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Resumen

Sea (𝐶, 𝑃) una curva irreducible, o rama, en un germen (𝑀, 𝑃) de una superficie compleja
analítica regular. El objetivo de este trabajo es dar una interpretación geométrica a invariantes
analíticos de 𝐶, relacionados con el semimódulo de valores diferenciales de 𝐶. Para hacer esto,
consideramos listas de foliaciones determinadas por las 1-formas que definen el semimódulo de
valores diferenciales de 𝐶 (bases estándar).

Nuestro trabajo está principalmente limitado al caso de cúspides singulares, esto es, ramas
con un solo par de Puiseux (𝑛, 𝑚), con 2 < 𝑛 ≤ 𝑚 y 𝑚𝑐𝑑(𝑛, 𝑚) = 1.

En esta memoria presentamos tres resultados principales:

• Interpretación geométrica del moduli analítico de ramas planas en términos de semirraíces
analíticas y la Teoría de Foliaciones.

• Obtención de bases de Saito de una cúspide a partir de bases estándar.
• Descripción de un subconjunto de raíces del polinomio de Bernstein-Sato de una cúspide

𝐶 en términos de su semimódulo de valores diferenciales.

Estos resultados pueden encontrarse en nuestros trabajos [12, 13, 53].
Precisemos la terminología básica para los enunciados y resultados en las tres direcciones

previas.
El semimódulo Λ𝐶 de valores diferenciales de una rama 𝐶 se define como sigue

Λ𝐶 := {𝜈𝐶(𝜔) : 𝜔 una 1-forma}.

El valor diferencial 𝜈𝐶(𝜔) de 𝜔 por 𝐶 es igual a ord𝑡(𝛼) + 1, donde 𝜙∗𝜔 = 𝛼(𝑡)𝑑𝑡 y 𝜙(𝑡) es una
parametrización primitiva de 𝐶. El conjuntoΛ𝐶 es un Γ𝐶-semimódulo, siendo Γ𝐶 el semigrupo de
𝐶. En otras palabras, 𝜆+𝛾 ∈ Λ𝐶 , para cualquier 𝛾 ∈ Γ𝐶 , 𝜆 ∈ Λ𝐶 . La base ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠)
de Λ𝐶 es la única sucesión creciente minimal que genera Λ𝐶 como Γ𝐶-semimódulo, esto es,
tenemos que

Λ𝐶 =

𝑠⋃
𝑖=−1

(𝜆𝑖 + Γ𝐶), con 𝜆𝑖 ∉ 𝜆 𝑗 + Γ𝐶 , para 𝑖 ≠ 𝑗.

Por definición, hay listas de 1-formas holomorfas 𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠) satisfaciendo que
𝜈𝐶(𝜔𝑖) = 𝜆𝑖 , para 𝑖 = −1, 0, . . . , 𝑠. Estas sucesiones 𝒮 son denominadas bases estándar minimales
de 𝐶.

De ahora en adelante, vamos a asumir que 𝐶 es una cúspide con un solo par de Puiseux
(𝑛, 𝑚). Consideremos

𝜋 : (𝑀̃, 𝐸) → (𝑀, 𝑃)

la mínima resolución de singularidades de 𝐶, obtenida como una composición finita de
transformaciones cuadráticas. Denotamos por 𝐷 ⊂ 𝐸 la componente irreducible del divisor
excepcional creada en la última explosión de la resolución 𝜋. Nos referimos a 𝐷 como el divisor
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2 CONTENTS

cuspidal de 𝐶. Decimos que una foliación ℱ es totalmente 𝐷-dicrítica cuando su transformado
estricto por 𝜋 es regular, transversal a 𝐷, y tiene cruzamientos normales con 𝐸 en todos los
puntos de 𝐷.

Además del valor diferencial 𝜈𝐶(𝜔) de una 1-forma 𝜔, estamos interesados en su valor
divisorial 𝜈𝐷(𝜔), que corresponde con la valoración divisorial asociada a 𝐷. En sistemas de
coordenadas apropiados este valor es interpretado en términos de un grado pesado en los
monomios.

Sea ℬ la base de Λ𝐶 y 𝒮 una base estándar minimal, como en los párrafos previos. Un primer
resultado muestra que las 1-formas 𝜔1 , 𝜔2 , . . . , 𝜔𝑠 definen foliaciones totalmente 𝐷-dicríticas.

Decir que una foliación ℱ es totalmente 𝐷-dicrítica implica que ℱ tiene una familia de
ramas invariantes con el mismo par de Puiseux (𝑛, 𝑚) que 𝐶. Esta observación nos conduce a
uno de nuestros principales resultados:

Tomemos una de las 1-formas 𝜔𝑖 de la base estándar minimal 𝒮 con 𝑖 ≥ 1, un punto no
esquina 𝑄 ∈ 𝐷 de 𝐸, y denotemos por 𝛾 = 𝐶

𝜔𝑖

𝑄
la curva invariante por 𝜔𝑖 teniendo a 𝑄 como

punto infinitamente próximo. Entonces el semimódulo de valores diferenciales de 𝛾 es Λ𝛾 con
base

(𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑖−1).

En particular, Λ𝛾 no depende de la elección del punto 𝑄 ∈ 𝐷. Además, tenemos que 𝜈𝛾(𝜔 𝑗) = 𝜆 𝑗 ,
para 𝑗 = −1, 0, . . . , 𝑖 − 1, y por tanto (𝜔−1 , 𝜔0 , . . . , 𝜔𝑖−1) es una base estándar minimal de 𝛾.
Cuando el punto 𝑄 pertenece al transformado estricto de 𝐶, decimos que 𝛾 es una semirraíz
analítica de 𝐶.

Lo anterior muestra que las semirraíces analíticas aproximan a 𝐶 usando tipos analíticos más
simples, en lo que se refiere al semimódulo de valores diferenciales. Además, podemos colocar
cualquier cúspide como una curva invariante de una 1-forma 𝜔𝑠+1 con propiedades similares
a las de una base estándar minimal. Por ello podemos jerarquizar el espacio de moduli de
cúspides planas en términos de semirraíces analíticas. No obstante, mostramos que la definición
que damos de semirraíz analítica no pasa bien al caso de ramas que no sean cúspides.

Detallemos el segundo punto sobre bases de Saito.
Sea Ω1

𝑀,𝑃
[𝐶] el 𝒪𝑀,𝑃-módulo de gérmenes de 1-formas holomorfas con 𝐶 como curva

invariante. Se trata de un 𝒪𝑀,𝑃-módulo libre de rango dos. Cualquier base de Ω1
𝑀,𝑃

[𝐶] es
denominada base de Saito de 𝐶.

Mostremos como calcular una base de Saito cuando 𝐶 es una cúspide, en términos de la
estructura combinatoria del semimódulo de valores diferenciales.

Empecemos con una breve descripción de la combinatoria de Λ𝐶 . Consideremos la sucesión
de descomposición

Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λ𝑠 = Λ𝐶 ; Λ𝑖 = ∪𝑖
𝑗=−1(𝜆 𝑗 + Γ𝐶), 𝑖 = −1, 0, 1, . . . , 𝑠.

Para cada índice 𝑖 = 1, 2, . . . , 𝑠 + 1, definimos los ejes 𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
, 𝑢𝑖 y 𝑢̃𝑖 como

• 𝑢𝑛
𝑖
= mín{𝜆𝑖−1 + 𝑛ℓ ∈ Λ𝑖−2; ℓ ≥ 1}.

• 𝑢𝑚
𝑖
= mín{𝜆𝑖−1 + 𝑚ℓ ∈ Λ𝑖−2; ℓ ≥ 1}.

• 𝑢𝑖 = mín{𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
} = mín((𝜆𝑖−1 + Γ𝐶) ∩Λ𝑖−2).

• 𝑢̃𝑖 = máx{𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
}.

Los valores críticos 𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
, 𝑡𝑖 y 𝑡𝑖 están definidos por: 𝑡−1 = 𝑛, 𝑡0 = 𝑚 y

𝑡𝑛
𝑖

= 𝑡𝑖−1 + 𝑢𝑛
𝑖
− 𝜆𝑖−1 , 𝑡𝑚

𝑖
= 𝑡𝑖−1 + 𝑢𝑚

𝑖
− 𝜆𝑖−1

𝑡𝑖 = mín{𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
}, 𝑡𝑖 = máx{𝑡𝑛

𝑖
, 𝑡𝑚

𝑖
}

}
1 ≤ 𝑖 ≤ 𝑠 + 1.
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Dada una base estándar minimal 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠), tenemos que 𝑡𝑖 es el valor divisorial
𝜈𝐷(𝜔𝑖) de 𝜔𝑖 . Extendemos esta propiedad clave a los otros valores críticos de la siguiente manera.
Dado un valor crítico 𝑇 en el conjunto

{𝑡1 , 𝑡2 , . . . , 𝑡𝑠+1; 𝑡𝑠+1},

obtenemos de forma algorítmica una 1-forma 𝜔, tal que 𝐶 es una rama invariante de 𝜔 y
𝜈𝐷(𝜔) = 𝑇. Además, si consideramos 𝜔𝑠+1 y 𝜔̃𝑠+1 dos 1-formas con 𝐶 invariante, 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1

y 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1. Probamos que {𝜔𝑠+1 , 𝜔̃𝑠+1} es una base de Saito de 𝐶. Resaltamos que la
1-forma 𝜔𝑠+1 coincide con la mencionada anteriormente al hablar de semirraíces analíticas.

La construcción de bases de Saito, nos permite estudiar lo que llamamos pares de multi-
plicidades de Saito, siendo estos un nuevo invariante analítico de la curva, obtenidos como
una generalización de invariantes dados por Y. Genzmer. Más precisamente, consideremos
𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0) una sucesión de transformaciones cuadráticas, con divisor excepcional
𝜋−1(𝑃0) = 𝐸𝑁 y 𝐸 ⊂ 𝐸𝑁 una componente irreducible de 𝐸𝑁 . Definimos los dos siguientes
números

𝔰𝐸(𝐶) = mín{𝜈𝐸(𝜔); 𝜔 pertenece a una base Saito de 𝐶},
𝔰̃𝐸(𝐶) = máx{𝜈𝐸(𝜔); 𝜔 pertenece a una base Saito de 𝐶}.

La pareja (𝑠𝐸(𝐶), 𝔰̃𝐸(𝐶)) es el par de multiplicidades de Saito de 𝐶 con respecto de 𝐸. Cabe notar
que esta definición se extiende al caso en el que 𝐶 no sea una cúspide.

Probamos que para el caso del divisor cuspidal 𝐷, se cumple que (𝑠𝐷(𝐶), 𝔰̃𝐷(𝐶)) = (𝑡𝑠+1 , 𝑡𝑠+1),
demostrando así que esta pareja de valores está siempre determinado por el semimódulo de
valores diferenciales. No obstante, si tomamos 𝐸 = 𝐸1

1 el divisor tras una única explosión, deja de
ser cierto que el par (𝑠𝐸(𝐶), 𝔰̃𝐸(𝐶)) esté determinado por el semimódulo de valores diferenciales.

Ahora presentamos nuestros resultados sobre raíces del polinomio de Bernstein-Sato de 𝐶.
Consideremos el anillo no conmutativo 𝐴 = C{𝑥1 , . . . , 𝑥𝑝 , 𝜕1 , . . . , 𝜕𝑝} de series de potencias

en 2𝑝 > 0 variables, y definamos 𝒟 como el cociente de 𝐴 por los conmutadores [𝑥𝑖 , 𝑥 𝑗] = 0
y [𝜕𝑖 , 𝑥 𝑗] = 𝛿𝑖 𝑗 , donde 𝛿𝑖 𝑗 es la delta de Kronecker. El anillo 𝒟 es el conjunto de operadores
diferenciales en 𝑝 variables, cuya acción en C{𝑥1 , . . . , 𝑥𝑝} se define considerando el elemento 𝜕𝑖
como la derivada parcial con respecto a 𝑥𝑖 .

Tomemos 𝒟[𝜌] el anillo de polinomios en la variable 𝜌 y coeficientes en 𝒟. Dada una
función 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝}, podemos extender la acción de 𝒟 a cualquier función de la forma 𝑔𝜌,
poniendo 𝜕𝑖 · 𝑔𝜌 = 𝜌𝑔𝜌−1𝜕𝑖 𝑔.

Consideremos 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝}, y sea ℐ el ideal (no nulo) de todos los posibles polinomios
𝐵(𝜌) ∈ C[𝜌] para los que existe un 𝑃 ∈ 𝒟[𝜌] satisfaciendo la ecuación:

𝑃(𝜌) · 𝑔𝜌+1 = 𝐵(𝜌)𝑔𝜌.

El generador mónico 𝑏𝑔(𝜌) de ℐ es llamado el polinomio de Bernstein-Sato de 𝑔. Este no depende
de la ecuación local 𝑔 escogida de la hipersuperficie 𝐻 = (𝑔 = 0), por tanto podemos hablar del
polinomio de Bernstein-Sato 𝑏𝐻(𝜌) de 𝐻.

En el caso de una cúspide singular 𝐶, mostramos dos enunciados:

• El valor −𝜆/𝑛𝑚 es una raíz del polinomio de Bernstein-Sato de 𝐶, para cualquier 𝜆 ∈
(𝜆1 + Γ𝐶) \ Γ𝐶 .

• Si 𝑛 ≤ 4, entonces para cualquier 𝜆 ∈ Λ𝐶 \ Γ𝐶 , tenemos que −𝜆/𝑛𝑚 es una raíz del
polinomio de Bernstein-Sato de 𝐶.
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Terminamos esta sección comentando brevemente posibles líneas de investigación que
surgen a raíz de los resultados presentados.

El primer problema que se plantea es el de tratar de dar una generalización de todo lo
mencionado para ramas que no sean cúspides. La línea sobre la que trabajar pasaría por dar una
descripción de la combinatoria del semimódulo de valores diferenciales de una rama con varios
pares de Puiseux, en términos análogos a los usados con los intervalos circulares. La evidencia
mostrada por el hecho de que el concepto de semirraíz analítica, tal y como lo hemos definido,
no pasa bien al caso de varios pares de Puiseux, nos hace pensar que no se trata de un objetivo
sencillo.

Otro problema que abordar es el estudio de los pares de multiplicidades de Saito. Los
resultados aquí mencionados, muestran que existen divisores para los que, al menos en el caso
cuspidal, los pares de multiplicidades de Saito están determinados por el semimódulo de valores
diferenciales (divisor cuspidal) o no lo están (divisor tras una única explosión). No hemos dado
ninguna explicación sobre esta fenomenología. El objetivo sería dar una caracterización que
nos permita decidir cuando los pares de multiplicidades de Saito respecto de un divisor están
determinados o no por el semimódulo. En caso afirmativo, dar una fórmula cerrada para estos
valores. Recordamos que los valores divisoriales respecto de divisores cuspidales se expresan,
en coordenadas adaptadas, como valores monomiales con pesos, convirtiendo su estudio en un
problema combinatorio.

Como última línea de investigación, sobre los polinomios de Bernstein-Sato, sería averiguar
si la restricción a que la multiplicidad sea a lo sumo 4 en el resultado que presentamos es
innecesaria o no.





Introduction

Let (𝐶, 𝑃) be an irreducible curve, or branch, in a germ (𝑀, 𝑃) of a complex analytic regular
surface. The goal of this work is to give a geometrical interpretation of analytic invariants of
𝐶, related with the semimodule of differential values of 𝐶. In order to this, we consider lists
of foliations determined by the 1-forms that define the semimodule of differential values of 𝐶
(standard bases).

Our work is mainly restricted to the case of singular cusps, that is, branches with a single
Puiseux pair (𝑛, 𝑚), with 2 ≤ 𝑛 < 𝑚 and 𝑔𝑐𝑑(𝑛, 𝑚) = 1.

In this doctoral thesis we present three main achievements:

• Geometrical interpretation of the moduli of analytic plane cusps in terms of analytic
semiroots and Foliation Theory.

• Obtaining Saito bases of a cusp from standard bases.
• Description of a subset of roots of the Bernstein-Sato polynomial of a cusp 𝐶 in terms of

the semimodule of differential values.

These results can be found in our works [12, 13, 53].
Let us precise the basic language required for the statements and results in the three previous

directions.
The semimodule Λ𝐶 of differential values of a branch 𝐶 is defined as follows

Λ𝐶 := {𝜈𝐶(𝜔) : 𝜔 a 1-form}.

The differential value 𝜈𝐶(𝜔) of 𝜔 by 𝐶 is equal to ord𝑡(𝛼) + 1, where 𝜙∗𝜔 = 𝛼(𝑡)𝑑𝑡 and 𝜙(𝑡) is a
primitive parametrization of 𝐶. The set Λ𝐶 is a Γ𝐶-semimodule, where Γ𝐶 denotes the semigroup
of 𝐶. In other words, 𝜆 + 𝛾 ∈ Λ𝐶 for any 𝛾 ∈ Γ𝐶 , 𝜆 ∈ Λ𝐶 . The basis ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) of
Λ𝐶 is the unique minimal increasing sequence that generates Λ𝐶 as Γ𝐶-semimodule, that is, we
have

Λ𝐶 =

𝑠⋃
𝑖=−1

(𝜆𝑖 + Γ𝐶), with 𝜆𝑖 ∉ 𝜆 𝑗 + Γ𝐶 , for 𝑖 ≠ 𝑗.

By definition, there are lists of holomorphic 1-forms 𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠), satisfying that
𝜈𝐶(𝜔𝑖) = 𝜆𝑖 , for 𝑖 = −1, 0, 1, . . . , 𝑠. Such sequences 𝒮 are called minimal standard bases of 𝐶.

From now on, we assume that 𝐶 is a cusp with a single Puiseux pair (𝑛, 𝑚). Consider

𝜋 : (𝑀̃, 𝐸) → (𝑀, 𝑃)

the minimal resolution of singularities of 𝐶, obtained as a finite composition of quadratic
transformations. We denote by 𝐷 ⊂ 𝐸 the irreducible component of the exceptional divisor
created in the last blow-up of the resolution 𝜋. The component 𝐷 is called the cuspidal divisor
of 𝐶. We say that a foliation ℱ is totally 𝐷-dicritical when its strict transform by 𝜋 is regular,
transverse to 𝐷, and has normal crossings with 𝐸 at all the points of 𝐷.

6
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Besides to the differential value 𝜈𝐶(𝜔) of a 1-form 𝜔, we are interested in its divisorial value
𝜈𝐷(𝜔), which corresponds with the divisorial valuation associated to 𝐷. In appropriate systems
of coordinates this value is interpreted in terms of a weighted degree of monomials.

Let ℬ be the basis of Λ𝐶 and 𝒮 a minimal standard basis, as above. A first result is that the
1-forms 𝜔1 , 𝜔2 , . . . , 𝜔𝑠 define totally 𝐷-dicritical foliations.

Saying that a foliation ℱ is totally 𝐷-dicritical implies that ℱ has an infinite family of
invariant branches with the same single Puiseux pair (𝑛, 𝑚) as 𝐶. This observation leads to one
of our main results:

Take one of the 1-forms 𝜔𝑖 of the minimal standard basis 𝒮 with 𝑖 ≥ 1, a point 𝑄 ∈ 𝐷 not a
corner of 𝐸, and denote by 𝛾 = 𝐶

𝜔𝑖

𝑄
the invariant curve by 𝜔𝑖 having 𝑄 as infinitely near point.

Then the semimodule of differential values Λ𝛾 of 𝛾 is Λ𝑖−1 with basis

(𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑖−1).

In particular, Λ𝛾 does not depend on the choice of the point 𝑄 ∈ 𝐷. Moreover, we have that
𝜈𝛾(𝜔 𝑗) = 𝜆 𝑗 , for 𝑗 = −1, 0, . . . , 𝑖 − 1, and hence (𝜔−1 , 𝜔0 , . . . , 𝜔𝑖−1) is a minimal standard basis of
𝛾. When the point 𝑄 belongs to the strict transform of 𝐶, we say that 𝛾 is an analytic semiroot of
𝐶.

Let us detail the second point about Saito bases. Let Ω1
𝑀,𝑃

[𝐶] be the 𝒪𝑀,𝑃-module of germs
of holomorphic 1-forms with 𝐶 as invariant curve. It is a free 𝒪𝑀,𝑃-module of rank two. Any
basis of Ω1

𝑀,𝑃
[𝐶] is called a Saito basis of 𝐶.

Let us show how to compute a Saito basis when 𝐶 is a cusp, in terms of the combinatorial
structure of the semimodule of differential values.

Let us start with a brief description of the combinatorics of Λ𝐶 . Consider the decomposition
sequence

Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λ𝑠 = Λ𝐶 ; Λ𝑖 =

𝑖⋃
𝑗=−1

(𝜆 𝑗 + Γ𝐶), 𝑖 = −1, 0, 1, . . . , 𝑠.

For each index 𝑖 = 1, 2, . . . , 𝑠 + 1, we define the axes 𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
, 𝑢𝑖 and 𝑢̃𝑖 as

• 𝑢𝑛
𝑖
= min{𝜆𝑖−1 + 𝑛ℓ ∈ Λ𝑖−2; ℓ ≥ 1}.

• 𝑢𝑚
𝑖
= min{𝜆𝑖−1 + 𝑚ℓ ∈ Λ𝑖−2; ℓ ≥ 1}.

• 𝑢𝑖 = min{𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
} = min((𝜆𝑖−1 + Γ𝐶) ∩Λ𝑖−2).

• 𝑢̃𝑖 = max{𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
}.

The critical values 𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
, 𝑡𝑖 and 𝑡𝑖 are defined by: 𝑡−1 = 𝑛, 𝑡0 = 𝑚 and

𝑡𝑛
𝑖

= 𝑡𝑖−1 + 𝑢𝑛
𝑖
− 𝜆𝑖−1 , 𝑡𝑚

𝑖
= 𝑡𝑖−1 + 𝑢𝑚

𝑖
− 𝜆𝑖−1

𝑡𝑖 = min{𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
}, 𝑡𝑖 = max{𝑡𝑛

𝑖
, 𝑡𝑚

𝑖
}

}
1 ≤ 𝑖 ≤ 𝑠 + 1.

Given a minimal standard basis 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠), we have that 𝑡𝑖 is the divisorial value
𝜈𝐷(𝜔𝑖) of 𝜔𝑖 . We extend this key property to the other critical values in the following way. Given
a critical value 𝑇 in the set

{𝑡1 , 𝑡2 , . . . , 𝑡𝑠+1; 𝑡𝑠+1},

we obtain, in an algorithmic way, a 1-form 𝜔 such that 𝐶 is an invariant branch of 𝜔 and
𝜈𝐷(𝜔) = 𝑇. Furthermore, if we consider 𝜔𝑠+1 and 𝜔̃𝑠+1 two 1-forms with 𝐶 invariant and
𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1 respectively, we prove that {𝜔𝑠+1 , 𝜔̃𝑠+1} is a Saito basis of 𝐶.

Now we present our results about roots of the Bernstein-Sato polynomial of 𝐶. Consider
the ring of non-commutative power series 𝐴 = C{𝑥1 , . . . , 𝑥𝑝 , 𝜕1 , . . . , 𝜕𝑝} in 2𝑝 > 0 variables, and
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let 𝒟 be the quotient of 𝐴 by the commutators [𝑥𝑖 , 𝑥 𝑗] = 0 and [𝜕𝑖 , 𝑥 𝑗] = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 is the
Kronecker’s delta. The ring 𝒟 is the set of differential operators in 𝑝 variables, whose action on
C{𝑥1 , . . . , 𝑥𝑝} is defined by considering the element 𝜕𝑖 as the partial derivative with respect to 𝑥𝑖 .

We take 𝒟[𝜌] the ring of polynomials in the variable 𝜌 and coefficients in 𝒟. Given any
function 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝}, we can extend the action of 𝒟 to functions of the form 𝑔𝜌 just by
putting 𝜕𝑖 · 𝑔𝜌 = 𝜌𝑔𝜌−1𝜕𝑖 𝑔.

Consider 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝} and let ℐ be the (non-zero) ideal of all possible polynomials
𝐵(𝜌) ∈ C[𝜌] for which there exists a 𝑃 ∈ 𝒟[𝜌] satisfying the equation:

𝑃(𝜌) · 𝑔𝜌+1 = 𝐵(𝜌)𝑔𝜌.

The monic generator 𝑏𝑔(𝜌) of ℐ is called the Bernstein-Sato polynomial of 𝑔. It does not depend
on the chosen local equation 𝑔 of the hypersurface 𝐻 = (𝑔 = 0), hence we can speak about the
Bernstein-Sato polynomial 𝑏𝐻(𝜌) of 𝐻.

In the case of a singular cusp 𝐶, we show two statements:

• The value −𝜆/𝑛𝑚 is a root of the Bernstein-Sato polynomial of 𝐶 for any 𝜆 ∈ (𝜆1 +Γ𝐶) \Γ𝐶 .
• If 𝑛 ≤ 4, then for any 𝜆 ∈ Λ𝐶 \ Γ𝐶 , we have that −𝜆/𝑛𝑚 is a root of the Bernstein-Sato

polynomial of 𝐶.

The thesis is structured as follows:
Chapters 1-4 are mostly introductory. In Chapter 1 we introduce notions and notations

about plane curves: primitive parametrization, Newton polygon, resolution of singularities,
topological/analytic invariants, etc.

In Chapter 2 we introduce the concept of foliation in a complex analytic regular surface. We
recall the existence of resolution of singularities for foliations. We also prove a combinatorial
criteria about totally 𝐷-dicriticalness.

In Chapter 3 we study the combinatorial structure of semimodules appearing as semimodules
of differential values of cusps.

Chapter 4 is devoted to the introduction of the computational techniques of standard bases.
This theory is general and can be applied to other kinds of local algebra problems.

In Chapter 5 we present Delorme’s decomposition. The computations are done either with a
parametrization or an implicit equation.

In Chapter 6 we introduce the concepts of extended standard basis and standard system for
a cusp. They are used in Chapters 7 and 8.

In Chapter 7 we prove hierarchy results about the moduli of analytic plane cusps. Again, we
rely on the structure of the elements of a minimal standard basis seen in Chapter 5.

In Chapter 8 we use the structure of a minimal standard basis to compute a Saito basis of
the cusp 𝐶. The proof is based on the combinatorial techniques from Chapter 3 and the use of
Delorme’s decompositions. Moreover, we define new analytic invariants of curves.

Finally, in Chapter 9 we show how to detect roots of the Bernstein-Sato polynomial for the
case of cusps.

Now we proceed to summarize the content of each chapter of this work.

Plane Curve Singularities

Fix (𝑀0 , 𝑃0) = (C2 , 0) a germ of a regular complex surface. Denote by 𝒪𝑀0 ,𝑃0 its ring of complex
analytic functions. After choosing a local system of coordinates (𝑥, 𝑦), we have that the ring
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𝒪𝑀0 ,𝑃0 coincides with the ring C{𝑥, 𝑦} of complex convergent power series in 𝑥 and 𝑦. A plane
curve (𝐶, 𝑃0) in (𝑀0 , 𝑃0) is a non trivial principal ideal ( 𝑓 ) = 𝐼 ⊂ 𝒪𝑀0 ,𝑃0 . We denote by 𝑓 or by
𝑓 = 0 an implicit equation of 𝐶.

Assume that 𝐶 is an irreducible curve, or branch. Then the implicit equation 𝑓 is irreducible
as an element in C{𝑥, 𝑦}. By Newton-Puiseux Theorem (see for instance [14]), there exists a
parametrization 𝜙 : (C, 0) → (𝑀0 , 𝑃0) of 𝐶, with 𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), where 𝑥(𝑡), 𝑦(𝑡) ∈ C{𝑡}.
Having a parametrization means that 𝑓 ◦ 𝜙 = 0. Additionally, we are going to assume that 𝜙 is
a primitive parametrization. In other words, the multiplicity of 𝑓 at 𝑃0, which we recall is the
order of 𝑓 at 𝑃0, coincides with the value min{ord𝑡(𝑥(𝑡)), ord𝑡(𝑦(𝑡))}.

We define the semigroup of 𝐶 as:

Γ𝐶 = {𝜈𝐶(ℎ) : ℎ ∈ 𝒪𝑀0 ,𝑃0}; where 𝜈𝐶(ℎ) := ord𝑡(ℎ ◦ 𝜙).

The semigroup of 𝐶 admits a finite system of generators Γ𝐶 = ⟨𝛽0 , 𝛽1 , . . . 𝛽𝑔⟩, with 𝛽𝑖 < 𝛽𝑖+1 for
𝑖 = 0, 1, . . . , 𝑔 − 1. It is a complete topological invariant. In fact, Zariski’s equsingularity theory
tell us that for two branches 𝐶 and 𝐷 the following statements are equivalent:

a) 𝐶 and 𝐷 are topologically equivalent, in the sense that there is an homeomorphism of the
ambient spaces sending 𝐶 to 𝐷.

b) 𝐶 and 𝐷 share the same semigroup Γ𝐶 = Γ𝐷 .
c) 𝐶 and 𝐷 are equisingular, that is, they have the “same” resolution of singularities: same

dual graph.

We are interested in the notion of analytic invariants of a branch, that is, properties that
remain constant under analytic isomorphisms of the ambient spaces.

Similarly to the semigroup, we define the semimodule Λ𝐶 of differential values of 𝐶 by

Λ𝐶 := {𝜈𝐶(𝜔) : 𝜔 ∈ Ω1
𝑀0 ,𝑃0

},

whereΩ1
𝑀0 ,𝑃0

is the𝒪𝑀0 ,𝑃0 -module of holomorphic 1-forms in (𝑀0 , 𝑃0) and 𝜈𝐶(𝜔) is the differential
value of 𝜔 by 𝐶. The differential value of 𝜔 is given by the number ord𝑡(𝛼)+1, with 𝜙∗𝜔 = 𝛼(𝑡)𝑑𝑡.
The semimodule of differential values is an analytic invariant of 𝐶. The relevance, as analytic
invariant, of Λ𝐶 relies on the following theorem proved by A. Hefez and M.E. Hernandes in [34].

Theorem. Let (𝐶, 𝑃0) be a branch whose semigroup is Γ𝐶 = ⟨𝛽0 , 𝛽1 , . . . , 𝛽𝑔⟩. There exists a system of
local coordinates such that 𝐶 has a normal form parametrization defined as follows: if Λ𝐶 \ Γ𝐶 = ∅, then
we put (𝑡𝛽0 , 𝑡𝛽1). Otherwise, if we have that Λ𝐶 \ Γ𝐶 ≠ ∅, then we put

©­­«𝑡𝛽0 , 𝑡𝛽1 + 𝑡𝜆𝑍 +
∑

𝑖>𝜆𝑍 ,𝑖∉Λ𝐶−𝛽0

𝑎𝑖𝑡
𝑖
ª®®¬ . (1)

Here 𝜆𝑍 = min(Λ𝐶 \ Γ𝐶) − 𝛽0 is the Zariski’s invariant of 𝐶.
Moreover, we have that (𝐶, 𝑃0) is analytically equivalent to another branch (𝐶′, 𝑃0) if and only if there

exists 𝑟 ∈ C∗ with 𝑟𝜆𝑍−𝛽1 = 1 and 𝑎𝑖 = 𝑟 𝑖−𝛽1 𝑎′
𝑖
for every coefficient 𝑎′

𝑖
of a normal form parametrization of

𝐶′.

The previous theorem solves the analytic classification of plane branches. In [36] M.E
Hernandes and M.E.R. Hernandes extend the previous result to general plane curves.

Because of the previous theorem, we decided to study the relationship of the semimodule of
differential values with other analytic invariants of branches. We say that 𝐶 is a cusp with Puiseux
pair (𝑛, 𝑚), when the semigroup Γ𝐶 of 𝐶 is generated by the pair (𝑛, 𝑚), that is, Γ𝐶 = ⟨𝑛, 𝑚⟩,
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where 2 ≤ 𝑛 < 𝑚 and 𝑔𝑐𝑑(𝑛, 𝑚) = 1. In this situation the combinatorics of the semimodule of
the differential values are easier and well known, see [2, 21]. These combinatorics are one of the
main ingredients that we use along all our proofs.

Assume that 𝐶 is a cusp with Puiseux pair (𝑛, 𝑚). To simplify our computations, we place
ourselves in a system of coordinates (𝑥, 𝑦) adapted to 𝐶. In other words (𝑥, 𝑦) is defined as
a system of coordinates where we can find a primitive parametrization of 𝐶 of the shape
(𝑡𝑛 , 𝑎𝑡𝑚 + ℎ.𝑜.𝑡.) with 𝑎 ≠ 0. Equivalently, we can take as implicit equation of 𝐶 the following
one

𝑓 = 𝑦𝑛 + 𝜇𝑥𝑚
∑

𝑛𝑖+𝑚𝑗>𝑛𝑚

𝑏𝑖 𝑗𝑥
𝑖𝑦 𝑗 ; 𝜇 ≠ 0.

We can also define an adapted system of coordinates of 𝐶 in terms of its resolution of singularities.
We precise this last notion. The blow-up with center 0 of (C2 , 0) is defined as the germ space of
the sets

𝐵𝑙𝑈,0 := {((𝑥, 𝑦), [𝛼1 : 𝛼2]) ∈ 𝑈 × P1(C) : 𝑥𝛼2 = 𝑦𝛼1},

being 0 ⊂ 𝑈 ⊂ C2 an open set. The blow-up can be considered in (𝑀0 , 𝑃0) since this surface is
isomorphic to (C2 , 0). We denote by 𝜎 : 𝐵𝑙𝑀0 ,𝑃0 → (𝑀0 , 𝑃0) the projection in the first coordinates.
We have that 𝜎−1(𝑃0) = 𝐸1 � P1(C) is the exceptional divisor of the blow-up 𝜎. Given 𝑔 ∈ 𝒪𝑀0 ,𝑃0 ,
we define the strict transform of 𝑔 by 𝜎 as the implicit equation, in 𝐵𝑙𝑀0 ,𝑃0 , of the curve defined
by (𝑔 ◦ 𝜎) − 𝜈𝑃0(𝑔)(𝐸1), where we are using the notation of divisors as a simplification. The
notion of strict transform extends, inductively, to a finite sequence of blow-ups.

Notice that since 𝑛 ≥ 2, then 𝐶 is singular at 𝑃0. Consider a singular plane curve (𝐷, 𝑃0) in
(𝑀0 , 𝑃0). In virtue of the classical Theorem of Resolution of Singularities for plane curves, we
can find a finite sequence of blow-ups 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0), such that the strict transform 𝐷̃

of 𝐷 by 𝜋 is a non singular curve and the intersection points of 𝐷̃ with the exceptional divisor
𝐸𝑁 = 𝜋−1(𝑃0) are a non singular points of 𝐸𝑁 .

We have a minimal resolution of singularities

𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0),

with 𝜋 = 𝜎1 ◦ 𝜎2 ◦ . . . 𝜎𝑁 , and 𝑁 minimal upon all the resolution of singularities of 𝐶. Each 𝜎𝑖 is
a blow-up as above. Saying that (𝑥, 𝑦) is a local system of adapted coordinates with respect to 𝐶

is equivalent to saying that we can compute 𝜋 just in a combinatorial way. These sequences of
blow-ups are named cuspidal sequences. We say that a system of coordinates is adapted to 𝜋 if it
is also adapted to 𝐶.

If we consider 𝐸𝑁 = 𝜋−1(𝑃0) the exceptional divisor of 𝜋, we can decompose this curve into
its irreducible components 𝐸𝑁 = 𝐸𝑁

1 ∪ 𝐸𝑁
2 ∪ . . . ∪ 𝐸𝑁

𝑁
, here the subscript indicates the order of

appearance. In particular, we call 𝐸𝑁
𝑁

the cuspidal divisor of 𝜋. It is also defined by saying that
the strict transform of 𝐶 by 𝜋 has no empty intersection with 𝐸𝑁

𝑁
. Since the divisor 𝐸𝑁

𝑁
only

depends on 𝐶, we also say that 𝐸𝑁
𝑁

is the cuspidal divisor of 𝐶.
Moreover, given 𝜋 a cuspidal sequence, which coincides with resolution of singularities of a

cusp 𝐶 with Puiseux pair (𝑛, 𝑚), we say that (𝑛, 𝑚) is the Puiseux pair of 𝜋.

Totally Dicritical Foliations

The definition of the semimodule of differential values of a branch 𝐶 requires the use of
holomorphic 1-forms in the analytic surface (𝑀0 , 𝑃0). For this reason, we study geometrical
properties of the foliations that give rise to the semimodule of differential values.
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A germ of a foliation ℱ in (𝑀0 , 𝑃0) can be defined by a holomorphic 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

that can be written as 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, with 𝑔𝑐𝑑(𝐴, 𝐵) = 1, in a system of coordinates (𝑥, 𝑦) at
(𝑀0 , 𝑃0). We can define foliations in general surfaces or analytic spaces, not just a germ, by
considering gluing conditions between the defining charts of the desired ambient space. We say
that a curve 𝐶 defined by 𝑓 = 0 is an invariant curve by ℱ if 𝜔 ∧ 𝑑𝑓 = 𝑓 𝜂, where 𝑑𝑓 stands for
the differential of 𝑓 and 𝜂 is a holomorphic 2-form.

Suppose that the foliation ℱ defined by 𝜔 is singular at 𝑃0, that is, 𝐴(0) = 𝐵(0) = 0. We
consider the matrix

𝐽(𝜔) =
(
− 𝜕𝐵

𝜕𝑥 (0) − 𝜕𝐵
𝜕𝑦 (0)

𝜕𝐴
𝜕𝑥 (0)

𝜕𝐴
𝜕𝑦 (0)

)
.

Denote by 𝜆, 𝜇 the eigenvalues of 𝐽(𝜔). We say that 𝑃0 is a simple singularity of ℱ if 𝐽(𝜔) is
non-nilpotent (that is (𝜆, 𝜇) ≠ (0, 0)), and one of the following two conditions is satisfied:

1. 𝜆𝜇 = 0 (saddle-node case).
2. 𝜆𝜇 ≠ 0 and 𝜆/𝜇 is not a positive rational number.

We need the strongest concept of simple point with respect to a normal crossings divisor
𝐸0 ⊂ 𝑀0. Namely, we say that the point 𝑃0 is a simple point of (𝑀0 , 𝐸

0 ,ℱ ) if one of two following
conditions is satisfied:

a) 𝑃0 is a simple singularity of ℱ , there exists an irreducible component of 𝐸0 through 𝑃0

and all the irreducible components of 𝐸0 are invariant by ℱ .
b) The point 𝑃0 is a regular point of ℱ and ℱ has normal crossings with 𝐸0. That is to say, if

𝐿 is the only invariant curve of ℱ through 𝑃0, then 𝐸0 ∪ 𝐿 is a normal crossings divisor.

It is possible to define the notion of strict transform of a foliation by a blow-up 𝜎 : (𝑀1 , 𝐸
1) →

(𝑀0 , 𝑃0) with center 𝑃0. In local terms, consider 𝑄 ∈ 𝐸1 and (𝑥1 , 𝑦1) a local system of coordinates
of (𝑀1 , 𝐸

1) at 𝑄, such that 𝑥1 = 0 is a local implicit equation of 𝐸1. Given a foliation ℱ defined
by a 1-form 𝜔, the strict transform of ℱ by 𝜎 at 𝑄 is the foliation defined by 𝑥−𝑘1 𝜋∗𝜔. Here 𝑘

is the maximum integer number such that 𝑥−𝑘1 𝜋∗𝜔 is holomorphic at 𝑄. The notion of strict
transform of a foliation extends inductively to finite sequences of blow-ups.

A. Seidenberg shows in [51] that there exists a resolution of singularities of ℱ by considering
a finite sequence of blow-ups, in the following sense: we say that 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0)
is a resolution of singularities of ℱ if its strict transform ℱ̃ by 𝜋 has only simple points of
(𝑀𝑁 , 𝐸

𝑁 , ℱ̃ ).
Let 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0) be a sequence of blow-ups and consider an irreducible
component 𝐷 of the exceptional divisor 𝐸𝑁 . Let 𝑢 = 0 be a reduced implicit equation of 𝐷 at a
point 𝑄 ∈ 𝐷. The divisorial value 𝜈𝐷(ℎ) of a function ℎ ∈ 𝒪𝑀0 ,𝑃0 is the number of times that 𝑢
divides 𝜋∗ℎ. The notion of divisorial value can be extended to 1-forms and 2-forms by means of
adequate logarithmic presentations in the sense of K. Saito [49].

Now assume that 𝜋 is a cuspidal sequence with Puiseux pair (𝑛, 𝑚) and cuspidal divisor 𝐷.
Let (𝑥, 𝑦) be a system of adapted coordinates with respect to 𝜋. Given a function ℎ ∈ 𝒪𝑀0 ,𝑃0 , we
write ℎ as

ℎ =

∑
𝛼,𝛽≥0

𝑎𝛼𝛽𝑥
𝛼𝑦𝛽 .

Since we are in a system of adapted coordinates, the divisorial value of ℎ corresponds with
𝜈𝐷(ℎ) = min{𝑛𝛼 + 𝑚𝛽 : 𝑎𝛼𝛽 ≠ 0} (see Proposition 2.3.2). Besides, for the case of 1-forms, we
have that given 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, then 𝜈𝐷(𝜔) = min{𝜈𝐷(𝑥𝐴), 𝜈𝐷(𝑦𝐵)}. Finally, for 𝜂 = 𝑔𝑑𝑥 ∧ 𝑑𝑦,
we obtain that 𝜈𝐷(𝜂) = 𝜈𝐷(𝑥𝑦𝑔) (see Propositions 2.3.7 and 2.3.9).
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As we have already said, a foliation ℱ is totally 𝐷-dicritical when its strict transform by 𝜋 is
regular, transverse to 𝐷, and has normal crossings with 𝐸 at all the points of 𝐷. We also say that
1-form 𝜔 is totally 𝐷-dicritical when the foliation defined by 𝜔 is totally 𝐷-dicritical.

In this work we give an equivalent combinatorial condition to total 𝐷-dicriticalness. Let us
precise it. Consider 𝜔 ∈ Ω1

𝑀0 ,𝑃0
such that 𝜈𝐷(𝜔) = 𝑞 and write

𝜔 =

∑
𝛼,𝛽≥0

𝑥𝛼𝑦𝛽
{
𝜇𝛼𝛽

𝑑𝑥

𝑥
+ 𝜉𝛼𝛽

𝑑𝑦

𝑦

}
.

The Newton cloud of 𝜔 is 𝒩𝒞 𝑥,𝑦(𝜔) = {(𝛼, 𝛽) : 𝜇𝛼𝛽 ≠ 0 or 𝜉𝛼𝛽 ≠ 0}, and the initial part of 𝜔 is
given by

In𝑛,𝑚;𝑥,𝑦(𝜔) =
∑

𝑛𝛼+𝑚𝛽=𝑞

𝑥𝛼𝑦𝛽
{
𝜇𝛼𝛽

𝑑𝑥

𝑥
+ 𝜉𝛼𝛽

𝑑𝑦

𝑦

}
.

We say that 𝜔 is resonant if there exists a non zero constant 𝜇 such that

In𝑛,𝑚;𝑥,𝑦(𝜔) = 𝜇𝑥𝛼𝑦𝛽
{
𝑚
𝑑𝑥

𝑥
− 𝑛

𝑑𝑦

𝑦

}
.

Let (𝑏, 𝑑) be such that 𝑑𝑛 − 𝑏𝑚 = 1 and with the property that 0 ≤ 𝑏 < 𝑛 and 0 < 𝑑 ≤ 𝑚. We
define the region 𝑅𝑛,𝑚 by 𝑅𝑛,𝑚 = 𝐻𝑛,𝑚

− ∩ 𝐻𝑛,𝑚
+ , where

𝐻𝑛,𝑚
− = {(𝛼, 𝛽) ∈ R2; (𝑛 − 𝑏)𝛼 + (𝑚 − 𝑑)𝛽 ≥ 0},

𝐻𝑛,𝑚
+ = {(𝛼, 𝛽) ∈ R2; 𝑏𝛼 + 𝑑𝛽 ≥ 0},

We say that 𝜔 is pre-basic if 𝒩𝒞 𝑥,𝑦(In𝑥,𝑦,𝑛,𝑚(𝜔)) = {(𝑎, 𝑏)} and 𝒩𝒞 𝑥,𝑦(𝜔) ⊂ (𝑎, 𝑏) + 𝑅𝑛,𝑚 . Note
that 𝜈𝐷(𝜔) < 𝑛𝑚 is a sufficient condition to assure that 𝜔 is pre-basic, see Proposition 2.4.11.

We prove that being totally 𝐷-dicritical is equivalent to being pre-basic and resonant, see
Proposition 2.5.1).

Cuspidal Semimodules

We describe structural properties of the semimodule of differential values of a cusp.
Recall that anyΓ-semimoduleΛhas a basis𝐵 = (𝜆−1 ,𝜆0 , . . . ,𝜆𝑠) and we have the decomposition

sequence of Λ given by:

Λ−1 = (𝜆−1 + Γ) ⊂ Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λ𝑠 = Λ; Λ𝑗 =

𝑗⋃
𝑖=−1

(𝜆𝑖 + Γ), for 𝑗 = −1, 0, . . . , 𝑠.

Assume that Γ is cuspidal, that is, Γ = ⟨𝑛, 𝑚⟩. In this case Λ is called a cuspidal semimodule,
even if Λ does not correspond with the semimodule of differential values of a cusp. The axes
𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
, 𝑢𝑖 and 𝑢̃𝑖 , and the critical values 𝑡−1 , 𝑡0 , 𝑡

𝑛
𝑖
, 𝑡𝑚

𝑖
, 𝑡𝑖 and 𝑡𝑖 , are structural parameters of Λ, as

in the case of the semimodule of differential values.
We say that Λ is an increasing semimodule if 𝜆𝑖 > 𝑢𝑖 for 𝑖 = 1, . . . , 𝑠. We have that Λ is the

semimodule of differential values of a cusp 𝐶 if and only if 𝜆−1 = 𝑛, 𝜆0 = 𝑚 and Λ is increasing,
see [21, 2]. Furthermore, in this case, if 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) is a minimal standard basis of the
corresponding cusp 𝐶, we have that 𝜈𝐷(𝜔𝑖) = 𝑡𝑖 for 𝑖 = −1, 0, . . . , 𝑠, where 𝐷 is the cuspidal
divisor of 𝐶, see Theorem 5.2.10.

In order to understand the structure of Λ we need to define extra parameters associated to
the semimodule. In particular we define the bounds 𝑘𝑛

𝑖
, 𝑘𝑚

𝑖
, the limits ℓ 𝑛

𝑖+1 , ℓ
𝑚
𝑖+1, and the colimits
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𝑎𝑖+1 , 𝑏𝑖+1, accordingly to the following relations (see Lemma 3.5.1):

𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛𝑖+1 = 𝜆𝑘𝑛

𝑖
+ 𝑚𝑏𝑖+1 ,

𝑢𝑚
𝑖+1 = 𝜆𝑖 + 𝑚ℓ𝑚𝑖+1 = 𝜆𝑘𝑚

𝑖
+ 𝑛𝑎𝑖+1.

The main technical results linking the previous parameters are the following ones:

a) The axes and critical values are ordered as follows (see Lemma 3.6.1):

1. 𝑢1 < 𝑢2 < . . . < 𝑢𝑠+1 < 𝑢̃𝑠+1 < 𝑢̃𝑠 < . . . < 𝑢̃1.

2. 𝑡1 < 𝑡2 < . . . < 𝑡𝑠+1 < 𝑡𝑠+1 < 𝑡𝑠 < . . . < 𝑡1.

b) The bounds 𝑘𝑛
𝑖

and 𝑘𝑚
𝑖

are determined inductively once we know if 𝑢𝑖 = 𝑢𝑛
𝑖

or 𝑢𝑖 = 𝑢𝑚
𝑖

.
More precisely, if 𝑢𝑖 = 𝑢𝑛

𝑖
, we have that 𝑘𝑛

𝑖
= 𝑖 − 1 and 𝑘𝑚

𝑖
= 𝑘𝑚

𝑖−1. If 𝑢𝑖 = 𝑢𝑚
𝑖

, then 𝑘𝑛
𝑖
= 𝑘𝑛

𝑖−1
and 𝑘𝑚

𝑖
= 𝑖 − 1, see Proposition 3.5.9.

c) The relationship between bounds, limits and colimits is given by (see Proposition 3.6.3):

1. If 𝑘𝑛
𝑖
= 𝑖 − 1, then ℓ 𝑛

𝑖+1 + 𝑎𝑖+1 = 𝑎𝑖 and ℓ𝑚
𝑖+1 + 𝑏𝑖+1 = ℓ𝑚

𝑖
.

2. If 𝑘𝑚
𝑖
= 𝑖 − 1, then ℓ 𝑛

𝑖+1 + 𝑎𝑖+1 = ℓ 𝑛
𝑖

and ℓ𝑚
𝑖+1 + 𝑏𝑖+1 = 𝑏𝑖 .

The result a) allows to work with initial parts of elements of minimal standard basis. The results
b) and c) are key for the presentation of different versions of Delorme’s decomposition.

In the proof of above results, we have used the idea of circular intervals. Roughly speaking,
it corresponds to a reordering of the intervals of length 𝑛, by considering its terms modulo 𝑛

and dividing them by 𝑚 modulo 𝑛.
It is worth to mention that in [3] and in [41] the authors give a different approach to study

the combinatorics of these semimodules.

Standard Bases

The minimal standard bases that we consider in this work do not fit exactly with the classical
standard bases concerning ideals, algebras and modules. Nevertheless, both cases can be treated
with the same kind of techniques.

In this chapter, we recall the known general notions and algorithms about standard bases.

Delorme’s Decompositions

In this chapter, we present several results that can be considered as avatars of the classical
Delorme’s Decomposition Theorem in [21]. These statements are the technical core that supports
most of the proofs of the main results of this thesis. In particular, we end this chapter with a
refinement, in the cuspidal case, of the usual algorithms for computing a minimal standard
basis, and its use when the input is an implicit equation.

Consider Λ𝐶 the semimodule of differential values of a cusp 𝐶 with Puiseux pair (𝑛, 𝑚) and
a minimal standard basis 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) of 𝐶. Let ℬ = (𝜆−1 ,𝜆0 , . . . ,𝜆𝑠) be the basis of
Λ𝐶 . Denote by Λ𝑖 the intermediate semimodules of the decomposition sequence of Λ𝐶 , and
by 𝑡𝑖 , 𝑢𝑖 and 𝑘𝑖 the critical values, axes and bounds of Λ𝐶 . Let us also take a local system of
coordinates (𝑥, 𝑦) adapted to 𝐶. The main technical results in this work are the following ones:

Theorem (5.2.10). For each 1 ≤ 𝑖 ≤ 𝑠 we have the following statements

1. 𝜆𝑖 = sup{𝜈𝐶(𝜔) : 𝜈𝐷(𝜔) = 𝑡𝑖}, here 𝐷 stands for the cuspidal divisor of 𝐶.
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2. If 𝜈𝐶(𝜔) = 𝜆𝑖 , then 𝜈𝐷(𝜔) = 𝑡𝑖 .
3. For each 1-form 𝜔 with 𝜈𝐶(𝜔) ∉ Λ𝑖−1, there is a unique pair 𝑎, 𝑏 ≥ 0 such that 𝜈𝐷(𝜔) =

𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖). Moreover, we have that 𝜈𝐶(𝜔) ≥ 𝜆𝑖 + 𝑛𝑎 + 𝑚𝑏.
4. We have that 𝜆𝑖 > 𝑢𝑖 . In particular, the semimodules Λ𝑖 are increasing.
5. Let 𝑘 = 𝜆𝑖 + 𝑛𝑎 + 𝑚𝑏, then 𝑘 ∉ Λ𝑖−1 if and only if for all 𝜔 such that 𝜈𝐶(𝜔) = 𝑘 we have that

𝜈𝐷(𝜔) ≤ 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖).

Note that the divisorial value of an element of a minimal standard basis is fixed by the critical
values.

Theorem (5.3.1 Decomposition Theorem). Consider indices 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑠 and denote by ∗ one of the
elements 𝑛 or 𝑚. Take 𝜔 a 1-form such that 𝜈𝐷(𝜔) = 𝑡∗

𝑖+1 and 𝜈𝐶(𝜔) > 𝑢∗
𝑖+1. There is a decomposition of

the 1-form 𝜔 given by
𝜔 =

∑𝑗

ℓ=−1 𝑓
𝑖 𝑗

ℓ
𝜔ℓ , (2)

such that 𝑣∗
𝑖 𝑗
= min{𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ); −1 ≤ ℓ < 𝑗}, where 𝑣∗

𝑖 𝑗
= 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) and 𝑣∗

𝑖 𝑗
= 𝜆 𝑗 + 𝑡∗

𝑖+1 − 𝑡 𝑗 . In
particular, if 𝑗 = 𝑖, we have that 𝑣∗

𝑖𝑖
= 𝜆𝑖 + 𝑡∗

𝑖+1 − 𝑡𝑖 = 𝑢∗
𝑖+1. Moreover if −1 ≤ ℓ < 𝑗, the following holds:

1. If 𝑗 < 𝑖, we have that 𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) = 𝑣∗
𝑖 𝑗

for ℓ = 𝑘 𝑗 , and 𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) > 𝑣∗
𝑖 𝑗
, for any ℓ ≠ 𝑘 𝑗 .

2. If 𝑗 = 𝑖, we have that 𝜈𝐶( 𝑓 𝑖𝑖ℓ 𝜔ℓ ) = 𝑣∗
𝑖𝑖

for ℓ = 𝑘∗
𝑗
, and 𝜈𝐶( 𝑓 𝑖𝑖ℓ 𝜔ℓ ) > 𝑣∗

𝑖𝑖
, for any ℓ ≠ 𝑘∗

𝑗
.

The previous writing in Equation (2) is what we have call in this text a Delorme’s decompo-
sition of 𝜔.

Now let us sketch how to compute a minimal standard basis of the cusp 𝐶, when it is given
in by an implicit equation 𝑓 = 0.

The main detail is the following one: given two 1-forms 𝜔, 𝜔′, such that 𝜈𝐶(𝜔) = 𝜈𝐶(𝜔′) < ∞,
we need to find the unique constant 𝜇+ such that 𝜈𝐶(𝜔 + 𝜇+𝜔′) > 𝜈𝐶(𝜔). This is done in a
straightforward way when starting with a primitive parametrization of 𝐶. In this chapter, we
present a new method to do that from an implicit equation.

We consider the weighted monomial order ⪯ with respect (𝑛, 𝑚) in (Z≥0)2. The order ⪯ is
defined as: (𝑎, 𝑏) ≺ (𝑐, 𝑑) if either 𝑛𝑎 + 𝑚𝑏 < 𝑛𝑐 + 𝑚𝑑 or 𝑛𝑎 + 𝑚𝑏 = 𝑛𝑐 + 𝑚𝑑 with 𝑎 < 𝑐. Write
𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 and 𝜔′ = 𝐴′𝑑𝑥 + 𝐵′𝑑𝑦 and consider the vector fields 𝑋𝜔 = −𝐵𝜕𝑥 + 𝐴𝜕𝑦 and
𝑋𝜔′ = −𝐵′𝜕𝑥 + 𝐴′𝜕𝑦 . Put ℎ, ℎ′ “final reductions modulo { 𝑓 }” of 𝑋𝜔( 𝑓 ) and 𝑋′

𝜔( 𝑓 ) respectively.
We show that 𝜈𝐶(𝜔) = 𝜈𝐶(𝜔′) implies that 𝑙𝑝(ℎ) = 𝑙𝑝(ℎ′), see Proposition 5.4.3. If we write
𝑙𝑡(ℎ) = 𝜇𝑥𝑎𝑦𝑏 and 𝑙𝑡(ℎ′) = 𝜇′𝑥𝑎𝑦𝑏 (here 𝑙𝑝 and 𝑙𝑡 stand for the leading power and the leading
term respectively). Then we have that the coefficient 𝜇+ we are looking for is 𝜇+ = −𝜇/𝜇′.

As a consequence of this procedure, we extend some results of D. Pol in [48] and J. Briançon
et al. in [9] relatives to the extended jacobian ideal 𝒥 ( 𝑓 ) = ( 𝑓𝑥 , 𝑓𝑦 , 𝑓 ) of 𝐶. Namely, given
𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) a minimal standard basis of 𝐶, if we denote by ℎ𝑖 a final reduction of
𝑋𝜔𝑖 ( 𝑓 ) modulo { 𝑓 }, for 𝑖 = −1, 0, . . . , 𝑠, then {ℎ−1 , ℎ0 , . . . , ℎ𝑠} is a minimal standard basis of
𝒥 ( 𝑓 ).

Standard Systems

In this chapter we enlarge the concept of minimal standard basis to extended standard basis and
standard systems.

We say that a sequence of 1-forms ℰ = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠 , 𝜔𝑠+1) is an extended standard basis of
𝐶 when 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) is a minimal standard basis of 𝐶 and 𝜔𝑠+1 satisfies the following
two conditions:
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1. 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1.
2. 𝜈𝐶(𝜔𝑠+1) = ∞, that is, 𝐶 is invariant by 𝜔𝑠+1 (see Lemma 2.1.1).

A standard system (ℰ, ℰ̃) for the cusp 𝐶 is the data of an extended standard basis ℰ =

(𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1) and a family ℰ̃ = (𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1) of 1-forms satisfying that

𝜈𝐷(𝜔̃ 𝑗) = 𝑡 𝑗 , 𝜈𝐶(𝜔̃ 𝑗) = ∞, 1 ≤ 𝑗 ≤ 𝑠 + 1.

We prove the existence of standard systems that complete a given minimal standard basis.
Moreover, we show that 𝜔𝑠+1 and every 𝜔̃𝑖 , except 𝜔̃1, are basic and resonant, hence they are
totally 𝐷-dicritical.

Analytic Semiroots

Let 𝜔 be a pre-basic and resonant 1-form in adapted coordinates with respect to the cusp 𝐶. By
the results in Chapter 2, we know that the foliation defined by 𝜔 is totally 𝐷-dicritical, where 𝐷

is the cuspidal divisor of 𝐶. Consider a non-corner point 𝑃 ∈ 𝐷, there exists a unique branch
𝐶𝜔
𝑃

invariant by 𝜔 passing through 𝑃, named an 𝜔-cusp through 𝑃. The strict transform of 𝐶𝜔
𝑃

in 𝑃 is non singular and transverse to 𝐷 at 𝑃. Thus, the resolution of singularities of 𝐶𝜔
𝑃

is the
same as the one of 𝐶. Note that two of these curves 𝐶𝜔

𝑃
and 𝐶𝜔

𝑄
, with 𝑃 ≠ 𝑄, are not in general

analytically equivalent, see Example 7.8)
Consider an extended standard system ℰ = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠+1) of the cusp 𝐶. Recall that 𝜔𝑖

is totally 𝐷-dicritical for 𝑖 ≥ 1. We call analytic weak ℰ-semiroot of index 𝑖 ≥ 1 to any 𝜔𝑖-cusp 𝐶
𝜔𝑖

𝑃
.

We say that 𝐶𝜔𝑖

𝑃
is the analytic ℰ-semiroot of 𝐶 of index 𝑖 if 𝑃 is the infinitely near point of 𝐶 in 𝐷.

We observe that the analytic ℰ-semiroot of index 𝑠 + 1 is the cusp 𝐶 itself.
One of the most important results of this work is the following one:

Theorem. For any analytic weak ℰ-semiroot 𝛾 = 𝐶
𝜔𝑖

𝑃
of index 1 ≤ 𝑖 ≤ 𝑠 + 1, then

ℰ𝑖 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑖)

is an extended standard basis of 𝛾 and the semimodule of differential values is Λ𝛾 = Λ𝑖−1. Moreover, we
have the equality of differential values

𝜈𝐶(𝜔ℓ ) = 𝜈𝛾(𝜔ℓ ), for − 1 ≤ ℓ ≤ 𝑖 − 1.

Let us expand ℰ to a standard system

(ℰ, ℰ̃) = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠+1; 𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠+1).

We have the following:

Theorem. Let 𝛾̃ = 𝐶
𝜔̃𝑖

𝑃
be an 𝜔̃𝑖-cusp with 2 ≤ 𝑖 ≤ 𝑠 + 1. Then we have the equality of differential

values
𝜈𝐶(𝜔ℓ ) = 𝜈𝛾̃(𝜔ℓ ), for − 1 ≤ ℓ ≤ 𝑖 − 1.

Moreover, we have the inclusion Λ𝑖−1 ⊂ Λ𝛾̃.

We give an example where the inclusion Λ𝑖−1 ⊂ Λ𝛾̃ is strict.
We end the chapter with an example of a branch with two Puiseux pairs that shows that it is

not easy to generalize the previous results in a straightforward way.
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Saito Bases and Other Analytic Invariants

Consider (𝐶, 𝑃0) any plane curve in (𝑀0 , 𝑃0). K. Saito showed in [49] that Ω1
𝑀0 ,𝑃0

[𝐶] is a rank
two free 𝒪𝑀0 ,𝑃0 -module. We say that a basis of Ω1

𝑀0 ,𝑃0
[𝐶] is a Saito basis of 𝐶.

Y. Genzmer in [25] introduced an analytic invariant for curves depending on Saito bases.
More precisely, he defined the Saito pair of multiplicities of 𝐶 as the following two numbers

𝔰𝑃0(𝐶) = min{𝜈𝑃0(𝜔); 𝜔 belongs to a Saito basis of 𝐶},
𝔰̃𝑃0(𝐶) = max{𝜈𝑃0(𝜔); 𝜔 belongs to a Saito basis of 𝐶},

where 𝜈𝑃0(𝜔) is the multiplicity of 𝜔 at 𝑃0. Finding a Saito basis is the most complicated part
when determining the previous invariant. In this chapter we present a method to compute a
Saito basis of a cusp 𝐶. It is based on the information coming from the semimodule of differential
values. We build a Saito basis as follows:

Theorem (8.2). Denote by Λ𝐶 the semimodule of differential values for the cusp 𝐶, with length 𝑠 ≥ 0.
Let 𝑡𝑠+1 and 𝑡𝑠+1 be the last critical values of Λ𝐶 . Then, there are two 1-forms 𝜔𝑠+1 , 𝜔̃𝑠+1 having 𝐶 as an
invariant curve and such that 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1. Moreover, for any pair of 1-forms
as above, the set {𝜔𝑠+1 , 𝜔̃𝑠+1} is a Saito basis for 𝐶.

The existence of the 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1, satisfying the required properties, follows from
the existence of standard systems proved in Chapter 6.

The proof of the previous theorem relies on the results about Delorme’s decompositions of
the 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1. We proceed to give a sketch of the proof.

First, according to [49], we have the following result

Lemma (Saito’s Criterion). Let 𝐶′ be a curve defined by the implicit equation 𝑔 = 0. Given
𝜂1 , 𝜂2 ∈ Ω1

𝑀0 ,𝑃0
[𝐶′], then {𝜂1 , 𝜂2} is a Saito basis of 𝐶′ if and only if

𝜂1 ∧ 𝜂2 = 𝑢𝑔𝑑𝑥 ∧ 𝑑𝑦,

where 𝑢 ∈ 𝒪𝑀0 ,𝑃0 is a unit, and (𝑥, 𝑦) is the chosen coordinate system.

We use the Saito’s criterion to check that Theorem 8.2 is true when the basis the semimodule
of differential values of 𝐶 is 𝐵 = (𝜆−1 ,𝜆0). In this case, by Theorem 1.5.2, we have that
𝐶 is quasi-homogeneous, that is, we can find coordinates such that (𝑡𝑛 , 𝑡𝑚) is a primitive
parametrization of 𝐶. It is a direct application of Saito’s criterion that 𝜔1 = 𝑛𝑥𝑑𝑦 − 𝑚𝑦𝑑𝑥

and 𝜔̃1 = 𝑛𝑦𝑛−1𝑑𝑦 − 𝑚𝑥𝑚−1𝑑𝑥 give a Saito basis of 𝐶. Note that 𝜈𝐷(𝜔1) = 𝑡1 = 𝑛 + 𝑚 and
𝜈𝐷(𝜔̃1) = 𝑡1 = 𝑛𝑚. Knowing that {𝜔1 , 𝜔̃1} is a Saito basis of 𝐶, we can verify that any couple of
1-forms with 𝐶 invariant and the same divisorial values as {𝜔1 , 𝜔̃1} gives a Saito basis.

Now, if the basis 𝐵 has more than two elements, we did not prove the theorem by checking
that 𝜔𝑠+1 and 𝜔̃𝑠+1 satisfy Saito’s criterion. In fact, the proof is split in two parts: first, we find a
generator system of Ω1

𝑀0 ,𝑃0
[𝐶] that contains {𝜔𝑠+1 , 𝜔̃𝑠+1}. Second, we show that the previous

generator system can be reduced to just {𝜔𝑠+1 , 𝜔̃𝑠+1}.
We can generalize the Saito pair of multiplicities as follows. Let us consider𝜋′ : (𝑀𝑁 ′ , 𝐸𝑁 ′) →

(𝑀0 , 𝑃0) a sequence of blow-ups and take 𝐸 ⊂ 𝐸𝑁 ′ an irreducible component of the exceptional
divisor. We define as before

𝔰𝐸(𝐶) = min{𝜈𝐸(𝜔); 𝜔 belongs to a Saito basis of 𝐶}.
𝔰̃𝐸(𝐶) = max{𝜈𝐸(𝜔); 𝜔 belongs to a Saito basis of 𝐶}.
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The Saito pair of multiplicities (𝔰𝐸(𝐶), 𝔰̃𝐸(𝐶)) with respect to 𝐸 is an analytic invariant. When 𝜋′

is just a single blow, we recover the one defined by Y. Genzmer. We show in Theorem 8.4.3 that
(𝔰𝐷(𝐶), 𝔰̃𝐷(𝐶)) = (𝑡𝑠+1 , 𝑡𝑠+1). In other words, the Saito pair of multiplicities, with respect to the
cuspidal divisor 𝐷, is determined by the semimodule of differential values of the cusp 𝐶.

Nonetheless, we give an example that shows that (𝔰𝑃0(𝐶), 𝔰̃𝑃0(𝐶)) is not completely determined
by Λ𝐶 . Anyway, in [27], it is shown that we can deduce some information about 𝑠𝑃0(𝐶) from the
semimodule of differential values.

Roots of the Bernstein-Sato Polynomial

Consider 𝐶 a curve in (𝑀0 , 𝑃0) with implicit equation 𝑓 = 0. In [17], P. Cassou-Noguès gives
algebraic conditions that the coefficients of 𝑓 must satisfy to assure that a particular rational
number is a root of the Bernstein-Sato polynomial.

In order to give the previous algebraic conditions, we need to use a special kind of adapted
coordinates that we call nice coordinates. First we define the cuspidal sets 𝑃, 𝐽 , 𝑀 as

𝑃 := {(𝑝1 , 𝑝2) ∈ (Z≥0)2 : 0 ≤ 𝑝1 < 𝑚 − 1, 0 ≤ 𝑝2 < 𝑛 − 1 and 𝑛𝑝1 + 𝑚𝑝2 > 𝑛𝑚},
𝐽 := { 𝑗 = 𝑝1, 𝑗𝑛 + 𝑝2, 𝑗𝑚 − 𝑛𝑚 : (𝑝1, 𝑗 , 𝑝2, 𝑗) ∈ 𝑃},

𝑀 := {(𝑚 − 𝑝1 − 1, 𝑛 − 𝑝2 − 1) : (𝑝1 , 𝑝2) ∈ 𝑃}.

We say that (𝑥, 𝑦) is a system of nice coordinates if in these coordinates we can find an implicit
equation of 𝐶 as

𝑓 = 𝑥𝑚 + 𝑦𝑛 +
∑
𝑗∈𝐽

𝑧 𝑗𝑥
𝑝1, 𝑗 𝑦𝑝2, 𝑗 ; 𝑧 𝑗 ∈ C.

As we see, a nice equation does not depend on 𝑀, however, the conditions given by P.
Cassou-Noguès do.

By means of those algebraic conditions and based on the computation of several examples,
we proposed ourselves to prove the following statement

Conjecture (9.3). Let 𝐶 be a cusp with semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ and semimodule of differential values
Λ𝐶 . Then for any element 𝜆 ∈ Λ𝐶 \ Γ𝐶 , the rational number −𝜆/𝑛𝑚 is a root of the Bernstein-Sato
polynomial of 𝐶.

Up to this moment, we have proven the previous conjecture when 𝑛 ≤ 4 (see Theorem 9.2)
and we have also showed that

Theorem (9.1). Let 𝐶 be a cusp with semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ and semimodule of differential values Λ𝐶 .
Assume that 𝜆1 = min(Λ𝐶 \ Γ𝐶) exists. Then for any element 𝜆 ∈ (𝜆1 + Γ𝐶) \ Γ𝐶 ⊂ Λ𝐶 , the rational
number −𝜆/𝑛𝑚 is a root of the Bernstein-Sato polynomial of 𝐶.

The idea for proving both theorems is the same one. We fix a semimodule of differential
values Λ and we apply the algorithm for computing it, in this way we see which are the algebraic
conditions that the coefficients of a nice equation of cusp must satisfy in order to have Λ as its
semimodule of differential values. Once we have obtained these conditions, we just compare
them with the ones given in [17]. This also explains why we did not give a general proof
independently of 𝑛, and why we limit ourselves to 𝑛 ≤ 4. The calculations become more complex
as the value of 𝑛 increases.
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Plane Curve Singularities

In this chapter we present the main object of study, germs of plane branches. They can be
defined as the zero set of an implicit equation or via a parametrization. We mostly consider
branches which are singular and the invariants that we can associate to them. In this work there
are two types of invariants that we are interested in: those which only depend on the topology,
and those which also relay on some analytic structure. For instance, O. Zariki showed that the
equisingularity is a complete topological invariant for germs of plane curves. Concerning analytic
invariants, the most relevant one presented in this chapter is the semimodule of differential
values of a branch.

At the end of the chapter, we focus on the study of the family of branches with a single
Puiseux pair. In this text, we call them cusps.

1.1 The Ring of Convergent Power Series

In this section, we will use [14, 30] as the main reference books. Along the whole text, we
denote by (𝑀0 ,𝒪𝑀0) a regular complex analytic surface. More precisely, the space (𝑀0 ,𝒪𝑀0) is
a ringed space in local C-algebras, locally isomorphic to C2 with its structural sheaf of germs of
holomorphic functions.

We are mostly interested in studying local behaviours. Given 𝐺 ⊂ 𝑀0 a compact set, we
denote by (𝑀0 , 𝐺) the germ at 𝐺 of the analytic space (𝑀0 ,𝒪𝑀0). When 𝐺 = {𝑃0}, we simply
write (𝑀0 , 𝑃0). In this last case, we have that after choosing a system of local coordinates (𝑥, 𝑦) of
𝑀0 at 𝑃0, the local ring 𝒪𝑀0 ,𝑃0 is isomorphic to the ring of convergent power series in two variables
C{𝑥, 𝑦}.

A plane curve (𝐶,𝒪𝐶) is a reduced analytic subspace of (𝑀0 ,𝒪𝑀0) of codimension 1. At any
point 𝑃 ∈ 𝐶, the germ of the space (𝐶, 𝑃) is defined by a principal ideal ( 𝑓 ) ⊂ 𝒪𝑀0 ,𝑃 different
from zero or the total ring. Note that 𝑓 may not be reduced, nonetheless we always consider its
reduced structure.

The local ring 𝒪𝐶,𝑃 is isomorphic to 𝒪𝑀0 ,𝑃/( 𝑓 ). We say that 𝑓 or 𝑓 = 0 is a local implicit
equation of the curve (𝐶,𝒪𝐶) at 𝑃. Most of the time we will work with germs of plane curves
(𝐶, 𝑃). When there is no confusion, we just write 𝐶 without indicating the point 𝑃. We are only
going to deal with plane curves, for this reason, we usually substitute the term “plane curve” by
just “curve”.

Remark 1.1.1. Note that we can define the notion of hypersurface in a complex analytic space of
dimension 𝑝 ≥ 2 in a manner similar to the case of curves.

18
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Now, we proceed to recall a few concepts associated to the ring of convergent power series
in 𝑝 ≥ 1 variables. We say that 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝} is regular of order k≥ 1 at the variable 𝑥𝑝 , if

𝑔(0) = 0,
𝜕𝑔

𝜕𝑥𝑛
(0) = 0,

𝜕2𝑔

𝜕𝑥2
𝑝

(0) = 0, · · · , 𝜕
𝑘−1𝑔

𝜕𝑥𝑘−1
𝑝

(0) = 0,
𝜕𝑘 𝑔

𝜕𝑥𝑘
𝑝

(0) ≠ 0,

where 0 = (0, 0, . . . , 0) ∈ C𝑝 .
Given a polynomial ℎ ∈ C{𝑥1 , . . . , 𝑥𝑝−1}[𝑥𝑝], we say that ℎ is a Weierstrass polynomial in the

variable 𝑥𝑝 if ℎ satisfies the following two conditions: first, the director coefficient of ℎ is 1, that is

ℎ = 𝑥𝑘
𝑝 + 𝑎𝑘−1𝑥

𝑘−1 + 𝑎𝑘−2𝑥
𝑘−2 + · · · + 𝑎0 , 𝑎𝑘−1 , 𝑎𝑘−2 , . . . , 𝑎0 ∈ C{𝑥1 , 𝑥2 , . . . , 𝑥𝑝−1}.

Second, the coefficients are zero at 0, 𝑎𝑖(0) = 0 for 𝑖 = 0, 1, . . . , 𝑘 − 1.

Theorem 1.1.2. (Weierstrass preparation Theorem) Given 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝} regular of order 𝑘

at the variable 𝑥𝑝 , there exists a unique unit 𝑢 ∈ C{𝑥1 , . . . , 𝑥𝑝} such that 𝑔 = 𝑢ℎ where ℎ ∈
C{𝑥1 , . . . , 𝑥𝑝−1}[𝑥𝑝] is a Weierstrass polynomial in the variable 𝑥𝑝 .

Because of Theorem 1.1.2, we can define locally any irreducible curve in the space (𝑀0 , 𝑃0),
possibly after renaming the variables, by an element of C{𝑥}[𝑦] with unitary director coefficient.
Another consequence of the Weierstrass preparation Theorem is the following.

Remark 1.1.3. The ring C{𝑥1 , . . . , 𝑥𝑝} is a noetherian unique factorization domain.

Let (𝐶, 𝑃0) be a plane curve defined by the implicit equation 𝑓 = 0. The equation 𝑓 can
be factorized as 𝑓 = 𝑓

𝑟1
1 𝑓 𝑟2

2 · · · 𝑓 𝑟𝑠𝑠 , with 𝑓𝑖 ∈ C{𝑥, 𝑦} for 𝑖 = 1, 2, . . . , 𝑠. An irreducible factor 𝑓𝑖

defines an irreducible component 𝐶𝑖 of 𝐶; each one of them is said to be a plane branch, or just
branch, of 𝐶. When 𝐶 is irreducible, we omit the subscript and we identify the curve with its
only branch.

Given a curve (𝐶, 𝑃0) with implicit equation 𝑓 ∈ C{𝑥, 𝑦}, we say that the curve 𝐶 is singular
at 𝑃0 if the jacobian matrix 𝐽( 𝑓 ) of 𝑓 is zero at the point 𝑃0. Otherwise, we say that the plane curve
𝐶 is regular at 𝑃0. A first approach to classify singular curves is in terms of their multiplicity. If
we write 𝑓 =

∑
𝑘≥0 𝑓𝑘 with 𝑓𝑘 ∈ C[𝑥, 𝑦] an homogeneous polynomial of degree 𝑘. The function 𝑓 ,

or the curve 𝐶, has multiplicity 𝑘0 at 𝑃0 if 𝑓𝑘 = 0 for 𝑘 < 𝑘0 and 𝑓𝑘0 ≠ 0. The cone 𝑓𝑘0 = 0 is called
the tangent cone of 𝑓 , or the tangent cone of the curve 𝐶. We denote by 𝜈𝑃0( 𝑓 ), or by 𝜈𝑃0(𝐶), the
multiplicity at 𝑃0. Notice that 𝑓 = 0 is singular at point 𝑃0 if and only if the multiplicity 𝜈𝑃0( 𝑓 ) is
at least 2. Additionally, the multiplicity does not depend on the system of coordinates.

Remark 1.1.4. By Hensel’s lemma, we have that the tangent cone of a branch is a single straight
line, that we count with multiplicity 𝑘0.

1.2 The Newton-Puiseux Theorem

We can find parametrizations of branches using one variable power series. This is done by
means of the classical Newton-Puiseux algorithm, where the reader is refered to [14, 56] for more
details. The computation relies on the Newton polygon of the curve, that we proceed to define.

In general, given an element 𝑔 ∈ C{𝑥1 , 𝑥2 , . . . , 𝑥𝑝}, we can decompose it as a sum of its
monomials, that is, 𝑔 =

∑
𝛼≥0 𝑔𝛼𝑥

𝛼, with 𝛼 = (𝛼1 , 𝛼2 , . . . , 𝛼𝑝) ∈ (Z≥0)𝑝 and 𝑥𝛼 = 𝑥
𝛼1
1 𝑥𝛼2

2 · · · 𝑥𝛼𝑝

𝑝 .
We define the Newton cloud of 𝑔 as

𝒩𝒞 𝑥1 ,𝑥2 ,...,𝑥𝑛 (𝑔) = {𝛼 : 𝑔𝛼 ≠ 0},
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and the Newton polytope of 𝑔 as:

𝒩𝒫 𝑥1 ,𝑥2 ,...,𝑥𝑛 (𝑔) := convex hull of
( ⋃
𝛼∈𝒩𝒞 𝑥1 ,𝑥2 ,...,𝑥𝑛 (𝑔)

(𝛼 + (R≥0)𝑝)
)
.

