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A B S T R A C T   

Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or 
complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations 
of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. 
Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the 
standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, 
particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a 
novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing 
(ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to 
automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and 
deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from 
the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into 
approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic perfor
mance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on 
ECG-derived features (4-class Cohen’s kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values 
of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; 
specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. 
Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, 
and more accessible diagnostic test that can be implemented in clinical practice.   

1. Introduction 

Obstructive Sleep Apnea (OSA) is a common breathing disorder 
characterized by multiple episodes of partial or total upper airway 
obstruction during sleep, resulting in either reduction or cessation of the 
airflow with attendant alterations in gas exchange, and recurrent 
arousals fostering the occurrence of sleep fragmentation [1]. In other
wise healthy children, the prevalence of OSA ranges between 1% and 
5%, affecting both sexes similarly [2]. Enlarged adenoids and tonsils are 
one of the major pathophysiological processes enhancing the risk of OSA 
occurrence [3], and the disease can impose a significant deleterious 
impact on the cardiovascular and central nervous systems when left 

untreated. Indeed, the obstructive respiratory events and accompanying 
manifestations (i.e., intermittent hypoxia and hypercapnia and recur
rent arousals along with enhanced intrathoracic pressure swings) induce 
increased cardiac workload as well tachy- and brady-arrhythmias and 
catecholaminergic and sympathetic nervous system bursts [1,4–8]. 
Moreover, OSA has been linked to an elevated risk of developing car
diovascular disease during adulthood, particularly if left untreated [2,7, 
9,10]. 

OSA is routinely diagnosed using overnight polysomnography (PSG), 
which involves monitoring various physiological parameters, such as 
the electrocardiogram (ECG), oral and nasal airflow (AF), peripheral 
blood oxygen saturation (SpO2), and the electroencephalogram (EEG), 
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among others [1,2]. The signals obtained from PSG are manually 
analyzed by trained medical personnel to derive the apnea-hypopnea 
index (AHI), the standard metric used in the diagnosis of OSA [11]. 
AHI measures the frequency of apnea and hypopnea events per hour of 
sleep (e/h) and helps determine the severity of the disease [2]. However, 
nocturnal PSG is an uncomfortable, time-consuming, and complex test, 
especially in children. It requires a sleep laboratory with appropriately 
trained staff, and pediatric subjects have to spend the night in the hos
pital facility while being monitored with sensors, thus potentially dis
rupting their natural sleep patterns [1]. Limited availability of such 
facilities for children, coupled with the cost of conducting overnight 
PSG, leads to underdiagnosis of pediatric OSA, particularly in devel
oping countries where resources are limited [12,13]. 

To simplify OSA diagnosis in children, investigators have focused on 
developing approaches that require a limited number of signals coupled 
with artificial intelligence techniques [14,15]. These proposed meth
odologies have mainly focused on the use of overnight SpO2 and AF 
[15]. However, none of these approaches relied on cardiac signals 
derived from the ECG which contains a plethora of relevant information 
that can be used for diagnostic purposes involving both cardiorespira
tory coupling and changes in heart rate frequency and variability asso
ciated with the respiratory events [2–4,7,16]. These physiological 
behaviors, together with the increased risk for developing cardiovas
cular disease, make ECG signal analysis worthy of special interest in the 
study of OSA [7,9,10]. Furthermore, because the ECG is one of the most 
widely analyzed signals in clinical practice around the world, an 
ECG-based application to aid in the diagnosis of OSA could be readily 
implementable and accessible [17–19]. 

Several investigative groups have focused on the analysis of cardiac 
information using deep learning (DL) methods, such as convolutional 
neural networks (CNN), recurrent neural networks (RNN), combinations 
of CNN and RNN, and hybrid methods to automatically detect the 
severity of OSA in adult patients, achieving overall robust performances 
[20–26]. However in children, most studies have relied on derivatives of 
cardiac function such as heart rate variability (HRV) or photo
plethysmography (PPG), but not used the raw ECG signal [3,27–33]. 
These methodologies, while yielding satisfactory results, rely on existing 
knowledge of the effects of pediatric OSA on the ECG to extract features 
from different analytical approaches [34,35]. However, these ap
proaches do not use all the information available in the ECG, which 
could be crucial for achieving a more thorough understanding and ac
curate diagnosis of the disease. Moreover, most of these previous studies 
relied on a feature-engineering approach, which is demanding and 
time-consuming due to comprehensive signal preprocessing and feature 
extraction [3,27–33]. 

To the best of our knowledge, no studies have investigated the use of 
raw ECG signals coupled with DL methods to explore their feasibility in 
the diagnosis of pediatric OSA. Such combinatorial approach is essential 
for two reasons: on the one hand, DL methods are gaining great interest 
in many fields due to a large number of existing databases [36], espe
cially highlighting their application in the biomedical sector to help in 
the diagnosis and treatment of diseases [37–39]. Specifically, DL 
methods can handle high-dimensional data due to multiple-layer pro
cessing that allows for extracting relevant information intrinsically 
without exhaustive signal preprocessing [40]. On the other hand, 
analyzing the ECG signal could be very helpful for pediatric OSA due to 
associated cardiovascular risk, particularly in more severe cases [2]. 

Furthermore, analyzing previous studies focused on automatically 
detecting the severity of OSA using DL, most of them used architectures 
based on CNNs [20–26]. Although CNNs were originally created for 
image analysis [41], these networks have proven to be appropriate for 
time series analysis in a wide range of fields [42], especially in the 
domain of biomedical signal analysis [35,43,44]. CNNs contain a 
multi-layer architecture and their design is characterized by weight 
sharing, sparse connections, and pooling operations [41]. This structure 
allows them to identify short- and long-term patterns happening in 

distinct regions of the data sequences [43], with a computational effi
ciency that outperforms other DL models [41]. This property of CNNs 
can be essential in identifying patterns in the ECG signal associated with 
apneic events, which may manifest at different times during the night. In 
addition, CNNs have the ability to generate higher-level representations 
[41], which may allow them to learn complex patterns in prolonged 
segments of the ECG signal, such as heart rate fluctuations that are 
triggered in response to apneic events [2,7]. 

For these reasons, we here propose the development of a CNN-based 
algorithm for the classification of pediatric patients at risk of OSA based 
on their overnight ECG recordings that permits delineation of pediatric 
OSA severity according to the conventional AHI categories. This study 
presents two main novelties: 1) it is the first time that a DL approach is 
used along with raw ECG signals for the diagnosis of pediatric OSA; and 
2) our approach is a new CNN-based regression model trained to aid in 
the diagnosis and severity estimation of pediatric OSA, in which we first 
estimate the number of apneic events per signal segment and then the 
AHI values per subject. For this purpose, we propose a data augmenta
tion technique by dividing the whole night recordings into 10-min 
segments with a 50% overlap to increase the volume of the dataset 
during model training. Thus, we hypothesize that a CNN-based archi
tecture fed with the raw ECG signal can enhance and streamline the 
diagnosis of pediatric OSA by utilizing all relevant cardiac signal data to 
estimate disease severity. Accordingly, the main objective of our pro
posal is to evaluate a CNN-based model with the ECG signal to estimate 
the AHI, and accurately establish a diagnosis of OSA and its severity in 
pediatric patients. 

