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ARTICLE INFO ABSTRACT

Keywords: Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or
Obstructive sleep apnea complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations
Pediatrics of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children.
Electrocardiogram

Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the
standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible,
particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a
novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing
(ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to
automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and
deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from
the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into
approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic perfor-
mance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on
ECG-derived features (4-class Cohen’s kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values
of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%);
specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively.
Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster,
and more accessible diagnostic test that can be implemented in clinical practice.

Convolutional neural network
Apnea-hypopnea index
Childhood adenotonsillectomy trial

1. Introduction untreated. Indeed, the obstructive respiratory events and accompanying

manifestations (i.e., intermittent hypoxia and hypercapnia and recur-

Obstructive Sleep Apnea (OSA) is a common breathing disorder
characterized by multiple episodes of partial or total upper airway
obstruction during sleep, resulting in either reduction or cessation of the
airflow with attendant alterations in gas exchange, and recurrent
arousals fostering the occurrence of sleep fragmentation [1]. In other-
wise healthy children, the prevalence of OSA ranges between 1% and
5%, affecting both sexes similarly [2]. Enlarged adenoids and tonsils are
one of the major pathophysiological processes enhancing the risk of OSA
occurrence [3], and the disease can impose a significant deleterious
impact on the cardiovascular and central nervous systems when left

rent arousals along with enhanced intrathoracic pressure swings) induce
increased cardiac workload as well tachy- and brady-arrhythmias and
catecholaminergic and sympathetic nervous system bursts [1,4-8].
Moreover, OSA has been linked to an elevated risk of developing car-
diovascular disease during adulthood, particularly if left untreated [2,7,
9,10].

OSA is routinely diagnosed using overnight polysomnography (PSG),
which involves monitoring various physiological parameters, such as
the electrocardiogram (ECG), oral and nasal airflow (AF), peripheral
blood oxygen saturation (SpO-), and the electroencephalogram (EEG),
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among others [1,2]. The signals obtained from PSG are manually
analyzed by trained medical personnel to derive the apnea-hypopnea
index (AHI), the standard metric used in the diagnosis of OSA [11].
AHI measures the frequency of apnea and hypopnea events per hour of
sleep (e/h) and helps determine the severity of the disease [2]. However,
nocturnal PSG is an uncomfortable, time-consuming, and complex test,
especially in children. It requires a sleep laboratory with appropriately
trained staff, and pediatric subjects have to spend the night in the hos-
pital facility while being monitored with sensors, thus potentially dis-
rupting their natural sleep patterns [1]. Limited availability of such
facilities for children, coupled with the cost of conducting overnight
PSG, leads to underdiagnosis of pediatric OSA, particularly in devel-
oping countries where resources are limited [12,13].

To simplify OSA diagnosis in children, investigators have focused on
developing approaches that require a limited number of signals coupled
with artificial intelligence techniques [14,15]. These proposed meth-
odologies have mainly focused on the use of overnight SpO, and AF
[15]. However, none of these approaches relied on cardiac signals
derived from the ECG which contains a plethora of relevant information
that can be used for diagnostic purposes involving both cardiorespira-
tory coupling and changes in heart rate frequency and variability asso-
ciated with the respiratory events [2-4,7,16]. These physiological
behaviors, together with the increased risk for developing cardiovas-
cular disease, make ECG signal analysis worthy of special interest in the
study of OSA [7,9,10]. Furthermore, because the ECG is one of the most
widely analyzed signals in clinical practice around the world, an
ECG-based application to aid in the diagnosis of OSA could be readily
implementable and accessible [17-19].

Several investigative groups have focused on the analysis of cardiac
information using deep learning (DL) methods, such as convolutional
neural networks (CNN), recurrent neural networks (RNN), combinations
of CNN and RNN, and hybrid methods to automatically detect the
severity of OSA in adult patients, achieving overall robust performances
[20-26]. However in children, most studies have relied on derivatives of
cardiac function such as heart rate variability (HRV) or photo-
plethysmography (PPG), but not used the raw ECG signal [3,27-33].
These methodologies, while yielding satisfactory results, rely on existing
knowledge of the effects of pediatric OSA on the ECG to extract features
from different analytical approaches [34,35]. However, these ap-
proaches do not use all the information available in the ECG, which
could be crucial for achieving a more thorough understanding and ac-
curate diagnosis of the disease. Moreover, most of these previous studies
relied on a feature-engineering approach, which is demanding and
time-consuming due to comprehensive signal preprocessing and feature
extraction [3,27-33].

To the best of our knowledge, no studies have investigated the use of
raw ECG signals coupled with DL methods to explore their feasibility in
the diagnosis of pediatric OSA. Such combinatorial approach is essential
for two reasons: on the one hand, DL methods are gaining great interest
in many fields due to a large number of existing databases [36], espe-
cially highlighting their application in the biomedical sector to help in
the diagnosis and treatment of diseases [37-39]. Specifically, DL
methods can handle high-dimensional data due to multiple-layer pro-
cessing that allows for extracting relevant information intrinsically
without exhaustive signal preprocessing [40]. On the other hand,
analyzing the ECG signal could be very helpful for pediatric OSA due to
associated cardiovascular risk, particularly in more severe cases [2].

Furthermore, analyzing previous studies focused on automatically
detecting the severity of OSA using DL, most of them used architectures
based on CNNs [20-26]. Although CNNs were originally created for
image analysis [41], these networks have proven to be appropriate for
time series analysis in a wide range of fields [42], especially in the
domain of biomedical signal analysis [35,43,44]. CNNs contain a
multi-layer architecture and their design is characterized by weight
sharing, sparse connections, and pooling operations [41]. This structure
allows them to identify short- and long-term patterns happening in
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distinct regions of the data sequences [43], with a computational effi-
ciency that outperforms other DL models [41]. This property of CNNs
can be essential in identifying patterns in the ECG signal associated with
apneic events, which may manifest at different times during the night. In
addition, CNNs have the ability to generate higher-level representations
[41], which may allow them to learn complex patterns in prolonged
segments of the ECG signal, such as heart rate fluctuations that are
triggered in response to apneic events [2,7].