In the two dimensional case, the Newton polytope is called the Newton polygon.
We include the coordinate system in the notation for both the Newton cloud and the Newton

polytope, to remark their dependency on the coordinates chosen. We have introduced these
notions in a general 𝑝 variable case, because they reappear in Chapter 4 when talking about
standard bases.

Figure 1.1: The figure above represents the Newton cloud of 𝑦8 + 𝑥𝑦5 + 6𝑥3𝑦6 − 7𝑥4𝑦2 + 11𝑥6𝑦5 + 𝑥9

(red dots) and its Newton polygon (blue part).

The border of a Newton polygon is always defined by two semi lines 𝑠0 , 𝑠∞: one parallel to
the horizontal axis and the other one parallel to the vertical axis; and a set (it may be empty) of
segments {𝑠ℓ}ℓ∈𝐿 in (R≥0)2 of strictly increasing negative slopes.

By a parametrization of a plane branch 𝐶 with implicit equation 𝑓 = 0, we mean a map

𝜙# : C{𝑥, 𝑦} ≃ 𝒪𝑀0 ,𝑃0 → C{𝑡} ≃ 𝒪C,0 ,

such that 𝜙#( 𝑓 ) = 0. A parametrization can be identified with a non constant map

𝜙 : (C, 0) → (𝑀0 , 𝑃0),

given by 𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) with 𝑥(𝑡), 𝑦(𝑡) ∈ C{𝑡}, and in particular the kernel is ( 𝑓 ). We also say
that 𝜙(𝑡) is a parametrization of the curve. Besides, the map 𝜙# can be determined by 𝜙(𝑡), just
by putting 𝜙#(ℎ) = ℎ ◦ 𝜙. As stated above, we can compute parametrizations by means of the
Newton-Puiseux algorithm. In fact, these parametrizations can be seen as roots of an implicit
equation.

Just as a remark the reader is referred, for instance, to [29]. There it is treated a family of
hypersurfaces where we can find a parametrizations similarly to the case of plane curves. They
are called quasi-ordinary hypersurfaces.

Now, assume that the multiplicity of 𝑓 at 𝑃0 is 𝜈𝑃0( 𝑓 ) = 𝑛 ≥ 2, and consider 𝑓𝑛 = 0 the
tangent cone of 𝑓 . Up to reordering the coordinates (𝑥, 𝑦), we can assume that 𝑓𝑛 = 𝑐(𝑦 + 𝜆𝑥)𝑛 .
A parametrization 𝜙(𝑡) of 𝑓 or 𝐶 is a primitive parametrization if 𝜙(𝑡) = (𝑡𝑛 , 𝑦(𝑡)). Note that in
this case we have that

𝑦(𝑡) =
∑
𝑖≥𝑛

𝑎𝑖𝑡
𝑖 ,

with 𝑔𝑑𝑐(𝑛, {𝑖 : 𝑎𝑖 ≠ 0}) = 1.
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Theorem 1.2.1 (Newton-Puiseux Theorem). Any branch 𝐶 admits a parametrization 𝜙(𝑡) =

(𝑥(𝑡), 𝑦(𝑡)) with 𝑥(𝑡), 𝑦(𝑡) ∈ C{𝑡}.

Remark 1.2.2. Not only we can guarantee the existence of a parametrization, but also, we can
find a primitive one. For this reason, we will only work with primitive parametrizations.

We can recover implicit equations from primitive parametrizations as follows: consider
𝜙(𝑡) = (𝑡𝑛 , 𝑠(𝑡)) a primitive parametrization of 𝐶. An implicit equation of 𝐶 is given by the
formula:

𝑓𝜙 =

𝑛−1∏
𝑘=0

(
𝑦 − 𝑠

(
exp(2𝜋𝑖𝑘/𝑛)𝑥1/𝑛

) )
, (1.1)

where 𝑥1/𝑛 is a 𝑛𝑡ℎ-root of 𝑥. It is satisfied the following:

• The curve defined by 𝑓𝜙 = 0 is irreducible.
• Given 𝑔 ∈ C{𝑥, 𝑦}, then 𝑔(𝑡𝑛 , 𝑠(𝑡)) = 0 if and only if 𝑓𝜙 divides 𝑔.

If 𝑠(𝑡) is a polynomial, we have another way to compute an implicit equation of the branch 𝐶.
We can consider the polynomials 𝑥 − 𝑡𝑛 , 𝑦 − 𝑠(𝑡) ∈ C[𝑥, 𝑦, 𝑡]. The resultant of 𝑥 − 𝑡𝑛 and 𝑦 − 𝑠(𝑡)
with respect to the variable 𝑡 is an implicit equation of 𝐶, see [52] Theorem 4.39.

Assume that 𝑓 = 0 is an implicit equation of a branch 𝐶. By Weierstrass preparation Theorem
1.1.2, we can assume that 𝑓 is either a Weierstrass polynomial in C{𝑥}[𝑦] or in C{𝑦}[𝑥]. This is
because 𝑥 or 𝑦, but not both, do not divide the tangent cone of a branch 𝐶.

Example 1.2.3. We want to emphasize that any curve defined by the an implicit equation as
follows is irreducible:

𝑓 = 𝑦𝑛 + 𝜇𝑥𝑚 +
∑

𝑛𝑖+𝑚𝑗>𝑛𝑚

𝑎𝑖 𝑗𝑥
𝑖𝑦 𝑗 ; 𝜇 ≠ 0,

where 𝑔𝑐𝑑(𝑛, 𝑚) = 1. We make this observation, because most of the branches we are going to
consider are as above.

Remark 1.2.4. A parametrization 𝜙# of a branch 𝑓 = 0 induces an isomorphism:

𝜙# : 𝒪𝐶,𝑃0 ≡ C{𝑥, 𝑦}/( 𝑓 ) → C{𝑥(𝑡), 𝑦(𝑡)} ⊂ C{𝑡},

Recall that 𝜙# sends 𝑥 to 𝑥(𝑡) and 𝑦 to 𝑦(𝑡). In this way we can see the local ring of a plane
branch in terms of an implicit equation or in terms of a parametrization.

Consider 𝜙(𝑡) a primitive parametrization of the branch (𝐶, 𝑃0). As we mentioned, the
parametrization can be written as:

𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) = (𝑡𝑛 ,
∑
𝑖≥𝑛

𝑎𝑖𝑡
𝑖). (1.2)

The characteristic exponents (𝛽0 , 𝛽1 , . . . , 𝛽𝑔) of the branch 𝐶 and the list (𝑒0 , 𝑒1 , . . . , 𝑒𝑔) are
defined as follows

• 𝛽0 = 𝑒0 = 𝑛.
• For 𝑗 ≥ 1 the exponent 𝛽 𝑗 is the minimum index 𝑖 > 𝛽 𝑗−1 satisfying both 𝑎𝑖 ≠ 0 and

𝑔𝑐𝑑(𝑖 , 𝑒 𝑗−1) < 𝑒 𝑗−1.

Next we define 𝑒 𝑗 = 𝑔𝑐𝑑(𝛽 𝑗 , 𝑒 𝑗−1) < 𝑒 𝑗−1.
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The number of characteristic exponents is finite, and the index 𝑔 is called the genus of the branch
𝐶. We have that 𝑔𝑐𝑑(𝛽0 , 𝛽1 , . . . , 𝛽𝑔) = 1 = 𝑒𝑔 . Besides, the branch is singular if and only if 𝑔 ≥ 1.

From these two lists, we can define the Puiseux pairs (𝑛𝑖 , 𝑚𝑖) of 𝐶, for 𝑖 = 1, 2, . . . , 𝑔, as
𝑛𝑖 = 𝑒𝑖−1/𝑒𝑖 and 𝑚𝑖 = 𝛽𝑖/𝑒𝑖 .

We say that a curve of genus one, or with a single Puiseux pair, is a cusp. At the end of the
chapter we will give an equivalent definition of cusp in terms of its resolution of singularities.

Primitive parametrizations allow to compute in an easy way intersection multiplicities. We
recall that given two functions 𝑓 , 𝑔 ∈ C{𝑥, 𝑦}, the intersection multiplicity 𝑓 and 𝑔 at the point 𝑃0

is defined as
𝑖𝑃0( 𝑓 , 𝑔) = dimC C{𝑥, 𝑦}/( 𝑓 , 𝑔).

If 𝑓 and 𝑔 are implicit equations of two curves 𝐶1 and 𝐶2, the intersection multiplicity between
𝐶1 and 𝐶2 at 𝑃0 is given by 𝑖𝑃0(𝐶1 , 𝐶2) := 𝑖𝑃0( 𝑓 , 𝑔).

Note that the intersection multiplicity is additive with respect of the product of functions:

𝑖𝑃0( 𝑓 , 𝑔1𝑔2) = 𝑖𝑃0( 𝑓 , 𝑔1) + 𝑖𝑃0( 𝑓 , 𝑔2).

When 𝑓 is an implicit equation of a branch 𝐶 and 𝜙(𝑡) a primitive parametrization, then the
intersection multiplicity is also given by

𝑖𝑃0( 𝑓 , 𝑔) = ord𝑡(𝑔 ◦ 𝜙) (1.3)

(see [56]). Note that when 𝐶1 and 𝐶2 are two regular curves, we have that

𝑖𝑃0(𝐶1 , 𝐶2) ≥ 1.

When the previous intersection multiplicity is exactly one, we say that 𝐶1 and 𝐶2 are transverse.
Otherwise, we say that they are tangent.

1.3 Resolution of Singularities

The resolution of singularities is a central problem is analytic/algebraic geometry, the reader
is referred to [4] for more a detailed introduction. We are going to describe the resolution of
singularities of germs of plane curves (see [14, 56]).

We consider a local system of coordinates (𝑥, 𝑦) of the surface 𝑀0 at a point 𝑃0 ∈ 𝑀0, defined
in an open subset 𝑈 ⊂ 𝑀0, that is, the point 𝑃0 corresponds with (𝑥 = 0, 𝑦 = 0). We consider the
next subvariety

𝐵𝑙𝑈,𝑃0 := {((𝑥, 𝑦), [𝛼1 : 𝛼2]) ∈ 𝑈 × P1(C) : 𝑥𝛼2 = 𝑦𝛼1} ⊂ 𝑈 × P1(C).

The first projection defines is a birational map 𝜎 : 𝐵𝑙𝑈,𝑃0 → 𝑈 . We say that 𝜎 is the blow-up of 𝑈
with center 𝑃0. In particular, we have that 𝜎−1(𝑃) is just a point if 𝑃 ≠ 𝑃0 and 𝜎−1(𝑃0) � P1(C).
The restriction map 𝜎 : 𝐵𝑙𝑈,𝑃0 \ 𝜎−1(𝑃0) → 𝑈 \ {𝑃0} is an isomorphism.

Thus, following the approach in [14], we can “patch” 𝐵𝑙𝑈,𝑃0 at 𝑀0 along 𝑈 \ {𝑃0} via 𝜎,
obtaining a new complex regular surface 𝑀1. This surface 𝑀1 is also called the blow-up of 𝑀0 at
𝑃0. In other words, 𝑀1 is obtained by changing the set 𝑈 by 𝐵𝑙𝑈,𝑃0 .

We emphasize that the map 𝜎 extends to the whole surface 𝑀1. As a simplification, we
also denote by 𝜎 : 𝑀1 → 𝑀0 this extension map of 𝜎 : 𝐵𝑙𝑈,𝑃0 → 𝑈 . The term blow-up will be
indistinguishably used to refer to the surface 𝑀1 or the projection map 𝜎.

The curve 𝐸1 = 𝜎−1(𝑃0) = P1(C) is named the exceptional divisor of the blow-up 𝜎.
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Let us describe 𝐵𝑙𝑈,𝑃0 in terms of an atlas. Recall that the atlas of P1(C) is defined by
two charts 𝑉̃1 , 𝑉̃2 ⊂ P1(C) homeomorphic to two copies 𝑉1 and 𝑉2 of C. The charts 𝑉̃1 and 𝑉̃2

correspond to the sets {[𝛼1 : 𝛼2] ∈ P1(C) : 𝛼𝑖 ≠ 0} with 𝑖 = 1, 2.
This atlas allows to define two open charts 𝑈̃1 , 𝑈̃2 of 𝐵𝑙𝑈,𝑃0 , which are identified with two

open sets of 𝑈1 and 𝑈2 in C2. These charts are given by the maps

𝑈1 → 𝑈̃1 ⊂ 𝐵𝑙𝑈,𝑃0 ,

(𝑥1 , 𝑦1) ↦→ ((𝑥1 , 𝑥1𝑦1), [1 : 𝑦1])

𝑈2 → 𝑈̃2 ⊂ 𝐵𝑙𝑈,𝑃0 ,

(𝑥2 , 𝑦2) ↦→ ((𝑥2𝑦2 , 𝑦2), [𝑥2 : 1])

The transition map between 𝑈1 \ {𝑦1 = 0} and 𝑈2 \ {𝑥2 = 0} is given by the identification
𝑥2 = 1/𝑦1 and 𝑦2 = 𝑥1𝑦1. Sometimes, we will just write (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1) or (𝑥, 𝑦) = (𝑥2𝑦2 , 𝑦2)
to denote the previous coordinate systems in the charts 𝑈1 , 𝑈2.

In these charts, we have that 𝜎 is defined by 𝜎(𝑥1 , 𝑦1) = (𝑥1 , 𝑥1𝑦1) and 𝜎(𝑥2 , 𝑦2) = (𝑥2𝑦2 , 𝑦2)
with (𝑥𝑖 , 𝑦𝑖) ∈ 𝑈𝑖 for 𝑖 = 1, 2. Additionally, the exceptional divisor 𝐸1 is given by the implicit
equation 𝑥1 = 0 in all the points of 𝐸1 ∩𝑈1. Similarly, 𝑦2 = 0 is a local implicit equation of 𝐸1 in
all the points of 𝐸1 ∩𝑈2.

Now we consider finite compositions of blow-ups starting a germ of surface (𝑀0 , 𝑃0). That
is, we consider compositions

𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) 𝜎𝑁−→ (𝑀𝑁−1 , 𝐸

𝑁−1) 𝜎𝑁−1−→ (𝑀𝑁−2 , 𝐸
𝑁−2) 𝜎𝑁−2−→ . . .

𝜎1−→ (𝑀0 , 𝑃0).

Here the morphism 𝜎1 : (𝑀1 , 𝐸
1) → (𝑀0 , 𝑃0) is the blow-up of (𝑀0 , 𝑃0) with center 𝑃0, the

morphism 𝜎2 : (𝑀2 , 𝐸
2) → (𝑀1 , 𝐸

1) is the blow-up of the germ space (𝑀1 , 𝐸
1) with center a point

𝑃1 ∈ 𝐸1. We put 𝐸2 = (𝜎1 ◦ 𝜎2)−1(𝑃0). Inductively, the morphism 𝜎𝑖 : (𝑀𝑖 , 𝐸
𝑖) → (𝑀𝑖−1 , 𝐸

𝑖−1) is
the blow-up of (𝑀𝑖−1 , 𝐸

𝑖−1) with center a point 𝑃𝑖−1 ∈ 𝐸𝑖−1 and 𝐸𝑖 = (𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑖)−1(𝑃0), for
𝑖 = 2, 3, . . . , 𝑁 . The curve 𝐸𝑁 is called the exceptional divisor of the sequence 𝜋. The irreducible
components of 𝐸𝑁 are isomorphic to P1(C), they cut two by two in a transverse way and a point
belongs to at most to two of them (normal crossings).

Given 𝑓 = 0 a curve 𝐶, we define its total transform by 𝜋 as the curve 𝜋∗( 𝑓 ) = 𝑓 ◦ 𝜋 = 0.
We define the strict transform of 𝐶 by 𝜋 as the union of the irreducible components of the total
transform of 𝐶 different from the components of exceptional divisor. A local implicit equation
of the strict transform is obtained locally by dividing 𝜋∗( 𝑓 ) by local implicit equations of the
exceptional divisor as many times as possible.

Consider an intermediate exceptional divisor 𝐸𝑖 with 𝑖 = 1, . . . , 𝑁 . We have that 𝐸𝑖 is the
union of 𝑖 irreducible components 𝐸𝑖

𝑗
, with 𝑗 = 1, . . . , 𝑖. In an inductive way the curve 𝐸𝑖

𝑗
is the

strict transform of 𝐸𝑖−1
𝑗

by 𝜎𝑖 for 𝑗 < 𝑖 and 𝐸𝑖
𝑖
= 𝜎−1

𝑖
(𝑃𝑖−1). A point 𝑃 ∈ 𝐸𝑖 is said to be a corner

point if 𝑃 is in the intersection point of 𝐸𝑖
ℓ
∩ 𝐸𝑖

𝑗
for two different indices 1 ≤ ℓ , 𝑗 ≤ 𝑖, otherwise we

say that 𝑃 is a free point.

Remark 1.3.1. The intersection of two irreducible components of 𝐸𝑖 is at most one point. In fact,
given 𝑗 < 𝑖, then 𝐸𝑖+1

𝑖+1 intersects 𝐸𝑖+1
𝑗

if and only if 𝑃𝑖 ∈ 𝐸𝑖
𝑗
. An irreducible component of the

exceptional divisor intersects at most two other irreducible components.

Given a curve 𝐶 defined by 𝑓 = 0 and 𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0) a sequence of blow-ups

starting at 𝑃0, we say that 𝐶 passes through 𝑃 ∈ 𝐸𝑁 if the strict transform of 𝑓 at 𝑃 is not a unit.
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More precisely, we define an infinitely near point of 𝐶 as a point such that there exists a sequence
of blow-ups as before.

As mentioned before, the exceptional divisor of any sequence of blow-ups defines a curve
with normal crossings. More explicitly, given a curve (𝐶, 𝑃0) in (𝑀0 , 𝑃0), we say that it is a curve
with normal crossings at 𝑃0, if in some local coordinates (𝑥, 𝑦) and for 𝜖 = 0 or 𝜖 = 1, then 𝑥𝑦𝜀 = 0
is an implicit equation of 𝐶.

The theorem of resolution of singularities of plane curves is stated as follows (see for instance
[56]).

Theorem 1.3.2 (Resolution of singularities). Consider (𝐶, 𝑃0) a curve at the point 𝑃0 ∈ 𝑀0. There
exists a finite sequence of blow-ups 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0), with 𝑁 ≥ 1, satisfying that the total
transform of 𝐶 has normal crossings at any point of 𝐸𝑁 .

The sequence 𝜋 can be taken minimal, in the sense that for any other sequence of blow-ups 𝜋′ satisfying
the previous conditions, then 𝜋′ = 𝜌 ◦ 𝜋 with 𝜌 the identity map or a sequence of blow-ups.

Note that, under the conditions of the previous theorem, the strict transform of the curve 𝐶

by 𝜋 is non singular.
A sequence of blow-ups as in Theorem 1.3.2 is said to be a resolution of singularities of 𝐶. If 𝜋

is the minimal one, then we will say that 𝜋 is the minimal resolution of singularities of the curve 𝐶.

Remark 1.3.3. In order to obtain the minimal resolution of singularities it is enough to blow-up
successively at points where the total transforms has no normal crossings. These points are
necessary in the strict transform of 𝐶.

Proposition 1.3.4. Consider 𝐶 a curve in (𝑀0 , 𝑃0), let us fix local coordinates (𝑥, 𝑦) in 𝑃0 and let 𝑇𝐶 be
the tangent cone of 𝐶 in this coordinates. Let 𝜋 : (𝑀1 , 𝐸

1) → (𝑀0 , 𝑃0) be the blow-up with center 𝑃0.
Then we have that

𝐶′ ∩ 𝐸1 = (𝑇𝐶)′ ∩ 𝐸1 ,

where 𝐶′ and (𝑇𝐶)′ denote respectively the strict transforms by 𝜋 of 𝐶 and 𝑇𝐶 .

Proof. Consider a local system (𝑥, 𝑦) of coordinates in (𝑀0 , 𝑃0). Take 𝑓 = 0 an implicit equation
of 𝐶, then we can write

𝑓 (𝑥, 𝑦) =
∑

𝑖≥𝑛=𝜈𝑃0 ( 𝑓 )
𝑓𝑖(𝑥, 𝑦),

where 𝑓𝑖 ∈ C[𝑥, 𝑦] is an homogeneous polynomial of degree 𝑖 and 𝑓𝑛 = 0 defines the tangent
cone 𝑇𝐶 of 𝐶, with 𝑛 ≥ 1.

Now, we perform the blow-up 𝜎 : (𝑀1 , 𝐸
1) → (𝑀0 , 𝑃0) with center 𝑃0. We consider the chart

𝑈1 of (𝑀1 , 𝐸
1) with coordinate system (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). The second chart is treated in a similar

way. In the coordinates (𝑥1 , 𝑦1) we see that the total transform 𝐹 of 𝑓 is given by

𝐹 = 𝑓 ◦ 𝜎 = 𝑥𝑛1

∑
𝑖≥𝑛=𝜈𝑃0 ( 𝑓 )

𝑥 𝑖−𝑛1 𝑓𝑖(1, 𝑦1) = 𝑥𝑛1

(
𝑓𝑛(1, 𝑦1) + 𝑥1

∑
𝑖≥𝑛+1

𝑥 𝑖−𝑛−1
1 𝑓𝑖(1, 𝑦1)

)
.

The strict transform of 𝑓 is given by 𝑥−𝑛1 𝐹 in the chart 𝑈1, and the the strict transform of the
tangent 𝑇𝐶 is given by 𝑓𝑛(1, 𝑦1) = 0. Noting that 𝑈1 ∩ 𝐸1 is 𝑥1 = 0, from the above formula we
conclude that

𝐶′ ∩ 𝐸1 ∩𝑈1 = (𝑇𝐶)′ ∩ 𝐸1 ∩𝑈1 ,

as desired. □
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Example 1.3.5. Let us describe the minimal resolution of singularities of the curve (𝐶, 0) in (C2 , 0)
defined by the implicit equation 𝑓 = 𝑦2−𝑥3. First, we consider the blow-up 𝜎1 : (𝑀1 , 𝐸

1) → (C2 , 0)
with center 0. We are going to find the points where the total transform has no normal crossings.
These points must belong to the intersection of the strict transform 𝐶1 of 𝐶 and the exceptional
divisor 𝐸1 = 𝜎−1

1 (0). The only point 𝑃1 in 𝐶1 ∩ 𝜎−1
1 (0) is in the strict transform of the tangent

cone of 𝑦 = 0 of 𝐶. It is precisely the origin of the first chart 𝑈1 of 𝑀1. In this chart we have
coordinates (𝑥1 , 𝑦1) such that (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). The total transform of 𝑓 is 𝑓1 = 𝑥2

1(𝑦2
1 − 𝑥1). It

has no normal crossings at 𝑃1 because the parabola 𝑦2
1 = 𝑥1 is tangent to the line 𝑥1 = 0. Then

we have to perform a new blow-up with center 𝑃1.
Note that this parabola is the strict transform 𝐶1 of 𝐶 and its tangent cone is defined by 𝑥1 = 0.

Let 𝜎2 : (𝑀2 , 𝐸
2) → (𝑀1 , 𝐸

1) be the blow-up with center 𝑃1. By the same argument as above,
the next point 𝑃2 ∈ 𝐸2 without normal crossings, if it exists, it is given by the strict transform of
𝑦2

1 = 𝑥1. Then 𝑃2 belongs to the strict transform of the tangent cone 𝑥1 = 0. Thus, it is precisely
the origin of the second chart 𝑈2 of the blow-up 𝜎2, given in coordinates by (𝑥1 , 𝑦1) = (𝑥2𝑦2 , 𝑦2).
The exceptional divisor 𝐸2 is locally given at 𝑃2 by the equation 𝑥2𝑦2 = 0, the total transform of
𝐶 is given 𝑓2 = 𝑥2

2𝑦
3
2(𝑦2 − 𝑥2). We have three different lines at the point 𝑃2 and this object has no

normal crossings. Note that the strict transform of 𝐶 at 𝑃2 is given by the line 𝑦2 = 𝑥2.
Now, let us perform the blow-up 𝜎3 : (𝑀3 , 𝐸

3) → (𝑀2 , 𝐸
2) with center 𝑃2. We can read the

point 𝑃3 ∈ 𝐸3 of the strict transform of 𝑦2 = 𝑥2 in the first chart (𝑥2 , 𝑦2) = (𝑥3 , 𝑥3𝑦3) as 𝑥3 = 0
and 𝑦3 = 1. In this point we have normal crossings for the total transform 𝑓3 = 𝑥6

3𝑦
3
3(𝑦3 − 1).

Note that in coordinates 𝑥̃3 = 𝑥3 and 𝑦̃3 = 𝑦3 − 1 centered at 𝑃3, the total transform is written
as 𝑓3 = (𝑦̃3 + 1)3 𝑥̃6

3 𝑦̃3. Hence, it is a unit times a monomial and the property of having normal
crossings is satisfied.

Figure 1.2: Schematic drawing with the resolution of singularities of 𝑦2 − 𝑥3 step by step. The thick
curves represent different strict transforms of 𝐶 by the different blow-ups.

We end this section showing how to perform the previous computations from a parametriza-
tion.

Assume that 𝐶 is a branch in (𝑀0 , 𝑃0) defined by a primitive parametrization 𝜙(𝑡) =

(𝑡𝑛 ,∑𝑖≥𝑛 𝑎𝑖𝑡
𝑖) = (𝑥(𝑡), 𝑦(𝑡)). We take a blow-up 𝜎1 : (𝑀1 , 𝐸

1) → (𝑀0 , 𝑃0), and we consider the
two charts𝑈1 and𝑈 ′

1 of 𝑀1, defined respectively by the systems of coordinates (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1)
and (𝑥′1𝑦′1 , 𝑦′1). The reader can check that 𝐶 does not pass through any point of 𝐸1 ∩𝑈 ′

1.
The strict transform 𝐶1 of 𝐶 by 𝜎1 in the chart 𝑈1 is defined by the parametrization

(𝑥1(𝑡), 𝑦1(𝑡)), where 𝑥1(𝑡) = 𝑥(𝑡) = 𝑡𝑛 and 𝑦1(𝑡) = 𝑦(𝑡)/𝑥(𝑡) =
∑

𝑖≥𝑛 𝑎𝑖𝑡
𝑖−𝑛 . We see that the

curve passes through the point 𝑃1 = (𝑥1 = 0, 𝑦1 = 𝑎𝑛). If we take the coordinates 𝑥̃1 = 𝑥1

and 𝑦̃1 = 𝑦1 + 𝑎𝑛 , then we read the point 𝑃1 as (𝑥̃1 = 0, 𝑦̃1 = 0), and the parametrization of 𝐶1

becomes (𝑥̃1(𝑡), 𝑦̃1(𝑡)) = (𝑡𝑛 ,∑𝑖>𝑛 𝑎𝑖𝑡
𝑖−𝑛). Denote by 𝑘 the minimum index, such that 𝑎𝑖 ≠ 0 in

the previous parametrization of 𝐶1

Now let us see what happens if we iterate the process. Consider the blow-up 𝜎2 : (𝑀2 , 𝐸
2) →

(𝑀1 , 𝐸
1) with center 𝑃1. Again there are two charts to consider, 𝑈2 and 𝑈 ′

2 defined by the
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coordinates (𝑥̃1 , 𝑦̃1) = (𝑥2 , 𝑥2𝑦2) and (𝑥̃1 , 𝑦̃1) = (𝑥′2𝑦′2 , 𝑦′2). There are two cases: first, that 𝑘 ≥ 2𝑛.
Second, that 𝑘 < 2𝑛. In the first one, we are in the same situation as above. For this reason, let
us focus on the second case. If 𝑘 < 2𝑛, we can check that the curve 𝐶 does not pass through
any point of 𝐸2 ∩𝑈2. Thus, we need to compute the strict transform 𝐶2 of 𝐶 by 𝜎1 ◦ 𝜎2 in the
coordinates (𝑥′2 , 𝑦′2). We see that 𝐶2 has as parametrization

(𝑥′2(𝑡), 𝑦′2(𝑡)) = (𝑥̃1(𝑡)/𝑦̃1(𝑡), 𝑦̃1(𝑡)) = (𝑢(𝑡)𝑡𝑛−𝑘 , 𝑦̃1(𝑡)),

where 𝑢(𝑡) = 𝑡𝑘/𝑦̃1(𝑡) is an unit in C{𝑡}. We can write the previous parametrization as a
primitive parametrization as follows: we have that 𝑦̃1(𝑡) = 𝑡𝑘/𝑢(𝑡), if we take a change of
variables 𝑡′ = 𝑡/𝑢1/𝑘(𝑡), with 𝑢1/𝑘 a 𝑘-root of the series 𝑢(𝑡). Then, we notice that 𝑦′2(𝑡′) = (𝑡′)𝑘 .
Giving a primitive parametrization.

We see that 𝐶 passes through the point 𝑃 = (𝑥′2 = 0, 𝑦′2 = 0). Notice that the point 𝑃 is
the corner point of the exceptional divisor 𝐸2. Furthermore, it follows that if 𝑛 = 1, that is, if
the branch is regular, then this second case is impossible to happen. We summarize this last
observation in the next remark.

Remark 1.3.6. Assume that 𝐶 is a branch in (𝑀0 , 𝑃0). They are equivalent:

• 𝐶 is regular.
• for any sequence of blow ups 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0), the curve 𝐶 never passes through
any of the corner points of the exceptional divisor 𝐸𝑁 .

Following the evolution of the parametrizations as indicated, we can show the following
result (see for instance [56] Theorem 3.5.5).

Theorem 1.3.7. Let 𝐶 be a branch and 𝐶̃ the strict transform of 𝐶 by a blow-up 𝜎 : (𝑀1 , 𝐸
1) → (𝑀0 , 𝑃0).

Denote by (𝛽0 , 𝛽1 , . . . , 𝛽𝑔) the characteristic exponents of 𝐶. Then the characteristic exponents of 𝐶1 are:

• (𝛽0 , 𝛽1 − 𝛽0 , 𝛽2 − 𝛽0 , . . . , 𝛽𝑔 − 𝛽0), if 𝛽1 > 2𝛽0.
• (𝛽1 − 𝛽0 , 𝛽0 , 𝛽2 − 𝛽1 + 𝛽0 , . . . , 𝛽𝑔 − 𝛽1 + 𝛽0), if 𝛽1 < 2𝛽0 and (𝛽1 − 𝛽0) ∤ 𝛽0.
• (𝛽1 − 𝛽0 , 𝛽2 − 𝛽1 + 𝛽0 , . . . , 𝛽𝑔 − 𝛽1 + 𝛽0), if (𝛽1 − 𝛽0) | 𝛽0.

In the case of a branch with a single Puiseux pair (𝑛, 𝑚), the previous theorem is stated as
follows:

Theorem 1.3.8. Let 𝐶 be a branch and 𝐶1 the strict transform of 𝐶 by a blow-up 𝜎 : (𝑀1 , 𝐸
1) → (𝑀0 , 𝑃0).

Assume that (𝑛, 𝑚) are the characteristic exponents of 𝐶. There are three possible cases:

• (𝑛, 𝑚 − 𝑛) are the characteristic exponents of 𝐶1, if 𝑚 > 2𝑛.
• (𝑚 − 𝑛, 𝑛) are the characteristic exponents of 𝐶1, if 𝑚 < 2𝑛 and (𝑚 − 𝑛) ∤ 𝑛.
• 𝐶1 is regular, if (𝑛, 𝑚) = (𝑛, 𝑛 + 1). Moreover, the intersection multiplicity 𝑖𝑃1(𝐶1 , 𝐸

1) at
𝑃1 = 𝐶1 ∩ 𝐸1 is given by 𝑖𝑃1(𝐶1 , 𝐸

1) = 𝑛.

1.4 Topological Invariants

Consider two regular complex analytic surfaces (𝑆1 , 𝑃1) and (𝑆2 , 𝑃2). O. Zariski in a series of
papers [57, 58, 59] studied, among other problems, when two reduced plane curves (𝐶1 , 𝑃1)
in (𝑆1 , 𝑃1) and (𝐶2 , 𝑃2) in (𝑆2 , 𝑃2) are topologically equivalent. This is the so-called Zariski’s
equisingularity theory. In other words, when there exists an homeomorphism Ψ : 𝑈1 → 𝑈2

such that Ψ(𝐶1 ∩𝑈1) = 𝐶2 ∩𝑈2, where 𝑈1 and 𝑈2 are open neighborhoods of 𝑃1 and 𝑃2 in 𝑆1



1.4. Topological Invariants 27

and 𝑆2 respectively, taken such that two representatives of the germs 𝐶1 and 𝐶2 are well defined.
Note that being topologically equivalent defines an equivalence relation.

The notion of being topologically equivalent induces the one of topological invariant. A
property is a topological invariant if it remains equal for all the elements in same class under the
topological equivalence. A topological invariant is a complete topological invariant if it determines
the topological class.

If we ask the map Ψ to be a biholomorphism between 𝑈1 and 𝑈2, we obtain the notion of
two curves being analytically equivalent. We can define in a similar way when a property is an
analytic invariant or a complete analytic invariant.

Zariski found out that the class of a curve under the topological equivalence only depends
on the resolution of singularities, in the following sense. Consider (𝐶, 𝑃0) a singular branch,
and 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0) the minimal resolution of singularities of 𝐶. As always, we
put 𝐸𝑁 = ∪𝑁

𝑖=1𝐸
𝑁
𝑖

the decomposition into irreducible components of the exceptional divisor
𝐸𝑁 = 𝜋−1(𝑃0), and denote 𝑃𝑖−1 the center of each blow-up 𝜎𝑖 . We define the dual graph of the
resolution as a labelled graph of with 𝑁 vertices 𝑣𝑖 for 𝑖 = 1, . . . , 𝑁 , where 𝑣𝑖 represents the
curve 𝐸𝑁

𝑖
. Additionally, for 𝑖 ≠ 𝑗, the vertices 𝑣𝑖 and 𝑣 𝑗 are connected by an edge if and only

if 𝐸𝑁
𝑖
∩ 𝐸𝑁

𝑗
≠ ∅. Note that the label of each of the vertices is determined by the order of the

components of the exceptional divisor, as defined in the previous section. Finally, for any vertex
𝑣𝑖 in the graph, we add an arrow for each irreducible component of the strict transform of 𝐶 by
𝜋 that passes through one of the points of 𝐸𝑁

𝑖
.

Figure 1.3: Dual graph of the curve 𝑦5 − 𝑥13.

Theorem 1.4.1 (Zariski’s Equisingularity). Two branches (𝐶1 , 𝑃1) and (𝐶2 , 𝑃2) are topologically
equivalent if and only if their minimal resolutions of singularities produce equivalent dual graphs.

The Zariski’s Equisingularity Theorem states that the equivalence class of a dual graph
is a complete topological invariant of the curve. During the last decades many complete
topological invariants have appeared and their relations have been studied, see for instance
[24, 56]. Nonetheless, we are going to describe the ones we will use in this work. Furthermore,
we will only consider the irreducible case.

Another complete topological invariant is the semigroup of the branch 𝐶, denoted by Γ𝐶 . It
is defined as the set of all possible intersection multiplicities of 𝐶 with any other curve. More
precisely, consider 𝜙(𝑡) a primitive parametrization of 𝐶, then

Γ𝐶 := {𝜈𝐶(ℎ) : ℎ ∈ C{𝑥, 𝑦}}; 𝜈𝐶(ℎ) := ord𝑡(ℎ ◦ 𝜙)}

We recall that by Equation (1.3), 𝜈𝐶(ℎ) can be seen as the intersection multiplicity of 𝑓 and ℎ, for
𝑓 = 0 an implicit equation of 𝐶.

Note that Γ𝐶 is endowed with a semigroup structure, hence its name, because of the additivity
of the intersection multiplicity with respect to the product of functions. The concept of semigroup
of a branch can be extended to the non irreducible case, see [20].
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In [56] is given a method to compute a minimal set of generators of the semigroup
(𝛽0 , 𝛽1 , . . . , 𝛽𝑔), in the sense that any element of the semigroup can be written as a non negative
integer combination of (𝛽0 , . . . , 𝛽𝑔). In other words, given 𝛾 ∈ Γ𝐶 , there exist 𝛼𝑖 ∈ Z≥0 for
𝑖 = 0, . . . , 𝑔 such that

𝛾 =

𝑔∑
𝑖=0

𝛼𝑖𝛽𝑖 .

Moreover, any 𝛽𝑖 cannot be written as a combination with non negative integer coefficients of
the other generators.

Let us describe how to compute the minimal set of generators of Γ𝐶 from the characteristic
exponents (𝛽0 , 𝛽1 , . . . , 𝛽𝑔) of 𝐶. We start by putting 𝛽0 = 𝛽0 and 𝛽1 = 𝛽1. Now for 𝑖 = 2, . . . , 𝑔,
we have that

𝛽𝑖 =
𝑒𝑖−2
𝑒𝑖−1

𝛽𝑖−1 + 𝛽𝑖 − 𝛽𝑖−1. (1.4)

We recall that the numbers 𝑒𝑖 are defined as 𝑒0 = 𝛽0 and 𝑒 𝑗 = 𝑔𝑐𝑑(𝛽 𝑗 , 𝑒 𝑗−1) for 𝑗 = 1, . . . , 𝑔. The
previous formula allows us to obtain the generators of the semigroup from the characteristic
exponents and vice-versa. In fact, we have the following theorem, see for instance [56].

Theorem 1.4.2. Given an irreducible plane curve, its set of characteristic exponents, its semigroup or its
dual graph are equivalent complete topological invariants.

By Equation (1.4), since 𝑔𝑐𝑑(𝛽0 , . . . , 𝛽𝑔) = 𝑒𝑔 = 1, then we have 𝑔𝑐𝑑(𝛽0 , 𝛽1 , . . . 𝛽𝑔) = 1. Hence,
there exists a minimum element 𝑐Γ ∈ Γ𝐶 such that, for any natural number 𝑘 ≥ 𝑐Γ, then we have
that 𝑘 ∈ Γ𝐶 . The element 𝑐Γ is called the conductor of the semigroup. In [60] p. 13 it is shown
that the conductor satisfies the following formula:

𝑐Γ =

𝑔∑
𝑖=1

(𝑒𝑖−1 − 𝑒𝑖)(𝛽𝑖 − 1) = 𝛽𝑔𝑒𝑔−1 − 𝛽𝑔 − 𝛽0 + 1. (1.5)

The Equation (1.5) only holds for semigroups of branches. Note that to simplify the notation, we
write 𝑐Γ instead of 𝑐Γ𝐶 .

When computing Saito bases in Chapter 8, we use the following property associated to the
conductor of the semigroup.

Lemma 1.4.3. ([56] Lemma 11.6.1.) Consider the map induced by a primitive parametrization
𝜙# : C{𝑥, 𝑦} → C{𝑡}, then we have that the ideal (𝑡𝑐Γ) ⊂ Im(𝜙#).

Finally, note that if the branch 𝐶 has genus one and characteristic exponents (𝑛, 𝑚), then the
semigroup is Γ𝐶 = ⟨𝑛, 𝑚⟩. Conversely, if Γ𝐶 = ⟨𝑛, 𝑚⟩ then the characteristic exponents of 𝐶 are
(𝑛, 𝑚). In this cuspidal case, we have that the conductor of Γ𝐶 , according to Equation (1.5), is
𝑐Γ = (𝑛 − 1)(𝑚 − 1).

Example 1.4.4. The conductor 𝑐Γ of the semigroup Γ𝐶 of a branch 𝐶 does not determine Γ𝐶 . In
other words, 𝑐Γ is topological invariant which is not complete. To see this observation, we can
consider the semigroups Γ1 = ⟨3, 4⟩ and Γ2 = ⟨2, 7⟩. They are the semigroups of the branches
defined by the parametrizations (𝑡3 , 𝑡4) and (𝑡2 , 𝑡7) respectively. Moreover, we see that the
conductor in both cases takes the value 6.

Remark 1.4.5. The conductor has a geometrical interpretation. Assume that 𝐶 is a curve with
implicit equation 𝑓 = 0, and denote by S3

𝜖 ⊂ C2 a 3-sphere centered at the origin with radius
𝜖 > 0 small enough. Then we can define the locally trivial fibration (called the Milnor fibration)
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𝑔 : S3
𝜖 \ { 𝑓 = 0} → S1 given by the map 𝑔(𝑝) = 𝑓 (𝑝)/|| 𝑓 (𝑝)||. In [45], J. Milnor showed that the

fibers of this map have the homotopy type of the joint union 𝜇 𝑓 of 2-spheres, where 𝜇 𝑓 is the
Milnor number of 𝑓 . In the irreducible case, we have that 𝜇 𝑓 is the conductor of the semigroup
of 𝐶. In general, we have that the Milnor number is the complex dimension of the C-vector
space C{𝑥, 𝑦}/( 𝑓𝑥 , 𝑓𝑦).

1.5 The Analytic Classification

The problem of the analytical classification of equisingular curves was solved by A. Hefez, M.E.
Hernandes and M.E.R. Hernandes in a series of papers [34, 35, 36]. In this section we overview
their result for the particular case of branches.

1.5.1 Differentials and Differential Values

Here we recall some concepts related to the module of differentials. For a more detailed
introduction see [22]. Consider, as always, (𝑀0 ,𝒪𝑀0) a complex analytic regular surface. We
denote by Ω

𝑞

𝑀0
the 𝒪𝑀0-module of holomorphic 𝑞 forms of 𝑀0, with 𝑞 = 1, 2. Given 𝑃0 ∈ 𝑀0 a

point and (𝑥, 𝑦) a local system of coordinates of 𝑀0 at 𝑃0, we have that Ω1
𝑀0 ,𝑃0

and Ω2
𝑀0 ,𝑃0

are
generated as 𝒪𝑀0 ,𝑃0 -modules by 𝑑𝑥 and 𝑑𝑦; and 𝑑𝑥 ∧ 𝑑𝑦 respectively.

Take (𝐶, 𝑃0) a branch in (𝑀0 , 𝑃0) with primitive parametrization 𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). We
refer to the module of differentials of 𝐶 as Ω1

𝐶,𝑃0
, which is the C{𝑥(𝑡), 𝑦(𝑡)}-submodule of Ω1

C,0
generated by 𝑥′(𝑡)𝑑𝑡 and 𝑦′(𝑡)𝑑𝑡. See [31] for other approximations.

Remark 1.5.1. By Remark 1.2.4, we have a natural epimorphism from Ω1
𝑀0 ,𝑃0

to Ω1
𝐶,𝑃0

defined by
𝜔 ↦→ 𝜙∗𝜔, where 𝜙∗𝜔 is the pull-back of the 1-form 𝜔 by the parametrization 𝜙. We recall that
if we write 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, then the pull-back of 𝜔 is

𝜙∗(𝜔) =
(
𝐴(𝜙(𝑡))𝑥′(𝑡) + 𝐵(𝜙(𝑡))𝑦′(𝑡)

)
𝑑𝑡.

We define the differential value of 𝜔 by 𝜈𝐶(𝜔) := ord𝑡(𝛼(𝑡)) + 1, with 𝜙∗(𝜔) = 𝛼(𝑡)𝑑𝑡. Then the
set of differential values of 𝐶 is

Λ𝐶 := {𝜈𝐶(𝜔) : 𝜔 ∈ Ω1
𝑀0 ,𝑃0

}.

Note that
Λ𝐶 = {ord𝑡(𝛼(𝑡)) + 1 : 𝛼(𝑡)𝑑𝑡 ∈ Ω1

𝐶,𝑃0
}.

The set of differential values satisfies the following properties:

1. For any function ℎ ∈ 𝒪𝑀0 ,𝑃0 satisfying that ℎ(𝑃0) = 0, we have that 𝜈𝐶(ℎ) = 𝜈𝐶(𝑑ℎ) where
𝑑ℎ is the differential of ℎ. This implies that Γ𝐶 \ {0} ⊂ Λ𝐶 .

2. Given ℎ ∈ 𝒪𝑀0 ,𝑃0 and 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, we have that 𝜈𝐶(ℎ𝜔) = 𝜈𝐶(ℎ) + 𝜈𝐶(𝜔). Thus, we
conclude that for any 𝛾 ∈ Γ𝐶 and 𝜆 ∈ Λ𝐶 , it is satisfied that 𝜆 + 𝛾 ∈ Λ𝐶 .

3. The set of differential valuesΛ𝐶 is an analytic invariant of𝐶. More generally, the differential
value of a 1-form does not depend on the analytic system of coordinates, see [34].

Since the semigroup Γ𝐶 has a conductor 𝑐Γ, the first property means that Λ𝐶 is determined
by Γ𝐶 and a finite set Λ𝐶 \ Γ𝐶 . Moreover, we have that any element of Λ𝐶 \ Γ𝐶 is bounded by 𝑐Γ.

The second property of Λ𝐶 implies that Λ𝐶 is a Γ𝐶-semimodule. For this reason, from now
on, we will refer to the set of differential values of 𝐶 as the semimodule of differential values of 𝐶. In
Chapter 3, we give more details on the theory of semimodules.
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1.5.2 The Normal Form Parametrization Theorem

In [60], O. Zariksi shows that a singular branch (𝐶, 𝑃0) satisfies that Λ𝐶 = Γ𝐶 \ {0} if and only if
𝐶 is quasi-homogeneous. We recall that 𝐶 is a quasi-homogeneous branch if in some coordinates
(𝑥, 𝑦) in (𝑀0 , 𝑃0), then 𝑦𝑛 − 𝑥𝑚 is an implicit equation of 𝐶, for a Puiseux pair (𝑛, 𝑚) with 2 ≤ 𝑛.

If Λ𝐶 ≠ Γ𝐶 \ {0}, we can consider the number 𝜆𝑍 = min(Λ𝐶 \ Γ𝐶) − 𝑛, where 𝑛 is the
multiplicity of 𝐶 at 𝑃0. The number 𝜆𝑍 is the Zariski’s invariant introduced in [60]. Since Λ𝐶 is
an analytic invariant, the Zariski’s invariant is also an analytic invariant.

Zariski’s idea was to use the information of the semimodule of differential values to find an
analytic change of coordinates which allows to compute a parametrization of the curve as simple
as possible. With this idea in mind, C. Delorme in [21] computed what he called ultra short
parametrizations of a branch. These ultra short parametrizations are primitive parametrizations
of the shape 𝜙(𝑡) = (𝑡𝑛 , 𝑦(𝑡)), where 𝑦(𝑡) is a polynomial with as many zero coefficients as the
author could determine. However the computation is restricted to the case of cusps. It was in
[34] where the authors could find a parametrization as simple as possible, in the following sense:

Theorem 1.5.2 ([34] Theorem 2.1). Let (𝐶, 𝑃0) be a branch whose semigroup is Γ𝐶 = ⟨𝑛, 𝛽1 , . . . , 𝛽𝑔⟩.
Then there exists a system of local coordinates in (𝑀0 , 𝑃0) such that 𝐶 has a normal form parametrization
defined as follows: if Λ𝐶 \ Γ𝐶 = ∅, then we put (𝑡𝑛 , 𝑡𝛽1). Otherwise, if we have that Λ𝐶 \ Γ𝐶 ≠ ∅, we
have that the normal form parametrization is(

𝑡𝑛 , 𝑡𝛽1 + 𝑡𝜆𝑍 +
∑

𝑖>𝜆𝑍 ,𝑖∉Λ𝐶−𝑛
𝑎𝑖𝑡

𝑖

)
, (1.6)

where 𝜆𝑍 = min(Λ𝐶 \Γ𝐶)− 𝑛 is the Zariski’s invariant of 𝐶. The curve (𝐶, 𝑃0) is analytically equivalent
to another branch (𝐶′, 𝑃0) if and only if there exists 𝑟 ∈ C∗ with 𝑟𝜆𝑍−𝛽1 = 1 and 𝑎𝑖 = 𝑟 𝑖−𝛽1 𝑎′

𝑖
for every

coefficient 𝑎′
𝑖
of a normal form parametrization of 𝐶′.

For a regular branch, its normal form parametrization is (𝑡 , 0).
The previous theorem shows the relevance of the study semimodules of differential values

and its gaps. In Chapter 3, we give some results, in the cuspidal case, that points towards an
effective way on the determination of the gaps of a semimodule.

The idea of these normal forms or even the ultra short parametrizations is the following one:
we can take a primitive parametrization 𝜙(𝑡) = (𝑡𝑛 , 𝑦(𝑡)) of a branch 𝐶 and write 𝑦(𝑡) = ∑

𝑎𝑖𝑡
𝑖 .

We follow an iterative argument from the terms of smaller degree in 𝑦(𝑡) to the greater ones.
We determine the smallest 𝑖 such that we can find a change of coordinates that sends 𝜙 to a
new parametrization 𝜙1(𝑡) = (𝑡𝑛 , 𝑦1(𝑡)), satisfying that 𝑦1(𝑡) and 𝑦(𝑡) coincide up order 𝑖 − 1,
and with 𝑎1

𝑖
= 0. Then we restart the process with 𝜙1(𝑡) as many times as needed. After a finite

number of steps, we obtain a parametrization 𝜙𝑘(𝑡) = (𝑡𝑛 , 𝑦𝑘(𝑡)). If 𝑘 is big enough we can
guarantee that we can find a last parametrization 𝜙𝑘+1(𝑡) = (𝑡𝑛 , 𝑦𝑘+1(𝑡)) defined as before, with
the extra condition that 𝑦𝑘+1(𝑡) is a polynomial in C[𝑡].

It is worth remarking that P. Fortuny Ayuso in [23] gives the previous changes of coordinate
in terms of the 1-forms that give place to the semimodule of differential values. Even though we
are not going to compute any normal form parametrization, these results show the importance
of the semimodule of differential values to study the analytic classification of germs of plane
curves.

Our main goal is to connect the semimodule of differential values with other analytic
invariants of a branch. All the main results of this work points towards that direction. Specially
those in Chapters 8 and 9, when computing Saito bases for a cusp 𝐶, or when determining some
roots of the Bernstein-Sato polynomial of 𝐶.
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1.6 Cuspidal Sequences

We end this chapter with a brief description of the resolution of singularities of a cusp. We follow
the notations from Section 1.3. Consider 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0) a sequence of blow-ups of
length 𝑁 , where as before we write 𝜋 = 𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑁 as a composition of 𝑁 blow-ups 𝜎𝑖
with center 𝑃𝑖−1 for 𝑖 = 1, 2, . . . , 𝑁 .

We say that 𝜋 is a bamboo if the center 𝑃𝑗 of the blow-up 𝜎𝑗+1 belongs to 𝐸
𝑗

𝑗
for 𝑗 = 1, . . . , 𝑁 −1.

The minimal resolution of singularities of a branch is always a bamboo. A bamboo is said to
be a cuspidal sequence if 𝑃1 , 𝑃2 , . . . , 𝑃ℓ are free points for 1 ≤ ℓ < 𝑁 and 𝑃ℓ+1 , 𝑃ℓ+2 , . . . , 𝑃𝑁−1 are
corner points. The index ℓ is the index of freeness of 𝜋. The last irreducible component 𝐷 := 𝐸𝑁

𝑁
is

called the cuspidal divisor of 𝜋.
Given a singular branch 𝐶, we say that 𝐶 is a cusp if its minimal resolution of singularities is

a cuspidal sequence. Moreover, take a cuspidal sequence 𝜋 with cuspidal divisor 𝐷. We say that
a branch 𝐶 is a 𝐷-cusp if the strict transform 𝐶̃ of 𝐶 by 𝜋 passes through a free point 𝑃 ∈ 𝐷, and
the curves 𝐷 and 𝐶̃ define a curve with normal crossings at 𝑃. We denote by 𝐶𝑢𝑠𝑝(𝐷) the set of
all 𝐷-cusps.

Remark 1.6.1. Note that, if for some 𝑖 < 𝑁 − 1 the center point 𝑃𝑖 of a cuspidal sequence 𝜋 is a
corner point, by definition of bamboo, we have that 𝑃𝑖 ∈ 𝐸𝑖

𝑖
∩ 𝐸𝑖

𝑗
for an index 𝑗 < 𝑖. Therefore

by Remark 1.3.1, the next center corner point 𝑃𝑖+1 satisfies that: either 𝑃𝑖+1 ∈ 𝐸𝑖+1
𝑖+1 ∩ 𝐸𝑖+1

𝑖
or

𝐸𝑖+1
𝑖+1 ∩ 𝐸𝑖+1

𝑗
. It follows that if 𝜋 is a cuspidal sequence of length 𝑁 > 1, then the sequence

𝜌2 = 𝜎2 ◦ 𝜎3 ◦ . . . ◦ 𝜎𝑁 is also cuspidal.

We define the Puiseux pair (𝑛, 𝑚) of a cuspidal sequence 𝜋 in an inductive way as follows. If
𝑁 = 1, then we put (𝑛, 𝑚) = (1, 1). Otherwise, if 𝑁 > 1, we take 𝜌2 with Puiseux pair (𝑛1 , 𝑚1).
Denote by ℓ1 the index of freeness of 𝜌2. Now if ℓ = 1, we put (𝑛, 𝑚) = (𝑚1 , 𝑛1 + 𝑚1). If ℓ > 1,
then we put (𝑛, 𝑚) = (𝑛1 , 𝑚1 + 𝑛1), in this case, we have that ℓ1 = ℓ − 1.

Notice that by this construction, we obtain that the index of freeness of the sequence 𝜋

is ℓ = ⌊𝑚/𝑛⌋. Moreover, we always have that pair (𝑛, 𝑚) constructed as above satisfies that
𝑔𝑐𝑑(𝑛, 𝑚) = 1.

Lemma 1.6.2. Assume that 𝜋 is a cuspidal sequence with Puiseux pair (𝑛, 𝑚), with cuspidal divisor 𝐷.
If 𝐶 is a singular 𝐷-cusp, then the characteristic exponents of 𝐶 are exactly (𝑛, 𝑚).

Proof. The result follows by a recursively application of Theorem 1.3.8 and its proof, knowing
that the strict transform is at the end a regular branch. □

The previous lemma explains why the pair (𝑛, 𝑚) is called the Puiseux pair of a cuspidal
sequence 𝜋. It corresponds exactly with the Puiseux pair of a branch whose minimal resolution
of singularities is 𝜋. Nonetheless, we are extending the definition to include the case where
𝑛 = 1.

Now, fix 𝜋 a cuspidal sequence with Puiseux pair (𝑛, 𝑚), index of freeness ℓ and 𝐶 a 𝐷-cusp.
We say that a regular branch (𝑌, 𝑃0) has maximal contact with 𝜋 or with 𝐶, if 𝑃1 , 𝑃2 , . . . , 𝑃ℓ are
infinite near points of 𝑌. By Remark 1.3.6, the corner point 𝑃ℓ+1 is never an infinitely near point
of the regular branch 𝑌.

Remark 1.6.3. After a big enough number of blow-ups, we can obtain a maximal contact branch
in a natural way. Assume that the index of freeness ℓ of 𝜋 satisfies that ℓ < 𝑁 − 1, and take the
sequence of blow-ups 𝜌ℓ+1 = 𝜎ℓ+1 ◦ 𝜎ℓ+2 ◦ . . . ◦ 𝜎𝑁 with index of freeness ℓ ′. Then the curve 𝐸ℓ

ℓ

has maximal contact with 𝜌ℓ+1.
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Indeed, the points 𝑃ℓ+1 , 𝑃ℓ+2 , . . . , 𝑃ℓ+ℓ ′ are free for the sequence 𝜌ℓ+1, but they are corner
points for 𝜋. We only need to show that {𝑃ℓ+𝑗} = 𝐸

ℓ+𝑗
ℓ+𝑗 ∩ 𝐸

ℓ+𝑗
ℓ

, for 𝑗 = 1, . . . , ℓ ′. Since 𝜋 is a

bamboo, by definition we have that 𝑃ℓ+𝑗 ∈ 𝐸
ℓ+𝑗
ℓ+𝑗 .

Additionally, 𝑃ℓ+𝑗 is a corner point for 𝜋, then 𝑃ℓ+𝑗 ∈ 𝐸
ℓ+𝑗
𝑘

for 𝑘 < ℓ + 𝑗. If 𝑘 > ℓ , we have that
𝑃ℓ+𝑗 is a corner point for 𝜌ℓ+1, which is a contradiction. Moreover, we cannot have 𝑘 < ℓ , because
𝐸
𝑗+ℓ
𝑗+ℓ ∩ 𝐸

𝑗+ℓ
𝑖

= ∅ for 𝑖 < ℓ , otherwise we will have that 𝑃𝑗+ℓ−1 ∈ 𝐸
ℓ+𝑗−1
𝑖

contradicting the fact that 𝜋
is a bamboo. Therefore, 𝑘 = ℓ concluding the result.

We can characterize a maximal contact branch with respect to a 𝐷-cusp, in terms of
intersection multiplicities.

Lemma 1.6.4. Let 𝐶 be a 𝐷-cusp with Puiseux pair (𝑛, 𝑚). A regular branch 𝑌 has maximal contact
with respect to 𝐶 if and only if

𝑖𝑃0(𝐶,𝑌) = 𝑚.

To prove the last lemma, we use a weaker version of the well known Noether’s formula.

Lemma 1.6.5 ([14] Lemma 3.3.4). Assume that 𝐶1 and 𝐶2 are two curves in (𝑀0 , 𝑃0), and 𝜎 :
(𝑀1 , 𝐸

1) → (𝑀0 , 𝑃0) is a blow-up with center 𝑃0. Denote by 𝑆1 , 𝑆2 ⊂ 𝐸1, the points where 𝐶1 and 𝐶2

pass through respectively; and by 𝐶̃1 and 𝐶̃2 the strict transforms of 𝐶1 and 𝐶2 by 𝜎. Then

𝑖𝑃0(𝐶1 , 𝐶2) = 𝜈𝑃0(𝐶1)𝜈𝑃0(𝐶2) +
∑

𝑃∈𝑆1∩𝑆2

𝑖𝑃(𝐶̃1 , 𝐶̃2).

Proof of Lemma 1.6.4. Assume that 𝑌 has maximal contact with 𝐶, then 𝐶 and 𝑌 share 𝑃1 , . . . , 𝑃ℓ

as infinitely near points. We recall that ℓ = ⌊𝑚/𝑛⌋. Now, we denote by 𝐶𝑖 and 𝑌𝑖 the strict
transform of 𝐶 and 𝑌 by 𝜋𝑖 = 𝜎1 ◦ 𝜎2 ◦ . . . 𝜎𝑖 , with 1 ≤ 𝑖 ≤ 𝑁 .

By an iterative use of Lemma 1.6.5, and by definition of maximal contact branch, we have
that:

𝑖𝑃0(𝐶,𝑌) = 𝜈𝑃0(𝐶)𝜈𝑃0(𝑌) + 𝜈𝑃1(𝐶1)𝜈𝑃1(𝑌1) + . . . 𝜈𝑃ℓ (𝐶ℓ )𝜈𝑃ℓ (𝑌ℓ ) + 𝑖𝑃ℓ+1(𝐶ℓ+1 , 𝑌ℓ+1). (1.7)

We note the following:

• 𝜈𝑃𝑖 (𝑌𝑖) = 1 for 1 ≤ 𝑖 ≤ ℓ , because 𝑌𝑖 is a regular branch.
• The characteristic exponents of 𝐶𝑖 are (𝑛, 𝑚 − 𝑛𝑖) for 1 ≤ 𝑖 < ℓ , and the ones of 𝐶ℓ are

(𝑚 − 𝑛ℓ , 𝑛).
• 𝑖𝑃ℓ+1(𝐶ℓ+1 , 𝑌ℓ+1) = 0, because 𝑃ℓ+1 is not an infinitely near point of 𝑌.

Then, Equation (1.7) becomes the following:

𝑖𝑃0(𝐶,𝑌) = 𝑛ℓ + (𝑚 − 𝑛ℓ ) = 𝑚.

Now, for the converse result, the previous observations show that if the regular branch 𝑌 has
intersection multiplicity 𝑚 with 𝐶, then they must share the points 𝑃1 , 𝑃2 , . . . , 𝑃ℓ as infinitely
near points. Otherwise, by applying Lemma 1.6.5 we would end up with a lower intersection
multiplicity. □

We can always find a branch with maximal contact. Assume that

𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) = (𝑡𝑛 ,
∑
𝑖≥𝑛

𝑎𝑖𝑡
𝑖)
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is a primitive parametrization of 𝐶. Then we can consider the change of coordinates 𝑥1 = 𝑥

and 𝑦1 = 𝑦 −∑𝑚−1
𝑖≥𝑛 𝑥 𝑖/𝑛 . Note that by definition of the characteristic exponents, we always have

that 𝑖/𝑛 is an integer number. We see that 𝜈𝐶(𝑦1) = 𝑚, thus the branch defined by 𝑦1 = 0 has
maximal contact with respect to 𝐶.

Note that if (𝑥, 𝑦) is a system of local coordinates in (𝑀0 , 𝑃0) such that 𝑦 = 0 has maximal
contact with respect to 𝐶, then we can write a primitive parametrization of the form

𝜙(𝑡) = (𝑡𝑛 , 𝑎𝑚𝑡𝑚 + ℎ.𝑜.𝑡.), with 𝑎𝑚 ≠ 0. (1.8)

Equivalently, by Equation (1.1), we have that 𝐶 has an implicit equation 𝑓 given by:

𝑓 = 𝑦𝑛 + 𝑏𝑥𝑚 +
∑

𝑛𝑖+𝑚𝑗>𝑛𝑚

𝑧𝑖 𝑗𝑥
𝑖𝑦 𝑗 , with 𝑏 ≠ 0. (1.9)

A system of coordinates (𝑥, 𝑦) as above, is said to be a adapted system of coordinates with respect
to 𝐶. More generally, if (𝑥, 𝑦) is a system of coordinates, such that 𝑦 = 0 has maximal contact
with respect to a cuspidal sequence 𝜋, we say the (𝑥, 𝑦) is an adapted system of coordinates with
respect to 𝜋.

Cuspidal sequences are determined by their Puiseux pairs and by a branch with maximal
contact. In fact, we have the following result.

Proposition 1.6.6. Take 1 ≤ 𝑛 ≤ 𝑚 and let (𝑌, 𝑃0) be a regular curve. There exists a unique cuspidal
sequence 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0) such that 𝑌 has maximal contact with 𝜋 and (𝑛, 𝑚) is the Puiseux
pair of 𝜋.

Proof. If 𝑛 = 𝑚 = 1, the only possibility is that 𝑁 = 1 and then 𝜋 consists in the blow-up of 𝑃0.
Let us proceed by induction on 𝑛 + 𝑚 and assume that 𝑛 + 𝑚 > 2. We necessarily have that
𝑁 ≥ 2, let 𝜎1 be the first blow-up with center 𝑃0 and 𝑃1 the infinitely near point of 𝑌 in 𝐸1

1, we
denote by 𝑌1 the strict transform of 𝑌 by 𝜎1 at 𝑃1.

Assume first that 2𝑛 ≤ 𝑚. We apply induction to 𝑌1 with respect to the pair 𝑛′, 𝑚′ where
𝑛′ = 𝑛, 𝑚′ = 𝑚 − 𝑛; and we obtain a cuspidal sequence 𝜋′ over (𝑀1 , 𝑃1) of length 𝑁 ′ with the
required properties. We construct 𝜋 of length 𝑁 = 𝑁 ′ + 1 by taking 𝜎𝑗 with center the point
𝑃′
𝑗−2, for 𝑗 = 2, 3, . . . , 𝑁 ′ + 1.

In the case that 𝑛 ≤ 𝑚 < 2𝑛, we consider the branch 𝑌′
1 = 𝐸1

1 at 𝑃1, we apply induction to 𝑌′
1

with respect to the pair 𝑛′, 𝑚′ where 𝑛′ = 𝑚 − 𝑛, 𝑚′ = 𝑛 and we obtain a cuspidal sequence 𝜋′

over (𝑀1 , 𝑃1) of length 𝑁 ′. We construct 𝜋 of length 𝑁 = 𝑁 ′ + 1 as before.
The uniqueness of 𝜋 follows by an inductive argument invoking the uniqueness after one

blow-up. □

By Theorem 1.4.1, all the elements in 𝐶𝑢𝑠𝑝(𝐷) are topologically equivalent. Besides, any
cusp is analytically equivalent to a 𝐷-cusp.

Proposition 1.6.7. Consider a cuspidal sequence 𝜋 with Puiseux pair (𝑛, 𝑚) and cuspidal divisor 𝐷.
Let 𝐶 be a branch in (𝑀0 , 𝑃0) with characteristic exponents (𝑛, 𝑚). There is an 𝐷-cusp analytically
equivalent to 𝐶.

Proof. Choose a local coordinate system (𝑥, 𝑦) adapted to 𝜋 and let 𝑓 ∈ C{𝑥, 𝑦} be an implicit
equation of 𝐶.

If 𝑛 = 1, the branch𝐶 is nonsingular. Then, there is an automorphism𝜙 : (𝑀0 , 𝑃0) → (𝑀0 , 𝑃0)
such that 𝜙#( 𝑓 ) = 𝑦. The result follows in this case since 𝑦 = 0 is a 𝐷-cusp.
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Assume that 2 ≤ 𝑛 < 𝑚. As we showed before, we can find a non singular branch 𝑌 defined
by 𝑔 = 0 having maximal contact with 𝐶, that is, with the property that

𝑖𝑃0(𝑌, 𝐶) = 𝑚.

Take an automorphism 𝜙 : (𝑀0 , 𝑃0) → (𝑀0 , 𝑃0) such that 𝜙#(𝑔) = 𝑦. We have that 𝜙#( 𝑓 ) is an
𝐷-cusp, where 𝜙# is the associated map 𝜙 between local rings 𝒪𝑀0 ,𝑃0 → 𝒪𝑀0 ,𝑃0 . □

According to the above result, the analytic moduli of the family of branches equisingular to
the irreducible cusp 𝑦𝑛 − 𝑥𝑚 = 0 is faithfully represented by the analytic moduli of the family
Cusps(𝐷). In other words, every branch of genus 1 is analytically equivalent to a cusp.
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Totally Dicritical Foliations

This chapter is devoted to study a family of two dimensional foliations called totally 𝐷-dicritical,
where 𝐷 is a cuspidal divisor. In Section 2.1, we present the concept of foliation. In Section
2.2, we recall the theorem of resolutions of singularities for foliations in dimension two. In
Section 2.3, we define the notion of divisorial value along an irreducible component of the
exceptional divisor of a sequence of blow-ups. We particularize to the case of cuspidal sequences,
as presented in Chapter 1. Finally, in Section 2.4, we characterize the totally 𝐷-dicritical foliations.
Briefly speaking, they satisfy that 𝐷 is a dicritical divisor without singularities in its free points.
This notion can be understood by saying that the foliation is transverse to the cuspidal divisor.
Our main references in this chapter are [11, 12].

We recall that (𝑀0 ,𝒪𝑀0) is a regular complex analytic surface.

2.1 Basic Notions

As in Chapter 1, we denote by Ω1
𝑀0

and Ω2
𝑀0

the sheaves of differential 1-forms and 2-forms
respectively. Given 𝜔 ∈ Ω1

𝑀0
(𝑈), we denote by 𝑆𝑖𝑛𝑔(𝜔) the singular locus of 𝜔, that is, the set of

points of 𝑈 such that 𝜔 takes the value zero. A point 𝑃 ∈ 𝑈 is a singular point of 𝜔, if 𝑃 belongs
to the singular locus of 𝜔, otherwise we say that 𝑃 is regular.

A foliation ℱ is defined as a local data 𝒮 = {(𝑈𝑖 , 𝜔𝑖)}𝑖∈𝐼 with the following properties:

1. The set {𝑈𝑖}𝑖∈𝐼 is an open cover of 𝑀0.
2. For every 𝑖 ∈ 𝐼, the element 𝜔𝑖 is a differential 1-form of Ω𝑀0(𝑈𝑖).
3. For every 𝑖 , 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, there exists a unit ℎ𝑖 𝑗 ∈ 𝒪𝑀0(𝑈𝑖 ∩𝑈 𝑗) such that

𝜔𝑖 |𝑈𝑖∩𝑈𝑗= ℎ𝑖 𝑗𝜔𝑖 |𝑈𝑖∩𝑈𝑗 ,

where 𝜔𝑖 |𝑈𝑖∩𝑈𝑗 denotes the restriction of 𝜔𝑖 to the open set 𝑈𝑖 ∩𝑈 𝑗 .
4. The singular locus 𝑆𝑖𝑛𝑔(𝜔𝑖) ⊂ 𝑈𝑖 has codimension two for every 𝑖 ∈ 𝐼.

In dimension two, a 1-form 𝜔 always satisfies the integrability condition 𝜔 ∧ 𝑑𝜔 = 0.
Including the integrability condition to the 1-forms in the previous definition gives place to the
notion of codimension one foliation, for any dimension.

We can reinterpret the fourth condition about the singular locus as follows: assume that
𝜔 is one of the 1-forms defining conditions of a foliation ℱ , and take (𝑥, 𝑦) a local system of
coordinates in 𝑀0 where 𝜔 is defined. Then we can write 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦. Saying that the
singular locus of 𝜔 has codimension 2 is equivalent to saying that 𝑔𝑐𝑑(𝐴, 𝐵) = 1.

35
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Note that a foliation ℱ in (𝑀0 , 𝑃0) is defined, in a small enough neighborhood 𝑈 of 𝑃0, by a
holomorphic 1-form 𝜔, such that the singular locus of 𝜔 is either the empty set or {𝑃0}. For this
reason, given a 1-form 𝜔 whose coefficients are coprime, we also say that 𝜔 defines a foliation
in (𝑀0 , 𝑃0). Besides, when talking about foliations in (𝑀0 , 𝑃0), we will refer indistinctly to the
geometrical object or a 1-form defining it.

More generally, given a non null 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, that we write in some coordinates as
𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, when we refer to the foliation defined by 𝜔, we mean the foliation defined by
𝜔/𝑔𝑐𝑑(𝐴, 𝐵).

As in the case of curves, we can define the multiplicity of a foliation. More precisely, given
𝜔 ∈ Ω1

𝑀0 ,𝑃0
, we can write 𝜔 in a system of coordinates as 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦. Then the multiplicity

of 𝜔 at 𝑃0 is 𝜈𝑃0(𝜔) := min{𝜈𝑃0(𝐴), 𝜈𝑃0(𝐵)}. If a foliation ℱ is defined by a 1-form 𝜔, then the
multiplicity of ℱ at 𝑃0 is 𝜈𝑃0(ℱ ) := 𝜈𝑃0(𝜔). It can be checked that the multiplicity at 𝑃0 does not
depend on the coordinates.

Consider ℱ a foliation defined by 𝜔 ∈ Ω𝑀0 ,𝑃0 and let (𝐶, 𝑃0) be a curve defined by an implicit
equation 𝑓 ∈ 𝒪𝑀0 ,𝑃0 . We say that 𝐶 is an invariant curve for 𝜔, or for ℱ , if 𝑑𝑓 ∧ 𝜔 = 𝑓 𝜂, where
𝜂 ∈ Ω2

𝑀0 ,𝑃0
. When 𝐶 is a branch, we say that 𝐶 is an invariant branch for 𝜔 or for ℱ .

Lemma 2.1.1 ([11] Lemma 3.4). Consider a local system of coordinates (𝑥, 𝑦) in (𝑀0 , 𝑃0). Let 𝐶 be
a branch with implicit equation 𝑓 ∈ C{𝑥, 𝑦} and primitive parametrization 𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). Then,
given 𝜔 ∈ Ω1

𝑀0 ,𝑃0
, it is equivalent to say that 𝐶 is an invariant branch for 𝜔 than saying that 𝜙∗(𝜔) = 0.

In other words, that the differential value of 𝜔 is 𝜈𝐶(𝜔) = ∞.

Proof. Since 𝑓 (𝜙(𝑡)) = 0, then

𝑑

𝑑𝑡
𝑓 (𝜙(𝑡)) = 𝑓𝑥(𝜙(𝑡))𝑥′(𝑡) + 𝑓𝑦(𝜙(𝑡))𝑦′(𝑡) = 0,

with 𝑓𝑥 and 𝑓𝑦 the partial derivatives of 𝑓 with respect 𝑥 and 𝑦 respectively. Assume without
loss of generality that 𝑥(𝑡) ≠ 0. Since the curve is defined at (𝑀0 , 𝑃0), it implies that 𝑥′(𝑡) ≠ 0.
Thus we have that

𝑓𝑥(𝜙(𝑡)) = −
𝑓𝑦(𝜙(𝑡))𝑦′(𝑡)

𝑥′(𝑡) . (2.1)

Now write 𝜔 = 𝐴𝑑𝑥+𝐵𝑑𝑦, and consider 𝜔∧𝑑𝑓 = (𝐴 𝑓𝑦 −𝐵 𝑓𝑥)𝑑𝑥∧𝑑𝑦. We have that 𝐶 is invariant
by 𝜔 if and only if, along the points of 𝐶, it is satisfied that

𝐴(𝜙(𝑡)) 𝑓𝑦(𝜙(𝑡)) − 𝐵(𝜙(𝑡)) 𝑓𝑥(𝜙(𝑡)) = 0.

By Equation (2.1), this condition is equivalent to

𝑓𝑦(𝜙(𝑡))
𝑥′(𝑡) (𝐴(𝜙(𝑡))𝑥′(𝑡) + 𝐵(𝜙(𝑡))𝑦′(𝑡)) = 0. (2.2)

Note that 𝑓𝑦(𝜙(𝑡)) ≠ 0, since otherwise, 𝑓 will divide 𝑓𝑦 which is not possible. □

According to Camacho-Sad theorem, a foliation ℱ in (𝑀0 , 𝑃0) always has at least an invariant
curve (𝐶, 𝑃0), see [10].

Consider ℱ a regular foliation in (𝑀0 , 𝑃0) defined by a non singular 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

at
𝑃0. Let 𝐶 be a regular branch with 𝑔 = 0 an implicit equation. We say that 𝐶 is transverse to ℱ if
𝜔 ∧ 𝑑𝑔 = 𝑣𝑑𝑥 ∧ 𝑑𝑦, with 𝑣 ∈ 𝒪𝑀0 ,𝑃0 a unit. If 𝑣 is not a unit, then we say that 𝐶 is tangent. Notice
that being invariant is a particular case of being tangent.
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2.2 Resolution of Singularities of Plane Foliations

As in the case of curves, thanks to the results due to A. Seidenberg [51], we can find a resolution
of singularities of a foliation in (𝑀0 , 𝑃0). It is worth noting that, up to this moment, in the general
dimension case, it is unknown if a foliation admits a resolution of singularities. However, in the
two dimensional case, there always exists a resolution, and the way of finding one recalls the
case of plane curves. Even though, there are differences on the behaviour between the cases of
foliations and curves.

As in Section 1.3, consider 𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0) a sequence of blow-ups starting at 𝑃0,

with 𝜋 = 𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑁 . Given 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, then 𝜋∗(𝜔) is the total transform of 𝜔. Assume that
𝜔 defines a foliation ℱ in (𝑀0 , 𝑃0). We define the strict transform of 𝜔 by 𝜋 in an inductive way.
We do it for 𝜎1 : (𝑀1 , 𝐸

1) → (𝑀0 , 𝑃0), and it is done recursively for 𝜋.

We take 𝜎∗
1(𝜔) the total transform of 𝜔 by 𝜎1, then we have an atlas in (𝑀1 , 𝑃1) defined by

the two charts 𝑈1 , 𝑈2, as in Section 1.3. In each chart, the 1-form 𝜎∗
1(𝜔) may not define a foliation,

this is because the singular locus may not have codimension 2 in each chart. Thus, we need to
remove the common factors of the coefficients of 𝜎∗

1(𝜔) in each of the charts. In this way, we
obtain a foliation ℱ̃ which is the strict transform of ℱ by 𝜎1.

To clarify the concepts, let us make some computations. Consider 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 with
𝑔𝑐𝑑(𝐴, 𝐵) = 1 and let 𝜎1 : (𝑀1 , 𝐸

1) → (𝑀0 , 𝑃0) be the blow-up at 𝑃0. Take 𝑈1 the chart of
(𝑀1 , 𝐸

1) defined by the coordinate system (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). Then, we have that

𝜎∗
1(𝜔) = 𝐴(𝑥1 , 𝑥1𝑦1)𝑑𝑥1 + 𝐵(𝑥1 , 𝑥1𝑦1)(𝑥1𝑑𝑦1 + 𝑦1𝑑𝑥1) =

= (𝐴(𝑥1 , 𝑥1𝑦1) + 𝑦1𝐵(𝑥1 , 𝑥1𝑦1))𝑑𝑥1 + 𝑥1𝐵(𝑥1 , 𝑥1𝑦1)𝑑𝑦1

= 𝐴1(𝑥1 , 𝑦1)𝑑𝑥1 + 𝐵1(𝑥1 , 𝑦1)𝑑𝑦1.