2. Database and signals 

The Childhood Adenotonsillectomy Trial (CHAT) database was used 
in this study (number of clinical trial: NCT00560859). Access to CHAT 
data is public upon request from the National Sleep Research Resource 
website (https://sleepdata.org/datasets/chat). A total of 1,610 over
night PSG recordings performed on children between the ages of 5 and 
9.9 years old with suspected clinical symptoms of OSA were analyzed. 
Sleep studies were collected from 6 pediatric sleep centers in the United 
States of America (Children’s Hospital of Boston, Boston, MA; Cardinal 
Glennon Children’s Hospital, St. Louis, MO; Children’s Hospital of 
Philadelphia, Philadelphia, PA; Cincinnati Children’s Hospital, Cincin
nati, OH; Montefiore Children’s Hospital, New York, NY; Rainbow Ba
bies and Children’s Hospital, Cleveland, OH) [45]. All nocturnal PSGs 
were conducted following the 2007 American Academy of Sleep Medi
cine (AASM) recommendations [11]. Inclusion and exclusion criteria for 
the study can be found in previous literature [45,46]. CHAT is a ran
domized, controlled, single-blind, multicenter trial aimed at assessing 
the effectiveness of a surgical treatment for pediatric OSA. Details of the 
trial design, performance, and initial results obtained in the original 
study are explicitly documented in published reports [45,46]. Studies of 
nocturnal PSG were divided into three groups. Initially, the baseline 
cohort (451 subjects) that met the inclusion criteria, completed an initial 
PSG, and individuals were then randomly assigned to either early sur
gical adenotonsillectomy (eAT) or watchful waiting with supportive 
care (WWSC) [46]. In addition, the nonrandomized group (755 subjects) 
corresponded to individuals who did not meet the inclusion criteria 
conditions in the original study but had undergone an initial PSG. 
Finally, the follow-up group (404 subjects) comprised the subjects in the 
baseline group who underwent a follow-up PSG seven months after the 
initial PSG. Approximately half of the children in the follow-up group 
were treated with eAT and the other half randomly allocated to WWSC. 

In this study, all recordings were randomly divided into training 
(60%), validation (20%) and test (20%) subsets. This partition was made 
so that no subject could be present in two subsets. In turn, following the 
recommendations from the AASM [11], all PSG recordings from CHAT 
included annotated data on the beginning and duration of apnea and 
hypopnea events. Accordingly, OSA diagnosis was established by 
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calculating the AHI [11]. Then, pediatric OSA severity was divided into 
four categories based on AHI values: no OSA (AHI<1 e/h), mild OSA 
(1≤AHI<5 e/h), moderate OSA (5≤AHI<10 e/h), or severe OSA 
(AHI≥10 e/h) [11]. Table 1 presents the demographic and clinical 
characteristics of the subjects included in the training, validation, and 
test subsets. 

3. Methods 

This section presents the methodology to obtain the proposed solu
tion for predicting pediatric OSA and its severity. The workflow fol
lowed is introduced (see Fig. 1), based on six principal stages: 1) ECG 
signals were extracted from pediatric PSG recordings; 2) a minimal 
preprocessing was conducted to obtain 10-min ECG segments; 3) CHAT 
database was divided into training (60% of the subjects), validation 
(20% of the subjects), and test (20% of the subjects) subsets; 4) a 
regression CNN-based architecture was designed. This CNN model was 
trained using the preprocessed 10-min ECG segments belonging to the 
training subset (S1, …, SN) as input data. AHIcnn was calculated for each 
subject by adding the estimated events in all segments (ŷ1, …, ŷN) of a 
pediatric overnight recording and dividing them by the total recording 
time in hours. The value of this rate calculated after training with CNN 
underestimates the value of the actual AHI (AHIactual) extracted from the 
CHAT database because the index in our initial proposal uses the total 
signal recording time rather than the total sleep time. To correct this 
tendency, we calculated the final estimated AHI (AHIest) by imple
menting a support vector regression (SVR) model; 5) the validation 
subset was used to adjust the algorithm hyperparameters and select the 
optimal model; and 6) the optimal model was applied to the test data to 
evaluate the diagnostic ability of the CNN-based algorithm. 

3.1. ECG signal preprocessing 

Following the AASM recommendations, ECG was obtained from the 
bipolar lead II [47]. ECG was minimally preprocessed before its use on 
the CNN. The raw signals were resampled at a sampling frequency of 
100 Hz, which is consistent with the sampling frequencies used in prior 
studies [20,25,48–51]. Subsequently, the signals underwent a two-step 
filtering process. First, the continuous component was corrected by 
eliminating the signal mean within 30-s duration windows. Then, we 
applied a low pass filter with a pass band between 0 and 25 Hz to reduce 
noise, being a less restrictive approach than in previous studies which 
was intent on avoiding loss of important frequency components [25,50, 
52]. Specifically, we employed a linear-phase finite impulse response 

digital filter using a Hamming window to smooth out any discontinuities 
at the start and end of the signal [53]. After the complete records were 
filtered, ECG signals were divided into 10-min segments, with a 50% 
overlap between segments to increase the volume of data for model 
training, i.e., as a data augmentation technique [54]. The final pre
processing step consisted of normalizing the amplitude of each ECG 
segment by extracting the mean value to the segment and dividing it by 
the standard deviation [55]. 

Finally, the determination of segment labels was performed by 
considering the annotations regarding the duration, beginning, and end 
of apneic events from CHAT annotations of the recordings [56,57]. The 
labels were calculated as the number of apneic events in each segment. 
In this way, both complete events and the proportion of incomplete 
events found at the edges of the segments were included as part of the 
target. For instance, when a single event was identified within a 
segment, it was labeled as 1. For segments containing a complete event 
along with, for example, 70% of another event (equivalent to 1.7 
events), a label of 1.7 was assigned to that segment. 

3.2. Design of the CNN architecture 

Although CNN were initially created to deal with image data, they 
have been highly effective in processing time series in many fields [58], 
including biomedical signal processing [59]. In this work, we imple
mented a one-dimensional (1D) CNN-based approach since our input 
data responded to physiological single-channel ECG signals (see Fig. 2). 
The network began with a data input layer containing a tensor of 60,000 
samples (10-min ECG segment) and a batch normalization (BN) layer of 
the input data [60]. Subsequently, the network processed the segments, 
which was composed of three convolutional blocks (BC1–3), and each of 
them consisting of convolutional sub-blocks (Nblock) with the layers 
described below. 

First, we incorporated a 1D convolutional layer to extract feature 
maps based on relevant patterns [40]. The 1D convolution operation in 
this layer was calculated by following the next equation [41]: 

xm
l [n] =

∑Ks

i=1
wm

i ∗ al[n − i+ 1] + bm
i , (1)  

where xm
l is the m-th feature map and m = [1:convolutional filters (Nf )], 

Ks is the kernel size, which determines the filter size, wm
i values are the 

weights of the convolutional filter, al[n] are the input ECG segments, and 
bm

i is the bias term. The convolutional layer comprised a set of 1D filters 
(Nf) with kernel size Ks * 1, a step length strides = 1, and zero padding 
(padding = ‘same’) to obtain the output with the same dimension as the 

Table 1 
Clinical and demographic features of the pediatric study subjects extracted from the CHAT dataset.  