For these reasons, we here propose the development of a CNN-based
algorithm for the classification of pediatric patients at risk of OSA based
on their overnight ECG recordings that permits delineation of pediatric
OSA severity according to the conventional AHI categories. This study
presents two main novelties: 1) it is the first time that a DL approach is
used along with raw ECG signals for the diagnosis of pediatric OSA; and
2) our approach is a new CNN-based regression model trained to aid in
the diagnosis and severity estimation of pediatric OSA, in which we first
estimate the number of apneic events per signal segment and then the
AHI values per subject. For this purpose, we propose a data augmenta-
tion technique by dividing the whole night recordings into 10-min
segments with a 50% overlap to increase the volume of the dataset
during model training. Thus, we hypothesize that a CNN-based archi-
tecture fed with the raw ECG signal can enhance and streamline the
diagnosis of pediatric OSA by utilizing all relevant cardiac signal data to
estimate disease severity. Accordingly, the main objective of our pro-
posal is to evaluate a CNN-based model with the ECG signal to estimate
the AHI, and accurately establish a diagnosis of OSA and its severity in
pediatric patients.

2. Database and signals

The Childhood Adenotonsillectomy Trial (CHAT) database was used
in this study (number of clinical trial: NCT00560859). Access to CHAT
data is public upon request from the National Sleep Research Resource
website (https://sleepdata.org/datasets/chat). A total of 1,610 over-
night PSG recordings performed on children between the ages of 5 and
9.9 years old with suspected clinical symptoms of OSA were analyzed.
Sleep studies were collected from 6 pediatric sleep centers in the United
States of America (Children’s Hospital of Boston, Boston, MA; Cardinal
Glennon Children’s Hospital, St. Louis, MO; Children’s Hospital of
Philadelphia, Philadelphia, PA; Cincinnati Children’s Hospital, Cincin-
nati, OH; Montefiore Children’s Hospital, New York, NY; Rainbow Ba-
bies and Children’s Hospital, Cleveland, OH) [45]. All nocturnal PSGs
were conducted following the 2007 American Academy of Sleep Medi-
cine (AASM) recommendations [11]. Inclusion and exclusion criteria for
the study can be found in previous literature [45,46]. CHAT is a ran-
domized, controlled, single-blind, multicenter trial aimed at assessing
the effectiveness of a surgical treatment for pediatric OSA. Details of the
trial design, performance, and initial results obtained in the original
study are explicitly documented in published reports [45,46]. Studies of
nocturnal PSG were divided into three groups. Initially, the baseline
cohort (451 subjects) that met the inclusion criteria, completed an initial
PSG, and individuals were then randomly assigned to either early sur-
gical adenotonsillectomy (eAT) or watchful waiting with supportive
care (WWSC) [46]. In addition, the nonrandomized group (755 subjects)
corresponded to individuals who did not meet the inclusion criteria
conditions in the original study but had undergone an initial PSG.
Finally, the follow-up group (404 subjects) comprised the subjects in the
baseline group who underwent a follow-up PSG seven months after the
initial PSG. Approximately half of the children in the follow-up group
were treated with eAT and the other half randomly allocated to WWSC.

In this study, all recordings were randomly divided into training
(60%), validation (20%) and test (20%) subsets. This partition was made
so that no subject could be present in two subsets. In turn, following the
recommendations from the AASM [11], all PSG recordings from CHAT
included annotated data on the beginning and duration of apnea and
hypopnea events. Accordingly, OSA diagnosis was established by
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Table 1
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Clinical and demographic features of the pediatric study subjects extracted from the CHAT dataset.

Features Training subset

Validation subset Test subset

Baseline subjects (n)
Non-randomized subjects (n)
Follow-up subjects (n)

Total subjects (n)

278 (61.64%)
461 (61.06%)
249 (61.63%)
988 (61.37%)

Age (years) 7.00 [2.00]
Females (n) 477 (48.28%)
BMI (kg/m?) 17.31 [5.92]
AHI (e/h) 2.64 [4.77]

AHI < 1 (e/h)"
1<AHI<S5 (e/h)”
5<AHI<10 (e/h)*
AHI > 10 (e/h)*

212 (21.46%)
488 (49.39%)
159 (16.09%)
129 (13.06%)

Baseline ECG segments (n) 33,402
Non-randomized ECG segments (n) 53,137
Follow-up ECG segments 29,587
Total ECG segments (n) 116,126

88 (19,51%)
157 (20.79%)
78 (19.31%)
323 (20.06%)

85 (18.85%)
137 (18.15%)
77 (19.06%)
299 (18.57%)

7.00 [2.00] 6.90 [2.00]
164 (50.77%) 161 (53.85%)
17.12 [6.25] 17.43 [6.04]
2.45 [4.77] 2.32 [5.11]

67 (20.74%)
167 (51.70%)
44 (13.62%)
45 (13.93%)

65 (21.74%)
144 (48.16%)
49 (16.39%)
41 (13.71%)

5,350 5,059
9,057 7,972
4,519 4,442
18,927 17,473

Data are shown as number (percentage) or median [interquartile range], depending on the feature type. BMI: body mass index; AHI:

apnea-hypopnea index; e/h: apneic events per hour.

2 AHI<1 (e/h): no OSA; 1<AHI<5 (e/h): mild OSA; 5<AHI<10(e/h): moderate OSA; AHI>10(e/h): severe OSA.

calculating the AHI [11]. Then, pediatric OSA severity was divided into
four categories based on AHI values: no OSA (AHI<1 e/h), mild OSA
(1<AHI<5 e/h), moderate OSA (5<AHI<10 e/h), or severe OSA
(AHI>10 e/h) [11]. Table 1 presents the demographic and clinical
characteristics of the subjects included in the training, validation, and
test subsets.

3. Methods

This section presents the methodology to obtain the proposed solu-
tion for predicting pediatric OSA and its severity. The workflow fol-
lowed is introduced (see Fig. 1), based on six principal stages: 1) ECG
signals were extracted from pediatric PSG recordings; 2) a minimal
preprocessing was conducted to obtain 10-min ECG segments; 3) CHAT
database was divided into training (60% of the subjects), validation
(20% of the subjects), and test (20% of the subjects) subsets; 4) a
regression CNN-based architecture was designed. This CNN model was
trained using the preprocessed 10-min ECG segments belonging to the
training subset (Sy, ..., Sy) as input data. AHI,,, was calculated for each
subject by adding the estimated events in all segments (yy, ..., yn) of a
pediatric overnight recording and dividing them by the total recording
time in hours. The value of this rate calculated after training with CNN
underestimates the value of the actual AHI (AHI,cnq1) extracted from the
CHAT database because the index in our initial proposal uses the total
signal recording time rather than the total sleep time. To correct this
tendency, we calculated the final estimated AHI (AHI.,) by imple-
menting a support vector regression (SVR) model; 5) the validation
subset was used to adjust the algorithm hyperparameters and select the
optimal model; and 6) the optimal model was applied to the test data to
evaluate the diagnostic ability of the CNN-based algorithm.