The strict transform of 𝜔 by 𝜎1 is 𝑥−𝑘1 𝜎∗
1(𝜔), with 𝑘 > 0 such that 𝑔𝑐𝑑(𝐴1 , 𝐵1) = 𝑥𝑘

1 . It is satisfied
that 𝑘 = 𝜈𝑃0(𝜔) + 𝜖, where 𝜖 ∈ {0, 1}. If 𝜖 = 0, we have that 𝐸1

1 is an invariant curve of the strict
transform of 𝜔 by 𝜎1. In this case, we say that 𝐸1

1 is a non dicritical divisor. Otherwise, if 𝜖 = 1,
then 𝐸1

1 is not invariant by the strict transform of 𝜔 by 𝜎1, and we say that 𝐸1
1 is a dicritical divisor.

Now, assume that we have defined the strict transform of 𝜔 by 𝜋𝑁−1 = 𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑁−1,
and denote it by 𝜔′. Then the strict transform of 𝜔 by 𝜋 is the strict transform of 𝜔′ by 𝜎𝑁 .

Similarly, given a foliation ℱ defined by 𝜔, the strict transform of ℱ by 𝜋 is the foliation
defined by the strict transform of 𝜔 by 𝜋.

Remark 2.2.1. Consider ℱ a foliation in (𝑀0 , 𝑃0), and denote by ℱ ′ the strict transform of ℱ by
a single blow-up 𝜎 : (𝑀1 , 𝐸

1
1) → (𝑀0 , 𝑃0). By classical results of differential equations, if 𝑃0 is a

regular point of ℱ , then there exists a unique regular invariant curve 𝑌 passing through 𝑃0.

Similarly, given a point 𝑃 ∈ 𝐸1
1, if ℱ ′ is regular at 𝑃. There are two cases: first, 𝐸1

1 is a non
dicritical divisor, that is, 𝐸1

1 is invariant by ℱ ′. Otherwise, 𝐸1
1 is a dicritical divisor of ℱ ′. In this

second case, there must be a different branch 𝑌 from 𝐸1
1, invariant by ℱ ′. In general, given any

point 𝑃 of a dicritical divisor 𝐸1
1, there must be at least one invariant branch of ℱ ′ different from

𝐸1
1, passing through 𝑃.



38 2. Totally Dicritical Foliations

Figure 2.1: Schematic drawing of a dicritical divisor, the red circle is a real representation of 𝐸1
1 = P1(C).

At any point 𝑃 ∈ 𝐸1
1, there is at least one invariant curve of the foliation passing through 𝑃.

Lemma 2.2.2. Consider ℱ a foliation in (𝑀0 , 𝑃0) and a branch 𝐶. Denote by 𝜋 a sequence of blow-ups
starting at 𝑃0. Denote by ℱ ′ and 𝐶′ the strict transforms by 𝜋 of ℱ and 𝐶. Then the branch 𝐶 is
invariant by ℱ if and only if 𝐶′ is invariant by ℱ ′.

Proof. By a recursive argument, it is only needed to verify the statement for the case when 𝜋 = 𝜎1

is a blow-up. Consider the coordinate systems (𝑥, 𝑦) and (𝑥1 , 𝑦1) in (𝑀0 , 𝑃0) and in an open set
of (𝑀1 , 𝐸

1) respectively, such that (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). We are assuming without loss of generality
that 𝐶′ passes through a point of the chosen chart of (𝑀1 , 𝐸

1).
Denote by 𝑓 = 0 a reduced irreducible implicit equation of 𝐶 and by 𝑓 ′ = 0 its strict transform.

Then we have that 𝑓 ′ = 𝑥−𝑘1 ( 𝑓 ◦ 𝜋) and 𝜔′ = 𝑥−𝑘
′

1 𝜋∗𝜔, with 𝑘, 𝑘′ ≥ 0. Therefore

𝜔′ ∧ 𝑑𝑓 ′ = 𝑥−𝑘−𝑘
′

1 𝜋∗(𝜔) ∧
(
−𝑘 𝑓 ◦ 𝜋

𝑥1
𝑑𝑥1 + 𝜋∗(𝑑𝑓 )

)
.

We see that 𝑓 ′ divides 𝜔′ ∧ 𝑑𝑓 ′ if and only if 𝑓 divides 𝜔 ∧ 𝑑𝑓 . □

We remark that finding a resolution of singularities of a foliation resembles the case of plane
curves. Before, we were interested in finding a curve with normal crossings, here this role will
be played by simple points.

Let 𝜔 ∈ Ω1
𝑀0 ,𝑃0

define a singular foliation ℱ in (𝑀0 , 𝑃0) at 𝑃0. We write 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 and
we consider the matrix

𝐽(𝜔) =
(
− 𝜕𝐵

𝜕𝑥 (0) − 𝜕𝐵
𝜕𝑦 (0)

𝜕𝐴
𝜕𝑥 (0)

𝜕𝐴
𝜕𝑦 (0)

)
.

Assume that the matrix 𝐽(𝜔) is neither null nor nilpotent. Denote by 𝜆, 𝜇 ∈ C the two
eigenvalues of 𝐽(𝜔), such that 𝜇 ≠ 0. If the ratio 𝜆/𝜇 is not a positive rational number, then we
say that 𝑃0 is a simple singularity of the foliation ℱ . Besides, if 𝜆 = 0, we say that 𝑃0 is a saddle node
singularity, otherwise, we say that 𝑃0 is an hyperbolic singularity. If 𝑃0 is a singularity, but it is not
a simple singularity, then we say that 𝑃0 is a non reduced singularity.

Two important remarks must be made about simple singularities of foliations that reminds
the case of curves:

1. A simple singularity is stable by blow-up, that is, if we consider 𝜎1 : (𝑀1 , 𝐸
1) → (𝑀0 , 𝑃0)

the blow-up at 𝑃0, we have that all the singularities in 𝐸1 of the strict transform of ℱ by 𝜎

are simple.
2. By Briot-Bouquet theorem, see [11], if 𝑃0 is an hyperbolic singularity of ℱ , then 𝜔 has

exactly two invariant regular branches 𝐶1 , 𝐶2, such their tangent vectors are eigenvectors
of the matrix 𝐽(𝜔). If 𝑃0 is a saddle node singularity, then we have a similar result. The
only difference is that the branch associated to the eigenspace of zero eigenvalue may be
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non convergent. In other words, we can have an element 𝑓 ∈ C[[𝑥, 𝑦]] \C{𝑥, 𝑦}, such that
𝜔 ∧ 𝑑𝑓 = 𝑓 𝜂 with 𝜂 a formal 2-form.

Simple singularities are the only ones allowed in a resolution of singularities of a foliation,
in the following sense: consider a normal crossings curve 𝐸0 ⊂ 𝑀0. We say that the point 𝑃0 is
a simple point of (𝑀0 , 𝐸

0 ,ℱ ) of a foliation ℱ in (𝑀0 , 𝑃0), if one of two following conditions is
satisfied:

a) 𝑃0 is a simple singularity of ℱ , there exists an irreducible component of 𝐸0 through 𝑃0,
and all the irreducible components of 𝐸0 are invariant by ℱ .

b) The point 𝑃0 is a regular point ℱ and ℱ has normal crossings with 𝐸0. That is to say, if 𝐿
is the only invariant curve of ℱ through 𝑃0, then 𝐸0 ∪ 𝐿 is a normal crossings divisor.

Theorem 2.2.3 (Resolution of Singularities [51]). Consider a germ of foliation ℱ in (𝑀0 , 𝑃0). There
exists a finite sequence of blow-ups 𝜋 : (𝑀𝑁 , 𝐸

𝑁 ) → (𝑀0 , 𝑃0), such that the strict transform ℱ̃ of ℱ by
𝜋 satisfies that every point 𝑃 ∈ 𝐸𝑁 is a simple point of (𝑀𝑁 , 𝐸

𝑁 , 𝐹).

We say that 𝜋 as above is a resolution of singularities of ℱ .

2.3 Divisorial Value

The goal of this section and the next one is to characterize the differential 1-forms that appear
when computing the semimodule of differential values. To do so, we introduce in this section
the notion of divisorial value, we use it when studying the Newton Polygon of a 1-form. Most of
the results presented can be found in Section 3 of [12].

We fix 𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0) a sequence of blow-ups, with the usual notations established

in Section 1.3. Consider a holomorphic function ℎ in (𝑀𝑁 , 𝐸
𝑁 ) defined globally in 𝐸 := 𝐸𝑁

𝑁
⊂ 𝐸𝑁 .

The divisorial value 𝜈𝐸(ℎ) of ℎ is obtained as follows. Take a point 𝑃 ∈ 𝐸 and choose a reduced
local equation 𝑢 = 0 of the germ (𝐸, 𝑃), then we define the divisorial value of 𝑓 as

𝜈𝐸(ℎ) := max{𝑎 ∈ Z : 𝑢−𝑎ℎ ∈ 𝒪𝑀𝑁 ,𝑃}.

Remark 2.3.1. Notice that 𝜈𝐸(ℎ) does not depend on the point 𝑃 ∈ 𝐸 chosen. In fact, assume
that 𝑢 = 0 is an implicit equation of 𝐸 defined in an open set 𝑈 ⊂ 𝐸. Given a different point
𝑄 ∈ 𝑈 , since 𝑢 = 0 is an implicit equation of 𝐸 at 𝑄, the divisorial value 𝜈𝐸(ℎ) is the same at the
points 𝑄 and 𝑃.

Finally, for any pair of points𝑃, 𝑄 ∈ 𝐸, we can take a sequence of open sets𝑈1 , 𝑈2 , . . . , 𝑈𝑘 ⊂ 𝐸,
where 𝑈1 and 𝑈𝑘 are open neighbourhoods of 𝑃 and 𝑄 respectively, with 𝑈 𝑗 ∩ 𝑈 𝑗+1 ≠ ∅ for
𝑗 = 1, 2, . . . , 𝑘 − 1. We denote by 𝑢𝑖 = 0 an implicit equation of 𝐸 defined along all the points
𝑈𝑖 , for 𝑖 ∈ {1, . . . , 𝑘}. Since the divisorial value must be the same at 𝑈 𝑗 ∩𝑈 𝑗+1 we conclude the
desired result.

We are using the fact that two implicit equations ℎ′ = 0 and ℎ = 0 of a curve 𝐶 differ by
an unit, this implies that the definition of divisorial value is independent of the chosen local
equation.

Consider one of the center points 𝑃𝑗 of the sequence of blow-ups 𝜋, with 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}
and a germ of holomorphic function ℎ ∈ 𝒪𝑀𝑗 ,𝑃𝑗 . Then 𝜌∗

𝑗
ℎ is a germ of function in (𝑀𝑁 , 𝐸), that

is, 𝜌∗
𝑗
ℎ is globally defined in 𝐸, where 𝜌 𝑗 = 𝜎𝑗 ◦ 𝜎𝑗+1 ◦ . . . ◦ 𝜎𝑁 . We extend the definition divisorial

value with respect to 𝐸 to ℎ by putting 𝜈𝐸(ℎ) := 𝜈𝐸(𝜌∗𝑗ℎ).
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Proposition 2.3.2. Take (𝑥, 𝑦) a local system of adapted coordinates with respect to a cuspidal sequence
𝜋 = 𝜋𝑛,𝑚

𝑦 , and denote by 𝐷 the cuspidal divisor of 𝜋𝑛,𝑚
𝑦 . Consider a germ ℎ ∈ 𝒪𝑀0 ,𝑃0 that we write as

ℎ =

∑
𝛼,𝛽

ℎ𝛼𝛽𝑥
𝛼𝑦𝛽 , ℎ𝛼𝛽 ∈ C.

Then 𝜈𝐷(ℎ) = min{𝑛𝛼 + 𝑚𝛽; ℎ𝛼𝛽 ≠ 0}.

Proof. If 𝑛 = 𝑚 = 1, 𝜋 is just a single blow. In this case, we see that the divisorial value of a
function ℎ is coincides with its multiplicity at 𝑃0, as desired. Let us work by induction on 𝑛 + 𝑚

and assume that 𝑛 + 𝑚 ≥ 2. We remark that 𝜈𝐷(ℎ) = 𝜈𝐷(𝜎∗
1ℎ). Consider the first intermediate

sequence 𝜌2 = 𝜎2 ◦ . . . ◦ 𝜎𝑁 , with adapted coordinates (𝑥1 , 𝑦1). Denote by ℓ the index of freeness
of 𝜋𝑛,𝑚

𝑦 . There are two options: if ℓ = 1, then the coordinate system is given by (𝑥, 𝑦) = (𝑥1𝑦1 , 𝑦1).
Otherwise, if ℓ ≥ 2, then (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). Therefore, we have that

𝜎∗
1ℎ =

∑
𝛼,𝛽

ℎ𝛼𝛽𝑥
𝛼+𝛽
1 𝑦

𝛽
1 if ℓ ≥ 2;

𝜎∗
1ℎ =

∑
𝛼,𝛽

ℎ𝛼𝛽𝑥
𝛽
1 𝑦

𝛼+𝛽
1 if ℓ = 1.

Furthermore, if ℓ = 1 the Puiseux pair of 𝜌2 is given by (𝑛, 𝑚 − 𝑛). On the contrary, if ℓ ≥ 2, then
the Puiseux pair of 𝜌2 is (𝑛 − 𝑚, 𝑛). We conclude by applying the induction hypothesis to the
previous expressions. □

Remark 2.3.3. The computations from the proof of Proposition 2.3.2 show that in the case
when 𝜋𝑛,𝑚

𝑦 is a single blow-up, then 𝜈𝐷(ℎ) = 𝜈𝑃0(ℎ). Furthermore, in this case every system of
coordinates is adapted with respect to 𝜋1,1

𝑦 .

2.3.1 Divisorial Value of a Differential Form

From now fix 𝜋 = 𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑁 a sequence of blow-ups, where as always 𝜎𝑖 : (𝑀𝑖 , 𝐸
𝑖) →

(𝑀𝑖−1 , 𝐸
𝑖−1) is a blow-up with center 𝑃𝑖 ∈ 𝐸𝑖−1, for 𝑖 = 1, 2, . . . , 𝑁 and 𝐸0 = {𝑃0}. We denote by

𝜋 𝑗 = 𝜎1 ◦ 𝜎2 ◦ . . . ◦ 𝜎𝑗 and 𝜌 𝑗 = 𝜎𝑗 ◦ 𝜎𝑗+1 ◦ . . . ◦ 𝜎𝑁 the intermediate sequences, for 𝑗 = 1, 2, . . . , 𝑁 .
Finally, we fix the divisors

𝐻0 = (𝑥𝑦 = 0) ⊂ 𝑀0 , 𝐻𝑗 = 𝜋−1
𝑗 (𝐻0) ⊂ 𝑀 𝑗 ,

such that 𝐻𝑗 is locally given at 𝑃𝑗 by 𝑥 𝑗𝑦 𝑗 = 0 for 0 ≤ 𝑗 ≤ 𝑁 − 1. We also consider 𝐻𝑁 = 𝐻 =

𝜋−1(𝐻0) ⊂ 𝑀𝑁 . Each 𝐻𝑗 is, at every point, a curve with normal crossings in (𝑀 𝑗 , 𝐸
𝑗), containing

𝐸 𝑗 . We also write 𝐸 = 𝐸𝑁
𝑁

.
Take a point 𝑄 ∈ 𝐸 𝑗 , not necessarily equal to 𝑃𝑗 , in particular we consider also the case 𝑗 = 𝑁 .

Select a local system of coordinates (𝑢, 𝑣) in chart of (𝑀 𝑗 , 𝐸
𝑗) such that (𝑢 = 0) ⊂ 𝐻𝑗 ⊂ (𝑢𝑣 = 0),

then we have that either 𝐻𝑗 = (𝑢 = 0) or 𝐻𝑗 = (𝑢𝑣 = 0) locally at 𝑄. The 𝒪𝑀𝑗 ,𝑄-module
Ω1

𝑀𝑗 ,𝑄
[log𝐻𝑗] of germs of 𝐻𝑗-logarithmic 1-forms is the rank two free 𝒪𝑀𝑗 ,𝑄-module generated by

𝑑𝑢/𝑢, 𝑑𝑣 if 𝐻𝑗 = (𝑢 = 0),
𝑑𝑢/𝑢, 𝑑𝑣/𝑣 if 𝐻𝑗 = (𝑢𝑣 = 0).

In Chapter 8 we retake the notion of logarithmic forms in a more general setting. For the moment,
note that Ω1

𝑀𝑗 ,𝑄
⊂ Ω1

𝑀𝑗 ,𝑄
[log𝐻𝑗]. Indeed, a differential 1-form 𝜔 = 𝐴𝑑𝑢 +𝐵𝑑𝑣 may be written as

𝜔 = 𝑢𝐴
𝑑𝑢

𝑢
+ 𝐵𝑑𝑣 = 𝑢𝐴

𝑑𝑢

𝑢
+ 𝑣𝐵

𝑑𝑣

𝑣
.
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In a similar way, we define the 𝒪𝑀𝑗 ,𝑄-module Ω2
𝑀𝑗 ,𝑄

[log𝐻𝑗] of 𝐻𝑗-logarithmic 2-forms as the
rank one free 𝒪𝑀𝑗 ,𝑄-module generated by

(𝑑𝑢/𝑢) ∧ 𝑑𝑣 if 𝐻𝑗 = (𝑢 = 0),
(𝑑𝑢/𝑢) ∧ 𝑑𝑣/𝑣 if 𝐻𝑗 = (𝑢𝑣 = 0).

Again, we have that Ω2
𝑀𝑗 ,𝑄

⊂ Ω2
𝑀𝑗 ,𝑄

[log𝐻𝑗].
Now, let us consider a 𝑞-form 𝜔 ∈ Ω

𝑞

𝑀𝑁
[log𝐻], 𝑞 = 1, 2, defined in 𝐸. Select a point 𝑄 ∈ 𝐸

and a local reduced equation 𝑢 = 0 of 𝐸 at 𝑄. We define the divisorial value 𝜈𝐸(𝜔) by

𝜈𝐸(𝜔) = max{ℓ ∈ Z; 𝑢−ℓ𝜔 ∈ Ω
𝑞

𝑀𝑁 ,𝑄
[log𝐻]}.

As in Remark 2.3.1 we can show that the divisorial value of a 𝑞-form is well defined, that is, it
does not depend neither on the chosen equation of 𝐸 nor on the point 𝑄.

Remark 2.3.4. Let 𝜔 ∈ Ω
𝑞

𝑀𝑁
[log𝐸] be a 𝑞-form globally defined on 𝐸 as before. Since 𝐸 is one of

the irreducible components of 𝐻, we have that

Ω
𝑞

𝑀𝑁
[log𝐸] ⊂ Ω

𝑞

𝑀𝑁
[log𝐻].

Let us choose a reduced local equation 𝑢 = 0 of 𝐸 at a point 𝑄 ∈ 𝐸 as before. A direct computation
shows that

𝜈𝐸(𝜔) = max{ℓ ∈ Z; 𝑢−ℓ𝜔 ∈ Ω
𝑞

𝑀𝑁 ,𝑄
[log𝐸]}. (2.3)

This remark shows that the divisorial value of a 𝑞-form 𝜔 ∈ Ω
𝑞

𝑀𝑁
[log𝐸] is independent of the

choice of the adapted coordinate system that defines 𝐻0.

Definition 2.3.5. For any 𝜔 ∈ Ω
𝑞

𝑀𝑗 ,𝑃𝑗
, the divisorial value 𝜈𝐸(𝜔) is defined by 𝜈𝐸(𝜔) = 𝜈𝐸(𝜌∗𝑗𝜔).

Remark 2.3.6. The notion of divisorial value of a 1-forms can be defined without using logarithmic
1-forms with respect to a curve. We could have defined it as the maximum number of times that
the implicit equation of 𝐸 divides 𝜋∗

𝑗
𝜔 up to obtaining a holomorphic 1-form. However, with

this definition, the divisorial value is no longer determined by just the monomials of the 1-form,
as we show later. There is an indeterminacy depending on if the divisor 𝐸 is dicritical or not for
the 1-form 𝜔. By introducing the logarithmic 1-forms, this problem disappears.

Proposition 2.3.7. Consider a differential 1-form 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 ∈ Ω1
𝑀0 ,𝑃0

, we can write 𝜔 as

𝜔 = 𝑥𝐴(𝑑𝑥/𝑥) + 𝑦𝐵(𝑑𝑦/𝑦) ∈ Ω1
𝑀0 ,𝑃0

[log𝐻0].

Then, we have that 𝜈𝐸(𝜔) = min{𝜈𝐸(𝑥𝐴), 𝜈𝐸(𝑦𝐵)}.

Proof. Write 𝑔 = 𝑥𝐴 and ℎ = 𝑦𝐵, that is, 𝜔 = 𝑔(𝑑𝑥/𝑥) + ℎ(𝑑𝑦/𝑦). We proceed by induction on 𝑁 .
If 𝑁 = 1, we have that 𝐸 = (𝑥1 = 0) where (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1) and

𝜎∗
1𝜔 = (𝜎∗

1𝑔 + 𝜎∗
1ℎ)(𝑑𝑥1/𝑥1) + 𝜎∗

1(ℎ)(𝑑𝑦1/𝑦1).

Then 𝜈𝐸(𝜔) = min{𝜈𝐸(𝜎∗
1𝑔 + 𝜎∗

1ℎ), 𝜈𝐸(𝜎∗
1ℎ)} = min{𝜈𝐸(𝑔), 𝜈𝐸(ℎ)} and as desired. If 𝑁 ≥ 2, then

𝜈𝐸(𝜔) = 𝜈𝐸(𝜋∗𝜔) = 𝜈𝐸(𝜌∗2(𝜎∗
1𝜔)) = 𝜈𝐸(𝜎∗

1𝜔).

By induction hypothesis, we have

𝜈𝐸(𝜎∗
1𝜔) = min{𝜈𝐸(𝜎∗

1𝑔 + 𝜎∗
1ℎ), 𝜈𝐸(𝜎∗

1ℎ)} = min{𝜈𝐸(𝑔), 𝜈𝐸(ℎ)}

and we are finished. □
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Corollary 2.3.8. Given 𝑓 ∈ 𝒪𝑀0 ,𝑃0 with 𝑓 (𝑃0) = 0 and 𝜔 = 𝑑𝑓 , then 𝜈𝐸(𝜔) = 𝜈𝐸( 𝑓 ).

Proof. If we write 𝑓 =
∑

𝛼,𝛽≥1 ℎ𝛼𝛽𝑥
𝛼𝑦𝛽, then we have that

𝑥 𝑓𝑥 =

∑
𝛼,𝛽

𝛼ℎ𝛼𝛽𝑥
𝛼𝑦𝛽; 𝑦 𝑓𝑦 =

∑
𝛼,𝛽

𝛽ℎ𝛼𝛽𝑥
𝛼𝑦𝛽 .

By Proposition 2.3.7, we have that 𝜈𝐸(𝑑𝑓 ) = min{𝜈𝐸(𝑥 𝑓𝑥), 𝜈𝐸(𝑦 𝑓𝑦)}. Now, by Proposition 2.3.2,
we obtain that

min{𝜈𝐸(𝑥 𝑓𝑥), 𝜈𝐸(𝑦 𝑓𝑦)} = min{𝑛𝛼 + 𝑚𝛽 : 𝛼ℎ𝛼𝛽 ≠ 0 or 𝛽ℎ𝛼𝛽 ≠ 0}.

Since 𝑓 (𝑃0) = 0, the condition 𝛼ℎ𝛼𝛽 ≠ 0 or 𝛽ℎ𝛼𝛽 ≠ 0, is equivalent to ℎ𝛼𝛽 ≠ 0. Concluding the
desired result. □

Similarly, we show that

Proposition 2.3.9. Consider a differential 2-form 𝜂 = 𝑔𝑑𝑥 ∧ 𝑑𝑦 ∈ Ω2
𝑀0 ,𝑃0

, that we can write as

𝜔 = 𝑥𝑦𝑔(𝑑𝑥/𝑥) ∧ (𝑑𝑦/𝑦) ∈ Ω2
𝑀0 ,𝑃0

[log𝐻0].

Then, we have that 𝜈𝐸(𝜂) = 𝜈𝐸(𝑥𝑦𝑔).

Proof. As in the proof of Proposition 2.3.7, we use an inductive argument on the length 𝑁 of the
sequence of blow-ups 𝜋. If 𝑁 = 1, we take coordinates (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1), such that 𝐸 is defined
by 𝑥1 = 0. Additionally, we see that

𝜎∗
1𝜂 = 𝜎∗

1(𝑥𝑦𝑔)𝑑𝑥1/𝑥1 ∧ 𝑑𝑦1/𝑦1.

Showing the desired result.
Finally, if 𝑁 ≥ 2, we have that

𝜈𝐸(𝜂) = 𝜈𝐸(𝜋∗𝜂) = 𝜈𝐸(𝜌∗2(𝜎∗
1𝜂)) = 𝜈𝐸(𝜎∗

1𝜂).

By induction hypothesis, we have that

𝜈𝐸(𝜎∗
1𝜂) = 𝜈𝐸(𝜎∗

1(𝑥𝑦𝑔)) = 𝜈𝐸(𝑥𝑦𝑔).

□

Corollary 2.3.10. Consider 𝜔, 𝜔′ ∈ Ω1
𝑀0 ,𝑃0

, then we have that

𝜈𝐸(𝜔) + 𝜈𝐸(𝜔′) ≤ 𝜈𝐸(𝜔 ∧ 𝜔′).

Proof. Let us write

𝜔 = 𝑥𝐴(𝑑𝑥/𝑥) + 𝑦𝐵(𝑑𝑦/𝑦); 𝜔′ = 𝑥𝐴′(𝑑𝑥/𝑥) + 𝑦𝐵′(𝑑𝑦/𝑦),

then we have that
𝜔 ∧ 𝜔′ = (𝑥𝐴𝑦𝐵′ − 𝑥𝐴′𝑦𝐵)𝑑𝑥/𝑥 ∧ 𝑑𝑦/𝑦.

By Propositions 2.3.7 and 2.3.9, we get that

𝜈𝐸(𝜔 ∧ 𝜔′) = 𝜈𝐸(𝑥𝐴𝑦𝐵′ − 𝑥𝐴′𝑦𝐵) ≥ min{𝜈𝐸(𝑥𝐴) + 𝜈𝐸(𝑦𝐵′), 𝜈𝐸(𝑥𝐴′) + 𝜈𝐸(𝑦𝐵)}
≥ min{𝜈𝐸(𝑥𝐴), 𝜈𝐸(𝑦𝐵)} + min{𝜈𝐸(𝑥𝐴′), 𝜈𝐸(𝑦𝐵′)} = 𝜈𝐸(𝜔) + 𝜈𝐸(𝜔′).

□
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Remark 2.3.11. Propositions 2.3.7 and 2.3.9 show that we can compute divisorial values of
logarithmic forms in terms of their coefficients. In the cuspidal case, by Proposition 2.3.2, we
have that the divisorial value of a function can be seen as a monomial value. Therefore, we can
extend this monomial valuation to consider 1-forms and 2-forms.

We are not only interested on the divisorial values, but also on the terms of the coefficients
that they determine. They are what we call initial parts and we procced to define them.

2.3.2 Weighted Initial Parts

From now on, we assume that (𝑥, 𝑦) is a local system of coordinates with respect to the cuspidal
sequence 𝜋 = 𝜋𝑛,𝑚

𝑦 , with cuspidal divisor 𝐷 = 𝐸. Consider a non zero germ ℎ ∈ 𝒪𝑀0 ,𝑃0 that we
write as ℎ =

∑
𝛼,𝛽 ℎ𝛼𝛽𝑥

𝛼𝑦𝛽. Suppose that 𝑞 = 𝜈𝐷(ℎ). We define the weighted initial part In𝑛,𝑚;𝑥,𝑦(ℎ)
by

In𝑛,𝑚;𝑥,𝑦(ℎ) =
∑

𝑛𝛼+𝑚𝛽=𝑞

ℎ𝛼𝛽𝑥
𝛼𝑦𝛽 .

We can write
ℎ = In𝑛,𝑚;𝑥,𝑦(ℎ) + ℎ̃ , 𝜈𝐷(ℎ̃) > 𝑞.

This definition extends to logarithmic differential 1-forms 𝜔 ∈ Ω1
𝑀0 ,𝑃0

[log(𝐻0)] as follows. If
𝑞 = 𝜈𝐷(𝜔), we write

𝜔 = 𝑓 (𝑑𝑥/𝑥) + 𝑔(𝑑𝑦/𝑦); 𝑓 =
∑

𝛼≥1,𝛽≥0
𝑓𝛼𝛽𝑥

𝛼𝑦𝛽 , 𝑔 =

∑
𝛼≥0,𝛽≥1

𝑔𝛼𝛽𝑥
𝛼𝑦𝛽 .

We define
In𝑛,𝑚;𝑥,𝑦(𝜔) =

∑
𝑛𝛼+𝑚𝛽=𝑞

𝑥𝛼𝑦𝛽( 𝑓𝛼𝛽𝑑𝑥/𝑥 + 𝑔𝛼𝛽𝑑𝑦/𝑦).

As before, we have 𝜔 = In𝑛,𝑚;𝑥,𝑦(𝜔) + 𝜔̃, with 𝜈𝐷(𝜔̃) > 𝑞. When there is no confusion on the
Puiseux pair (𝑛, 𝑚) and the coordinate system, we just write In(−) instead of In𝑛,𝑚;𝑥,𝑦(−).

Remark 2.3.12. Note that the definition of initial part can be made in terms of graduated rings
and modules to be free of coordinates. Nonetheless, this “coordinate-based” definition is enough
for our purposes.

Next proposition shows the behaviour of the initial part under blow-up.

Proposition 2.3.13. Assume that 𝑁 > 1, take 𝜔 ∈ Ω1
𝑀0 ,𝑃0

[log(𝐻0)]. If 𝑊 = In𝑛,𝑚;𝑥,𝑦(𝜔), then
𝜎∗

1(𝑊) = In𝑛1 ,𝑚1;𝑥1 ,𝑦1(𝜎∗
1𝜔), where (𝑥1 , 𝑦1) is a local system of adapted coordinates in a chart of (𝑀1 , 𝐸

1),
with respect to the intermediate sequence of blow-ups 𝜌2.

Proof. Put 𝑞 = 𝜈𝐷(𝜔) and denote by ℓ the index of freeness of 𝜋. There are two cases: either
ℓ = 1 or ℓ ≥ 2. If ℓ ≥ 2, then we consider the Puiseux pair of 𝜌2 is given by (𝑛1 , 𝑚1) = (𝑛, 𝑚 − 𝑛)
and the coordinate system is defined by (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). Now we write

𝜔 =

( ∑
𝛼,𝛽≥0

𝑎𝛼+1𝛽𝑥
𝛼𝑦𝛽

)
𝑑𝑥 +

( ∑
𝛼,𝛽≥0

𝑏𝛼𝛽+1𝑥
𝛼𝑦𝛽

)
𝑑𝑦,

and we have that in the local system (𝑥1 , 𝑦1),

𝜎∗
1(𝜔) =

( ∑
𝛼,𝛽≥0

(𝑎𝛼+1𝛽 + 𝑏𝛼+1𝛽)𝑥𝛼+𝛽𝑦𝛽
)
𝑑𝑥 +

( ∑
𝛼,𝛽≥0

𝑏𝛼𝛽+1𝑥
𝛼+𝛽𝑦𝛽

)
𝑑𝑦.

Note that 𝑛𝛼 +𝑚𝛽 = 𝑞 is equivalent to 𝑛(𝛼 + 𝛽) + (𝑚 − 𝑛)𝛽 = 𝑞. Hence, just by doing a standard
computation, we show that 𝜎∗

1(𝑊) = In𝑛1 ,𝑚1;𝑥1 ,𝑦1(𝜎∗
1𝜔).

If ℓ = 1, we do the same, but in this case (𝑥, 𝑦) = (𝑥1𝑦1 , 𝑦1) and (𝑛1 , 𝑚1) = (𝑚 − 𝑛, 𝑛). □
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Now, consider a 1-form 𝜂 whose initial part is given by

In𝑛,𝑚;𝑥,𝑦(𝜂) = 𝑥𝑎𝑦𝑏
{
𝜇
𝑑𝑥

𝑥
+ 𝜁

𝑑𝑦

𝑦

}
.

We say that 𝜂 is resonant if and only if 𝑛𝜇 + 𝑚𝜁 = 0.
The next proposition shows the relationship between the divisorial value of a function (resp.

1-form) with its intersection multiplicity (resp. differential values) with a cusp, as explained in
Chapter 1.

Proposition 2.3.14. Consider 𝐶 a 𝐷-cusp in (𝑀0 , 𝑃0) with Puiseux pair (𝑛, 𝑚), for any function
𝑔 ∈ 𝒪𝑀0 ,𝑃0 we have the following:

a) 𝜈𝐶(𝑔) ≥ 𝜈𝐷(𝑔).
b) If 𝜈𝐶(𝑔) > 𝜈𝐷(𝑔), then 𝜈𝐷(𝑔) ≥ 𝑛𝑚.

Similarly, for any 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, we have that

a’) 𝜈𝐶(𝜔) ≥ 𝜈𝐷(𝜔).
b’) If 𝜈𝐶(𝜔) > 𝜈𝐷(𝜔) and 𝜈𝐷(𝜔) < 𝑛𝑚, then 𝜔 is resonant.

The proof is based on the following remark.

Remark 2.3.15. Given (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ Z≥0, such that 𝑛𝑎 + 𝑚𝑏 = 𝑛𝑎′ + 𝑚𝑏′ = 𝑐 < 𝑛𝑚, then we
have that (𝑎, 𝑏) = (𝑎′, 𝑏′).

Proof. Since (𝑥, 𝑦) is an adapted system of coordinates with respect to 𝜋𝑛,𝑚
𝑦 , then we can take

a primitive parametrization of 𝐶 of the form (𝑡𝑛 , 𝑣(𝑡)𝑡𝑚), with 𝑣(𝑡) ∈ C{𝑡} a unit, see Equation
(1.8). Take 𝐴, 𝐵 two different monomials, Statements a) and a’) follow by noting that:

1. 𝜈𝐶(𝑥𝑎𝑦𝑏) = 𝜈𝐷(𝑥𝑎𝑦𝑏) = 𝑛𝑎 + 𝑚𝑏.
2. 𝜈𝐶(𝐴 + 𝐵) ≥ min{𝜈𝐶(𝐴), 𝜈𝐶(𝐵)}.
3. By Proposition 2.3.2, we have that 𝜈𝐷(𝐴 + 𝐵) = min{𝜈𝐷(𝐴), 𝜈𝐷(𝐵)}.

Now, for Statement b), assume that 𝜈𝐷(𝑔) < 𝑛𝑚, then by Remark 2.3.15, we can write In𝑛,𝑚;𝑥,𝑦(𝑔) =
𝐴, with 𝐴 a monomial. We see that 𝜈𝐶(𝑔) = 𝜈𝐶(𝐴) = 𝜈𝐷(𝐴). This is because of Statement a) and
items 1.- 3.

Finally, for Statement b’), consider a 1-form 𝜔 whose divisorial value is smaller than 𝑛𝑚,
then we have that

In𝑛,𝑚;𝑥,𝑦(𝜔) = 𝜂 = 𝑥𝑎𝑦𝑏
{
𝜇
𝑑𝑥

𝑥
+ 𝜁

𝑑𝑦

𝑦

}
.

Just a mere computation shows that 𝜈𝐶(𝜂) > 𝜈𝐷(𝜂) = 𝜈𝐷(𝜔) if and only if 𝜂 is resonant. As in
Statement b), we show that if 𝜂 is non resonant, then 𝜈𝐶(𝜔) = 𝜈𝐶(𝜂) = 𝜈𝐷(𝜂) = 𝜈𝐷(𝜔). □

In Proposition 2.3.14 Statement a’), we can give an interpretation on whether we have an
inequality instead of an equality.

Proposition 2.3.16. Let 𝐶 be a 𝐷-cusp in (𝑀0 , 𝑃0). Consider 𝜙(𝑡) = (𝑡𝑛 , 𝑎𝑡𝑚 + ℎ.𝑜.𝑡) = (𝑡𝑛 , 𝑣(𝑡)𝑡𝑚)
a primitive parametrization of 𝐶, and take 𝜔 ∈ Ω1

𝑀0 ,𝑃0
. We have that the curve 𝐶̃ defined by the

primitive parametrization 𝜙̃(𝑡) = (𝑡𝑛 , 𝑎𝑡𝑚) is invariant by the 1-form 𝜂 = In𝑛,𝑚;𝑥,𝑦(𝜔) if and only if
𝜈𝐶(𝜔) > 𝜈𝐷(𝜔).
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Proof. Denote by 𝑞0 = 𝜈𝐷(𝜔) and write

𝜔 = 𝜂 +
∑
𝑞>𝑞0

𝜔𝑞 ,

in such a way In𝑛,𝑚;𝑥,𝑦(𝜔𝑞) = 𝜔𝑞 and 𝜈𝐷(𝜔𝑞) = 𝑞 for all 𝑞 > 𝑞0. We notice that, for any 1-form
𝜃 such that In𝑛,𝑚;𝑥,𝑦(𝜃) = 𝜃, we have that 𝜙̃∗(𝜃) = 𝛼𝑡𝑞−1𝑑𝑡, with 𝛼 ∈ C and 𝑞 = 𝜈𝐷(𝜃). Besides,
we also see that 𝜙∗(𝜃) = 𝑡𝑞−1(𝛼 + ℎ.𝑜.𝑡.)𝑑𝑡. This applies to the terms 𝜔𝑞 and 𝜂. If we write
𝜙̃∗(𝜂) = 𝜇𝑡𝑞0−1𝑑𝑡, then we have that 𝐶̃ is invariant by 𝜂 if and only 𝜇 = 0. The condition 𝜇 = 0 is
equivalent to 𝜈𝐶(𝜔) > 𝜈𝐷(𝜔). □

2.4 Basic and Pre-basic 1-Forms

This section is devoted to characterize the 1-forms 𝜔 ∈ Ω1
𝑀0 ,𝑃0

whose total transform 𝜋∗𝜔 defines
a foliation that is transverse to 𝐷, and which has normal crossings with 𝐸𝑁 at every point of 𝐷.

2.4.1 Reduced Divisorial Value and Basic 1-Forms

Let us consider a non null differential 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

. Let 𝑉𝜔 = 𝑥𝑎𝑦𝑏 be the monomial
defined by the property that 𝜔 = 𝑉𝜔𝜂, where 𝜂 ∈ Ω1

𝑀0 ,𝑃0
[log(𝐻0)] is a logarithmic form that

cannot be divided by any nonconstant monomial. We define the reduced divisorial value rdv𝐷(𝜔)
to be rdv𝐷(𝜔) = 𝜈𝐷(𝜂).

Definition 2.4.1. We say that 𝜔 ∈ Ω1
𝑀0 ,𝑃0

is a basic 1-form if and only if its reduced divisorial value
satisfies that rdv𝐷(𝜔) < 𝑛𝑚.

Given 𝜔 a basic 1-form, then the initial part of 𝜔 can be written as

In𝑛,𝑚;𝑥,𝑦(𝜔) = 𝑥𝑎𝑦𝑏𝑊, where 𝑊 = In𝑛,𝑚;𝑥,𝑦(𝜂).

If 𝜔 is a basic 1-form with 𝜔 = 𝑉𝜔𝜂. By Remark 2.3.15, there is exactly one pair (𝑐, 𝑑) ∈ Z2
≥0 such

that 𝑐𝑛 + 𝑑𝑚 = 𝜈𝐷(𝜂) < 𝑛𝑚, then we have that

𝑊 = 𝑥𝑐𝑦𝑑
{
𝜇
𝑑𝑥

𝑥
+ 𝜁

𝑑𝑦

𝑦

}
.

Now we show that being basic is preserved by blow-up.

Proposition 2.4.2. Assume that 𝑁 ≥ 2 and take 𝜔 ∈ Ω1
𝑀0 ,𝑃0

. If 𝜔 is a basic 1-form, then 𝜎∗
1𝜔 is also a

basic 1-form.

Proof. Write 𝜔 = 𝑉𝜔𝜂 as before and denote 𝑞 = rdv𝐷(𝜔) = 𝜈𝐷(𝜂) < 𝑛𝑚. Recall that 𝜈𝐷(𝜂) =
𝜈𝐷(𝜎∗

1𝜂). Since monomials are well behaved under the point center blow-up 𝜎1, it is enough to
show that there are 𝑐, 𝑑 ≥ 0 such that 𝜎∗

1𝜂 = 𝑥𝑐1𝑦
𝑑
1𝜂

′, with 𝜈𝐷(𝜂′) < 𝑛1𝑚1, where (𝑛1 , 𝑚1) is the
Puiseux pair of 𝜌2 and (𝑥1 , 𝑦1) a system of adapted coordinates with respect to 𝜌2. Write

𝜂 =

∑
𝛼,𝛽

𝑥𝛼𝑦𝛽𝜂𝛼𝛽 , where 𝜂𝛼𝛽 = 𝜇𝛼𝛽
𝑑𝑥

𝑥
+ 𝜁𝛼𝛽

𝑑𝑦

𝑦
, and (𝜇𝛼𝛽 , 𝜁𝛼𝛽) ∈ C2.

Recall that 𝑞 = min{𝑛𝛼 + 𝑚𝛽; 𝜂𝛼𝛽 ≠ 0}. Put 𝑟 = min{𝛼 + 𝛽; 𝜂𝛼𝛽 ≠ 0}, that is, 𝑟 = 𝜈𝑃0(𝜂) + 1. We
have two cases: ℓ = 1 and ℓ ≥ 2, where ℓ is the index of freeness of 𝜋𝑛,𝑚

𝑦 .
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Assume first that ℓ ≥ 2 and hence 2𝑛 ≤ 𝑚. In this situation, we have that (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1),
𝑛1 = 𝑛, 𝑚1 = 𝑚 − 𝑛 ≥ 𝑛 and

𝜎∗
1(𝜂) = 𝑥𝑟1𝜂

′, where 𝜂′ =
∑
𝛼,𝛽

𝑥
𝛼+𝛽−𝑟
1 𝑦

𝛽
1𝜂

′
𝛼𝛽 , with 𝜂′𝛼𝛽 =

(
𝜇𝛼𝛽 + 𝜁𝛼𝛽

) 𝑑𝑥1
𝑥1

+ 𝜁𝛼𝛽
𝑑𝑦1

𝑦1
.

We only need to check that 𝜈𝐷(𝜂′) < 𝑛1𝑚1. Note that 𝜂′𝛼𝛽 ≠ 0 if and only if 𝜂𝛼𝛽 ≠ 0. Hence, we
have that

𝜈𝐷(𝜂′) = min{𝑛1(𝛼 + 𝛽 − 𝑟) + 𝑚1𝛽; 𝜂𝛼𝛽 ≠ 0} =

= min{𝑛(𝛼 + 𝛽 − 𝑟) + (𝑚 − 𝑛)𝛽; 𝜂𝛼𝛽 ≠ 0} =

= min{𝑛𝛼 + 𝑚𝛽 − 𝑛𝑟; 𝜂𝛼𝛽 ≠ 0} = 𝑞 − 𝑛𝑟.

We have to verify that 𝑞 − 𝑛𝑟 < 𝑛1𝑚1, where 𝑛1𝑚1 = 𝑛(𝑚 − 𝑛) = 𝑛𝑚 − 𝑛2. If 𝑟 ≥ 𝑛, the result
follows since by hypothesis we have that 𝑞 < 𝑛𝑚. Assume that 𝑟 < 𝑛. There are 𝛼̃, 𝛽̃ with
𝜂𝛼̃𝛽̃ ≠ 0 such that 𝛼̃ + 𝛽̃ = 𝑟. Then

𝑞 − 𝑛𝑟 ≤ 𝑛𝛼̃ + 𝑚𝛽̃ − 𝑛𝑟 = 𝑛(𝛼̃ + 𝛽̃) + (𝑚 − 𝑛)𝛽̃ − 𝑛𝑟 =

= (𝑚 − 𝑛)𝛽̃ < (𝑚 − 𝑛)𝑛,

since 𝛽̃ ≤ 𝑟 < 𝑛.
Assume now that ℓ = 1 and thus 𝑛 < 𝑚 < 2𝑛. We have that (𝑥, 𝑦) = (𝑦1 , 𝑥1𝑦1), 𝑛1 = 𝑚−𝑛 < 𝑛,

𝑚1 = 𝑛 and

𝜎∗
1(𝜂) = 𝑦𝑟1𝜂

′′, where 𝜂′′ =
∑
𝛼,𝛽

𝑥
𝛽
1 𝑦

𝛼+𝛽−𝑟
1 𝜂′′𝛼𝛽 , with 𝜂′′𝛼𝛽 = 𝜁𝛼𝛽

𝑑𝑥1
𝑥1

+
(
𝜇𝛼𝛽 + 𝜁𝛼𝛽

) 𝑑𝑦1

𝑦1
.

Again, we have to verify that 𝜈𝐷(𝜂′) < 𝑛1𝑚1. As before, we have that 𝜂′′𝛼𝛽 ≠ 0 if and only if
𝜂𝛼𝛽 ≠ 0. Hence

𝜈𝐷(𝜂′′) = min{𝑛1𝛽 + 𝑚1(𝛼 + 𝛽 − 𝑟); 𝜂𝛼𝛽 ≠ 0} =

= min{(𝑚 − 𝑛)𝛽 + 𝑛(𝛼 + 𝛽 − 𝑟); 𝜂𝛼𝛽 ≠ 0} =

= min{𝑚𝛽 + 𝑛𝛼 − 𝑛𝑟; 𝜂𝛼𝛽 ≠ 0} = 𝑞 − 𝑛𝑟.

We show that 𝑞 − 𝑛𝑟 < 𝑛1𝑚1 exactly as before. □

We have the next result that follows directly from the computations in the proof of Proposition
2.4.2:

Corollary 2.4.3. Assume that 𝑁 ≥ 2. A basic differential 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

is resonant if and only if
𝜎∗

1𝜔 is resonant.

2.4.2 Pre-Basic 1-Forms

Let us introduce a slightly more general class of 1-forms that we call pre-basic forms. Consider the
pair of coprime positive integers (𝑛, 𝑚), with 1 ≤ 𝑛 ≤ 𝑚. There are unique 𝑏, 𝑑 ∈ Z≥0 such that
𝑑𝑛 − 𝑏𝑚 = 1 with the property that 0 ≤ 𝑏 < 𝑛 and 0 < 𝑑 ≤ 𝑚. We call (𝑏, 𝑑) the co-pair of (𝑛, 𝑚).

Definition 2.4.4. We define the region 𝑅𝑛,𝑚 by 𝑅𝑛,𝑚 = 𝐻𝑛,𝑚
− ∩ 𝐻𝑛,𝑚

+ , where

𝐻𝑛,𝑚
− = {(𝛼, 𝛽) ∈ R2; (𝑛 − 𝑏)𝛼 + (𝑚 − 𝑑)𝛽 ≥ 0},

𝐻𝑛,𝑚
+ = {(𝛼, 𝛽) ∈ R2; 𝑏𝛼 + 𝑑𝛽 ≥ 0},

and (𝑏, 𝑑) is the co-pair of (𝑛, 𝑚).
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Remark 2.4.5. If 𝑛 = 𝑚 = 1, the co-pair of (1, 1) is (𝑏, 𝑑) = (0, 1). Then

𝐻1,1
− = {(𝛼, 𝛽); 𝛼 ≥ 0}, 𝐻1,1

+ = {(𝛼, 𝛽); 𝛽 ≥ 0}.

Thus, we have that 𝑅1,1 is the quadrant 𝑅1,1 = R2
≥0.

Remark 2.4.6. The slopes −(𝑛 − 𝑏)/(𝑚 − 𝑑) and −𝑏/𝑑 satisfy that

−(𝑛 − 𝑏)/(𝑚 − 𝑑) < −𝑛/𝑚 < −𝑏/𝑑.

Indeed, we have −𝑛/𝑚 < −𝑏/𝑑 if and only if −𝑑𝑛 < −𝑚𝑏 = −𝑑𝑛 + 1. On the other hand

−(𝑛 − 𝑏)/(𝑚 − 𝑑) < −𝑛/𝑚 ⇔ 𝑚(𝑛 − 𝑏) > 𝑛(𝑚 − 𝑑) ⇔ 𝑏𝑚 < 𝑑𝑛 = 𝑏𝑚 + 1.

We conclude that 𝑅𝑛,𝑚 is a positively convex region of R2 such that (0, 0) is its only vertex
and we have that

𝑅𝑛,𝑚 ∩ {(𝛼, 𝛽) ∈ R2; 𝑛𝛼 + 𝑚𝛽 = 0} = {(0, 0)}.

Given a point (𝑎, 𝑏) ∈ R2
≥0, we define 𝑅𝑛,𝑚(𝑎, 𝑏) by 𝑅𝑛,𝑚(𝑎, 𝑏) = 𝑅𝑛,𝑚 + (𝑎, 𝑏).

Fix (𝑥, 𝑦) a local system of coordinates at (𝑀0 , 𝑃0). Given a 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, we write it as
𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦. The Newton cloud of 𝜔 is defined by

𝒩𝒞 𝑥,𝑦(𝜔) = 𝒩𝒞 𝑥,𝑦(𝑥𝐴) ∪ 𝒩𝒞 𝑥,𝑦(𝑦𝐵),

and the Newton polygon of 𝜔 is given by

𝒩𝒫 𝑥,𝑦(𝜔) := convex hull of
( ⋃
(𝑖 , 𝑗)∈𝒩𝒞 𝑥,𝑦 (𝜔)

((𝑖 , 𝑗) + (R≥0)2)
)
.

Definition 2.4.7. We say that 𝜔 ∈ Ω1
𝑀0 ,𝑃0

is a pre-basic 1-form if and only if there is a point
(𝑎, 𝑏) ∈ 𝒩𝒞 𝑥,𝑦(𝜔) such that 𝒩𝒞 𝑥,𝑦(𝜔) ⊂ 𝑅𝑛,𝑚(𝑎, 𝑏).

If 𝜔 is pre-basic, we have that

𝒩𝒞 𝑥,𝑦(𝜔) ∩ {(𝛼, 𝛽) ∈ R2; 𝑛𝛼 + 𝑚𝛽 = 𝜈𝐷(𝜔)} = {(𝑎, 𝑏)}.

Thus, similar to the case of basic 1-forms, the initial part 𝑊 of 𝜔 has the form

𝑊 = 𝑥𝑎𝑦𝑏
{
𝜇𝑎𝑏

𝑑𝑥

𝑥
+ 𝜁𝑎𝑏

𝑑𝑦

𝑦

}
. (2.4)

Example 2.4.8. We consider the pair (5, 8), whose co-pair is (5, 3). The 1-form

𝜔 = 𝑥3𝑑𝑦 + 𝑥2𝑦𝑑𝑥 − 7𝑥5𝑑𝑥 + 11𝑦5𝑑𝑦

is pre-basic, as we can see in the following figure.

Next lemma shows the behaviour of the co-pairs under blow-up.

Lemma 2.4.9. Let us consider a pair (𝑛, 𝑚) with 1 ≤ 𝑛 < 𝑚 and 𝑛, 𝑚 are without common factor. Let
(𝑏, 𝑑) be the co-pair of (𝑛, 𝑚). We have that

• If 𝑚 ≥ 2𝑛 and we put (𝑛1 , 𝑚1) = (𝑛, 𝑚 − 𝑛), then the co-pair of (𝑛1 , 𝑚1) is (𝑏1 , 𝑑1) = (𝑏, 𝑑 − 𝑏).
• If 𝑚 < 2𝑛 and we put (𝑛1 , 𝑚1) = (𝑚 − 𝑛, 𝑛), then the co-pair of (𝑛1 , 𝑚1) is (𝑏1 , 𝑑1) =

(𝑚 − 𝑛 − 𝑑 + 𝑏, 𝑛 − 𝑏).
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Figure 2.2: Newton polygon of 𝜔, the dashed lines mark the borders of the region 𝑅5,8(1, 3).

Moreover, we have that Ψ(𝑅𝑛,𝑚) = 𝑅𝑛1 ,𝑚1 , where Ψ is the linear automorphism of R2 given by
Ψ(𝛼, 𝛽) = (𝛼 + 𝛽, 𝛽), if 𝑚 ≥ 2𝑛, and Ψ(𝛼, 𝛽) = (𝛽, 𝛼 + 𝛽), if 𝑚 < 2𝑛.

Proof. Let us show the first two statements. If 𝑚 ≥ 2𝑛, we have that

𝑑1𝑛1 − 𝑏1𝑚1 = (𝑑 − 𝑏)𝑛 − 𝑏(𝑚 − 𝑛) = 1.

Moreover, since 0 ≤ 𝑏1 = 𝑏 < 𝑛1 = 𝑛 we conclude that (𝑏1 , 𝑑1) is the co-pair of (𝑛1 , 𝑚1), in view
of Remark 2.3.15. If 𝑚 < 2𝑛, we have

𝑑1𝑛1 − 𝑏1𝑚1 = (𝑛 − 𝑏)(𝑚 − 𝑛) − (𝑚 − 𝑛 − 𝑑 + 𝑏)𝑛 = 1.

We know that 0 ≤ 𝑏 < 𝑛, hence 0 < 𝑑1 = 𝑛 − 𝑏 ≤ 𝑚1 = 𝑛 and by Remark 2.3.15, we deduce that
(𝑏1 , 𝑑1) is the co-pair of (𝑛1 , 𝑚1).

Now consider (𝛼, 𝛽) ∈ R2 and put (𝛼1 , 𝛽1) = Ψ(𝛼, 𝛽).
Case 𝑚 ≥ 2𝑛. In order to prove that Ψ(𝑅𝑛,𝑚) = 𝑅𝑛1 ,𝑚1 it is enough to see that

(𝛼, 𝛽) ∈ 𝐻𝑛,𝑚
− ⇔ (𝛼1 , 𝛽1) ∈ 𝐻𝑛1 ,𝑚1− and (𝛼, 𝛽) ∈ 𝐻𝑛,𝑚

+ ⇔ (𝛼1 , 𝛽1) ∈ 𝐻
𝑛1 ,𝑚1
+ .

We verify these properties as follows:

(𝛼1 , 𝛽1) ∈ 𝐻𝑛1 ,𝑚1− ⇔ (𝑛1 − 𝑏1)𝛼1 + (𝑚1 − 𝑑1)𝛽1 ≥ 0 ⇔
⇔ (𝑛 − 𝑏)(𝛼 + 𝛽) + (𝑚 − 𝑛 − 𝑑 + 𝑏)𝛽 ≥ 0 ⇔
⇔ (𝑛 − 𝑏)𝛼 + (𝑚 − 𝑑)𝛽 ≥ 0 ⇔ (𝛼, 𝛽) ∈ 𝐻𝑛,𝑚

− .

(𝛼1 , 𝛽1) ∈ 𝐻
𝑛1 ,𝑚1
+ ⇔ 𝑏1𝛼1 + 𝑑1𝛽1 ≥ 0 ⇔

⇔ 𝑏(𝛼 + 𝛽) + (𝑑 − 𝑏)𝛽 ≥ 0 ⇔
⇔ 𝑏𝛼 + 𝑑𝛽 ≥ 0 ⇔ (𝛼, 𝛽) ∈ 𝐻𝑛,𝑚

+ .

Case 𝑚 < 2𝑛. In this case, we have that

(𝛼, 𝛽) ∈ 𝐻𝑛,𝑚
+ ⇔ (𝛼1 , 𝛽1) ∈ 𝐻𝑛1 ,𝑚1− (2.5)

(𝛼, 𝛽) ∈ 𝐻𝑛,𝑚
− ⇔ (𝛼1 , 𝛽1) ∈ 𝐻

𝑛1 ,𝑚1
+ . (2.6)

and this also implies that Ψ(𝑅𝑛,𝑚) = 𝑅𝑛1 ,𝑚1 . We verify the properties in Equations (2.5) and (2.6)
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as follows:

(𝛼1 , 𝛽1) ∈ 𝐻𝑛1 ,𝑚1− ⇔ (𝑛1 − 𝑏1)𝛼1 + (𝑚1 − 𝑑1)𝛽1 ≥ 0 ⇔
⇔ (𝑚 − 𝑛 − (𝑚 − 𝑛 − 𝑑 + 𝑏))𝛽 + (𝑛 − 𝑛 + 𝑏)(𝛼 + 𝛽) ≥ 0 ⇔
⇔ 𝑑𝛽 + 𝑏𝛼 ≥ 0 ⇔ (𝛼, 𝛽) ∈ 𝐻𝑛,𝑚

+ .

(𝛼1 , 𝛽1) ∈ 𝐻
𝑛1 ,𝑚1
+ ⇔ 𝑏1𝛼1 + 𝑑1𝛽1 ≥ 0 ⇔

⇔ (𝑚 − 𝑛 − 𝑑 + 𝑏)𝛽 + (𝑛 − 𝑏)(𝛼 + 𝛽) ≥ 0 ⇔
⇔ (𝑚 − 𝑑)𝛽 + (𝑛 − 𝑏)𝛼 ≥ 0 ⇔ (𝛼, 𝛽) ∈ 𝐻𝑛,𝑚

− .

The proof is ended. □

Now we show the stability of being pre-basic under blow-up.

Proposition 2.4.10. Assume that 𝑁 ≥ 2. For any 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, we have that

1. 𝜔 is pre-basic if and only if 𝜎∗
1𝜔 is pre-basic.

2. 𝜔 is pre-basic and resonant if and only if 𝜎∗
1𝜔 is pre-basic and resonant.

Proof. We consider two cases as in the statement of Lemma 2.4.9, the case 𝑚 ≥ 2𝑛 and 𝑚 < 2𝑛
and we define the linear automorphism Ψ accordingly to these cases, as well as the Puiseux’s
pair (𝑛1 , 𝑚1). A monomial by monomial computation shows that

𝒩𝒞 𝑥,𝑦(𝜎∗
1𝜔) = Ψ(𝒩𝒞 𝑥,𝑦(𝜔)). (2.7)

In view of Lemma 2.4.9, we have that

Ψ(𝑅𝑛,𝑚(𝑎, 𝑏)) = 𝑅𝑛1 ,𝑚1(Ψ(𝑎, 𝑏)). (2.8)

Statement 1 is now a direct consequence of Equations (2.7) and (2.8). Statement 2 follows from
Statement 1 and Corollary 2.4.3. □

We end this section studying simple properties about basic and pre-basic 1-forms.

Proposition 2.4.11. Take a differential 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

. We have

1. If 𝑁 = 1, then 𝜔 is pre-basic if and only if it is basic.
2. If 𝜔 is basic then it is pre-basic.
3. If 𝜔 is basic and resonant then it is pre-basic and resonant.

Proof. If 𝑁 = 1, we have 𝑛 = 𝑚 = 1 and 𝑅1,1(𝑎, 𝑏) = (R)2≥0 + (𝑎, 𝑏). Then being basic is the same
property of being pre-basic: the Newton Polygon has a single vertex.

Assume now that 𝜔 is basic. In view of the stability result of basic 1-forms by blow-up given
in Proposition 2.4.2, we have that 𝜔̃ is basic, where 𝜔̃ is the pull-back of 𝜔 in the last center of
blow-up 𝑃𝑁−1 of the cuspidal sequence. By Statement 1, we have that 𝜔̃ is pre-basic. Now we
apply Proposition 2.4.10 to conclude that 𝜔 is pre-basic.

Statement 3 is easily deduced from Statement 2. □

2.5 Totally dicritical Forms

Consider a 1-form 𝜔 ∈ Ω1
𝑀𝑁

defined around the divisor cuspidal divisor 𝐷 of 𝜋𝑛,𝑚
𝑦 . Recall that

we have a normal crossings divisor 𝐻 such that 𝐻 ⊃ 𝐷, coming from our choice of adapted
coordinates, although if 𝑛 ≥ 2 the divisor 𝐻 around 𝐷 is intrinsically defined and it coincides
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with 𝐸𝑁 . We say that 𝜔 is totally 𝐷-dicritical with respect to 𝐻 if for any point 𝑃 ∈ 𝐷 there are
local coordinates (𝑢, 𝑣) such that 𝐷 = (𝑢 = 0), 𝐻 ⊂ (𝑢𝑣 = 0) and 𝜔 has the form

𝜔 = 𝑢𝑎𝑣𝑏𝑑𝑣,

where 𝑏 = 0 when 𝐻 = (𝑢 = 0). Note that 𝜔 defines a non-singular foliation around 𝐷, this
foliation has normal crossings with 𝐻 and 𝐷 is transverse to the leaves.

The property of being totally 𝐷-dicritical can be read in terms of having a resonant pre-basic
1-form.

Proposition 2.5.1. For any 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, the following properties are equivalent:

1. The 1-form 𝜔 is pre-basic and resonant.
2. 𝜋∗𝜔 is totally 𝐷-dicritical with respect to 𝐻.

The proof of Proposition 2.5.1 requires the use of a simple version of the Frobenius Theorem,
see [11] Theorem 2.4, and a technical lemma:

Theorem 2.5.2 (Frobenius Codimension 1). Let (𝑀,𝒪𝑀) be an analytic space of dimension 𝑟 ≥ 2
regular at a point 𝑃 ∈ 𝑀. Consider ℱ a regular foliation of codimension one in (𝑀, 𝑃) defined by a
1-form 𝜔 ∈ Ω1

𝑀,𝑃
. Then there are functions 𝑢, 𝑔 ∈ 𝒪𝑀,𝑃 , such that 𝑢 is a unit, 𝑃 is a regular point of 𝑑𝑔

and 𝜔 = 𝑢𝑑𝑔.

We will only use this theorem when the ambient space is two dimensional.

Lemma 2.5.3. Assume that 𝜔 ∈ Ω1
𝑀0 ,𝑃0

satisfies that 𝜋∗𝜔 is totally 𝐷-dicritical with respect to 𝐻.
Consider 𝑃𝑁−1 the last center point of 𝜋 and (𝑥𝑁−1 , 𝑦𝑁−1) a coordinate system at 𝑃𝑁−1, such that 𝐻𝑁−1

is locally defined by the implicit equation 𝑥𝑁−1𝑦𝑁−1 = 0. Denote by 𝜔𝑁−1 the strict transform of 𝜔 by
𝜋𝑁−1 at 𝑃𝑁−1. Then both 𝑥𝑁−1 = 0 and 𝑦𝑁−1 = 0 are invariant curves by 𝜔𝑁−1.

Proof. Denote by 𝜔𝑁 the strict transform of 𝜔 in (𝑀𝑁 , 𝐸
𝑁 ). After the last blow-up we obtain the

coordinate system (𝑥𝑁 , 𝑦𝑁 ) in a chart of (𝑀𝑁 , 𝐸
𝑁 ) defined by (𝑥𝑁−1 , 𝑦𝑁1) = (𝑥𝑁 , 𝑥𝑁 𝑦𝑁 ). Since

𝜋∗𝜔 is totally 𝐷-dicritical, then, at the point 𝑃 = (𝑥𝑁 = 0, 𝑦𝑁 = 0) there are coordinates (𝑢, 𝑣)
such that we can write locally 𝜔𝑁 as 𝜔𝑁 = 𝑑𝑣. Moreover, in this coordinate system the divisor
𝐻 is defined at 𝑃 by 𝑢𝑣 = 0, where 𝑢 = 0 is an implicit equation of the cuspidal divisor 𝐷. Note
that 𝐻 is also defined at 𝑃 by 𝑥𝑁 𝑦𝑁 = 0 with 𝑥𝑁 = 0 defining 𝐷 and 𝑦𝑁 = 0 the strict transform
of 𝑦𝑁−1 = 0 by 𝜎𝑁 . Thus, 𝑣 = 0 and 𝑦𝑁 = 0 are implicit equations of the same curve. Therefore,
𝑦𝑁 = 0 is invariant by 𝜔𝑁 . By Lemma 2.2.2 that is equivalent to say that 𝑦𝑁−1 = 0 is invariant by
𝜔𝑁−1.

By taking the coordinate system defined by (𝑥𝑁−1 , 𝑦𝑁−1) = (𝑥′
𝑁
𝑦′
𝑁
, 𝑦′

𝑁
), we show in a similar

way that 𝑥𝑁−1 = 0 is invariant by 𝜔𝑁−1. □

Proof Proposition 2.5.1. In view of the stability of the property “pre-basic and resonant” under
the successive blow-ups in the sequence 𝜋, see Proposition 2.4.10, it is enough to consider the
case when 𝑁 = 1. In this case we have a single blow-up.

Part 1: Statement 1 implies Statement 2

Assume that 𝜔 is pre-basic and resonant and let us see that 𝜋∗𝜔 is totally 𝐷-dicritical. By
definition of being pre-basic and resonant, we have that

𝜔 = ℎ(𝑥, 𝑦)𝑥𝑎𝑦𝑏

{
𝑑𝑥

𝑥
− 𝑑𝑦

𝑦

}
+

∑
𝛼+𝛽≥1

𝑥𝛼𝑦𝛽
{
𝜇𝛼𝛽

𝑑𝑥

𝑥
+ 𝜁𝛼𝛽

𝑑𝑦

𝑦

} , 𝑎, 𝑏 ≥ 1,
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where ℎ(0, 0) ≠ 0. Consider the local system of coordinates (𝑥1 , 𝑦1) defined locally in (𝑀1 , 𝐸
1),

and given by (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1). The case (𝑥, 𝑦) = (𝑥1𝑦1 , 𝑦1) is treated in a similar way. We show
first that the at point 𝑃 = (𝑥1 = 0, 𝑦1 = 0) there are coordinates (𝑢, 𝑣) such that 𝜋∗𝜔 = 𝑢𝛼𝑣𝛽𝑑𝑣.
Note that 𝐻 is defined by 𝑥1𝑦1 = 0. In this system of coordinates we have that

𝜋∗𝜔 = ℎ(𝑥1 , 𝑥1𝑦1)𝑥𝑎+𝑏1 𝑦𝑏1

−
𝑑𝑦1

𝑦1
+

∑
𝛼+𝛽≥1

𝑥
𝛼+𝛽
1 𝑦

𝛽
1

{
(𝜇𝛼𝛽 + 𝜁𝛼𝛽)

𝑑𝑥1
𝑥1

+ 𝜁𝛼𝛽
𝑑𝑦1

𝑦1

} .
Since 𝛼 + 𝛽 ≥ 1 and 𝑏 ≥ 1, then we see that the 1-form 𝜂 = ℎ−1𝑥−𝑎−𝑏1 𝑦𝑏−1

1 𝜋∗𝜔 is holomorphic and
can be written as

𝜂 = −𝑑𝑦1 + 𝑦1𝐴(𝑥1 , 𝑦1)𝑑𝑥1 + 𝑥1𝐵(𝑥1 , 𝑦1)𝑑𝑦1. (2.9)

By Theorem 2.5.2 there exist a unit 𝑢 and a function 𝑔, which can be assumed that 𝑔(0, 0) = 0,
such that 𝜂 = 𝑢𝑑𝑔. Note that 𝜂∧ 𝑑𝑦1 = 𝑦1𝐴(𝑥1 , 𝑦1)𝑑𝑥1 ∧ 𝑑𝑦1. This implies that 𝑦1 divides 𝑔. Since
𝑔 is regular at the point 𝑃 and 𝑔(0, 0) = 0, we conclude that 𝑔 = 𝑦1𝑣, where 𝑣 is another unit, in
particular 𝑥1 = 0 is transverse to 𝑔 = 0. Thus if we take the coordinate system (𝑥1 , 𝑔), then

𝜋∗𝜔 = 𝑢′𝑥𝑎+𝑏1 𝑔𝑏−1𝑑𝑔; where 𝑢′ is an appropriate unit.

Finally, taking the coordinate system (ℎ, 𝑔) with ℎ = 𝑥1(𝑢′)1/(𝑎+𝑏) we obtain the desired result.
Now consider the point 𝑄 = (𝑥1 = 0, 𝑦1 = 𝑞) with 𝑞 ≠ 0. The divisor 𝐻 at 𝑄 is defined by 𝑥1 = 0.
Consider the local coordinates 𝑥2 = 𝑥1 and 𝑦2 = 𝑦1 + 𝑞. By Equation (2.9), we have that

𝜂 = −𝑑𝑦2 + 𝐴(𝑥2 , 𝑦2)𝑑𝑥2 + 𝑥2𝐵(𝑥2 , 𝑦2)𝑑𝑦2.

Now, we have that terms of multiplicity 0 at 𝑄 of 𝜂 are −𝑑𝑦2 +𝜇𝑑𝑥2, where 𝜇 may not be 0. Again,
by Theorem 2.5.2, we write 𝜂 = 𝑢2𝑑𝑔2 with the same properties as before. As in the previous
case, 𝑥2 = 0 is transverse to 𝑔2 = 0, because 𝜂 ∧ 𝑑𝑥2 = (−1 − 𝑥2𝐵)𝑑𝑥2 ∧ 𝑑𝑦2. Hence we can take
the coordinate system (𝑥2 , 𝑔2), obtaining that

𝜋∗𝜔 = 𝑢′
2𝑥

𝑎+𝑏
2 𝑑𝑔2; where 𝑢′

2 is an appropriate unit.

Note that 𝑦1 is a unit when seeing as an element of C{𝑥2 , 𝑔2}. We conclude as before, ending the
first part of the proof.

Part 2: Statement 2 implies Statement 1

Now assume that 𝜋∗𝜔 is totally 𝐷-dicritical, we are going to show that 𝜔 is pre-basic and
resonant. Suppose that 𝜔 is not pre-basic, and write 𝜔 = 𝑥𝑐𝑦𝑑𝜂, with 𝜂 a holomorphic 1-form
whose coefficients share no common factor. Put 𝑊 = In1,1;𝑥,𝑦(𝜂). There are two ways for 𝜔

not being pre-basic: first, if the Newton cloud 𝒩𝒞 𝑥,𝑦(𝑊) is more than one point. Second, if
𝒩𝒞 𝑥,𝑦(𝑊) = (𝑎, 𝑏), but 𝒩𝒞 𝑥,𝑦(𝜔) ⊈ 𝑅1,1(𝑎, 𝑏). Assume the first situation, and write

𝑊 =

𝑗∑
𝑘=0

𝑥𝑎−𝑘𝑦𝑏+𝑘
{
𝜇𝑘

𝑑𝑥

𝑥
+ 𝜁𝑘

𝑑𝑦

𝑦

}
,

with 𝑗 ≥ 1. Note that the multiplicity of 𝜂 at 𝑃0 is 𝑎 + 𝑏 − 1. As before, consider the local
coordinate system given by (𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1) defined in a open neighbourhood of (𝑀1 , 𝐸

1) . If
the strict transform 𝜂′ of 𝜂 by 𝜋 is given by 𝑥−𝑎−𝑏+1

1 𝜋∗𝜂, then the cuspidal divisor 𝐷, given by
𝑥1 = 0 is invariant by 𝜂′. Hence 𝜂′ defines a foliation which is non transverse to 𝐷. Recall that a
totally 𝐷-dicritical 1-form defines a foliation which is transverse to 𝐷, and also that 𝜂′ and 𝜋∗𝜔
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define the same foliation. Therefore 𝐷 must not be invariant by 𝜂′. It follows that the divisor 𝐷 is
a dicritical component of the foliation defined by 𝜂′, that is to say, the strict transform is given by
𝜂′ = 𝑥−𝑎−𝑏1 𝜋∗𝜂. Since all the terms of multiplicity 𝑎 + 𝑏 − 1 in 𝜂 are those of 𝑊 , then we have that

𝜃′ = 𝑥−𝑎−𝑏1 𝜋∗𝜃, where 𝜃 = 𝜂 −𝑊, (2.10)

is also holomorphic.
We see that

𝜋∗𝑊 =

𝑗∑
𝑘=0

𝑥𝑎+𝑏1 𝑦𝑏+𝑘1

{
(𝜇𝑘 + 𝜁𝑘)

𝑑𝑥1
𝑥1

+ 𝜁𝑘
𝑑𝑦1

𝑦1

}
.

After dividing by 𝑥𝑎+𝑏1 , we obtain

𝑊 ′ = 𝑥−𝑎−𝑏1 𝜋∗𝑊 =

𝑗∑
𝑘=0

𝑦𝑏+𝑘1

{
(𝜇𝑘 + 𝜁𝑘)

𝑑𝑥1
𝑥1

+ 𝜁𝑘
𝑑𝑦1

𝑦1

}
,

note that, since 𝜂′ is holomorphic we must have that 𝜇𝑘 + 𝜁𝑘 = 0 for all 𝑘, that is

𝑊 ′ =

𝑗∑
𝑘=0

𝜁𝑘𝑦
𝑏+𝑘−1
1 𝑑𝑦1.

Now, consider the polynomial 𝑝(𝑇) = ∑𝑗

𝑘=0 𝜁𝑘𝑇
𝑘 . Since 𝑗 ≥ 1, we have that 𝑝(𝑇) is non constant.

Denote by 𝛾 ∈ C any root of 𝑝(𝑇). We put new coordinates 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2 + 𝛾. In this
system of coordinates, we have that the multiplicity of 𝑊 ′ at the point 𝑃 = (𝑥2 = 0, 𝑦2 = 0) is at
least 1. Moreover, we notice two facts about the 1-form 𝜃′ from (2.10):

1. 𝑑𝑥1 may appear with a non zero constant coefficient in the expression of 𝜃′.
2. 𝜃′ does not have non zero terms of the shape 𝑦𝑠1𝑑𝑦1, with 𝑠 ≥ 0. Indeed, if 𝜃′ has a non

zero term such as 𝑦𝑠1𝑑𝑦1 is because there is a a term of the shape 𝑥𝑎+𝑏1 𝑦𝑠1𝑑𝑦1 in 𝜋∗𝜃. This
last term 𝑥𝑎+𝑏1 𝑦𝑠1𝑑𝑦1 must come from a non zero term of 𝜃 written as 𝑥𝑎+𝑏−𝑠−1𝑦𝑠𝑑𝑦. The
multiplicity of 𝑥𝑎+𝑏−𝑠−1𝑦𝑠𝑑𝑦 at 𝑃0 is 𝑎 + 𝑏 − 1, which contradicts the fact that all the terms
of 𝜃 have multiplicity at least 𝑎 + 𝑏.

Thus, there are two cases: either 𝜂′ has multiplicity at least one at 𝑃 or it has multiplicity
zero. If 𝜈𝑃(𝜂′) ≥ 1, then 𝑃 is a singular point of 𝜂′, hence 𝜋∗𝜔 in not totally 𝐷-dicritical leading
to a contradiction. Recall that in the definition of totally 𝐷-dicriticalness, we have a foliation
defined locally by regular 1-forms. If 𝜈𝑃(𝜂′) = 0, since there are non zero terms of the shape
𝑦𝑠1𝑑𝑦1 in 𝜃′. Then 𝑑𝑥1 = 𝑑𝑥2 is the unique term, up to constant multiplication, of multiplicity 0 of
𝜂′ . Therefore, 𝜂′ is tangent with 𝑥2 = 0, which is a local equation of 𝐷, again contradicting the
totally 𝐷-dicriticalness property. We conclude that 𝒩𝒞 𝑥,𝑦(𝑊) cannot be more than one point.

Now, assume that

𝑊 = 𝑥𝑎𝑦𝑏
{
𝜇
𝑑𝑥

𝑥
+ 𝜁

𝑑𝑦

𝑦

}
.

We are going to show that 𝒩𝒞 𝑥,𝑦(𝜂) ⊂ 𝑅1,1(𝑎, 𝑏). This is the same as showing that 𝜔 is pre-basic,
because 𝜂 and 𝜔 are related by the multiplication of a monomial. As before, we have that 𝐷
must be a dicritical component of the foliation defined by 𝜂′. Hence 𝜇 + 𝜁 = 0. Since 𝑊 ≠ 0, this
implies that 𝜂, or equivalently 𝜔, is resonant. We write

𝜂 = 𝜇𝑥𝑎𝑦𝑏
{
𝑑𝑥

𝑥
− 𝑑𝑦

𝑦

}
+

∑
𝛼+𝛽>𝑎+𝑏

𝑥𝛼𝑦𝛽
{
𝜇𝛼𝛽

𝑑𝑥

𝑥
+ 𝜁𝛼𝛽

𝑑𝑦

𝑦

}
= 𝑊 + 𝜃.
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Where 𝜇0𝛽 = 𝜁𝛼0 = 0 in order to have 𝜂 holomorphic. If we show that, in the previous expression,
all the non zero terms of the summation 𝜃 satisfy that that 𝑎 = 𝑏 = 1 and 𝛼, 𝛽 ≥ 1, then
𝒩𝒞 𝑥,𝑦(𝜂) ⊂ 𝑅1,1(1, 1).

Assume first that 𝑏 > 1. Since 𝑦 does not divide 𝜂, then there exists 𝛼 ≥ 1, such that: either
𝜇𝛼0 ≠ 0 or 𝜁𝛼1 ≠ 0.

If there is 𝛼 ≥ 1 with 𝜇𝛼0 ≠ 0, then we can write

𝜂 ∧ 𝑑𝑦 =

∑
𝑗=1

𝜇𝑗0𝑥
𝑗−1𝑑𝑥 ∧ 𝑑𝑦 + 𝑦𝐻,

where 𝐻 is a holomorphic 2-form. We have that 𝜂 ∧ 𝑑𝑦 − 𝑦𝐻 is non zero and non divisible
by 𝑦. Therefore, 𝑦 = 0 is non invariant by 𝜂. However by Lemma 2.5.3, we have the opposite
result, leading to a contradiction. This also shows that 𝛽 ≥ 1 for all non zero coefficients in the
summation 𝜃.