Features Training subset Validation subset Test subset 

Baseline subjects (n) 278 (61.64%) 88 (19,51%) 85 (18.85%) 
Non-randomized subjects (n) 461 (61.06%) 157 (20.79%) 137 (18.15%) 
Follow-up subjects (n) 249 (61.63%) 78 (19.31%) 77 (19.06%) 
Total subjects (n) 988 (61.37%) 323 (20.06%) 299 (18.57%) 
Age (years) 7.00 [2.00] 7.00 [2.00] 6.90 [2.00] 
Females (n) 477 (48.28%) 164 (50.77%) 161 (53.85%) 
BMI (kg/m2) 17.31 [5.92] 17.12 [6.25] 17.43 [6.04] 
AHI (e/h) 2.64 [4.77] 2.45 [4.77] 2.32 [5.11] 
AHI < 1 (e/h)a 212 (21.46%) 67 (20.74%) 65 (21.74%) 
1≤AHI<5 (e/h)a 488 (49.39%) 167 (51.70%) 144 (48.16%) 
5≤AHI<10 (e/h)a 159 (16.09%) 44 (13.62%) 49 (16.39%) 
AHI ≥ 10 (e/h)a 129 (13.06%) 45 (13.93%) 41 (13.71%) 
Baseline ECG segments (n) 33,402 5,350 5,059 
Non-randomized ECG segments (n) 53,137 9,057 7,972 
Follow-up ECG segments 29,587 4,519 4,442 
Total ECG segments (n) 116,126 18,927 17,473 

Data are shown as number (percentage) or median [interquartile range], depending on the feature type. BMI: body mass index; AHI: 
apnea–hypopnea index; e/h: apneic events per hour. 

a AHI<1 (e/h): no OSA; 1≤AHI<5 (e/h): mild OSA; 5≤AHI<10(e/h): moderate OSA; AHI≥10(e/h): severe OSA. 
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input [41]. Secondly, we integrated a BN layer to normalize the Nf 
feature maps obtained from the previous convolutional layer [60], fol
lowed by an activation layer. This layer used the rectified linear unit 
activation (ReLU) function [41]: 

f (x)=max(0, x) =
{

0, x < 0
x, x ≥ 0 , (2)  

where x is the value of each sample in the feature map. This activation is 

the standard choice in DL architectures and was used to introduce 
nonlinearity and solve the problem of vanishing gradient during training 
[41]. A max-pooling layer with a window size 2 (pool size = 2) and a 
two-step window offset (strides = 2) was then included, which reduces 
the dimensionality of the input data by half while keeping the most 
relevant features [41]. In the last step of each sub-block, we applied 
regularization through a dropout layer that randomly deactivated a 
fraction of the neurons with probability p during training. This layer was 

Fig. 1. Proposed workflow for developing and validating the CNN enabling prediction of the severity of OSA in children based on their overnight raw ECG signal 
recordings. CHAT: Childhood Adenotonsillectomy Trial; PSG: polysomnography; ECG: LPF: low pass filter; electrocardiogram; CNN: convolutional neural network; 
AHI: apnea-hypopnea index; SVR: support vector regression; OSA: obstructive sleep apnea. AHIcnn: rate of apnea events per subject calculated after CNN regression; 
AHIactual: actual AHI extracted from CHAT database; AHIest: final estimated AHI after SVR fitting. SN: segment N; ŷN: estimation of apneic events in segment N. 

Fig. 2. Diagram of the CNN architecture proposed in the study. The input data to the CNN are the 10-min ECG segments and the output corresponds to the number of 
apnea events that the CNN estimates for each segment. 1D CONV = 1-dimensional convolutional layer; Nf = number of convolutional filters; Ks = kernel size; strides 
= 1 in 1D CONV indicates that the stride length of the convolution is 1; padding = ’same’ in 1D CONV results in padding with zeros evenly so that the output has the 
same dimension as the input. RELU = rectified linear unit activation; pool size = 2 in the max pooling layer indicates that the size of the pooling window is 2; strides 
= 2 in the max pooling layer specifies a two-step shift of the pooling window; p = probability that each neuron is deactivated during training; Nblock = number of 
convolutional sub-block; BC = convolutional block 1–3. Segn is the number of the segment entering the network, ranging n from 1 to 116,126. 
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used to prevent the network from overfitting and improve the general
ization of the model. Particularly, we used spatial dropout, an approach 
derived from the standard dropout for CNN [61]. The conventional 
dropout discards individual units with a certain probability in the 
training process. In contrast, in the case of spatial dropout, complete 
feature maps are discarded to improve generalization between the 
different feature maps [61,62]. 

Finally, after the BC1-3 configurations, we added a flattening layer to 
rearrange the spatial information into 1D vectors, and a densely/fully 
connected layer with linear activation to provide the final estimation 
[41]. Linear activation was selected for a regression problem to estimate 
apnea events by 10-min segment as output from the proposed CNN. 

The proposed CNN model was trained using the He-normal method 
to randomly initialize layer weights following a normal distribution 
[41]. We used the adaptative moment estimation (Adam) algorithm to 
optimize weight updates, with an initial learning rate of 0.001 [63]. 
Training data was presented to the network in batches of 15 samples for 
a maximum of 250 epochs, with randomized samples at the start of each 
epoch to improve convergence [41]. The loss function used to minimize 
the Adam algorithm in the validation subset was Huber loss with a delta 
parameter of δ = 1.5, which is robust in the presence of outliers [64]. 
During training, we monitored the validation loss and decreased the 
learning rate by a factor of 2 if there was no improvement after 10 
epochs. We also used an early stop method to prevent overfitting, which 
stopped training after 30 epochs without a decrease in validation loss. 
The weights were then readjusted to the epoch in which the minimal 
validation loss achieved [41]. 

3.3. AHI estimation 

As previously explained in Section 1, AHI is the standard respiratory 
metric for diagnosing OSA and its severity. In this study, once we ob
tained the predictions of the apnea and hypopnea events for each 10-min 
ECG segment in the CNN, we calculated for each subject the overnight 
rate of events per hour of recording (AHIcnn). This was done by adding 
the estimated events in all segments of an overnight recording and 
dividing them by the total recording time in hours. It is essential to 
highlight that the value of this rate calculated after CNN training un
derestimates the value of the actual AHI (AHIactual), extracted from the 
CHAT database. This underestimation occurs because the rate of our 
initial proposal uses the total recording time of the signal rather than the 
total sleep time. Total recording time is typically greater than the total 
sleep time which is used to calculate the AHI, and which requires EEG 
and other signals for this purpose. To address this issue, we calculated 
the final estimated AHI (AHIest), through the implementation of a sup
port vector regression (SVR) model [65]. This model is more robust than 
ordinary least squares when dealing with outliers. It determines the best 
regression function using a kernel function and minimizes the ε-insen
sitive loss function. This function allows a certain degree of prediction 
error within a margin defined by the ε hyperparameter [66]. The loss 
function is defined as follows: 

L(y, f (x))=max(0, |y − f (x)| − ε)=
{

0, |y − f (x)| ≤ ε
|y − f (x)| − ε, |y − f (x)| ≥ ε , (3)  

where y is the actual value of the target variable, f(x) is the model 
prediction and ε is the acceptable margin of error [66]. It is necessary to 
set a minimum value for the margin ε, being ε ≥ 0, to delimit an area 
around f(x) where the difference between AHIactual and AHIest does not 
contribute to the error. The formulation of the loss function ensures that 
only errors exceeding the threshold ε are penalized, while smaller errors 
do not contribute to the loss [67]. The purpose of the ε parameter is 
twofold: to control the model’s sensitivity to errors and to determine the 
size of the tolerance band around the regression line [66]. In this way, 
the loss function penalizes errors outside the tolerance band. In addition 
to the ε hyperparameter, other hyperparameters influence the SVR 

model optimization, such as the penalty parameter C and the γ kernel 
coefficient. The C hyperparameter balances the accuracy of model pre
dictions and complexity, determining how prediction errors are penal
ized. The γ coefficient is responsible for controlling the form that the 
kernel function takes [65,66]. 