3.1. ECG signal preprocessing

Following the AASM recommendations, ECG was obtained from the
bipolar lead II [47]. ECG was minimally preprocessed before its use on
the CNN. The raw signals were resampled at a sampling frequency of
100 Hz, which is consistent with the sampling frequencies used in prior
studies [20,25,48-51]. Subsequently, the signals underwent a two-step
filtering process. First, the continuous component was corrected by
eliminating the signal mean within 30-s duration windows. Then, we
applied a low pass filter with a pass band between 0 and 25 Hz to reduce
noise, being a less restrictive approach than in previous studies which
was intent on avoiding loss of important frequency components [25,50,
52]. Specifically, we employed a linear-phase finite impulse response

digital filter using a Hamming window to smooth out any discontinuities
at the start and end of the signal [53]. After the complete records were
filtered, ECG signals were divided into 10-min segments, with a 50%
overlap between segments to increase the volume of data for model
training, i.e., as a data augmentation technique [54]. The final pre-
processing step consisted of normalizing the amplitude of each ECG
segment by extracting the mean value to the segment and dividing it by
the standard deviation [55].

Finally, the determination of segment labels was performed by
considering the annotations regarding the duration, beginning, and end
of apneic events from CHAT annotations of the recordings [56,57]. The
labels were calculated as the number of apneic events in each segment.
In this way, both complete events and the proportion of incomplete
events found at the edges of the segments were included as part of the
target. For instance, when a single event was identified within a
segment, it was labeled as 1. For segments containing a complete event
along with, for example, 70% of another event (equivalent to 1.7
events), a label of 1.7 was assigned to that segment.

3.2. Design of the CNN architecture

Although CNN were initially created to deal with image data, they
have been highly effective in processing time series in many fields [58],
including biomedical signal processing [59]. In this work, we imple-
mented a one-dimensional (1D) CNN-based approach since our input
data responded to physiological single-channel ECG signals (see Fig. 2).
The network began with a data input layer containing a tensor of 60,000
samples (10-min ECG segment) and a batch normalization (BN) layer of
the input data [60]. Subsequently, the network processed the segments,
which was composed of three convolutional blocks (B¢z_3), and each of
them consisting of convolutional sub-blocks (Npk) with the layers
described below.

First, we incorporated a 1D convolutional layer to extract feature
maps based on relevant patterns [40]. The 1D convolution operation in
this layer was calculated by following the next equation [41]:

K
x;"[n}:Zw;."*a,[nfiJrl]er;", @D
i=1

i=

where x]" is the m-th feature map and m = [1:convolutional filters (Nf)],
K; is the kernel size, which determines the filter size, w* values are the
weights of the convolutional filter, q;[n] are the input ECG segments, and
b" is the bias term. The convolutional layer comprised a set of 1D filters
(Np) with kernel size K, * 1, a step length strides = 1, and zero padding
(padding = ‘same’) to obtain the output with the same dimension as the
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Fig. 1. Proposed workflow for developing and validating the CNN enabling prediction of the severity of OSA in children based on their overnight raw ECG signal
recordings. CHAT: Childhood Adenotonsillectomy Trial; PSG: polysomnography; ECG: LPF: low pass filter; electrocardiogram; CNN: convolutional neural network;
AHI: apnea-hypopnea index; SVR: support vector regression; OSA: obstructive sleep apnea. AHI,,: rate of apnea events per subject calculated after CNN regression;
AHl g actual AHI extracted from CHAT database; AHI: final estimated AHI after SVR fitting. Sy: segment N; yy: estimation of apneic events in segment N.
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Fig. 2. Diagram of the CNN architecture proposed in the study. The input data to the CNN are the 10-min ECG segments and the output corresponds to the number of
apnea events that the CNN estimates for each segment. 1D CONV = 1-dimensional convolutional layer; Ny = number of convolutional filters; K; = kernel size; strides
=1in 1D CONV indicates that the stride length of the convolution is 1; padding = *same’ in 1D CONV results in padding with zeros evenly so that the output has the
same dimension as the input. RELU = rectified linear unit activation; pool size = 2 in the max pooling layer indicates that the size of the pooling window is 2; strides
= 2 in the max pooling layer specifies a two-step shift of the pooling window; p = probability that each neuron is deactivated during training; Npjock = number of
convolutional sub-block; B¢ = convolutional block 1-3. Seg, is the number of the segment entering the network, ranging n from 1 to 116,126.

input [41]. Secondly, we integrated a BN layer to normalize the Ny
feature maps obtained from the previous convolutional layer [60], fol-
lowed by an activation layer. This layer used the rectified linear unit
activation (ReLU) function [41]:

f(x) =max(0,x) = { g:i ; 8, 2)

where x is the value of each sample in the feature map. This activation is

the standard choice in DL architectures and was used to introduce
nonlinearity and solve the problem of vanishing gradient during training
[41]. A max-pooling layer with a window size 2 (pool size = 2) and a
two-step window offset (strides = 2) was then included, which reduces
the dimensionality of the input data by half while keeping the most
relevant features [41]. In the last step of each sub-block, we applied
regularization through a dropout layer that randomly deactivated a
fraction of the neurons with probability p during training. This layer was
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used to prevent the network from overfitting and improve the general-
ization of the model. Particularly, we used spatial dropout, an approach
derived from the standard dropout for CNN [61]. The conventional
dropout discards individual units with a certain probability in the
training process. In contrast, in the case of spatial dropout, complete
feature maps are discarded to improve generalization between the
different feature maps [61,62].

Finally, after the B¢;-3 configurations, we added a flattening layer to
rearrange the spatial information into 1D vectors, and a densely/fully
connected layer with linear activation to provide the final estimation
[41]. Linear activation was selected for a regression problem to estimate
apnea events by 10-min segment as output from the proposed CNN.