If there exists 𝛼 ≥ 1, such that 𝜁𝛼1 ≠ 0. Then we can consider the coordinate system
(𝑥, 𝑦) = (𝑥1 , 𝑥1𝑦1) induced by 𝜋. We have that

𝜂′ = 𝑥−𝑎−𝑏1 𝜋∗𝜂 = 𝑦𝑏1

{
−𝑑𝑦1

𝑦1

}
+

∑
𝛼+𝛽>𝑎+𝑏

𝑥
𝛼+𝛽−𝑎−𝑏
1 𝑦

𝛽
1

{
(𝜇𝛼𝛽 + 𝜁𝛼𝛽)

𝑑𝑥1
𝑥1

+ 𝜁𝛼𝛽
𝑑𝑦1

𝑦1

}
.

By assumption we have that there is a coefficient 𝜁𝛼1 ≠ 0, thus 𝑦1 does not divide 𝜂′. This last
observation, combined by the extra assumption that 𝑏 > 1, implies that 𝜂′ defines a singular
foliation at the point (𝑥1 = 0, 𝑦1 = 0). This contradicts that 𝜋∗𝜔 is totally 𝐷-dicritical. Therefore,
we have shown that 𝑏 = 1 and 𝛽 ≥ 1. In a similar way we show that 𝑎 = 1 and 𝛼 ≥ 1. □

Remark 2.5.4. If 𝑛 ≥ 2 the axes 𝑥𝑁−1𝑦𝑁−1 = 0 around 𝑃𝑁−1 coincide with the germ of 𝐸𝑁−1 at
𝑃𝑁−1. In this situation, the property of being basic and resonant does not depend on the chosen
adapted coordinate system.

Definition 2.5.5. Given a resonant pre-basic 1-form 𝜔, we say that a branch (𝐶, 𝑃0) in (𝑀0 , 𝑃0) is a
𝜔-cusp if and only if it is invariant by 𝜔 and the strict transform of (𝐶, 𝑃0) by 𝜋 cuts 𝐷 at a free point.

Let us note that each free point of 𝐷 defines a 𝜔-cusp and conversely, in view of the fact that
𝜋∗𝜔 is totally 𝐷-dicritical with respect to 𝐻.
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Cuspidal Semimodules

In Chapter 1 we saw that a germ of a plane curve (𝐶, 𝑃0) in the analytic space (𝑀0 , 𝑃0) defines a
set of differential values Λ𝐶 and a semigroup Γ𝐶 . As mentioned there, Λ𝐶 has the structure of a
Γ𝐶-semimodule. We proceed to study these semimodules, specially when the semigroup we
take is the one a of a cusp. Most of the results that we present here can be found in [12, 13].

3.1 Basis of a Semimodule

Take Γ ⊂ Z≥0 an additive numerical semigroup, that is, Γ is a monoid generated by ⟨𝛽0 , 𝛽1 , . . . , 𝛽𝑔⟩
with 𝑔𝑐𝑑(𝛽0 , . . . , 𝛽𝑔) = 1, see [6]. A set Λ ⊂ Z≥0 is a Γ-semimodule, if 𝛾 + 𝜆 ∈ Λ for all 𝛾 ∈ Γ and
𝜆 ∈ Λ.

Definition 3.1.1. A nonempty finite increasing sequence of non negative integer numbers ℬ =

(𝜆−1 ,𝜆0 , . . . ,𝜆𝑠) is a basis of the semimodule Λ if for any 0 ≤ 𝑗 ≤ 𝑠 we have that 𝜆 𝑗 ∉ Γ(ℬ𝑗−1), where
Γ(ℬ𝑗−1) = (𝜆−1 + Γ) ∪ (𝜆0 + Γ) ∪ · · · ∪ (𝜆 𝑗−1 + Γ).

If Λ = Γ(ℬ), we have a chain of semimodules

𝜆−1 + Γ = Λ−1 ⊂ Λ0 ⊂ · · · ⊂ Λ𝑠 = Λ, (3.1)

where Λ𝑗 = Γ(ℬ𝑗). We call decomposition sequence of Λ to this chain of semimodules. Let us note
that

𝜆−1 = minΛ and 𝜆 𝑗 = min(Λ \Λ𝑗−1), 0 ≤ 𝑗 ≤ 𝑠. (3.2)

These definitions are justified by next Proposition 3.1.2

Proposition 3.1.2. Given a semimodule Λ, there is a unique basis ℬ such that Λ = Γ(ℬ).

Proof. We start with 𝜆−1 = minΛ. Note that Γ(𝜆−1) ⊂ Λ. If Γ(𝜆−1) = Λ, we stop and we put
𝑠 = −1. If Γ(𝜆−1) ≠ Λ, we put 𝜆0 = min(Λ \ Γ(𝜆−1)). Note that Γ(𝜆−1 ,𝜆0) ⊂ Λ. We continue in
this way and after finitely many steps we obtain that Λ = Γ(𝜆−1 ,𝜆0 , . . . ,𝜆𝑠).

Let us show the uniqueness of ℬ = (𝜆−1 ,𝜆0 , . . . ,𝜆𝑠). Assume that Λ = Γ(ℬ′), for another
Γ-basis ℬ′ = (𝜆′

−1 ,𝜆
′
0 , . . . ,𝜆

′
𝑠′). By definition of basis, we have that 𝜆−1 = 𝜆′

𝑘
+ 𝛾 for some

−1 ≤ 𝑘 ≤ 𝑠′ and 𝛾 ∈ Γ. Since 𝜆−1 = minΛ and 𝜆′
𝑘
∈ Λ, we see that 𝛾 = 0. Besides 𝜆′

−1 ≤ 𝜆′
𝑘
.

Thus 𝜆−1 = 𝜆′
𝑘
. Moreover, since ℬ′ is an increasing sequence, we have 𝑘 = −1. Now assume that

𝜆 𝑗 = 𝜆′
𝑗
for any 0 ≤ 𝑗 ≤ 𝑖 − 1. Again, by definition of basis, we have that 𝜆𝑖 = 𝜆′

𝑘
+ 𝛾 for some

−1 ≤ 𝑘 ≤ 𝑠′ and 𝛾 ∈ Γ. If 𝑘 < 𝑖, then we know that 𝜆𝑘 = 𝜆′
𝑘

and it would imply that 𝜆𝑖 ∈ 𝜆𝑘 + Γ,

54



3.2. Axes, Limits and Critical Values 55

in contradiction with the definition of basis of the semimodule, thus 𝑘 ≥ 𝑖. In view of Equation
(3.2) we have that 𝜆𝑖 = min (Λ \ Γ(ℬ𝑘−1)) = min

(
Λ \ Γ(ℬ′

𝑘−1)
)
. Hence 𝛾 = 0, noting that 𝜆′

𝑖
≤ 𝜆′

𝑘
,

we conclude that 𝜆𝑖 = 𝜆′
𝑘
= 𝜆′

𝑖
. □

We say that the basis ℬ = (𝜆−1 ,𝜆0 , . . . ,𝜆𝑠) of Λ = Γ(ℬ) has length 𝑠. Moreover, the element
𝜆𝑖 is called the 𝑖-element of the basis ℬ, for −1 ≤ 𝑖 ≤ 𝑠. When 𝜆−1 = 0, we say that Λ is a normalized
semimodule.

Denote by 𝑛 = min(Γ \ {0}), given the basis ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠), we have that 𝜆𝑖 ≠ 𝜆 𝑗

mod 𝑛. Hence, the length 𝑠 is bounded by 𝑛 − 2.
In Chapter 1, we introduced the notion of conductor for the semigroup of a branch. More

generally, we define the conductor of a Γ-semimodule Λ as:

𝑐Λ = min{𝑘 ∈ Z≥0 : Z≥𝑘 ⊂ Λ},

see [3]. We notice the following: if 𝜆−1 is the minimum element in Λ, then we have 𝑐Λ ≤ 𝑐Γ+𝜆−1.

More generally, given Λ𝑖 ⊂ Λ𝑖+1 two consecutive semimodules of the decomposition sequence
of Λ, then we have that 𝑐Λ𝑖+1 ≤ 𝑐Λ𝑖 .

We say that a numerical semigroup Γ is cuspidal if it is generated by two positive coprime
integers (𝑛, 𝑚) with 2 ≤ 𝑛 < 𝑚. A Γ-semimodule Λ is cuspidal when Γ is cuspidal. From now on,
we fix a cuspidal semigroup Γ, and we denote 𝑛 < 𝑚 its generators. By Equation (1.5), we have
that the conductor of a cuspidal semigroup Γ is

𝑐Γ = (𝑛 − 1)(𝑚 − 1).

As explained in Section 1.4, the semigroup of a cusp is a cuspidal semigroup. Moreover, the
semimodule of differential values of a cusp is a cuspidal semimodule.

3.2 Axes, Limits and Critical Values

From now on, we assume that Λ is a cuspidal Γ-semimodule, where Γ is generated by the two
coprime integers 2 ≤ 𝑛 < 𝑚. We denote by ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) the basis of Λ. We introduce
the following structural values associated to Λ.

For 1 ≤ 𝑖 ≤ 𝑠 + 1, we define the axes 𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
, 𝑢𝑖 and 𝑢̃𝑖 of Λ as follows:

• 𝑢𝑛
𝑖
= min{𝜆𝑖−1 + 𝑛ℓ ∈ Λ𝑖−2; ℓ ≥ 1}. We write 𝑢𝑛

𝑖
= 𝜆𝑖−1 + 𝑛ℓ 𝑛

𝑖
.

• 𝑢𝑚
𝑖
= min{𝜆𝑖−1 + 𝑚ℓ ∈ Λ𝑖−2; ℓ ≥ 1}. Similarly, we put 𝑢𝑚

𝑖
= 𝜆𝑖−1 + 𝑚ℓ𝑚

𝑖
.

• 𝑢𝑖 = min{𝑢𝑛
𝑖
, 𝑢𝑚

𝑖
} and 𝑢̃𝑖 = max{𝑢𝑛

𝑖
, 𝑢𝑚

𝑖
}.

The numbers ℓ 𝑛
𝑖

and ℓ𝑚
𝑖

are called the limits of Λ.

Example 3.2.1. Consider the cuspidal semigroup Γ = ⟨7, 15⟩ and let Λ be the Γ-semimodule
defined by the basis ℬ = (7, 15, 27, 46). We are going to compute the axes to show how the
computations work.

We have that 𝑢𝑛
1 = min{15 + 7ℓ ∈ (7 + Γ)} = 22 = 15 + 7 · 1 = 7 + 15. Similarly, we have that

𝑢𝑚
1 = min{15 + 15ℓ ∈ (7 + Γ)} = 105 = 15 + 15 · 6 = 7 + 7 · 14. Hence, we have that 𝑢1 = 𝑢𝑛

1 = 22
and 𝑢̃1 = 𝑢𝑚

1 = 105.
Next, we see that

𝑢𝑛
2 = min{27 + 7ℓ ∈ (7 + Γ) ∪ (15 + Γ)} = 90 = 27 + 7 · 9 = 15 + 15 · 15.

𝑢𝑚
2 = min{27 + 15ℓ ∈ (7 + Γ) ∪ (15 + Γ)} = 42 = 27 + 15 · 1 = 7 + 7 · 5.
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Thus 𝑢2 = 𝑢𝑚
2 = 42 and 𝑢̃2 = 𝑢𝑛

2 = 90. Finally

𝑢𝑛
3 = min{46 + 7ℓ ∈ (7 + Γ) ∪ (15 + Γ) ∪ (27 + Γ)} = 60 = 46 + 7 · 2 = 15 + 15 · 3.

𝑢𝑚
3 = min{46 + 15ℓ ∈ (7 + Γ) ∪ (15 + Γ) ∪ (27 + Γ)} = 76 = 46 + 15 · 2 = 27 + 7 · 7.

Therefore, 𝑢3 = 𝑢𝑛
3 = 60 and 𝑢̃3 = 𝑢𝑚

3 = 76. The reader can list all the elements of Λ and check
that the conductor of Λ is 𝑐Λ = 55.

Remark 3.2.2. If we consider the semimodule Λ′ = Λ − 𝜆, the new basis and the axes are shifted
by 𝜆 and we obtain the same limits as for Λ. This is particularly interesting when 𝜆 = 𝜆−1 and
hence Λ′ is a normalized semimodule.

Remark 3.2.3. Let us note that 1 ≤ ℓ𝑚
𝑖

< 𝑛 and that 1 ≤ ℓ 𝑛
𝑖
< 𝑚. To see this we can suppose

that Λ is normalized and thus 𝑐Λ𝑗 ≤ 𝑐Γ = (𝑛 − 1)(𝑚 − 1) for any 𝑗 = −1, 0, 1, . . . , 𝑠. Assume that
ℓ𝑚
𝑖

≥ 𝑛, we have
𝜆𝑖−1 + 𝑚(ℓ𝑚𝑖 − 1) ≥ (𝑛 − 1)𝑚 ≥ 𝑐Γ ≥ 𝑐Λ𝑖−2 .

Then 𝜆𝑖−1 + 𝑚(ℓ𝑚
𝑖
− 1) ∈ Λ𝑖−2 in contradiction with the minimality of ℓ𝑚

𝑖
. A similar argument

proves that ℓ 𝑛
𝑖
< 𝑚.

Remark 3.2.4. Notice that 𝑢𝑛
𝑖
≠ 𝑢𝑚

𝑖
for each index 1 ≤ 𝑖 ≤ 𝑠 + 1. Indeed, if 𝑢𝑛

𝑖
= 𝑢𝑚

𝑖
, then

𝑛ℓ 𝑛
𝑖
= 𝑚ℓ𝑚

𝑖
; given that 𝑛 and 𝑚 are coprime, then 𝑚𝑘 = ℓ 𝑛

𝑖
, for a positive integer 𝑘 and hence

ℓ 𝑛
𝑖
≥ 𝑚 which is a contradiction, by the previous remark.

Lemma 3.2.5. Let Λ be a cuspidal semimodule of length 𝑠. Take 1 ≤ 𝑖 ≤ 𝑠+1. If 𝜆𝑖−1 +𝑛𝑎+𝑚𝑏 ∈ Λ𝑖−2,
where 𝑎, 𝑏 ∈ Z≥0, then either 𝑎 ≥ ℓ 𝑛

𝑖
or 𝑏 ≥ ℓ𝑚

𝑖
.

Proof. By definition, we have that:

𝜆𝑖−1 + 𝑛𝑎 + 𝑚𝑏 = 𝜆𝑘 + 𝑛𝑐 + 𝑚𝑑, 𝑘 < 𝑖 − 1,

where 𝑐, 𝑑 are non negative integers. We proceed by induction on 𝛼 = 𝑎𝑐 + 𝑏𝑑 ≥ 0. If 𝛼 = 0, then
𝑎𝑐 = 𝑏𝑑 = 0. This implies that 𝑎𝑏 = 0, otherwise, 𝑎𝑏 ≠ 0 and hence 𝑐 = 𝑑 = 0, that is

𝜆𝑖−1 + 𝑛𝑎 + 𝑚𝑏 = 𝜆𝑘 ,

which is a contradiction because 𝜆𝑘 < 𝜆𝑖−1. Now if 𝑎 = 0, we end with the minimality of ℓ𝑚
𝑖

and,
similarly, if 𝑏 = 0, we end by the minimality of ℓ 𝑛

𝑖
.

Assume that 𝛼 > 0. Then 𝑎𝑐 ≠ 0 or 𝑏𝑑 ≠ 0. If 𝑎𝑐 ≠ 0, let us put 𝑎′ = 𝑎 − 1 ≥ 0 and
𝑐′ = 𝑐 − 1 ≥ 0. We have that

𝜆𝑖−1 + 𝑛𝑎′ + 𝑚𝑏 = 𝜆𝑟 + 𝑛𝑐′ + 𝑚𝑑.

We conclude by applying an inductive argument. We apply a similar argument if 𝑏𝑑 ≠ 0. □

We define inductively the critical values 𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
, 𝑡𝑖 , and 𝑡𝑖 , for −1 ≤ 𝑖 ≤ 𝑠 + 1 by putting

𝑡−1 = 𝜆−1 = 𝑛 and 𝑡0 = 𝜆0 = 𝑚 and

𝑡𝑛
𝑖

= 𝑡𝑖−1 + 𝑛ℓ 𝑛
𝑖
, 𝑡𝑚

𝑖
= 𝑡𝑖−1 + 𝑚ℓ𝑚

𝑖

𝑡𝑖 = min{𝑡𝑛
𝑖
, 𝑡𝑚

𝑖
}, 𝑡𝑖 = max{𝑡𝑛

𝑖
, 𝑡𝑚

𝑖
}

}
1 ≤ 𝑖 ≤ 𝑠 + 1.

Noting that 𝑛ℓ 𝑛
𝑖
= 𝑢𝑛

𝑖
− 𝜆𝑖−1 and 𝑚ℓ𝑚

𝑖
= 𝑢𝑚

𝑖
− 𝜆𝑖−1, we have that:

𝑡𝑛
𝑖

= 𝑡𝑖−1 + 𝑢𝑛
𝑖
− 𝜆𝑖−1 , 𝑡𝑚

𝑖
= 𝑡𝑖−1 + 𝑢𝑚

𝑖
− 𝜆𝑖−1 ,

𝑡𝑖 = 𝑡𝑖−1 + 𝑢𝑖 − 𝜆𝑖−1 , 𝑡𝑖 = 𝑡𝑖−1 + 𝑢̃𝑖 − 𝜆𝑖−1.
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Definition 3.2.6. We say that the cuspidal semimodule Λ is increasing if we have 𝜆𝑖 > 𝑢𝑖 , for any
1 ≤ 𝑖 ≤ 𝑠, see [2].

The previous definition is motivated by the results in [21], where C. Delorme shows that the
semimodule of differential values of a cusp is increasing, with the (-1)-element of the basis equal
to 𝑛 and the 0-element equal to 𝑚. Reciprocally, in [2], the authors show that given an increasing
semimodule Λ with (−1)-element and 0-element of the basis 𝑛 and 𝑚 respectively, then there
exists a cusp whose semimodule of differential values is Λ. That’s way we mainly consider
cuspidal semimodules. Besides, it also explains why we use the convention of starting the basis
of the semimodule at index −1, because when considering the semimodule of differential values
of a cusp, the first two elements of the basis are given by the semigroup. We want to remark
that we could extend the notion of increasing semimodules for semimodules which are non
cuspidal, however, the semimodules of differential values of non cuspidal branches, they are not
increasing.

We finally note that if Λ is increasing, then each Λ𝑖 is also increasing, for 1 ≤ 𝑖 ≤ 𝑠.

Example 3.2.7. We continue with the computations from Example 3.2.1. We have have that
Γ = ⟨7, 15⟩ and the basis of the semimodule Λ is ℬ = (7, 15, 27, 46). We showed that

𝑢1 = 𝑢𝑛
1 = 22; 𝑢̃1 = 𝑢𝑚

1 = 105

𝑢2 = 𝑢𝑚
2 = 42; 𝑢̃2 = 𝑢𝑛

2 = 90

𝑢3 = 𝑢𝑛
3 = 60; 𝑢̃3 = 𝑢𝑚

3 = 76

and hence we obtain

𝑡1 = 𝑡𝑛1 = 22; 𝑡1 = 𝑡𝑚1 = 105

𝑡2 = 𝑡𝑚2 = 37; 𝑡2 = 𝑡𝑛2 = 85

𝑡3 = 𝑡𝑛3 = 51; 𝑡3 = 𝑡𝑚3 = 67.

Finally, we notice that 𝜆1 = 27 > 22 = 𝑢1 and 𝜆2 = 46 > 42 = 𝑢2. Thus, Λ is an increasing
Γ-semimodule.

Lemma 3.2.8. Let Λ be an increasing cuspidal semimodule. For any index 1 ≤ 𝑖 ≤ 𝑠, we have that
𝜆𝑖 − 𝜆 𝑗 > 𝑡𝑖 − 𝑡 𝑗 , for −1 ≤ 𝑗 < 𝑖.

Proof. By a telescopic argument, it is enough to prove the following statements:

• 𝜆𝑟 − 𝜆𝑟−1 > 𝑡𝑟 − 𝑡𝑟−1, for 1 ≤ 𝑟 ≤ 𝑠.
• 𝜆0 − 𝜆−1 ≥ 𝑡0 − 𝑡−1.

The second statement is straightforward, because 𝑡−1 = 𝜆−1 and 𝑡0 = 𝜆0. Let us prove that
𝜆𝑟 − 𝜆𝑟−1 > 𝑡𝑟 − 𝑡𝑟−1, for 1 ≤ 𝑟 ≤ 𝑠.

The inequality 𝜆𝑟 − 𝜆𝑟−1 > 𝑡𝑟 − 𝑡𝑟−1 is equivalent to

𝑡𝑟 = 𝑡𝑟−1 + 𝑢𝑟 − 𝜆𝑟−1 > 𝑡𝑟 + 𝑢𝑟 − 𝜆𝑟

and this is equivalent to say that 𝜆𝑟 > 𝑢𝑟 . The result follows by recalling that Λ is increasing. □

Corollary 3.2.9. Let Λ be an increasing cuspidal semimodule. For any 1 ≤ 𝑖 ≤ 𝑠, we have that

𝑢𝑛
𝑖+1 > 𝑡𝑛𝑖+1 and 𝑢𝑚

𝑖+1 > 𝑡𝑚𝑖+1.

Proof. Recalling that 𝑡𝑛
𝑖+1 = 𝑢𝑛

𝑖+1 − (𝜆𝑖 − 𝑡𝑖), it is enough to prove that 𝜆𝑖 − 𝑡𝑖 > 0. In view of
Lemma 3.2.8 and putting 𝑗 = −1, we have that 𝜆𝑖 − 𝑡𝑖 > 𝜆−1 − 𝑡−1 = 0. □



58 3. Cuspidal Semimodules

3.3 Circular Intervals

The circular intervals we describe here are useful for understanding the distribution of the
elements of an increasing cuspidal semimodule. We introduced the notion of circular interval
in [12], it is an alternative approach to the one in [2] where the authors use the notion of “lean
sets”, or the “mancala games" in [41] . Recall that we have fixed a pair of integer numbers (𝑛, 𝑚)
with 2 ≤ 𝑛 < 𝑚 and gcd(𝑛, 𝑚) = 1. The motivation comes from the following example.

Example 3.3.1. Consider the cuspidal semigroup Γ = ⟨5, 11⟩ and the cuspidal semimodule
Λ = Γ(5, 11, 18).
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Figure 3.1: First elements of Λ. The black dots represent the elements that do not belong to Λ. The
red circles are the multiples of 5 belonging to Λ. The green circles are the rest of elements belonging to
Γ(5, 11). The blue circles are the elements in (18 + Γ) \ Γ(5, 11). Finally, the element 33 is marked, since
it can be checked that corresponds with the axis 𝑢2.

We notice that in the previous figure we can split the representation of the semimodule by
boxes of size 𝑛 = 5. Each one of them is almost identical to the next one. Additionally, each time
a new multiple of 𝑚 = 11 appears, we represent it by a green circle that is at distance one from
the previous one. This is because 11 ≡ 1 mod 5. The idea behind circular intervals is to obtain a
similar representation of theses boxes when 𝑚 may not be congruent with 1 modulo 𝑛.

We are going to consider the unit circle S1 ⊂ C as a “clock” with “𝑛-hours” as we explain
below.

Let 𝜀 : R → S1 be the map given by

𝜀(𝑡) = exp
(
−2𝜋𝑡

√
−1

𝑛

)
.

We see the 𝑛-roots of unit as S1
𝑛 := 𝜀(Z). Note that there is a bĳection

𝑐 : Z/𝑛Z → S1
𝑛

given by 𝑐(𝑘 + 𝑛Z) = 𝜀(𝑘). More than that, the bĳection 𝑐 is an isomorphism of abelian groups,
where S1

𝑛 ⊂ C has the induced multiplicative structure coming from the complex numbers C.
Note that

𝑐((𝑘 + 𝑛Z) + (𝑘′ + 𝑛Z)) = 𝜀(𝑘)𝜀(𝑘′).

In particular 𝑐(𝑘 + 1 + 𝑛Z) = 𝜀(𝑘)𝜀(1).

Notation 3.3.2. In order to visualize in a better way the arithmetic of the abelian multiplicative
group S1

𝑛 , we introduce the following notations:

𝜀(𝑘) = 𝑘𝜀 , 𝜀(𝑘)𝜀(𝑘′) = 𝑘𝜀 + 𝑘′𝜀.
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Note that there is no confusion possible with the addition in C. For instance, we have
(−1)𝜀 = (𝑛 − 1)𝜀, (𝑘 + 1)𝜀 = 𝑘𝜀 + 1𝜀 and (𝑘 − 1)𝜀 = 𝑘𝜀 − 1𝜀 = 𝑘𝜀 + (𝑛 − 1)𝜀.

Let us consider two points 𝑃, 𝑄 ∈ S1
𝑛 . There are 𝛼 ∈ Z and an integer number 𝛽 with

0 ≤ 𝛽 ≤ 𝑛 − 1 such that 𝑃 = 𝜀(𝛼) and 𝑄 = 𝜀(𝛼 + 𝛽). This number 𝛽, with 0 ≤ 𝛽 ≤ 𝑛 − 1, does not
depend on the chosen 𝛼 such that 𝑃 = 𝜀(𝛼) and we call it the separation 𝑆(𝑃, 𝑄) from 𝑃 to 𝑄, that
is, if 𝑃 = 𝜀(𝛼), we have that 𝑄 = 𝜀(𝛼 + 𝑆(𝑃, 𝑄)). Observe that 𝑆(𝑃, 𝑃) = 0 and that

𝑆(𝑃, 𝑄) + 𝑆(𝑄, 𝑃) = 𝑛, if 𝑄 ≠ 𝑃.

Additionally, if 𝑄 ≠ 𝑄′ then 𝑆(𝑃, 𝑄) ≠ 𝑆(𝑃, 𝑄′) and 𝑆(𝑄, 𝑃) ≠ 𝑆(𝑄′, 𝑃).
We define the circular interval < 𝑃, 𝑄 > to be

< 𝑃, 𝑄 >= {𝜀(𝛼 + 𝑘); 𝑘 = 0, 1, . . . , 𝑆(𝑃, 𝑄)} ⊂ S1
𝑛 .

Note that if 𝑃 ≠ 𝑄, we have that

< 𝑃, 𝑄 > ∪ < 𝑄, 𝑃 >= S1
𝑛 , < 𝑃, 𝑄 > ∩ < 𝑄, 𝑃 >= {𝑃, 𝑄}.

Remark 3.3.3. Given three points 𝑃, 𝑄, 𝑅 ∈ S1
𝑛 such that

𝑅 ∈< 𝑃, 𝑄 >,

We have that 𝑆(𝑃, 𝑄) = 𝑆(𝑃, 𝑅) + 𝑆(𝑅, 𝑄) ≤ 𝑛 − 1.

To simplify the notation, we consider the total order in S1
𝑛 , defined by

0𝜀 < 1𝜀 < 2𝜀 < · · · < (𝑛 − 1)𝜀.

With this ordering, we see that given two elements 𝑧, 𝑧′ ∈ S1
𝑛 , then we have the following

possibilities:

< 𝑧, 𝑧′ >=


{𝑧} if 𝑧 = 𝑧′.

{𝑧, 𝑧 + 1𝜀 , 𝑧 + 2𝜀 , . . . , 𝑧′ − 1𝜀 , 𝑧′} if 𝑧 < 𝑧′.

{𝑧, 𝑧 + 1𝜀 , 𝑧 + 2𝜀 , . . . , (𝑛 − 1)𝜀 , 0𝜀 , 1𝜀 , . . . , 𝑧′ − 1𝜀 , 𝑧′} if 𝑧 > 𝑧′.

Consider a list 𝐵 = (𝑧−1 , 𝑧0 , 𝑧1 , . . . , 𝑧𝑠) of two by two distinct points 𝑧 𝑗 ∈ S1
𝑛 , with 𝑠 ≥ 0. For

any index 0 ≤ 𝑖 ≤ 𝑠, we define the 𝑖-left bound 𝑏ℓ
𝑖
(𝐵) and the 𝑖-right bound 𝑏𝑟

𝑖
(𝐵) of 𝐵 to be integer

numbers such that
−1 ≤ 𝑏ℓ𝑖 (𝐵), 𝑏

𝑟
𝑖 (𝐵) ≤ 𝑖 − 1

and, moreover, the following holds:

1. If 𝑘 = 𝑏ℓ
𝑖
(𝐵), then 𝑆(𝑧𝑘 , 𝑧𝑖) ≤ 𝑆(𝑧𝑞 , 𝑧𝑖), for any − 1 ≤ 𝑞 ≤ 𝑖 − 1.

2. If 𝑘 = 𝑏𝑟
𝑖
(𝐵), then 𝑆(𝑧𝑖 , 𝑧𝑘) ≤ 𝑆(𝑧𝑖 , 𝑧𝑞), for any − 1 ≤ 𝑞 ≤ 𝑖 − 1.

By the properties of the separation between two points in S1
𝑛 , we have that 𝑆(𝑧𝑘 , 𝑧𝑖) < 𝑆(𝑧𝑞 , 𝑧𝑖) if

𝑞 ≠ 𝑘 and 𝑆(𝑧𝑖 , 𝑧𝑘) < 𝑆(𝑧𝑖 , 𝑧𝑞) if 𝑘 ≠ 𝑞.

Remark 3.3.4. Denote 𝑘 = 𝑏ℓ
𝑖
(𝐵) and 𝑘 = 𝑏𝑟

𝑖
(𝐵). The bounds are the integer numbers 𝑘, 𝑘 with

−1 ≤ 𝑘, 𝑘 ≤ 𝑖 − 1 defined by the two following properties:

1. 𝑧𝑖 ∈< 𝑧𝑘 , 𝑧𝑘 >.
2. If 𝑧 𝑗 ∈< 𝑧𝑘 , 𝑧𝑘 > with −1 ≤ 𝑗 ≤ 𝑖, then 𝑗 ∈ {𝑖 , 𝑘, 𝑘}.

Taking into account that 𝑆(𝑃, 𝑄) + 𝑆(𝑄, 𝑃) = 𝑛 for 𝑄 ≠ 𝑃, then 𝑏ℓ
𝑖
(𝐵) = 𝑏𝑟

𝑖
(𝐵) if and only if 𝑖 = 0.
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3.4 Circular Intervals in a Cuspidal Semimodule

Let us recall that Γ is generated by pair (𝑛, 𝑚), with 2 ≤ 𝑛 < 𝑚 and 𝑛, 𝑚 are without common
factors.

We consider the quotient map 𝜌 : Z → Z/𝑛Z, which we also denote by 𝜌(𝑘) = 𝑘. Since
𝑔𝑐𝑑(𝑛, 𝑚) = 1, the class 𝑚̄ is a unit in Z/𝑛Z, thus we have a ring isomorphism

𝜉 : Z/𝑛Z → Z/𝑛Z, 𝜉(𝑘) = 𝑘/𝑚̄.

Let 𝜁 : Z → S1
𝑛 be the map defined by 𝜁(𝑘) = (𝑐 ◦ 𝜉 ◦ 𝜌)(𝑘). Notice that 𝜁(𝑘 + 𝑎𝑛) = 𝜁(𝑘) and that

𝜁(𝑚𝑘) = 𝜀(𝑘) = 𝑘𝜀.
Consider the intervals 𝐼𝑞 = {𝑛𝑞, 𝑛𝑞 + 1, . . . , 𝑛𝑞 + 𝑛 − 1} ⊂ Z, 𝑞 ∈ Z. For a set 𝑆 ⊂ Z, we

define the q-level set 𝑅𝑞(𝑆) by
𝑅𝑞(𝑆) = 𝜁(𝑆 ∩ 𝐼𝑞) ⊂ S1

𝑛 .

Example 3.4.1. Consider the cuspidal semigroup Γ = ⟨7, 17⟩ and the increasing Γ-semimodule
Λ generated by the basis ℬ = (7, 17, 26). We have that Λ ∩ 𝐼6 = {42, 43, 45, 47, 48}. Now we
apply the map 𝜁 to Λ ∩ 𝐼6. First, we compute the residue modulo of the elements, obtaining
𝐴 = {0, 1, 3, 5, 6}.

Now, we apply 𝜉 to 𝐴, which corresponds with the division by 17. Note that 3 ≡ 17 mod 7,
and 3

−1
= 5. Thus the image of 𝐴 by 𝜉 is 𝐵 = {0, 5, 1, 4, 2}. Finally, we send the elements of 𝐵 by

𝑐 to the 7 roots of the unity in C. We see that 𝑅6(Λ) has two circular intervals, {0𝜀 , 1𝜀 , 2𝜀} and
{4𝜀 , 5𝜀}.

Figure 3.2: Level set 𝑅6(Λ) from Example 3.4.1, the blue sectors represent the two circular intervals of
the level set.

Remark 3.4.2. If 𝑆 ⊂ Z satisfies the property that 𝑛+𝑆∩𝐼𝑞−1 ⊂ 𝑆∩𝐼𝑞 , we have that𝑅𝑞−1(𝑆) ⊂ 𝑅𝑞(𝑆).
This is the case of cuspidal semimodules.

Before continuing, let us remark the following thing: as it was stated, the construction of
circular intervals requires working with cuspidal semigroups, since we are using explicitly the
condition that 𝑔𝑐𝑑(𝑛, 𝑚) = 1. One of the problems when generalizing all the results for more
complicated semigroups, such as the ones of curves which are not cusps, it is that we do not
know how to order the elements of Z/𝑛Z in a proper way.

Now let us consider a cuspidal semimodule Λ of length 𝑠 ≥ 0 with basis

ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠).

We see the basis ℬ in S1
𝑛 as 𝐵 = 𝜁(ℬ) = (𝑧−1 , 𝑧0 , 𝑧1 , . . . , 𝑧𝑠), where we have that 𝑧 𝑗 = 𝜁(𝜆 𝑗), for

𝑗 = −1, 0, 1, . . . , 𝑠.
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Note that 𝑧𝑖 ≠ 𝑧 𝑗 , if 𝑖 ≠ 𝑗; indeed, saying that 𝑧𝑖 = 𝑧 𝑗 means that 𝜆𝑖 − 𝜆 𝑗 ∈ 𝑛Z, that is not
possible in view of the definition of basis.

Take an index 1 ≤ 𝑖 ≤ 𝑠 + 1. We define the tops 𝑞𝑛
𝑖

and 𝑞𝑚
𝑖

of Λ by the property that 𝑢𝑛
𝑖
∈ 𝐼𝑞𝑛

𝑖

and 𝑢𝑚
𝑖
∈ 𝐼𝑞𝑚

𝑖
. We also define the tops 𝑞𝑖 and 𝑞̃𝑖 to be such that 𝑢𝑖 ∈ 𝐼𝑞𝑖 and 𝑢̃𝑖 ∈ 𝐼𝑞̃𝑖 . Recall that

{𝑢𝑛
𝑖 , 𝑢

𝑚
𝑖 } = {𝑢𝑖 , 𝑢̃𝑖}.

As a consequence, we have that {𝑞𝑛
𝑖
, 𝑞𝑚

𝑖
} = {𝑞𝑖 , 𝑞̃𝑖}. Note that 𝑞𝑖 ≤ 𝑞̃𝑖 , since 𝑢𝑖 < 𝑢̃𝑖 .

We also need to consider the integers 𝑣𝑖 that indicate the first levels 𝑅𝑣𝑖 (Λ) such that
𝑧𝑖 ∈ 𝑅𝑣𝑖 (Λ). In other words, each 𝑣𝑖 is defined by the property that 𝜆𝑖 ∈ 𝐼𝑣𝑖 , for 𝑖 = −1, 0, 1, . . . , 𝑠.

The following statements concern the properties of being circular intervals for the levels of
Λ and some derived properties of the conductor.

Lemma 3.4.3. Consider 𝜇 ∈ 𝐼𝑣 , denote 𝑟 = 𝜁(𝜇) and let 𝑞 be such that 𝑞 ≥ 𝑣. For any 𝑝 ∈ 𝑅𝑞(𝜇 + Γ)
we have that < 𝑟, 𝑝 >⊂ 𝑅𝑞(𝜇 + Γ). In particular, the set 𝑅𝑞(𝜇 + Γ) is a circular interval.

Proof. The second statement is straightforward, since the union of circular intervals with a
common point is a circular interval. To prove the first statement, we proceed by induction on
the number ℓ of elements in < 𝑟, 𝑝 >. If ℓ ≤ 2, there is nothing to prove since < 𝑟, 𝑝 >⊂ {𝑟, 𝑝} ⊂
𝑅𝑞(𝜇 +Λ). Assume that ℓ > 2; in particular we have that 𝑟 ≠ 𝑝. Consider the point 𝑝̃ = 𝑝 − 1𝜀.
We have that < 𝑟, 𝑝 >=< 𝑟, 𝑝̃ > ∪{𝑝} and the length of < 𝑟, 𝑝̃ > is ℓ − 1. Then, it is enough to
show that 𝑝̃ ∈ 𝑅𝑞(𝜇+Γ). Take an element 𝜇+ 𝑛𝑎 +𝑚𝑏 ∈ 𝐼𝑞 ∩ (𝜇+Γ) such that 𝜁(𝜇+ 𝑛𝑎 +𝑚𝑏) = 𝑝.
Noting that 𝑟 ≠ 𝑝, we have that 𝑏 ≥ 1. There is 𝑞′ ≤ 𝑞 such that 𝜇+ 𝑛𝑎 +𝑚(𝑏 − 1) ∈ 𝐼𝑞′ and hence

𝜇 + 𝑛(𝑎 + 𝑞 − 𝑞′) + 𝑚(𝑏 − 1) ∈ 𝐼𝑞 ∩ (𝜇 + Γ).

We have that 𝜁(𝜇 + 𝑛(𝑎 + 𝑞 − 𝑞′) + 𝑚(𝑏 − 1)) = 𝑝̃ and thus 𝑝̃ ∈ 𝑅𝑞(𝜇 + Γ). □

Remark 3.4.4. For any 𝜇 ∈ Z≥0, we have

#𝑅𝑞(𝜇 + Γ) ≤ #𝑅𝑞−1(𝜇 + Γ) + 1.

Indeed, this is equivalent to show that #𝜌((𝜇 + Γ) ∩ 𝐼𝑞) ≤ #𝜌((𝜇 + Γ) ∩ 𝐼𝑞−1) + 1. Assume that
𝑝̄1 , 𝑝̄2 ∈ 𝜌((𝜇 + Γ) ∩ 𝐼𝑞) \ 𝜌((𝜇 + Γ) ∩ 𝐼𝑞−1). Notice that given 𝑝 = 𝜇 + 𝑛𝑎 + 𝑚𝑏 ∈ 𝐼𝑞 with 𝑎 > 0,
then 𝑝 − 𝑛 ∈ 𝐼𝑞−1, thus we can take representatives 𝑝1 , 𝑝2 ∈ (𝜇 + Γ) ∩ 𝐼𝑞 of 𝑝̄1 and 𝑝̄2 of the form
𝑝1 = 𝜇 + 𝑚𝑏1, 𝑝2 = 𝜇 + 𝑚𝑏2. If 𝑝1 ≠ 𝑝2, we have that |𝑝1 − 𝑝2| ≥ 𝑚 > 𝑛 and this is not possible.

Proposition 3.4.5. Assume that Λ is normalized (that is 𝜆−1 = 0) and that 𝑅𝑞(Λ𝑠−1) is a circular
interval for any 𝑞 ≥ 𝑣𝑠 . We have:

1. < 0𝜀 , 𝑧𝑠 − 1𝜀 >⊂ 𝑅𝑞(Λ𝑠−1), for 𝑞 ≥ 𝑞𝑛
𝑠+1 − 1.

2. < 𝑧𝑠 , (𝑛 − 1)𝜀 >⊂ 𝑅𝑞(Λ), for 𝑞 ≥ 𝑞𝑚
𝑠+1 − 1.

In particular, we have that 𝑅𝑞(Λ) = S1
𝑛 , for any 𝑞 ≥ 𝑞̃𝑠+1 − 1. That is, 𝑐Λ ≤ 𝑛(𝑞̃𝑠+1 − 1).

Proof. Statement 1: By Remark 3.4.2 it is enough to show that we have< 0𝜀 , 𝑧𝑠−1𝜀 >⊂ 𝑅𝑞𝑛
𝑠+1−1(Λ𝑠−1).

Since 𝑢𝑛
𝑠+1 = 𝜆𝑠 + 𝑛ℓ 𝑛

𝑠+1 ∈ Λ𝑠−1, there is an index 𝑘 ≤ 𝑠 − 1 such that 𝜆𝑠 + 𝑛ℓ 𝑛
𝑠+1 = 𝜆𝑘 + 𝑛𝑎 + 𝑚𝑏.

By the minimality of ℓ 𝑛
𝑠+1, we have that 𝑎 = 0 and hence 𝜆𝑠 + 𝑛ℓ 𝑛

𝑠+1 = 𝜆𝑘 + 𝑚𝑏.
Assume that the next statements are true:

a) If 𝑧𝑘 > 𝑧𝑠 , then < 0𝜀 , 𝑧𝑠 >⊂ 𝑅𝑞𝑛
𝑠+1
(𝜆𝑘 + Γ).

b) If 𝑧𝑘 < 𝑧𝑠 , then < 𝑧𝑘 , 𝑧𝑠 >⊂ 𝑅𝑞𝑛
𝑠+1
(𝜆𝑘 + Γ) and < 0𝜀 , 𝑧𝑘 >⊂ 𝑅𝑞𝑛

𝑠+1−1(Λ𝑠−1).
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If 𝑧𝑘 > 𝑧𝑠 , by the minimality of ℓ 𝑛
𝑠+1, we have that 𝑧𝑠 ∉ 𝑅𝑞𝑛

𝑠+1−1(𝜆𝑘 + Γ); now, in view of Remark
3.4.4 and noting that < 0𝜀 , 𝑧𝑠 >=< 0𝜀 , 𝑧𝑠 − 1𝜀 > ∪{𝑧𝑠}, we obtain that

< 0𝜀 , 𝑧𝑠 − 1𝜀 >⊂ 𝑅𝑞𝑛
𝑠+1−1(𝜆𝑘 + Γ) ⊂ 𝑅𝑞𝑛

𝑠+1−1(Λ𝑠−1).

If 𝑧𝑘 < 𝑧𝑠 , we obtain as above that < 𝑧𝑘 , 𝑧𝑠 − 1𝜀 >⊂ 𝑅𝑞𝑛
𝑠+1−1(𝜆𝑘 + Γ), then

< 0𝜀 , 𝑧𝑠 − 1𝜀 >=< 0𝜀 , 𝑧𝑘 > ∪ < 𝑧𝑘 , 𝑧𝑠 − 1𝜀 >⊂ 𝑅𝑞𝑛
𝑠+1−1(Λ𝑠−1).

If remains to prove a) and b).
Proof of a): We can apply Lemma 3.4.3 to have that < 𝑧𝑘 , 𝑧𝑠 >⊂ 𝑅𝑞𝑛

𝑠+1
(𝜆𝑘 + Γ). We end by

noting that < 0𝜀 , 𝑧𝑠 >⊂< 𝑧𝑘 , 𝑧𝑠 >.
Proof of b): Again by Lemma 3.4.3 we have that < 𝑧𝑘 , 𝑧𝑠 >⊂ 𝑅𝑞𝑛

𝑠+1
(𝜆𝑘 + Γ). On the other

hand, we know that 𝑅𝑞𝑛
𝑠+1−1(Λ𝑠−1) is a circular interval since 𝑞𝑛

𝑠+1 − 1 ≥ 𝑣𝑠 and it contains 0𝜀 and
𝑧𝑘 . Moreover 𝑧𝑠 ∉ 𝑅𝑞𝑛

𝑠+1−1(Λ𝑠−1) and 𝑧𝑠 > 𝑧𝑘 , then the circular interval 𝑅𝑞𝑛
𝑠+1−1(Λ𝑠−1) contains

< 0𝜀 , 𝑧𝑘 >.

Statement 2: It is enough to show that < 𝑧𝑠 , (𝑛 − 1)𝜀 >⊂ 𝑅𝑞𝑚
𝑠+1−1(Λ). By an argument as before,

there is an index 𝑘 ≤ 𝑠 − 1 such that 𝑢𝑚
𝑠+1 = 𝜆𝑠 + 𝑚ℓ𝑚

𝑠+1 = 𝜆𝑘 + 𝑛𝑎. Take 𝑧𝑘 ≠ 𝑧𝑠 as above. By
Lemma 3.4.3, we have that < 𝑧𝑠 , 𝑧𝑘 >⊂ 𝑅𝑞𝑚

𝑠+1
(𝜆𝑠 + Γ). Let us see that 𝑧𝑘 ∉ 𝑅𝑞𝑚

𝑠+1−1(𝜆𝑠 + Γ). We
proceed by contradiction, assume that 𝑧𝑘 ∈ 𝑅𝑞𝑚

𝑠+1−1(𝜆𝑠 +Γ). This implies that 𝜆𝑘 +𝑛(𝑎−1) ∈ 𝜆𝑠 +Γ

and hence there are non negative integer numbers 𝛼, 𝛽 such that

𝑢𝑚
𝑠+1 > 𝜆𝑠 + 𝑛𝛼 + 𝑚𝛽 = 𝜆𝑘 + 𝑛(𝑎 − 1).

If 𝑎 − 1 ≤ 𝛼, we have that 𝜆𝑘 = 𝜆𝑠 + 𝑛(𝛼 − 𝑎 + 1) + 𝑚𝛽 and this contradicts the fact that 𝜆𝑘 < 𝜆𝑠 ;
hence 𝑎 − 1 > 𝛼 and we have

𝜆𝑠 + 𝑚𝛽 = 𝜆𝑘 + 𝑛(𝑎 − 1 − 𝛼).

Since 𝑎 − 1 − 𝛼 < 𝑎, we have that 𝛽 < ℓ𝑚
𝑠+1. This contradicts the minimality of the limit ℓ𝑚

𝑠+1.
Since 𝑧𝑘 ∉ 𝑅𝑞𝑚

𝑠+1−1(𝜆𝑠 + Γ), we can apply Remark 3.4.4 which tells us that

< 𝑧𝑠 , 𝑧𝑘 > \{𝑧𝑘} ⊂ 𝑅𝑞𝑚
𝑠+1−1(𝜆𝑠 + Γ) ⊂ 𝑅𝑞𝑚

𝑠+1−1(Λ).

Note also that 𝑧𝑘 ∈ 𝑅𝑞𝑚
𝑠+1−1(Λ). Then we have that < 𝑧𝑠 , 𝑧𝑘 >⊂ 𝑅𝑞𝑚

𝑠+1−1(Λ). As before we have
to consider two cases: if 𝑧𝑠 > 𝑧𝑘 , then < 𝑧𝑠 , (𝑛 − 1)𝜀 >⊂< 𝑧𝑠 , 𝑧𝑘 >⊂ 𝑅𝑞𝑚

𝑠+1−1(Λ). Otherwise, if
𝑧𝑠 < 𝑧𝑘 , we recall that 𝑧𝑠 ∉ 𝑅𝑣(Λ𝑠−1); since 𝑅𝑣(Λ𝑠−1) is a circular interval containing 𝑧𝑘 and 0𝜀,
but not containing 𝑧𝑠 , we have that

< 𝑧𝑘 , (𝑛 − 1)𝜀 >⊂ 𝑅𝑣(Λ𝑠−1) ⊂ 𝑅𝑞𝑚
𝑠+1−1(Λ𝑠−1) ⊂ 𝑅𝑞𝑚

𝑠+1−1(Λ).

We conclude that < 𝑧𝑠 , (𝑛 − 1)𝜀 >=< 𝑧𝑠 , 𝑧𝑘 > ∪ < 𝑧𝑘 , (𝑛 − 1)𝜀 >⊂ 𝑅𝑞𝑚
𝑠+1−1(Λ). □

Proposition 3.4.6. Assume that Λ is normalized and increasing. Then 𝑅𝑞(Λ) is a circular interval for
any 𝑞 ≥ 𝑞𝑠+1.

Proof. Let us proceed by induction on the length 𝑠 of Λ. If 𝑠 = −1, we have Λ = Λ−1 = Γ and
the result follows by Lemma 3.4.3 applied to 𝜇 = 0. Let us suppose that 𝑠 ≥ 0 and assume by
induction that the result is true for Λ𝑠−1. We have that Λ = Λ𝑠−1 ∪ (𝜆𝑠 + Γ). This implies that

𝑅𝑞(Λ) = 𝑅𝑞(Λ𝑠−1) ∪ 𝑅𝑞(𝜆𝑠 + Γ), 𝑞 ≥ 0.
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By induction hypothesis, we know that 𝑅𝑞(Λ𝑠−1) is a circular interval for any 𝑞 ≥ 𝑞𝑠 . Moreover,
by the increasing property, we have that

𝑢𝑠+1 > 𝜆𝑠 > 𝑢𝑠 ≥ 𝜆𝑠−1.

In particular, we have that 𝑞𝑠+1 ≥ 𝑞𝑠 and 𝑅𝑞(Λ𝑠−1) is a circular interval for any 𝑞 ≥ 𝑞𝑠+1. On the
other hand, by Lemma 3.4.3, we know that 𝑅𝑞(𝜆𝑠 + Γ) is a circular interval for any 𝑞 ≥ 𝑣𝑠 . Since
𝑞𝑠+1 ≥ 𝑣𝑠 , we have that 𝑅𝑞(𝜆𝑠 + Γ) is a circular interval for any 𝑞 ≥ 𝑞𝑠+1. Thus, both

𝑅𝑞(Λ𝑠−1) and 𝑅𝑞(𝜆𝑠 + Γ)

are circular intervals for 𝑞 ≥ 𝑞𝑠+1. We need to show that their union is also a circular interval.
It is enough to show that they are not disjoint, because the union of two non disjoint circular
intervals is again a circular interval. We have two cases:

If 𝑢𝑠+1 = 𝑢𝑛
𝑠+1, then as in the proof of Proposition 3.5.9, we have that 𝑢𝑠+1 = 𝜆𝑠+1 + 𝑛ℓ 𝑛

𝑠+1 =

𝜆𝑘 + 𝑚𝑏 for 𝑘 < 𝑠, hence we have that 𝑧𝑠 ∈ 𝑅𝑞𝑠+1(𝜆𝑘 + Γ) ⊂ 𝑅𝑞𝑠+1(Λ𝑠−1) obtaining the desired
result. If 𝑢𝑠+1 = 𝑢𝑚

𝑠+1, similarly as the previous case we have that 𝑢𝑠+1 = 𝜆𝑠+1 + 𝑚ℓ𝑚
𝑠+1 = 𝜆𝑘 + 𝑛𝑎

for 𝑘 < 𝑠, and we have that 𝑧𝑘 ∈ 𝑅𝑞𝑠+1(𝜆𝑠 + Γ).
□

Corollary 3.4.7. Assume that Λ is increasing. Then 𝑢̃𝑠+1 ≥ 𝑐Λ + 𝑛, where 𝑐Λ is the conductor of Λ.

Proof. We assume without loss of generality that Λ is normalized, because we notice that for the
semimodule Λ′ = 𝜆′ +Λ, we have that its conductor and axes are shifted by 𝜆′ with respect the
ones of Λ.

First, let us show that 𝑅𝑞(Λ𝑠−1) is a circular interval for 𝑞 ≥ 𝑣𝑠 .
If 𝑠 = 0, we have that Λ𝑠−1 = Λ−1 = Γ, we apply Lemma 3.4.3 by taking 𝜇 = 0. Assume now

that 𝑠 ≥ 1. By Proposition 3.4.6, we know that 𝑅𝑞(Λ𝑠−1) is a circular interval for any 𝑞 ≥ 𝑞𝑠 .
Moreover, we have that 𝜆𝑠 > 𝑢𝑠 since Λ is an increasing semimodule. This implies that 𝑣𝑠 ≥ 𝑞𝑠 ,
hence we get that 𝑅𝑞(Λ𝑠−1) is a circular interval for any 𝑞 ≥ 𝑣𝑠 , as desired.

We end the proof as follows. By Proposition 3.4.5, we have that 𝑅𝑞(Λ) = S1
𝑛 , for any

𝑞 ≥ 𝑞̃𝑠+1 − 1. This implies that for any 𝑘 ≥ 𝑛𝑞̃𝑠+1 − 𝑛, we have that 𝑘 ∈ Λ, and hence 𝑘 ≥ 𝑐Λ. We
conclude by that, by definition of the tops, we have that 𝑢̃𝑠+1 ≥ 𝑛𝑞̃𝑠+1. □

Remark 3.4.8. Notice that Proposition 3.4.5 and 3.4.6 are also true for increasing cuspidal
semimodules such that 𝜆−1 is a multiple 𝑛𝑘 of 𝑛. Indeed, in this case, we obtain the desired
statements by applying the propositions to Λ − 𝑛𝑘.

In [3] is given an explicit formula for the conductor of a semimodule. Nonetheless, for our
purposes, the previous bound in terms of the axis 𝑢̃𝑠+1 is enough.

3.5 Distribution of the Elements of the Basis

Along this section, we consider a cuspidal semimodule Λ of length 𝑠 ≥ 0 with basis ℬ, that we
read in S1

𝑛 as 𝐵 = 𝜁(ℬ) as in the previous section. We are going to describe a pattern for the
distribution of the points 𝑧𝑖 in

𝐵 = (𝑧−1 , 𝑧0 , 𝑧1 , . . . , 𝑧𝑠)

by computing the bounds 𝑏ℓ
𝑖
(𝐵) and 𝑏𝑟

𝑖
(𝐵) of 𝐵 in terms of the axes 𝑢𝑛

𝑖+1 and 𝑢𝑚
𝑖+1.

Lemma 3.5.1. Take 0 ≤ 𝑖 ≤ 𝑠. There are unique integer numbers 𝑘𝑛
𝑖

and 𝑘𝑚
𝑖

such that:
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1. −1 ≤ 𝑘𝑛
𝑖
, 𝑘𝑚

𝑖
≤ 𝑖 − 1.

2. There is 𝑏𝑖+1 ≥ 0 such that 𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛

𝑖+1 = 𝜆𝑘𝑛
𝑖
+ 𝑚𝑏𝑖+1.

3. There is 𝑎𝑖+1 ≥ 0 such that 𝑢𝑚
𝑖+1 = 𝜆𝑖 + 𝑚ℓ𝑚

𝑖+1 = 𝜆𝑘𝑚
𝑖
+ 𝑛𝑎𝑖+1.

Proof. The existence of 𝑘𝑛
𝑖

and 𝑘𝑚
𝑖

comes from the definition of axes and limits. Let us show their
uniqueness. Assume that there is another 𝑘 ≠ 𝑘𝑛

𝑖
with −1 ≤ 𝑘 ≤ 𝑖 − 1 and a natural number 𝑏

such that
𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛𝑖+1 = 𝜆𝑘𝑛

𝑖
+ 𝑚𝑏𝑖+1 = 𝜆𝑘 + 𝑚𝑏.

Then either 𝜆𝑘 ∈ (𝜆𝑘𝑛
𝑖
+ Γ) or 𝜆𝑘𝑛

𝑖
∈ (𝜆𝑘 + Γ) in contradiction with definition of basis. The

uniqueness of 𝑘𝑚
𝑖

is shown in the same way. □

The numbers 𝑏𝑖+1 and 𝑎𝑖+1 are the colimits of Λ.

Notation 3.5.2. We denote the indexes 𝑘𝑖 and 𝑘𝑖 of 𝑢̃𝑖+1 by

𝑘𝑖 =

{
𝑘𝑛
𝑖
, if 𝑢𝑖+1 = 𝑢𝑛

𝑖+1 ,

𝑘𝑚
𝑖
, if 𝑢𝑖+1 = 𝑢𝑚

𝑖+1.
𝑘𝑖 =

{
𝑘𝑛
𝑖
, if 𝑢̃𝑖+1 = 𝑢𝑛

𝑖+1 ,

𝑘𝑚
𝑖
, if 𝑢̃𝑖+1 = 𝑢𝑚

𝑖+1.

Remark 3.5.3. Note that 1 ≤ 𝑏𝑖+1 < 𝑛. To see this, it is enough to consider when Λ is normalized.
Indeed, if 𝑏𝑖+1 ≥ 𝑛, we have that

𝜆𝑖 + 𝑛(ℓ 𝑛𝑖+1 − 1) = 𝜆𝑘𝑛
𝑖
+ 𝑚(𝑏𝑖+1) − 𝑛 ≥ (𝑚 − 1)𝑛 ≥ 𝑐Γ ≥ 𝑐Λ𝑖−1 .

Thus 𝜆𝑖 + 𝑛(ℓ 𝑛
𝑖+1 − 1) ∈ Λ𝑖−1 in contradiction with the minimality of ℓ 𝑛

𝑖+1. Now, as a consequence,
we have that the separation 𝑆(𝑧𝑘𝑛

𝑖
, 𝑧𝑖) is given by 𝑆(𝑧𝑘𝑛

𝑖
, 𝑧𝑖) = 𝑏𝑖+1. Recalling that 1 ≤ ℓ𝑚

𝑖+1 < 𝑛,
see Remark 3.2.3, we have that the separation 𝑆(𝑧𝑖 , 𝑧𝑘𝑚

𝑖
) is given by 𝑆(𝑧𝑖 , 𝑧𝑘𝑚

𝑖
) = ℓ𝑚

𝑖+1.

We will show that 𝑘𝑛
𝑖
= 𝑏ℓ

𝑖
(𝐵) and 𝑘𝑚

𝑖
= 𝑏𝑟

𝑖
(𝐵), for this reason we will use the same terminology

of 𝑖-left bound, 𝑖-right bound or bound, established for the indexes 𝑏𝑖 , 𝑏𝑛𝑖 , 𝑏
𝑚
𝑖

and 𝑏𝑖 , to the indexes
𝑘𝑖 , 𝑘

𝑛
𝑖
, 𝑘𝑚

𝑖
and 𝑘𝑖 . Before showing this relationship, we make a simple example.

Example 3.5.4. Take the semimodule Λ = Γ\ {0}. The basis of Λ is ℬ = (𝑛, 𝑚). Note that 𝜆−1 = 𝑛

and 𝜆0 = 𝑚; thus, we have Λ−1 = 𝑛 + Γ and Λ0 = Λ = Γ \ {0}.
The limit ℓ 𝑛1 is the smallest positive integer such that

𝑚 + 𝑛ℓ 𝑛1 = 𝜆0 + 𝑛ℓ 𝑛1 ∈ Λ−1 = 𝑛 + Γ.

After solving the equation 𝑚 + 𝑛ℓ 𝑛1 = 𝑛 + 𝑚𝑏1, we obtain that ℓ 𝑛1 = 1 = 𝑏1. Moreover, we have
𝑢𝑛

1 = 𝑛 + 𝑚 = 𝑡𝑛1 .
In the same way, in order to compute ℓ𝑚1 , we solve 𝑚 + 𝑚ℓ𝑚1 = 𝑛 + 𝑛𝑎1, obtaining ℓ𝑚1 = 𝑛 − 1

and 𝑎1 = 𝑚 − 1. Therefore, 𝑢𝑚
1 = 𝑛𝑚 = 𝑡𝑚1 .

We conclude that 𝑢1 = 𝑢𝑛
1 = 𝑛 +𝑚, 𝑢̃1 = 𝑢𝑚

1 = 𝑛𝑚, 𝑡1 = 𝑡𝑛1 and 𝑡1 = 𝑡𝑚1 . As expected, we have
that 𝑘𝑛0 = 𝑘𝑚0 = −1, that are the 0-bounds of the list

𝐵 = (0𝜀 , 1𝜀) = (𝑧−1 , 𝑧0),

(note that 𝜁(𝑚) = 1𝜀).
Any cuspidal semimodule Λ with basis (𝑛, 𝑚, . . .) has the same first axes, first critical values,

first limits, first colimits and 0-bounds as the ones computed above, since their computation
depends only on Λ0 = Γ \ {0}. As we said before, the semimodule of differential values of any
cusp satisfies this property.
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Lemma 3.5.5. Consider 0 ≤ 𝑖 ≤ 𝑠 and take integer numbers −1 ≤ 𝑘, 𝑘′ ≤ 𝑖 − 1, with 𝑘 ≠ 𝑘′. Assume
that we have the following equalities:

𝜆𝑖 + 𝑛𝑒 = 𝜆𝑘 + 𝑚𝑏; 𝜆𝑖 + 𝑛𝑒′ = 𝜆𝑘′ + 𝑚𝑏′, (3.3)

where 𝑒 , 𝑒′ ∈ Z and 0 ≤ 𝑏, 𝑏′ < 𝑛. Then we have that 𝑒 < 𝑒′ if and only if 𝑏 < 𝑏′.

Proof. Equations (3.3) lead us to:

𝜆𝑘 = 𝜆𝑘′ + 𝑛(𝑒 − 𝑒′) + 𝑚(𝑏′ − 𝑏),
𝜆𝑘′ = 𝜆𝑘 + 𝑛(𝑒′ − 𝑒) + 𝑚(𝑏 − 𝑏′).

Note that 𝜆𝑘 ∉ 𝜆𝑘′ + Γ and 𝜆𝑘′ ∉ 𝜆𝑘 + Γ, since 𝜆𝑘 and 𝜆𝑘′ are different elements of the basis of Λ.
We conclude that 𝑏 < 𝑏′ if and only if 𝑒 < 𝑒′. □

Proposition 3.5.6. Consider 0 ≤ 𝑖 ≤ 𝑠 and take integer numbers −1 ≤ 𝑘, 𝑘′ ≤ 𝑖 − 1, with 𝑘 ≠ 𝑘′. We
have

1. Assume that 𝜆𝑖 + 𝑛𝑒 = 𝜆𝑘 +𝑚𝑏, 𝜆𝑖 + 𝑛𝑒′ = 𝜆𝑘′ +𝑚𝑏′, where 𝑒 , 𝑒′ ∈ Z and 0 ≤ 𝑏, 𝑏′ < 𝑛. Then
𝑒 < 𝑒′ ⇔ 𝜆𝑖 + 𝑛𝑒 < 𝜆𝑖 + 𝑛𝑒′ ⇔ 𝑆(𝑧𝑘 , 𝑧𝑖) < 𝑆(𝑧𝑘′ , 𝑧𝑖). In particular, taking 𝑘 = 𝑘𝑛

𝑖
, we have

𝑆(𝑧
𝑘𝑛
𝑖
, 𝑧𝑖) < 𝑆(𝑧𝑘′ , 𝑧𝑖).

2. Assume that 𝜆𝑖 +𝑚 𝑓 = 𝜆𝑘 + 𝑛𝑎, 𝜆𝑖 +𝑚 𝑓 ′ = 𝜆𝑘′ + 𝑛𝑎′ where 𝑎, 𝑎′ ∈ Z and 0 ≤ 𝑓 , 𝑓 ′ < 𝑛. Then
𝑓 < 𝑓 ′ ⇔ 𝜆𝑖 + 𝑚 𝑓 < 𝜆𝑖 + 𝑚 𝑓 ′ ⇔ 𝑆(𝑧𝑖 , 𝑧𝑘) < 𝑆(𝑧𝑖 , 𝑧𝑘′). In particular, taking 𝑘 = 𝑘𝑚

𝑖
, we have

𝑆(𝑧𝑖 , 𝑧𝑘𝑚
𝑖
) < 𝑆(𝑧𝑖 , 𝑧𝑘′).

Proof. Notice that 𝑆(𝑧𝑖 , 𝑧𝑘) = 𝑓 and 𝑆(𝑧𝑖 , 𝑧𝑘′) = 𝑓 ′, this proves the second statement. For the first
statement, we apply Lemma 3.5.5, by noting that 𝑆(𝑧𝑘 , 𝑧𝑖) = 𝑏 and 𝑆(𝑧𝑘′ , 𝑧𝑖) = 𝑏′. □

Corollary 3.5.7. We have that 𝑘𝑛
𝑖
= 𝑏ℓ

𝑖
(𝐵) and 𝑘𝑚

𝑖
= 𝑏𝑟

𝑖
(𝐵), for 0 ≤ 𝑖 ≤ 𝑠.

Remark 3.5.8. Take an integer number 𝜆 ∈ Z. Then ℬ′ = 𝜆 + ℬ is the basis of Λ′ = 𝜆 +Λ and
𝐵′ = 𝜁(ℬ′) = 𝐵 + 𝜆𝜀. Thus, the bounds of 𝐵′ are the same ones as the bounds of 𝐵. Anyway,
the axes for Λ′ are the ones of Λ shifted by 𝜆, this implies also that bounds, limits and colimits
coincide for both semimodules.

For the particular case when the semimodule Λ is increasing, we can give a more accurate
description of the bounds, as shown in next proposition:

Proposition 3.5.9. Assume that Λ is increasing and take 1 ≤ 𝑖 ≤ 𝑠. We have

1. If 𝑢𝑖 = 𝑢𝑛
𝑖
, then 𝑘𝑛

𝑖
= 𝑖 − 1 and 𝑘𝑚

𝑖
= 𝑘𝑚

𝑖−1.
2. If 𝑢𝑖 = 𝑢𝑚

𝑖
, then 𝑘𝑛

𝑖
= 𝑘𝑛

𝑖−1 and 𝑘𝑚
𝑖
= 𝑖 − 1.

Proof. In view of Remark 3.5.8, it is enough to consider the normalized case 𝜆−1 = 0. Let us do
the proof of Statement 1; the proof of Statement 2 is similar and we do not explicit it. Thus, we
take the assumption that 𝑢𝑖 = 𝑢𝑛

𝑖
.

First, let us suppose that 𝑖 = 1. By considering the bounds in the list (𝑧−1 , 𝑧0 , 𝑧1), we deduce
that 𝑘𝑛0 = 𝑘𝑚0 = −1 and either 𝑧1 ∈< 𝑧−1 , 𝑧0 >, or 𝑧1 ∈< 𝑧0 , 𝑧−1 >. Let us show that we actually
have that 𝑧1 ∈< 𝑧0 , 𝑧−1 >, which implies that 𝑘𝑛1 = 0 and 𝑘𝑚1 = −1 as desired.

Since Λ−1 = Γ, we have that 𝑅𝑞(Λ−1) is a circular interval for 𝑞 ≥ 0, due to Lemma 3.4.3.
Recall that 𝑢𝑛

1 = 𝑢1 ∈ 𝐼𝑞1 . Noting that 𝑧−1 = 0𝜀 and applying Proposition 3.4.5 we have that

< 𝑧−1 , 𝑧0 − 1𝜀 >⊂ 𝑅𝑞(Λ−1), 𝑞 ≥ 𝑞𝑛1 − 1 = 𝑞1 − 1.
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On the other hand, we have that 𝑧0 ∈ 𝑅𝑞(Λ0), for any 𝑞 ≥ 𝑞1 since 𝜆0 < 𝑢1 and hence 𝑣0 ≤ 𝑞1.
Thus, we have < 𝑧−1 , 𝑧0 >⊂ 𝑅𝑞1(Λ0). Note that 𝜆1 > 𝑢1, since Λ is increasing; this implies that
𝑧1 ∉ 𝑅𝑞1(Λ0), hence we necessarily have that 𝑧1 ∉< 𝑧−1 , 𝑧0 >, therefore 𝑧1 ∈< 𝑧0 , 𝑧−1 >.

Now, assume that 𝑖 > 1. Our first step is to show that 𝑧𝑖 ∈< 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑘𝑚

𝑖−1
>. By Proposition

3.4.6, we have that 𝑅𝑞(Λ𝑖−2) is a circular interval for 𝑞 ≥ 𝑞𝑖−1. Since 𝑧𝑘𝑛
𝑖−1

and 𝑧𝑘𝑚
𝑖−1

belong to
𝑅𝑞𝑖−1(Λ𝑖−2) we have that

Either < 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑘𝑚

𝑖−1
>⊂ 𝑅𝑞𝑖−1(Λ𝑖−2), or < 𝑧𝑘𝑚

𝑖−1
, 𝑧𝑘𝑛

𝑖−1
>⊂ 𝑅𝑞𝑖−1(Λ𝑖−2).

Noting that and 𝑧𝑖−1 ∉ 𝑅𝑞𝑖−1(Λ𝑖−2) and 𝑧𝑖−1 ∈< 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑘𝑚

𝑖−1
>, we conclude that

< 𝑧𝑘𝑚
𝑖−1
, 𝑧𝑘𝑛

𝑖−1
>⊂ 𝑅𝑞𝑖−1(Λ𝑖−2).

Noting also that 𝑧𝑖 ∉ 𝑅𝑞𝑖−1(Λ𝑖−2), we obtain that 𝑧𝑖 ∈< 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑘𝑚

𝑖−1
>, as desired.

Thus, we have 𝑧𝑖 , 𝑧𝑖−1 ∈< 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑘𝑚

𝑖−1
> and hence there are two possibilities: either 𝑧𝑖 ∈<

𝑧𝑘𝑛
𝑖−1
, 𝑧𝑖−1 >, or 𝑧𝑖 ∈< 𝑧𝑖−1 , 𝑧𝑘𝑚

𝑖−1
>. If we show that 𝑧𝑖 ∈< 𝑧𝑖−1 , 𝑧𝑘𝑚

𝑖−1
> holds, then the proof is

over. By Proposition 3.4.5 we have that

< 0𝜀 , 𝑧𝑖−1 − 1𝜀 >⊂ 𝑅𝑞𝑖−1(Λ𝑖−2) ⊂ 𝑅𝑞𝑖−1(Λ𝑖−1).

Since 𝑧𝑖−1 ∈ 𝑅𝑞𝑖 (Λ𝑖−1), we have that < 0𝜀 , 𝑧𝑖−1 >⊂ 𝑅𝑞𝑖 (Λ𝑖−1). If 𝑧𝑘𝑛
𝑖−1

∉< 0𝜀 , 𝑧𝑖−1 >, taking into
account that 0𝜀 = 𝑧−1, then we would have that 𝑆(0𝜀 , 𝑧𝑖−1) < 𝑆(𝑧𝑘𝑛

𝑖−1
, 𝑧𝑖−1). This contradicts the

fact that 𝑘𝑛
𝑖−1 = 𝑏ℓ

𝑖−1(𝐵). Hence, we have that 𝑧𝑘𝑛
𝑖−1

∈< 0𝜀 , 𝑧𝑖−1 > and

< 𝑧𝑘𝑛
𝑖−1
, 𝑧𝑖−1 >⊂ 𝑅𝑞𝑖 (Λ𝑖−1).

Since 𝑧𝑖 ∉ 𝑅𝑞𝑖 (Λ𝑖−1), we obtain that 𝑧𝑖 ∈< 𝑧𝑖−1 , 𝑧𝑘𝑚
𝑖−1

> as desired. □

Remark 3.5.10. Note that Proposition 3.5.9 implies the following statements:

1. If 𝑘𝑛
𝑖
= 𝑖 − 1, then 𝑢𝑖 = 𝑢𝑛

𝑖
.

2. If 𝑘𝑚
𝑖
= 𝑖 − 1, then 𝑢𝑖 = 𝑢𝑚

𝑖
.

Indeed, we have that 𝑖 − 1 ∈ {𝑘𝑛
𝑖
, 𝑘𝑚

𝑖
}; if 𝑘𝑛

𝑖
= 𝑖 − 1, then necessarily 𝑘𝑚

𝑖
≠ 𝑖 − 1 (note that 𝑖 ≥ 1)

and we are in the situation of the first statement of Proposition 3.5.9. Similar argument when
𝑘𝑚
𝑖
= 𝑖 − 1.

3.6 Relations between Parameters

Let Λ be an increasing cuspidal semimodule with basis ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) and let us
denote

𝐵 = 𝜁(ℬ) = (𝑧−1 , 𝑧0 , 𝑧1 , . . . , 𝑧𝑠).

In this section we describe inductive features of axes, limits and co-limits of Λ.

Lemma 3.6.1. Take 1 ≤ 𝑘 < 𝑖 ≤ 𝑠 + 1. We have:

1. The axes and the critical values 𝑢𝑖 , 𝑡𝑖 satisfy that 𝑢𝑖 > 𝑢𝑘 and 𝑡𝑖 > 𝑡𝑘 .
2. The axes and the critical values 𝑢̃𝑖 , 𝑡𝑖 satisfy that 𝑢̃𝑖 < 𝑢̃𝑘 and 𝑡𝑖 < 𝑡𝑘 .

Proof. It is enough to consider the case 𝑘 = 𝑖 − 1.
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Let us prove Statement 1. By definition of the axes, we have that 𝑢𝑖 > 𝜆𝑖−1. Since the
semimodule is increasing, we have that 𝜆𝑖−1 > 𝑢𝑖−1. We get that 𝑢𝑖 > 𝑢𝑖−1. Moreover, by
definition of critical value, we see that

𝑡𝑖 = 𝑡𝑖−1 + (𝑢𝑖 − 𝜆𝑖−1) > 𝑡𝑖−1.

This ends the proof of Statement 1.
Let us prove Statement 2. We do it for the case that 𝑢̃𝑖 = 𝑢𝑛

𝑖
= 𝜆𝑖−1 + 𝑛ℓ 𝑛

𝑖
, the proof for the

case 𝑢̃𝑖 = 𝑢𝑚
𝑖

runs in a similar way. By Proposition 3.5.9, there are two cases: either 𝑘𝑛
𝑖−1 = 𝑖 − 2

or 𝑘𝑚
𝑖−1 = 𝑖 − 2. We shall see that 𝑢̃𝑖 < 𝑢̃𝑖−1 and that 𝑡𝑖 < 𝑡𝑖−1 simultaneously in each of the cases

above.
Case 𝑘𝑛

𝑖−1 = 𝑖 − 2. By Remark 3.5.10, we see that 𝑢𝑖−1 = 𝑢𝑛
𝑖−1 and 𝑢̃𝑖−1 = 𝑢𝑚

𝑖−1. Hence we can
write:

𝑢̃𝑖 = 𝑢𝑛
𝑖 = 𝜆𝑖−1 + 𝑛ℓ 𝑛

𝑖
= 𝜆𝑖−2 + 𝑚𝑏𝑖 (3.4)

𝑢̃𝑖−1 = 𝑢𝑚
𝑖−1 = 𝜆𝑖−2 + 𝑚ℓ𝑚

𝑖−1 = 𝜆𝑘 + 𝑛𝑎𝑖−1 with 𝑘 < 𝑖 − 2. (3.5)

In order to see that 𝑢̃𝑖 < 𝑢̃𝑖−1, we need to show that 𝑏𝑖 < ℓ𝑚
𝑖−1. To do this, we are going to exclude

the possibility 𝑏𝑖 ≥ ℓ𝑚
𝑖−1:

• If ℓ𝑚
𝑖−1 = 𝑏𝑖 , we deduce that 𝑢̃𝑖−1 = 𝑢̃𝑖 from equations (3.4) and (3.5). Hence, we have

𝑢̃𝑖 = 𝜆𝑖−1 + 𝑛ℓ 𝑛𝑖 = 𝜆𝑘 + 𝑛𝑎𝑖−1 = 𝑢̃𝑖−1 , 𝑘 < 𝑖 − 2.

Then 𝜆𝑖−1 ∈ 𝜆𝑘 + Γ or 𝜆𝑘 ∈ 𝜆𝑖−1 + Γ, contradicting the fact that ℬ is a basis.
• If ℓ𝑚

𝑖−1 < 𝑏𝑖 , by equation (3.4) and by Corollary 3.4.7, we have that:

𝑢̃𝑖 − 𝑛 = 𝜆𝑖−1 + 𝑛(ℓ 𝑛𝑖 − 1) =𝜆𝑖−2 + 𝑚𝑏𝑖 − 𝑛 ≥ 𝜆𝑖−2 + 𝑚ℓ𝑚𝑖−1 + 𝑚 − 𝑛

=𝑢̃𝑖−1 + 𝑚 − 𝑛 ≥ 𝑐Λ𝑖−2 + 𝑚 > 𝑐Λ𝑖−2 .

We get that 𝜆𝑖−1 + 𝑛(ℓ 𝑛
𝑖
− 1) > 𝑐Λ𝑖−2 and thus 𝜆𝑖−1 + 𝑛(ℓ 𝑛

𝑖
− 1) ∈ Λ𝑖−2, contradicting the

minimality of ℓ 𝑛
𝑖

.

It follows that 𝑏𝑖 < ℓ𝑚
𝑖−1, concluding that 𝑢̃𝑖 < 𝑢̃𝑖−1, in the case 𝑘𝑛

𝑖−1 = 𝑖 − 2.
Let us see now that 𝑡𝑖 < 𝑡𝑖−1 in this case 𝑘𝑛

𝑖−1 = 𝑖 − 2. From equations (3.4), (3.5), using the
fact that 𝑢̃𝑖 < 𝑢̃𝑖−1 and the property of increasing semimodule, we have that:

𝜆𝑖−2 + 𝑚ℓ𝑚𝑖−1 = 𝑢̃𝑖−1 > 𝑢̃𝑖 = 𝜆𝑖−1 + 𝑛ℓ 𝑛𝑖 > 𝑢𝑖−1 + 𝑛ℓ 𝑛𝑖 .