3.4. Model hyperparameter search and algorithm evaluation 

To achieve optimal algorithm performance, we tuned a set of 
hyperparameters to minimize the generalization error of the CNN-based 
architecture. First, we heuristically selected the parameter NfN of the 
convolutional layers for each block BC1-3. We used an approach with 
ascending value in powers of two as the depth of the network increased: 
Nf = 16 (BC1), Nf = 32 (BC2), Nf = 64 (BC3). This choice was made 
because the deeper the layers, the more complex the characteristics that 
are extracted [41,68]. Subsequently, for choosing the remaining CNN 
hyperparameters, we implemented a more exhaustive tuning strategy 
using a grid search method. With this method, different combinations of 
hyperparameters were tested in the search space. Specifically, we 
searched for the following values Nblock = {4,5}, Ks = {7,9,17,33} and 
dropout with p = {0.0,0.05,0.1}. Considering the initial analyses per
formed, we selected this set of search hyperparameters so that the 
network had enough complexity to train and generalize properly. If we 
included smaller values in the implementation of CNN, it could not 
adjust sufficiently. If we increased the values, CNN took too long to train 
and adapted too much to the training data. In addition, the increased 
complexity of the network led to a computational cost not supported by 
the training of the CNN-based algorithm (NVIDIA GeForce RTX 2080 
GPU; Keras 2.4.3 framework with TensorFlow 2.3 backend). 

Then, for each of the CNN models trained with a specific combina
tion of hyperparameters, we conducted a sequential search of three more 
hyperparameters in the SVR model (ε = [0.1: 0.05: 0.5], C = [0:100] 
with logarithmic scale value search, and γ = [0.01: 0.01: 0.1]). Ulti
mately, to determine the optimal hyperparameter configuration, we 
evaluated the performance of the CNN-based approach. This involved 
calculating the 4-class Cohen’s kappa coefficient (k) for the subject-wise 
OSA severity classification (no OSA, mild, moderate, and severe OSA) in 
the validation subset. We selected the architecture with the highest k. 
Cohen’s kappa is a statistical metric used to measure agreement, 
particularly appropriate in classification tasks with unbalanced class 
distributions. Its usefulness comes from its capability to consider the 
likelihood of chance agreement, which reduces the bias towards the 
predominate class typically associated with accuracy metric [69]. 

3.5. Statistical analysis and figures of merit 

To establish the agreement between the AHIest with our proposed 
algorithm and the AHIactual extracted from the CHAT database, we per
formed a statistical analysis. First, we calculated the intraclass correla
tion coefficient (ICC), which consists of a statistical measure used to 
evaluate the reliability or consistency of measurements made by 
different observers [70]. In addition to this metric, we obtained 
Bland-Altman plots [71] to have a more representative view of the 
agreement between AHIest and AHIactual. 

To assess the effectiveness of the proposed algorithm in diagnosing 
pediatric OSA, we classified subjects into four severity groups based on 
their estimated AHI values: AHI <1 e/h (no OSA), 1 ≤ AHI ≤5 e/h (mild 
OSA), 5 ≤ AHI <10 e/h (moderate OSA), AHI ≥10 e/h (severe OSA). 
After establishing these categories, we calculated the confusion matrix 
and 4-class accuracy (Acc4) to assess the overall performance of the 
model across classes. Additionally, k coefficient was calculated to assess 
the agreement between the actual classes, i.e., the true OSA severity 
level of each subject, and the classes derived from the AHI predicted by 
the model. The importance of k should be emphasized, as it has the 
advantage of correcting for agreement that occurs by chance [69]. 
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Furthermore, we calculated different merit figures for each of the OSA 
severity thresholds (AHI = 1, 5, and 10 e/h) from the values obtained in 
the confusion matrix. In this way, we determined accuracy (Acc) which 
reflects the proportion of correct predictions overall. In addition, we 
obtained values for sensitivity (Se) and specificity (Sp), which measure 
the ability of the model to detect true positives and negatives, respec
tively. Additionally, we used the positive predictive value (PPV) and 
negative predictive value (NPV) to assess the proportion of true positive 
and negative predictions. Moreover, we calculated positive likelihood 
Ratio (LR+) and negative likelihood Ratio (LR-), which provide infor
mation on how the predictions affect the probability of a positive or 
negative case, respectively. These metrics, in addition to giving infor
mation on crucial aspects of model performance, allow us to fully and 
fairly evaluate and compare the efficacy and generalizability of our 
model relative to previous approaches in the literature [3,29,31,72]. 
Finally, we calculated the 2-class kappa to assess the agreement between 
the actual classes and the classes predicted by the model for each AHI 
threshold. With this metric, we can determine at which threshold the 
model performs higher in terms of classification [69]. 

4. Results 

4.1. Optimal CNN-based approach configuration 

As described in Section 3.3, to select the optimal configuration of the 
CNN-based model, we performed an exhaustive search of different 
hyperparameters in the CNN network (Nblock, Ks, p). Subsequently, 
sequential adjustment of the hyperparameters of the SVR model (ε, C, γ) 
was performed. The training of the algorithms with each of the combi
nations of search values was conducted with the training subset. The 
evaluation was made with the validation subset, calculating the k co
efficient when classifying OSA severity. Fig. 3 shows the result of the 
CNN optimization process throughout the model training. On the one 
hand, the graph on the left shows how the Huber loss value decreases as 
the training epochs progress. In addition, it can be seen that training 
stopped with early stopping at epoch 155, 30 epochs after the minimum 
validation loss value was reached. On the other hand, the graph on the 
right shows how the mean absolute error obtained from the AHIreal and 

AHIcnn is also decreasing in each training epoch. Fig. 4 shows the box
plots (median and interquartile range) of the k values obtained in the 
models for each search hyperparameter. The model that obtained the 
highest k value (k = 0.3964) presented the CNN hyperparameters Nblock 
= 4, p = 0.1, and Ks = 33 (BC1), 17(BC2), 7(BC3) (Fig. 4(a), 4(b), and 4(c), 
respectively). To optimize the model with this configuration learning 
rate reached a final value of 3 × 10− 5. Finally, after adjustment of the 
SVR regression, the optimal hyperparameters of ε = 0.15, C = 5.84, and 
γ = 0.02 were selected. Additionally, Table 1 of the supplementary 
material shows all the combinations of hyperparameters tested and the k 
results obtained in the validation subset. 