The proposed CNN model was trained using the He-normal method
to randomly initialize layer weights following a normal distribution
[41]. We used the adaptative moment estimation (Adam) algorithm to
optimize weight updates, with an initial learning rate of 0.001 [63].
Training data was presented to the network in batches of 15 samples for
a maximum of 250 epochs, with randomized samples at the start of each
epoch to improve convergence [41]. The loss function used to minimize
the Adam algorithm in the validation subset was Huber loss with a delta
parameter of § = 1.5, which is robust in the presence of outliers [64].
During training, we monitored the validation loss and decreased the
learning rate by a factor of 2 if there was no improvement after 10
epochs. We also used an early stop method to prevent overfitting, which
stopped training after 30 epochs without a decrease in validation loss.
The weights were then readjusted to the epoch in which the minimal
validation loss achieved [41].

3.3. AHI estimation

As previously explained in Section 1, AHI is the standard respiratory
metric for diagnosing OSA and its severity. In this study, once we ob-
tained the predictions of the apnea and hypopnea events for each 10-min
ECG segment in the CNN, we calculated for each subject the overnight
rate of events per hour of recording (AHI;,). This was done by adding
the estimated events in all segments of an overnight recording and
dividing them by the total recording time in hours. It is essential to
highlight that the value of this rate calculated after CNN training un-
derestimates the value of the actual AHI (AHI;cwa), €xtracted from the
CHAT database. This underestimation occurs because the rate of our
initial proposal uses the total recording time of the signal rather than the
total sleep time. Total recording time is typically greater than the total
sleep time which is used to calculate the AHI, and which requires EEG
and other signals for this purpose. To address this issue, we calculated
the final estimated AHI (AHLs), through the implementation of a sup-
port vector regression (SVR) model [65]. This model is more robust than
ordinary least squares when dealing with outliers. It determines the best
regression function using a kernel function and minimizes the e-insen-
sitive loss function. This function allows a certain degree of prediction
error within a margin defined by the ¢ hyperparameter [66]. The loss
function is defined as follows:

, — )| — ) = 0,[y—fx)<e

s =max(0.b ) - ={ P TIISE @
where y is the actual value of the target variable, f(x) is the model
prediction and ¢ is the acceptable margin of error [66]. It is necessary to
set a minimum value for the margin ¢, being ¢ > 0, to delimit an area
around f(x) where the difference between AHI,.p,q1 and AHI does not
contribute to the error. The formulation of the loss function ensures that
only errors exceeding the threshold ¢ are penalized, while smaller errors
do not contribute to the loss [67]. The purpose of the ¢ parameter is
twofold: to control the model’s sensitivity to errors and to determine the
size of the tolerance band around the regression line [66]. In this way,
the loss function penalizes errors outside the tolerance band. In addition
to the ¢ hyperparameter, other hyperparameters influence the SVR
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model optimization, such as the penalty parameter C and the y kernel
coefficient. The C hyperparameter balances the accuracy of model pre-
dictions and complexity, determining how prediction errors are penal-
ized. The y coefficient is responsible for controlling the form that the
kernel function takes [65,66].

3.4. Model hyperparameter search and algorithm evaluation

To achieve optimal algorithm performance, we tuned a set of
hyperparameters to minimize the generalization error of the CNN-based
architecture. First, we heuristically selected the parameter NN of the
convolutional layers for each block B¢i-3. We used an approach with
ascending value in powers of two as the depth of the network increased:
Ny = 16 (Bc1), Ny = 32 (Bc2), Ny = 64 (Bcz). This choice was made
because the deeper the layers, the more complex the characteristics that
are extracted [41,68]. Subsequently, for choosing the remaining CNN
hyperparameters, we implemented a more exhaustive tuning strategy
using a grid search method. With this method, different combinations of
hyperparameters were tested in the search space. Specifically, we
searched for the following values Ny,oox = {4,5}, Ks = {7,9,17,33} and
dropout with p = {0.0,0.05,0.1}. Considering the initial analyses per-
formed, we selected this set of search hyperparameters so that the
network had enough complexity to train and generalize properly. If we
included smaller values in the implementation of CNN, it could not
adjust sufficiently. If we increased the values, CNN took too long to train
and adapted too much to the training data. In addition, the increased
complexity of the network led to a computational cost not supported by
the training of the CNN-based algorithm (NVIDIA GeForce RTX 2080
GPU; Keras 2.4.3 framework with TensorFlow 2.3 backend).

Then, for each of the CNN models trained with a specific combina-
tion of hyperparameters, we conducted a sequential search of three more
hyperparameters in the SVR model (¢ = [0.1: 0.05: 0.5], C = [0:100]
with logarithmic scale value search, and y = [0.01: 0.01: 0.1]). Ulti-
mately, to determine the optimal hyperparameter configuration, we
evaluated the performance of the CNN-based approach. This involved
calculating the 4-class Cohen’s kappa coefficient (k) for the subject-wise
OSA severity classification (no OSA, mild, moderate, and severe OSA) in
the validation subset. We selected the architecture with the highest k.
Cohen’s kappa is a statistical metric used to measure agreement,
particularly appropriate in classification tasks with unbalanced class
distributions. Its usefulness comes from its capability to consider the
likelihood of chance agreement, which reduces the bias towards the
predominate class typically associated with accuracy metric [69].

3.5. Statistical analysis and figures of merit

To establish the agreement between the AHI, with our proposed
algorithm and the AHI ., extracted from the CHAT database, we per-
formed a statistical analysis. First, we calculated the intraclass correla-
tion coefficient (ICC), which consists of a statistical measure used to
evaluate the reliability or consistency of measurements made by
different observers [70]. In addition to this metric, we obtained
Bland-Altman plots [71] to have a more representative view of the
agreement between AHI, and AHlcpq

To assess the effectiveness of the proposed algorithm in diagnosing
pediatric OSA, we classified subjects into four severity groups based on
their estimated AHI values: AHI <1 e/h (no OSA), 1 < AHI <5 e/h (mild
0OSA), 5 < AHI <10 e/h (moderate OSA), AHI >10 e/h (severe OSA).
After establishing these categories, we calculated the confusion matrix
and 4-class accuracy (Accy) to assess the overall performance of the
model across classes. Additionally, k coefficient was calculated to assess
the agreement between the actual classes, i.e., the true OSA severity
level of each subject, and the classes derived from the AHI predicted by
the model. The importance of k should be emphasized, as it has the
advantage of correcting for agreement that occurs by chance [69].
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Furthermore, we calculated different merit figures for each of the OSA
severity thresholds (AHI = 1, 5, and 10 e/h) from the values obtained in
the confusion matrix. In this way, we determined accuracy (Acc) which
reflects the proportion of correct predictions overall. In addition, we
obtained values for sensitivity (Se) and specificity (Sp), which measure
the ability of the model to detect true positives and negatives, respec-
tively. Additionally, we used the positive predictive value (PPV) and
negative predictive value (NPV) to assess the proportion of true positive
and negative predictions. Moreover, we calculated positive likelihood
Ratio (LR") and negative likelihood Ratio (LR’), which provide infor-
mation on how the predictions affect the probability of a positive or
negative case, respectively. These metrics, in addition to giving infor-
mation on crucial aspects of model performance, allow us to fully and
fairly evaluate and compare the efficacy and generalizability of our
model relative to previous approaches in the literature [3,29,31,72].
Finally, we calculated the 2-class kappa to assess the agreement between
the actual classes and the classes predicted by the model for each AHI
threshold. With this metric, we can determine at which threshold the
model performs higher in terms of classification [69].