Consequently, 𝑚ℓ𝑚
𝑖−1 > 𝑢𝑖−1 − 𝜆𝑖−2 + 𝑛ℓ 𝑛

𝑖
and

𝑡𝑖−1 = 𝑡𝑖−2 + 𝑚ℓ𝑚𝑖−1 > 𝑡𝑖−2 + 𝑢𝑖−1 − 𝜆𝑖−2 + 𝑛ℓ 𝑛𝑖 = 𝑡𝑖−1 + 𝑛ℓ 𝑛𝑖 = 𝑡𝑖 .

This ends the proof that 𝑡𝑖 < 𝑡𝑖−1 in this case.
Case 𝑘𝑚

𝑖−1 = 𝑖 − 2. Note that 𝑢̃𝑖−1 = 𝑢𝑛
𝑖−1 and 𝑘𝑛

𝑖−1 = 𝑘𝑛
𝑖−2 in view of Remark 3.5.10 and

Proposition 3.5.9 . Thus, we can write

𝑢̃𝑖 = 𝑢𝑛
𝑖 = 𝜆𝑖−1 + 𝑛ℓ 𝑛𝑖 = 𝜆𝑘 + 𝑚𝑏𝑖 , with 𝑘 = 𝑘𝑛𝑖−1 = 𝑘𝑛𝑖−2 < 𝑖 − 2, (3.6)

𝑢̃𝑖−1 = 𝑢𝑛
𝑖−1 = 𝜆𝑖−2 + 𝑛ℓ 𝑛𝑖−1 = 𝜆𝑘 + 𝑚𝑏𝑖−1 , with 𝑘 = 𝑘𝑛𝑖−2 < 𝑖 − 2. (3.7)

Let us proceed in a similar way as before to show that 𝑏𝑖−1 > 𝑏𝑖 :

• Assume that 𝑏𝑖−1 = 𝑏𝑖 . Then 𝜌(𝜆𝑖−1) = 𝜌(𝜆𝑖−2), absurd.



68 3. Cuspidal Semimodules

• Assume that 𝑏𝑖−1 < 𝑏𝑖 . Then, we have that

𝑢̃𝑖 − 𝑛 = 𝜆𝑖−1 + 𝑛(ℓ 𝑛𝑖 − 1) = 𝜆𝑘 + 𝑚𝑏𝑖 − 𝑛

> 𝜆𝑘 + (𝑏𝑖 − 1)𝑚 = 𝑢̃𝑖−1 + (𝑏𝑖 − 𝑏𝑖−1 − 1)𝑚
≥ 𝑢̃𝑖−1 ≥ 𝑛 + 𝑐Λ𝑖−2 .

Then 𝜆𝑖−1 + 𝑛(ℓ 𝑛
𝑖
− 1) ∈ Λ𝑖−2, in contradiction with the minimality of ℓ 𝑛

𝑖
.

We conclude that 𝑏𝑖−1 > 𝑏𝑖 and thus 𝑢̃𝑖−1 > 𝑢̃𝑖 .
Let us see now that 𝑡𝑖 < 𝑡𝑖−1 in this case 𝑘𝑚

𝑖−1 = 𝑖 − 2. From equations (3.6), (3.7), using the
fact that 𝑢̃𝑖 < 𝑢̃𝑖−1 and the property of increasing semimodule, we have that:

𝜆𝑖−2 + 𝑛ℓ 𝑛𝑖−1 = 𝑢̃𝑖−1 > 𝑢̃𝑖 = 𝜆𝑖−1 + 𝑛ℓ 𝑛𝑖 > 𝑢𝑖−1 + 𝑛ℓ 𝑛𝑖 .

Consequently, 𝑛ℓ 𝑛
𝑖−1 > 𝑢𝑖−1 − 𝜆𝑖−2 + 𝑛ℓ 𝑛

𝑖
and

𝑡𝑖−1 = 𝑡𝑖−2 + 𝑛ℓ 𝑛𝑖−1 > 𝑡𝑖−2 + 𝑢𝑖−1 − 𝜆𝑖−2 + 𝑛ℓ 𝑛𝑖 = 𝑡𝑖−1 + 𝑛ℓ 𝑛𝑖 = 𝑡𝑖 .

This ends the proof. □

Corollary 3.6.2. Let Λ be a cuspidal increasing semimodule with basis

ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠)

such that 𝜆−1 = 𝑛 and 𝜆0 = 𝑚. We have that 𝑡1 = 𝑢̃1 = 𝑛𝑚 and the following holds

𝑡𝑛𝑖+1 < 𝑡1 = 𝑛𝑚 and 𝑡𝑚𝑖+1 < 𝑡1 = 𝑛𝑚,

for any 1 ≤ 𝑖 ≤ 𝑠. Similarly, for the axes.

Proof. It is enough to recall that 𝑡1 = 𝑛𝑚 in view of Example 3.5.4. □

We finish this chapter with two technical results required in Chapter 8.

Proposition 3.6.3. Consider 1 ≤ 𝑖 ≤ 𝑠. We have

1. If 𝑘𝑛
𝑖
= 𝑖 − 1, then ℓ 𝑛

𝑖+1 + 𝑎𝑖+1 = 𝑎𝑖 and ℓ𝑚
𝑖+1 + 𝑏𝑖+1 = ℓ𝑚

𝑖
.

2. If 𝑘𝑚
𝑖
= 𝑖 − 1, then ℓ 𝑛

𝑖+1 + 𝑎𝑖+1 = ℓ 𝑛
𝑖

and ℓ𝑚
𝑖+1 + 𝑏𝑖+1 = 𝑏𝑖 .

Proof. Notice that shifting the semimodule any integer number does not change the value of the
limits and the colimits. Therefore, we can assume without loss of generality that Λ is normalized
and thus 𝜆−1 = 0.

Let us prove Statement 1. By hypothesis, we have that 𝑘𝑛
𝑖
= 𝑖 − 1. In view of Remark 3.5.10

and Proposition 3.5.9, we also have that 𝑘𝑚
𝑖
= 𝑘𝑚

𝑖−1. Let us write:

𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛𝑖+1 = 𝜆𝑖−1 + 𝑚𝑏𝑖+1 , (3.8)

𝑢𝑚
𝑖+1 = 𝜆𝑖 + 𝑚ℓ𝑚𝑖+1 = 𝜆𝑘𝑚

𝑖
+ 𝑛𝑎𝑖+1 , (3.9)

𝑢𝑚
𝑖 = 𝜆𝑖−1 + 𝑚ℓ𝑚𝑖 = 𝜆𝑘𝑚

𝑖−1
+ 𝑛𝑎𝑖 = 𝜆𝑘𝑚

𝑖
+ 𝑛𝑎𝑖 . (3.10)

From equations (3.8) and (3.9) we obtain that

𝑛ℓ 𝑛𝑖+1 + 𝑛𝑎𝑖+1 + 𝜆𝑘𝑚
𝑖
= 𝑚𝑏𝑖+1 + 𝑚ℓ𝑚𝑖+1 + 𝜆𝑖−1. (3.11)

By equation (3.10) we can substitute 𝜆𝑘𝑚
𝑖
= 𝜆𝑖−1 + 𝑚ℓ𝑚

𝑖
− 𝑛𝑎𝑖 in equation (3.11) to obtain

𝑛(ℓ 𝑛𝑖+1 + 𝑎𝑖+1 − 𝑎𝑖) = 𝑚(ℓ𝑚𝑖+1 + 𝑏𝑖+1 − ℓ𝑚𝑖 ). (3.12)
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Since 𝑛 and 𝑚 have no common factor, we have that 𝑛 divides ℓ𝑚
𝑖+1 + 𝑏𝑖+1 − ℓ𝑚

𝑖
.

Let us see that ℓ𝑚
𝑖+1 + 𝑏𝑖+1 − ℓ𝑚

𝑖
= 0 and hence ℓ𝑚

𝑖+1 + 𝑏𝑖+1 = ℓ𝑚
𝑖

as desired. If ℓ𝑚
𝑖+1 + 𝑏𝑖+1 − ℓ𝑚

𝑖
≠ 0

we are in one of the following three cases

𝑎) |ℓ𝑚𝑖+1 + 𝑏𝑖+1 − ℓ𝑚𝑖 | ≥ 2𝑛, 𝑏) ℓ𝑚𝑖+1 + 𝑏𝑖+1 − ℓ𝑚𝑖 = −𝑛, 𝑐) ℓ𝑚𝑖+1 + 𝑏𝑖+1 − ℓ𝑚𝑖 = 𝑛.

Let us see that each of these cases leads to a contradiction.
Assume first that we are in case a). Noting that ℓ𝑚

𝑖+1 , 𝑏𝑖+1 , ℓ
𝑚
𝑖

≥ 1, there is at least one of them
that is strictly bigger than 𝑛. Let us consider the three possibilities:

• If ℓ𝑚
𝑖+1 > 𝑛, we have that 𝑚ℓ𝑚

𝑖+1 > 𝑛𝑚 and then 𝜆𝑖 + 𝑚ℓ𝑚
𝑖+1 > 𝑛𝑚. This implies that

𝜆𝑖 + 𝑚(ℓ𝑚
𝑖+1 − 1) > (𝑛 − 1)𝑚 ≥ 𝑐Γ ≥ 𝑐Λ𝑖−1 . Then, we have that 𝜆𝑖 + 𝑚(ℓ𝑚

𝑖+1 − 1) ∈ Λ𝑖−1,
contradicting the minimality of ℓ𝑚

𝑖+1. Recall that the conductor of the semigroup is
𝑐Γ = (𝑛 − 1)(𝑚 − 1).

• If ℓ𝑚
𝑖

> 𝑛, we do the same argument as before.
• If 𝑏𝑖+1 > 𝑛, we have that 𝜆𝑖 + 𝑛ℓ 𝑛

𝑖+1 = 𝜆𝑖−1 + 𝑚𝑏𝑖+1 > 𝑛𝑚 and then

𝜆𝑖 + 𝑛(ℓ 𝑛𝑖+1 − 1) > (𝑚 − 1)𝑛 ≥ 𝑐Γ ≥ 𝑐Λ𝑖−1 .

Then 𝜆𝑖 + 𝑛(ℓ 𝑛
𝑖+1 − 1) ∈ Λ𝑖−1 and this contradicts the minimality of ℓ 𝑛

𝑖+1.

Assume that we are in case b), that is ℓ𝑚
𝑖+1 + 𝑏𝑖+1 − ℓ𝑚

𝑖
= −𝑛. this implies that ℓ𝑚

𝑖
> 𝑛 and we do

the same argument as before to obtain a contradiction.
Assume that we are in case c), that is ℓ𝑚

𝑖+1 + 𝑏𝑖+1 − ℓ𝑚
𝑖

= 𝑛. We have that ℓ𝑚
𝑖+1 + 𝑏𝑖+1 > 𝑛.

By Remark 3.5.3 we see that the separation 𝑆(𝑧𝑖−1 , 𝑧𝑖) is given by 𝑆(𝑧𝑖−1 , 𝑧𝑖) = 𝑏𝑖+1 (recall
that 𝑘𝑛

𝑖
= 𝑖 − 1) and that the separation 𝑆(𝑧𝑖 , 𝑧𝑘𝑚

𝑖
) is given by 𝑆(𝑧𝑖 , 𝑧𝑘𝑚

𝑖
) = ℓ𝑚

𝑖+1. Noting that
𝑧𝑖 ∈< 𝑧𝑖−1 , 𝑧𝑘𝑚

𝑖
> and 𝑧𝑖−1 ≠ 𝑧𝑘𝑚

𝑖
, we conclude that

𝑛 > 𝑆(𝑧𝑖−1 , 𝑧𝑘𝑚
𝑖
) = 𝑆(𝑧𝑖−1 , 𝑧𝑖) + 𝑆(𝑧𝑖 , 𝑧𝑘𝑚

𝑖
) = 𝑏𝑖+1 + ℓ𝑚𝑖+1.

This contradicts 𝑏𝑖+1 + ℓ𝑚
𝑖+1 > 𝑛. The proof that ℓ𝑚

𝑖+1 + 𝑏𝑖+1 = ℓ𝑚
𝑖

is ended. Moreover, since
ℓ𝑚
𝑖+1 + 𝑏𝑖+1 − ℓ𝑚

𝑖
= 0, by equation (3.12), we conclude that ℓ 𝑛

𝑖+1 + 𝑎𝑖+1 = 𝑎𝑖 , as desired.
The proof of Statement 2 runs in a similar way to the above arguments. □

Next corollary will be useful in our computation of Saito bases in Chapter 8:

Corollary 3.6.4. Consider 2 ≤ 𝑗 + 1 < 𝑞 ≤ 𝑠 + 1. Then

ℓ𝑚𝑗+1 − (ℓ𝑚𝑗+2 + ℓ𝑚𝑗+3 + · · · + ℓ𝑚𝑞 ) = 𝑏𝑞 > 0,

under the assumption that 𝑡 𝑗+1 = 𝑡𝑚
𝑗+1 and 𝑡ℓ = 𝑡𝑛

ℓ
, for 𝑗 + 2 ≤ ℓ ≤ 𝑞 − 1. In a symmetric way, we have

that
ℓ 𝑛𝑗+1 − (ℓ 𝑛𝑗+2 + ℓ 𝑛𝑗+3 + · · · + ℓ 𝑛𝑞 ) = 𝑎𝑞 > 0,

under the assumption that 𝑡 𝑗+1 = 𝑡𝑛
𝑗+1 and 𝑡ℓ = 𝑡𝑚

ℓ
, for 𝑗 + 2 ≤ ℓ ≤ 𝑞 − 1.

Proof. We prove the first assertion, the second one is similar. Let us consider the difference

ℓ𝑚𝑗+1 − ℓ𝑚𝑗+2.

Since 𝑡 𝑗+1 = 𝑡𝑚
𝑗+1, by Proposition 3.5.9, we have that 𝑘𝑛

𝑗+1 = 𝑗. By Proposition 3.6.3, we conclude
that

ℓ𝑚𝑗+1 − ℓ𝑚𝑗+2 = 𝑏 𝑗+2.
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Now, let us study the difference 𝑏 𝑗+2 − ℓ𝑚
𝑗+3. Since 𝑡 𝑗+2 = 𝑡𝑚

𝑗+2, we have that 𝑘𝑚
𝑗+2 = 𝑗 + 1. By

Proposition 3.6.3 we conclude that

𝑏 𝑗+2 − ℓ𝑚𝑗+3 = 𝑏 𝑗+3.

Following in this way, we conclude that

ℓ𝑚𝑗+1 − (ℓ𝑚𝑗+2 + ℓ𝑚𝑗+3 + · · · + ℓ𝑚𝑞 ) = 𝑏𝑞 > 0,

as desired. □



4

Standard Bases

In order to compute the semimodule of differential values of branches, we need to compute
standard bases. This notion is our main computational tool in this work. Standard bases were
firstly introduced by H. Hironaka in [38] when he was studying the resolution of singularities
of algebraic varieties in characteristic 0. The concept of standard basis is quite similar, in its
definition, to the one of Gröbner basis. In this chapter, we basically give the notations and
definitions needed to understand this concept, additionally, we give the algorithms that compute
a standard basis.

We treat the notion of standard basis in the cases of ideals, algebras and modules. As a
remark, in the case of cusps, the computations are easier. For this reason the reader can skip
the sections about of algebras and submodules. Nonetheless, we add them to the text for
completeness, this way the reader may find the required techniques to study semimodules of
differential values for branches which are not cusps.

We use [31] as our main reference, there it is only treated the formal case. Since we are only
interested in the holomorphic case, we added minor modifications to the formal case.

4.1 Standard Bases of an Ideal

In this section we recall the notion of standard basis for an ideal. We follow [31] along the first
three sections.

Let 𝑝 be a positive integer. Fix a monomial order ⪯ of (Z≥0)𝑝 , that is, ⪯ is a total order
satisfying that 0 ⪯ 𝑠 for all 𝑠 ∈ (Z≥0)𝑝 , and if 𝑠1 ⪯ 𝑠2, then 𝑠1 + 𝑠 ⪯ 𝑠2 + 𝑠 for all 𝑠, 𝑠1 , 𝑠2 ∈ (Z≥0)𝑝 .
Additionally, we ask ⪯ to satisfy the finiteness property. In other words, for all 𝑠0 ∈ (Z≥0)𝑝 , the set
{𝑠 ⪯ 𝑠0 : 𝑠 ∈ (Z≥0)𝑝} is finite.

Example 4.1.1. The following two monomial orders are the main ones that we are going to use
along this work.

• The natural order in Z≥0.
• Consider a pair of positive integers (𝑛, 𝑚) such that 2 ≤ 𝑛 < 𝑚. Then given (𝑎, 𝑏), (𝑐, 𝑑) ∈

(Z≥0)2, we say that (𝑎, 𝑏) < (𝑐, 𝑑) if and only if either 𝑛𝑎+𝑚𝑏 < 𝑛𝑐+𝑚𝑑 or 𝑛𝑎+𝑚𝑏 = 𝑛𝑐+𝑚𝑑

with 𝑎 < 𝑐. We call this order the weighted order with respect (𝑛, 𝑚).

Given 𝑠, 𝑡 ∈ (Z≥0)𝑝 , we say that 𝑠 divides 𝑡, or that 𝑡 is divisible by 𝑠, if 𝑡 − 𝑠 ∈ (Z≥0)𝑝 , we
denote it by 𝑠 | 𝑡. Consider a set 𝐴 ⊂ (Z≥0)𝑝 , a subset 𝐷 ⊂ 𝐴 is said to be a set of divisors of 𝐴 if
for all 𝑠 ∈ 𝐴 there exists 𝑡 ∈ 𝐷 such that 𝑡 | 𝑠. The set 𝐷 is a minimal set of divisors if 𝑡 | 𝑡′ implies
that 𝑡 = 𝑡′, for all 𝑡 , 𝑡′ ∈ 𝐷.

71
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Remark 4.1.2. Any non empty set 𝐴 ⊂ (Z≥0)𝑝 has always a finite minimal set of divisors, see
[31] p.3 Theorem 1.

If 𝑔 ≠ 0, then we define the leading power of 𝑔 with respect to ⪯ as

𝑙𝑝(𝑔) := min(𝒩𝒞 𝑥1 ,...,𝑥𝑛 (𝑔)),

we recall that 𝒩𝒞 𝑥1 ,...,𝑥𝑛 (𝑔) is the Newton cloud of 𝑔, as defined in Chapter 1. Besides, we
set 𝑙𝑝(0) = (∞,∞, . . . ,∞) ≻ 𝛼 for any 𝛼 ∈ (Z≥0)𝑝 . The leading term of 𝑔 is 𝑙𝑡(𝑔) := 𝑎𝛽𝑥

𝛽 where
𝛽 = 𝑙𝑝(𝑔) if 𝑔 ≠ 0 and 𝑙𝑡(0) := 0.

Definition 4.1.3. Given an ideal 𝐼 ⊂ C{𝑥1 , . . . , 𝑥𝑝} and a subset 𝐵 ⊂ 𝐼. We say that 𝐵 is a standard
basis of 𝐼 if 𝐵 generates 𝐼 as an ideal, and for any ℎ ∈ 𝐼, there exists 𝑏 ∈ 𝐵 such that 𝑙𝑝(𝑏) | 𝑙𝑝(ℎ). We
say that 𝐵 is a minimal standard basis, if for all 𝑏 ∈ 𝐵, then 𝐵 \ {𝑏} is not a standard basis.

We are going to explain how to compute a minimal standard basis. First, we introduce some
terminology. Given a set 𝐵 ⊂ C{𝑥1 , . . . , 𝑥𝑝} and two elements 𝑔, 𝑟 ∈ C{𝑥1 , . . . , 𝑥𝑝}, we say that 𝑟
is a reduction modulo 𝐵 of 𝑔, if there exist 𝑎 ∈ C, 𝛼 ∈ (Z≥0)𝑝 , and 𝑏 ∈ 𝐵, such that

𝑟 = 𝑔 − 𝑎𝑥𝛼𝑏,

with either 𝑟 = 0 or 𝑙𝑝(𝑔) ≺ 𝑙𝑝(𝑟). If there exists a reduction 𝑟 of 𝑔 modulo 𝐵, we say that 𝑔 is
reducible modulo 𝐵.

We denote by 𝑟∞ a final reduction as the Krull limit of a sequence of reductions starting of
𝑔 until obtaining either the zero element or an element non reducible by 𝐵 any longer. More
precisely, we consider a sequence

𝑟0 = 𝑔 → 𝑟1 → 𝑟2 → . . . → 𝑟𝑘 → . . .

where 𝑟𝑖 is a reduction of 𝑟𝑖−1 modulo 𝐵. An element 𝑟′ ∈ C{𝑥1 , . . . , 𝑥𝑝} is called a partial
reduction of 𝑔 modulo 𝐵 if there exists a finite sequence of reductions, as above, starting at 𝑔 that
gives 𝑟′. In the definition of final (resp. partial) reduction of 𝑔, we are including the case where
𝑔 is non reducible modulo 𝐵, in that case 𝑔 will be its own final (resp. partial) reduction.

Remark 4.1.4. Artin’s Approximation Theorem, see [5], states that given a formal solution of
a system of holomorphic equations there exists a convergent solution as close as desired to
the formal one in the Krull topology. Thus, when 𝐵 is finite, saying that a final reduction of 𝑔
modulo 𝐵 is zero implies that 𝑔 belongs to the ideal generated by 𝐵. Additionally, the reciprocal
result is also true, that is, if 𝑔 ∈ (𝐵), then 𝑔 is reducible modulo 𝐵. In particular, 0 would be a
final reduction of 𝑔 modulo 𝐵.

Take non zero functions 𝑔1 , 𝑔2 ∈ C{𝑥1 , . . . , 𝑥𝑝} with 𝑙𝑡(𝑔𝑖) = 𝑎𝑖𝑥
𝛼𝑖 for 𝑖 = 1, 2, the minimal

S-process of 𝑔1 , 𝑔2 is

𝑆𝑚𝑖𝑛(𝑔1 , 𝑔2) := 𝑙𝑐𝑚(𝑥𝛼1 , 𝑥𝛼2)
𝑥𝛼1

𝑔1 −
𝑎1
𝑎2

𝑙𝑐𝑚(𝑥𝛼1 , 𝑥𝛼2)
𝑥𝛼2

𝑔2 ,

where 𝑙𝑐𝑚(𝑥𝛼1 , 𝑥𝛼2) is the usual least common multiple.
We recall now an algorithm to compute a standard basis.

Büchberger’s Algorithm

INPUT: (𝑔1 , . . . , 𝑔𝑗) = 𝐼 ⊂ C{𝑥1 , . . . , 𝑥𝑝} ideal and a monomial order ⪯.
OUTPUT: 𝐵 standard basis of 𝐼.
START:
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Put 𝐵 = {𝑔1 , . . . , 𝑔𝑗}.

loop {

for all distinct pairs of elements ℎ1 , ℎ2 ∈ 𝐵:

Compute 𝑠 = 𝑆min(ℎ1 , ℎ2) and 𝑟∞ a final reduction of 𝑠 modulo 𝐵.
if 𝑟∞ ≠ 0 then:

Add 𝑟∞ to 𝐵.

if all the final reductions computed are 0 then:

Return.

} end loop

Consider 𝐼 ⊂ C{𝑥1 , . . . , 𝑥𝑝} an ideal and the C-vector space 𝑄 = C{𝑥1 , . . . , 𝑥𝑝}/𝐼, when the
complex dimension of 𝑄 is finite we have that:

𝑑𝑖𝑚C𝑄 = #((Z≥0)𝑝 \ 𝑙𝑝(𝐼)).

If 𝑝 = 2 we can rewrite the previous formula. Assume that 𝐵 = {𝑔1 , . . . , 𝑔𝑗} is a minimal standard
basis of an ideal 𝐼 ⊂ C{𝑥, 𝑦}. Put 𝑙𝑝(𝑔𝑖) = (𝑎𝑖 , 𝑏𝑖) for 𝑖 = 1, . . . , 𝑗, and suppose that they are
ordered such that:

0 ≤ 𝑎1 < 𝑎2 < . . . < 𝑎 𝑗 ; 𝑏1 > 𝑏2 > . . . > 𝑏 𝑗 ≥ 0.

Proposition 4.1.5 ([31] p.32 Lemma 1). With the notations as above, the dimension of 𝑄 = C{𝑥, 𝑦}/𝐼
as C-vector space is finite if and only if 𝑎1 = 𝑏 𝑗 = 0. Besides, in the finite case, we have that

𝑑𝑖𝑚C𝑄 =

𝑗∑
𝑖=2

𝑏𝑖−1(𝑎𝑖 − 𝑎𝑖−1).

Remark 4.1.6. The set of leading powers {𝑙𝑝(𝑔𝑖)}𝑖=1,..., 𝑗 , with {𝑔1 , . . . , 𝑔𝑗} a minimal standard
basis of 𝐼 ⊂ C{𝑥1 , . . . , 𝑥𝑝}, does not depend on the minimal standard basis chosen. In particular,
we also have that two minimal standard bases of an ideal 𝐼 have the same number of elements.
Moreover, there always exists a finite standard basis of an ideal 𝐼 ⊂ C{𝑥1 , . . . , 𝑥𝑛}.

4.2 Standard Bases of a Subalgebra

As we said before, we are interested in computing minimal standard bases of submodules, in
order to do that, we need first to compute them for the case of subalgebras.

The purpose of using this theory is to study the case where our subalgebra is C{𝑥(𝑡), 𝑦(𝑡)},
being (𝑥(𝑡), 𝑦(𝑡)) a primitive parametrization of a curve.

Consider a set 𝐺 ⊂ C{𝑥1 , . . . , 𝑥𝑝}, and define 𝐺𝛼 a G-product as

𝐺𝛼 =

∏
𝑖∈𝐼

𝐼 finite

𝑔
𝛼𝑖

𝑖
, 𝑔𝑖 ∈ 𝐺 for all 𝑖 ∈ 𝐼 , where 𝛼 = (𝛼1 , . . . , 𝛼#𝐼).

The 𝐺-products play a similar role as the monomials in the previous section. For simplicity, we
are going to assume that 𝐺 = {𝑔1 , . . . , 𝑔ℓ} is always a finite set, in this case, we omit the index 𝐼

in the product, and we use the usual notation

𝐺𝛼 =

ℓ∏
𝑖=1

𝑔𝛼𝑖 .
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We also consider 𝑇 = C{ 𝑓1 , . . . , 𝑓ℓ} ⊂ C{𝑥1 , . . . , 𝑥𝑝} a C-subalgebra, where 𝑓𝑖 is a non zero
element of the ideal (𝑥1 , 𝑥2 , . . . , 𝑥𝑝) for 1 ≤ 𝑖 ≤ ℓ .

The following definitions are adaptations of the ones given in the previous section, but for
the case of subalgebras.

Given 𝑔, 𝑟 ∈ C{𝑥1 , . . . , 𝑥𝑝}, we say that 𝑟 is a reduction of 𝑔 modulo 𝐺 and that 𝑔 is reducible
modulo 𝐺, if there exist a 𝐺-product 𝐺𝛼 and 𝑎 ∈ C, such that

𝑟 = 𝑔 − 𝑎𝐺𝛼

with either 𝑟 = 0 or 𝑙𝑝(𝑟) ≻ 𝑙𝑝(𝑔). As before, we can consider a sequence of the form:

𝑔 = 𝑟0 → 𝑟1 → 𝑟2 → . . . → 𝑟𝑘 → . . .

where 𝑟𝑖 is a reduction of 𝑟𝑖−1 modulo 𝐺 for 𝑖 ≥ 1. If 𝐺 ⊂ 𝑇, again, because of the finiteness
property of the monomial order, we have that the sequence converges to an element 𝑟∞. In fact,
it is satisfied that 𝑟∞ ∈ 𝑇, that is, it is a convergent power series. Indeed, there are two cases:
either 𝑟∞ = 0 or 𝑟∞ ≠ 0. If 𝑟∞ = 0, then is clear that 𝑟∞ ∈ 𝑇. Otherwise, if 𝑟∞ ≠ 0, then by the
finiteness property of the monomial order, we have that the sequence that defines 𝑟∞ must be
finite. Therefore, the element 𝑟∞ is the finite sum of holomorphic power series, and thus, it is
also convergent.

We say that the limit 𝑟∞ is a final reduction of 𝑔 modulo 𝐺, if either 𝑟∞ = 0 or 𝑙𝑝(𝑟∞) ≠ 𝑙𝑝(𝐺𝛼)
for every 𝐺-product. As before, we refer to any of the intermediate elements of the sequence as
partial reductions of 𝑔 modulo 𝐺.

We say that 𝐺 is a standard basis of algebras if

⟨𝑙𝑝(𝐺)⟩ = 𝑙𝑝(C{𝐺}).

The set 𝐺 is a standard basis of 𝑇, if 𝐺 is a standard basis of algebras and 𝑇 is generated by 𝐺. We
say that 𝐺 is minimal if for any 𝑔 ∈ 𝐺, 𝑙𝑝(𝑔) ∉ ⟨𝑙𝑝(𝐺 \ {𝑔})⟩.

Up this point, everything is similar to what was defined in the previous section. However,
the notion of minimal 𝑆-process must be changed.

Consider 𝐺 = { 𝑓1 , . . . , 𝑓ℓ} ⊂ C{𝑥1 , . . . , 𝑥𝑝}, for any (𝛼1 , . . . , 𝛼ℓ ) = 𝛼 ∈ (Z≥0)ℓ , we denote by
𝑝𝑟𝑖(𝛼) := 𝛼𝑖 with 1 ≤ 𝑖 ≤ 𝑝. We consider the system of diophantine equations 𝒮:

ℓ∑
𝑖=1

𝛼𝑖𝑝𝑟1(𝑙𝑝( 𝑓𝑖)) =

ℓ∑
𝑖=1

𝛽𝑖𝑝𝑟1(𝑙𝑝( 𝑓𝑖))

...
...

ℓ∑
𝑖=1

𝛼𝑖𝑝𝑟𝑝(𝑙𝑝( 𝑓𝑖)) =

ℓ∑
𝑖=1

𝛽𝑖𝑝𝑟𝑝(𝑙𝑝( 𝑓𝑖))

The set of solutions of 𝒮 has a minimal set of divisors 𝐷( 𝑓1 , . . . , 𝑓ℓ ) ⊂ (Z≥0)2ℓ . We will denote
any element of 𝐷( 𝑓1 , . . . , 𝑓ℓ ) as (𝛼, 𝛽), with 𝛼, 𝛽 ∈ (Z≥0)ℓ .

We define the minimal S-process 𝑆𝑚𝑖𝑛(𝐺, 𝛼, 𝛽) of 𝐺 as a sum of two 𝐺-products

𝑆𝑚𝑖𝑛(𝐺, 𝛼, 𝛽) := 𝐺𝛼 + 𝑏𝐺𝛽 ,

where (𝛼, 𝛽) is an element of 𝐷(𝑔1 , . . . , 𝑔ℓ ) and 𝑏 ∈ C∗, such that

𝑆𝑚𝑖𝑛(𝐺, 𝛼, 𝛽) = 0 or 𝑙𝑝(𝑆𝑚𝑖𝑛(𝐺, 𝛼, 𝛽)) ≻ 𝑙𝑝(𝐺𝛼) = 𝑙𝑝(𝐺𝛽).

It is possible that 𝑇 does not have a finite standard basis, see [31], however in the case it
exists, we can compute one in a similar way as in the case of ideals:
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Büchberger’s Algorithm

INPUT: 𝑇 = C{ 𝑓1 , . . . , 𝑓ℓ} a C{𝑥1 , . . . , 𝑥𝑝}-subalgebra and a monomial order ⪯ in (Z≥0)𝑝 .
OUTPUT: 𝐺 standard basis of 𝑇.
START:

Put 𝐺 = { 𝑓1 , . . . , 𝑓ℓ}.

loop {

Compute any 𝑆-minimal process 𝑠 = 𝑆min(𝐺, 𝛼, 𝛽) of 𝐺 and 𝑟∞ a final reduction of
𝑠 modulo 𝐺.

if 𝑟∞ ≠ 0 then:

Add 𝑟∞ to 𝐺.

if all the final reductions computed are 𝑟∞ = 0 then:

Return.

} end loop

4.3 Standard Bases of a Submodule

Here we describe what is a standard basis for a submodule. We put as before 𝑇 = C{ 𝑓1 , . . . , 𝑓ℓ} ⊂
C{𝑥1 , . . . , 𝑥𝑝} a C{𝑥1 , . . . , 𝑥𝑝}-subalgebra. We only deal with a particular type of submodules of
C{𝑥1 , . . . , 𝑥𝑝}. We set 𝑇̂ = C[[ 𝑓1 , . . . , 𝑓ℓ ]] ⊂ C[[𝑥1 , . . . , 𝑥𝑝]] and let 𝑀̂ be a complete 𝑇̂ submodule
of C[[𝑥1 , . . . , 𝑥𝑝]]. We consider the 𝑇 submodule 𝑀 ⊂ C{𝑥1 , . . . , 𝑥𝑝} as the set of convergent
elements of 𝑀̂.

As before, we say that 𝐻 ⊂ 𝑀 is a standard basis of 𝑀 if 𝐻 generates 𝑀 as 𝑇-module and

⟨𝑙𝑝(𝐻)⟩ = ⟨𝑙𝑝(𝑀)⟩.

We say that 𝐻 is a minimal standard basis if for any 𝑚 ∈ 𝐻 we have that 𝑙𝑝(𝑚) ∉ ⟨𝑙𝑝(𝐻 \ {𝑚})⟩.
Assume that 𝐺 is a standard basis of 𝑇. Take 𝐻 ⊂ C{𝑥1 , . . . , 𝑥𝑝} and ℎ, 𝑟 ∈ C{𝑥1 , . . . , 𝑥𝑝}.

We say that 𝑟 is a reduction of 𝑔 modulo (𝐻, 𝐺), or that that 𝑔 is reducible modulo (𝐻, 𝐺), if there
are a 𝐺−product 𝐺𝛼, 𝑚 ∈ 𝐻 and 𝑎 ∈ C with:

𝑟 = 𝑔 − 𝑎𝐺𝛼𝑚

satisfying that: either 𝑟 = 0 or 𝑙𝑝(𝑟) ≻ 𝑙𝑝(𝑔). We are going to assume that 𝐺 and 𝐻 are finite sets,
in fact, we can assume that 𝐺 = { 𝑓1 , . . . , 𝑓ℓ}. We consider, again, a sequence of reductions:

𝑔 = 𝑟0 → 𝑟1 → 𝑟2 → . . . → 𝑟𝑞 → . . .

which converges to an element 𝑟∞ ∈ 𝑀, because of the finiteness property of the order and the
completeness of 𝑀. If 𝑟∞ = 0 or 𝑟∞ cannot be reduced more, we say that 𝑟∞ is a final reduction
of 𝑔 modulo (𝐻, 𝐺). The intermediate elements of the sequence are called partial reduction of 𝑔
modulo (𝐻, 𝐺).
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Given 𝑚1 , 𝑚2 two different elements of 𝐻, we consider the system of diophantine equations
𝒮:

𝑝𝑟1(𝑚1) +
ℓ∑
𝑖=1

𝛼𝑖𝑝𝑟1(𝑙𝑝( 𝑓𝑖)) = 𝑝𝑟1(𝑚2) +
ℓ∑
𝑖=1

𝛽𝑖𝑝𝑟1(𝑙𝑝( 𝑓𝑖))

...
...

𝑝𝑟𝑝(𝑚1) +
ℓ∑
𝑖=1

𝛼𝑖𝑝𝑟𝑝(𝑙𝑝( 𝑓𝑖)) = 𝑝𝑟𝑝(𝑚2) +
ℓ∑
𝑖=1

𝛽𝑖𝑝𝑟𝑝(𝑙𝑝( 𝑓𝑖)),

We denote by 𝐷(𝑚1 , 𝑚2; 𝑓1 , . . . , 𝑓ℓ ) ⊂ (Z≥0)2ℓ the minimal set of divisors associated to the set of
solutions of 𝒮. Again any of its elements is denoted by (𝛼, 𝛽) with 𝛼, 𝛽 ∈ (Z≥0)ℓ .

Given a 𝑚1 , 𝑚2 ∈ 𝐻, we define the minimal 𝑆-process 𝑆𝑚𝑖𝑛(𝑚1 , 𝑚2 , 𝛼1 , 𝛼2) as:

𝑆𝑚𝑖𝑛(𝑚1 , 𝑚2 , 𝛼
1 , 𝛼2) := 𝐺𝛼1

𝑚1 + 𝑎𝐺𝛼2
𝑚2 , with 𝐺𝛼𝑞

=

ℓ∏
𝑖=1

𝑔
𝛼
𝑞

𝑖

𝑖
, 𝑞 = 1, 2.

where (𝛼1 , 𝛼2) ∈ 𝐷(𝑚1 , 𝑚2; 𝑔1 , . . . , 𝑔𝑗) and 𝑎 ∈ C∗ such that

𝑙𝑝(𝑆𝑚𝑖𝑛(𝑚1 , 𝑚2 , 𝛼
1 , 𝛼2)) ≻ 𝑙𝑝(𝐺𝛼1

𝑚1) = 𝑙𝑝(𝐺𝛼2
𝑚2).

We now give the corresponding algorithm that computes a minimal standard basis of 𝑀.

Büchberger’s Algorithm

INPUT: 𝑇 = C{𝐺} a C{𝑥1 , . . . , 𝑥𝑝}-subalgebra with 𝐺 a standard basis, 𝑀 a 𝑇-submodule of
C{𝑥1 , . . . , 𝑥𝑝} generated by 𝐵 = {𝑚1 , . . . , 𝑚𝑞} and a monomial order ⪯ in C{𝑥1 , . . . , 𝑥𝑝}.

OUTPUT: 𝐻 standard basis of 𝑀.
START:

Put 𝐻 = 𝐵 = {𝑚1 , . . . , 𝑚𝑞}.

loop {

Compute any 𝑆-minimal process 𝑠 = 𝑆min(ℎ1 , ℎ2 , 𝛼1 , 𝛼2) with ℎ1 , ℎ2 ∈ 𝑀. Compute
𝑟∞ a final reduction of 𝑠 modulo (𝐻, 𝐺).
if 𝑟∞ ≠ 0 then:

Add 𝑟∞ to 𝐻.

if all the final reductions computed are 𝑟∞ = 0 then:

Return.

} end loop

4.4 Formal vs Convergent

We end this chapter with a brief explanation on the differences between the formal and the
convergent cases. Since we find those differences quite small, we chose the previous presentation
instead of restarting the theory from scratch, proofs included. Besides, this work did not pretend
to be a reference on standard basis, rather on its applications when applied to plane curves.
Nonetheless, just to make things clear we put this small note.
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We first remark that we demanded our monomial order to satisfy the finiteness property.
This condition is required in both the formal and convergent cases when computing standard
bases for algebras and modules. However, for ideals, in the formal case it is not, see [31].
Next example shows that modifications are needed when passing from the formal case to the
convergent one.

Example 4.4.1. In (Z≥0)2 we consider the lexicographic monomial order, that is, (𝑎, 𝑏) < (𝑐, 𝑑) if
either 𝑏 < 𝑑 or 𝑏 = 𝑑 and 𝑎 < 𝑐. This monomial order does not have the finiteness property since
(𝑘, 0) < (0, 1) for all 𝑘 ∈ Z≥0.

We take the following family:

𝐵 = { 𝑓𝑛 = 𝑥𝑛 − 𝑥𝑛+1 + 𝑛!𝑦𝑛 : 𝑛 ≥ 1},

and the function 𝑟1 = −𝑥. Note that 𝑙𝑡( 𝑓𝑛) = 𝑥𝑛 for all 𝑛. We have that 𝑟2 = 𝑟1 + 𝑓1 = −𝑥2 + 𝑦 is a
reduction of 𝑟1 modulo 𝐵. Similarly, 𝑟3 = 𝑟2 + 𝑓2 = −𝑥3 + 𝑦 + 2𝑦2 is a reduction of 𝑟2 modulo 𝐵.
We see that we can continue this process indefinitely. After an infinite number of reductions, we
obtain a final reduction 𝑟∞ =

∑
𝑛≥1 𝑛!𝑦𝑛 modulo 𝐵, which is not convergent.

Example 4.4.1 shows that when considering any monomial order the final reduction of a
function 𝑟 modulo a set of functions 𝐵 may not be an element of the ring C{𝑥1 , . . . , 𝑥𝑝}. Recall
that having a ring closed under final reductions is necessary when applying the Büchberger’s
algorithm.

If we impose the finiteness property in the monomial order, as we did, then the number of
reductions used to compute a non zero final reduction is always finite. In other words, if we start
with convergent elements then a final reduction is always written as a polynomial combination
of convergent functions, which is again convergent.

We notice an extra thing, Example 4.4.1 is constructed by using an infinite set 𝐵. When
applying Büchberger’s algorithm for ideals, we only deal with sets of finite cardinal. We do not
know if only imposing the set 𝐵 to have finite cardinal would solve the convergence problem.

For the rest of theory, it is the same as the one we can found in [31]. We only restrict ourselves
to work over the complex numbers and hence we can apply Artin’s Approximation Theorem.
We recall that we needed it, because saying in our context that a final reduction of a function is 0,
implies that the function can be written as a formal combination of the elements our standard
basis. By means of that theorem, we can assure the existence of a convergent one, and state that
the original element is generated by the standard basis.
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Delorme’s Decompositions

We need to find the semimodule of differential values of a cusp 𝐶. This could be done by
means of Büchberger’s algorithm of modules from Chapter 4. Nonetheless, due to the works
of C. Delorme [21], we can improve the previous method in the cuspidal case. The goal of
this chapter is to explain in detail, and to generalize, the results of Delorme. To do so, we use
the combinatorics introduced in Chapter 3. In relationship with the results from [9, 48], in
the last section we show how to do all the computations with an implicit equation. Note that
Büchberger’s algorithm is thought to be used in principle with a primitive parametrization.
These last results are used in Chapter 9, when discussing about the Bernstein-Sato polynomial.

5.1 Standard Bases for the Module of Differentials

We first start with an explanation on how standard bases can allow us to compute the semimodule
of differential values. Before that, we have to give the relationship between standard bases and
the semigroup of a branch. We are going to use usual order in Z≥0 as a monomial order.

Fix (𝐶, 𝑃0) a branch, with 𝜙(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) a primitive parametrization. By Remark 1.2.4,
we have that the C{𝑡}-subalgebra C{𝑥(𝑡), 𝑦(𝑡)} is isomorphic to the local ring of 𝐶.

Assume that 𝐺 = {ℎ0 , ℎ1 . . . , ℎ𝑔} ⊂ C{𝑥(𝑡), 𝑦(𝑡)} is a minimal standard basis of C{𝑥(𝑡), 𝑦(𝑡)}.
Hence, given 𝑔(𝑡) ∈ C{𝑥(𝑡), 𝑦(𝑡)}, we can write

ord𝑡(𝑔) =
∑
ℎ∈𝐺

𝛾ℎ ord𝑡(ℎ), 𝛾ℎ ∈ Z≥0.

Recall that the parametrization 𝜙 induces a surjective map C{𝑥, 𝑦} → C{𝑥(𝑡), 𝑦(𝑡)}. Thus we can
write 𝑔(𝑡) = 𝑟 ◦ 𝜙(𝑡) for some 𝑟 ∈ C{𝑥, 𝑦}, that is, 𝜈𝐶(𝑟) =

∑
ℎ∈𝐺 𝛾ℎ ord𝑡(ℎ). By the minimality of

the standard basis, we have that the set {ord𝑡(ℎ) : ℎ ∈ 𝐺} is the minimal set of generators of the
semigroup Γ𝐶 of the curve 𝐶, as defined in Chapter 1. In other words, if the the elements of 𝐺
are properly ordered, we have that ord𝑡(ℎ𝑖) = 𝛽𝑖 , for 𝑖 = 0, 1, . . . , 𝑔.

For example, assume that 𝐶 is a cusp with Puiseux pair (𝑛, 𝑚) and (𝑥, 𝑦) is a system of
adapted coordinates with respect to 𝐶. By Equation (1.8), we can write 𝜙(𝑡) = (𝑡𝑛 , 𝑣(𝑡)𝑡𝑚), where
𝑣(𝑡) is a unit in C{𝑡}. In this situation we have that Γ𝐶 = ⟨𝑛, 𝑚⟩. Then {𝑥(𝑡), 𝑦(𝑡)} is a minimal
standard basis of C{𝑥(𝑡), 𝑦(𝑡)}.

Now return to the general case, where the branch 𝐶 may no longer be a cusp, and take
the module Ω1

𝐶,𝑃0
of differentials of 𝐶 defined in Section 1.5. Note that Ω1

𝐶,𝑃0
can be seen

as a C{𝑡}-module. Let 𝐻 = (𝜓−1 ,𝜓0 , . . . ,𝜓𝑠) be a minimal standard basis of the module of
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differentials Ω1
𝐶,𝑃0

. By definition of standard basis, given an element 𝜓 ∈ Ω1
𝐶,𝑃0

, we can write

ord𝑡(𝜓) = ord𝑡(𝜓𝑖) +
𝑔∑
𝑗=0

𝛼 𝑗𝛽 𝑗 , for some 𝑖 ∈ {−1, 0, . . . , 𝑠} and 𝛼 𝑗 ≥ 0 for all 𝑗.

By Remark 1.5.1, we have a surjection Ω1
𝑀0 ,𝑃0

→ Ω𝐶,𝑃0 given by the pull-back map 𝜙∗. Recalling
the definition of differential value 𝜈𝐶(𝜔) of a 1-form 𝜔, introduced in Section 1.5, we have that
ℬ = (ord𝑡(𝜓−1) + 1, ord𝑡(𝜓0) + 1, . . . , ord𝑡(𝜓𝑠) + 1) is the basis of the semimodule of differential
values of 𝐶, assuming that the values are properly ordered. Note that for any 𝑖 ≠ 𝑗, we do not
have ord𝑡(𝜓𝑖) ∉ ord𝑡(𝜓 𝑗) + Γ𝐶 , otherwise, 𝜓𝑖 is reducible modulo ({𝜓 𝑗}, 𝐺). Hence, in order
to find the basis of the semimodule of differentials of 𝐶, we only need to compute a minimal
standard basis of Ω1

𝐶,𝑃0
.

Furthermore, we can take a sequence of 1-forms 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) in Ω1
𝑀0 ,𝑃0

, such that
𝜙∗(𝜔𝑖) = 𝜓𝑖 for 𝑖 = −1, 0, . . . , 𝑠. As an abuse of notation, we say that 𝒮 is a minimal standard
basis of the module of differentials of 𝐶.

Note that a sequence like 𝒮 can be defined by the property 𝜈𝐶(𝜔𝑖) = 𝜆𝑖 for 𝑖 = −1, 0, . . . , 𝑠,
where 𝜆𝑖 is the 𝑖-element of the basis of the semimodule of differential values of 𝐶, see Section
3.1. In fact, from now on, we only use this notion of minimal standard basis of the module of
differentials of 𝐶 and never the original one. Moreover, we just write standard basis, instead of
standard basis of an object, when the reference of the object is well understood. Since, in the last
section of this chapter, we are going to compute standard bases of some ideal in C{𝑥, 𝑦}, we
thought that it would be appropriate to give a brief explanation on why a series of two variables
holomorphic 1-forms are called a standard basis of a curve. This treatment can be also found in
[32].

5.2 Structure of the Semimodule of Differential Values

The structure of the semimodule of differential values of an irreducible curve 𝐶 was described
by Delorme in [21]. In this section, we use a different approach to describe the semimodule of
differential values of a cusp. This approach will be useful when constructing a Saito basis of 𝐶
in Chapter 8.

Fix 𝐶 a cusp with Puiseux pair (𝑛, 𝑚) and 𝑛 ≥ 2. Let Λ𝐶 = Γ𝐶(𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) be the
semimodule of differential values of 𝐶 with

Λ−1 ⊂ Λ0 ⊂ . . . ⊂ Λ𝑠 = Λ𝐶 ,

its decomposition sequence (see (3.1)). We select a minimal standard basis𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠)
of the cusp 𝐶. From now on, we fix a system of adapted coordinates (𝑥, 𝑦) with respect to 𝐶,
and 𝐷 the cuspidal divisor of 𝐶.

Furthermore, as the coordinate system and the Puiseux pair are fixed, we are going to denote
the initial parts as In, instead of In𝑛,𝑚;𝑥,𝑦 , as defined in Chapter 2.

We begin by giving some results about the 1-forms 𝜔−1 and 𝜔0.

Lemma 5.2.1. We have that 𝜆−1 = 𝑛 and 𝜆0 = 𝑚.

Proof. Since (𝑥, 𝑦) is system of adapted coordinates with respect to 𝐶, we can take a parametriza-
tion of 𝐶 given by (𝑡𝑛 , 𝑣(𝑡)𝑡𝑚), where 𝑣(𝑡) is a unit. Recall that 𝜈𝐶(𝐴𝑑𝑥 + 𝐵𝑑𝑦) is the order in 𝑡 of
the expression

𝑛𝑡𝑛𝐴(𝑡𝑛 , 𝑣(𝑡)𝑡𝑚) + 𝑣(𝑡)𝑡𝑚𝐵(𝑡𝑛 , 𝑣(𝑡)𝑡𝑚){𝑚 + 𝑡𝑣′(𝑡)/𝑣(𝑡)}. (5.1)
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We see that this order is ≥ 𝑛 and that 𝜈𝐶(𝑑𝑥) = 𝑛. Hence 𝑛 = 𝜆−1. Moreover, the terms in
Equation (5.1) of degree smaller than 𝑚 come only from the first part 𝑛𝑡𝑛𝐴(𝑡𝑛 , 𝑡𝑚𝑣(𝑡)) of the
sum and they are values in Γ𝐶 . Since 𝑚 = 𝜈𝐶(𝑑𝑦), we conclude that 𝜆0 = 𝑚. □

Remark 5.2.2. The 1-forms 𝜔−1 , 𝜔0 can be written as

𝜔−1 = ℎ−1𝑑𝑥 + 𝑔−1𝑑𝑦, with ℎ−1(0, 0) ≠ 0;

𝜔0 = ℎ0𝑑𝑥 + 𝑔0𝑑𝑦, with 𝑔0(0, 0) ≠ 0, 𝜈𝐶(ℎ0𝑑𝑥) > 𝑚.

Thus, we can write any differential 1-form 𝜔 in a unique way as 𝜔 = 𝐴𝜔−1 + 𝐵𝜔0 and we have
that {𝜔−1 , 𝜔0} is a basis of Ω1

𝑀0 ,𝑃0
.

5.2.1 The Zariski’s Invariant

In this subsection, we deal with properties of the 1-forms that give place to 𝜆1 as their differential
value. In other words, we study the properties about the 1-form 𝜔1. In the next subsection we
treat the behaviour of the 1-forms 𝜔𝑖 with 𝑖 = 2, . . . , 𝑠. This is done in terms of divisorial values.
We cite the work of O. Gómez-Martínez [28] that essentially contains several of the results in this
subsection.

Recall that 𝜆1 = min(Λ𝐶 \ Λ0). Since 𝜆−1 = 𝑛 and 𝜆0 = 𝑚, we have that Λ0 = (𝑛 + Γ𝐶) ∪
(𝑚 + Γ𝐶) = Γ𝐶 \ {0} and we get that 𝜆1 = min(Λ𝐶 \ Γ𝐶). In particular, we have that 𝜆1 − 𝑛 is the
Zariski’s invariant, see Section 1.5.2.

When studying the 1-forms associated to a minimal standard basis, we do it in terms of their
initial parts. For this reason we introduce the concept of reachability that we proceed to define.

Given two 1-forms 𝜔, 𝜂 ∈ Ω1
𝑀0 ,𝑃0

, we say that 𝜂 is reachable by 𝜔 if there exist a monomial
𝑥𝑎𝑦𝑏 and a non zero constant 𝜇, such that

In(𝜂) = 𝜇𝑥𝑎𝑦𝑏 In(𝜔).

In the situation above, we get that 𝜈𝐷(𝜂 − 𝜇𝑥𝑎𝑦𝑏𝜔) > 𝜈𝐷(𝜂).

Remark 5.2.3. Let 𝜔 be a 1-form with In(𝜔) = 𝑛𝑥𝑑𝑦 − 𝑚𝑦𝑑𝑥. If 𝜔′ is a resonant 1-form, then 𝜔′

is reachable by 𝜔.

Many of the following proofs are based in computational techniques. Thus, in order to
simplify the notations, we introduce the next convention.

Notation 5.2.4. Take two 1-forms 𝜔, 𝜔′ ∈ Ω1
𝑀0 ,𝑃0

, with the same differential value 𝜈𝐶(𝜔) =

𝜈𝐶(𝜔′) < ∞. We will denote by 𝜇+ the unique non zero constant with the property that
𝜂1 = 𝜔 + 𝜇+𝜔′ satisfies that 𝜈𝐶(𝜂1) > 𝜈𝐶(𝜔). The constant 𝜇+ is called the tuning constant. We
want to remark that in some occasions, we will write recursively 𝜂2 = 𝜂1 + 𝜇+𝜔′′ for 𝜔′′ ∈ Ω1

𝑀0 ,𝑃0

with 𝜈𝐶(𝜔′′) = 𝜈𝐶(𝜂1). In this situation, the new tuning constant 𝜇+ constant may be different to
the one we use when constructing 𝜂1, but both of them will be denoted by 𝜇+ without any other
indication.

Next result characterizes the 1-forms with differential value equal to 𝜆1.

Proposition 5.2.5. We have the following properties:

1. If 𝑠 = 0, then ∞ = sup{𝜈𝐶(𝜔); 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, 𝜈𝐷(𝜔) = 𝑛 + 𝑚}.
2. If 𝑠 ≥ 1, then 𝜆1 = sup{𝜈𝐶(𝜔); 𝜔 ∈ Ω1

𝑀0 ,𝑃0
, 𝜈𝐷(𝜔) = 𝑛 + 𝑚} < ∞.
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Proof. Assume that 𝑠 = 0 and hence Λ𝐶 = Λ0 = Γ𝐶 \ {0}. Let us consider the 1-form 𝜂 =

𝑥𝜔0 + 𝜇+𝑦𝜔−1, for the tuning constant 𝜇+. We have that 𝜈𝐶(𝜂) > 𝑛 +𝑚 = 𝜈𝐷(𝜂). Moreover, since
𝑠 = 0, we have that 𝜈𝐶(𝜂) ∈ Γ𝐶 and then there is a monomial function 𝑔 such that

𝜈𝐷(𝑑𝑔) = 𝜈𝐶(𝑑𝑔) = 𝜈𝐶(𝜂) > 𝑛 + 𝑚.

Consider the 1-form, such that 𝜂1 = 𝜂 + 𝜇+𝑑𝑔, we have that 𝜈𝐷(𝜂1) = 𝜈𝐷(𝜂) = 𝑛 + 𝑚 and
𝜈𝐶(𝜂1) > 𝜈𝐶(𝜂). We repeat the argument with 𝜂1 and in this way we obtain 1-forms 𝜂𝑘 with
𝜈𝐷(𝜂𝑘) = 𝑛 + 𝑚 and 𝜈𝐶(𝜂𝑘) ≥ 𝑛 + 𝑚 + 1 + 𝑘. This proves the first statement.

Assume now that 𝑠 ≥ 1. Let us first show that

𝜆1 ≤ sup{𝜈𝐶(𝜔); 𝜔 ∈ Ω1
𝑀0 ,𝑃0

, 𝜈𝐷(𝜔) = 𝑛 + 𝑚}.

We put again 𝜂 = 𝑥𝜔0 + 𝜇+𝑦𝜔−1. If 𝜈𝐶(𝜂) ∉ Γ𝐶 , we have that 𝜈𝐶(𝜂) ≥ 𝜆1 since 𝜆1 is the
minimum of the differential values not in Γ𝐶 . Assume that 𝜈𝐶(𝜂) ∈ Γ𝐶 and hence

𝜈𝐶(𝜂) = 𝑛𝑎 + 𝑚𝑏 > 𝑛 + 𝑚.

Taking the function 𝑔 = 𝑥𝑎𝑦𝑏 , we can consider 𝜂1 = 𝜂 + 𝜇+𝑑𝑔. Note that 𝜈𝐷(𝜂1) = 𝑛 + 𝑚, since
𝜈𝐷(𝑑𝑔) = 𝑛𝑎+𝑚𝑏 > 𝑛+𝑚. We restart with 𝜂1 instead of 𝜂, noting that 𝜈𝐶(𝜂) < 𝜈𝐶(𝜂1). Repeating
finitely many times this procedure, we obtain a new 1-form 𝜂̃ = 𝜂 − 𝑑𝑔̃ such that 𝜈𝐷(𝜂̃) = 𝑛 + 𝑚

and either 𝜈𝐶(𝜂̃) ≥ 𝑐Γ = (𝑛 − 1)(𝑚 − 1) or 𝜈𝐶(𝜂̃) ∉ Γ𝐶 , in both cases we have that 𝜈𝐶(𝜂̃) ≥ 𝜆1.
It remains to show that 𝜆1 ≥ sup{𝜈𝐶(𝜔); 𝜔 ∈ Ω1

𝑀0 ,𝑃0
, 𝜈𝐷(𝜔) = 𝑛 + 𝑚}. Consider the 1-form

𝜔1 from 𝒮, we recall that 𝜈𝐶(𝜔1) = 𝜆1. Let us show that it is not possible to have 𝜔̃ such that
𝜈𝐷(𝜔̃) = 𝑛 + 𝑚 and 𝜈𝐶(𝜔̃) > 𝜈𝐶(𝜔1). In this situation, both 𝜔1 and 𝜔̃ are basic and resonant, see
Proposition 2.3.14. By Remark 5.2.3, the 1-form 𝜔1 is reachable by 𝜔̃ and thus there is a constant
𝜇 and 𝑎, 𝑏 ≥ 0 such that the 1-form 𝜔1

1 = 𝜔1 − 𝜇𝑥𝑎𝑦𝑏 𝜔̃ satisfies that

𝜈𝐷(𝜔1
1) > 𝜈𝐷(𝜔1),

and we have that 𝜈𝐶(𝜔1
1) = 𝜈𝐶(𝜔1) = 𝜆1. We restart with the pair 𝜔1

1 , 𝜔̃. In this way, we obtain
an infinite sequence of 1-forms 𝜔1 , 𝜔1

1 , 𝜔
2
1 , . . . with strictly increasing divisorial values. Up to a

finite number of steps, we find an index 𝑘 such that 𝜈𝐷(𝜔𝑘
1 ) > 𝜆1 = 𝜈𝐶(𝜔𝑘

1 ). This contradicts the
fact 𝜈𝐶(𝜔𝑘

1 ) ≥ 𝜈𝐷(𝜔𝑘
1 ). □

Corollary 5.2.6. Any 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

such that 𝜈𝐷(𝜔) = 𝑛 + 𝑚 and 𝜈𝐶(𝜔) ∉ Γ𝐶 satisfies that
𝜈𝐶(𝜔) = 𝜆1.

Proof. In view of the previous result, we have that 𝜈𝐶(𝜔) ≤ 𝜆1. Since 𝜈𝐶(𝜔) ∉ Γ𝐶 , we also have
that 𝜈𝐶(𝜔) ≥ 𝜆1. □

Corollary 5.2.7. Any 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

such that 𝜈𝐶(𝜔) = 𝜆1 satisfies that 𝜈𝐷(𝜔) = 𝑛 + 𝑚.

Proof. In virtue of Proposition 5.2.5, there exists a 1-form 𝜂 such that 𝜈𝐶(𝜂) = 𝜆1 and 𝜈𝐷(𝜂) = 𝑛+𝑚.
Assume that

𝜈𝐷(𝜔) > 𝑛 + 𝑚

in order to obtain a contradiction. Since 𝜆1 ∉ Γ𝐶 , both 𝜔 and 𝜂 are basic and resonant. By
Remark 5.2.3, the 1-form 𝜔 is reachable by 𝜂. Then there is a function 𝑔 with 𝜈𝐶(𝑔) > 0 such that

𝜈𝐷(𝜔 − 𝑔𝜂) > 𝜈𝐷(𝜔).

Put 𝜔1 = 𝜔 − 𝑔𝜂. Since 𝜈𝐶(𝑔𝜂) > 𝜆1, we have that 𝜈𝐶(𝜔1) = 𝜆1. We restart with the pair
𝜔1 , 𝜔. After finitely many repetitions we find 𝜔𝑘 with 𝜈𝐶(𝜔𝑘) = 𝜆1 and 𝜈𝐷(𝜔𝑘) > 𝜆1, this is a
contradiction. □
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Note that Corollary 5.2.7 applies to 𝜔1, that is, 𝜈𝐷(𝜔1) = 𝑛 + 𝑚. The following two lemmas
are necessary steps in order to prove an inductive version of Proposition 5.2.5 valid for all indices
𝑖 = 1, 2, . . . , 𝑠:

Lemma 5.2.8. Assume that 𝑠 ≥ 1 and consider an integer number 𝑘 = 𝑛𝑎 + 𝑚𝑏 + 𝜆1 ∈ 𝜆1 + Γ𝐶 . The
following statements are equivalent:

1. 𝑘 ∉ Γ𝐶 .
2. 𝜈𝐷(𝜔) ≤ 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1) for any 𝜔 ∈ Ω1

𝑀0 ,𝑃0
such that 𝜈𝐶(𝜔) = 𝑘.

Proof. Note that 𝑘 = 𝜈𝐶(𝑥𝑎𝑦𝑏𝜔1) > 𝑛(𝑎 + 1) + 𝑚(𝑏 + 1) = 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1).
Assume that 𝑘 ∈ Γ𝐶 , then 𝑘 = 𝑛𝑎′ + 𝑚𝑏′ > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1). Taking 𝜔 = 𝑑(𝑥𝑎′𝑦𝑏′), we have

𝜈𝐶(𝜔) = 𝜈𝐷(𝜔) = 𝑘 > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1).
Now assume that 𝑘 ∉ Γ𝐶 . Let us reason by contradiction assuming that there is 𝜔 with

𝜈𝐶(𝜔) = 𝑘 and 𝜈𝐷(𝜔) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1). We have that 𝜔 is basic and resonant since 𝜈𝐶(𝜔) ∉ Γ𝐶 . Then
𝜔 is reachable by 𝜔1, that is, there are 𝑎′, 𝑏′ ≥ 0 and a constant 𝜇 such that 𝜈𝐷(𝑥𝑎

′
𝑦𝑏

′
𝜔1) = 𝜈𝐷(𝜔)

and
𝜈𝐷(𝜔 − 𝜇𝑥𝑎

′
𝑦𝑏

′
𝜔1) > 𝜈𝐷(𝜔) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1).

Since 𝑛𝑎′ + 𝑚𝑏′ > 𝑛𝑎 + 𝑚𝑏, we have that 𝜈𝐶(𝑥𝑎
′
𝑦𝑏

′
𝜔1) > 𝑘 and hence 𝜈𝐶(𝜔1) = 𝑘, where

𝜔1 = 𝜔 − 𝜇𝑥𝑎
′
𝑦𝑏

′
𝜔1. Repeating the procedure with the pair 𝜔1 , 𝜔1, we obtain a sequence

𝜔, 𝜔1 , 𝜔2 , . . .

with strictly increasing divisorial value and such that 𝜈𝐶(𝜔 𝑗) = 𝑘 for any 𝑗. This is a contradiction.
□

Next lemma describes the divisorial value 𝜈𝐷(𝜔) of the 1-forms 𝜔 whose differential values
are not in the semigroup Γ𝐶 of 𝐶.

Lemma 5.2.9. Let 𝜔 ∈ Ω1
𝑀0 ,𝑃0

be a 1-form such that 𝜈𝐶(𝜔) = 𝜆 ∉ Γ𝐶 . There are unique 𝑎, 𝑏 ≥ 0 such
that 𝜈𝐷(𝜔) = 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1). Moreover, we have that 𝜆 ≥ 𝑛𝑎 + 𝑚𝑏 + 𝜆1.

Proof. Note that 𝜔 is basic and resonant and thus, by Remark 5.2.3, the existence and uniqueness
of 𝑎, 𝑏 is assured. Moreover, if 𝜆 < 𝑛𝑎 + 𝑚𝑏 + 𝜆1, we can find a constant 𝜇 such that

𝜈𝐷(𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔1) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔1)

and 𝜈𝐶(𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔1) = 𝜆. Put 𝜔1 = 𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔1, we have that 𝜈𝐶(𝜔1) = 𝜆 ∉ Γ𝐶 . As before, we
get that

𝜈𝐷(𝜔1) = 𝜈𝐷(𝑥𝑎1𝑦𝑏1𝜔1), with 𝑛𝑎1 + 𝑚𝑏1 > 𝑛𝑎 + 𝑚𝑏

and thus 𝜆 < 𝑛𝑎1 + 𝑚𝑏1 + 𝜆1. We repeat the process with the pair 𝜔1 , 𝜔1, in order to have a
sequence 𝜔, 𝜔1 , 𝜔2 , . . . with strictly increasing divisorial values and such that 𝜈𝐶(𝜔 𝑗) = 𝜆 for
any 𝑗. This is a contradiction. □

5.2.2 General Case

In the previous subsection, we have shown that 𝜈𝐷(𝜔1) = 𝑡1 = 𝑛 + 𝑚, where 𝑡1 is the critical
value introduces in Section 3.2. Here we prove the 1-forms 𝜔 with differential value 𝜈𝐶(𝜔) = 𝜆𝑖

have divisorial value 𝜈𝐷(𝜔) equal to the critical value 𝑡𝑖 .

Theorem 5.2.10. For each 1 ≤ 𝑖 ≤ 𝑠 we have the following statements
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1. 𝜆𝑖 = sup{𝜈𝐶(𝜔) : 𝜈𝐷(𝜔) = 𝑡𝑖}.
2. If 𝜈𝐶(𝜔) = 𝜆𝑖 , then 𝜈𝐷(𝜔) = 𝑡𝑖 .
3. For each 1-form 𝜔 with 𝜈𝐶(𝜔) ∉ Λ𝑖−1, there is a unique pair 𝑎, 𝑏 ≥ 0 such that 𝜈𝐷(𝜔) =

𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖). Moreover, we have that 𝜈𝐶(𝜔) ≥ 𝜆𝑖 + 𝑛𝑎 + 𝑚𝑏.
4. We have that 𝜆𝑖 > 𝑢𝑖 .
5. Let 𝑘 = 𝜆𝑖 + 𝑛𝑎 + 𝑚𝑏, then 𝑘 ∉ Λ𝑖−1, if and only if for all 𝜔 such that 𝜈𝐶(𝜔) = 𝑘, we have that

𝜈𝐷(𝜔) ≤ 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖).

In particular, the semimodules Λ𝑖 are increasing, for 𝑖 = 1, 2, . . . , 𝑠.

Proof. Assume that 𝑖 = 1 and then 𝑡1 = 𝑛 + 𝑚 = 𝑢1. We have

• Statement 1 is proven in Proposition 5.2.5.
• Statement 2 is proven in Corollary 5.2.7.
• Statement 3 is proven in Lemma 5.2.9.
• Statement 4 follows from the fact that 𝜆1 > 𝑛 + 𝑚 = 𝜈𝐷(𝜔1) = 𝑢1.
• Statement 5 is proven in Lemma 5.2.8.

Now, consider 𝑖 ≥ 2 and assume by the induction hypothesis that the Statements 1-5 are true for
indices ℓ with 1 ≤ ℓ ≤ 𝑖 − 1.

As in many proofs in Chapter 3, we have two cases: either 𝑢𝑖 = 𝑢𝑛
𝑖

or 𝑢𝑖 = 𝑢𝑚
𝑖

(we follow the
notations established there). Assume that 𝑢𝑖 = 𝑢𝑛

𝑖
= 𝜆𝑖−1 + 𝑛ℓ 𝑛

𝑖
. The computations in the case

𝑢𝑖 = 𝑢𝑚
𝑖
= 𝜆𝑖−1 + 𝑚ℓ𝑚

𝑖
are similar ones.

The proof is founded in three claims as follows:
• Claim 1: There is a 1-form 𝜂 with 𝜈𝐷(𝜂) = 𝑡𝑖 , whose initial part is proportional, by a constant, to

the initial part of 𝑥ℓ𝑛𝑖 𝜔𝑖−1 and such that either 𝜈𝐶(𝜂) ≥ 𝑐Γ or 𝜈𝐶(𝜂) ∉ Λ𝑖−1.

• Claim 2: Any 1-form 𝜔 with 𝜈𝐶(𝜔) ∉ Λ𝑖−1 is reachable by 𝑥ℓ
𝑛
𝑖 𝜔𝑖−1.

• Claim 3: Let 𝜂 be a 1-form such that 𝜈𝐷(𝜂) = 𝑡𝑖 whose initial part is proportional to the initial part
of 𝑥ℓ𝑛𝑖 𝜔𝑖−1 and such that either 𝜈𝐶(𝜂) ≥ 𝑐Γ or 𝜈𝐶(𝜂) ∉ Λ𝑖−1. Then 𝜈𝐶(𝜂) = 𝜆𝑖 .

We recall to the reader that the notion “initial part” refers to the concept of weighted initial part
defined in Section 2.3.

Proof of Claim 1: Recall that 𝑡𝑖 = 𝜈𝐷(𝜔𝑖−1) + 𝑢𝑖 − 𝜆𝑖−1 = 𝜈𝐷(𝜔𝑖−1) + 𝑛ℓ 𝑛
𝑖
. Let us start with

𝜂1 = 𝑥ℓ
𝑛
𝑖 𝜔𝑖−1. We have that

𝜈𝐷(𝜂1) = 𝑛ℓ 𝑛𝑖 + 𝜈𝐷(𝜔𝑖−1) = 𝑡𝑖 , 𝜈𝐶(𝜂1) = 𝑛ℓ 𝑛𝑖 + 𝜆𝑖−1 = 𝑢𝑖 ∈ Λ𝑖−2.

By Statement 5 applied to 𝜈𝐶(𝜂1) ∈ Λ𝑖−2, there is 𝜂′1 with 𝜈𝐶(𝜂′1) = 𝜈𝐶(𝜂1) and 𝜈𝐷(𝜂′1) > 𝜈𝐷(𝜂1).
Since 𝜈𝐶(𝜂′1) = 𝜈𝐶(𝜂1), then we can write

𝜂̃ = 𝜂1 + 𝜇+𝜂′1 with 𝜈𝐶(𝜂̃) > 𝜈𝐶(𝜂1) = 𝑢𝑖 .

Recall that 𝜇+ denotes the tuning constant. Since 𝜈𝐷(𝜂′1) > 𝜈𝐷(𝜂1), we have that 𝜈𝐷(𝜂̃) = 𝜈𝐷(𝜂1) =
𝑡𝑖 and the initial part of 𝜂̃ is the same one as the initial part of 𝜂1 = 𝑥ℓ

𝑛
𝑖 𝜔𝑖−1. If 𝜈𝐶(𝜂̃) ≥ 𝑐Γ or

𝜈𝐶(𝜂̃) ∉ Λ𝑖−1, then 𝜂 = 𝜂̃ is the 1-form we were looking for. Assume that 𝜈𝐶(𝜂̃) ∈ Λ𝑖−1. Let us
write

𝜈𝐶(𝜂̃) = 𝑛𝑎 + 𝑚𝑏 + 𝜆ℓ , ℓ ≤ 𝑖 − 1.

Let us see that 𝜈𝐷(𝜂̃) < 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔ℓ ); this is equivalent to verify that 𝑡𝑖 − 𝑡ℓ < 𝑛𝑎 + 𝑚𝑏. Since
𝜈𝐶(𝜂̃) > 𝑢𝑖 , in view of Lemma 3.2.8 we have

𝑛𝑎 + 𝑚𝑏 > 𝑢𝑖 − 𝜆ℓ = 𝑛ℓ 𝑛𝑖 + 𝜆𝑖−1 − 𝜆ℓ ≥ 𝑛ℓ 𝑛𝑖 + 𝑡𝑖−1 − 𝑡ℓ = 𝑡𝑖 − 𝑡ℓ .
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On the other hand, we have that 𝜈𝐶(𝜂̃) = 𝜈𝐶(𝑥𝑎𝑦𝑏𝜔ℓ ). Thus, writing 𝜂̃1 = 𝜂̃ + 𝜇+𝑥𝑎𝑦𝑏𝜔ℓ , we have
that 𝜈𝐶(𝜂̃1) > 𝜈𝐶(𝜂̃) and 𝜈𝐷(𝜂̃1) = 𝜈𝐷(𝜂̃). Moreover, the initial part of 𝜂̃1 is the same one as the
initial part of 𝑥ℓ𝑛𝑖 𝜔𝑖−1.

If 𝜈𝐶(𝜂̃1) ∈ Λ𝑖−1, we repeat the procedure starting with 𝜂̃1, to obtain 𝜂̃2 such that 𝜈𝐶(𝜂̃2) >
𝜈𝐶(𝜂̃1) and 𝜈𝐷(𝜂̃2) = 𝑡𝑖 . After finitely many repetitions, we get a 1-form 𝜂 such that 𝜈𝐷(𝜂) = 𝑡𝑖 ,
whose initial part is the same one as the one of 𝑥ℓ𝑛𝑖 𝜔𝑖−1 and either 𝜈𝐶(𝜂) ≥ 𝑐Γ or 𝜈𝐶(𝜂) ∉ Λ𝑖−1.
This proves Claim 1.

Proof of Claim 2: Take 𝜔 such that 𝜆 = 𝜈𝐶(𝜔) ∉ Λ𝑖−1. Note that 𝜆 ∉ Λ𝑖−2. By Statement 3, we
have that 𝜔 is reachable by 𝜔𝑖−1. Thus, there are 𝑎, 𝑏 ≥ 0 and a constant 𝜇 such that

𝜈𝐷(𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔𝑖−1) > 𝜈𝐷(𝜔) = 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖−1) = 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑖−1.

and moreover, we have that 𝜆 = 𝜈𝐶(𝜔) > 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑖−1 = 𝑘 (note that 𝜆 ≠ 𝑘 since 𝜆 ∉ Λ𝑖−1).
Consider the 1-form 𝜔′ = 𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔𝑖−1. We know that

𝜈𝐶(𝜔′) = 𝑘, 𝜈𝐷(𝜔′) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖−1).

By Statement 5, we conclude that 𝑘 ∈ Λ𝑖−2. Therefore, by applying Lemma 3.2.5, we have that
either 𝑎 ≥ ℓ 𝑛

𝑖
or 𝑏 ≥ ℓ𝑚

𝑖
. Let us show that we necessarily have that 𝑎 ≥ ℓ 𝑛

𝑖
, this would imply

that 𝜔′ is reachable by 𝑥ℓ
𝑛
𝑖 𝜔𝑖−1. Assume that 𝑏 ≥ ℓ𝑚

𝑖
. By Statement 4, we know that Λ𝑖−1 is an

increasing semimodule. By Corollary 3.4.7, we know that 𝑘 = 𝑢̃𝑖 ≥ 𝑐Λ𝑖−1 +𝑛. Since 𝜈𝐶(𝜔) = 𝜆 > 𝑘,
we have a contradiction with the assumption that 𝜆 ∉ Λ𝑖−1. Therefore 𝑎 ≥ ℓ 𝑛

𝑖
. This ends the

proof of Claim 2.

Proof of Claim 3: The conditions which satisfy 𝜈𝐶(𝜂) imply that 𝜈𝐶(𝜂) ≥ 𝜆𝑖 . Assume that
𝜆 = 𝜈𝐶(𝜂) > 𝜆𝑖 . Recalling that 𝜈𝐶(𝜔𝑖) = 𝜆𝑖 ∉ Λ𝑖−1 and that the initial part of 𝜂 is proportional
to the initial part of 𝑥ℓ𝑛𝑖 𝜔𝑖−1, we can apply Claim 2 and we get that 𝜔𝑖 is reachable by 𝜂. Then
there are 𝑎, 𝑏 ≥ 0 and a constant 𝜇 such that 𝜈𝐷(𝜔𝑖 − 𝜇𝑥𝑎𝑦𝑏𝜂) > 𝜈𝐷(𝜔𝑖). Put 𝜔1

𝑖
= 𝜔𝑖 − 𝜇𝑥𝑎𝑦𝑏𝜂.

We have that 𝜈𝐶(𝜔1
𝑖
) = 𝜆𝑖 since 𝜈𝐶(𝜇𝑥𝑎𝑦𝑏𝜂) ≥ 𝜆 > 𝜆𝑖 . In this way we produce an infinite list of

1-forms with strictly increasing divisorial value

𝜔𝑖 = 𝜔0
𝑖 , 𝜔

1
𝑖 , 𝜔

2
𝑖 , . . .

such that 𝜈𝐶(𝜔 𝑗

𝑖
) = 𝜆𝑖 , for any 𝑗 ≥ 0. Therefore, we exists an index 𝑗 we such that 𝜈𝐷(𝜔 𝑗

𝑖
) ≥ 𝑐Γ

and then 𝜆𝑖 ≥ 𝜈𝐷(𝜔 𝑗

𝑖
) ≥ 𝑐Γ and this is a contradiction. So we necessarily have that 𝜈𝐶(𝜂) = 𝜆𝑖 .

This ends the proof of Claim 3.

