggregated (over the training period) sa-
liency maps for two illustrative locations obtained for the PP
and MOS deep learning models for two illustrative driving
GCMs (NorESM and CNRM). The figure displays the sa-
liency maps for a selection of predictors: specific humidity
(hus), zonal (ua), and meridional (va) wind velocities at
850 hPa and air surface temperature (ta) at 700 and 850 hPa, in
rows. The number of each panel indicates the total contribution
to the output (%) of each predictor variable. The saliency maps
are displayed in pairs of columns, grouping the results for the
two GCMs to facilitate the analysis of the patterns learned
when using different driving GCMs. Columns 1–2 (3–4) and
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5–6 (7–8) show the PP (MOS) results for two illustrative loca-
tions in the Alps and Poland, respectively.

There are remarkable differences in the relevance patterns
resulting from the two approaches. PP results are very similar
for the two GCMs, exhibiting a high local character, with pat-
terns centered on the target location. Moreover, the preferred
predictors and largest influence areas are physically plausible,
since they are restricted mostly to the neighborhood of the
target location, with a main dependence on lower-level tem-
peratures and, to a lesser extent, on specific humidity, aligning
with findings from prior studies (Huth 2004; Baño-Medina
2020). This gives high confidence in the deep learning emula-
tion function, as it demonstrates its capability to consistently
extract patterns of influence from different GCM-driven sim-
ulations of the same RCM. MOS patterns are in general more
difficult to interpret, exhibiting nonlocalized or misplaced pat-
terns that change from model to model. In this example, the
results for CNRM are in better correspondence with the pat-
terns learned with the PP approach, whereas the results for
NorESM are in general more difficult to interpret, exhibiting
nonlocalized or misplaced relevance patterns. This could be a
consequence of the smaller day-to-day correspondence be-
tween predictors and predictand for MOS, which could result
in statistical artifacts with no physical consistency during the
optimization process. These results highlight the importance
of introducing explainability in the evaluation of emulators,

particularly for the MOS approach. The results for the MPI
model (not shown) are more similar to the CNRM than the
NorESM models.

These differences are further illustrated in Fig. 9 displaying
the spatial correlations of the saliency maps for humidity at
850 hPa (the second most relevant predictor, following upper-
air temperatures) across different locations (four illustrative
locations over the area of study) and three GCMs (NorESM,
CNRM, and MPI). The correlations for the different MOS/PP
results are shown in the upper/lower triangles. This figure
shows that the interGCM correlations for the PP approach
are high for each of the locations, indicating similar spatial
predictor patterns (from the upscaled GCM-driven RCM
fields) being extracted by the different emulators (see the
dashed boxes along the diagonal on the figure) for the same
location. On the other hand, the PP results exhibit low inter-
location correlations, indicating that the models learn specific
spatial predictors for different locations. This is a desired be-
havior for the RCM emulators from a physical point of view.

Contrarily, correlations from the MOS approach are in gen-
eral medium and low, both across GCMs and across locations,
indicating no apparent structure in the predictor fields rele-
vant to the different models and locations. This is particularly
relevant for the NorESM model, whereas the MOS results for
CNRM and MPI are closer to the PP results. Therefore, there
is no guarantee that RCM emulators trained under the MOS
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of the near-surface mean temperature (the “tas” predictand) resulting from the PP- and MOS-
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The thin dashed lines represent simple emulator extrapolated results for the GCM predictors
(shifted EMU1 and EMU2). The different biases are indicated by b3 and b5–b6 notations and
are accompanied by their corresponding spatial map representations.
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approach are able to extract meaningful physical information
from the predictors. This requires a case-by-case assessment
involving further research building on physical principles and
processes.

4. Conclusions and prospects

We examined the two most common approaches for the
emulation of RCMs, “imperfect” and “perfect,” building on a
set of existing GCM–RCM simulations from the CORDEX
initiative. First, we renamed these emulation approaches as
MOS-emulator and PP-emulator, respectively, inspired by
their similarity to model output statistics and perfect progno-
sis statistical downscaling. Second, we also coined the terms
“soft transferability” and “hard transferability,” which allow
us to classify the different use cases for deep learning emula-
tors. Third, besides standard validation approaches, we evalu-
ated both MOS- and PP-emulators on the basis of physical
consistency by means of an XAI technique (saliency maps),
assessing their benefits and shortcomings in the different use
cases. Ultimately, this type of analysis measures the trustwor-
thiness and interpretability of the emulation function. These
are key evaluation aspects, especially when the ultimate goal
is to emulate a physical model.