4. Results
4.1. Optimal CNN-based approach configuration

As described in Section 3.3, to select the optimal configuration of the
CNN-based model, we performed an exhaustive search of different
hyperparameters in the CNN network (Npok, Ks, p). Subsequently,
sequential adjustment of the hyperparameters of the SVR model (¢, C, 7)
was performed. The training of the algorithms with each of the combi-
nations of search values was conducted with the training subset. The
evaluation was made with the validation subset, calculating the k co-
efficient when classifying OSA severity. Fig. 3 shows the result of the
CNN optimization process throughout the model training. On the one
hand, the graph on the left shows how the Huber loss value decreases as
the training epochs progress. In addition, it can be seen that training
stopped with early stopping at epoch 155, 30 epochs after the minimum
validation loss value was reached. On the other hand, the graph on the
right shows how the mean absolute error obtained from the AHI,.y and
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AHI,, is also decreasing in each training epoch. Fig. 4 shows the box-
plots (median and interquartile range) of the k values obtained in the
models for each search hyperparameter. The model that obtained the
highest k value (k = 0.3964) presented the CNN hyperparameters Npj,ck
=4,p=0.1,and K; = 33 (B¢1), 17(B¢z), 7(Bcs) (Fig. 4(a), 4(b), and 4(c),
respectively). To optimize the model with this configuration learning
rate reached a final value of 3 x 10~°. Finally, after adjustment of the
SVR regression, the optimal hyperparameters of ¢ = 0.15, C = 5.84, and
y = 0.02 were selected. Additionally, Table 1 of the supplementary
material shows all the combinations of hyperparameters tested and the k
results obtained in the validation subset.

4.2. AHI estimation

After training the model with the training subset and establishing the
optimal configuration using the validation subset, the test subset was
used to estimate the AHI, and evaluate the performance of the CNN-
based algorithm. The Bland-Altman plot was calculated to establish
the similarity between the estimated final AHI of each subject in the
proposed model and the AHI extracted from the PSG in the CHAT
database (see Fig. 5). The solid black line of the Bland-Altman plot
shown in Fig. 5 indicates the average difference between AHI,s and
AHlgnq A negative value indicates that our proposed model un-
derestimates in the test subset slightly. However, despite this underes-
timation, the limits of the confidence interval ([7.40, —9.40]), together
with the ICC = 0.79, show that there is high agreement between AHI,s;
and AHlycqyqr-

4.3. Diagnostic ability of pediatric OSA

To evaluate the diagnostic ability of the model, we determined the
severity of pediatric OSA after estimating the AHI, in the test subset.
We calculated the confusion matrix, Accs, and k (Fig. 6). On the one
hand, the cells of the confusion matrix show the proportion of subjects of
the actual class assigned to each severity group. These values are asso-
ciated with a cell color, indicating the performance of the model. On the
other hand, the values of the number of subjects estimated in each of the
four groups are shown. We observe an overestimation of the OSA
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Fig. 3. Evolution of Huber loss (left) and mean absolute error (right) in the training and validation subsets during CNN optimization as model training epochs

progress. MAE: Mean absolute error.
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severity in healthy subjects (no OSA) and an underestimation of the OSA
severity in mild OSA subjects. According to the number of correctly
classified subjects on the main diagonal, the performance of the model is
better in subjects with mild OSA (65.28%), followed by those with
moderate (55.10%), severe OSA (53.66%), and no OSA subjects
(46.15%). Finally, it is important to note that all the subjects estimated
with an AHI; > 10 e/h are patients who have at least moderate OSA.
Table 2 presents the diagnostic performance of our pediatric OSA
estimation algorithm in the three severity thresholds (AHI = 1 e/h, AHI
= 5e/h, AHI = 10 e/h). We can observe that the values of Sp are higher
as the severity of OSA increases and, conversely, the values of Se
decrease. The AHI threshold with the most balanced Se and Sp is 5 e/h. If

we focus on the values of PPV and NPV, the highest values are obtained
in 1 e/h and 10 e/h, respectively. Regarding LR values, it is essential to
highlight the LR *value obtained for the threshold 10 e/h (27.69), which
indicates a relevant diagnostic utility for this threshold. Finally, as the
severity of OSA increases, the Acc of the model is higher, with 91.97%
Acc for 10 e/h. If we analyze the 2-class kappa at each threshold, we can
observe that the highest value is obtained for 5 e/h (0.69). Thus, in strict
terms of classification, we can state that the highest 2-class kappa results
are obtained for 5 e/h. However, we consider it essential to emphasize
that determining the most suitable threshold for model performance
depends significantly on aligning it with the specific objectives of the
clinicians using our approach. Consequently, we show various metrics to
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Fig. 6. Confusion matrix of classification performance of the test subset in the four severity groups among pediatric patients. The color reference is associated with
the proportion (%) of subjects of the actual class assigned in each severity group. At the top, the values of the 4-class accuracy (Acc4) and the 4-class Cohen’s kappa
coefficient (k) are shown. * No OSA: AHI<1 (e/h); mild OSA: 1<AHI<5 (e/h); moderate OSA: 5<AHI<10(e/h); severe OSA: AHI>10(e/h).

Table 2

Figures of merit obtained in the test subset for the evaluation of the diagnostic capacity of pediatric OSA in the AHI thresholds 1 e/h, 5 e/h, and 10 e/h. Se (sensitivity);
Sp (specificity); PPV (positive predictive value), NPV (negative predictive value), LR * (positive likelihood ratio), and LR~ (negative likelihood ratio). e/h (events/hour).