4.2. AHI estimation 

After training the model with the training subset and establishing the 
optimal configuration using the validation subset, the test subset was 
used to estimate the AHIest and evaluate the performance of the CNN- 
based algorithm. The Bland-Altman plot was calculated to establish 
the similarity between the estimated final AHI of each subject in the 
proposed model and the AHI extracted from the PSG in the CHAT 
database (see Fig. 5). The solid black line of the Bland-Altman plot 
shown in Fig. 5 indicates the average difference between AHIest and 
AHIactual. A negative value indicates that our proposed model un
derestimates in the test subset slightly. However, despite this underes
timation, the limits of the confidence interval ([7.40, − 9.40]), together 
with the ICC = 0.79, show that there is high agreement between AHIest 
and AHIactual. 

4.3. Diagnostic ability of pediatric OSA 

To evaluate the diagnostic ability of the model, we determined the 
severity of pediatric OSA after estimating the AHIest in the test subset. 
We calculated the confusion matrix, Acc4, and k (Fig. 6). On the one 
hand, the cells of the confusion matrix show the proportion of subjects of 
the actual class assigned to each severity group. These values are asso
ciated with a cell color, indicating the performance of the model. On the 
other hand, the values of the number of subjects estimated in each of the 
four groups are shown. We observe an overestimation of the OSA 

Fig. 3. Evolution of Huber loss (left) and mean absolute error (right) in the training and validation subsets during CNN optimization as model training epochs 
progress. MAE: Mean absolute error. 
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severity in healthy subjects (no OSA) and an underestimation of the OSA 
severity in mild OSA subjects. According to the number of correctly 
classified subjects on the main diagonal, the performance of the model is 
better in subjects with mild OSA (65.28%), followed by those with 
moderate (55.10%), severe OSA (53.66%), and no OSA subjects 
(46.15%). Finally, it is important to note that all the subjects estimated 
with an AHIest ≥ 10 e/h are patients who have at least moderate OSA. 

Table 2 presents the diagnostic performance of our pediatric OSA 
estimation algorithm in the three severity thresholds (AHI = 1 e/h, AHI 
= 5 e/h, AHI = 10 e/h). We can observe that the values of Sp are higher 
as the severity of OSA increases and, conversely, the values of Se 
decrease. The AHI threshold with the most balanced Se and Sp is 5 e/h. If 

we focus on the values of PPV and NPV, the highest values are obtained 
in 1 e/h and 10 e/h, respectively. Regarding LR values, it is essential to 
highlight the LR⁺ value obtained for the threshold 10 e/h (27.69), which 
indicates a relevant diagnostic utility for this threshold. Finally, as the 
severity of OSA increases, the Acc of the model is higher, with 91.97% 
Acc for 10 e/h. If we analyze the 2-class kappa at each threshold, we can 
observe that the highest value is obtained for 5 e/h (0.69). Thus, in strict 
terms of classification, we can state that the highest 2-class kappa results 
are obtained for 5 e/h. However, we consider it essential to emphasize 
that determining the most suitable threshold for model performance 
depends significantly on aligning it with the specific objectives of the 
clinicians using our approach. Consequently, we show various metrics to 

Fig. 4. Cohen’s kappa coefficients (k) obtained in the validation subset for each model with a combination of hyperparameters. (a) k values obtained by modifying 
the hyperparameter Nblock; (b) k values obtained by modifying the hyperparameter p; (c) k values obtained by modifying the hyperparameter Ks. Nblock: convolutional 
sub-blocks; p: dropout; Ks: kernel size; BC1,BC2,BC3: convolutional blocks 1, 2 and 3, respectively. 

Fig. 5. Bland-Altman plot and ICC value calculated from the AHI estimated by our model and the AHI extracted from PSG in the CHAT database. SD (standard 
deviation); e/h (events/hour). 
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let the potential users of the model make the last decision on its appli
cation. This inherent versatility constitutes a notable advantage of our 
proposal. 

5. Discussion 

This work evaluated a CNN-based model reliant on raw overnight 
ECG signals to estimate respiratory events per segment and AHI per 
subject for diagnosing OSA severity in pediatric patients. A CNN-based 
algorithm reached a moderate-to-high diagnostic performance for the 
thresholds of 1 e/h, 5 e/h, and 10 e/h. Results demonstrate that using 
single-channel ECG signal and a CNN shows an excellent potential for 
identifying pediatric OSA severity, thus enabling a simple, fast, objec
tive, and accurate diagnosis. Furthermore, the diagnostic performance 
obtained with the proposed approach could be a valuable starting point 
to assess for cardiac co-morbidities, a significant risk factor in children, 
particularly those with severe OSA [2]. 

5.1. Comparison between adult and pediatric OSA 

Pediatric OSA disease is a serious health problem due to its elevated 
prevalence and the associated morbidities it can cause [2]. As a result of 
the cost of PSG and the human and instrument resources required for its 
detection, much effort has been invested in simplifying the signals 
required to enable automatic OSA diagnosis in children [14]. 

Diagnosing pediatric OSA using a single-channel ECG signal is particu
larly interesting for its simplicity of recording and comfort for children. 
Analysis of this signal is crucial due to the relevant information it con
tains including potential underlying cardiovascular pathology [2,10]. 

In adults, some approaches have analyzed the ECG signals through 
DL methods. Specifically, CNN networks have been implemented for 
event detection and classification of OSA, achieving high performance in 
the OSA classification, with Acc values ranging from approximately 90% 
to 99% [20–23,25,26]. However, DL methods have yet to be exhaus
tively evaluated in conjunction with cardiac signals in children. There
fore, we developed a CNN-based model to analyze ECG signals aimed at 
identifying OSA in children and establishing its severity. Lower diag
nostic performances emerged when compared to adults, with differences 
likely due to the lower AHI traditionally seen in clinical practice among 
children, the latter reflecting the reduced upper airway collapsible of the 
upper airway during childhood. As a corollary, the criteria required to 
establish the presence of OSA are markedly different, being substantially 
more restrictive for the pediatric population [1,4]. Additionally, AHI 
thresholds for determining the degree of severity of OSA are lower in 
children compared to adults (1 e/h, 5 e/h, and 10 e/h versus 5 e/h, 15 
e/h, and 30 e/h, respectively) [73,74]. Another critical factor involves 
the differences in the kinetics of cardiac and other physiological re
sponses during apnea episodes. Accordingly, the analysis of the ECG 
signals must be specifically restricted to data in children [2,10]. 

Fig. 6. Confusion matrix of classification performance of the test subset in the four severity groups among pediatric patients. The color reference is associated with 
the proportion (%) of subjects of the actual class assigned in each severity group. At the top, the values of the 4-class accuracy (Acc4) and the 4-class Cohen’s kappa 
coefficient (k) are shown. * No OSA: AHI<1 (e/h); mild OSA: 1≤AHI<5 (e/h); moderate OSA: 5≤AHI<10(e/h); severe OSA: AHI≥10(e/h). 