To analyze the transferability of the emulator function to
other time periods or emission scenarios of the driving GCM
used for training (soft transferability), we tested both ap-
proaches over the midcentury period 2041–50. We examined
the differences between the prediction and the groundtruth

(biases) in both PP and MOS emulated fields. For PP, emu-
lated fields suffer from biases that are mostly inherited by the
GCM–RCM ones. We found that they can be largely reduced
by means of a BA algorithm that adjusts for the differences
between the GCM and RCM-U predictor fields. Differently,
MOS does not inherit the GCM–RCM biases since it has
been directly trained using GCM predictor fields but still
shows slight biases in the emulated fields. In light of these re-
sults, we cannot clearly identify what approach is best for the
emulation of an alternative temporal period. In this regard,
the XAI analysis provided us with additional information that
allowed us to discriminate between approaches and provide
recommendations. We found that the PP approach learns
predictor–predictand relationships with a strong local depen-
dence on the low-level temperature and humidity that resem-
bles the actual climate dynamics. This agrees with studies
dealing with conventional downscaling (i.e., trained on obser-
vational datasets), suggesting similar local links for tempera-
ture (Baño-Medina 2020; González-Abad et al. 2023). On the
contrary, the predictability of MOS-emulators leans on spa-
tially extended, nonlocal patterns. These differences between
the MOS and PP approaches are the result of the different
correlations between the input and output training fields. Un-
der low day-to-day correspondence, the machine learning
model is more likely to find predictability sources anywhere
in the spatial domain. This lack of physical meaning in the
MOS predictor–predictand relationship might be driving
some of the biases in the MOS emulated fields, since they are
remarkably larger than the ones observed for PP during
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training and contrasts with the interpretability of the PP emu-
lation function. These results suggest that the PP approach is
more trustworthy and reliable than MOS for emulating alter-
native temporal periods of the training GCM. This contrasts
with previous studies that recommended the use of MOS-
emulators against PP ones on the basis of conventional evalu-
ation metrics (Boé et al. 2023; van der Meer et al. 2023).

Another potential use case is to apply the emulator to a
GCM different from the one used during training (hard trans-
ferability). In this case, we provided a thorough examination
of the unique nature of the GCM–RCM biases across GCMs
that lead to unreliable emulation regardless of the methodol-
ogy considered, either PP or MOS. Since the RCM response
to the predictors can differ greatly, even in sign, between driv-
ing GCMs, the emulator cannot foresee this response in which
it was not trained. Adjusting biases across GCMs produces
uncontrolled artifacts in the results and may lead to good
results due to bad reasons. Nevertheless, the XAI analysis
allowed us to identify the transferability of the emulation
function in “ideal” case scenarios, i.e., assuming the GCM–

RCM biases are independent of the GCM. We inspected the
predictor–predictand relationships over a set of representa-
tive locations under this hypothetical scenario. We found that
the MOS emulation function learned is very different for the
different GCM–RCM pairs considered during training, mean-
ing that it could not be applied to downscale other GCMs.

However, the PP emulation function learned is very similar
regardless of the training GCM, so it could be transferred to
other GCMs. Given these prospects with the PP approach,
further understanding of the nature of the GCM–RCM biases
would be needed, to identify transferability windows of
opportunity}i.e., cases where the emulator function can be
used to downscale other GCMs than the ones seen during
training. For instance, recent work suggests that structural
differences (e.g., aerosols representation and atmospheric
physics) between the RCM and driving GCM are a large
driver of the dissimilarity between their large-scale fields, be-
ing almost negligible when both simulations are driven with
consistent external forcing among them (Taranu et al. 2023).
One such example would be the CNRM-CM5-driven simula-
tion, which indeed shows a bit more local predictor saliency
patterns under MOS training than the other GCMs. Another
way forward can be either to 1) train the emulator under non-
biased driving fields, which could be used later also to debias
new predictors, or 2) train the emulator with a wider variety
of GCM biases. The former could be accomplished by train-
ing with reanalysis data (so-called perfect boundary condi-
tions for the RCM), but this would limit the training to the
current climate, compromising the ability of the emulator to
extrapolate under future climate conditions. The latter would
imply mixing different driving GCMs in the training phase, to
show the emulator the RCM response to different biases. This
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FIG. 9. Correlation of saliency maps of humidity at 850 hPa for four illustrative locations for
three RCM emulators built from different driving GCMs (NorESM, CNRM, and MPI). Values
in the upper/lower triangle correspond to the results for the models learned under the MOS/PP
approaches (separated by the dashed diagonal). Dashed boxes along the diagonal show the
interGCM results for each of the locations.
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approach might enhance the capability of the emulator to
cope with different biases, but it will likely affect its accuracy
for any particular GCM input as compared to a specific
GCM–RCM emulator as those shown in this work and
elsewhere.