Test subset

2-class kappa

AHI threshold Se (%) Sp (%) PPV (%) NPV (%) LR" LR Acc (%)

le/h 84.19 46.15 84.91 44.78 1.56 0.34 75.92 0.30
5e/h 76.67 91.39 79.31 90.09 8.90 0.26 86.96 0.69
10 e/h 53.66 98.06 81.48 93.01 27.69 0.47 91.97 0.60

let the potential users of the model make the last decision on its appli-
cation. This inherent versatility constitutes a notable advantage of our
proposal.

5. Discussion

This work evaluated a CNN-based model reliant on raw overnight
ECG signals to estimate respiratory events per segment and AHI per
subject for diagnosing OSA severity in pediatric patients. A CNN-based
algorithm reached a moderate-to-high diagnostic performance for the
thresholds of 1 e/h, 5 e/h, and 10 e/h. Results demonstrate that using
single-channel ECG signal and a CNN shows an excellent potential for
identifying pediatric OSA severity, thus enabling a simple, fast, objec-
tive, and accurate diagnosis. Furthermore, the diagnostic performance
obtained with the proposed approach could be a valuable starting point
to assess for cardiac co-morbidities, a significant risk factor in children,
particularly those with severe OSA [2].

5.1. Comparison between adult and pediatric OSA

Pediatric OSA disease is a serious health problem due to its elevated
prevalence and the associated morbidities it can cause [2]. As a result of
the cost of PSG and the human and instrument resources required for its
detection, much effort has been invested in simplifying the signals
required to enable automatic OSA diagnosis in children [14].

Diagnosing pediatric OSA using a single-channel ECG signal is particu-
larly interesting for its simplicity of recording and comfort for children.
Analysis of this signal is crucial due to the relevant information it con-
tains including potential underlying cardiovascular pathology [2,10].
In adults, some approaches have analyzed the ECG signals through
DL methods. Specifically, CNN networks have been implemented for
event detection and classification of OSA, achieving high performance in
the OSA classification, with Acc values ranging from approximately 90%
to 99% [20-23,25,26]. However, DL methods have yet to be exhaus-
tively evaluated in conjunction with cardiac signals in children. There-
fore, we developed a CNN-based model to analyze ECG signals aimed at
identifying OSA in children and establishing its severity. Lower diag-
nostic performances emerged when compared to adults, with differences
likely due to the lower AHI traditionally seen in clinical practice among
children, the latter reflecting the reduced upper airway collapsible of the
upper airway during childhood. As a corollary, the criteria required to
establish the presence of OSA are markedly different, being substantially
more restrictive for the pediatric population [1,4]. Additionally, AHI
thresholds for determining the degree of severity of OSA are lower in
children compared to adults (1 e/h, 5 e/h, and 10 e/h versus 5 e/h, 15
e/h, and 30 e/h, respectively) [73,74]. Another critical factor involves
the differences in the kinetics of cardiac and other physiological re-
sponses during apnea episodes. Accordingly, the analysis of the ECG
signals must be specifically restricted to data in children [2,10].
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5.2. Configuration of CNN-based model

Regarding the architecture of the model, a regression CNN was
implemented. Initially, the number of events per signal segment was
estimated, and later, the AHI index per subject was calculated. This
methodology had already been used in previous studies by our research
group while analyzing other PSG signals such as SpO; or AF to identify
the severity of pediatric OSA, achieving high accuracy in the classifi-
cation [56,57].

During the preliminary testing runs, we trained the model with 5-
min segments to avoid any impact on the delay between apnea events
and the patterns of tachycardia/bradycardia onset [7]. Later, we used
10-min segments to train the CNN. The algorithm showed a higher k
coefficient with 10-min segments (0.3762 versus 0.3244 in the valida-
tion set), indicating that larger segment sizes have a lesser effect on
inter-event delay and bradycardia/tachycardia patterns. However, if the
training included segments longer than 10 min, there was a high
computational cost. Then, once the 10-min segments were selected, we
trained the network initially with 10-min ECG segments and then
applied a 50% overlap as a data augmentation strategy. This approach
served to minimize overfitting during training and to facilitate the
optimal performance of the model. The highest results in terms of k in
the validation subset were obtained in the CNN trained with segment
overlap (0.3964 versus 0.3762). Therefore, we selected 10-min seg-
ments with 50% overlap to evaluate the model on the test subset.

Concerning the selection of CNN hyperparameters, Fig. 4 shows that
the highest value of k was obtained with Ny;ox = 4, p = 0.1, and K; = 33
(Bc1), 17(Bc2), 7(Bcs). Fig. 4(a) shows that increasing the Ny, value
and, therefore, increasing the complexity of the network, would not lead
the CNN to an improvement in the capture of characteristic patterns in
the ECG. Fig. 4(b) indicates that further increasing the dropout would
lead to lower median values of the boxplots and lower k values for most
models, as shown by the trend of interquartile ranges. From Fig. 4(c), we
can extract that those models with K; of similar values obtain lower
median and interquartile ranges in the boxplots. This finding highlights
the importance of optimizing this hyperparameter.

5.3. Proposal of a diagnostic protocol

Regarding the confusion matrix of Fig. 6, it can be observed that
96.9% of healthy children (no OSA) were estimated with an AHL.;; <5 e/
h (no OSA or mild OSA). In addition, of the subjects with AHI ., <5 €/
h, 91.4% were predicted as no OSA or mild OSA. All subjects belonging
to the no OSA or mild OSA class were estimated with an AHIL,;; <10 e/h.
Finally, of the children who were estimated with an AHL >10 e/h
(severe OSA), 100% were subjects with at least moderate OSA.

Based on these results, a diagnostic protocol could be created from
the developed CNN algorithm to demonstrate its clinical utility, ac-
cording to the following criteria:

1) If our estimate is AHIs; <1 e/h (no OSA), the presence of OSA can be
discarded since most of these subjects (95.5%) would have an
AHIl,cpq <5 e/h. In these children, a follow-up evaluation of the
symptoms would need to be done periodically. If the symptoms were
to persist over time (i.e., 2-3 months), a determination of the need
for PSG would be then made by the sleep specialist.

2) If 1< AHI <5 e/h is estimated by the algorithm, 77.2% of the
subjects could have AHI,.;,,q; >1 e/h (OSA presence), so the specialist
would then recommend a PSG to establish a more precise diagnosis.

3) If the model estimates 5< AHI <10 e/h, the clinician would
consider treatment because 96.7% of these subjects would suffer
from at least mild OSA.