Table 2 
Figures of merit obtained in the test subset for the evaluation of the diagnostic capacity of pediatric OSA in the AHI thresholds 1 e/h, 5 e/h, and 10 e/h. Se (sensitivity); 
Sp (specificity); PPV (positive predictive value), NPV (negative predictive value), LR⁺ (positive likelihood ratio), and LR⁻ (negative likelihood ratio). e/h (events/hour).  

Test subset  

AHI threshold Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) 2-class kappa 

1 e/h 84.19 46.15 84.91 44.78 1.56 0.34 75.92 0.30 
5 e/h 76.67 91.39 79.31 90.09 8.90 0.26 86.96 0.69 
10 e/h 53.66 98.06 81.48 93.01 27.69 0.47 91.97 0.60  
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5.2. Configuration of CNN-based model 

Regarding the architecture of the model, a regression CNN was 
implemented. Initially, the number of events per signal segment was 
estimated, and later, the AHI index per subject was calculated. This 
methodology had already been used in previous studies by our research 
group while analyzing other PSG signals such as SpO2 or AF to identify 
the severity of pediatric OSA, achieving high accuracy in the classifi
cation [56,57]. 

During the preliminary testing runs, we trained the model with 5- 
min segments to avoid any impact on the delay between apnea events 
and the patterns of tachycardia/bradycardia onset [7]. Later, we used 
10-min segments to train the CNN. The algorithm showed a higher k 
coefficient with 10-min segments (0.3762 versus 0.3244 in the valida
tion set), indicating that larger segment sizes have a lesser effect on 
inter-event delay and bradycardia/tachycardia patterns. However, if the 
training included segments longer than 10 min, there was a high 
computational cost. Then, once the 10-min segments were selected, we 
trained the network initially with 10-min ECG segments and then 
applied a 50% overlap as a data augmentation strategy. This approach 
served to minimize overfitting during training and to facilitate the 
optimal performance of the model. The highest results in terms of k in 
the validation subset were obtained in the CNN trained with segment 
overlap (0.3964 versus 0.3762). Therefore, we selected 10-min seg
ments with 50% overlap to evaluate the model on the test subset. 

Concerning the selection of CNN hyperparameters, Fig. 4 shows that 
the highest value of k was obtained with Nblock = 4, p = 0.1, and Ks = 33 
(BC1), 17(BC2), 7(BC3). Fig. 4(a) shows that increasing the Nblock value 
and, therefore, increasing the complexity of the network, would not lead 
the CNN to an improvement in the capture of characteristic patterns in 
the ECG. Fig. 4(b) indicates that further increasing the dropout would 
lead to lower median values of the boxplots and lower k values for most 
models, as shown by the trend of interquartile ranges. From Fig. 4(c), we 
can extract that those models with Ks of similar values obtain lower 
median and interquartile ranges in the boxplots. This finding highlights 
the importance of optimizing this hyperparameter. 

5.3. Proposal of a diagnostic protocol 

Regarding the confusion matrix of Fig. 6, it can be observed that 
96.9% of healthy children (no OSA) were estimated with an AHIest <5 e/ 
h (no OSA or mild OSA). In addition, of the subjects with AHIactual <5 e/ 
h, 91.4% were predicted as no OSA or mild OSA. All subjects belonging 
to the no OSA or mild OSA class were estimated with an AHIest <10 e/h. 
Finally, of the children who were estimated with an AHIest >10 e/h 
(severe OSA), 100% were subjects with at least moderate OSA. 

Based on these results, a diagnostic protocol could be created from 
the developed CNN algorithm to demonstrate its clinical utility, ac
cording to the following criteria:  

1) If our estimate is AHIest <1 e/h (no OSA), the presence of OSA can be 
discarded since most of these subjects (95.5%) would have an 
AHIactual <5 e/h. In these children, a follow-up evaluation of the 
symptoms would need to be done periodically. If the symptoms were 
to persist over time (i.e., 2–3 months), a determination of the need 
for PSG would be then made by the sleep specialist.  

2) If 1≤ AHIest <5 e/h is estimated by the algorithm, 77.2% of the 
subjects could have AHIactual >1 e/h (OSA presence), so the specialist 
would then recommend a PSG to establish a more precise diagnosis.  

3) If the model estimates 5≤ AHIest <10 e/h, the clinician would 
consider treatment because 96.7% of these subjects would suffer 
from at least mild OSA. 

4) If the model estimates AHIest ≥10 e/h, treatment would be estab
lished since 100% of children would have an AHIactual >5 e/h 
(moderate OSA or severe OSA). 

As a result, 51.5% of the PSG would be avoided with this screening 
protocol. Moreover, only 3.1% of children with an AHIactual <1 e/h 
would be indicated for treatment and 3.3% with an AHIactual >5 e/h 
would not be referred to PSG/treatment in the first visit to the specialist. 
This solution would reduce waiting lists in the hospital service, 
achieving a more accurate pediatric OSA diagnosis and timely treatment 
of the more severe cases. 

5.4. Comparison with previous studies 

Table 3 summarizes the diagnostic performance of previous publi
cations that used cardiac information, but not the raw ECG signal, and 
where conventional machine learning (ML) techniques were applied for 
feature extraction. In the study by Shouldice et al. [3], the binary clas
sification of segments (normal/apnea) and subsequent binary classifi
cation of subjects was performed using a single AHI threshold of 1 e/h. 
RR interval features were used to achieve Se = 85.7%, Sp = 81.8%, PPV 
= 85.7%, NPV = 81.8%, and Acc = 84%. Comparing the results, our 
approach at that threshold achieved lower values of Sp, NPV, and Acc, 
but similar values of Se and NPV. It is important to highlight that in their 
study they used only 50 total recordings and 25 for the test subset, 
compared to 1,610 total recordings and 299 in the test subset used in this 
study. Thus, we can conclude that our results are more powerful and 
generalizable. 

Other investigators used extracted features from the PPG signal for 
binary classification of pediatric OSA (AHI <5 No OSA and AHI >18 
OSA) [28–30]. Compared to these studies, although Se was lower, our 
approach achieved higher Sp, LR⁺, and Acc for the most restrictive 
threshold of 10 e/h. Thus, we can conclude that the current methodol
ogy is preferable to correctly identifying healthy children without severe 
OSA. Moreover, these studies had smaller samples (50 and 21 recordings 
compared to 1,610 recordings), limiting the generalizability of their 
results. 

Martín-Montero et al. [32,33] used HRV spectral characteristics in 
two studies to automatically classify pediatric OSA with the common 
AHI thresholds. In Ref. [33], the authors achieved slightly higher Se for 1 
e/h (85.47% vs. 84.19%) and Sp for 5 e/h (93.78% vs. 91.39%) than our 
approach. However, our algorithm achieved a better balance between 
Se-Sp for both thresholds, resulting in higher Acc (75.95% vs. 74.58% for 
1 e/h and 86.96% vs. 84.95% for 5 e/h). We also obtained better pre
dictive accuracy for the threshold of 10 e/h for all measures, thus 
highlighting the ability of our algorithm to identify severe OSA cases 
more accurately. Compared to Martín-Montero et al. [32] who obtained 
slightly higher NPV values for all thresholds, our approach achieved 
higher Sp values, providing a better balance between NPV and Sp results. 
Notably, our LR⁺ value of 27.69 at the threshold of 10 e/h (versus 7.90) 
demonstrates the clinical utility of our algorithm in identifying children 
with severe OSA. Additionally, our algorithm showed higher classifi
cation measures for Se, Sp, Acc, PPV, LR⁺, and LR⁻ at the thresholds of 1 
e/h and 5 e/h. This indicates the ability of this approach to distinguish 
between healthy children and patients with OSA and differentiate be
tween mild and moderate pediatric OSA. 