Proof of Statements 1 and 2: In view of Claim 1 and Claim 3, there is a 1-form 𝜂 with 𝜈𝐷(𝜂) = 𝑡𝑖

such that 𝜈𝐶(𝜂) = 𝜆𝑖 and whose initial part is proportional to the initial part of 𝑥ℓ
𝑛
𝑖 𝜔𝑖−1. In

order to prove Statement 1, it remains to prove that if 𝜈𝐷(𝜔) = 𝑡𝑖 then 𝜈𝐶(𝜔) ≤ 𝜆𝑖 . Assume that
𝜆 = 𝜈𝐶(𝜔) > 𝜆𝑖 = 𝜈𝐶(𝜂). The 1-form 𝜔 is basic and resonant and it has the same divisorial value
as 𝜂. Hence there is a constant 𝜇 ≠ 0 such that the 1-form 𝜂1 = 𝜂 − 𝜇𝜔 verifies that

𝜈𝐷(𝜂1) > 𝑡𝑖 = 𝜈𝐷(𝜂) = 𝜈𝐷(𝜔).

The 1-form 𝜂1 satisfies that 𝜈𝐶(𝜂1) = 𝜆𝑖 ∉ Λ𝑖−1. By Claim 2, there are 𝑎, 𝑏 ≥ 0 and a constant 𝜇′

such that
𝜈𝐷(𝜂2) > 𝜈𝐷(𝜂1), with 𝜂2 = 𝜂1 − 𝜇′𝑥𝑎𝑦𝑏𝜂.

We have that 𝜈𝐶(𝜂2) = 𝜆𝑖 and 𝜈𝐷(𝜂2) > 𝜈𝐷(𝜂1). Repeating this procedure, we have a list of
1-forms 𝜂1 , 𝜂2 , . . . with strictly increasing divisorial value such that 𝜈𝐶(𝜂 𝑗) = 𝜆𝑖 for any 𝑗. We



5.2. Structure of the Semimodule of Differential Values 85

find a contradiction just by considering one of such 𝜂 𝑗 with 𝜈𝐷(𝜂 𝑗) ≥ 𝑐Γ. This ends the proof of
Statement 1.

Let us prove Statement 2. Choose 𝜔 with 𝜈𝐶(𝜔) = 𝜆𝑖 . By Claim 2, we have that 𝜔 is reachable
by 𝜂 and hence 𝜈𝐷(𝜔) ≥ 𝑡𝑖 . Assume by contradiction that 𝜈𝐷(𝜔) > 𝑡𝑖 . There is a constant 𝜇 and
𝑎, 𝑏 ≥ 0 with 𝑎 + 𝑏 ≥ 1 such that

𝜈𝐷(𝜔1) > 𝜈𝐷(𝜔), where 𝜔1 = 𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜂.

Since 𝜈𝐶(𝜇𝑥𝑎𝑦𝑏𝜂) = 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑖 > 𝜆𝑖 , we have that 𝜈𝐶(𝜔1) = 𝜆𝑖 . Repeating the argument,
we get a sequence of 1-forms 𝜔0 = 𝜔, 𝜔1 , . . . with strictly increasing divisorial value such that
𝜈𝐶(𝜔 𝑗) = 𝜆𝑖 for any 𝑗. This is a contradiction.

Proof of Statement 3: By Claim 2, we have that 𝜔𝑖 is reachable by 𝑥ℓ
𝑛
𝑖 𝜔𝑖−1. By Statement 2

(already proved) we have that 𝜈𝐷(𝜔𝑖) = 𝑡𝑖 . Hence the initial part of 𝜔𝑖 is proportional to the
initial part of 𝑥ℓ𝑛𝑖 𝜔𝑖−1. Consider a 1-form 𝜔 with 𝜈𝐶(𝜔) ∉ Λ𝑖−1. By Claim 2 the 1-form 𝜔 is
reachable by 𝑥ℓ

𝑛
𝑖 𝜔𝑖−1 and hence it is reachable by 𝜔𝑖 . Then, there are 𝑎, 𝑏 ≥ 0 such that

𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖) = 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑖 = 𝜈𝐷(𝜔).

Since 𝜈𝐶(𝜔) ∉ Λ𝑖−1, we have that 𝑛𝑚 > 𝜈𝐶(𝜔) > 𝜈𝐷(𝜔) > 𝑛𝑎 +𝑚𝑏, this implies the uniqueness of
𝑎, 𝑏. Let us show that 𝜈𝐶(𝜔) ≥ 𝑛𝑎 +𝑚𝑏 +𝜆𝑖 . Assume by contradiction that 𝜈𝐶(𝜔) < 𝑎𝑛 + 𝑏𝑚 +𝜆𝑖 .
Consider 𝜔1 = 𝜔 − 𝜇𝑥𝑎𝑦𝑏𝜔𝑖 such that 𝜈𝐷(𝜔1) > 𝜈𝐷(𝜔). In view of the hypothesis about
𝜈𝐶(𝜔), we have that 𝜈𝐶(𝜔1) = 𝜈𝐶(𝜔). Moreover, if 𝜈𝐷(𝜔1) = 𝜈𝐷(𝑥𝑎1𝑦𝑏1𝜔𝑖) we also have that
𝜈𝐶(𝜔) < 𝑛𝑎1 + 𝑚𝑏1 + 𝜆𝑖 . The situation repeats and we obtain an infinite sequence of 1-forms
𝜔0 = 𝜔, 𝜔1 , 𝜔2 , . . . with strictly increasing divisorial values, such that 𝜈𝐶(𝜔 𝑗) = 𝜈𝐶(𝜔) for any
𝑗 ≥ 0. This is a contradiction.

Proof of Statement 4: Noting that 𝜈𝐷(𝑥ℓ
𝑛
𝑖 𝜔𝑖−1) = 𝑡𝑖 , by Statement 1 we have 𝜆𝑖 ≥ 𝜈𝐶(𝑥ℓ

𝑛
𝑖 𝜔𝑖−1) =

𝑛ℓ 𝑛
𝑖
+ 𝜆𝑖−1 = 𝑢𝑖 . On the other hand, since 𝜆𝑖 ∉ Λ𝑖−1, we have that 𝜆𝑖 ≠ 𝑢𝑖 and hence 𝜆𝑖 > 𝑢𝑖 .

Proof of Statement 5: Consider 𝑘 = 𝜆𝑖 + 𝑛𝑎 + 𝑚𝑏. Assume first that 𝑘 ∉ Λ𝑖−1. Let 𝜔 be such
that 𝜈𝐶(𝜔) = 𝑘. We have to prove that

𝜈𝐷(𝜔) ≤ 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖) = 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑖 .

In view of Statement 3, we know that 𝜔 is reachable by 𝜔𝑖 . Hence there are 𝑎′, 𝑏′ ≥ 0 and a
constant 𝜇 such that 𝜈𝐷(𝜔 − 𝜇𝑥𝑎

′
𝑦𝑏

′
𝜔𝑖) > 𝜈𝐷(𝜔). Hence

𝜈𝐷(𝜔) = 𝜈𝐷(𝑥𝑎
′
𝑦𝑏

′
𝜔𝑖) = 𝑛𝑎′ + 𝑚𝑏′ + 𝑡𝑖 .

Assume by contradiction that 𝜈𝐷(𝜔) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖) = 𝑛𝑎 +𝑚𝑏 + 𝑡𝑖 . This implies that 𝑛𝑎′ +𝑚𝑏′ >

𝑛𝑎 + 𝑚𝑏 and thus

𝜈𝐶(𝑥𝑎
′
𝑦𝑏

′
𝜔𝑖) = 𝑛𝑎′ + 𝑚𝑏′ + 𝜆𝑖 > 𝑘 = 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑖 = 𝜈𝐶(𝑥𝑎𝑦𝑏𝜔𝑖) = 𝜈𝐶(𝜔).

Put 𝜔1 = 𝜔 − 𝜇𝑥𝑎
′
𝑦𝑏

′
𝜔𝑖 . We have that 𝜈𝐶(𝜔1) = 𝑘. Repeating the argument with 𝜔1, we obtain

an infinite list of 1-forms 𝜔0 = 𝜔, 𝜔1 , 𝜔2 , . . . with increasing divisorial values and such that
𝜈𝐶(𝜔 𝑗) = 𝑘 ∉ Λ𝑖−1. This is a contradiction.

Assume now that 𝑘 ∈ Λ𝑖−1. There is an index ℓ ≤ 𝑖 − 1 such that

𝑘 = 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑖 = 𝑛𝑎′ + 𝑚𝑏′ + 𝜆ℓ .

By Lemma 3.2.8, we have that 𝜆𝑖 − 𝜆ℓ > 𝑡𝑖 − 𝑡ℓ and hence 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑖 < 𝑛𝑎′ + 𝑚𝑏′ + 𝑡ℓ . The
1-form 𝑥𝑎

′
𝑦𝑏

′
𝜔ℓ satisfies that 𝑘 = 𝜈𝐶(𝑥𝑎

′
𝑦𝑏

′
𝜔ℓ ) and

𝜈𝐷(𝑥𝑎
′
𝑦𝑏

′
𝜔ℓ ) = 𝑛𝑎′ + 𝑚𝑏′ + 𝑡ℓ > 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑖 = 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑖).

This ends the proof. □
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As a consequence of the previous theorem and its proof, we have the following result about
the initial parts of the elements of a minimal standard basis.

Corollary 5.2.11. For each 1 ≤ 𝑖 ≤ 𝑠, the 1-forms 𝜔𝑖 are basic and resonant. In particular, for the
adapted coordinate system (𝑥, 𝑦), the initial parts can be written as

In(𝜔𝑖) = 𝜇𝑖𝑥
𝑐𝑖 𝑦𝑑𝑖

(
𝑚
𝑑𝑥

𝑥
− 𝑛

𝑑𝑦

𝑦

)
, 𝑛𝑐𝑖 + 𝑚𝑑𝑖 = 𝜈𝐷(𝜔𝑖) = 𝑡𝑖 < 𝑛𝑚.

Proof. Applying Lemma 3.2.8, since Λ𝐶 is increasing, we have that

𝜈𝐷(𝜔𝑖) = 𝑡𝑖 < 𝜆𝑖 = 𝜈𝐶(𝜔𝑖) < 𝑛𝑚.

The statement follows from these inequalities, and Proposition 2.3.14. □

Remark 5.2.12. From the previous corollary and Proposition 2.5.1, we have that the 1-forms 𝜔𝑖 ,
with 𝑖 ≥ 1, are totally 𝐷-dicritical.

5.2.3 Delorme’s Algorithm

We end this section presenting an algorithm that computes minimal standard bases of the
module of differential of a cusp. This method is based in the previous Theorem 5.2.10.

Following the ideas and the notation from Chapter 4, given 𝜂 ∈ Ω1
𝑀0 ,𝑃0

, 𝒮 = {𝜃1 , . . . , 𝜃𝑘} ⊂
Ω1

𝑀0 ,𝑃0
and 𝐺 = {𝑔1 , . . . , 𝑔𝑘′} ⊂ 𝒪𝑀0 ,𝑃0 . We say that 𝜂′ is reduction of 𝜂 modulo (𝒮 , 𝐺), or

just 𝒮 if there is no confusion with 𝐺, if 𝜂′ = 𝜂 + 𝜇+𝐺𝛼𝜃𝑖 , where 𝜇+ is the tuning constant,
𝜈𝐶(𝐺𝛼𝜃𝑖) = 𝜈𝐶(𝜂) < ∞ and 𝐺𝛼 is a 𝐺-product.

Similarly, if there is a sequence

𝜂 = 𝜂0 → 𝜂1 → 𝜂2 → . . . → 𝜂𝑞 → . . .

such that 𝜂𝑖 is reduction modulo (𝒮 , 𝐺) of 𝜂𝑖−1, for 𝑖 ≥ 1, we say that any 𝜂𝑖 is a partial reduction
of 𝜂. Moreover, if we denote by 𝜂∞ the limit of that sequence, we say that 𝜂∞ is a final reduction
of 𝜂, that is, 𝜂∞ is no longer reducible modulo (𝒮 , 𝐺).

Delorme’s Algorithm

INPUT: A cusp 𝐶 and 𝐺 = { 𝑓−1 , 𝑓0} with 𝜈𝐶( 𝑓−1) = 𝑛 and 𝜈𝐶( 𝑓0) = 𝑚.
OUTPUT: 𝒮 minimal standard basis of the cusp 𝐶.
START:

Put 𝒮0 = {𝜔−1 = 𝑑𝑓−1 , 𝜔0 = 𝑑𝑓0}, 𝑖 = 1, ℬ0 = (𝜆−1 = 𝑛,𝜆0 = 𝑚) and Λ−1 = (𝑛 + Γ).

loop {

Compute 𝑢𝑖 = min{(𝜆𝑖−1 + Γ) ∩Λ𝑖−2} and put Λ𝑖−1 = Λ𝑖−2 ∪ (𝜆𝑖−1 + Γ).
Find 𝑘 < 𝑖 − 1, ℎ, ℎ′ 𝐺−products such that 𝜈𝐶(ℎ𝜔𝑖−1) = 𝜈𝐶(ℎ′𝜔𝑘) = 𝑢𝑖 .

Put 𝜂 = ℎ𝜔𝑖−1 + 𝜇+ℎ′𝜔𝑘 .

Compute 𝜂∞ a final reduction of 𝜂 modulo 𝒮𝑖−1.

if 𝜈𝐶(𝜂∞) = ∞ then:

Put 𝒮 = 𝒮𝑖−1 and Return.

otherwise:
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Put 𝜔𝑖 = 𝜂∞ and 𝒮𝑖 = 𝒮𝑖−1 ∪ {𝜔𝑖}.
Put 𝜆𝑖 = 𝜈𝐶(𝜔𝑖), ℬ𝑖 = (𝑛, 𝑚,𝜆1 , . . . ,𝜆𝑖) and 𝑖 = 𝑖 + 1.

} end loop

Recall that in a system of adapted coordinates (𝑥, 𝑦) with respect to the cusp 𝐶, we can put
𝑓−1 = 𝑥 and 𝑓0 = 𝑦. The previous algorithm works because of the following ideas: first, by
means of Lemma 3.2.8, we have that 𝜈𝐷(𝜂) = 𝑡𝑖 , and that no partial reduction of 𝜂 has a different
divisorial value. Second, by Theorem 5.2.10 we have that the 𝑖-element of the basis of the module
of differential values 𝜆𝑖 , in case it exists, it is greater than the axis 𝑢𝑖 . Moreover, we also have
that 𝜆𝑖 = sup{𝜈𝐶(𝜔) : 𝜈𝐷(𝜔) = 𝑡𝑖} = min(Λ𝐶 \Λ𝑖−1). Thus, if 𝜂 has a non trivial final reduction
𝜂∞ modulo 𝒮𝑖−1 = {𝜔−1 , 𝜔0 , . . . , 𝜔𝑖−1}, then it must be that 𝜈𝐶(𝜂∞) = 𝜆𝑖 . Otherwise, it implies
that the 𝑖-element of the basis does not exist.

Notice that the condition on finding a trivial final reduction can be simplified by just
demanding to compute a partial reduction 𝜂𝑟 modulo 𝒮𝑖−1 , such that 𝜈𝐶(𝜂𝑟) ≥ 𝑐Λ𝑖−1 . This
implies that 𝜂𝑟 is again reducible modulo 𝒮𝑖−1.

This algorithm is an adapted version of the one presented in Chapter 4 when computing
standard bases of modules. The Büchberger’s algorithm for modules can be used with any
branch, however, as mentioned, the algorithm stated above is specific for cusps. The main
problem on giving a generalization of the main results in this work is to adapt the Büchberger’s
algortithm to more general branches.

We now give an example of application of the previous algorithm.

Example 5.2.13. We consider the cusp 𝐶 defined by the primitive parametrization

𝜙(𝑡) = (𝑡5 , 𝑡11 + 𝑡12 + 7𝑡13) = (𝑥(𝑡), 𝑦(𝑡)).

We notice that the Puiseux pair of 𝐶 is (5, 11) and that (𝑥, 𝑦) is an adapted system of coordinates
with respect to 𝐶, see Section 1.6. We are going to compute a minimal standard basis of 𝐶.

We start by putting 𝜔−1 = 𝑑𝑥 and 𝜔0 = 𝑑𝑦. Note that 𝜙∗𝑑𝑥 = 5𝑡4𝑑𝑡 and 𝜙∗𝑑𝑦 = (11𝑡10 +
12𝑡11 + 91𝑡12)𝑑𝑡. It follows that 𝜈𝐶(𝑑𝑥) = 5 = 𝜆−1 and 𝜈𝐶(𝑑𝑦) = 11 = 𝜆0, as we already knew.

This example will also show how the results from Chapter 3 can be used to simplify the
computations. We need to find 𝑢1. As we saw in Example 3.5.4, we have that 𝑢1 = 𝑛 + 𝑚 = 16.
Moreover, we recall that the 0-left and right bounds are 𝑘𝑛0 = −1 = 𝑘𝑚0 , see Example 3.5.4. We
need to compute the smallest positive solutions of these equations.

𝑢𝑛
1 = 𝜆0 + 𝑛ℓ 𝑛1 = 𝜆−1 + 𝑚𝑏1 = 11 + 𝑛ℓ 𝑛1 = 5 + 𝑚𝑏1

𝑢𝑚
1 = 𝜆0 + 𝑚ℓ𝑚1 = 𝜆−1 + 𝑛𝑎1 = 11 + 𝑚ℓ𝑚1 = 5 + 𝑛𝑎1

We deduce that ℓ 𝑛1 = 1 = 𝑏1, ℓ𝑚1 = 4 and 𝑎1 = 10. Therefore, we obtain 16 = 𝑢1 = 𝑢𝑛
1 < 𝑢𝑚

1 = 𝑢̃1 =

55. By Proposition 3.5.9, the new bounds are 𝑘𝑛1 = 0 and 𝑘𝑚1 = −1.
Hence, we have that 𝜈𝐶(𝑥𝜔0) = 𝜈𝐶(𝑦𝜔−1) = 16. By taking the pull-back by 𝜙, we obtain that

𝜙∗(𝑥𝜔0) = (11𝑡15 + 12𝑡16 + 91𝑡17)𝑑𝑡
𝜙∗(𝑦𝜔−1) = (5𝑡15 + 5𝑡16 + 35𝑡17)𝑑𝑡.

If we put 𝜂 = 𝑥𝜔0 − 11/5𝑦𝜔−1, we have that 𝜙∗𝜂 = (𝑡16 + 14𝑡17)𝑑𝑡. Thus, 𝜈𝐶(𝜂) = 17. We note
that 17 ∉ (5 + Γ𝐶) ∪ (11 + Γ𝐶). We add 𝜔1 = 𝑥𝜔0 − 11/5𝑦𝜔−1 to our candidate set of minimal
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standard basis, and 𝜆1 = 17 to the basis of the semimodule of differential values. Now, we repeat
the process, we start by computing the axis 𝑢2.

𝑢𝑛
2 = 𝜆1 + 𝑛ℓ 𝑛2 = 𝜆0 + 𝑚𝑏2 = 17 + 𝑛ℓ 𝑛2 = 11 + 𝑚𝑏2

𝑢𝑚
2 = 𝜆1 + 𝑚ℓ𝑚2 = 𝜆−1 + 𝑛𝑎2 = 17 + 𝑚ℓ𝑚2 = 5 + 𝑛𝑎2.

We obtain that ℓ 𝑛2 = 1 = 𝑏2, ℓ𝑚2 = 3 and 𝑎2 = 9. This implies that 22 = 𝑢2 = 𝑢𝑛
2 < 𝑢𝑚

2 = 𝑢̃2 = 50.
Again, by Proposition 3.5.9, we have that 𝑘𝑛2 = 1 and 𝑘𝑚2 = −1.

The previous computation shows that 𝜈𝐶(𝑥𝜔1) = 𝜈𝐶(𝑦𝜔0) = 22.

𝜙∗(𝑥𝜔1) = (𝑡21 + 14𝑡22)𝑑𝑡
𝜙∗(𝑦𝜔0) = (11𝑡21 + 23𝑡22 + 180𝑡23 + 175𝑡24 + 637𝑡25)𝑑𝑡.

By putting 𝜂 = 𝑥𝜔1 − 1/11𝑦𝜔0, we see that 𝜙∗𝜂 = (131/11𝑡22 + ℎ.𝑜.𝑡.)𝑑𝑡, that is, 𝜈𝐶(𝜂) = 23. As
before, we notice that 23 ∉ (5 + Γ𝐶) ∪ (11 + Γ𝐶) ∪ (17 + Γ𝐶). Hence we put 𝜔2 = 𝜂 and 𝜆2 = 23. A
new iteration shows that

𝑢𝑛
3 = 23 + 5ℓ 𝑛3 = 17 + 𝑚𝑏3 → 𝑢𝑛

3 = 28

𝑢𝑚
3 = 23 + 11ℓ 3

2 = 5 + 5𝑎2 → 𝑢𝑚
3 = 45.

Then 𝜈𝐶(𝑥𝜔2) = 𝜈𝐶(𝑦𝜔1) = 28. We check that 𝜔3 = 𝑥𝜔2 − 131/11𝑦𝜔1 satisfies that 𝜈𝐶(𝜔3) = 29
which does not belong to (5 + Γ𝐶) ∪ (11 + Γ𝐶) ∪ (17 + Γ𝐶) ∪ (23 + Γ𝐶).

We could check that the algorithm stops by computing a new 1-form with the previous
procedure whose final reduction gives infinite differential value. However, we also recall
that the length of the basis of a semimodule is bounded by 𝑛 − 2. Since we have computed
up to the 3-element of the basis of Λ𝐶 , we can conclude that the algorithm has finished and
𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , 𝜔2 , 𝜔3) is a minimal standard basis of 𝐶, and ℬ = (5, 11, 17, 23, 29) is the basis
of the semimodule of differential values Λ𝐶 .

5.3 Delorme’s Decomposition

In this section we prove the following result:

Theorem 5.3.1. Consider indices 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑠 and ∗ ∈ {𝑛, 𝑚}. Take 𝜔 a 1-form such that 𝜈𝐷(𝜔) = 𝑡∗
𝑖+1

and 𝜈𝐶(𝜔) > 𝑢∗
𝑖+1. Then, there is a decomposition of the 1-form 𝜔 given by

𝜔 =
∑𝑗

ℓ=−1 𝑓
𝑖 𝑗

ℓ
𝜔ℓ , (5.2)

such that the following properties hold. Let 𝑣∗
𝑖 𝑗

be defined by 𝑣∗
𝑖 𝑗
= 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗). Then we obtain:

1. 𝑣∗
𝑖 𝑗
= min{𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ); −1 ≤ ℓ < 𝑗}.

2. 𝑣∗
𝑖 𝑗
= 𝜆 𝑗 + 𝑡∗

𝑖+1 − 𝑡 𝑗 , in particular, if 𝑗 = 𝑖 we have that 𝑣∗
𝑖𝑖
= 𝜆𝑖 + 𝑡∗

𝑖+1 − 𝑡𝑖 = 𝑢∗
𝑖+1.

3. If 𝑗 < 𝑖, we have that 𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) = 𝑣∗
𝑖 𝑗
, for ℓ = 𝑘 𝑗 and 𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) > 𝑣∗

𝑖 𝑗
, for any ℓ ≠ 𝑘 𝑗 and

−1 ≤ ℓ < 𝑗.
4. If 𝑗 = 𝑖, we have that 𝜈𝐶( 𝑓 𝑖𝑖ℓ 𝜔ℓ ) = 𝑣∗

𝑖𝑖
, for ℓ = 𝑘∗

𝑗
and 𝜈𝐶( 𝑓 𝑖𝑖ℓ 𝜔ℓ ) > 𝑣∗

𝑖𝑖
, for any ℓ ≠ 𝑘∗

𝑗
and

−1 ≤ ℓ < 𝑗.

We recall that 𝑘𝑖 makes reference to the bounds introduced in Section 3.5.

A decomposition of a 1-form 𝜔 as the one in Theorem 5.3.1 is called a Delorme’s decomposition
of 𝜔.
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Remark 5.3.2. Notice that Theorem 5.3.1 can be used to write 𝜔𝑖+1 in terms of 𝜔−1 , 𝜔0 , . . . , 𝜔𝑖

for 0 ≤ 𝑖 ≤ 𝑠 − 1. Indeed, let us choose ∗ ∈ {𝑛, 𝑚} such that 𝑢∗
𝑖+1 = 𝑢𝑖+1, and hence 𝑡∗

𝑖+1 = 𝑡𝑖+1. We
have that 𝜈𝐷(𝜔𝑖+1) = 𝑡𝑖+1 and 𝜈𝐶(𝜔𝑖+1) = 𝜆𝑖+1 > 𝑢𝑖+1. By Theorem 5.3.1, if we fix 𝑗 with 0 ≤ 𝑗 ≤ 𝑖

we have an expression

𝜔𝑖+1 = 𝑓
𝑖 𝑗

𝑗
𝜔 𝑗 + 𝑓

𝑖 𝑗

𝑗−1𝜔 𝑗−1 + · · · 𝑓 𝑖 𝑗0 𝜔0 + 𝑓
𝑖 𝑗

−1𝜔−1 , (5.3)

such that 𝜆 𝑗 + 𝑡𝑖+1 − 𝑡 𝑗 = 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) = 𝜈𝐶( 𝑓 𝑖 𝑗𝑘 𝑗 𝜔𝑘 𝑗 ) < 𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ), for any ℓ ≠ 𝑘 𝑗 , with −1 ≤ ℓ ≤ 𝑗 − 1.

Theorem 5.3.1 was proved by C. Delorme in [21] for the case where 𝑗 = 𝑖 < 𝑠 and 𝜔 = 𝜔𝑖

is an element of a minimal standard basis of 𝐶. In [12], we prove a first generalization of the
result of Delorme that included the case where 𝜔 was a 1-form with divisorial value 𝑡𝑠+1 and 𝐶

invariant, that is, 𝜈𝐶(𝜔) = ∞. The version stated here can be found in [13].
The proof of Theorem 5.3.1 requires the following Lemma.

Lemma 5.3.3. Consider 1 ≤ 𝑖 ≤ 𝑠 and ∗ ∈ {𝑛, 𝑚}. Given a 1-form 𝜂 with 𝜈𝐶(𝜂) > 𝑢∗
𝑖+1 and

𝜈𝐷(𝜂) > 𝑡∗
𝑖+1, we have that:

1. If 𝜈𝐷(𝜂) < 𝑛𝑚, there is a 1-form 𝛼 such that:

(a) 𝜈𝐷(𝜂 − 𝛼) > 𝜈𝐷(𝜂).
(b) There is a decomposition 𝛼 =

∑𝑖
ℓ=−1 𝑔ℓ𝜔ℓ , where 𝜈𝐶(𝑔ℓ𝜔ℓ ) > 𝑢∗

𝑖+1 and 𝜈𝐷(𝑔ℓ𝜔ℓ ) > 𝑡∗
𝑖+1,

for any −1 ≤ ℓ ≤ 𝑖.

2. If 𝜈𝐷(𝜂) ≥ 𝑛𝑚, there is a decomposition 𝜂 =
∑𝑖

ℓ=−1 𝑔ℓ𝜔ℓ where each term satisfies that 𝜈𝐶(𝑔ℓ𝜔ℓ ) >
𝑢∗
𝑖+1.

Proof. Let us prove first statement (2). By Remark 5.2.2, we have that {𝜔−1 , 𝜔0} is a basis of
Ω1

𝑀0 ,𝑃0
. Therefore, we can write 𝜂 in a unique way

𝜂 = 𝑔−1𝜔−1 + 𝑔0𝜔0. (5.4)

Moreover, since the initial parts are In(𝜔−1) = 𝜆𝑑𝑥 and In(𝜔0) = 𝜇𝑑𝑦, then we have that

𝜈𝐷(𝜂) = min{𝜈𝐷(𝑔−1𝜔−1), 𝜈𝐷(𝑔0𝜔0)}

Noting that 𝜈𝐷(𝜔) ≥ 𝑛𝑚, we have that 𝜈𝐷(𝑔−1𝜔−1) ≥ 𝑛𝑚 and 𝜈𝐷(𝑔0𝜔0) ≥ 𝑛𝑚. By Lemma 3.6.1,
we have that 𝑢̃𝑖+1 < 𝑢̃1, besides 𝑢∗

𝑖+1 ≤ 𝑢̃𝑖+1, and hence

𝑢∗
𝑖+1 ≤ 𝑢̃𝑖+1 < 𝑢̃1 = 𝑛𝑚.

We conclude that 𝜈𝐶(𝑔ℓ𝜔ℓ ) ≥ 𝜈𝐷(𝑔ℓ𝜔ℓ ) ≥ 𝑛𝑚 > 𝑢∗
𝑖+1, for ℓ = −1, 0. Then the decomposition in

equation (5.4) satisfies the required properties.
Let us prove now statement (1). By Remark 2.3.15, the Newton cloud of initial part of 𝜂 is a

single point:

In(𝜂) = 𝑥𝑎𝑦𝑏
(
𝛼−1

𝑑𝑥

𝑥
+ 𝛼0

𝑑𝑦

𝑦

)
.

where 𝜈𝐷(𝜂) = 𝑛𝑎 + 𝑚𝑏. There are two possibilities: either 𝜂 is resonant or not. If 𝜂 is not
resonant, by Proposition 2.3.14, we have that 𝜈𝐶(𝜂) = 𝜈𝐷(𝜂) = 𝑛𝑎 +𝑚𝑏. Since In(𝜔−1) = 𝜆𝑑𝑥 and
In(𝜔0) = 𝜇𝑑𝑦, we have that {In(𝜔−1), In(𝜔0)} is a basis of Ω1

𝑀0 ,𝑃0
. Thus, we can consider

𝛼 = In(𝜂) = ℎ−1 In(𝜔−1) + ℎ0 In(𝜔0), ℎ−1 = 𝜇−1𝑥
𝑎−1𝑦𝑏 , ℎ0 = 𝜇0𝑥

𝑎𝑦𝑏−1. (5.5)
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For 𝜇−1 and 𝜇0 appropriate non zero constants. We have that 𝜈𝐷(𝜂 − 𝛼) > 𝜈𝐷(𝜂). Moreover we
also have that 𝜈𝐷(𝛼) = 𝜈𝐷(𝜂) > 𝑢∗

𝑖+1. Since

𝜈𝐷(𝛼) = min{𝜈𝐷(𝑔−1𝜔−1), 𝜈𝐷(𝑔0𝜔0)},

we conclude that 𝜈𝐶(𝑔ℓ𝜔ℓ ) ≥ 𝜈𝐷(𝑔ℓ𝜔ℓ ) ≥ 𝜈𝐷(𝛼) > 𝑢∗
𝑖+1, for 𝑖 = −1, 0. Moreover, in view of

Corollary 3.2.9 we have that 𝑢∗
𝑖+1 > 𝑡∗

𝑖+1, hence we also get that 𝜈𝐷(𝑔ℓ𝜔ℓ ) > 𝑡∗
𝑖+1, for ℓ = −1, 0.

Thus, the expression in Equation (5.5) satisfies the desired properties.
Now, let us assume that 𝜂 is resonant. Up to multiply 𝜂 by a non-null scalar, we have that

In(𝜂) = 𝑥𝑎𝑦𝑏
(
𝑚
𝑑𝑥

𝑥
− 𝑛

𝑑𝑦

𝑦

)
, 𝜈𝐷(𝜂) = 𝑛𝑎 + 𝑚𝑏 > 𝑡∗𝑖+1.

Let us define the index 𝑘 := max{ℓ ≤ 𝑖 : 𝜂 is reachable by 𝜔ℓ}. Since 𝜂 is resonant, then 𝑘 ≥ 1.
By definition of 𝑘, there exists a monomial 𝜇𝑥𝑐𝑦𝑑 such that 𝜈𝐷(𝜇𝑥𝑐𝑦𝑑𝜔𝑘) = 𝜈𝐷(𝜂) and

𝜈𝐷(𝜂′) > 𝜈𝐷(𝜂), where 𝜂′ = 𝜂 − 𝜇𝑥𝑐𝑦𝑑𝜔𝑘 .

The desired decomposition will be given just by the expression 𝛼 = 𝜇𝑥𝑐𝑦𝑑𝜔𝑘 . Since 𝜈𝐷(𝛼) =
𝜈𝐷(𝜂) > 𝑡∗

𝑖+1, we only need to verify that 𝜈𝐶(𝑥𝑐𝑦𝑑𝜔𝑘) > 𝑢∗
𝑖+1.

First, let us assume that 𝑘 = 𝑖 and hence 𝛼 = 𝜇𝑥𝑐𝑦𝑑𝜔𝑖 . Write

𝜈𝐷(𝛼) = 𝑛𝑐 + 𝑚𝑑 + 𝑡𝑖 = 𝜈𝐷(𝜂) > 𝑡∗𝑖+1.

Recalling that 𝑡∗
𝑖+1 = 𝑡𝑖 + 𝑢∗

𝑖+1 − 𝜆𝑖 , we obtain that 𝑛𝑐 + 𝑚𝑑 + 𝜆𝑖 > 𝑢∗
𝑖+1. Hence, we conclude by

noting that
𝜈𝐶(𝑥𝑐𝑦𝑑𝜔𝑖) = 𝑛𝑐 + 𝑚𝑑 + 𝜆𝑖 > 𝑢∗

𝑖+1.

Now, let us consider the case when 1 ≤ 𝑘 ≤ 𝑖−1. Assume by contradiction that 𝜈𝐶(𝑥𝑐𝑦𝑑𝜔𝑘) ≤
𝑢∗
𝑖+1 < 𝜈𝐶(𝜂). Taking into account that 𝜂′ = 𝜂 − 𝜇𝑥𝑐𝑦𝑑𝜔𝑘 , we see the following:

𝜈𝐷(𝜂′) > 𝜈𝐷(𝑥𝑐𝑦𝑑𝜔𝑘) = 𝑛𝑐 + 𝑚𝑑 + 𝑡𝑘 ;

𝜈𝐶(𝜂′) = 𝜈𝐶(𝑥𝑐𝑦𝑑𝜔𝑘) = 𝑛𝑐 + 𝑚𝑑 + 𝜆𝑘 .

By Statement 5 in Theorem 5.2.10, we have that 𝑛𝑐 + 𝑚𝑑 + 𝜆𝑘 ∈ Λ𝑘−1. In view of Lemma 3.2.5,
this implies that either 𝑐 ≥ ℓ 𝑛

𝑘+1 or 𝑑 ≥ ℓ𝑚
𝑘+1. There are four possibilities:

𝑢𝑘+1 = 𝜆𝑘 + 𝑛ℓ 𝑛
𝑘+1 and 𝑐 ≥ ℓ 𝑛

𝑘+1; 𝑢𝑘+1 = 𝜆𝑘 + 𝑛ℓ 𝑛
𝑘+1 and 𝑑 ≥ ℓ𝑚

𝑘+1;

𝑢𝑘+1 = 𝜆𝑘 + 𝑚ℓ𝑚
𝑘+1 and 𝑐 ≥ ℓ 𝑛

𝑘+1; 𝑢𝑘+1 = 𝜆𝑘 + 𝑚ℓ𝑚
𝑘+1 and 𝑑 ≥ ℓ𝑚

𝑘+1.

The cases from the first line behave in a similar way as those in the second one, therefore, we
will only show what happens in the first two cases.

Case 𝑢𝑘+1 = 𝑢𝑛
𝑘+1 = 𝜆𝑘 + 𝑛ℓ 𝑛

𝑘+1 and 𝑐 ≥ ℓ 𝑛
𝑘+1. In this case we have that 𝜂 is reachable by 𝑥ℓ

𝑛
𝑘+1𝜔𝑘 .

If we show that 𝑥ℓ
𝑛
𝑘+1𝜔𝑘 is reachable by 𝜔𝑘+1, we contradict the maximality of 𝑘, as desired. By

Corollary 5.2.11, the 1-forms 𝜔𝑘+1 and 𝜔𝑘 are resonant and it is enough to show that

𝜈𝐷(𝑥ℓ
𝑛
𝑘+1𝜔𝑘) = 𝜈𝐷(𝜔𝑘+1).

We have that 𝜈𝐷(𝜔𝑘+1) = 𝑡𝑘+1 and 𝜈𝐷(𝑥ℓ
𝑛
𝑘+1𝜔𝑘) = 𝑡𝑘 +𝑛ℓ 𝑛

𝑘+1. Let us see that 𝑡𝑘+1 = 𝑡𝑘 +𝑛ℓ 𝑛
𝑘+1 in our

case. We have that 𝑡𝑛
𝑘+1 = 𝑡𝑘 + 𝑛ℓ 𝑛

𝑘+1. Moreover, the fact that 𝑢𝑘+1 = 𝑢𝑛
𝑘+1 implies that 𝑡𝑘+1 = 𝑡𝑛

𝑘+1,
as desired.

Case 𝑢𝑘+1 = 𝑢𝑛
𝑘+1 = 𝜆𝑘 + 𝑛ℓ 𝑛

𝑘+1 and 𝑑 ≥ ℓ𝑚
𝑘+1. By Lemma 3.6.1, we see that

𝑛𝑐 + 𝑚𝑑 + 𝜆𝑘 ≥ 𝜆𝑘 + 𝑚ℓ𝑚
𝑘+1 = 𝑢̃𝑘+1 ≥ 𝑢̃𝑖 > 𝑢∗

𝑖+1.

This ends the proof. □



5.3. Delorme’s Decomposition 91

Proof of Theorem 5.3.1. Let us take 𝜔 being such that 𝜈𝐷(𝜔) = 𝑡∗
𝑖+1 and 𝜈𝐶(𝜔) > 𝑢∗

𝑖+1 as in the
statement. We will consider three cases:

a) 𝑖 = 0; b) 𝑖 > 0, 𝑗 = 𝑖; c) 𝑖 > 0, 0 ≤ 𝑗 < 𝑖.

Case a): 𝑖 = 0. Since {𝜔−1 , 𝜔0} is a basis of Ω1
𝑀0 ,𝑃0

, the 1-form 𝜔 can be written as

𝜔 = 𝑓 00
−1𝜔−1 + 𝑓 00

0 𝜔0. (5.6)

Looking at the computations in Example 3.5.4, we see that 𝑡∗1 = 𝑢∗
1 ≤ 𝑛𝑚 and 𝑘∗0 = −1. Therefore,

we need to prove that 𝜈𝐶( 𝑓 00
−1𝜔−1) = 𝜈𝐶( 𝑓 00

0 𝜔0) = 𝑢∗
1.

Recall that, up to constant, we have that In(𝜔−1) = 𝑑𝑥 and In(𝜔0) = 𝑑𝑦. Then, one of the
following cases occurs:

(i) 𝜈𝐷( 𝑓 00
0 𝜔0) = 𝑡∗1 and 𝜈𝐷( 𝑓 00

−1𝜔−1) ≥ 𝑡∗1.
(ii) 𝜈𝐷( 𝑓 00

−1𝜔−1) = 𝑡∗1 and 𝜈𝐷( 𝑓 00
0 𝜔0) ≥ 𝑡∗1.

Assume that we are in case (i). Since 𝜈𝐷( 𝑓 00
0 ) + 𝜈𝐷(𝜔0) ≤ 𝑛𝑚, we have that

𝜈𝐷( 𝑓 00
0 ) < 𝑛𝑚.

This implies, by Proposition 2.3.14, that 𝜈𝐷( 𝑓 00
0 ) = 𝜈𝐶( 𝑓 00

0 ). Therefore, we can write

𝜈𝐶( 𝑓 00
0 𝜔0) = 𝜈𝐶( 𝑓 00

0 ) + 𝜈𝐶(𝜔0) = 𝜈𝐷( 𝑓 00
0 ) + 𝜈𝐷(𝜔0) = 𝜈𝐷( 𝑓 00

0 𝜔0) = 𝑡∗1 = 𝑢∗
1.

Moreover, since 𝜈𝐷( 𝑓 00
−1𝜔−1) ≥ 𝑡∗1 = 𝑢∗

1, we have that

𝜈𝐶( 𝑓 00
−1𝜔−1) ≥ 𝜈𝐷( 𝑓 00

−1𝜔−1) ≥ 𝑡∗1 = 𝑢∗
1.

Noting that 𝜈𝐶( 𝑓 00
−1𝜔−1 + 𝑓 00

0 𝜔0) > 𝑢∗
1 and that 𝜈𝐶( 𝑓 00

0 𝜔0) = 𝑢∗
1, we conclude that 𝜈𝐶( 𝑓 00

−1𝜔−1) =
𝜈𝐶( 𝑓 00

0 𝜔0) = 𝑢∗
1.

We do a similar argument in the case that 𝜈𝐷( 𝑓 00
−1𝜔−1) = 𝑡∗1.

Case b): 𝑖 > 0 and 𝑗 = 𝑖 . We do the proof in the case ∗ = 𝑛, the case ∗ = 𝑚 runs in a similar way.
Note that:

𝜈𝐷(𝜔) = 𝑡𝑛𝑖+1 < 𝑛𝑚, 𝜈𝐷(𝜔) = 𝑡𝑛𝑖+1 < 𝑢𝑛
𝑖+1 < 𝜈𝐶(𝜔),

in view of Corollary 3.6.2 and Corollary 3.2.9. We deduce that the 1-form 𝜔 is resonant. Since
𝜔𝑖 is also resonant and 𝑡𝑛

𝑖+1 = 𝑡𝑖 + 𝑛ℓ 𝑛
𝑖+1, we have that

𝜈𝐷(𝜔) = 𝜈𝐷(𝑥ℓ
𝑛
𝑖+1𝜔𝑖).

We deduce that there is a non-null scalar 𝜇 ≠ 0 such that

In(𝜔) = 𝜇 In(𝑥ℓ𝑛𝑖+1𝜔𝑖) = 𝜇𝑥ℓ
𝑛
𝑖+1 In(𝜔𝑖).

Thus, the 1-form 𝜂1 = 𝜔 − 𝜇𝑥ℓ
𝑛
𝑖+1𝜔𝑖 satisfies the following two properties:

𝜈𝐷(𝜂1) > 𝑡𝑛𝑖+1 , 𝜈𝐶(𝜂1) = 𝜈𝐶(𝑥ℓ
𝑛
𝑖+1𝜔𝑖) = 𝑢𝑛

𝑖+1.

The second one comes from the fact that 𝜈𝐶(𝜔) > 𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛

𝑖+1. Take the bound 𝑘 = 𝑘𝑛
𝑖

and the colimit 𝑏 = 𝑏𝑖+1. We recall that

𝑢𝑛
𝑖+1 = 𝜆𝑖 + 𝑛ℓ 𝑛𝑖+1 = 𝜆𝑘 + 𝑚𝑏.
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Hence, the 1-form 𝑦𝑏𝜔𝑘 satisfies that 𝜈𝐶(𝑦𝑏𝜔𝑘) = 𝑢𝑛
𝑖+1. On the other hand, the divisorial value

𝜈𝐷(𝑦𝑏𝜔𝑘) is given by
𝜈𝐷(𝑦𝑏𝜔𝑘) = 𝑚𝑏 + 𝑡𝑘 .

Let us show that 𝜈𝐷(𝑦𝑏𝜔𝑘) > 𝑡𝑛
𝑖+1 = 𝜈𝐷(𝜔). We have

𝑡𝑛𝑖+1 < 𝑚𝑏 + 𝑡𝑘 ⇔ 𝑡𝑖 + 𝑛ℓ 𝑛𝑖+1 < 𝑡𝑘 + 𝑚𝑏 ⇔
𝑡𝑖 − 𝑡𝑘 < 𝑚𝑏 − 𝑛ℓ 𝑛𝑖+1 = 𝑚𝑏 − 𝑛ℓ 𝑛𝑖+1 + 𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖+1 ⇔

𝑡𝑖 − 𝑡𝑘 < (𝑢𝑛
𝑖+1 − 𝑛ℓ 𝑛𝑖+1) − (𝑢𝑛

𝑖+1 − 𝑚𝑏) = 𝜆𝑖 − 𝜆𝑘 .

We conclude, since 𝑡𝑖 − 𝑡𝑘 < 𝜆𝑖 − 𝜆𝑘 in view of Lemma 3.2.8.
Take 𝜂2 = 𝜂1 − 𝜇+𝑦𝑏𝜔𝑘 such that 𝜈𝐶(𝜂2) > 𝑢𝑛

𝑖+1. Note that 𝜈𝐷(𝜂2) > 𝑡𝑛
𝑖+1. Applying Lemma

5.3.3, we get a decomposition

𝜂2 = 𝜔 − 𝜇𝑥ℓ
𝑛
𝑖+1𝜔𝑖 − 𝜇2𝑦

𝑏𝜔𝑘 =

𝑖∑
ℓ=−1

ℎℓ𝜔ℓ , 𝜈𝐶(ℎℓ𝜔ℓ ) > 𝑢𝑛
𝑖+1 , 𝜈𝐷(ℎℓ𝜔ℓ ) > 𝑡𝑛𝑖+1 ,

having the desired properties.
Case c): 𝑖 > 0, 0 ≤ 𝑗 < 𝑖. Let us reason by inverse induction on 𝑗, recalling that the case 𝑗 = 𝑖

has already been proven. By induction hypothesis, we can decompose 𝜔 as:

𝜔 =
∑𝑗+1

ℓ=−1 𝑓
𝑖 𝑗+1
ℓ

𝜔ℓ , (5.7)

where 𝑣∗
𝑖 𝑗+1 = 𝜈𝐶( 𝑓 𝑖 𝑗+1

𝑗+1 𝜔 𝑗+1) = min{𝜈𝐶( 𝑓 𝑖 𝑗+1
ℓ

𝜔ℓ );−1 ≤ ℓ < 𝑗 + 1}. Notice that in the Case b), we
have proven the case where 𝑗 + 1 = 𝑖. In view of Remark 5.3.2, we can apply Case b) to 𝜔 𝑗+1 to
obtain a decomposition:

𝜔 𝑗+1 =
∑𝑗

ℓ=−1 𝑓
𝑗 𝑗

ℓ
𝜔ℓ , (5.8)

where 𝑢𝑗+1 = 𝜈𝐶( 𝑓 𝑗 𝑗𝑗 𝜔 𝑗) = min{𝜈𝐶( 𝑓 𝑗 𝑗ℓ
𝜔ℓ ); ℓ < 𝑗}, and the minimum is only reached at the bound

𝑘 = 𝑘 𝑗+1. If we substitute the expression of 𝜔 𝑗+1 given in (5.8) into the expression of 𝜔 given in
(5.7), we obtain

𝜔 =
∑𝑗

ℓ=−1( 𝑓
𝑖 𝑗+1
ℓ

+ 𝑓
𝑖 𝑗+1
𝑗+1 𝑓

𝑗 𝑗

ℓ
)𝜔ℓ . (5.9)

Let us show that equation (5.9) gives the desired decomposition. In order to do this, we only
have to show that

i) 𝜈𝐶(( 𝑓 𝑖 𝑗+1
𝑗

+ 𝑓
𝑗 𝑗

𝑗
𝑓
𝑖 𝑗+1
𝑗+1 )𝜔 𝑗) = 𝜈𝐶(( 𝑓 𝑖 𝑗+1

𝑘
+ 𝑓

𝑗 𝑗

𝑘
𝑓
𝑖 𝑗+1
𝑗+1 )𝜔𝑘) = 𝑣∗

𝑖 𝑗
.

ii) 𝜈𝐶(( 𝑓 𝑖 𝑗+1
ℓ

+ 𝑓
𝑗 𝑗

ℓ
𝑓
𝑖 𝑗+1
𝑗+1 )𝜔ℓ ) > 𝑣∗

𝑖 𝑗
for ℓ ≠ 𝑗 , 𝑘.

Recall that 𝑣∗
𝑖 𝑗+1 = 𝜆 𝑗+1 + 𝑡∗

𝑖+1 − 𝑡 𝑗+1 and 𝑣∗
𝑖 𝑗
= 𝜆 𝑗 + 𝑡∗

𝑖+1 − 𝑡 𝑗 . Hence, by Lemma 3.2.8, we have that
𝑣∗
𝑖 𝑗
< 𝑣∗

𝑖 𝑗+1. Moreover, by the properties of the decomposition given in equation (5.7), we get that:

𝜈𝐶( 𝑓 𝑖 𝑗+1
𝑗+1 ) = 𝑣∗𝑖 𝑗+1 − 𝜆 𝑗+1; (5.10)

𝜈𝐶( 𝑓 𝑖 𝑗+1
ℓ

𝜔ℓ ) ≥ 𝑣∗𝑖 𝑗+1 > 𝑣∗𝑖 𝑗 , for ℓ < 𝑗 + 1. (5.11)

Using the expression given in (5.10) and the properties of the decomposition given in (5.8), it
follows that:

𝜈𝐶( 𝑓 𝑖 𝑗+1
𝑗+1 𝑓

𝑗 𝑗

ℓ
𝜔ℓ ) =𝜈𝐶( 𝑓 𝑖 𝑗+1

𝑗+1 ) + 𝜈𝐶( 𝑓 𝑗 𝑗ℓ
𝜔ℓ ) =

=𝑣∗𝑖 𝑗+1 − 𝜆 𝑗+1 + 𝜈𝐶( 𝑓 𝑗 𝑗ℓ
𝜔ℓ ) ≥

≥𝑣∗𝑖 𝑗+1 − 𝜆 𝑗+1 + 𝑢𝑗+1 ,
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where the last inequality is an equality just for ℓ = 𝑗 , 𝑘. Now, taking into account that
𝑢𝑗+1 = 𝜆 𝑗 + 𝑡 𝑗+1 − 𝑡 𝑗 and that 𝑣∗

𝑖 𝑗+1 = 𝑡∗
𝑖+1 + 𝜆 𝑗+1 − 𝑡 𝑗+1, we obtain that

𝑣∗𝑖 𝑗+1 − 𝜆 𝑗+1 + 𝑢𝑗+1 = 𝜆 𝑗 + 𝑡∗𝑖+1 − 𝑡 𝑗 = 𝑣∗𝑖 𝑗 .

Finally, since 𝜈𝐶( 𝑓 𝑖 𝑗+1
ℓ

𝜔ℓ ) > 𝑣∗
𝑖 𝑗

for ℓ < 𝑗 + 1, by expression (5.11), we get that

𝜈𝐶(( 𝑓 𝑖 𝑗+1
ℓ

+ 𝑓
𝑗 𝑗

ℓ
𝑓
𝑖 𝑗+1
𝑗+1 )𝜔ℓ ) ≥ 𝑣∗𝑖 𝑗 ,

where, again, we have an equality just for ℓ = 𝑗 , 𝑘. □

From the previous result we can deduce that a 1-form with divisorial value equal to 𝑡𝑛
𝑖+1

(resp. 𝑡𝑚
𝑖+1) and differential value greater than 𝑢𝑛

𝑖+1 (resp. 𝑢𝑚
𝑖+1) is basic and resonant.

Corollary 5.3.4. Consider 1 ≤ 𝑖 ≤ 𝑠 and let 𝜔 be a 1-form such that 𝜈𝐷(𝜔) = 𝑡∗
𝑖+1 and 𝜈𝐶(𝜔) > 𝑢∗

𝑖+1
with ∗ ∈ {𝑛, 𝑚}. For any decomposition

𝜔 =
∑𝑗

ℓ=−1 𝑓
𝑖 𝑗

ℓ
𝜔ℓ , 1 ≤ 𝑗 ≤ 𝑖.

satisfying the stated properties in Theorem 5.3.1, then we have that In(𝜔) = In( 𝑓 𝑖 𝑗
𝑗
𝜔 𝑗). In particular, 𝜔 is

basic and resonant.

Proof. We only need to show that 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) < 𝜈𝐷( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) for ℓ < 𝑗. We know that 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) ≤
𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) for ℓ < 𝑗. Besides, 𝜈𝐷(𝜔) = 𝑡∗

𝑖+1 < 𝑛𝑚 and hence 𝜔 is basic because 𝑖 ≥ 1. Therefore,
we have that 𝑛𝑚 > 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 ), and consequently, the divisorial value and the differential value

coincide 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 ) = 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 ). Furthermore:

𝜈𝐶( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) = 𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) + 𝜆ℓ ≥ 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) = 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 ) + 𝜆 𝑗 .

By Lemma 3.2.8, we have that 𝜆 𝑗 − 𝜆ℓ > 𝑡 𝑗 − 𝑡ℓ , thus

𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) + 𝑡ℓ > 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗) = 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 ) + 𝑡 𝑗 .

If 𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) > 𝑛𝑚, then 𝜈𝐷( 𝑓 𝑖 𝑗ℓ ) ≥ 𝑛𝑚, see Proposition 2.3.14. Hence, we have that

𝜈𝐷( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) > 𝑡∗𝑖+1 = 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗).

Indeed, if 𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) ≤ 𝑛𝑚, we get that 𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) = 𝜈𝐷( 𝑓 𝑖 𝑗ℓ ). With this, we conclude that

𝜈𝐷( 𝑓 𝑖 𝑗ℓ 𝜔ℓ ) = 𝜈𝐷( 𝑓 𝑖 𝑗ℓ ) + 𝑡ℓ = 𝜈𝐶( 𝑓 𝑖 𝑗ℓ ) + 𝑡ℓ > 𝜈𝐶( 𝑓 𝑖 𝑗𝑗 ) + 𝑡 𝑗 = 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 ) + 𝑡 𝑗 = 𝜈𝐷( 𝑓 𝑖 𝑗𝑗 𝜔 𝑗).

Finally, we see that 𝜔 is resonant, because 𝜈𝐶(𝜔) > 𝜈𝐷(𝜔) and Proposition 2.3.14. □

Now we describe the initial parts of 𝜔1 and 𝜔̃1.

Proposition 5.3.5. Let 𝜔 be a 1-form such that 𝜈𝐷(𝜔) = 𝑡∗1 and 𝜈𝐶(𝜔) > 𝑢∗
1. Let us write (in a unique

way)
𝜔 = 𝑓−1𝜔−1 + 𝑓0𝜔0.

Then, we have that

1. If 𝑡∗1 = 𝑡1, we have that In(𝜔) = 𝜇(𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦), where 𝜇 ≠ 0.
2. If 𝑡∗1 = 𝑡1, we have that In(𝜔) = 𝜇(In(𝑑𝑓 )), where 𝑓 = 0 is a reduced equation of the cusp 𝐶.
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In particular, we have that In(𝜔) = In( 𝑓−1𝜔−1) + In( 𝑓0𝜔0).

Proof. If 𝑡∗1 = 𝑡1, since 𝑡1 = 𝑛 + 𝑚, we see that In(𝜔) can be written as

In(𝜔) = 𝜇−1𝑦𝑑𝑥 − 𝜇0𝑥𝑑𝑦.

Moreover, we have that 𝑡1 = 𝑢1 = 𝑛 + 𝑚 and hence 𝜈𝐶(𝜔) > 𝜈𝐷(𝜔). The result follows by
Proposition 2.3.14, which asserts that 𝜔 is a resonant 1-form.

If 𝑡∗1 = 𝑡1 = 𝑛𝑚, we also have that 𝑢̃1 = 𝑛𝑚. The initial part In(𝜔) has the form

In(𝜔) = 𝜇−1𝑥
𝑚−1𝑑𝑥 + 𝜇0𝑦

𝑛−1𝑑𝑦.

If the initial part of 𝜔 is not a multiple of In( 𝑓 ), we get that 𝜈𝐶(𝜔) = 𝑛𝑚, which is a contradiction
with the hypothesis. □

5.4 Standard Bases from an Implicit Equation

This section is devoted to explain how to use Delorme’s algorithm without using a primitive
parametrization. The techniques from this section will be used when computing roots of the
Bernstein-Sato polynomial.

In this section we approach two questions. First, computing a differential value using
an implicit equation. Second, computing the tuning constants 𝜇+ needed in several steps of
Delorme’s algorithm. In fact, we can find a solution of both problems in [31] for the more general
case of the namely complete intersection curves. However, the approach used to find tuning
constants by means of resultants implies some computational problems. For this reason we
include our version here.

The first question has a well known solution. More precisely, denote by 𝒳𝑀0 ,𝑃0 the 𝒪𝑀0 ,𝑃0-
module of germs of vector field in (𝑀0 , 𝑃0). Take 𝐶 a branch defined by the implicit equation
𝑓 = 0. Consider 𝜔 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 a 1-form, we denote by 𝑋𝜔 ∈ 𝒳𝑀0 ,𝑃0 to the vector field

𝑋𝜔 := 𝐵 𝜕
𝜕𝑥 − 𝐴 𝜕

𝜕𝑦 .

Notice that the definition of 𝑋𝜔 depends on the chosen coordinate system. The following lemma
is a weaker version of the Proposition B.1 in [18]

Lemma 5.4.1 ([18] Proposition B.1). Let 𝐶 be a branch (not necessarily a cusp) defined by the implicit
equation 𝑓 = 0. Then we have that for any 1-form 𝜔 ∈ Ω1

𝑀0 ,𝑃0
:

𝜈𝐶(𝜔) = 𝑖𝑃0(𝑋𝜔( 𝑓 ), 𝑓 ) − 𝑐Γ + 1. (5.12)

In virtue of Proposition 4.1.5, we can obtain 𝑖𝑃0(𝑋𝜔( 𝑓 ), 𝑓 ) by computing a minimal standard
basis of the ideal (𝑋𝜔( 𝑓 ), 𝑓 ). This is done by means of an implicit equation, hence we can
compute the differential value 𝜈𝐶(𝜔) without using directly a parametrization.

Now assume that 𝐶 is a cusp with Puiseux pair (𝑛, 𝑚). Suppose that (𝑥, 𝑦) is a local system
of coordinates adapted to 𝐶 and take an implicit equation 𝑓 = 0 of 𝐶 as in Equation (1.9), that is,

𝑓 = 𝜇𝑥𝑚 + 𝑦𝑛 +
∑
𝛼,𝛽≥0

𝑛𝛼+𝑚𝛽>𝑛𝑚

𝑧𝛼𝛽𝑥
𝛼𝑦𝛽 , with 𝜇 ≠ 0 and 𝑧𝛼𝛽 ∈ C.

With this setting the computation of the tuning constants 𝜇+ relies on finding a minimal standard
basis of the ideal (𝑋𝜔( 𝑓 ), 𝑓 ). We want to remark that our procedure for computing tuning
constants only works in the cuspidal case. As in Example 4.1.1, we consider the weighted order
with respect to (𝑛, 𝑚), where we recall that (𝑎, 𝑏) ≺ (𝑐, 𝑑) if and only if either 𝑛𝑎 +𝑚𝑏 < 𝑛𝑐 +𝑚𝑑

or 𝑛𝑎 + 𝑚𝑏 = 𝑛𝑐 + 𝑚𝑑 and 𝑎 < 𝑐.
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Proposition 5.4.2. Consider a vector field 𝑋 ∈ 𝒳𝑀0 ,𝑃0 and the ideal 𝐼 = (𝑋( 𝑓 ), 𝑓 ), with the assumption
that 𝑓 ∤ 𝑋( 𝑓 ).

1. Suppose that 𝑙𝑝(𝑋( 𝑓 )) ≠ (0, 𝑛 − 1). Denote by ℎ a final reduction of 𝑋( 𝑓 ) modulo { 𝑓 }. Then:

a) If 𝑙𝑝(ℎ) = (𝑎, 0), then { 𝑓 , ℎ} is a minimal standard basis of 𝐼.
b) If 𝑙𝑝(ℎ) = (𝑎, 𝑏) with 𝑏 > 0, then { 𝑓 , ℎ, 𝑆𝑚𝑖𝑛( 𝑓 , ℎ)} is a minimal standard basis of 𝐼, where

𝑆𝑚𝑖𝑛( 𝑓 , ℎ) is a minimal 𝑆-process of 𝑓 and ℎ, where 𝑙𝑝(𝑆𝑚𝑖𝑛( 𝑓 , ℎ) = (𝑎 + 𝑚, 0).
2. Suppose that 𝑙𝑝(𝑋( 𝑓 )) = (0, 𝑛 − 1), and let 𝑔 be a final reduction of 𝑓 modulo {𝑋( 𝑓 )}. Then

{𝑋( 𝑓 ), 𝑔} is a minimal standard basis of 𝐼, where 𝑙𝑝(𝑔) = (𝑚, 0).

Notice that in the case 1.b), we are saying that 𝑆𝑚𝑖𝑛( 𝑓 , ℎ) is not reducible modulo { 𝑓 , ℎ}.

Proof. The proofs of the three statements are pretty similar; for this reason, we omit the one for
Statement 2. Assume, as in Statement 1, that 𝑙𝑝(𝑋( 𝑓 )) ≠ (0, 𝑛 − 1). We recall that we write 𝑓 as
in Equation (1.9).

𝑓 = 𝜇𝑥𝑚 + 𝑦𝑛 +
∑
𝛼,𝛽≥0

𝑛𝛼+𝑚𝛽>𝑛𝑚

𝑧𝛼𝛽𝑥
𝛼𝑦𝛽 , with 𝜇 ≠ 0 and 𝑧𝛼𝛽 ∈ C.

Thus, the condition 𝑙𝑝(𝑋( 𝑓 )) ≠ (0, 𝑛 − 1) is equivalent to 𝑙𝑝(𝑋( 𝑓 )) ≠ 𝑙𝑝( 𝑓𝑦). It follows that the
term 𝛼 𝜕

𝜕𝑦 with 𝛼 ∈ C of the vector field 𝑋 is zero. From the equation of 𝑓 , we deduce that there
are no monomials of the form 𝑥𝑦𝑘 with 𝑘 < 𝑛. Therefore, 𝑙𝑝(𝑋( 𝑓 )) ≠ (0, 𝑐) with 𝑐 < 𝑛.

To compute a minimal standard basis of the ideal 𝐼, we apply Büchberger’s algorithm. First,
we find a generator system 𝐵 = { 𝑓1 , 𝑓2} of 𝐼, such that neither 𝑓1 is reducible by 𝑓2, nor vice versa.
Next, we will compute the minimal 𝑆-process 𝑆𝑚𝑖𝑛( 𝑓1 , 𝑓2) and a final reduction modulo { 𝑓1 , 𝑓2}.
Finally, we iterate the process as many times as needed. In fact, we show that either { 𝑓1 , 𝑓2} is
the desired standard basis, or the algorithm finds one after the first iteration.

Since 𝑓 does not divide 𝑋( 𝑓 ), we know that 𝐼 ≠ ( 𝑓 ), meaning that we need at least two
generators for the minimal standard basis. Because 𝑙𝑝(𝑋( 𝑓 )) ≠ (0, 𝑐)with 𝑐 < 𝑛 and 𝑙𝑝( 𝑓 ) = (0, 𝑛),
if 𝑓 is reducible modulo {𝑋( 𝑓 )}, then 𝑙𝑝(𝑋( 𝑓 )) = (0, 𝑛), implying that 𝑋( 𝑓 ) is reducible modulo
{ 𝑓 }. Therefore, we set 𝑓1 = 𝑓 and 𝑓2 = ℎ, where ℎ is a final reduction of 𝑋( 𝑓 ) modulo { 𝑓 }.

Let the leading power of ℎ be 𝑙𝑝(ℎ) = (𝑎, 𝑏) with 𝑏 < 𝑛. Otherwise, ℎ − 𝜇′𝑥𝑎𝑦𝑛−𝑏 𝑓 would
give us a new reduction of ℎ for an appropriate constant 𝜇′, contradicting the fact that ℎ is a
final reduction of 𝑋( 𝑓 ) modulo { 𝑓 }.

We have to check that for the case 𝑏 = 0, the algorithm has found a standard basis, and hence
minimal, since neither 𝑓 nor ℎ can be omitted. On the contrary, if 𝑏 ≠ 0, we have to compute an
extra element. In both cases, we can write

𝑆1 = 𝑆𝑚𝑖𝑛( 𝑓 , ℎ) = 𝑥𝑎 𝑓 − 𝜇1𝑦
𝑛−𝑏ℎ,

where 𝜇1 is the unique constant such that 𝑙𝑝(𝑆1) ≻ 𝑙𝑝(𝑥𝑎 𝑓 ) = 𝑙𝑝(𝑦𝑛−𝑏ℎ).
We claim that the leading term of 𝑆1 is 𝑙𝑡(𝑆1) = 𝜇𝑥𝑎+𝑚 , where 𝜇 is the constant appearing in

the implicit equation 𝑓 . This is consequence of the following two facts: first, the Newton cloud
of ℎ has no points of the form (𝑐, 𝑑) with 𝑛𝑐 + 𝑚𝑑 = 𝑛𝑎 + 𝑚𝑏 and 𝑑 ≥ 𝑛. Otherwise, it would
follow that 𝑐 < 𝑎 and that 𝑙𝑝(ℎ) ≠ (𝑎, 𝑏). Second, the leading term of 𝑥𝑎 𝑓 − 𝑙𝑡(𝑥𝑎 𝑓 ) is 𝜇𝑥𝑎+𝑚 .
Since 𝑙𝑡(𝑆1) = 𝜇𝑥𝑎+𝑚 , then 𝑆1 does not admit any reduction modulo { 𝑓 , ℎ}, unless 𝑏 = 0.

Case 𝑏 = 0: for any partial reduction 𝑟 of 𝑆1, we have that

𝑙𝑝(𝑟) = (𝑐, 𝑑) ≻ 𝑙𝑝(𝑆1) = (𝑎 + 𝑚, 0) ≻ (𝑎, 𝑛) = 𝑙𝑝(𝑥𝑎 𝑓 ).

We have the following:
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• If 𝑑 ≥ 𝑛, then 𝑟 can be reduced modulo { 𝑓 }.
• If 𝑐 ≥ 𝑎, then 𝑟 can be reduced modulo {ℎ}.
• If 𝑐 < 𝑎 and 𝑑 < 𝑛, then we have that 𝑛𝑐 + 𝑚𝑑 < 𝑛𝑎 + 𝑚𝑛, in contradiction with the

assumption that (𝑐, 𝑑) ≻ (𝑎, 𝑛).

In conclusion, if 𝑏 = 0, then 𝑟 is reducible modulo { 𝑓 , ℎ}. Since 𝑟 is any partial reduction of 𝑆1

modulo { 𝑓 , ℎ}, it follows that 0 is a final reduction of 𝑆1 modulo { 𝑓 , ℎ}. Thus the Büchberger’s
algorithm stops and { 𝑓 , ℎ} is a minimal standard basis of 𝐼. This ends the proof of Statement
1.a).

Case 𝑏 ≠ 0: As we said before, since 𝑙𝑡(𝑆1) = 𝜇𝑥𝑎+𝑚 , we have that in this case 𝑆1 is its own
final reduction modulo { 𝑓 , ℎ}, in particular we have that 𝑙𝑝(𝑆1) = (𝑎+𝑚, 0) as desired. Therefore,
by the Büchberger’s algorithm, it is necessary to add 𝑆1 to our candidate of standard basis { 𝑓 , ℎ}.
We only need to verify that the algorithm stops here. In other words, we have to compute all
new possible minimal 𝑆-process and see that they have 0 as a final reduction modulo { 𝑓 , ℎ, 𝑆1}.

There are only two new minimal 𝑆-process to consider:

𝑆2 = 𝑆𝑚𝑖𝑛( 𝑓 , 𝑆1) = 𝑥𝑎+𝑚 𝑓 − 𝜇2𝑦
𝑛𝑆1

𝑆3 = 𝑆𝑚𝑖𝑛(ℎ, 𝑆1) = 𝑥𝑚ℎ − 𝜇3𝑦
𝑏𝑆1.

Here 𝜇2 and 𝜇3 are the unique constants such that 𝑙𝑝(𝑆2) ≻ 𝑙𝑝(𝑥𝑎+𝑚 𝑓 ) = (𝑎 + 𝑚, 𝑛) and
𝑙𝑝(𝑆3) ≻ (𝑥𝑚ℎ) = (𝑎 + 𝑚, 𝑏). In order to show that their final reductions modulo { 𝑓 , ℎ, 𝑆1} are
zero, it suffices to show that any pair (𝑐, 𝑑) ≻ (𝑎 + 𝑚, 𝑏) is divisible by (0, 𝑛), (𝑎, 𝑏) or (𝑎 + 𝑚, 0),
that is, the leading powers of 𝑓 , ℎ and 𝑆1.

We have that 𝑛𝑐 + 𝑚𝑑 ≥ 𝑛(𝑎 + 𝑚) + 𝑚𝑏, hence

• If 0 ≤ 𝑐 ≤ 𝑎, then 𝑑 ≥ 𝑛 + 𝑏 > 𝑛 and (0, 𝑛) divides (𝑐, 𝑑).
• If 𝑎 < 𝑐 < 𝑚 + 𝑎, then 𝑑 > 𝑏 and (𝑎, 𝑏) divides (𝑐, 𝑑).
• If 𝑐 ≥ 𝑎 + 𝑚, then (𝑎 + 𝑚, 0) divides (𝑐, 𝑑).

Hence the final reductions of 𝑆2 and 𝑆3 modulo { 𝑓 , ℎ, 𝑆1} are 0, ending the proof of Statement
1.b). □

The previous result can be used to particularize Lemma 5.4.1.

Proposition 5.4.3. Take a 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

such that 𝑓 ∤ 𝑋𝜔( 𝑓 ). Put ℎ ∈ 𝒪𝑀0 ,𝑃0 a final reduction of
𝑋𝜔( 𝑓 ) modulo { 𝑓 }, with leading power 𝑙𝑝(ℎ) = (𝑎, 𝑏). Then we have that

𝜈𝐶(𝜔) = 𝑛(𝑎 + 1) + 𝑚(𝑏 + 1) − 𝑛𝑚.

Proof. By Lemma 5.4.1 we have that

𝜈𝐶(𝜔) = 𝑖𝑃0(𝑋𝜔( 𝑓 ), 𝑓 ) − 𝑐Γ + 1.

By Proposition 5.4.2, we can determine the set of leading powers of a minimal standard basis of
the ideal (𝑋𝜔( 𝑓 ), 𝑓 ). By direct application of Proposition 4.1.5, we find that

𝑖𝑃0(𝑋𝜔( 𝑓 ), 𝑓 ) = 𝑛𝑎 + 𝑚𝑏.

The last equality combined with fact that 𝑐Γ = (𝑛 − 1)(𝑚 − 1) give us the desired result.
□
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Remark 5.4.4. Proposition 5.4.3 solves the problem of computing the tuning constants 𝜇+ in the
case we are interested in. Suppose that 𝜂1 , 𝜂2 ∈ Ω1

𝑀0 ,𝑃0
are two 1-forms with 𝜈𝐶(𝜂1) = 𝜈𝐶(𝜂2) < ∞.

Let us see how to compute the tuning constant of the 1-form 𝜂1 + 𝜇+𝜂2. First, consider ℎ1

and ℎ2 final reductions of 𝑋𝜂1( 𝑓 ) and 𝑋𝜂2( 𝑓 ) modulo { 𝑓 } respectively. Put 𝑙𝑝(ℎ1) = (𝑎, 𝑏) and
𝑙𝑝(ℎ2) = (𝑐, 𝑑) the leading powers, where 𝑏, 𝑑 < 𝑛. By Proposition 5.4.3, we have that

𝑛(𝑎 + 1) + 𝑚(𝑏 + 1) − 𝑛𝑚 = 𝜈𝐶(𝜂1) = 𝜈𝐶(𝜂2) = 𝑛(𝑐 + 1) + 𝑚(𝑑 + 1) − 𝑛𝑚.

The conditions 0 ≤ 𝑏, 𝑑 < 𝑛 imply that (𝑎, 𝑏) = (𝑐, 𝑑). The previous equalities can be translated
to leading terms as

𝑙𝑡(ℎ1) = 𝜇1𝑥
𝑎𝑦𝑏 ; 𝑙𝑡(ℎ2) = 𝜇2𝑥

𝑎𝑦𝑏 .

Here 𝜇1 and 𝜇2 are non zero constants. If we put 𝜇+ = −𝜇1/𝜇2 as the tuning constant, we observe
the following: the leading power 𝑙𝑝(ℎ1 + 𝜇+ℎ2) ≻ 𝑙𝑝(ℎ1), 𝑙𝑝(ℎ2). Since ℎ1 + 𝜇+ℎ2 is, at least, a
partial reduction of 𝑋𝜂1+𝜇+𝜂2( 𝑓 ), by Propositions 5.4.3, we verify that 𝜈𝐶(𝜂1+𝜇+𝜂2) > 𝜈𝐶(𝜂1), 𝜈𝐶(𝜂).

Since we know how to compute differential values and tuning constants, we can apply
Delorme’s algorithm without a parametrization.

To end this chapter, we show how a minimal standard basis of the module of differentials is
related with a minimal standard basis of the extended jacobian ideal of 𝐶, when considering the
weighted monomial order with respect (𝑛, 𝑚). We recall that the extended jacobian ideal of 𝑓 is
𝒥 ( 𝑓 ) = ( 𝑓 , 𝑓𝑥 , 𝑓𝑦), where 𝑓𝑥 , 𝑓𝑦 are the partial derivatives of 𝑓 with respect 𝑥 and 𝑦 respectively.

In [9], it is given a description of minimal standard basis of the extended jacobian ideal,
when 𝑓 is generic. Besides, according to [48], if we have a minimal standard basis of 𝒥 ( 𝑓 ), then
we can obtain the semimodule of differential values of 𝐶. Moreover, in [16], standard bases of
( 𝑓 ) are used to find a similar result to Theorem 1.5.2 when dealing with the implicit equation of
a cusp.

Theorem 5.4.5. Assume that 𝐶 is a cusp with a Puiseux pair (𝑛, 𝑚) and let 𝑓 ∈ 𝒪𝑀0 ,𝑃0 be an implicit
equation of 𝐶. Suppose also, that the local system of coordinates (𝑥, 𝑦) is adapted with respect 𝐶. Denote
by (𝜆−1 ,𝜆0 , . . . ,𝜆𝑠) the basis of the semimodule of differential values Λ𝐶 of 𝐶 and take (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠)
a minimal standard basis of the module of differentials of 𝐶. For 𝑖 = −1, 0, 1, . . . , 𝑠, let ℎ𝑖 ∈ 𝒪𝑀0 ,𝑃0 be a
final reduction of 𝑋𝜔𝑖 ( 𝑓 ) modulo { 𝑓 }, then

𝐵 = {ℎ−1 , ℎ0 , . . . , ℎ𝑠}

is a minimal standard basis of 𝒥 ( 𝑓 ) with respect the weighted order with respect (𝑛, 𝑚).

Proof. Put
𝑓 = 𝜇𝑥𝑚 + 𝑦𝑛 +

∑
𝛼,𝛽≥0

𝑛𝛼+𝑚𝛽>𝑛𝑚

𝑧𝛼𝛽𝑥
𝛼𝑦𝛽 , with 𝜇 ≠ 0 and 𝑧𝛼𝛽 ∈ C.

It is enough to show the following three statements:

1. 𝐵 is a generator system of the ideal 𝒥 ( 𝑓 ).
2. Given 𝑔 ∈ 𝒥 ( 𝑓 ), there exists at least one element 𝑏 ∈ 𝐵, such that 𝑙𝑝(𝑏) divides 𝑙𝑝(𝑔).
3. Given ℎ𝑖 , ℎ 𝑗 ∈ 𝐵 with ℎ𝑖 ≠ ℎ 𝑗 , then the leading powers satisfy that 𝑙𝑝(ℎ𝑖) ∤ 𝑙𝑝(ℎ 𝑗).

Statement 1: We need to show that the ideal generated by 𝐵 coincides with 𝒥 ( 𝑓 ). Given
𝜔 ∈ Ω1

𝑀0 ,𝑃0
, by definition we have that any final reduction of 𝑋𝜔( 𝑓 ) is an element of 𝒥 ( 𝑓 ).

Therefore, we only need to show that 𝑓𝑥 , 𝑓𝑦 and 𝑓 belong to the ideal (𝐵).
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By Remark 5.2.2, the pair {𝜔−1 , 𝜔0} is a basis of the 𝒪𝑀0 ,𝑃0-module Ω1
𝑀0 ,𝑃0

. Hence, we can
write the 1-form 𝑑𝑥 as

𝑑𝑥 = 𝑔−1𝜔−1 + 𝑔0𝜔0 with 𝑔−1 , 𝑔0 ∈ 𝒪𝑀0 ,𝑃0 . (5.13)

Besides, we also have that 𝜈𝐶(𝜔−1) = 𝑛 and 𝜈𝐶(𝜔0) = 𝑚, thus by Equation (5.12), we see that
𝑖𝑃0(𝑋𝜔−1( 𝑓 ), 𝑓 ) = 𝑛𝑚−𝑚 and 𝑖𝑃0(𝑋𝜔0( 𝑓 ), 𝑓 ) = 𝑛𝑚−𝑛. Therefore, by Proposition 5.4.3, the leading
powers of ℎ−1 and ℎ0 are 𝑙𝑝(ℎ−1) = (0, 𝑛 − 1) and 𝑙𝑝(ℎ0) = (𝑚 − 1, 0). Since both leading powers
are smaller than (0, 𝑛), that is, (0, 𝑛−1), (𝑚−1, 0) ≺ (0, 𝑛), then the only possibility is that 𝑋𝜔−1( 𝑓 )
and 𝑋𝜔0( 𝑓 ) are not reducible modulo { 𝑓 }. In particular, 𝑙𝑝(𝑋𝜔−1( 𝑓 )) = 𝑙𝑝(ℎ−1) = (0, 𝑛 − 1) and
𝑙𝑝(𝑋𝜔0( 𝑓 )) = 𝑙𝑝(ℎ0) = (𝑚 − 1, 0). These last equalities imply that 𝑋𝜔−1( 𝑓 ) = ℎ−1 and 𝑋𝜔0( 𝑓 ) = ℎ0.
Thus, by Equation (5.13)

− 𝑓𝑦 = 𝑋𝑑𝑥( 𝑓 ) = 𝑔−1ℎ−1 + 𝑔0ℎ0.