Overall, we found that both approaches face problems in
emulating the results for different driving GCMs, thus limiting
their applicability to fill the GCM–RCM combination matrix
of regional climate projections. However, there is an ongoing
discussion arguing that the PP approach may potentially lead
to an alternative GCM–RCM combination matrix of simula-
tions (Doury 2022). This is based on the assumption that the
RCM can be perceived as a composition of two functions: a
transformation of the large scale and a downscaling function.
The former arises from the fact that the RCM develops its
own large-scale dynamics since it is only constrained by the
GCM fields at the domain boundaries, while the latter ac-
counts for the increase in resolution. Since the PP approach is
trained to learn the downscaling function and not the large-
scale transformation component of the RCM, it should not be
expected to respond to the GCM fields in the same way as the
RCM does. In this regard, the XAI analysis presented in this
study is crucial to building trust in such an alternative GCM–

RCM matrix. This is because we found that the PP emulation
function learned for a given GCM–RCM pair is transferable
to other GCMs in the hypothetical scenario where GCM–

RCM biases are removed, which ultimately also means that
the large-scale transformation of the RCM is not considered.

Emulators have also great potential for convection-permitting
RCM (CPRCM) simulations (Coppola et al. 2020). These are
very costly RCM simulations with grid spacings below 4 km,
where the parameterization representing convection can be deac-
tivated, reducing uncertainties, e.g., for precipitation. These simu-
lations are typically nested into the same RCM at a coarser
resolution (e.g., the 12-km resolution considered in this study). In
this context, the whole emulation process is performed in the
framework of the same RCM, thus avoiding the problem of the
biases arising from the driving model mismatch with the emu-
lated one. The emulator would learn the relationship between
the RCM and CPRCM and provide CPRCM-emulated fields
out of inputs from RCM simulations at coarse resolution.

Note that in this work we did not cover spatial transfera-
bility, i.e., training the model in one region (or in a represen-
tative selection of regions) and using it in different regions,
which is also an active field of research (Bjerre et al. 2022;
Ludwig et al. 2023). We also did not consider the use of spec-
tral nudging in the RCM simulations, since these are not com-
monly used in future regional climate scenarios (e.g., they are
discouraged in CORDEX). However, it would be of interest
to conduct an intercomparison study of the MOS- and PP-
emulator approaches for this type of RCM simulations in a
future study, since nudging greatly reduces the large-scale
transformation mentioned above, bringing the RCM-U fields
closer to the GCM fields and unifying both approaches.

The emulation function is described by the neural net-
work’s coefficients, and therefore, different topologies can
lead to potentially different plausible fields. In this study, we
relied on DeepESD, since it is a well-tested DL topology that

has proved capable of downscaling climate change scenarios
over Europe in previous studies (Baño-Medina et al. 2022). In
this regard, another important step toward the emulation of
RCMs is to intercompare different DL topologies for both
MOS and PP approaches by means of, e.g., XAI methods, as
was done in González-Abad et al. (2023) for conventional sta-
tistical downscaling. This can even lead to ensembles of DL
emulators that encapsulate the uncertainty on the emulation
function.

Another aspect that can be further explored is the set of
predictors. In this study, we followed previous studies and
built on large-scale variables that are commonly employed in
statistical downscaling (see, e.g., Brands et al. 2013). However,
the particularities of this novel hybrid dynamical–statistical
method may demand different variables than the ones tradition-
ally used in downscaling. An example might be the dependence
of RCMs climate change signal on aerosols (Taranu et al. 2023).
Thus, emulators may potentially benefit from the inclusion of
climate change forcings (aerosols and GHG concentrations) in
the predictor set. Also, one other key aspect is the normaliza-
tion of the predictor variables. In this study, we followed con-
ventional practices in statistical downscaling, scaling each grid
box independently by computing statistics (i.e., mean and stan-
dard deviation) across the time dimension (Baño-Medina et al.
2022). Recent work has explored alternative normalization
methodologies, e.g., by scaling the predictors across the space
dimension independently for each day, in order to preserve the
daily spatial coherence (Doury et al. 2023).
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