Finally, in another study, authors automatically classified pediatric 
OSA using features derived from HRV signal segments and a conven
tional ML technique [31]. This study was the most suitable to compare 
our results since the same study database (CHAT), number of subjects 
(1610), and AHI thresholds (1, 5, and 10 e/h) were used. In addition, 
they used the same validation strategy as our proposal with three in
dependent data subsets (training, validation, and test). Our algorithm 
performed better in terms of Se, Sp, Acc, PPV, NPV, LR⁺, and LR⁻ at the 
thresholds of 5 e/h and 10 e/h, indicating its clinical applicability in 
identifying the more severe cases of pediatric OSA. These findings are 
particularly encouraging as children with moderate to severe OSA are at 
increased risk of developing cardiovascular and neurocognitive mor
bidities, and therefore will benefit most from early diagnosis and timely 
treatment [10,15]. While Se value was lower at the 1 e/h threshold in 
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this work, our Sp value was higher. In this sense, our model achieved a 
more balanced Se-Sp and PPV-NPV relationships, respectively. These 
findings indicate that the model proposed here can better identify 
healthy children, thereby enabling improved utilization of limited PSG 
resources to those patients more likely to benefit from PSG. Overall, our 
proposal reached higher values of k (0.372 versus 0.166) and Acc4 
(57.86% versus 41.89%). On the one hand, the difference in the k value 
indicates that the model proposed in this study shows a higher level of 
agreement between the OSA severity degrees derived from the estimated 
AHI and the actual OSA severity degrees. Furthermore, it can also be 
concluded from these results that our model can better capture patterns 
and relationships in the data, resulting in predictions that are more 
consistent with the actual OSA severity degrees. On the other hand, the 
Acc4 results conclude that the overall performance of the proposed 
model on all classes is approximately 16% higher. This makes our 
CNN-based algorithm a more reliable diagnostic model for clinical 
practice. 

Despite the most interesting discussion relies on comparing our re
sults with those studies using cardiac information, different previous 
studies also used the CHAT database along with DL alternatives for 
diagnosing pediatric OSA [56,57]. They focused on the analysis of 
overnight SpO2 and/or AF signals and reached promising results. 
However, they only used respiratory information, thus obviating 
possible OSA pathophysiological effects on the cardiac system, including 
those associated with cardiac morbidities. Moreover, Jimenez-Garcia 
et al. [56] showed higher technical complexity as they used the two 
signals for the automated diagnosis instead of a single one. On the other 
hand, other approaches worked with DL and cardiac information in 
contexts other than pediatric OSA [75], as for example the investigation 
of the impact of DL architectures (FC, VGGs, ResNet50, U-Net, and 
others) on accelerated cardiac T1 mapping, reaching U-Net the highest 
performance [76]. Despite all these interesting approaches, we consider 
that studying the ECG signal in pediatric OSA brings added value. First, 
there is demonstrated evidence of the lack of ECG signal analysis in the 
pediatric OSA context despite being an extensively studied signal in the 
clinical field [15]. Furthermore, the ECG contains a plethora of relevant 
information that can be used for diagnostic purposes, including 
cardiorespiratory coupling, heart rate changes, and heart rate variability 

associated with respiratory events [2,7,16]. Importantly, by analyzing 
overnight ECG the possibility of assessing cardiovascular risk in children 
is enabled, which is particularly relevant for severe pediatric OSA pa
tients in which cardiovascular morbidity is a significant risk [7,10]. 
Finally, because the ECG is one of the most analyzed signals in clinical 
practice worldwide, an ECG-based application to aid in diagnosing OSA 
could be easily interpretable, implementable, and accessible [17–19]. 

Therefore, we can conclude that the application of DL-based algo
rithms using the raw ECG signal offers three notable advantages: 1) All 
the information contained in the ECG is potentially used; 2) it eliminates 
the need to develop specifically designed feature extraction methods; 3) 
it demonstrates higher diagnostic performance of pediatric OSA. 

5.5. Limitations 

This work has obviously several limitations that must be considered. 
Although we used a large sample size (1,610 PSG recordings), it would 
always be better to have even more recordings to perform the analysis to 
reach more generalized conclusions. Another limitation to consider is 
that all the subjects included in the CHAT database were initially sus
pected of having OSA, which could imply that the clinical characteristics 
of these subjects are more specific of OSA presence. Furthermore, all 
subjects in our dataset are between 5 and 9.9 years old, which prevents 
us from drawing conclusions beyond these age limits. Considering the 
characteristics of the subjects and the study signals, it is challenging to 
compare our results with other studies. This is because the raw ECG 
signal was not analyzed before in the previous existing publications of 
pediatric OSA [28–30,32,33]. Also, of the studies in the literature, there 
is only one in which the same database was used (CHAT) [31], which 
provides the most accurate basis for comparison. If we analyze the DL 
method used here, a CNN-based model network was implemented based 
on its suitability in the field of time series analysis and its excellent 
performance in previous studies in adults to diagnose OSA [20–25,35, 
44,49]. However, RNN/LSTM architectures could be tested to furtherly 
evaluate the usefulness of our proposal. Finally, there is a real limitation 
of DL methods in explaining the features extracted by the models that 
should be considered for future work. 

Table 3 
Summary of literature publications on diagnosing pediatric OSA severity using ECG signals. The values of our study are shown in bold.  

Publication Recordings Signal Algorithm Validation AHI threshold 
(e/h) 

Se (%) Sp 
(%) 

Acc 
(%) 

PPV 
(%) 

NPV 
(%) 

LR⁺ LR⁻ 

Shouldice et al. [3] 50 RR 
Intervala 

QD Training/test 
Loo-cv 

1 85.70 81.80 84.00 85.70 81.80 4.71 0.17 

Gil et al. [28]. [29] 21 PPGa QDA – >18 OSA 
<5 No OSA 

87.50 71.40 80.00 – – 3.05 0.17 

Lázaro et al. [30] 21 PPGa LDA Training/test 
Loo-cv 

>18 OSA 
<5 No OSA 

100.00 71.40 86.70 – – 3.5 0.00 

Martín-Montero 
et al. [33] 

1738 HRVa LDA Training/test 1 
5 
10 

85.47 
64.44 
53.66 

35.38 
93.78 
97.67 

74.58 
84.95 
91.64 

82.64 
81.69 
78.57 

40.35 
85.96 
92.99 

1.32 
10.36 
23.07 

0.41 
0.38 
0.47 

Martín-Montero 
et al. [32] 

1738 HRVa MLP Training/test 1 
5 
10 

76.30 
62.50 
66.70 

38.30 
84.20 
91.60 

63.40 
81.00 
89.30 

70.70 
40.70 
44.20 

45.50 
92.80 
96.50 

1.20 
4.00 
7.90 

0.60 
0.40 
0.40 

Martín-Montero 
et al. [31] 