This shows that 𝑓𝑦 ∈ (𝐵). In the same way, we find that 𝑓𝑥 ∈ (𝐵). We only need to prove that
𝑓 ∈ (𝐵). Since, we already know that 𝑓𝑥 , 𝑓𝑦 ∈ (𝐵), it is equivalent to show that

𝑓 −
(

1
𝑚
𝑥 𝑓𝑥 +

1
𝑛
𝑦 𝑓𝑦

)
=

∑
𝛼,𝛽≥0

𝑛𝛼+𝑚𝛽>𝑛𝑚

𝑛𝑚−𝑛𝛼−𝑚𝛽
𝑛𝑚 𝑧𝛼𝛽𝑥

𝛼𝑦𝛽 ∈ (𝐵).

We are going to define a sequence of functions 𝑓ℓ , 𝑔ℓ for ℓ ≥ 1 satisfying the following two
conditions:

• 𝑓ℓ = 𝑓 − 𝑔ℓ , with 𝑔ℓ ∈ (𝐵).
• 𝑔ℓ = 𝑋𝜂ℓ ( 𝑓 ) − 𝑝 𝑓 , for some 𝜂ℓ ∈ Ω1

𝑀0 ,𝑃0
and 𝑝 ∈ 𝒪𝑀0 ,𝑃0 .

The functions 𝑓ℓ and 𝑔ℓ will show that 𝑓 ∈ (𝐵). We construct them in an iterative way. We start
with 𝑔1 =

( 1
𝑚 𝑥 𝑓𝑥 + 1

𝑛 𝑦 𝑓𝑦
)

and 𝜂1 = 1
𝑚 𝑥𝑑𝑦 − 1

𝑛 𝑦𝑑𝑥, that is, 𝑓1 = 𝑓 − 𝑔1.
Now assume that we have constructed 𝑓ℓ and 𝑔ℓ as desired. Then there are three cases:

a) 𝑓ℓ = 0.
b) 𝑙𝑝( 𝑓ℓ ) is not divisible by the leading power of any element of 𝐵.
c) 𝑙𝑝( 𝑓ℓ ) is divisible by the leading power of some element of 𝐵.

Case a): the proof of the statement is over since we can write 𝑓 = 𝑔ℓ ∈ (𝐵).

Case b): write 𝑙𝑝( 𝑓ℓ ) = (𝛼, 𝛽), which by assumption is not divisible by any leading power of
any element of 𝐵. In particular, (𝛼, 𝛽) is not divisible by 𝑙𝑝(ℎ−1) = (0, 𝑛 − 1). Hence, (𝛼, 𝛽) is not
divisible by (0, 𝑛). This means that − 𝑓ℓ is a final reduction of 𝑋𝜂ℓ ( 𝑓 ) modulo { 𝑓 }. Therefore, by
Proposition 5.4.3, we obtain that 𝜈𝐶(𝜂ℓ ) = 𝜆 = 𝑛(𝛼 + 1) + 𝑚(𝛽 + 1) − 𝑛𝑚. Since 𝜆 is a differential
value, we have that 𝜆 = 𝜆𝑖 + 𝑛𝑝 + 𝑚𝑞 for some −1 ≤ 𝑖 ≤ 𝑠 and 𝑝, 𝑞 ≥ 0.

Set (𝑐𝑖 , 𝑑𝑖) = 𝑙𝑝(ℎ𝑖), this means that 𝜆𝑖 = 𝑛(𝑐𝑖 + 1) + 𝑚(𝑑𝑖 + 1) − 𝑛𝑚. Thus, we find that
𝑛𝛼 + 𝑚𝛽 = 𝑛(𝑐𝑖 + 𝑝) + 𝑚(𝑑𝑖 + 𝑞). Therefore,

𝛼 = 𝑐𝑖 + 𝑝 − 𝑘𝑚; 𝛽 = 𝑑𝑖 + 𝑞 + 𝑘𝑛; 𝑘 ∈ Z.

If 𝑘 > 0, then 𝛽 > 𝑛 and (𝛼, 𝛽) is divisible by (0, 𝑛 − 1) = 𝑙𝑝(ℎ−1) which is a contradiction. If
𝑘 < 0, then (𝛼, 𝛽) is divisible by (𝑚 − 1, 0) = 𝑙𝑝(ℎ0) again a contradiction. Finally, if 𝑘 = 0, then
(𝛼, 𝛽) = (𝑐𝑖 + 𝑝, 𝑑𝑖 + 𝑞) and (𝛼, 𝛽) is divisible by (𝑐𝑖 , 𝑑𝑖) which is another contradiction. Thus,
Case b) cannot happen.

Case c): in this case we construct the functions 𝑓ℓ+1 and 𝑔ℓ+1. Again, set (𝛼, 𝛽) = 𝑙𝑝( 𝑓ℓ ) and
consider (𝑐𝑖 , 𝑑𝑖) = 𝑙𝑝(ℎ𝑖), such that (𝛼, 𝛽) is divisible by (𝑐𝑖 , 𝑑𝑖). Then, we write

𝜂ℓ+1 = 𝜂ℓ + 𝜇𝑥𝛼−𝑐𝑖 𝑦𝛽−𝑑𝑖𝜔𝑖 ,
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where 𝜇 is the unique constant such that the function

𝑔ℓ+1 = 𝑔ℓ + 𝜇𝑥𝛼−𝑐𝑖 𝑦𝛽−𝑑𝑖 ℎ𝑖 ,

satisfies that 𝑙𝑝( 𝑓 − 𝑔ℓ+1) > 𝑙𝑝( 𝑓 − 𝑔ℓ ).
By hypothesis on 𝑔ℓ , we can write 𝑔ℓ = 𝑋𝜂ℓ ( 𝑓 ) − 𝑝′ 𝑓 with 𝑝′ ∈ 𝒪𝑀0 ,𝑃0 . Additionally, ℎ𝑖 is a

final reduction of 𝑋𝜔𝑖 ( 𝑓 ) modulo { 𝑓 }, we have that

𝜇𝑥𝛼−𝑐𝑖 𝑦𝛽−𝑑𝑖 ℎ𝑖 = 𝑋𝜇𝑥𝛼−𝑐𝑖 𝑦𝛽−𝑑𝑖𝜔𝑖
( 𝑓 ) − 𝑝′′ 𝑓 , 𝑝′′ ∈ 𝒪𝑀0 ,𝑃0 .

Thus, if we write 𝑝 = 𝑝′ + 𝑝′′, we get that 𝑔ℓ+1 = 𝑋𝜂ℓ+1( 𝑓 ) − 𝑝 𝑓 . Finally, we put 𝑓ℓ+1 = 𝑓 − 𝑔ℓ+1

and we restart the process.
This entire procedure shows that a final reduction of 𝑓1 modulo 𝐵 is 0, implying that 𝑓1 ∈ (𝐵),

in particular, we find that 𝑓 ∈ (𝐵). This concludes the proof of Statement 1.

Statement 2: Take 𝑔 ∈ 𝒥 ( 𝑓 ) such that 𝑙𝑝(𝑔) = (𝛼, 𝛽) is not divisible by any leading power of
any element of 𝐵. By Statement 1, we can write

𝑔 =

𝑠∑
𝑖=−1

𝑔𝑖ℎ𝑖 ,

for some functions 𝑔𝑖 with 𝑖 = −1, 0, . . . , 𝑠. We consider the 1-form 𝜔 =
∑𝑠

𝑖=−1 𝑔𝑖𝜔𝑖 . As in
Statement 1, the assumption of non divisibility implies, in particular, that (𝛼, 𝛽) is not divisible
by (0, 𝑛 − 1) = 𝑙𝑝(ℎ−1). Hence, 𝑙𝑝(𝑔) is not divisible by (0, 𝑛) and 𝑔 is a final reduction of 𝑋𝜔( 𝑓 ).

By Proposition 5.4.3, 𝜈𝐶(𝜔) = 𝜆 = 𝑛(𝛼 + 1) + 𝑚(𝛽 + 1) − 𝑛𝑚. Repeating exactly the same
arguments that in Case b) from Statement 1, we find a contradiction with the assumption that
(𝛼, 𝛽) is not divisible by any leading power of the elements of 𝐵.

Statement 3: Consider ℎ𝑖 , ℎ 𝑗 ∈ 𝐵, with 𝑖 ≠ 𝑗. Assume that (𝑐 𝑗 , 𝑑𝑗) = 𝑙𝑝(ℎ 𝑗) is divisible by
𝑙𝑝(ℎ𝑖) = (𝑐𝑖 , 𝑑𝑖). Since ℎ𝑖 , ℎ 𝑗 are, respectively, final reductions of 𝑋𝜔𝑖 ( 𝑓 ) and 𝑋𝜔𝑗 ( 𝑓 ) modulo { 𝑓 },
then by Proposition 5.4.3, we have that

𝜈𝐶(𝜔𝑖) = 𝜆𝑖 = 𝑛(𝑐𝑖 + 1) + 𝑚(𝑑𝑖 + 1) − 𝑛𝑚

𝜈𝐶(𝜔 𝑗) = 𝜆 𝑗 = 𝑛(𝑐 𝑗 + 1) + 𝑚(𝑑 𝑗 + 1) − 𝑛𝑚

Since (𝑐𝑖 , 𝑑𝑖) | (𝑐 𝑗 , 𝑑𝑗), we have that 𝑐 𝑗 − 𝑐𝑖 ≥ 0 and 𝑑 𝑗 − 𝑑𝑖 ≥ 0. Therefore, 𝜆 𝑗 − 𝜆𝑖 = 𝑛(𝑐 𝑗 − 𝑐𝑖) +
𝑚(𝑑𝑖 − 𝑑 𝑗) ∈ Γ𝐶 . This contradicts the fact that 𝜆𝑖 and 𝜆 𝑗 are two different elements of the basis of
Λ𝐶 . □

We give an example of application of the previous theorem.

Example 5.4.6. As in Example 5.2.13, we take the cusp 𝐶 defined by the primitive parametrization

𝜙(𝑡) = (𝑡5 , 𝑡11 + 𝑡12 + 7𝑡13) = (𝑥(𝑡), 𝑦(𝑡)).

We showed that ℬ = (5, 11, 17, 23, 29) is the basis of the semimodule Λ𝐶 of differential values.
We are going to check this by using an implicit equation. Take a minimal standard basis
(𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) of the module of differentials of 𝐶. As in Theorem 5.4.5, we denote by ℎ𝑖 a final
reduction of 𝑋𝜔𝑖 ( 𝑓 ) modulo { 𝑓 }, for 𝑖 = −1, 0, . . . , 𝑠, where 𝑓 stands for an implicit equation of
𝐶.

By Proposition 5.4.3, in order to compute the basis of the semimodule of differential values
of 𝐶, we only need to know the pairs 𝑙𝑝(ℎ𝑖). Since the set {ℎ−1 , ℎ0 , . . . , ℎ𝑠} is a minimal standard
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basis of the extended jacobian ideal 𝒥 ( 𝑓 ) of 𝐶, we do not need to compute the 1-forms to obtain
the basis of semimodule. More precisely, it is enough to obtain any minimal standard basis of
𝒥 ( 𝑓 ), recall that by Remark 4.1.6, the set of leading powers does not depend on the minimal
standard basis chosen.

Since we do not want to compute the basis of Λ𝐶 with a parametrization, we need to obtain
an implicit equation of 𝐶. We can compute one by means of Equation (1.1). An easier option, in
terms of complexity, is to compute the resultant of the polynomials (𝑥 − 𝑥(𝑡)) and (𝑦 − 𝑦(𝑡)) with
respect to the variable 𝑡, as explained in Section 1.2. This time we relay on SageMath to do the
computations, included those about the computation of the basis (see [54]). We proceed to give,
and explain, the commands used.

We first define the polynomial ring in three variables 𝑥, 𝑦, 𝑡 with coefficients in the algebraic
closure ofQ. We recommend not to use the field of complex numbers, since they have a numerical
precision and this could induce some errors on the computations.

R.<x,y,t> = PolynomialRing(QQbar, 3)

We define the parametrization of the branch.
u = tˆ5

v = tˆ11 + tˆ12 + 7*tˆ13

We compute an implicit equation of the branch by using the resultant method mentioned
above.
f = (x - u).resultant(y - v, t)

We obtain as a result:
16807*xˆ13 + 211*xˆ12 + xˆ11 + 1470*xˆ10*y + 5*xˆ9*y + 40*xˆ7*yˆ2

+ 35*xˆ5*yˆ3 - yˆ5

We can check that
f(u,v,t)=0.
Now, we consider a new polynomial ring in two variables 𝑥, 𝑦 with the desired monomomial

order given by the pair (5, 11).
M.<x,y>= PolynomialRing(QQbar,2,order=TermOrder(’negwdeglex’,(5,11)))

Since we have changed the ring, we have to redefine f to be an element in M. This is done just
by rewriting:
f = 16807*xˆ13 + 211*xˆ12 + xˆ11 + 1470*xˆ10*y + 5*xˆ9*y + 40*xˆ7*yˆ2 + 35*xˆ5*yˆ3

- yˆ5

Next, we define our ideal:
fx = f.derivative(x)

fy = f.derivative(y)

I = ideal(fx, fy, f)

We compute a standard basis of I.
B = I.groebner_basis()

By Proposition 5.4.3, the basis of the semimodule of differential values is given by:
conductor = (5-1)*(11-1)

results = [b.lt().degree() - conductor + 1 for b in B]

We check that the array results returns the desired basis of the semimodule of differential
values Λ𝐶 .
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Standard Systems

In the cuspidal case, we can enlarge the concept of minimal standard basis of the module
of differentials. This way we can include extra 1-forms whose role will be prominent when
describing Saito bases in Chapter 8. Up to this point we have mainly focus on the critical values
𝑡𝑖 ; in contrast, standard systems include also information coming from the critical values 𝑡𝑖 for
1 ≤ 𝑖 ≤ 𝑠 + 1.

This chapter is devoted to give the definition of standard systems and to show their existence.
Fix 𝐶 a cusp with Puiseux pair (𝑛, 𝑚) and cuspidal divisor 𝐷. We say that a sequence of

1-forms ℰ = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠 , 𝜔𝑠+1) is an extended standard basis of 𝐶, if 𝒮 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠) is
a minimal standard basis of 𝐶 and 𝜔𝑠+1 satisfies the following two conditions:

1. 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1.
2. 𝜈𝐶(𝜔𝑠+1) = ∞, that is, 𝐶 is invariant by 𝜔𝑠+1 (see Lemma 2.1.1).

Definition 6.1. A standard system (ℰ, ℰ̃) for the cusp 𝐶 is the data of an extended standard basis
ℰ = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1) and a family ℰ̃ = (𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1) of 1-forms satisfying that

𝜈𝐷(𝜔̃ 𝑗) = 𝑡 𝑗 , 𝜈𝐶(𝜔̃ 𝑗) = ∞, 1 ≤ 𝑗 ≤ 𝑠 + 1.

We say that a standard system (ℰ, ℰ̃) for 𝐶 is a special standard system if there are expressions
𝜔̃ 𝑗 = ℎ 𝑗𝜔𝑠+1 + 𝑓𝑗 𝜔̃𝑠+1, where ℎ 𝑗 , 𝑓𝑗 ∈ 𝒪𝑀0 ,𝑃0 for any 1 ≤ 𝑗 ≤ 𝑠.

The inclusion of the notion of special standard system is just a formalism. Indeed, by the
already mentioned Theorem 8.2, all standard systems are special.

Note that the 1-forms 𝜔𝑖 and 𝜔̃𝑖 , except 𝜔−1 , 𝜔0 and 𝜔̃1 are basic and resonant, see Corollary
3.6.2 and Proposition 2.3.14. Thus, by Proposition 2.5.1, they are totally 𝐷-dicritical.

Remark 6.2. We introduce the notion of extended standard basis separated from the one of
standard system because the 1-forms in ℰ̃ do not share some of the properties that have the
1-forms in ℰ. We will explain this in more detail in Chapter 7.

In the next propositions, we saw the existence of standard systems. The proof of both
propositions is very similar, however, we prefer this split presentation.

Proposition 6.3. Let 𝐶 be a cusp and Λ𝐶 its semimodule of differential values, with basis ℬ =

(𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠). Assume that 𝑠 ≥ 1. There are two 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1 having 𝐶 as an invariant
curve such that 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1.

101
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Proof. Let us select a minimal standard basis 𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠) of the cusp 𝐶. As we have
already done, let us denote by ∗ a chosen element ∗ ∈ {𝑛, 𝑚}. We have to find 𝜔∗

𝑠+1 ∈ Ω1
𝑀0 ,𝑃0

[𝐶]
such that 𝜈𝐷(𝜔∗

𝑠+1) = 𝑡∗
𝑠+1.

We do the detailed proof for ∗ = 𝑛. The case ∗ = 𝑚 runs in a similar way. Then, we have to
find 𝜔𝑛

𝑠+1 ∈ Ω1
𝑀0 ,𝑃0

[𝐶] such that 𝜈𝐷(𝜔𝑛
𝑠+1) = 𝑡𝑛

𝑠+1.
Let us recall that 𝑢𝑛

𝑠+1 = 𝜆𝑠 + 𝑛ℓ = 𝜆𝑘 + 𝑚𝑏, where we denote ℓ = ℓ 𝑛
𝑠+1, 𝑘 = 𝑘𝑛𝑠 and 𝑏 = 𝑏𝑠+1,

the limits, bounds and colimits, see Lemma 3.5.1. Recall that 𝑘 < 𝑠. Consider the 1-forms

𝜂0 = 𝑥ℓ𝜔𝑠 , 𝜂1 = 𝑦𝑏𝜔𝑘 .

Note that 𝜈𝐷(𝜂0) = 𝑡𝑛
𝑠+1 = 𝑡𝑠 + 𝑛ℓ and 𝜈𝐷(𝜂1) > 𝑡𝑛

𝑠+1. Since we have

𝜈𝐷(𝜂1) = 𝑚𝑏 + 𝑡𝑘 > 𝜈𝐷(𝜂0) = 𝑡𝑠 + 𝑛ℓ ⇔
𝑡𝑠 − 𝑡𝑘 < 𝑚𝑏 − 𝑛ℓ = (𝑢𝑛

𝑠+1 − 𝜆𝑘) − (𝑢𝑛
𝑠+1 − 𝜆𝑠) = 𝜆𝑠 − 𝜆𝑘

and 𝜆𝑠 − 𝜆𝑘 > 𝑡𝑠 − 𝑡𝑘 follows by Lemma 3.2.8. Moreover, the differential values coincide

𝜈𝐶(𝜂0) = 𝜈𝐶(𝜂1) = 𝑢𝑛
𝑠+1.

Thus, we write 𝜃1 = 𝜂0 + 𝜇+𝜂1, where 𝜇+ is the tuning constant. We get that

𝜈𝐷(𝜃1) = 𝑡𝑛𝑠+1 , 𝜈𝐶(𝜃1) > 𝜈𝐶(𝜂0) = 𝜈𝐶(𝜂1) = 𝑢𝑛
𝑠+1.

We consider three cases:

a) 𝜈𝐶(𝜃1) = ∞. Then we end by taking 𝜔𝑛
𝑠+1 = 𝜃1.

b) 𝜈𝐶(𝜃1) ≥ 𝑛𝑚.
c) 𝜈𝐶(𝜃1) < 𝑛𝑚.

𝐶𝑎𝑠𝑒 b): let 𝜙(𝑡) be a primitive parametrization of 𝐶. We have that 𝜙∗(𝜃1) = 𝜓(𝑡)𝑑𝑡, with
ord𝑡(𝜓(𝑡)) ≥ 𝑛𝑚 − 1 > 𝑐Γ. In view of Lemma 1.4.3, there is a function ℎ(𝑥, 𝑦) such that
𝜙∗(𝑑ℎ) = 𝜓(𝑡)𝑑𝑡. If we take 𝜔𝑛

𝑠+1 = 𝜃1 − 𝑑ℎ, we have that 𝜈𝐶(𝜔𝑛
𝑠+1) = ∞. In order to finish, we

have to see that 𝜈𝐷(𝑑ℎ) > 𝑡𝑛
𝑠+1. Since 𝑡𝑛

𝑠+1 < 𝑡1 = 𝑛𝑚 (see Lemma 3.6.1), we just need to see
that 𝜈𝐷(𝑑ℎ) ≥ 𝑛𝑚. By Proposition 2.3.14, if 𝜈𝐷(𝑑ℎ) < 𝑛𝑚, we obtain that 𝜈𝐶(𝑑ℎ) = 𝜈𝐷(𝑑ℎ), in
contradiction with the fact that 𝜈𝐶(𝑑ℎ) ≥ 𝑛𝑚. Thus 𝜈𝐷(𝑑ℎ) is at least 𝑛𝑚 as desired.

𝐶𝑎𝑠𝑒 c): write 𝜈𝐶(𝜃1) = 𝜆𝑖 + 𝑛𝛼 + 𝑚𝛽 > 𝑢𝑛
𝑠+1, for a certain index −1 ≤ 𝑖 ≤ 𝑠. Consider the

1-form 𝜂2 given by
𝜂2 = 𝑥𝛼𝑦𝛽𝜔𝑖 , 𝜈𝐷(𝜂2) = 𝑡𝑖 + 𝑛𝛼 + 𝑚𝛽.

Let us see that 𝜈𝐷(𝜂2) > 𝑡𝑛
𝑠+1 = 𝑡𝑠 + 𝑛ℓ = 𝜈𝐷(𝜃1). Assume first that 𝑖 = 𝑠, we know that

𝑢𝑛
𝑠+1 = 𝜆𝑠 + 𝑛ℓ < 𝜈𝐶(𝜂2) = 𝜆𝑠 + 𝑛𝛼 + 𝑚𝛽, hence 𝑛𝛼 + 𝑚𝛽 > 𝑛ℓ and 𝑡𝑠 + 𝑛𝛼 + 𝑚𝛽 > 𝑡𝑠 + 𝑛ℓ as

desired.
Assume now that 𝑖 < 𝑠. We have

𝜈𝐶(𝜂2) = 𝜆𝑖 + 𝑛𝛼 + 𝑚𝛽 > 𝑢𝑛
𝑠+1 = 𝜆𝑠 + 𝑛ℓ ⇒

⇒ 𝑛𝛼 + 𝑚𝛽 − 𝑛ℓ > 𝜆𝑠 − 𝜆𝑖 > 𝑡𝑠 − 𝑡𝑖 ⇒
⇒ 𝑡𝑖 + 𝑛𝛼 + 𝑚𝛽 > 𝑡𝑠 + 𝑛ℓ .

Consequently, 𝜈𝐷(𝜂2) > 𝜈𝐷(𝜃1).
On the other hand, we have that 𝜈𝐶(𝜂2) = 𝜈𝐶(𝜃1). Hence, we can write 𝜃2 = 𝜃1 + 𝜇+𝜂2, we

obtain that
𝜈𝐷(𝜃2) = 𝜈𝐷(𝜃1) = 𝑡𝑛𝑠+1 , 𝜈𝐶(𝜃2) > 𝜈𝐶(𝜃1).

We restart the procedure with 𝜃2, since the differential value is strictly increasing, in a finite
number of steps we arrive to case b) or to case a), this ends the proof. □
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Now, we proof the existence of the 1-forms 𝜔̃𝑖 for 𝑖 ≤ 𝑠. The proof runs in a very similar way.

Proposition 6.4. Let 𝐶 be a cusp and Λ𝐶 its semimodule of differential values, with basis ℬ =

(𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠). Assume that 𝑠 ≥ 1. For any 𝑖 = 1, . . . , 𝑠 , there is 1-form 𝜔̃𝑖 having 𝐶 as an
invariant curve, such that 𝜈𝐷(𝜔̃𝑖) = 𝑡𝑖 .

Proof. If 𝑖 = 1, we can take 𝜔̃1 = 𝑑𝑓 , where 𝑓 = 0 is an implicit equation of 𝐶. Indeed, it is clear
that 𝐶 is invariant by 𝑑𝑓 . Moreover, by Example 3.5.4, we know that 𝜈𝐷(𝑑𝑓 ) = 𝑛𝑚 = 𝑡1.

Assume that 𝑖 ≥ 2. Let us select a minimal standard basis 𝒮 = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠) of the
cusp 𝐶. In fact, we only need the elements of a minimal standard basis up to index 𝑖 − 1. Without
loss of generality we are going to assume that 𝑡𝑖 = 𝑡𝑛

𝑖
, hence 𝑢̃𝑖 = 𝑢𝑛

𝑖
.

Let us recall that 𝑢𝑛
𝑖
= 𝜆𝑖−1 + 𝑛ℓ = 𝜆𝑘 + 𝑚𝑏, where we denote ℓ = ℓ 𝑛

𝑖
, 𝑘 = 𝑘𝑛

𝑖−1 and 𝑏 = 𝑏𝑖 the
limits, bounds and colimits, as defined in Chapter 3. Recall that 𝑘 < 𝑖 − 1. Consider the 1-forms

𝜂0 = 𝑥ℓ𝜔𝑖−1 , 𝜂1 = 𝑦𝑏𝜔𝑘 .

Note that 𝜈𝐷(𝜂0) = 𝑡𝑛
𝑖
= 𝑡𝑖−1 + 𝑛ℓ and 𝜈𝐷(𝜂1) > 𝑡𝑛

𝑖
. Since we have

𝜈𝐷(𝜂1) = 𝑚𝑏 + 𝑡𝑘 > 𝜈𝐷(𝜂0) = 𝑡𝑖−1 + 𝑛ℓ ⇔
𝑡𝑖−1 − 𝑡𝑘 < 𝑚𝑏 − 𝑛ℓ = (𝑢𝑛

𝑖 − 𝜆𝑘) − (𝑢𝑛
𝑖 − 𝜆𝑖−1) = 𝜆𝑖−1 − 𝜆𝑘

and 𝜆𝑖−1 − 𝜆𝑘 > 𝑡𝑖−1 − 𝑡𝑘 follows by Lemma 3.2.8. Moreover, the differential values coincide

𝜈𝐶(𝜂0) = 𝜈𝐶(𝜂1) = 𝑢𝑛
𝑖 .

Thus, we write 𝜃1 = 𝜂0 + 𝜇+𝜂1, where 𝜇+ is the tuning constant. We get that

𝜈𝐷(𝜃1) = 𝑡𝑛𝑖 , 𝜈𝐶(𝜃1) > 𝜈𝐶(𝜂0) = 𝜈𝐶(𝜂1) = 𝑢𝑛
𝑖 .

We consider three cases:

a) 𝜈𝐶(𝜃1) = ∞. Then we end by taking 𝜔̃𝑖 = 𝜃1.
b) 𝜈𝐶(𝜃1) ≥ 𝑛𝑚.
c) 𝜈𝐶(𝜃1) < 𝑛𝑚.

𝐶𝑎𝑠𝑒 b): let 𝜙(𝑡) be a primitive parametrization of 𝐶. We have that 𝜙∗(𝜃1) = 𝜓(𝑡)𝑑𝑡, with
ord𝑡(𝜓(𝑡)) ≥ 𝑛𝑚 − 1 > 𝑐Γ. In view of Lemma 1.4.3, there is a function ℎ(𝑥, 𝑦) such that
𝜙∗(𝑑ℎ) = 𝜓(𝑡)𝑑𝑡. If we take 𝜔̃𝑖 = 𝜃1 − 𝑑ℎ, we have that 𝜈𝐶(𝜔̃𝑖) = ∞. In order to finish, we
have to see that 𝜈𝐷(𝑑ℎ) > 𝑡𝑛

𝑖
. Since 𝑡𝑛

𝑖
< 𝑡1 = 𝑛𝑚 (see Lemma 3.6.1), if we only need to see

that 𝜈𝐷(𝑑ℎ) ≥ 𝑛𝑚. By Proposition 2.3.14, if 𝜈𝐷(𝑑ℎ) < 𝑛𝑚, we obtain that 𝜈𝐶(𝑑ℎ) = 𝜈𝐷(𝑑ℎ), in
contradiction with the fact that 𝜈𝐶(𝑑ℎ) ≥ 𝑛𝑚. Thus 𝜈𝐷(𝑑ℎ) is at least 𝑛𝑚 as desired.

𝐶𝑎𝑠𝑒 c): we have that 𝜈𝐶(𝜃1) > 𝑢̃𝑖 , thus by Corollary 3.4.7, we have that 𝜈𝐶(𝜃1) is greater
than the conductor of the semimodule Λ𝑖−1 appearing in the decomposition sequence of Λ𝐶 (see
Chapter 3). Therefore, 𝜈𝐶(𝜃1) ∈ Λ𝑖−1 and we can write 𝜈𝐶(𝜃1) = 𝜆 𝑗 + 𝑛𝛼 +𝑚𝛽 > 𝑢𝑛

𝑖
, for a certain

index −1 ≤ 𝑗 ≤ 𝑖 − 1. Consider the 1-form 𝜂2 given by

𝜂2 = 𝑥𝛼𝑦𝛽𝜔 𝑗 , 𝜈𝐷(𝜂2) = 𝑡 𝑗 + 𝑛𝛼 + 𝑚𝛽.

Let us see that 𝜈𝐷(𝜂2) > 𝑡𝑛
𝑖
= 𝑡𝑖−1 + 𝑛ℓ = 𝜈𝐷(𝜃1). Assume first that 𝑗 = 𝑖 − 1, we know that

𝑢𝑛
𝑖
= 𝜆𝑖−1 + 𝑛ℓ < 𝜈𝐶(𝜂2) = 𝜆𝑖−1 + 𝑛𝛼 + 𝑚𝛽, hence 𝑛𝛼 + 𝑚𝛽 > 𝑛ℓ and 𝑡𝑖−1 + 𝑛𝛼 + 𝑚𝛽 > 𝑡𝑖−1 + 𝑛ℓ

as desired.
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Assume now that 𝑗 < 𝑖 − 1. We have

𝜈𝐶(𝜂2) = 𝜆 𝑗 + 𝑛𝛼 + 𝑚𝛽 > 𝑢𝑛
𝑖 = 𝜆𝑖−1 + 𝑛ℓ ⇒

⇒ 𝑛𝛼 + 𝑚𝛽 − 𝑛ℓ > 𝜆𝑖−1 − 𝜆 𝑗 > 𝑡𝑖−1 − 𝑡 𝑗 ⇒
⇒ 𝑡 𝑗 + 𝑛𝛼 + 𝑚𝛽 > 𝑡𝑖−1 + 𝑛ℓ .

Therefore, 𝜈𝐷(𝜂2) > 𝜈𝐷(𝜃1).
On the other hand, we have that 𝜈𝐶(𝜂2) = 𝜈𝐶(𝜃1). Hence, we can write 𝜃2 = 𝜃1 + 𝜇+𝜂2, we

obtain that
𝜈𝐷(𝜃2) = 𝜈𝐷(𝜃1) = 𝑡𝑛𝑖 , 𝜈𝐶(𝜃2) > 𝜈𝐶(𝜃1).

We re-start the procedure with 𝜃2, since the differential value is strictly increasing, in a finite
number of steps we arrive to case b) or to case a), this ends the proof. □



7

Analytic Semiroots

In this chapter we introduce the concept of analytic semiroot of a cusp 𝐶. The goal is to find
cusps whose analytic type “approximate” the one of 𝐶. This resembles the case of approximate
roots with a similar property with topological classes instead (see [1]).

Consider 𝐶 a cusp with Puiseux pair (𝑛, 𝑚) and cuspidal divisor 𝐷. Suppose that 𝜔 ∈ Ω1
𝑀0 ,𝑃0

defines a totally 𝐷-dicritical foliation. Then we have that each non corner point 𝑃 of 𝐷 defines a
branch 𝐶𝜔

𝑃
invariant by 𝜔 whose strict transform, by the minimal resolution of singularities of 𝐶,

is non singular and transverse to 𝐷 at 𝑃. The curve 𝐶𝜔
𝑃

has the same resolution of singularities
as 𝐶. We recall that 𝐶𝜔

𝑃
is called an 𝜔-cusp through 𝑃, see Definition 2.5.5.

When 𝜔 is an element of an extended standard basis, we obtain the desired notion of analytic
semiroot.

Definition 7.1. Consider 𝐶 a cusp and let ℰ = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠 , 𝜔𝑠+1) be an extended standard basis
of 𝐶. Denote by 𝐷 the cuspidal divisor of 𝐶. For any index 1 ≤ 𝑖 ≤ 𝑠 + 1 and any non corner point
𝑃 ∈ 𝐷, we say that the 𝜔𝑖-cusp 𝐶

𝜔𝑖

𝑃
is an weak analytic ℰ-semiroot of index 𝑖 of 𝐶. When 𝑃 is the

infinitely near point of 𝐶, we just say that 𝐶𝜔𝑖

𝑃
is the analytic ℰ-semiroot of index 𝑖 of 𝐶.

The next result shows the relationship between the semimodule of differential values of a
cusp and its analytic semiroots.

Theorem 7.2 (Theorem 8.8 [12]). Consider 𝐶 a cups with ℰ = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑠+1) an extended
standard basis. For any 1 ≤ 𝑖 ≤ 𝑠 + 1 and 𝛾 = 𝐶

𝜔𝑖

𝑃
a weak analytic ℰ-semiroot of 𝐶, we have that

ℰ𝑖 = (𝜔−1 , 𝜔0 , . . . , 𝜔𝑖)

is an extended standard basis of 𝛾 and the semimodule of differential values is Λ𝛾 = Λ𝑖−1. Moreover, we
have the equality of differential values

𝜈𝐶(𝜔𝑘) = 𝜈𝛾(𝜔𝑘), for − 1 ≤ 𝑘 ≤ 𝑖 − 1.

Recalling the definition of increasing semimodule satisfied by Λ𝐶 (𝜆𝑖 > 𝑢𝑖), we have that the
previous theorem is a consequence of the next more general technical results.

Proposition 7.3. Consider an index 1 ≤ 𝑖 ≤ 𝑠 + 1 and a element ∗ ∈ {𝑛, 𝑚}, excluding the case where
𝑖 = 1 and ∗ = 𝑚. Let 𝜔 be a 1-form such that 𝜈𝐶(𝜔) > 𝑢∗

𝑖
and 𝜈𝐷(𝜔) = 𝑡∗

𝑖
. Take 𝛾 = 𝐶𝜔

𝑃
an 𝜔-cusp.

Then we have that 𝜈𝐶(𝜔ℓ ) = 𝜈𝛾(𝜔ℓ ) = 𝜆ℓ for ℓ = −1, . . . , 𝑖 − 1. Moreover, 𝜆ℓ is precisely the ℓ -element
of the basis of Λ𝐶 .

Recall that these 1-forms are totally 𝐷-dicritical, since they are basic and resonant.
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Proposition 7.4. Consider an index 1 ≤ 𝑖 ≤ 𝑠 + 1. Let 𝜔 be a 1-form such that 𝜈𝐶(𝜔) > 𝑢𝑖 and
𝜈𝐷(𝜔) = 𝑡𝑖 . Take 𝛾 = 𝐶𝜔

𝑃
an 𝜔-cusp. Then Λ𝛾 = Λ𝑖−1.

Before giving the proofs of both propositions, let us note that Proposition 7.3 implies the
following.

Corollary 7.5. Λ𝐶 𝑖
𝑃
⊃ Λ𝑖−1.

Moreover, Proposition 7.3 gives a version of Theorem 7.2 for the case of standard systems.
In particular, for the 1-forms 𝜔̃𝑖 , with 𝜈𝐷(𝜔̃𝑖) equal to the critical value 𝑡𝑖 and with 𝐶 invariant,
see Definition 6.1.

Theorem 7.6. Consider 𝛾̃ = 𝐶
𝜔̃𝑖

𝑃
an 𝜔̃𝑖-cusp with 2 ≤ 𝑖 ≤ 𝑠 +1. Then we have the equality of differential

values
𝜈𝐶(𝜔ℓ ) = 𝜈𝛾̃(𝜔ℓ ), for − 1 ≤ ℓ ≤ 𝑖 − 1.

Moreover, we have the inclusion Λ𝑖−1 ⊂ Λ𝛾̃.

Proof of Proposition 7.3. Note that for any basic non resonant 1-form 𝜂, by Proposition 2.3.14, we
have that

𝜈𝐶(𝜂) = 𝜈𝐷(𝜂) = 𝜈𝛾(𝜂).

This is particularly true for the case of exact 1-forms. Notice that if 𝜂 = 𝑑𝑔 with 𝑔(0, 0) = 0, then
we know that 𝜈𝐷(𝜂) = 𝜈𝐷(𝑔). Hence, for any germ of function 𝑔 ∈ 𝒪𝑀0 ,𝑃0 , we have that

min{𝜈𝐶(𝑑𝑔), 𝑛𝑚} = min{𝜈𝛾(𝑑𝑔), 𝑛𝑚}. (7.1)

Since (𝑥, 𝑦) is not only a system of adapted coordinates with respect to 𝐶, but also with respect
to 𝛾, then

𝜈𝐶(𝑑𝑥) = 𝜈𝛾(𝑑𝑥) = 𝑛 = 𝜆−1 , 𝜈𝐶(𝑑𝑦) = 𝜈𝛾(𝑑𝑦) = 𝑚 = 𝜆0.

The previous equalities imply that the statement of the theorem is true for ℓ = −1, 0. Let us
assume that theorem is true for any ℓ = −1, 0, 1, . . . , 𝑗, with 0 ≤ 𝑗 ≤ 𝑖 − 2. We apply Theorem
5.3.1 to obtain a decomposition

𝜔 =

𝑗+1∑
ℓ=−1

𝑓ℓ𝜔ℓ

such that 𝜈𝐶( 𝑓ℓ𝜔ℓ ) ≥ 𝑣𝑖 𝑗+1, where 𝑣𝑖 𝑗+1 ≤ 𝑣𝑖𝑖 = 𝑢𝑖+1 < 𝑛𝑚 (Corollary 3.6.2) and there is a single
𝑘 ≤ 𝑗 such that 𝜈𝐶( 𝑓𝑗+1𝜔 𝑗+1) = 𝜈𝐶( 𝑓𝑘𝜔𝑘) = 𝑣𝑖 𝑗+1. We deduce that

𝜈𝐶

(
𝑗∑

ℓ=−1
𝑓ℓ𝜔ℓ

)
= 𝜈𝐶( 𝑓𝑘𝜔𝑘) = 𝑣𝑖 𝑗+1.

On the other hand, by induction hypothesis and noting that 𝑣𝑖 𝑗+1 < 𝑛𝑚, we have that

min{𝜈𝐶( 𝑓ℓ𝜔ℓ ), 𝑛𝑚} = min{𝜈𝛾( 𝑓ℓ𝜔ℓ ), 𝑛𝑚}, ℓ = −1, 0, 1, . . . , 𝑗.

In particular, we have that

𝜈𝛾( 𝑓𝑘𝜔𝑘) = 𝑣𝑖 𝑗+1 , 𝜈𝛾

(
𝑗∑

ℓ=−1
𝑓ℓ𝜔ℓ

)
= 𝑣𝑖 𝑗+1.

Since 𝜈𝛾(𝜔) = ∞, we have that 𝜈𝛾( 𝑓𝑗+1𝜔 𝑗+1) = 𝑣𝑖 𝑗+1. Hence we have

𝑣𝑖 𝑗+1 = 𝜈𝐶( 𝑓𝑗+1𝜔 𝑗+1) = 𝜈𝛾( 𝑓𝑗+1𝜔 𝑗+1).
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Noting that 𝜈𝐶( 𝑓𝑗+1) = 𝜈𝛾( 𝑓𝑗+1), we conclude that 𝜈𝐶(𝜔 𝑗+1) = 𝜈𝛾(𝜔 𝑗+1). This shows that
𝜈𝐶(𝜔ℓ ) = 𝜈𝛾(𝜔ℓ ) = 𝜆ℓ for ℓ = −1, 0, 1, . . . , 𝑖 − 1.

Let us inductively prove that 𝜆ℓ is the ℓ -element of the basis of Λ𝛾, with ℓ = −1, 0, 1, . . . , 𝑖 − 1.
The result is clear for ℓ = −1, 0. If ℓ = 1, we notice that the critical value 𝑡1 is the for both Λ𝐶 and
Λ𝛾 since they share the (-1)-element and the 0-element of their bases. Then, by Theorem 5.2.10,
we have that

𝜆1 ≤ sup{𝜈𝛾(𝜂) : 𝜈𝐷(𝜂) = 𝑡1} = min(Λ𝛾 \Λ0) ≤ 𝜆1.

Hence all the previous inequalities are equalities and we have that 𝜆1 is the 1-element of the
basis of Λ𝛾.

Now assume that the result holds for 1 ≤ ℓ ≤ 𝑖 − 2. Let us show that the 𝜆ℓ+1 is the
(ℓ + 1)-element of the basis of Λ𝛾. As before, we notice that 𝜈𝛾(𝜔ℓ+1) = 𝜆ℓ+1 and 𝜈𝐷(𝜔ℓ+1) = 𝑡ℓ+1,
since the elements of the bases of Λ𝐶 and Λ𝛾 are the same up to index ℓ . We have that the critical
value 𝑡ℓ+1 is the same for both semimodules. Thus

𝜆ℓ+1 ≤ sup{𝜈𝛾(𝜂) : 𝜈𝐷(𝜂) = 𝑡ℓ+1} = min(Λ𝛾 \Λℓ ) ≤ 𝜆ℓ+1.

We conclude the desired result. □

Proof of Proposition 7.4. Denote by ℬ′ = (𝜆′
−1 ,𝜆

′
0 , . . . ,𝜆

′
𝑠′) the basis of Λ𝛾. In virtue of Theorem

7.3 we have that 𝜆ℓ = 𝜆′
ℓ

for ℓ = −1, 0, . . . , 𝑖 − 1. We only must show that 𝑠′ = 𝑖 − 1. If 𝑠′ > 𝑖 − 1,
by definition there exists a 1-form 𝜔′ such that 𝜈𝛾(𝜔′) = 𝜆′

𝑖
< ∞. By Theorem 5.2.10, we see that

𝜈𝐷(𝜔′) = 𝑡𝑖 = 𝜈𝐷(𝜔𝑖) since the elements of the bases of Λ𝐶 and Λ𝛾 are common up to index 𝑖 − 1.
Therefore,

𝜆′
𝑖 = max{𝜈𝛾(𝜂); 𝜈𝐷(𝜂) = 𝑡𝑖}.

But we know that 𝜈𝛾(𝜔) = ∞ > 𝜆′
𝑖
, this is the desired contradiction. □

Now, we give several examples of different phenomena related to the previous results. First,
we show that the inclusion in Corollary 7.5 may be strict.

Example 7.7. We consider the 1-form 𝜔 = 7𝑥2𝑑𝑦 − 18𝑥𝑦𝑑𝑥 − 14/9𝑦𝑑𝑦. Notice that 𝜔 is basic
and resonant with respect to the pair (7, 18). We take the 𝜔-cusp 𝐶 given by the primitive
parametrization

𝜙(𝑡) = (𝑡7 , 𝑡18 + 𝑡22 + 10/9𝑡26 + 319/243𝑡30 + 1178/729𝑡34 + ℎ.𝑜.𝑡.).

As a remark, we can compute 𝜙(𝑡), by considering the parametrization 𝜑(𝑡) = (𝑡7 , 𝑡18+∑∞
𝑗=19 𝑎 𝑗𝑡

𝑗).
Imposing the condition 𝜑∗𝜔 = 0, we find the values of the coefficients 𝑎 𝑗 .

The reader can use the techniques from Chapter 5 to see that the basis of the semimodule of
differential values of 𝐶 is (7, 18, 29). We also have that 𝑢̃2 = 𝑢𝑚

2 = 119 = 29 + 5 · 18 = 7 + 16 · 7
and 𝑡2 = 115.

Now, we take the 1-form 𝜂 = 7𝑥𝑦5𝑑𝑦 − 18𝑦6𝑑𝑥 − 4𝑥16𝑑𝑥. We have that 𝜈𝐷(𝜂) = 𝑡2 and
𝜈𝐶(𝜂) = 123 > 119. We consider the 𝜂-cusp 𝐶1 defined by the primitive parametrization
𝜙1(𝑡) = (𝑡7 , 2𝑡18 + 1/32𝑡22 − 5/4096𝑡26 + ℎ.𝑜.𝑡.). The basis of the semimodule of differential values
of 𝐶1 is (7, 18, 29, 40, . . .). We do not compute all the elements of the basis, since we would need
a more detailed parametrization. With the truncated parametrization that we have, we can check
that 𝜈𝐶1(𝜔2) = 40, where 𝜔2 = 7𝑥2𝑑𝑦 − 18𝑥𝑦𝑑𝑥 − 64𝑦𝑑𝑦. This shows that the semimodules of
differential values of 𝐶 and 𝐶1 are different.

The next example shows that in general the analytic semiroots are not analytically equivalent.
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Example 7.8. Consider the curve 𝐶 given by the primitive parametrization 𝜙(𝑡) = (𝑡7 , 𝑡17 +
𝑡30 + 𝑡33 + 𝑡36) with Γ𝐶 = ⟨7, 17⟩ and semimodule of differential values Λ𝐶 = Γ𝐶(7, 17, 37, 57). A
minimal standard basis of 𝐶 is given by the 1-forms 𝜔−1 = 𝑑𝑥, 𝜔0 = 𝑑𝑦, 𝜔1 = 7𝑥𝑑𝑦 − 17𝑦𝑑𝑥 and

𝜔2 = 3757𝑥2𝑦𝑑𝑥 − 1547𝑥3𝑑𝑦 − 4624𝑦2𝑑𝑥 + 1904𝑥𝑦𝑑𝑦 + 1183𝑦2𝑑𝑦.

All the 𝜔2-cusps are defined by the primitive parametrization

𝜑𝑎(𝑡) = (𝑡7 , 𝑎𝑡17 + 𝑎3𝑡30 + 𝑎4𝑡33 + · · · )

with 𝑎 ∈ C∗. If we consider a new parameter 𝑡 = 𝑎−2/13𝑢 and the we make the analytic change of
variables 𝑥1 = 𝑎14/13𝑥, 𝑦2 = 𝑎21/13𝑦, we obtain that the family of cusps of 𝜔2 are the curves 𝐶𝜔2

𝑎

given by the parametrizations

𝜙𝑎(𝑢) = (𝑢7 , 𝑢17 + 𝑢30 + 𝑎7/13𝑢33 + · · · ).

From the results above, we have that Λ𝐶2
𝑎
= Λ1 = Γ𝐶(7, 17, 37) for all 𝑎 ∈ C∗. Since 33 ∉ Λ1 − 7, by

Theorem 1.5.2, two curves 𝐶2
𝑎1 and 𝐶2

𝑎2 are not, in general, analytically equivalent for 𝑎1 , 𝑎2 ∈ C∗.
Recall that as it was mentioned in Section 1.5, finding normal form parametrizations, used to
determine if two curves are analytically equivalent, is done by modifying the terms of smaller
degree in the parametrization, and then iterating for bigger degree terms. Therefore, the
displayed coefficients of the parametrizations 𝜙𝑎(𝑢) correspond with the ones of their normal
form parametrizations.

Finally, we give an example showing the underlying problems to generalize the concept of
analytic semiroot to more general families of branches.

Example 7.9. Consider the branch𝐶 defined by the primitive parametrization𝜙(𝑡) = (𝑡10 , 𝑡15+𝑡18).
Notice that the characteristic exponents of 𝐶, as defined in Chapter 1, are (10, 15, 18). Thus,
by Equation (1.4), we have Γ𝐶 = ⟨10, 15, 33⟩. In fact, we see that for 𝑧 = 𝑦2 − 𝑥3, we have that
𝜈𝐶(𝑧) = 33.

By means of Büchberger’s algorithm presented in Section 4.3, we can compute a minimal
standard basis for 𝐶. Because of the difficulty of the computations we omit all of them. Moreover,
for our purposes we only give a truncated minimal standard basis. We take the following 1-forms:
𝜔−1 = 𝑑𝑥, 𝜔0 = 𝑑𝑦, 𝜔1 = 2𝑥𝑑𝑦 − 3𝑦𝑑𝑥, 𝜔2 = 𝑑𝑧, 𝜔3 = −11𝑦𝜔1 + 𝑥𝑑𝑧, 𝜔4 = −11𝑥2𝜔1 + 𝑦𝑑𝑧. They
give us the differential values 𝜆−1 = 10, 𝜆0 = 15, 𝜆1 = 28, 𝜆2 = 33, 𝜆3 = 46, 𝜆4 = 51, and the basis
of the semimodule of differential values of 𝐶 is (10, 15, 28, 33, 46, 51, . . .), as we said, we do not
need the whole basis.

Our interest now focus in both 𝜔3 and 𝜔4. If we denote by 𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0) a

minimal resolution of singularities of 𝐶, notice that the divisor 𝐸𝑁
𝑁

is dicritical for both 𝜔3 and
𝜔4. More precisely, both 1-forms have infinite families of curves topologically equivalent to 𝐶.
We consider the branches 𝐶3 and 𝐶4, defined by the primitive parametrizations 𝜙3(𝑡) and 𝜙4(𝑡)
respectively, as follows:

𝜙3(𝑡) = (𝑡10 , 𝑡15 + 𝑡18 − 1/2𝑡21 + 1/2𝑡24 − 5/8𝑡27 + 7/8𝑡30 + ℎ.𝑜.𝑡.)
𝜙4(𝑡) = (𝑡10 , 𝑡15 + 𝑡18 + 17/10𝑡21 + 84/25𝑡24 + 7163/1000𝑡27 + ℎ.𝑜.𝑡.),

such that 𝐶3 is invariant by 𝜔3 and 𝐶4 is invariant by 𝜔4. We can check that the basis of the
semimodule of differential values of 𝐶3 is (10, 15, 28, 33, 51, . . .), with 𝜈𝐶3(𝜔4) = 51. In the case
of 𝐶4, we have that the basis is (10, 15, 28, 33, 46, . . .), where 𝜈𝐶4(𝜔3) = 46. In other words, 𝜔4 is
a 1-form that belongs to a minimal standard basis of 𝐶3, and 𝜔3 belongs to a minimal standard
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basis of 𝐶4. Therefore, if we would like to extend our notion of analytic semiroots to non cuspidal
branches, we have that 𝐶3 and 𝐶4 are analytic semiroots of 𝐶. However, we also see that 𝐶3 is an
analytic semiroot of 𝐶4, and vice-versa, 𝐶4 is an analytic semiroot of 𝐶3. Nonetheless, 46 ∈ Λ𝐶4 ,
but 46 ∉ Λ𝐶3 . Concluding that we can not generalize Theorem 7.4 to branches with a more
complicated semigroup.



8

Saito Bases and Other Analytic
Invariants

Let (𝐶, 𝑃0) be a plane curve in (𝑀0 , 𝑃0). In Chapter 2 we introduced informally the module of
logarithmic 1-forms along 𝐶. We now precise the definition. Consider a meromorphic 1-form 𝜂 in
(𝑀0 , 𝑃0), that is, in any coordinate system (𝑥, 𝑦), we can write 𝜂 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, where 𝐴, 𝐵 are
meromorphic functions. Take 𝑓 = 0 an implicit equation of 𝐶.

We say that 𝜂 is a logarithmic 1-form along 𝐶 if 𝑓 𝜂 and 𝜂 ∧ 𝑑𝑓 are both holomorphic. We
denote by Ω1

𝑀0 ,𝑃0
[log𝐶] the module of logarithmic 1-forms along 𝐶.

By changing the curve by any hypersurface in any regular ambient space, and the 1-forms for
𝑞-forms we extend the notion to the one of logarithmic 𝑞-forms along a hypersurface. However,
as always, we are only going to work with our two dimensional case, thus we do not need this
notion with such generality.

K. Saito introduced in [49] the notion of the logarithmic forms. Its relevance comes from the
study of the Gauss-Manin connection, which appears when dealing with the monodromy map
around a singular point of a hypersurface, see [8, 47].

Saito showed that Ω1
𝑀0 ,𝑃0

[log𝐶] is a free 𝒪𝑀0 ,𝑃0-module of rank two. Denote by Ω1
𝑀0 ,𝑃0

[𝐶]
the 𝒪𝑀0 ,𝑃0 -submodule of Ω1

𝑀0 ,𝑀0
given by the 1-forms 𝜔 such that 𝐶 is invariant by 𝜔. We have

that Ω1
𝑀0 ,𝑃0

[log𝐶] is isomorphic to Ω1
𝑀0 ,𝑃0

[𝐶] as 𝒪𝑀0 ,𝑃0-modules, this isomorphism is given by
the multiplication by 𝑓 . Hence Ω1

𝑀0 ,𝑃0
[𝐶] is also free module of rank two. Any basis {𝜂1 , 𝜂2} of

Ω1
𝑀0 ,𝑃0

[𝐶] is called a Saito basis for 𝐶. A part from this, he also gave a characterization of the
elements of a Saito basis. The result is the following.

Lemma 8.1 (Saito’s Criterion [49]). Let 𝐶′ be a curve defined by the implicit equation 𝑔 = 0. Given
𝜂1 , 𝜂2 ∈ Ω1

𝑀0 ,𝑃0
[𝐶′], then {𝜂1 , 𝜂2} is a Saito basis for 𝐶′ if and only if

𝜂1 ∧ 𝜂2 = 𝑢𝑔𝑑𝑥 ∧ 𝑑𝑦,

where 𝑢 ∈ 𝒪𝑀0 ,𝑃0 is a unit, and (𝑥, 𝑦) is the chosen coordinate system.

For the rest of the chapter, we assume that 𝐶 is a cusp with Puiseux pair (𝑛, 𝑚). As before,
we denote by 𝐷 the cuspidal divisor associated to the minimal resolution of singularities of 𝐶
and (𝑥, 𝑦) is a system of adapted coordinates with respect to 𝐶. Our main goal in this chapter is
to prove the following result:

Theorem 8.2. Denote by Λ𝐶 the semimodule of differential values for the cusp 𝐶, with length 𝑠 ≥ 0. Let
𝑡𝑠+1 and 𝑡𝑠+1 be the last critical values of Λ𝐶 . Then, there are two 1-forms 𝜔𝑠+1 , 𝜔̃𝑠+1 having 𝐶 as an

110
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invariant curve and such that 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1. Moreover, for any pair of 1-forms
as above, the set {𝜔𝑠+1 , 𝜔̃𝑠+1} is a Saito basis for 𝐶.

Note that the existence of the 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1 is given by Propositions 6.3 and 6.4.
Hence, we have to prove that {𝜔𝑠+1 , 𝜔̃𝑠+1} is a Saito basis for 𝐶. We prove it in several steps:

1. We prove Theorem 8.2 in the case 𝑠 = 0.
2. We show that ℰ̃ ∪ {𝜔𝑠+1} generates the 𝒪𝑀0 ,𝑃0 -module Ω1

𝑀0 ,𝑃0
[𝐶], for any standard system

(ℰ, ℰ̃) for 𝐶 that includes 𝜔𝑠+1 and 𝜔̃𝑠+1.
3. We show that any pair of 1-forms 𝜔𝑠+1 , 𝜔̃𝑠+1 having 𝐶 as invariant curve and such that

𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1 are included in at least one special standard system
(ℰ, ℰ̃). This result is proved in Proposition 8.3.1.

4. We conclude as follows. We start with {𝜔𝑠+1 , 𝜔̃𝑠+1} and we consider a special standard
system (ℰ, ℰ̃) containing them. By Statement 3, any 1-form 𝜔 in the Saito module
Ω1

𝑀0 ,𝑃0
[𝐶] is a combination

𝜔 = ℎ𝜔𝑠+1 +
∑𝑠+1

ℓ=−1 𝑓ℓ 𝜔̃ℓ .

Since (ℰ, ℰ̃) is a special standard system, each 1-form 𝜔̃ℓ is a combination of 𝜔𝑠+1 , 𝜔̃𝑠+1,
for any ℓ = −1, 0, 1, . . . , 𝑠. In this way, we find a writing 𝜔 = 𝑓 𝜔𝑠+1 + 𝑔𝜔̃𝑠+1, as desired.

The proof of Statement 2 relies on having proved Theorem 8.2 when 𝑠 = 0, which corresponds
to a quasi-homogeneous cusp. We consider this situation in next section.

8.1 The Quasi-Homogeneous Case

The statement of Theorem 8.2 when 𝑠 = 0 is well know, see for instance [49]. Let us show it, for
the sake of completeness. We recall that, by Theorem 1.5.2, the cusp 𝐶 is quasi-homogeneous,
and thus, 𝐶 is analytically equivalent to the curve 𝑓 = 0, where 𝑓 = 𝑦𝑛 + 𝜇𝑥𝑚 , for any 𝜇 ∈ C∗. In
fact, we could assume 𝜇 = −1. We can take

𝜔1 = 𝑛𝑥𝑑𝑦 − 𝑚𝑦𝑑𝑥, 𝜔̃1 = 𝑑𝑓 = 𝜇𝑚𝑥𝑚−1𝑑𝑥 + 𝑛𝑦𝑛−1𝑑𝑦.

By Lemma 8.1, we have that {𝜔1 , 𝜔̃1} is a Saito basis for 𝐶. Note that 𝜈𝐷(𝜔1) = 𝑡1 = 𝑛 + 𝑚

and 𝜈𝐷(𝜔̃1) = 𝑡1 = 𝑛𝑚.
Take now 𝜔, 𝜔̃ in Ω1

𝑀0 ,𝑃0
[𝐶] being such that

𝜈𝐷(𝜔) = 𝑡1 = 𝑛 + 𝑚, 𝜈𝐷(𝜔̃) = 𝑡1 = 𝑛𝑚.

Let us see that {𝜔, 𝜔̃} is a Saito basis for 𝐶. Write

𝜔 = 𝐴𝜔1 + 𝐵𝜔̃1 , 𝜔̃ = 𝐴̃𝜔1 + 𝐵̃𝜔̃1.

Since 𝑛 + 𝑚 < 𝑛𝑚, we see that 𝐴 is a unit. It is also obvious that 𝐴̃ is not a unit. If we show that
𝐵̃ is a unit, the determinant 𝐴𝐵̃ − 𝐵𝐴̃ is a unit and hence {𝜔, 𝜔̃} is a Saito basis. Note that

𝜈𝐷(𝐴̃𝜔1) ≠ 𝑛𝑚.

Indeed, if 𝜈𝐷(𝐴̃𝜔1) = 𝜈𝐷(𝐴̃) + 𝑛 + 𝑚 = 𝑛𝑚, we conclude that

𝜈𝐷(𝐴̃) = 𝑛𝑚 − 𝑛 − 𝑚 = 𝑐Γ − 1 ∈ Γ𝐶 .
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This is a contradiction, since 𝑐Γ − 1 ∈ Γ𝐶 . Recall that by definition of conductor, 𝑐Γ is the smallest
element in Γ𝐶 such that 𝑘 ∈ Γ𝐶 , for any 𝑘 ≥ 𝑐Γ. We also recall that the divisorial value with
respect to 𝐷 always belongs to Γ𝐶 . Then, we have that

𝜈𝐷(𝜔̃) = 𝑛𝑚 = 𝜈𝐷(𝐵̃𝜔̃1) = 𝜈𝐷(𝐵̃) + 𝑛𝑚.

This implies that 𝐵̃ is a unit, as desired.

8.2 Generators of the Saito Module

Let us consider a standard system (ℰ, ℰ̃) of 𝐶 given by

ℰ = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1), ℰ̃ = (𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1).

In next Proposition 8.2.5 we describe a generator system of the Saito module Ω1
𝑀0 ,𝑃0

[𝐶].
Our arguments run by first by writing initial forms as a combination of those of our candidate

of generator system. This would allow us to conclude in virtue of Artin’s Approximation Theorem.
This is done by working in an ordering the initial parts in terms of their divisorial values. To do
this, we just need the concept of “partial standard system”.

Consider an index 0 ≤ 𝑗 ≤ 𝑠. A 𝑗-partial standard system associated to the extended standard basis
ℰ is a pair (ℰ, ℰ̃ 𝑗), where ℰ̃ 𝑗 is a list

ℰ̃ 𝑗 = (𝜔̃ 𝑗+1 , 𝜔̃ 𝑗+2 , . . . , 𝜔̃𝑠+1),

such that 𝜈𝐷(𝜔̃ℓ ) = 𝑡ℓ and 𝜔̃ℓ ∈ Ω1
𝑀0 ,𝑃0

[𝐶], for 𝑗 + 1 ≤ ℓ ≤ 𝑠 + 1.
We start by a lemma concerning the structure of the critical values of an increasing cuspidal

semimodule:

Lemma 8.2.1. Let Λ be an increasing cuspidal Γ-semimodule of length 𝑠 ≥ 1, where Γ = ⟨𝑛, 𝑚⟩. Assume
that the basis ℬ = (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) satisfies that 𝜆−1 = 𝑛 and 𝜆0 = 𝑚. Consider the set

𝑇 = {𝑡𝑠+1 , 𝑡2 , 𝑡3 , . . . , 𝑡𝑠+1},

where 𝑡 𝑗 , 𝑡 𝑗 are the critical values of Λ corresponding to the index 𝑗. Then, there are two nonnegative
integer numbers 𝑝, 𝑞 ∈ Z≥0 such that

{𝑛𝑝 + 𝑛 + 𝑚, 𝑚𝑞 + 𝑛 + 𝑚} ⊂ 𝑇.

Moreover, we have that 𝑝 < 𝑚 − 2 and 𝑞 ≤ 𝑛 − 2.

We remark that, as we saw in Chapter 3, we have that 𝑠 ≤ 𝑛 − 2. Thus, the assumption 𝑠 ≥ 1
implies that 𝑛 ≥ 3.

Proof. We start by noting that by Corollary 3.6.2, we have that any element in 𝑇 is strictly smaller
than 𝑡1 = 𝑛𝑚. This gives us the desired bounds on the indexes 𝑝 and 𝑞.

Now, by definition of critical values, we know that one of the following mutually excluding
properties holds:

(I) 𝑡2 = 𝑡1 + 𝑛ℓ 𝑛2 = 𝑛 + 𝑚 + 𝑛ℓ 𝑛2
(II) 𝑡2 = 𝑡1 + 𝑚ℓ𝑚2 = 𝑛 + 𝑚 + 𝑚ℓ𝑚2
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Let us do the proof in the case (I), the case (II) has a similar proof. We can take 𝑝 = ℓ 𝑛2 and hence
𝑡2 = 𝑛 + 𝑚 + 𝑛𝑝 ∈ 𝑇. Then, it is enough to find an element of 𝑇 of the form 𝑛 + 𝑚 + 𝑚𝑞.

Assume first that 𝑠 = 1. Then 𝑡𝑠+1 = 𝑡2 = 𝑡1 + 𝑚ℓ𝑚2 = 𝑛 + 𝑚 + 𝑚ℓ𝑚2 . Taking 𝑞 = ℓ𝑚2 , we have
that 𝑡𝑠+1 = 𝑛 + 𝑚 + 𝑚𝑞 ∈ 𝑇, ending the proof when 𝑠 = 1.

Assume now that 𝑠 > 1. There are two cases:

a) For any 2 ≤ 𝑖 ≤ 𝑠, we have that 𝑡𝑖+1 − 𝑡𝑖 = 𝑚ℓ𝑚
𝑖+1.

b) There is an index 𝑖 (that we take to be the minimum one) with 2 ≤ 𝑖 ≤ 𝑠 such that
𝑡𝑖+1 − 𝑡𝑖 = 𝑛ℓ 𝑛

𝑖+1.

Assume we are in case a). Recall that 𝑡2 = 𝑡1 + 𝑚ℓ𝑚2 , since 𝑡2 = 𝑡1 + 𝑛ℓ 𝑛2 . By a telescopic
computation, we see that 𝑡𝑠+1 ∈ 𝑇 may be written as

𝑡𝑠+1 = 𝑡1 + 𝑚
(∑𝑠+1

ℓ=2 ℓ
𝑚
ℓ

)
= 𝑛 + 𝑚 + 𝑚𝑞.

Assume we are in case b). For any 2 ≤ 𝑗 ≤ 𝑖, we have that 𝑡 𝑗 = 𝑡 𝑗−1 + 𝑚ℓ𝑚
𝑗

. By a telescopic
computation, we obtain that 𝑡𝑖 = 𝑡1 + 𝑚𝑝𝑖 . The element 𝑡𝑖+1 ∈ 𝑇 is given by 𝑡𝑖+1 = 𝑡𝑖 + 𝑚ℓ𝑚

𝑖+1 and
hence we have that

𝑡𝑖+1 = 𝑡1 + 𝑚(𝑝𝑖 + ℓ𝑚𝑖+1),

as desired. This ends the proof. □

Remark 8.2.2. As a consequence of Lemma 8.2.1, we have the following property. Assume that
Λ𝐶 is the semimodule of differential values of a cusp 𝐶 and (ℰ, ℰ̃) is a standard system, where

ℰ = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1), ℰ̃ = (𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1).

Consider the set 𝒯 = {𝜔𝑠+1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1}. Assuming that (𝑥, 𝑦) is a system of adapted
coordinates with respect to the cusp 𝐶, there are two 1-forms 𝜂1 , 𝜂2 ∈ 𝒯 such that

In(𝜂1) = 𝜇1𝑥
𝑝(𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦), In(𝜂2) = 𝜇2𝑦

𝑞(𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦),

where 𝜇1 ≠ 0 ≠ 𝜇2 and 0 ≤ 𝑝 < 𝑚 − 2, 0 ≤ 𝑞 ≤ 𝑛 − 2.

Next lemma is the key argument for finding our generator system of Saito’s module. It will
be also important in order to find the Saito bases we are looking for.

Lemma 8.2.3. Let us consider a standard system (ℰ, ℰ̃) and a 1-form 𝜔 ∈ Ω1
𝑀0 ,𝑃0

[𝐶]. Assume that
(𝑥, 𝑦) is a system of adapted coordinates with respect to 𝐶. Then, the initial form In(𝜔) is a combination,
with quasi-homogeneous coefficients, of the initial forms

In(𝜔̃1), . . . , In(𝜔̃𝑠+1), In(𝜔𝑠+1).

Proof. Assume that 𝜙(𝑡) = (𝑡𝑛 , 𝑎𝑚𝑡𝑚 + ℎ.𝑜.𝑡) is a primitive parametrization of 𝐶, with 𝑎𝑚 ≠ 0.
Let us denote by 𝑊 = In(𝜔). By Proposition 2.3.16, the 1-form 𝑊 has a quasi-homogeneous
curve 𝐶1 as an invariant curve, where 𝜙1(𝑡) = (𝑡𝑛 , 𝑎𝑚𝑡𝑚) is a primitive parametrization of 𝐶.
Equivalently, 𝐶1 is defined by the implicit equation 𝑦𝑛 + 𝜇𝑥𝑚 = In( 𝑓 ), for 𝑓 = 0 an implicit
equation of 𝐶, where again 𝜇 ≠ 0. Let us invoke the result of Theorem 8.2 for the case of length
zero established in subsection 8.1. In this case we consider the two 1-forms

𝑊1 = 𝑛𝑥𝑑𝑦 − 𝑚𝑦𝑑𝑥, 𝑊̃1 = 𝑛𝑦𝑛−1𝑑𝑦 + 𝜇𝑚𝑥𝑚−1𝑑𝑥,

that give a Saito basis {𝑊1 , 𝑊̃1} of 𝐶1. This gives a decomposition

𝑊 = 𝐻𝑊1 + 𝐺̃1𝑊̃1 ,
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where we can take 𝐻, 𝐺̃1 to be quasi-homogeneous with respect to the weights (𝑛, 𝑚). By
Statement 2 of Proposition 5.3.5 and up to multiply 𝜔̃1 by a constant, we have that

In(𝜔̃1) = 𝑊̃1.

Now, we are going to show the existence of a decomposition

𝐻𝑊1 = 𝐺𝑠+1𝑊𝑠+1 +
𝑠+1∑
ℓ=2

𝐺̃ℓ𝑊̃ℓ , where 𝑊̃ℓ = In(𝜔̃ℓ ), 𝑊𝑠+1 = In(𝜔𝑠+1), (8.1)

with all the coefficients 𝐺𝑠+1 and 𝐺̃ℓ being quasi-homogeneous.
Let 𝛿 = 𝜈𝐷(𝐻𝑊1). Since 𝐻 is a quasi-homogeneous polynomial, we can write

𝐻𝑊1 =

∑
𝛼𝑛+𝛽𝑚=𝛿

𝑊𝛼𝛽 , 𝑊𝛼𝛽 = 𝜇𝛼𝛽𝑥
𝛼𝑦𝛽

(
𝑛
𝑑𝑦

𝑦
− 𝑚

𝑑𝑥

𝑥

)
, 𝛼, 𝛽 ≥ 1.

Now, it is enough to show that each of the 1-forms 𝑊𝛼𝛽 is reachable by one of the 1-forms in the
set

𝒯 = {𝜔𝑠+1 , 𝜔̃2 , . . . , 𝜔̃𝑠+1}.

We consider two cases:

a) There is a differential 1-form 𝑊𝛼𝛽 ≠ 0 such that 𝛼 ≥ 𝑚 or 𝛽 ≥ 𝑛.
b) For any 𝑊𝛼𝛽 ≠ 0 we have that 𝛼 < 𝑚 and 𝛽 < 𝑛.

Assume we are in case a). By a straightforward verification, we see that all the terms 𝑊𝛼𝛽 ≠ 0
satisfy the condition that either 𝛼 ≥ 𝑚 or 𝛽 ≥ 𝑛. Note that the indexes of the 1-forms 𝑊𝛼𝛽 and
𝑊𝛼′𝛽′ are related by 𝛼 = 𝛼′ + 𝑚ℓ and 𝛽 = 𝛽′ + 𝑛ℓ , for some ℓ ∈ Z. In view of Lemma 8.2.1 and
Remark 8.2.2, we see that each 𝑊𝛼𝛽 ≠ 0 is reachable by an element of 𝒯 .

Assume now that we are in case b). Then, following the same argument as before, we have
that there is only one 1-form 𝑊𝛼𝛽 ≠ 0 and hence, we have

𝐻𝑊1 = 𝜇𝛼𝛽𝑥
𝛼−1𝑦𝛽−1(𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦), 1 ≤ 𝛼 < 𝑚, 1 ≤ 𝛽 < 𝑛.

Moreover, we have that 𝐺̃1𝑊̃1 = 0. Indeed, we know that

𝐺̃1𝑊̃1 = 𝐺̃1(𝑛𝑦𝑛−1𝑑𝑦 + 𝜇𝑚𝑥𝑚−1𝑑𝑥)

and, if we write, as before,

𝐺̃1𝑊̃1 =

∑
𝛼′𝑛+𝛽′𝑚=𝛿

𝑊̃𝛼′𝛽′ , 𝑊̃𝛼′𝛽′ = 𝑥𝛼
′
𝑦𝛽

′
(
𝜇𝛼′𝛽′

𝑑𝑦

𝑦
𝜉𝛼′𝛽′

𝑑𝑥

𝑥

)
, 𝛼, 𝛽 ≥ 1.

Then, the terms 𝑊̃𝛼′𝛽′ fit in the description of a) and with the same divisorial value as 𝑊𝛼𝛽, this
contradicts the already proven fact that if one term satisfies condition a), then the rest of the
terms must also satisfy condition a). We conclude that

In(𝜔) = 𝑊 = 𝐻𝑊1 = 𝜇𝛼𝛽𝑥
𝛼−1𝑦𝛽−1(𝑚𝑦𝑑𝑥 − 𝑛𝑥𝑑𝑦) = 𝜇𝛼𝛽𝑥

𝛼−1𝑦𝛽−1𝑊1.

Note that 𝜔 is then reachable by 𝜔1. Let 𝑞 be the maximum index 1 ≤ 𝑞 ≤ 𝑠 + 1 such that 𝜔 is
reachable by 𝜔𝑞 . Note that the case 𝑞 = 𝑠 + 1 is precisely a case covered by the statement we aim
to prove. Thus, we assume that 1 ≤ 𝑞 ≤ 𝑠. Write

𝜂 = 𝜔 − 𝜇′′𝑥𝑎𝑦𝑏𝜔𝑞 , 𝜈𝐷(𝜂) > 𝜈𝐷(𝜔).
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We have that 𝜈𝐶(𝜂) = 𝜈𝐶(𝑥𝑎𝑦𝑏𝜔𝑞). We can invoke Statement 4 in Theorem 5.2.10 to obtain that
𝜈𝐶(𝜂) ∈ Λ𝑞−1, that is

𝜆𝑞 + 𝑛𝑎 + 𝑚𝑏 ∈ Λ𝑞−1.

Where we recall that Λ𝑞−1 is an element of the decomposition sequence of Λ𝐶 . By Lemma 3.2.5,
we have that either 𝑎 ≥ ℓ 𝑛

𝑞+1 or 𝑏 ≥ ℓ𝑚
𝑞+1. Assume that 𝑎 ≥ ℓ 𝑛

𝑞+1. If 𝑢𝑞+1 = 𝑢𝑛
𝑞+1, then 𝜔 is reachable

by 𝜔𝑞+1, contradicting the maximality of 𝑞, if 𝑢𝑞+1 = 𝑢𝑚
𝑞+1, we obtain that 𝜔 is reachable by 𝜔̃𝑞+1,

as required. We recall that the reachability is obtained by the fact that the initial parts of 𝜔𝑞+1

and 𝜔̃𝑞+1 are proportional to the ones of 𝑥ℓ
𝑛
𝑞+1𝜔𝑞 and 𝑦

ℓ𝑚
𝑞+1𝜔𝑞 , see Theorem 5.3.1. Same arguments

for the case that 𝑏 ≥ ℓ𝑚
𝑞+1. This ends the proof. □

Remark 8.2.4. Let (ℰ, ℰ̃ 𝑗), with ℰ̃ 𝑗 = (𝜔̃ 𝑗+1 , 𝜔̃ 𝑗+2 , . . . , 𝜔̃𝑠+1), be a 𝑗-partial standard system, with
𝑗 ≥ 1 and take a 1-form 𝜔 ∈ Ω1

𝑀0 ,𝑃0
[𝐶] such that 𝜈𝐷(𝜔) < 𝑡 𝑗 . By the same arguments as in the

preceding lemma, noting that 𝑡 𝑗 < 𝑡 𝑗−1 < · · · < 𝑡1, we see that there is a combination

In(𝜔) = 𝐺𝑠+1𝑊𝑠+1 +
𝑠+1∑

ℓ=𝑗+1
𝐺̃ℓ𝑊̃ℓ , where 𝑊̃ℓ = In(𝜔̃ℓ ), 𝑊𝑠+1 = In(𝜔𝑠+1), (8.2)

all the coefficients being quasi-homogeneous of the corresponding degree.

Proposition 8.2.5. The set 𝒯 = {𝜔𝑠+1 , 𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠+1} is a generating system of the Saito 𝒪𝑀0 ,𝑃0-
module Ω1

𝑀0 ,𝑃0
[𝐶].

Proof. Take 𝜔 ∈ Ω1
𝑀0 ,𝑃0

[𝐶], we know the existence of a decomposition

In(𝜔) = 𝐺𝑠+1𝑊𝑠+1 +
𝑠+1∑
ℓ=1

𝐺̃ℓ𝑊̃ℓ , where 𝑊̃ℓ = In(𝜔̃ℓ ), 𝑊𝑠+1 = In(𝜔𝑠+1),

with all the coefficients 𝐺𝑠+1 and 𝐺̃ℓ being quasi-homogeneous. We re-start the procedure of
Lemma 8.2.3 with

𝜔′ = 𝜔 −
(
𝐺𝑠+1𝜔𝑠+1 +

𝑠+1∑
ℓ=1

𝐺̃ℓ 𝜔̃ℓ

)
.

In this way, we obtain a formal expression 𝜔 = 𝑔̂𝑠+1𝜔𝑠+1 +
∑𝑠+1

ℓ=1
̂̃𝑔ℓ 𝜔̃ℓ . By a direct application of

Artin’s Approximation Theorem [5], we obtain the desired convergent expression

𝜔 = 𝑔𝑠+1𝜔𝑠+1 +
∑𝑠+1

ℓ=1 𝑔̃ℓ 𝜔̃ℓ .

□

8.3 Existence of Special Standard Systems

We recall that in Definition 6.1, we introduce the notion of special standard system. This
subsection is devoted to provide a proof of the following result

Proposition 8.3.1. Assume that the length 𝑠 of the semimodule Λ𝐶 of differential values of the cusp 𝐶 is
𝑠 ≥ 1. Take two 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1 in Ω1

𝑀0 ,𝑃0
[𝐶] such that 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1.

Then, there is a special standard system (ℰ, ℰ̃) for 𝐶 containing 𝜔𝑠+1 , 𝜔̃𝑠+1 in the sense that

ℰ = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1), ℰ̃ = (𝜔̃1 , 𝜔̃2 , . . . , 𝜔̃𝑠 , 𝜔̃𝑠+1).

The proof of the above proposition follows directly from next result
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Proposition 8.3.2. Assume that the length 𝑠 of the semimodule Λ𝐶 of differential values of the cusp 𝐶 is
𝑠 ≥ 1. Take two 1-forms 𝜔𝑠+1 and 𝜔̃𝑠+1 in Ω1

𝑀0 ,𝑃0
[𝐶] such that 𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 and 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1.