4) If the model estimates AHI.;; >10 e/h, treatment would be estab-
lished since 100% of children would have an AHI g >5 e/h
(moderate OSA or severe OSA).
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As a result, 51.5% of the PSG would be avoided with this screening
protocol. Moreover, only 3.1% of children with an AHI,nq <1 e/h
would be indicated for treatment and 3.3% with an AHI, g >5 e/h
would not be referred to PSG/treatment in the first visit to the specialist.
This solution would reduce waiting lists in the hospital service,
achieving a more accurate pediatric OSA diagnosis and timely treatment
of the more severe cases.

5.4. Comparison with previous studies

Table 3 summarizes the diagnostic performance of previous publi-
cations that used cardiac information, but not the raw ECG signal, and
where conventional machine learning (ML) techniques were applied for
feature extraction. In the study by Shouldice et al. [3], the binary clas-
sification of segments (normal/apnea) and subsequent binary classifi-
cation of subjects was performed using a single AHI threshold of 1 e/h.
RR interval features were used to achieve Se = 85.7%, Sp = 81.8%, PPV
= 85.7%, NPV = 81.8%, and Acc = 84%. Comparing the results, our
approach at that threshold achieved lower values of Sp, NPV, and Acc,
but similar values of Se and NPV. It is important to highlight that in their
study they used only 50 total recordings and 25 for the test subset,
compared to 1,610 total recordings and 299 in the test subset used in this
study. Thus, we can conclude that our results are more powerful and
generalizable.

Other investigators used extracted features from the PPG signal for
binary classification of pediatric OSA (AHI <5 No OSA and AHI >18
OSA) [28-30]. Compared to these studies, although Se was lower, our
approach achieved higher Sp, LR* and Acc for the most restrictive
threshold of 10 e/h. Thus, we can conclude that the current methodol-
ogy is preferable to correctly identifying healthy children without severe
OSA. Moreover, these studies had smaller samples (50 and 21 recordings
compared to 1,610 recordings), limiting the generalizability of their
results.

Martin-Montero et al. [32,33] used HRV spectral characteristics in
two studies to automatically classify pediatric OSA with the common
AHI thresholds. In Ref. [33], the authors achieved slightly higher Se for 1
e/h (85.47% vs. 84.19%) and Sp for 5 e/h (93.78% vs. 91.39%) than our
approach. However, our algorithm achieved a better balance between
Se-Sp for both thresholds, resulting in higher Acc (75.95% vs. 74.58% for
1 e/h and 86.96% vs. 84.95% for 5 e/h). We also obtained better pre-
dictive accuracy for the threshold of 10 e/h for all measures, thus
highlighting the ability of our algorithm to identify severe OSA cases
more accurately. Compared to Martin-Montero et al. [32] who obtained
slightly higher NPV values for all thresholds, our approach achieved
higher Sp values, providing a better balance between NPV and Sp results.
Notably, our LR* value of 27.69 at the threshold of 10 e/h (versus 7.90)
demonstrates the clinical utility of our algorithm in identifying children
with severe OSA. Additionally, our algorithm showed higher classifi-
cation measures for Se, Sp, Acc, PPV, LR*, and LR" at the thresholds of 1
e/h and 5 e/h. This indicates the ability of this approach to distinguish
between healthy children and patients with OSA and differentiate be-
tween mild and moderate pediatric OSA.

Finally, in another study, authors automatically classified pediatric
OSA using features derived from HRV signal segments and a conven-
tional ML technique [31]. This study was the most suitable to compare
our results since the same study database (CHAT), number of subjects
(1610), and AHI thresholds (1, 5, and 10 e/h) were used. In addition,
they used the same validation strategy as our proposal with three in-
dependent data subsets (training, validation, and test). Our algorithm
performed better in terms of Se, Sp, Acc, PPV, NPV, LR*, and LR at the
thresholds of 5 e/h and 10 e/h, indicating its clinical applicability in
identifying the more severe cases of pediatric OSA. These findings are
particularly encouraging as children with moderate to severe OSA are at
increased risk of developing cardiovascular and neurocognitive mor-
bidities, and therefore will benefit most from early diagnosis and timely
treatment [10,15]. While Se value was lower at the 1 e/h threshold in
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Table 3
Summary of literature publications on diagnosing pediatric OSA severity using ECG signals. The values of our study are shown in bold.
Publication Recordings  Signal Algorithm  Validation AHI threshold Se (%) Sp Acc PPV NPV LR* LR
(e/h) (%) (%) (%) (%)
Shouldice et al. [3] 50 RR QD Training/test 1 85.70 81.80 84.00 85.70 81.80 4.71 0.17
Interval® Loo-cv
Gil et al. [28]. [29] 21 PPG* QDA - >18 OSA 87.50 71.40 80.00 - - 3.05 0.17
<5 No OSA
Lézaro et al. [30] 21 PPG" LDA Training/test >18 OSA 100.00  71.40 86.70 - - 3.5 0.00
Loo-cv <5 No OSA
Martin-Montero 1738 HRV* LDA Training/test 1 85.47 35.38 74.58 82.64 40.35 1.32 0.41
et al. [33] 5 64.44 93.78 84.95 81.69 85.96 10.36 0.38
10 53.66 97.67 91.64 78.57 92.99 23.07 0.47
Martin-Montero 1738 HRV* MLP Training/test 1 76.30 38.30 63.40 70.70 45.50 1.20 0.60
et al. [32] 5 62.50 84.20 81.00 40.70 92.80 4.00 0.40
10 66.70 91.60 89.30 44.20 96.50 7.90 0.40
Martin-Montero 1610 HRV* LSBoost Training/ 1 90.76 23.40 80.07 86.26 32.35 1.18 0.39
etal. [31] validation/test 5 66.67 61.17 63.18 49.66 76.16 1.72 0.54
10 40.00 92.03 84.12 47.37 89.53 5.02 0.65
This work 1610 ECG CNN Training/ 1 84.19 46.15 75.92 84.91 44.78 1.56 0.34
validation/test 5 76.67 91.39 86.96 79.31 90.09 8.90 0.26
10 53.66 98.06 91.97 81.48 93.01 27.69 0.47