1610 HRVa LSBoost Training/ 
validation/test 

1 
5 
10 

90.76 
66.67 
40.00 

23.40 
61.17 
92.03 

80.07 
63.18 
84.12 

86.26 
49.66 
47.37 

32.35 
76.16 
89.53 

1.18 
1.72 
5.02 

0.39 
0.54 
0.65 

This work 1610 ECG CNN Training/ 
validation/test 

1 
5 
10 

84.19 
76.67 
53.66 

46.15 
91.39 
98.06 

75.92 
86.96 
91.97 

84.91 
79.31 
81.48 

44.78 
90.09 
93.01 

1.56 
8.90 
27.69 

0.34 
0.26 
0.47 

PSG (polysomnography); RR interval (interval between two R peaks); PPG (photoplethysmography); HRV(heart rate variability); PTTV (pulse transit time variability); 
PRV (pulse rate variability); ECG (electrocardiogram); QD (quadratic discriminant); LDA (linear discriminant analysis); MLP (multilayer perceptron); FCBF (fast 
correlation based filter); LSBoost (least-squares boosting); CNN (convolutional neural network); Loo-cv (leave-one-out cross-validation); e/h (events/hour); Se 
(sensitivity); Sp (specificity); PPV (positive predictive value), NPV (negative predictive value), LR⁺ (positive likelihood ratio); LR⁻ (negative likelihood ratio); AHI 
(apnea-hypopnea index); OSA (obstructive sleep apnea). 

a Classification was performed using features extracted from these signals. 
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6. Conclusions 

To the best of our knowledge, this study reflects the first evaluation 
of a CNN-based algorithm using single-channel ECG signals to identify 
pediatric OSA and estimate its severity. Our findings demonstrate that 
this approach outperforms previous studies that used cardiac informa
tion (PPG and HRV signals) with conventional ML methods. This sug
gests the potential value of combining ECG signals and DL methods in 
pediatric OSA. Based on the diagnostic performance achieved by our 
approach, we suggest a diagnostic protocol that could serve as a valuable 
clinical tool. It would effectively reduce the need for unnecessary PSG by 
half, thus alleviating waiting lists in clinical facilities. In this sense, our 
solution could facilitate the objectivity and accuracy of pediatric OSA 
diagnosis, while ensuring that urgent and appropriate treatment is 
administered to the most severe cases. Overall, using ECG recordings 
and our CNN-based proposal provides a highly promising and viable 
alternative to PSG for diagnosing pediatric OSA. 

For future works, it would always improve our study to have more 
recordings to perform the analysis. Moreover, it would be desirable to 
use other child AOS databases to assess the generalizability of the model. 
Additionally, a study based on screening children at risk for OSA would 
allow a more general population group to be analyzed. Furthermore, it 
would be appropriate to evaluate and compare the performance of 
different architectures, as has already been done in other approaches 
within the cardiac setting [76]. Specifically, it would be interesting to 
use different alternative models, such as RNN, hybrid models, or 
transformers, to evaluate their performance and test their diagnostic 
ability. Furthermore, applying explainable artificial intelligence 
methods may be useful for future work [77]. These approaches could 
provide greater clarity in interpreting the results obtained in the 
CNN-based model, thus enabling a better understanding of the extracted 
features and the relationship between apneic events and the behavior of 
the ECG. Finally, future development of user-friendly tools could be used 
to furtherly validate our proposal in a clinical environment. 
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F. Del Campo, L. Kheirandish-Gozal, R. Hornero, Wavelet analysis of overnight 
airflow to detect obstructive sleep apnea in children, Sensors 21 (2021) 1–19, 
https://doi.org/10.3390/s21041491. 

[73] L.J. Epstein, D. Kristo, P.J. Strollo, N. Friedman, A. Malhotra, S.P. Patil, K. Ramar, 
R. Rogers, R.J. Schwab, E.M. Weaver, M.D. Weinstein, Clinical guideline for the 
evaluation, management and long-term care of obstructive sleep apnea in adults, 
J. Clin. Sleep Med. (2009) 263–276, https://doi.org/10.5664/jcsm.27497, 05. 

[74] G.D. Church, The role of polysomnography in diagnosing and treating obstructive 
sleep apnea in pediatric patients, Curr. Probl. Pediatr. Adolesc. Health Care 42 
(2012) 2–25, https://doi.org/10.1016/j.cppeds.2011.10.001. 

[75] N. Musa, A.Y. Gital, N. Aljojo, H. Chiroma, K.S. Adewole, H.A. Mojeed, N. Faruk, 
A. Abdulkarim, I. Emmanuel, Y.Y. Folawiyo, J.A. Ogunmodede, A.A. Oloyede, L. 
A. Olawoyin, I.A. Sikiru, I. Katb, A systematic review and Meta-data analysis on the 
applications of Deep Learning in Electrocardiogram, J. Ambient Intell. Hum. 
Comput. 14 (2023) 9677–9750, https://doi.org/10.1007/s12652-022-03868-z. 

[76] A. Amyar, R. Guo, X. Cai, S. Assana, K. Chow, J. Rodriguez, T. Yankama, J. Cirillo, 
P. Pierce, B. Goddu, L. Ngo, R. Nezafat, Impact of deep learning architectures on 
accelerated cardiac T 1 mapping using MyoMapNet, NMR Biomed. 35 (2022), 
https://doi.org/10.1002/nbm.4794. 

[77] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, 
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, 
Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and 
challenges toward responsible AI, Inf. Fusion 58 (2020) 82–115, https://doi.org/ 
10.1016/j.inffus.2019.12.012. 

C. García-Vicente et al.                                                                                                                                                                                                                        

https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1007/978-1-4757-3264-1
http://refhub.elsevier.com/S0010-4825(23)01093-4/sref67
http://refhub.elsevier.com/S0010-4825(23)01093-4/sref67
http://refhub.elsevier.com/S0010-4825(23)01093-4/sref68
http://refhub.elsevier.com/S0010-4825(23)01093-4/sref68
https://doi.org/10.1177/001316446002000104
https://doi.org/10.2466/pr0.1966.19.1.3
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.3390/s21041491
https://doi.org/10.5664/jcsm.27497
https://doi.org/10.1016/j.cppeds.2011.10.001
https://doi.org/10.1007/s12652-022-03868-z
https://doi.org/10.1002/nbm.4794
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012

	ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis
	1 Introduction
	2 Database and signals
	3 Methods
	3.1 ECG signal preprocessing
	3.2 Design of the CNN architecture
	3.3 AHI estimation
	3.4 Model hyperparameter search and algorithm evaluation
	3.5 Statistical analysis and figures of merit

	4 Results
	4.1 Optimal CNN-based approach configuration
	4.2 AHI estimation
	4.3 Diagnostic ability of pediatric OSA

	5 Discussion
	5.1 Comparison between adult and pediatric OSA
	5.2 Configuration of CNN-based model
	5.3 Proposal of a diagnostic protocol
	5.4 Comparison with previous studies
	5.5 Limitations

	6 Conclusions
	Ethical approval
	Authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