PSG (polysomnography); RR interval (interval between two R peaks); PPG (photoplethysmography); HRV(heart rate variability); PTTV (pulse transit time variability);
PRV (pulse rate variability); ECG (electrocardiogram); QD (quadratic discriminant); LDA (linear discriminant analysis); MLP (multilayer perceptron); FCBF (fast
correlation based filter); LSBoost (least-squares boosting); CNN (convolutional neural network); Loo-cv (leave-one-out cross-validation); e/h (events/hour); Se
(sensitivity); Sp (specificity); PPV (positive predictive value), NPV (negative predictive value), LR* (positive likelihood ratio); LR~ (negative likelihood ratio); AHI

(apnea-hypopnea index); OSA (obstructive sleep apnea).
2 Classification was performed using features extracted from these signals.

this work, our Sp value was higher. In this sense, our model achieved a
more balanced Se-Sp and PPV-NPV relationships, respectively. These
findings indicate that the model proposed here can better identify
healthy children, thereby enabling improved utilization of limited PSG
resources to those patients more likely to benefit from PSG. Overall, our
proposal reached higher values of k (0.372 versus 0.166) and Accy
(57.86% versus 41.89%). On the one hand, the difference in the k value
indicates that the model proposed in this study shows a higher level of
agreement between the OSA severity degrees derived from the estimated
AHI and the actual OSA severity degrees. Furthermore, it can also be
concluded from these results that our model can better capture patterns
and relationships in the data, resulting in predictions that are more
consistent with the actual OSA severity degrees. On the other hand, the
Accy results conclude that the overall performance of the proposed
model on all classes is approximately 16% higher. This makes our
CNN-based algorithm a more reliable diagnostic model for clinical
practice.

Despite the most interesting discussion relies on comparing our re-
sults with those studies using cardiac information, different previous
studies also used the CHAT database along with DL alternatives for
diagnosing pediatric OSA [56,57]. They focused on the analysis of
overnight SpOy and/or AF signals and reached promising results.
However, they only used respiratory information, thus obviating
possible OSA pathophysiological effects on the cardiac system, including
those associated with cardiac morbidities. Moreover, Jimenez-Garcia
et al. [56] showed higher technical complexity as they used the two
signals for the automated diagnosis instead of a single one. On the other
hand, other approaches worked with DL and cardiac information in
contexts other than pediatric OSA [75], as for example the investigation
of the impact of DL architectures (FC, VGGs, ResNet50, U-Net, and
others) on accelerated cardiac T1 mapping, reaching U-Net the highest
performance [76]. Despite all these interesting approaches, we consider
that studying the ECG signal in pediatric OSA brings added value. First,
there is demonstrated evidence of the lack of ECG signal analysis in the
pediatric OSA context despite being an extensively studied signal in the
clinical field [15]. Furthermore, the ECG contains a plethora of relevant
information that can be used for diagnostic purposes, including
cardiorespiratory coupling, heart rate changes, and heart rate variability

associated with respiratory events [2,7,16]. Importantly, by analyzing
overnight ECG the possibility of assessing cardiovascular risk in children
is enabled, which is particularly relevant for severe pediatric OSA pa-
tients in which cardiovascular morbidity is a significant risk [7,10].
Finally, because the ECG is one of the most analyzed signals in clinical
practice worldwide, an ECG-based application to aid in diagnosing OSA
could be easily interpretable, implementable, and accessible [17-19].

Therefore, we can conclude that the application of DL-based algo-
rithms using the raw ECG signal offers three notable advantages: 1) All
the information contained in the ECG is potentially used; 2) it eliminates
the need to develop specifically designed feature extraction methods; 3)
it demonstrates higher diagnostic performance of pediatric OSA.

5.5. Limitations

This work has obviously several limitations that must be considered.
Although we used a large sample size (1,610 PSG recordings), it would
always be better to have even more recordings to perform the analysis to
reach more generalized conclusions. Another limitation to consider is
that all the subjects included in the CHAT database were initially sus-
pected of having OSA, which could imply that the clinical characteristics
of these subjects are more specific of OSA presence. Furthermore, all
subjects in our dataset are between 5 and 9.9 years old, which prevents
us from drawing conclusions beyond these age limits. Considering the
characteristics of the subjects and the study signals, it is challenging to
compare our results with other studies. This is because the raw ECG
signal was not analyzed before in the previous existing publications of
pediatric OSA [28-30,32,33]. Also, of the studies in the literature, there
is only one in which the same database was used (CHAT) [31], which
provides the most accurate basis for comparison. If we analyze the DL
method used here, a CNN-based model network was implemented based
on its suitability in the field of time series analysis and its excellent
performance in previous studies in adults to diagnose OSA [20-25,35,
44,49]. However, RNN/LSTM architectures could be tested to furtherly
evaluate the usefulness of our proposal. Finally, there is a real limitation
of DL methods in explaining the features extracted by the models that
should be considered for future work.
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6. Conclusions

To the best of our knowledge, this study reflects the first evaluation
of a CNN-based algorithm using single-channel ECG signals to identify
pediatric OSA and estimate its severity. Our findings demonstrate that
this approach outperforms previous studies that used cardiac informa-
tion (PPG and HRV signals) with conventional ML methods. This sug-
gests the potential value of combining ECG signals and DL methods in
pediatric OSA. Based on the diagnostic performance achieved by our
approach, we suggest a diagnostic protocol that could serve as a valuable
clinical tool. It would effectively reduce the need for unnecessary PSG by
half, thus alleviating waiting lists in clinical facilities. In this sense, our
solution could facilitate the objectivity and accuracy of pediatric OSA
diagnosis, while ensuring that urgent and appropriate treatment is
administered to the most severe cases. Overall, using ECG recordings
and our CNN-based proposal provides a highly promising and viable
alternative to PSG for diagnosing pediatric OSA.

For future works, it would always improve our study to have more
recordings to perform the analysis. Moreover, it would be desirable to
use other child AOS databases to assess the generalizability of the model.
Additionally, a study based on screening children at risk for OSA would
allow a more general population group to be analyzed. Furthermore, it
would be appropriate to evaluate and compare the performance of
different architectures, as has already been done in other approaches
within the cardiac setting [76]. Specifically, it would be interesting to
use different alternative models, such as RNN, hybrid models, or
transformers, to evaluate their performance and test their diagnostic
ability. Furthermore, applying explainable artificial intelligence
methods may be useful for future work [77]. These approaches could
provide greater clarity in interpreting the results obtained in the
CNN-based model, thus enabling a better understanding of the extracted
features and the relationship between apneic events and the behavior of
the ECG. Finally, future development of user-friendly tools could be used
to furtherly validate our proposal in a clinical environment.
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