For any index 1 ≤ 𝑗 ≤ 𝑠 there are functions 𝑓𝑗 , 𝑓𝑗 such that

𝜈𝐷( 𝑓𝑗𝜔𝑠+1 + 𝑓𝑗 𝜔̃𝑠+1) = 𝑡 𝑗 .

Along the whole proof, we consider an extended standard basis

ℰ = (𝜔−1 , 𝜔0 , 𝜔1 , . . . , 𝜔𝑠 , 𝜔𝑠+1)

ending at 𝜔𝑠+1. The proof of Proposition 8.3.2 is quite long. In order to make clear the arguments,
we do it in two steps:

• Step 1: case 𝑗 = 𝑠. That is, we find 𝜔̃𝑠 ∈ Ω1
𝑀0 ,𝑃0

[𝐶] such that 𝜈𝐷(𝜔̃𝑠) = 𝑡𝑠 .
• Step 2: The general case.

Even though in Step 2 we assume taking a in index 𝑗 < 𝑠, in fact, the proof also holds to the case
of Step 1. Thus, the reader can skip the Step 1.

8.3.1 First Case

This subsection is devoted to the proof of Proposition 8.3.2 when 𝑗 = 𝑠. We are going to prove
that there is a combination

𝜔̃𝑠 = 𝑓𝑠 𝜔̃𝑠+1 + 𝑓𝑠𝜔𝑠+1

such that 𝜈𝐷(𝜔̃𝑠) = 𝑡𝑠 .
There are two possible cases: 𝑡𝑠+1 = 𝑡𝑠 + 𝑛ℓ 𝑛

𝑠+1 and 𝑡𝑠+1 = 𝑡𝑠 + 𝑚ℓ𝑚
𝑠+1. Both cases run in a

similar way. We assume from now on that 𝑡𝑠+1 = 𝑡𝑠 + 𝑛ℓ 𝑛
𝑠+1 and hence we have 𝑡𝑠+1 = 𝑡𝑠 + 𝑚ℓ𝑚

𝑠+1.
With the notations as in Chapter 5, let us write Delorme’s decompositions of 𝜔̃𝑠+1 and 𝜔𝑠+1 as
follows

𝜔̃𝑠+1 = 𝜇̃1𝑦
ℓ𝑚
𝑠+1𝜔𝑠 + 𝜇̃2𝑥

𝑎𝑠+1𝜔𝑘𝑚𝑠 + 𝜂̃, 𝜂̃ =

𝑠∑
ℓ=−1

ℎ̃ℓ𝜔ℓ , (8.3)

𝜔𝑠+1 = 𝜇1𝑥
ℓ𝑛
𝑠+1𝜔𝑠 + 𝜇2𝑦

𝑏𝑠+1𝜔𝑘𝑛𝑠 + 𝜂, 𝜂 =

𝑠∑
ℓ=−1

ℎℓ𝜔ℓ (8.4)

where we have the following properties:

1. In(𝜔𝑠+1) = 𝜇1 In(𝑥ℓ𝑛𝑠+1𝜔𝑠). Recall that 𝑡𝑠+1 = 𝑡𝑠 + 𝑛ℓ 𝑛
𝑠+1.

2. In(𝜔̃𝑠+1) = 𝜇̃1 In(𝑦ℓ𝑚𝑠+1𝜔𝑠). Recall that 𝑡𝑠+1 = 𝑡𝑠 + 𝑚ℓ𝑚
𝑠+1.

3. 𝜈𝐶(𝜇1𝑥
ℓ𝑛
𝑠+1𝜔𝑠 + 𝜇2𝑦

𝑏𝑠+1𝜔𝑘𝑛𝑠 ) > 𝜈𝐶(𝜇1𝑥
ℓ𝑛
𝑠+1𝜔𝑠) = 𝜈𝐶(𝜇2𝑦

𝑏𝑠+1𝜔𝑘𝑛𝑠 ) = 𝑢𝑛
𝑠+1 = 𝑢𝑠+1. Recall that

𝑢𝑛
𝑠+1 = 𝜆𝑠 + 𝑛ℓ 𝑛

𝑠+1 = 𝜆𝑘𝑛𝑠 + 𝑚𝑏𝑠+1.
4. 𝜈𝐶(𝜇̃1𝑦

ℓ𝑚
𝑠+1𝜔𝑠 + 𝜇̃2𝑥

𝑎𝑠+1𝜔𝑘𝑚𝑠 ) > 𝜈𝐶(𝜇1𝑦
ℓ𝑚
𝑠+1𝜔𝑠) = 𝜈𝐶(𝜇2𝑥

𝑎𝑠+1𝜔𝑘𝑚𝑠 ) = 𝑢𝑚
𝑠+1 = 𝑢̃𝑠+1. Recall that

𝑢𝑚
𝑠+1 = 𝜆𝑠 + 𝑚ℓ𝑚

𝑠+1 = 𝜆𝑘𝑚𝑠 + 𝑛𝑎𝑠+1.
5. For any −1 ≤ ℓ ≤ 𝑠, we have that 𝜈𝐶(ℎℓ𝜔ℓ ) > 𝑢𝑛

𝑠+1 and 𝜈𝐶(ℎ̃ℓ𝜔ℓ ) > 𝑢𝑚
𝑠+1.

Let us consider the 1-form 𝜃0 ∈ Ω1
𝑀0 ,𝑃0

[𝐶] defined by

𝜃0 = 𝜇1𝑥
ℓ𝑛
𝑠+1 𝜔̃𝑠+1 − 𝜇̃1𝑦

ℓ𝑚
𝑠+1𝜔𝑠+1 = 𝜉 + 𝜁0 ,

where 𝜉 = 𝜇̃3𝑥
ℓ𝑛
𝑠+1+𝑎𝑠+1𝜔𝑘𝑚𝑠 − 𝜇3𝑦

ℓ𝑚
𝑠+1+𝑏𝑠+1𝜔𝑘𝑛𝑠 , with 𝜇̃3 = 𝜇1𝜇̃2, 𝜇3 = 𝜇̃1𝜇2 and such that 𝜁0 =∑𝑠

ℓ=−1 𝑔
0
ℓ
𝜔ℓ . In virtue of Equations (8.3) and (8.4), we obtain that 𝜁0 = 𝜇1𝑥

ℓ𝑛
𝑠+1 𝜂̃ − 𝜇̃1𝑦

ℓ𝑚
𝑠+1𝜂,

therefore
𝑔0
ℓ = 𝜇1𝑥

ℓ𝑛
𝑠+1 ℎ̃ℓ − 𝜇̃1𝑦

ℓ𝑚
𝑠+1 ℎℓ , for ℓ = −1, 0, . . . , 𝑠. (8.5)
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In a more general way, given a pair of functions 𝑓 , 𝑓 ∈ 𝒪𝑀0 ,𝑃0 , we write

𝜃 𝑓 , 𝑓 = 𝜃0 + 𝑓 𝜔̃𝑠+1 + 𝑓 𝜔𝑠+1 = 𝜉 + 𝜁 𝑓 , 𝑓 ∈ Ω1
𝑀0 ,𝑃0

[𝐶],

where 𝜁 𝑓 , 𝑓 = 𝜁0 + 𝑓 𝜔̃𝑠+1 + 𝑓 𝜔𝑠+1. We also write 𝜁 𝑓 , 𝑓 =
∑𝑠

ℓ=−1 𝑔
𝑓 , 𝑓

ℓ
𝜔ℓ . Let us note that 𝜃0 = 𝜃0,0,

𝜁0 = 𝜁0,0 and 𝑔0
ℓ
= 𝑔0,0

ℓ
, for −1 ≤ ℓ ≤ 𝑠.

In order to prove the desired result, we are going to show the existence of a pair 𝑓 , 𝑓 such
that 𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝑡𝑠 .

We have two options: 𝑢𝑠 = 𝑢𝑛
𝑠 and 𝑢𝑠 = 𝑢𝑚

𝑠 . Both cases run in a similar way. So, we fix the
case that 𝑢𝑠 = 𝑢𝑛

𝑠 . Hence, we have 𝑡𝑠 = 𝑡𝑛𝑠 , 𝑢̃𝑠 = 𝑢𝑚
𝑠 and 𝑡𝑠 = 𝑡𝑚𝑠 . By Proposition 3.5.9, we know

that 𝑘𝑛𝑠 = 𝑠 − 1 and 𝑘𝑚𝑠 = 𝑘𝑚
𝑠−1. Let us check that the divisorial value of 𝜉 is 𝑡𝑠 .

Lemma 8.3.3. 𝜈𝐷(𝜉) = 𝑡𝑠 .

Proof. By Proposition 3.6.3, the colimits 𝑎𝑠+1 and 𝑏𝑠+1 satisfy that 𝑏𝑠+1+ℓ𝑚𝑠+1 = ℓ𝑚𝑠 and 𝑎𝑠+1+ℓ 𝑛𝑠+1 =

𝑎𝑠 . Hence, we have that

𝜉 = −𝜇3𝑦
ℓ𝑚𝑠 𝜔𝑘𝑛𝑠 + 𝜇̃3𝑥

𝑎𝑠𝜔𝑘𝑚𝑠 = −𝜇3𝑦
ℓ𝑚𝑠 𝜔𝑠−1 + 𝜇̃3𝑥

𝑎𝑠𝜔𝑘𝑚
𝑠−1

.

Let us show that 𝜈𝐷(𝜉) = 𝑡𝑠 . Note that 𝜈𝐷(𝑦ℓ
𝑚
𝑠 𝜔𝑠−1) = 𝑚ℓ𝑚𝑠 + 𝑡𝑠−1 = 𝑡𝑚𝑠 = 𝑡𝑠 . Thus, it is

enough to show that 𝜈𝐷(𝑥𝑎𝑠𝜔𝑘𝑚
𝑠−1
) > 𝑡𝑠 = 𝑡𝑚𝑠 . We have 𝜈𝐷(𝑥𝑎𝑠𝜔𝑘𝑚

𝑠−1
) = 𝑛𝑎𝑠 + 𝑡𝑘𝑚

𝑠−1
. Since

𝑢𝑚
𝑠 = 𝑚ℓ𝑚𝑠 + 𝜆𝑠−1 = 𝑛𝑎𝑠 + 𝜆𝑘𝑚

𝑠−1
, then, by Lemma 3.2.8, it follows that

𝑛𝑎𝑠 − 𝑚ℓ𝑚𝑠 = 𝜆𝑠−1 − 𝜆𝑘𝑚
𝑠−1

> 𝑡𝑠−1 − 𝑡𝑘𝑚
𝑠−1

⇒
⇒ 𝑛𝑎𝑠 + 𝑡𝑘𝑚

𝑠−1
> 𝑡𝑠 = 𝑡𝑠−1 + 𝑚ℓ𝑚𝑠 .

We conclude that 𝜈𝐷(𝜉) = 𝑡𝑠 . □

The problem is reduced to finding 𝑓 , 𝑓 such that 𝜈𝐷(𝜁 𝑓 , 𝑓 ) > 𝑡𝑠 . We proceed to verify this.

We say that a pair of functions 𝑓 , 𝑓 is a good pair if and only if we have that 𝜈𝐶(𝑔 𝑓 , 𝑓

ℓ
𝜔ℓ ) > 𝑢̃𝑠 ,

for any ℓ = −1, 0, . . . , 𝑠.
We end the proof as a direct consequence of the following lemmas:

Lemma 8.3.4. The pair 𝑓 = 0, 𝑓 = 0 is a good pair.

Lemma 8.3.5. If 𝑓 , 𝑓 is a good pair, then 𝜈𝐷(𝑔 𝑓 , 𝑓

ℓ
𝜔ℓ ) > 𝑡𝑠 , for −1 ≤ ℓ ≤ 𝑠 − 1 and 𝜈𝐷(𝑔 𝑓 , 𝑓

𝑠 𝜔𝑠) ≠ 𝑡𝑠 .

Corollary 8.3.6. Assume that 𝑓 , 𝑓 is a good pair. Then, we have that either 𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝑡𝑠 or

𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝜈𝐷(𝑔 𝑓 , 𝑓
𝑠 𝜔𝑠) < 𝑡𝑠 .

Lemma 8.3.7. If 𝑓 , 𝑓 is a good pair and 𝜈𝐷(𝜃 𝑓 , 𝑓 ) < 𝑡𝑠 , then there is another good pair 𝑓1 , 𝑓1 such that

𝜈𝐷(𝑔 𝑓1 , 𝑓1
𝑠 𝜔𝑠) > 𝜈𝐷(𝑔 𝑓 , 𝑓

𝑠 𝜔𝑠).

Indeed, by Lemma 8.3.4, there is at least one good pair, by Lemma 8.3.5 and Lemma 8.3.3 we
obtain Corollary 8.3.6. Now, we apply repeatedly Lemma 8.3.7 to get that 𝜈𝐷(𝑔 𝑓 , 𝑓

𝑠 𝜔𝑠) ≥ 𝑡𝑠 , hence,
in view of Lemmas 8.3.3 and 8.3.4, we get that 𝜈𝐷(𝑔 𝑓 , 𝑓

𝑠 𝜔𝑠) > 𝑡𝑠 and 𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝑡𝑠 as desired.
The rest of this subsection is devoted to proving the above three Lemmas 8.3.4, 8.3.5 and

8.3.7.
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Proof of Lemma 8.3.4. We have to prove that

𝜈𝐶(𝑔0
ℓ 𝜔ℓ ) > 𝑢̃𝑠 , for any ℓ = −1, 0, . . . , 𝑠.

By Equation (8.5) we have that 𝑔0
ℓ
= 𝜇1𝑥

ℓ𝑛
𝑠+1 ℎ̃ℓ − 𝜇̃1𝑦

ℓ𝑚
𝑠+1 ℎℓ , for any ℓ = −1, 0, . . . , 𝑠. Now, it is

enough to show that
𝜈𝐶(𝑥ℓ

𝑛
𝑠+1 ℎ̃ℓ𝜔ℓ ) > 𝑢̃𝑠 and 𝜈𝐶(𝑦ℓ

𝑚
𝑠+1 ℎℓ𝜔ℓ ) > 𝑢̃𝑠 .

We have that

𝜈𝐶(𝑥ℓ
𝑛
𝑠+1 ℎ̃ℓ𝜔ℓ ) = 𝑛ℓ 𝑛𝑠+1 + 𝜈𝐶(ℎ̃ℓ𝜔ℓ ) > 𝑛ℓ 𝑛𝑠+1 + 𝑢𝑚

𝑠+1 = 𝑛ℓ 𝑛𝑠+1 + 𝑢̃𝑠+1

= 𝑛ℓ 𝑛𝑠+1 + 𝑛𝑎𝑠+1 + 𝜆𝑘𝑚𝑠 = 𝑛(ℓ 𝑛𝑠+1 + 𝑎𝑠+1) + 𝜆𝑘𝑚
𝑠−1

= 𝑛𝑎𝑠 + 𝜆𝑘𝑚
𝑠−1

= 𝑢𝑚
𝑠 = 𝑢̃𝑠

𝜈𝐶(𝑦ℓ
𝑚
𝑠+1 ℎℓ𝜔ℓ ) = 𝑚ℓ𝑚𝑠+1 + 𝜈𝐶(ℎℓ𝜔ℓ ) > 𝑚ℓ𝑚𝑠+1 + 𝑢𝑛

𝑠+1 = 𝑚ℓ𝑚𝑠+1 + 𝑢𝑠+1

= 𝑚ℓ𝑚𝑠+1 + 𝑚𝑏𝑠+1 + 𝜆𝑘𝑛𝑠 = 𝑚(ℓ𝑚𝑠+1 + 𝑏𝑠+1) + 𝜆𝑠−1

= 𝑚ℓ𝑚𝑠 + 𝜆𝑠−1 = 𝑢𝑚
𝑠 = 𝑢̃𝑠 .

Recall that the equalities ℓ 𝑛
𝑠+1 + 𝑎𝑠+1 = 𝑎𝑠 and ℓ𝑚

𝑠+1 + 𝑏𝑠+1 = ℓ𝑚𝑠 comes from Proposition 3.6.3. This
ends the proof of Lemma 8.3.4. □

Proof of Lemma 8.3.5. Along the proof of this lemma, we just write 𝑔
𝑓 , 𝑓

ℓ
= 𝑔ℓ , in order to simplify

the notation.
Let us first show that 𝜈𝐷(𝑔ℓ𝜔ℓ ) > 𝑡𝑠 , for any −1 ≤ ℓ ≤ 𝑠 − 1. Recall that 𝜈𝐶(𝑔ℓ𝜔ℓ ) > 𝑢̃𝑠 and

write
𝜈𝐶(𝑔ℓ𝜔ℓ ) = 𝜈𝐶(𝑔ℓ ) + 𝜆ℓ > 𝑢̃𝑠 = 𝑢𝑚

𝑠 = 𝜆𝑠−1 + 𝑚ℓ𝑚𝑠 .

Noting that 𝜆𝑠−1 − 𝜆ℓ ≥ 𝑡𝑠−1 − 𝑡ℓ , in view of Lemma 3.2.8, we have that

𝜈𝐶(𝑔ℓ ) + 𝜆𝑠−1 > 𝜆𝑠−1 + 𝑡𝑠−1 − 𝑡ℓ + 𝑚ℓ𝑚𝑠

and thus we have 𝜈𝐶(𝑔ℓ ) + 𝑡ℓ > 𝑡𝑠−1 + 𝑚ℓ𝑚𝑠 = 𝑡𝑚𝑠 = 𝑡𝑠 .
There are two cases: if 𝜈𝐷(𝑔ℓ ) < 𝑛𝑚, then 𝜈𝐶(𝑔ℓ ) = 𝜈𝐷(𝑔ℓ ) (Proposition 2.3.14). Second,

𝜈𝐷(𝑔ℓ ) ≥ 𝑛𝑚. Noting that 𝑡𝑠 ≤ 𝑛𝑚, see Corollary 3.6.2, we conclude in both cases that

𝜈𝐷(𝑔ℓ𝜔ℓ ) = 𝜈𝐷(𝑔ℓ ) + 𝑡ℓ > 𝑡𝑠 ,

as desired.
Let us show that 𝜈𝐷(𝑔𝑠𝜔𝑠) ≠ 𝑡𝑠 . Assume by contradiction that 𝜈𝐷(𝑔𝑠𝜔𝑠) = 𝑡𝑠 . Recalling that

𝑡𝑠 = 𝑡𝑛𝑠 , 𝑡𝑠 = 𝑡𝑚𝑠 , 𝑡𝑛𝑠 = 𝑡𝑠−1 + 𝑛ℓ 𝑛𝑠 and 𝑡𝑚𝑠 = 𝑡𝑠−1 + 𝑚ℓ𝑚𝑠 , we have

𝜈𝐷(𝑔𝑠𝜔𝑠) = 𝑡𝑠 ⇒ 𝜈𝐷(𝑔𝑠) + 𝑡𝑠 = 𝑡𝑠 ⇒ 𝜈𝐷(𝑔𝑠) + 𝑡𝑛𝑠 = 𝑡𝑚𝑠 ⇒
⇒ 𝜈𝐷(𝑔𝑠) + 𝑡𝑠−1 + 𝑛ℓ 𝑛𝑠 = 𝑡𝑠−1 + 𝑚ℓ𝑚𝑠 ⇒
⇒ 𝑚ℓ𝑚𝑠 = 𝜈𝐷(𝑔𝑠) + 𝑛ℓ 𝑛𝑠 .

This implies that 𝑚ℓ𝑚𝑠 ∈ Γ𝐶 is written in two different ways as a combination of 𝑛, 𝑚 with
nonnegative integer coefficients. This is not possible, since 𝑚ℓ𝑚𝑠 < 𝑛𝑚, in view of Remark 3.2.3.
The proof of Lemma 8.3.5 is ended. □

Proof of Lemma 8.3.7. Assume that 𝑓 , 𝑓 is a good pair with 𝜈𝐷(𝜃 𝑓 , 𝑓 ) < 𝑡𝑠 . Let us find another

good pair 𝑓1 , 𝑓1 such that 𝜈𝐷(𝑔 𝑓1 , 𝑓1
𝑠 𝜔𝑠) > 𝜈𝐷(𝑔 𝑓 , 𝑓

𝑠 𝜔𝑠).
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Since 𝜈𝐷(𝜉) = 𝑡𝑠 (Lemma 8.3.3), 𝜃 𝑓 , 𝑓 = 𝜉 + 𝜁 𝑓 , 𝑓 and 𝜈𝐷(𝜃 𝑓 , 𝑓 ) < 𝑡𝑠 , we know that In(𝜃 𝑓 , 𝑓 ) =
In(𝜁 𝑓 , 𝑓 ). In particular 𝜈𝐷(𝜁 𝑓 , 𝑓 ) = 𝜈𝐷(𝜃 𝑓 , 𝑓 ). Applying Lemma 8.3.5, we get that

In(𝜃 𝑓 , 𝑓 ) = In(𝜁 𝑓 , 𝑓 ) = In(𝑔 𝑓 , 𝑓
𝑠 𝜔𝑠) = In(𝑔 𝑓 , 𝑓

𝑠 ) In(𝜔𝑠).

Noting that 𝜈𝐷(𝜃 𝑓 , 𝑓 ) < 𝑡𝑠 ≤ 𝑛𝑚, we have that 𝜈𝐷(𝑔 𝑓 , 𝑓
𝑠 ) < 𝑛𝑚. Hence, for certain 𝑎, 𝑏 ≥ 0 and

𝜇′ ≠ 0, we can write In(𝑔 𝑓 , 𝑓
𝑠 ) = 𝜇′𝑥𝑎𝑦𝑏 . Now we consider the decomposition

𝜃 𝑓 , 𝑓 = 𝜇′𝑥𝑎𝑦𝑏𝜔𝑠 + 𝜂′, 𝜈𝐷(𝜂′) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑠).

As 𝜈𝐶(𝜃 𝑓 , 𝑓 ) = ∞, we have that 𝜈𝐶(𝜂′) = 𝜈𝐶(𝜇′𝑥𝑎𝑦𝑏𝜔𝑠) = 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑠 . Let us apply Theorem
5.2.10, Statement 5, to the integer number 𝑘 = 𝑛𝑎 + 𝑚𝑏 + 𝜆𝑠 . Since the 1-form 𝜂′ satisfies both
𝜈𝐶(𝜂′) = 𝑘 and 𝜈𝐷(𝜂′) > 𝜈𝐷(𝑥𝑎𝑦𝑏𝜔𝑠), we conclude that 𝑘 ∈ Λ𝑠−1. By Lemma 3.2.5, we know that
one of the following properties holds:

𝑎 ≥ ℓ 𝑛𝑠+1 or 𝑏 ≥ ℓ𝑚𝑠+1.

Let us show that 𝜃 𝑓 , 𝑓 is reachable by 𝜔𝑠+1 or from 𝜔̃𝑠+1. Assume that 𝑎 ≥ ℓ 𝑛
𝑠+1, then we have that

𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑠 = 𝑛ℓ 𝑛𝑠+1 + 𝑡𝑠 + 𝑛(𝑎 − ℓ 𝑛𝑠+1) + 𝑚𝑏 = 𝑡𝑛𝑠+1 + 𝑛(𝑎 − ℓ 𝑛𝑠+1) + 𝑚𝑏.

Noting that 𝑡𝑠+1 = 𝑡𝑛
𝑠+1, we have that 𝜃 𝑓 , 𝑓 and 𝑥𝑎−ℓ

𝑛
𝑠+1𝑦𝑏𝜔𝑠+1 have the same initial parts (up to a

constant) and thus 𝜃 𝑓 , 𝑓 is reachable by 𝜔𝑠+1. In the same way, if we assume that 𝑏 ≥ ℓ𝑚
𝑠+1, we

have

𝜈𝐷(𝜃 𝑓 , 𝑓 ) = 𝑛𝑎 + 𝑚𝑏 + 𝑡𝑠 = 𝑚ℓ𝑚𝑠+1 + 𝑡𝑠 + 𝑚(𝑏 − ℓ𝑚𝑠+1) + 𝑛𝑎 = 𝑡𝑚𝑠+1 + 𝑚(𝑏 − ℓ𝑚𝑠+1) + 𝑛𝑎.

We conclude as above that 𝜃 𝑓 , 𝑓 is reachable by 𝜔̃𝑠+1.
Assume now that 𝑎 ≥ ℓ 𝑛

𝑠+1 and hence 𝜃 𝑓 , 𝑓 is reachable by 𝜔𝑠+1, the case 𝑏 ≥ ℓ𝑚
𝑠+1 is treated in

a similar way. There is a constant 𝜇3 ≠ 0 such that

𝜈𝐷(𝜃 𝑓 , 𝑓 − 𝜇3𝑥
𝑎−ℓ𝑛

𝑠+1𝑦𝑏𝜔𝑠+1) > 𝜈𝐷(𝜃 𝑓 , 𝑓 ).

Let us put 𝑓1 = 𝑓 and 𝑓1 = 𝑓 − 𝜇3𝑥
𝑎−ℓ𝑛

𝑠+1 𝑦𝑏 . Note that

𝜃 𝑓1 , 𝑓1
= 𝜃 𝑓 , 𝑓 − 𝜇3𝑥

𝑎−ℓ𝑛
𝑠+1𝑦𝑏𝜔𝑠+1

and hence 𝜈𝐷(𝜃 𝑓1 , 𝑓1
) > 𝜈𝐷(𝜃 𝑓 , 𝑓 ).

Let us verify that 𝑓1 , 𝑓1 is a good pair. Using the decomposition of 𝜔𝑠+1 in Equation (8.4), we
write

𝑥𝑎−ℓ
𝑛
𝑠+1 𝑦𝑏𝜔𝑠+1 =

∑𝑠
ℓ=−1 𝑔

′
ℓ
𝜔ℓ ,

We note that
𝜁 𝑓1 , 𝑓

= 𝜁 𝑓 , 𝑓 − 𝜇3𝑥
𝑎−ℓ𝑛

𝑠+1𝑦𝑏𝜔𝑠+1.

Since 𝑓 , 𝑓 is a good pair, we have that 𝜈𝐶(𝑔 𝑓 , 𝑓

ℓ
𝜔ℓ ) > 𝑢̃𝑠 . Thus 𝑓1 , 𝑓1 is a good pair if 𝜈𝐶(𝑔′ℓ𝜔ℓ ) > 𝑢̃𝑠 ,

for ℓ = −1, 0, . . . , 𝑠. Let us show that this is true. Since the terms 𝑔′
ℓ
𝜔ℓ , for −1 ≤ ℓ ≤ 𝑠, come from

the decomposition of 𝜔𝑠+1 times a monomial, as a consequence of Theorem 5.3.1 we see that

𝜈𝐶(𝑔′𝑠𝜔𝑠) ≤ 𝜈𝐶(𝑔′ℓ𝜔ℓ ), for − 1 ≤ ℓ ≤ 𝑠.

Hence, it is enough to show that 𝜈𝐶(𝑔′𝑠𝜔𝑠) > 𝑢̃𝑠 . Notice that

In(𝜁 𝑓 , 𝑓 ) = In(𝑔 𝑓 , 𝑓
𝑠 𝜔𝑠) = 𝜇3 In(𝑥𝑎−ℓ𝑛𝑠+1𝑦𝑏𝜔𝑠+1) = 𝜇3 In(𝑔′𝑠𝜔𝑠),
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where the last equality comes from Corollary 5.3.4. Thus, we have

𝜈𝐷(𝑔 𝑓 , 𝑓
𝑠 𝜔𝑠) = 𝜈𝐷(𝑔′𝑠𝜔𝑠) < 𝑡𝑠 ≤ 𝑛𝑚.

Therefore, 𝜈𝐷(𝑔 𝑓 , 𝑓
𝑠 ) = 𝜈𝐷(𝑔′𝑠) < 𝑛𝑚. This implies that

𝜈𝐷(𝑔 𝑓 , 𝑓
𝑠 ) = 𝜈𝐶(𝑔 𝑓 , 𝑓

𝑠 ) = 𝜈𝐶(𝑔′𝑠) = 𝜈𝐷(𝑔′𝑠).

Since 𝑓 , 𝑓 is a good pair, we conclude that 𝜈𝐶(𝑔′𝑠𝜔𝑠) = 𝜈𝐶(𝑔 𝑓 , 𝑓
𝑠 𝜔𝑠) > 𝑢̃𝑠 . If 𝑏 ≥ ℓ𝑚

𝑠+1, then 𝜃 𝑓 , 𝑓 is
reachable by 𝜔̃𝑠+1 and we proceed in a similar way. This ends the proof of Lemma 8.3.7. □

8.3.2 Induction Step

This subsection is devoted to the proof of Proposition 8.3.2 when 1 ≤ 𝑗 < 𝑠, assuming that the
result is true for 𝑗 + 1, 𝑗 + 2, . . . , 𝑠. We are going to prove that there is a combination

𝜔̃ 𝑗 = 𝑓𝑗 𝜔̃𝑠+1 + 𝑓𝑗𝜔𝑠+1

such that 𝜈𝐷(𝜔̃ 𝑗) = 𝑡 𝑗 , under the assumption that for any 𝑗 + 1 ≤ ℓ ≤ 𝑠 there is a combination
𝜔̃ℓ = 𝑓ℓ 𝜔̃𝑠+1 + 𝑓ℓ𝜔𝑠+1 , such that 𝜈𝐷(𝜔̃ℓ ) = 𝑡ℓ .

The proof is very similar to the case 𝑗 = 𝑠. Recall that 𝜈𝐷(𝜔̃ 𝑗+1) = 𝑡 𝑗+1. There are two options,
either 𝑡 𝑗+1 = 𝑡𝑛

𝑗+1 or 𝑡 𝑗+1 = 𝑡𝑚
𝑗+1. In both cases, the proof runs in a similar way. We fix from now

on the option 𝑡 𝑗+1 = 𝑡𝑚
𝑗+1.

Let us define the number 𝑞 ∈ { 𝑗 + 2, . . . , 𝑠 + 1} as follows

𝑞 =

{
𝑠 + 1, if 𝑡ℓ = 𝑡𝑛

ℓ
, for ℓ = 𝑗 + 2, 𝑗 + 3, . . . , 𝑠 + 1,

min{ℓ ; 𝑡ℓ = 𝑡𝑚
ℓ
, 𝑗 + 2 ≤ ℓ ≤ 𝑠 + 1}, otherwise ,

and define the 1-form 𝜔𝑞 as follows:

𝜔𝑞 =

{
𝜔𝑠+1 , if 𝑡ℓ = 𝑡𝑛

ℓ
, for ℓ = 𝑗 + 2, 𝑗 + 3, . . . , 𝑠 + 1,

𝜔̃𝑞 , otherwise.

Let us note that 𝜈𝐷(𝜔𝑞) = 𝑡𝑚𝑞 in both cases.
Now, we proceed as follows:

1. First, we find a combination 𝜃0 of 𝜔̃ 𝑗+1 and 𝜔𝑞 such that 𝜈𝐷(𝜃0) ≤ 𝑡 𝑗 . Note that 𝜃0 should
be a combination of 𝜔̃𝑠+1 and 𝜔𝑠+1, in view of the induction hypothesis.

2. Next, we find a 1-form 𝜔̃ 𝑗 − 𝜃0 that is a combination of

𝜔̃ 𝑗+1 , 𝜔̃ 𝑗+2 , . . . , 𝜔̃𝑠+1 , 𝜔𝑠+1 ,

in such a way that 𝜈𝐷(𝜔̃ 𝑗) = 𝑡 𝑗 .

Consider Delorme’s decompositions of 𝜔̃ 𝑗+1 and 𝜔𝑞 as introduced in Theorem 5.3.1, that we
write as follows

𝜔̃ 𝑗+1 = 𝜇̃1𝑦
ℓ𝑚
𝑗+1𝜔 𝑗 + 𝜇̃2𝑥

𝑎 𝑗+1𝜔𝑘𝑚
𝑗
+ 𝜂̃, 𝜂̃ =

𝑗∑
ℓ=−1

ℎ̃ℓ𝜔ℓ , (8.6)

𝜔𝑞 = 𝑀𝜔 𝑗 + 𝑁𝜔𝑘𝑛
𝑗
+ 𝜂, 𝜂 =

𝑗∑
ℓ=−1

ℎℓ𝜔ℓ , (8.7)

where 𝑀, 𝑁 are monomials in such a way that we have the following properties:
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1. In(𝜔̃ 𝑗+1) = 𝜇̃1 In(𝑦ℓ
𝑚
𝑗+1𝜔 𝑗) = 𝜇̃1𝑦

ℓ𝑚
𝑗+1 In(𝜔 𝑗). Recall that 𝑡 𝑗+1 = 𝑡 𝑗 + 𝑚ℓ𝑚

𝑗+1.

2. 𝜈𝐶(𝜇̃1𝑦
ℓ𝑚
𝑗+1𝜔 𝑗 + 𝜇̃2𝑥

𝑎 𝑗+1𝜔𝑘𝑚
𝑗
) > 𝜈𝐶(𝑦ℓ

𝑚
𝑗+1𝜔 𝑗) = 𝜈𝐶(𝑥𝑎 𝑗+1𝜔𝑘𝑚

𝑗
) = 𝑢𝑚

𝑗+1 = 𝑢̃𝑗+1. Recall that
𝑢𝑚
𝑗+1 = 𝜆 𝑗 + 𝑚ℓ𝑚

𝑗+1 = 𝜆𝑘𝑚
𝑗
+ 𝑛𝑎 𝑗+1.

3. 𝜈𝐶(ℎ̃ℓ𝜔ℓ ) > 𝑢̃𝑗+1 = 𝑢𝑚
𝑗+1, for ℓ = −1, 0, 1, . . . , 𝑗.

4. In(𝜔𝑞) = In(𝑀𝜔 𝑗) = 𝑀 In(𝜔 𝑗).
5. 𝜈𝐶(𝑀𝜔 𝑗 + 𝑁𝜔𝑘𝑛

𝑗
) > 𝜈𝐶(𝑀𝜔 𝑗) = 𝜈𝐶(𝑁𝜔𝑘𝑛

𝑗
) = 𝜆 𝑗 + 𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑣𝑚

𝑞−1, 𝑗 .
6. 𝜈𝐶(ℎℓ𝜔ℓ ) > 𝜆 𝑗 + 𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑣𝑚

𝑞−1, 𝑗 , for ℓ = −1, 0, 1, . . . , 𝑗.

Let us compute the monomials 𝑀 and 𝑁 . We have that

𝑡𝑚𝑞 = 𝜈𝐷(𝜔𝑞) = 𝜈𝐷(𝑀) + 𝜈𝐷(𝜔 𝑗) ⇒ 𝜈𝐷(𝑀) = 𝑡𝑚𝑞 − 𝑡 𝑗 .

By a telescopic argument, we obtain

𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑡𝑚𝑞 − 𝑡 𝑗+1 + (𝑡 𝑗+1 − 𝑡 𝑗)
= 𝑡𝑚𝑞 − 𝑡 𝑗+1 + 𝑛ℓ 𝑛𝑗+1

= 𝑡𝑚𝑞 − 𝑡 𝑗+2 + (𝑡 𝑗+2 − 𝑡 𝑗+1) + 𝑛ℓ 𝑛𝑗+1

= 𝑡𝑚𝑞 − 𝑡 𝑗+2 + 𝑚ℓ𝑚𝑗+2 + 𝑛ℓ 𝑛𝑗+1

= 𝑡𝑚𝑞 − 𝑡 𝑗+3 + (𝑡 𝑗+3 − 𝑡 𝑗+2) + 𝑚ℓ𝑚𝑗+2 + 𝑛ℓ 𝑛𝑗+1

= 𝑡𝑚𝑞 − 𝑡 𝑗+3 + 𝑚(ℓ𝑚𝑗+3 + ℓ𝑚𝑗+2) + 𝑛ℓ 𝑛𝑗+1

· · · · · ·
= 𝑡𝑚𝑞 − 𝑡𝑞−1 + 𝑚(ℓ𝑚𝑞−1 + · · · + ℓ𝑚𝑗+3 + ℓ𝑚𝑗+2) + 𝑛ℓ 𝑛𝑗+1

= 𝑚(ℓ𝑚𝑞 + ℓ𝑚𝑞−1 + · · · + ℓ𝑚𝑗+3 + ℓ𝑚𝑗+2) + 𝑛ℓ 𝑛𝑗+1.

This implies that 𝑀 = 𝜇1𝑥
𝑎𝑦𝑏 , where

𝑎 = ℓ 𝑛𝑗+1 , 𝑏 = ℓ𝑚𝑞 + ℓ𝑚𝑞−1 + · · · + ℓ𝑚𝑗+3 + ℓ𝑚𝑗+2 , 𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑛𝑎 + 𝑚𝑏. (8.8)

Let us compute now the monomial 𝑁 . We know that

𝜈𝐶(𝑁𝜔𝑘𝑛
𝑗
) = 𝜈𝐷(𝑁) + 𝜆𝑘𝑛

𝑗
= 𝜈𝐶(𝑀𝜔 𝑗) = 𝜆 𝑗 + 𝑛𝑎 + 𝑚𝑏.

Then, we have that
𝜈𝐷(𝑁) = 𝜆 𝑗 − 𝜆𝑘𝑛

𝑗
+ 𝑛𝑎 + 𝑚𝑏.

Recalling that 𝑢𝑛
𝑗+1 = 𝜆 𝑗 + 𝑛ℓ 𝑛

𝑗+1 = 𝜆𝑘𝑛
𝑗
+ 𝑚𝑏 𝑗+1, we obtain that

𝜈𝐷(𝑁) = 𝜆 𝑗 − 𝜆𝑘𝑛
𝑗
+ 𝑛𝑎 + 𝑚𝑏 =

= 𝑚𝑏 𝑗+1 − 𝑛ℓ 𝑛𝑗+1 + 𝑛𝑎 + 𝑚𝑏 = 𝑚(𝑏 𝑗+1 + 𝑏).

This implies that 𝑁 = 𝜇2𝑦
𝑏 𝑗+1+𝑏 .

Let us note that 𝑏 < ℓ𝑚
𝑗+1, in view of Corollary 3.6.4. In a more precise way, we have that

ℓ𝑚
𝑗+1 − 𝑏 = 𝑏𝑞 . Now, we consider the 1-form 𝜃0 given by

𝜃0 = 𝜇1𝑥
𝑎 𝜔̃ 𝑗+1 − 𝜇̃1𝑦

𝑏𝑞𝜔𝑞 = 𝜇1𝑥
ℓ𝑛
𝑗+1 𝜔̃ 𝑗+1 − 𝜇̃1𝑦

𝑏𝑞𝜔𝑞 .

We write 𝜃0 = 𝜉 + 𝜁0, where

𝜉 = 𝜇1𝜇̃2𝑥
𝑎+𝑎 𝑗+1𝜔𝑘𝑚

𝑗
− 𝜇̃1𝜇2𝑦

𝑏𝑞+𝑏+𝑏 𝑗+1𝜔𝑘𝑛
𝑗

= 𝜇1𝜇̃2𝑥
ℓ𝑛
𝑗+1+𝑎 𝑗+1𝜔𝑘𝑚

𝑗
− 𝜇̃1𝜇2𝑦

ℓ𝑚
𝑗+1+𝑏 𝑗+1𝜔𝑘𝑛

𝑗
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and 𝜁0 =
∑𝑗

ℓ=−1 𝑔
0
ℓ
𝜔ℓ , with

𝑔0
ℓ 𝜔ℓ = (𝜇1𝑥

ℓ𝑛
𝑗+1 ℎ̃ℓ − 𝜇̃1𝑦

𝑏𝑞 ℎℓ )𝜔ℓ , for ℓ = −1, 0, . . . , 𝑗. (8.9)

In a more general way, given a list of functions f̃, 𝑓 in 𝒪𝑀0 ,𝑃0 , where

f̃ = ( 𝑓𝑗+1 , 𝑓𝑗+2 , . . . , 𝑓𝑠+1),

we write
𝜃f, 𝑓 = 𝜃0 +

∑𝑠+1
ℓ=𝑗+1 𝑓ℓ 𝜔̃ℓ + 𝑓 𝜔𝑠+1 = 𝜉 + 𝜁f, 𝑓 ∈ Ω1

𝑀0 ,𝑃0
[𝐶],

where 𝜁f, 𝑓 = 𝜁0 + ∑𝑠+1
ℓ=𝑗+1 𝑓ℓ 𝜔̃ℓ + 𝑓 𝜔𝑠+1. We also write 𝜁f, 𝑓 =

∑𝑠
ℓ=−1 𝑔

f̃, 𝑓
ℓ

𝜔ℓ . Let us note that
𝜃0 = 𝜃0,0, 𝜁0 = 𝜁0,0 and 𝑔0

ℓ
= 𝑔0,0

ℓ
, for −1 ≤ ℓ ≤ 𝑠.

In order to prove the desired result, we are going to show the existence of a list f̃, 𝑓 such that
𝜈𝐷(𝜃f, 𝑓 ) = 𝑡 𝑗 .

We have two options: 𝑢𝑗 = 𝑢𝑛
𝑗

and 𝑢𝑗 = 𝑢𝑚
𝑗

. Both cases run in a similar way. We fix the case
that 𝑢𝑗 = 𝑢𝑛

𝑗
. Hence, we have 𝑡 𝑗 = 𝑡𝑛

𝑗
, 𝑢̃𝑗 = 𝑢𝑚

𝑗
and 𝑡 𝑗 = 𝑡𝑚

𝑗
. By Proposition 3.5.9, we know that

𝑘𝑛
𝑗
= 𝑗 − 1 and 𝑘𝑚

𝑗
= 𝑘𝑚

𝑗−1. Let us see that

Lemma 8.3.8. 𝜈𝐷(𝜉) = 𝑡 𝑗 .

Proof of Lemma 8.3.8. By Proposition 3.6.3, the colimits 𝑎 𝑗+1 and 𝑏 𝑗+1 satisfy that 𝑏 𝑗+1 + ℓ𝑚
𝑗+1 = ℓ𝑚

𝑗

and 𝑎 𝑗+1 + ℓ 𝑛
𝑗+1 = 𝑎 𝑗 . Hence,we have that

𝜉 = 𝜇1𝜇̃2𝑥
ℓ𝑛
𝑗+1+𝑎 𝑗+1𝜔𝑘𝑚

𝑗
− 𝜇̃1𝜇2𝑦

ℓ𝑚
𝑗+1+𝑏 𝑗+1𝜔𝑘𝑛

𝑗

= 𝜇1𝜇̃2𝑥
𝑎 𝑗𝜔𝑘𝑚

𝑗−1
− 𝜇̃1𝜇2𝑦

ℓ𝑚
𝑗 𝜔 𝑗−1.

Note that 𝜈𝐷(𝑦ℓ
𝑚
𝑗 𝜔 𝑗−1) = 𝑚ℓ𝑚

𝑗
+ 𝑡 𝑗−1 = 𝑡𝑚

𝑗
= 𝑡 𝑗 . Thus, it is enough to show that 𝜈𝐷(𝑥𝑎 𝑗𝜔𝑘𝑚

𝑗−1
) >

𝑡 𝑗 = 𝑡𝑚
𝑗

. We have 𝜈𝐷(𝑥𝑎 𝑗𝜔𝑘𝑚
𝑗−1
) = 𝑛𝑎 𝑗 + 𝑡𝑘𝑚

𝑗−1
. Since 𝑢𝑚

𝑗
= 𝑚ℓ𝑚

𝑗
+ 𝜆 𝑗−1 = 𝑛𝑎 𝑗 + 𝜆𝑘𝑚

𝑗−1
, then

𝑛𝑎 𝑗 − 𝑚ℓ𝑚𝑗 = 𝜆 𝑗−1 − 𝜆𝑘𝑚
𝑗−1

> 𝑡 𝑗−1 − 𝑡𝑘𝑚
𝑗−1

⇒
⇒ 𝑛𝑎 𝑗 + 𝑡𝑘𝑚

𝑗−1
> 𝑡 𝑗 = 𝑡 𝑗−1 + 𝑚ℓ𝑚𝑗 ,

by Lemma 3.2.8. We conclude that 𝜈𝐷(𝜉) = 𝑡 𝑗 . □

Now, the problem is reduced to finding a list (̃f, 𝑓 ) such that 𝜈𝐷(𝜁f, 𝑓 ) > 𝑡 𝑗 . We proceed
to verify this. We say that a list of functions (̃f, 𝑓 ) is a good list if and only if we have that
𝜈𝐶(𝑔 f̃, 𝑓

ℓ
𝜔ℓ ) > 𝑢̃𝑗 , for any ℓ = −1, 0, . . . , 𝑗.

We end the proof as a direct consequence of the following lemmas:

Lemma 8.3.9. The list (̃f, 𝑓 ) = (0, 0) is a good list.

Lemma 8.3.10. If (̃f, 𝑓 ) is a good list, then 𝜈𝐷(𝑔 f̃, 𝑓
ℓ

𝜔ℓ ) > 𝑡 𝑗 , for −1 ≤ ℓ ≤ 𝑗 − 1 and 𝜈𝐷(𝑔 f̃, 𝑓
𝑗

𝜔 𝑗) ≠ 𝑡 𝑗 .

Corollary 8.3.11. Assume that (̃f, 𝑓 ) is a good list. Then, either we have that 𝜈𝐷(𝜃f, 𝑓 ) = 𝑡 𝑗 or

𝜈𝐷(𝜃f, 𝑓 ) = 𝜈𝐷(𝑔 f̃, 𝑓
𝑗

𝜔 𝑗) < 𝑡 𝑗 .

Lemma 8.3.12. If (̃f, 𝑓 ) is a good list and 𝜈𝐷(𝜃f, 𝑓 ) < 𝑡 𝑗 , then there is another good list (̃f1 , 𝑓 1) such that

𝜈𝐷(𝑔 f̃1 , 𝑓 1

𝑗
𝜔 𝑗) > 𝜈𝐷(𝑔 f̃, 𝑓

𝑗
𝜔 𝑗).
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Indeed, by Lemma 8.3.9, there is at least one good list, by Lemma 8.3.10 and Lemma 8.3.8
we obtain Corollary 8.3.11. Now, we apply repeatedly Lemma 8.3.12 to get that 𝜈𝐷(𝑔 f̃, 𝑓

𝑗
𝜔 𝑗) ≥ 𝑡 𝑗 ,

hence, in view of Lemmas 8.3.8 and 8.3.9, we get that 𝜈𝐷(𝑔 f̃, 𝑓
𝑗

𝜔 𝑗) > 𝑡 𝑗 and 𝜈𝐷(𝜃f, 𝑓 ) = 𝑡 𝑗 as desired.
The rest of this subsection is devoted to proving the above Lemmas 8.3.9, 8.3.10 and 8.3.12.

Proof of Lemma 8.3.9. We need to show that

𝜈𝐶(𝑔0
ℓ 𝜔ℓ ) > 𝑢̃𝑗 , for any ℓ = −1, 0, . . . , 𝑗.

By Equation (8.9), we have 𝑔0
ℓ
𝜔ℓ = (𝜇1𝑥

ℓ𝑛
𝑗+1 ℎ̃ℓ − 𝜇̃1𝑦

𝑏𝑞 ℎℓ )𝜔ℓ . Now, it is enough to show that

𝜈𝐶(𝑥ℓ
𝑛
𝑗+1 ℎ̃ℓ𝜔ℓ ) > 𝑢̃𝑗 and 𝜈𝐶(𝑦𝑏𝑞 ℎℓ𝜔ℓ ) > 𝑢̃𝑗 .

We have

𝜈𝐶(𝑥ℓ
𝑛
𝑗+1 ℎ̃ℓ𝜔ℓ ) = 𝑛ℓ 𝑛𝑗+1 + 𝜈𝐶(ℎ̃ℓ𝜔ℓ ) > 𝑛ℓ 𝑛𝑗+1 + 𝑢𝑚

𝑗+1 = 𝑛ℓ 𝑛𝑗+1 + 𝑢̃𝑗+1

= 𝑛ℓ 𝑛𝑗+1 + 𝑛𝑎 𝑗+1 + 𝜆𝑘𝑚
𝑗
= 𝑛(ℓ 𝑛𝑗+1 + 𝑎 𝑗+1) + 𝜆𝑘𝑚

𝑗−1

= 𝑛𝑎 𝑗 + 𝜆𝑘𝑚
𝑗−1

= 𝑢𝑚
𝑗 = 𝑢̃𝑗 .

Let us consider now 𝜈𝐶(𝑦𝑏𝑞 ℎℓ𝜔ℓ ). We have that

𝜈𝐶(𝑦𝑏𝑞 ℎℓ𝜔ℓ ) > 𝑚𝑏𝑞 + 𝜆 𝑗 + 𝑡𝑚𝑞 − 𝑡 𝑗 .

Let us show that 𝑚𝑏𝑞 + 𝜆 𝑗 + 𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑢̃𝑗 . Recall that 𝑢̃𝑗 = 𝑢𝑚
𝑗
= 𝜆 𝑗−1 + 𝑚ℓ𝑚

𝑗
. Thus, we have to

prove that
𝑚𝑏𝑞 + 𝜆 𝑗 + 𝑡𝑚𝑞 − 𝑡 𝑗 − 𝜆 𝑗−1 − 𝑚ℓ𝑚𝑗 = 0.

Note that 𝑘𝑛
𝑗
= 𝑗 − 1 and then 𝜆 𝑗 − 𝜆 𝑗−1 = −𝑛ℓ 𝑛

𝑗+1 + 𝑚𝑏 𝑗+1. Then we have to verify that

𝑚𝑏𝑞 − 𝑛ℓ 𝑛𝑗+1 + 𝑚𝑏 𝑗+1 + 𝑡𝑚𝑞 − 𝑡 𝑗 − 𝑚ℓ𝑚𝑗 = 0.

Recalling that, by Equation (8.8), 𝑡𝑚𝑞 − 𝑡 𝑗 = 𝑛𝑎 + 𝑚𝑏 = 𝑛ℓ 𝑛
𝑗+1 + 𝑚𝑏 and that 𝑏𝑞 = ℓ𝑚

𝑗+1 − 𝑏, we have
to verify that

𝑚(ℓ𝑚𝑗+1 − 𝑏) − 𝑛ℓ 𝑛𝑗+1 + 𝑛ℓ 𝑛𝑗+1 + 𝑚𝑏 + 𝑚𝑏 𝑗+1 − 𝑚ℓ𝑚𝑗 = 0.

We have to see that 𝑏 𝑗+1 + ℓ𝑚
𝑗+1 = ℓ𝑚

𝑗
, and this follows from Proposition 3.6.3. □

Proof of Lemma 8.3.10. Along the proof of this lemma, we just write 𝑔
f̃, 𝑓
ℓ

= 𝑔ℓ , in order to simplify
the notation.

Let us first show that 𝜈𝐷(𝑔ℓ𝜔ℓ ) > 𝑡 𝑗 , for any −1 ≤ ℓ ≤ 𝑗 − 1. Recall that 𝜈𝐶(𝑔ℓ𝜔ℓ ) > 𝑢̃𝑗 and
write

𝜈𝐶(𝑔ℓ𝜔ℓ ) = 𝜈𝐶(𝑔ℓ ) + 𝜆ℓ > 𝑢̃𝑗 = 𝑢𝑚
𝑗 = 𝜆 𝑗−1 + 𝑚ℓ𝑚𝑗 .

Noting that 𝜆 𝑗−1 − 𝜆ℓ ≥ 𝑡 𝑗−1 − 𝑡ℓ , in view of Lemma 3.2.8, we have that

𝜈𝐶(𝑔ℓ ) + 𝜆 𝑗−1 > 𝜆𝑗−1 + 𝑡 𝑗−1 − 𝑡ℓ + 𝑚ℓ𝑚𝑗

and thus we have 𝜈𝐶(𝑔ℓ ) + 𝑡ℓ > 𝑡 𝑗−1 + 𝑚ℓ𝑚
𝑗
= 𝑡𝑚

𝑗
= 𝑡 𝑗 .

There are two cases: if 𝜈𝐷(𝑔ℓ ) < 𝑛𝑚, then 𝜈𝐶(𝑔ℓ ) = 𝜈𝐷(𝑔ℓ ) (Proposition 2.3.14). Second,
𝜈𝐷(𝑔ℓ ) ≥ 𝑛𝑚. Noting that 𝑡 𝑗 ≤ 𝑛𝑚, see Corollary 3.6.2, we conclude in both cases that

𝜈𝐷(𝑔ℓ𝜔ℓ ) = 𝜈𝐷(𝑔ℓ ) + 𝑡ℓ > 𝑡 𝑗 ,
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as desired.
Let us show that 𝜈𝐷(𝑔𝑗𝜔 𝑗) ≠ 𝑡 𝑗 . Assume by contradiction that 𝜈𝐷(𝑔𝑗𝜔 𝑗) = 𝑡 𝑗 . Recalling that

𝑡 𝑗 = 𝑡𝑛
𝑗
, 𝑡 𝑗 = 𝑡𝑚

𝑗
, 𝑡𝑛

𝑗
= 𝑡 𝑗−1 + 𝑛ℓ 𝑛

𝑗
and 𝑡𝑚

𝑗
= 𝑡 𝑗−1 + 𝑚ℓ𝑚

𝑗
, we have

𝜈𝐷(𝑔𝑗𝜔 𝑗) = 𝑡 𝑗 ⇒ 𝜈𝐷(𝑔𝑗) + 𝑡 𝑗 = 𝑡 𝑗 ⇒ 𝜈𝐷(𝑔𝑗) + 𝑡𝑛𝑗 = 𝑡𝑚𝑗 ⇒
⇒ 𝜈𝐷(𝑔𝑗) + 𝑡 𝑗−1 + 𝑛ℓ 𝑛𝑗 = 𝑡 𝑗−1 + 𝑚ℓ𝑚𝑗 ⇒
⇒ 𝑚ℓ𝑚𝑗 = 𝜈𝐷(𝑔𝑗) + 𝑛ℓ 𝑛𝑗 .

This implies that 𝑚ℓ𝑚
𝑗
∈ Γ𝐶 is written in two different ways as a combination of 𝑛, 𝑚 with non

negative integer coefficients. This is not possible, since 𝑚ℓ𝑚
𝑗
< 𝑛𝑚, in view of Remark 3.2.3. □

Proof of Lemma 8.3.12. Assume that f̃, 𝑓 is a good list with 𝜈𝐷(𝜃f, 𝑓 ) < 𝑡 𝑗 . Let us find another good

list f̃1 , 𝑓 1 such that

𝜈𝐷(𝑔 f̃1 , 𝑓 1

𝑗
𝜔 𝑗) > 𝜈𝐷(𝑔 f̃, 𝑓

𝑗
𝜔 𝑗).

Let us note that 𝜈𝐷(𝜃f, 𝑓 ) = 𝜈𝐷(𝑔 f̃, 𝑓
𝑗

𝜔 𝑗) < 𝑡 𝑗 and, more precisely, we have that

𝑊 = In(𝑔 f̃, 𝑓
𝑗

𝜔 𝑗) = In(𝜃f, 𝑓 ).

In view of Remark 8.2.4, there is a decomposition

𝑊 = 𝐺𝑠+1𝑊𝑠+1 +
𝑠+1∑

ℓ=𝑗+1
𝐺̃ℓ𝑊̃ℓ ,

where the coefficients are quasi-homogeneous. Moreover, all the forms 𝑊,𝑊𝑠+1 , 𝑊̃ℓ , for
𝑗 + 1 ≤ ℓ ≤ 𝑠 + 1 are resonant with divisorial value < 𝑛𝑚. We conclude that all those forms are
given by the product of monomial and 1-form

𝑚
𝑑𝑥

𝑥
− 𝑛

𝑑𝑦

𝑦
.

Since 𝜃f, 𝑓 is resonant, we can assume without loss of generality that all the coefficients
𝐺𝑠+1 , 𝐺̃ 𝑗+1 , 𝐺̃ 𝑗+2 , . . . , 𝐺̃𝑠+1 are zero except exactly one of them. Note that 𝜈𝐷(𝑊) < 𝑡 𝑗 ≤ 𝑛𝑚

implies that the Newton cloud of 𝑊 is a single point. Thus, we have that

𝑊 = 𝐺𝑠+1𝑊𝑠+1 or there is ℓ0 such that 𝑊 = 𝐺̃ℓ0𝑊̃ℓ0 .

Let us write 𝑆 = 𝑊𝑠+1 in the first case and 𝑆 = 𝑊̃ℓ0 in the second one. Then we have that 𝑊 = 𝐺𝑆,
where 𝐺 = 𝐺𝑠+1 in the first case and 𝐺 = 𝐺̃ℓ0 in the second one.

Now we define the list (̃f1 , 𝑓 1) by

( 𝑓 1
𝑗+1 , 𝑓

1
𝑗+1 , . . . , 𝑓

1
𝑠+1 , 𝑓

1) = (̃f, 𝑓 ) − (𝐺̃ 𝑗+1 , 𝐺̃ 𝑗+2 , . . . , 𝐺̃𝑠+1 , 𝐺𝑠+1).

By construction we obtain that 𝜈𝐷(𝑔 f̃1 , 𝑓 1

𝑗
𝜔 𝑗) > 𝜈𝐷(𝑔 f̃, 𝑓

𝑗
𝜔 𝑗).

We have just to verify that (̃f1 , 𝑓 1) is a good list. We do it in the case that 𝑆 = 𝑊𝑠+1, the other
cases run in a similar way. Note that

𝜁f1 , 𝑓 1 = 𝜁f, 𝑓 − 𝐺𝑠+1𝜔𝑠+1 =

𝑗∑
ℓ=−1

𝑔
f̃1 , 𝑓 1

ℓ
𝜔ℓ .

Let us write 𝜔𝑠+1 using Delorme’s decomposition: 𝜔𝑠+1 =
∑𝑗

ℓ=−1 𝑐ℓ𝜔ℓ , where we know that
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1. In(𝜔𝑠+1) = In(𝑐 𝑗𝜔 𝑗).
2. 𝜈𝐶(𝑐 𝑗𝜔 𝑗) ≤ 𝜈𝐶(𝑐ℓ𝜔ℓ ), for ℓ = −1, 0, 1, . . . , 𝑗.

Note that 𝑔
f̃1 , 𝑓 1

ℓ
= 𝑔

f̃, 𝑓
ℓ

− 𝐺𝑠+1𝑐ℓ , for ℓ = −1, 0, 1, . . . , 𝑗. Then, in order to show that we have a
good list, it is enough to show that 𝜈𝐶(𝐺𝑠+1𝑐 𝑗𝜔 𝑗) > 𝑢̃𝑗 . We now verify this inequality.

We know that 𝜈𝐷(𝑔𝑗𝜔 𝑗) = 𝜈𝐷(𝐺𝑠+1𝑐 𝑗𝜔 𝑗) < 𝑛𝑚, since they share initial part. Noting that the
divisorial values are under 𝑛𝑚, we have that

𝜈𝐷(𝑔𝑗) = 𝜈𝐶(𝑔𝑗), 𝜈𝐷(𝐺𝑠+1𝑐 𝑗) = 𝜈𝐶(𝐺𝑠+1𝑐 𝑗).

We conclude that 𝜈𝐶(𝐺𝑠+1𝑐 𝑗𝜔 𝑗) = 𝜈𝐶(𝑔𝑗𝜔 𝑗) > 𝑢̃𝑗 , as desired. □

8.4 New Discrete Analytic Invariants

Consider 𝐶 a plane curve and 𝜋 : (𝑀𝑁 , 𝐸
𝑁 ) → (𝑀0 , 𝑃0) a sequence of blow ups starting at 𝑃0.

Fix 𝐸 ⊂ 𝐸𝑁 any of the irreducible components of 𝐸𝑁 .

Lemma 8.4.1. For any Saito basis 𝜔, 𝜔′ of 𝐶, we have that

𝜈𝐸(𝜔) + 𝜈𝐸(𝜔′) ≤ 𝜈𝐸(𝑥𝑦 𝑓 ), 𝑗 = 1, 2, . . . , 𝑁 ,

where 𝑓 = 0 is an implicit equation of 𝐶.

Proof. Since 𝜔, 𝜔′ is a Saito basis, by Saito’s Criterion (Lemma 8.1, we have that

𝜔 ∧ 𝜔′ = 𝑢 𝑓 𝑑𝑥 ∧ 𝑑𝑦 = 𝑢𝑥𝑦 𝑓

(
𝑑𝑥

𝑥
∧ 𝑑𝑦

𝑦

)
,

where 𝑢 is a unit. The property follows from Corollary 2.3.10, that states that

𝜈𝐸(𝜔) + 𝜈𝐸(𝜔′) ≤ 𝜈𝐸(𝜔 ∧ 𝜔′).

□

Thanks to the previous lemma we can define the pair (𝔰𝐸(𝐶), 𝔰̃𝐸(𝐶)) of Saito multiplicities at 𝐸
by

𝔰𝐸(𝐶) = min{𝜈𝐸(𝜔); 𝜔 belongs to a Saito basis for 𝐶}. (8.10)

𝔰̃𝐸(𝐶) = max{𝜈𝐸(𝜔); 𝜔 belongs to a Saito basis for 𝐶}. (8.11)

Note that 𝔰𝐸(𝐶) is equal to the minimal divisorial value of the elements of any Saito basis,
whereas 𝔰̃𝐸(𝐶) does not follow directly from a given Saito basis.

Remark 8.4.2. In [26], the author introduces an invariant related with (𝔰𝐸1(𝐶), 𝔰̃𝐸1(𝐶)), where
𝐸1 is the exceptional divisor appearing after the blow-up of 𝑃0 in (𝑀0 , 𝑃0). More precisely, the
author defined in a similar way the pair of Saito multiplicities, but just considering multiplicities
at 𝑃0, instead of divisorial values. The relationship between both objects comes from observing
that

𝜈𝐸1(𝜔) = 𝜈𝑃0(𝜔) + 1.

Moreover, note that the invariance under local biholomorphism of divisorial values shows that
the pair of Saito multiplicities is an analytic invariant of the curve.
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With the idea of finding relationships among different analytic invariants of plane curves.
We would like to know if the pairs of Saito multiplicities may be deduced from the knowledge
of the semimodule of differential values, at least, when 𝐶 is a cusp. The answer is positive when
considering the last pair (𝔰𝐷(𝐶), 𝔰̃𝐷(𝐶)) and 𝐷 the cuspidal divisor of the minimal resolution of
𝐶 as we show in next result.

On the other hand, we present an example of two 𝐷-cusps having the same semimodule of
differential values such that the pair of Saito multiplicities at 𝐸1 do not coincide (see Examples
8.4.4 and 8.4.5).

Theorem 8.4.3. Take 𝜋𝑛,𝑚
𝑦 a cuspidal sequence with 𝑛 ≥ 2, 𝐷 its cuspidal divisor. Let 𝐶 be a 𝐷-cusp,

then (𝔰𝐷(𝐶), 𝔰̃𝐷(𝐶)) = (𝑡𝑠+1 , 𝑡𝑠+1), where 𝑡𝑠+1 and 𝑡𝑠+1 are the last critical values of the semimodule of
differential values of 𝐶.

Proof. By Theorem 8.2, we have that there are two 1-forms 𝜔𝑠+1 , 𝜔𝑠+1 ∈ Ω1
𝑀0 ,𝑃0

[𝐶] defining a
Saito basis for 𝐶 and such that

𝜈𝐷(𝜔𝑠+1) = 𝑡𝑠+1 < 𝑡𝑠+1 = 𝜈𝐷(𝜔̃𝑠+1).

This proves that 𝔰𝐷(𝐶) = 𝑡𝑠+1 and 𝑡𝑠+1 ≤ 𝔰̃𝐷(𝐶). Now, let 𝜔, 𝜔′ be another Saito basis, with
𝜈𝐷(𝜔) = 𝑡𝑠+1 and 𝜈𝐷(𝜔′) ≥ 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1. Let us write

𝜔 = ℎ𝜔𝑠+1 + ℎ̃𝜔̃𝑠+1 , 𝜔′ = 𝑔𝜔𝑠+1 + 𝑔̃𝜔̃𝑠+1 ,

where 𝛿 = ℎ 𝑔̃ − 𝑔ℎ̃ is a unit in 𝒪𝑀0 ,𝑃0 . Therefore, the divisorial values verify that 𝜈𝐷(ℎ) = 0 and
𝜈𝐷(𝑔) > 0, hence ℎ is a unit and 𝑔 is not a unit. Since 𝛿 is a unit, we have that 𝑔̃ is a unit. If
𝜈𝐷(𝜔′) > 𝑡𝑠+1 = 𝜈𝐷(𝜔̃𝑠+1), we necessarily have that

𝜈𝐷(𝑔𝜔𝑠+1) = 𝜈𝐷(𝑔̃𝜔̃𝑠+1) = 𝜈𝐷(𝜔̃𝑠+1) = 𝑡𝑠+1.

Let us see that this is not possible. Assume that 𝑡𝑠+1 = 𝑡𝑠 + 𝑛ℓ 𝑛
𝑠+1 and hence 𝑡𝑠+1 = 𝑡𝑠 +𝑚ℓ𝑚

𝑠+1 (the
case 𝑡𝑠+1 = 𝑡𝑠 + 𝑚ℓ𝑚

𝑠+1 runs in a similar way). We have

𝜈𝐷(𝑔) + 𝑡𝑠+1 = 𝑡𝑠+1 ⇒ 𝜈𝐷(𝑔) + 𝑛ℓ 𝑛𝑠+1 = 𝑚ℓ𝑚𝑠+1.

Noting that 𝜈𝐷(𝑔) ∈ Γ𝐶 , we obtain two different ways of writing 𝑚ℓ𝑚
𝑠+1 < 𝑛𝑚 as a combination

of 𝑛, 𝑚 with non-negative integer coefficients. This is a contradiction. □

We are going now to present the example of two cusps 𝐶1 and 𝐶2 corresponding to the
Puiseux pair (7, 36), such that the (common) semimodule of differential values has a basis
ℬ = (7, 36, 123) and such that the Saito pairs of multiplicities with respect to the first divisor 𝐸1

are different for 𝐶1 and 𝐶2.

Example 8.4.4. Consider the cusp 𝐶1 invariant by the 1-form

𝜔 = 36𝑥3(7𝑥𝑑𝑦 − 36𝑦𝑑𝑥) − 560𝑦3𝑑𝑦,

with a parametrization 𝜙1(𝑡) = (𝑡7 , 𝑡36 + 𝑡116 + 28
9 𝑡196 + ℎ.𝑜.𝑡.). The basis of the semimodule of

differential values of 𝐶1 is (7, 36, 123), with a minimal standard basis given by

𝒮 = (𝜔−1 = 𝑑𝑥, 𝜔0 = 𝑑𝑦, 𝜔1 = 7𝑥𝑑𝑦 − 36𝑦𝑑𝑥).

We have 𝑢𝑛
2 = 𝜆1 + 𝑛ℓ 𝑛2 = 𝜆0 + 𝑚𝑏2, that is 123 + 7ℓ 𝑛2 = 36 + 36𝑏2, we obtain that

ℓ 𝑛2 = 𝑏2 = 3, 𝑢𝑛
2 = 144.
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Similarly, we found out that

𝑢𝑚
2 = 231 = 123 + 36ℓ𝑚2 = 7 + 7𝑎2 , ℓ𝑚2 = 3, 𝑎2 = 32.

Hence 𝑢2 = 𝑢𝑛
2 and 𝑢̃2 = 𝑢𝑚

2 . Moreover, we have

𝑡2 = 𝑡𝑛2 = 𝑡1 + 𝑛ℓ 𝑛2 = 43 + 7 · 3 = 64, 𝑡2 = 𝑡𝑚2 = 𝑡1 + 𝑚ℓ𝑚2 = 43 + 36 · 3 = 151.

We see that 𝜈𝐷(𝜔) = 𝑡2 = 64. Hence we can take 𝜔2 = 𝜔 to obtain an extended standard
basis of 𝐶1 and also, we consider 𝜔2 = 𝜔 as one of the generators of a Saito basis for 𝐶1.
Notice that 𝜈𝐸1(𝜔) = 4, since 𝜈𝑃0(𝜔) = 3. We can take 𝜔̃2 to be a 1-form with divisorial order
𝜈𝐷(𝜔̃2) = 𝑡2 = 151 and 𝐶1 being invariant by 𝜔̃2. By Delorme’s decomposition in Theorem 5.3.1,
we can write 𝜔̃2 as

𝜔̃2 = 𝑦3𝜔1 + 𝜇+𝑥32𝑑𝑥 + 𝜂2; 𝜂2 = 𝑓−1𝑑𝑥 + 𝑓0𝑑𝑦 + 𝑓1(7𝑥𝑑𝑦 − 36𝑦𝑑𝑥),

where 𝜇+ is the tunning constant, such that 𝜈𝐶1( 𝑓ℓ𝜔ℓ ) > 𝑢̃2 = 231, for ℓ = −1, 0, 1.
Let us compute 𝜈𝐸1(𝜔̃2). Assume that we have 𝜈𝐸1( 𝑓ℓ𝜔ℓ ) > 5, for ℓ = −1, 0, 1, then we obtain

that 𝜈𝐸1(𝜔̃2) = 5. In view of Lemma 8.4.1, we know that

𝔰𝐸1(𝐶1) + 𝔰̃𝐸1(𝐶1) ≤ 𝜈𝐸1(𝑥𝑦 𝑓 ) = 7 + 2 = 9,

Thus, we have (𝔰𝐸1(𝐶1), 𝔰̃𝐸1(𝐶1)) = (4, 5) since the Saito basis 𝜔, 𝜔̃2 gives the maximal pair (4, 5).
It remains to show that 𝜈𝐸1( 𝑓ℓ𝜔ℓ ) > 5, for ℓ = −1, 0, 1. We consider two situations;

𝜈𝐷( 𝑓ℓ ) ≥ 𝑛𝑚 and 𝜈𝐷( 𝑓ℓ ) < 𝑛𝑚. In the first situation we have that

𝜈𝑃0( 𝑓ℓ ) ≥ 𝑛 = 7.

In the case that 𝜈𝐷( 𝑓ℓ ) < 𝑛𝑚 we have that

𝜈𝐷( 𝑓ℓ ) = 𝜈𝐶1( 𝑓ℓ ) > 231 − 𝜆ℓ .

Moreover, looking at the monomials in the expression of 𝑓ℓ , we have that

𝜈𝐷( 𝑓ℓ ) ≤ 𝑚𝜈𝑃0( 𝑓ℓ ) = 36𝜈𝑃0( 𝑓ℓ ).

Thus we have:

𝜈𝐸1( 𝑓ℓ𝜔ℓ ) =


𝜈𝑃0( 𝑓−1) + 1 ≥ 𝜈𝐷 ( 𝑓−1)
36 + 1 > 231−𝜆−1

36 + 1 = 260
36 ≥ 5; ℓ = −1.

𝜈𝑃0( 𝑓0) + 1 ≥ 𝜈𝐷 ( 𝑓0)
36 + 1 > 231−𝜆0

36 + 1 = 231
36 ≥ 5; ℓ = 0.

𝜈𝑃0( 𝑓1) + 2 ≥ 𝜈𝐷 ( 𝑓1)
36 + 2 > 231−𝜆1

36 + 2 = 180
36 = 5; ℓ = 1.

Example 8.4.5. Take the cusp 𝐶2 with Puiseux pair (7, 36) invariant by the 1-form

𝜔′ = 36𝑥3(7𝑥𝑑𝑦 − 36𝑦𝑑𝑥) − 560𝑦3𝑑𝑦 + 𝑦(7𝑥𝑑𝑦 − 36𝑦𝑑𝑥).

and defined by a parametrization as follows

𝜙2(𝑡) = (𝑡7 , 𝑡36 + 𝑡116 − 4
171 𝑡

131 + 1
1782 𝑡

146 − 1
72900 𝑡

161 + ℎ.𝑜.𝑡.).

The basis of the semimodule of differential values is (7, 36, 123). We can take

𝒮 = (𝜔−1 = 𝑑𝑥, 𝜔0 = 𝑑𝑦, 𝜔1 = 7𝑥𝑑𝑦 − 36𝑦𝑑𝑥).

as minimal standard basis for 𝐶2 (thus, it is the same one as for 𝐶1). We repeat the arguments
done before for 𝐶1. We can take 𝜔′

2 = 𝜔′ as one of the generators of a Saito basis for 𝐶2, with
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𝜈𝐷(𝜔′) = 𝑡2. Again, we obtain a partial standard system (𝜔−1 , 𝜔0 , 𝜔1 , 𝜔′
2 = 𝜔′, 𝜔̃′

2), where 𝜔̃′
2

can be written as

𝜔̃′
2 = 𝑦3𝜔1 + 𝜇′𝑥32𝑑𝑥 + 𝜂′2; 𝜂′2 =

1∑
ℓ=−1

𝑓 ′ℓ 𝜔ℓ ,

with 𝜇′ being an appropriate constant and 𝜈𝐶2( 𝑓 ′ℓ 𝜔ℓ ) > 231. Thus, again we found that
𝜈𝐸1( 𝑓 ′

ℓ
𝜔ℓ ) > 5. We have that 𝜈𝐸1(𝜔̃′

2) = 5.
Now, we have that

(𝜈𝐸1(𝜔′), 𝜈𝐸1(𝜔̃′
2)) = (3, 5).

This implies that 𝔰𝐸1(𝐶2) = 3 < 4 = 𝔰𝐸1(𝐶1). Hence the Saito pairs of multiplicities at 𝐸1 for 𝐶1

and 𝐶2 are different.
Moreover, the pair (3, 5) is not maximal yet: the 1-form 𝜂 = 𝜔̃′

2 − 𝑦2𝜔′
2 satisfies that {𝜂, 𝜔′

2}
is a Saito basis and 𝜈𝐸1(𝜂) = 6. Hence the Saito’s pair of multiplicities at 𝐸1 for the cusp 𝐶2 is
equal to (𝔰𝐸1(𝐶2), 𝔰̃𝐸1(𝐶2)) = (3, 6).

We end this chapter remarking that our Theorem 8.2 and the method used to construct the
previous examples were used in [27] to show the following. Consider 𝑛 = 𝑛1𝑒1 and 𝑚 = 𝑚1𝑒1,
with 𝑛1 , 𝑚1 coprime positive integers. For any 2 ≤ 𝑘 ≤ ⌊𝑛/2⌋ + 1 there exists a curve 𝐶 with
the same topological type as the one defined by the implicit equation 𝑦𝑛 − 𝑥𝑚 = 0 such that
𝑠𝐸1(𝐶) = 𝑘. In fact, 2 and ⌊𝑛/2⌋ + 1 are the minimum and the maximum values that the number
𝑠𝐸1(𝐶) can take, showing that all the possibilities for 𝑠𝐸1(𝐶) are achieved.
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Roots of the Bernstein-Sato Polynomial

In this chapter, we prove that some roots of Bernstein-Sato polynomial of a cusp C are determined
by the semimodule of differential values of C.

Let us start giving the definition of Bernstein-Sato polynomial in a general context. Consider
the ring of non-commutative power series 𝐴 = C{𝑥1 , . . . , 𝑥𝑝 , 𝜕1 , . . . , 𝜕𝑝} in 2𝑝 variables, and
define 𝒟 to be the quotient of 𝐴 by the commutators [𝑥𝑖 , 𝑥 𝑗] = 0 and [𝜕𝑖 , 𝑥 𝑗] = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 is
the Kronecker’s delta. The ring 𝒟 is the set of differential operators in 𝑝 variables, whose action
on C{𝑥1 , . . . , 𝑥𝑝} is defined by the partial derivative 𝜕𝑖 with respect to 𝑥𝑖 .

We take 𝒟[𝜌] the ring of polynomials in the variable 𝜌 and coefficients in 𝒟. Given any
function 𝑔 ∈ C{𝑥1 , . . . , 𝑥𝑝}, we can extend the action of 𝒟 to functions of the form 𝑔𝜌, just by
putting 𝜕𝑖 · 𝑔𝜌 = 𝜌𝑔𝜌−1𝜕𝑖 𝑔.

According to [8], there exist non zero 𝑃 ∈ 𝒟[𝜌] and 𝐵(𝜌) ∈ C[𝜌] such that

𝑃(𝜌) · 𝑔𝜌+1 = 𝐵(𝜌)𝑔𝜌.

Then the ideal of C[𝜌] of all 𝐵(𝜌) for which there is an operator 𝑃 ∈ 𝒟[𝜌] satisfying the last
condition is non zero. Since it is a principal ideal, it admits a monic generator denoted by 𝑏(𝜌)
which is called the Bernstein-Sato polynomial of 𝑔. The name is due to I.N. Bernstein and M. Sato
who discovered, in the algebraic case, the existence of such a polynomial independently in [7]
and [50].

From the works of M. Kashiwara and B. Malgrange, we know that all roots of the Bernstein-
Sato polynomial are negative rational numbers (see [39, 43]). The Bernstein-Sato polynomial is
an analytic invariant of the hypersurface 𝑔 = 0 (see [55]). The relevance of this polynomial in
the singularity theory comes from the fact that the roots of the Bernstein-Sato polynomial of a
hypersurface 𝐻 with isolated singularity determine the eigenvalues of the monodromy of the
Milnor fiber of 𝐻 (see [44]).

In this chapter we prove the following results:

Theorem 9.1. Let 𝐶 be a cusp with semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ and semimodule of differential values Λ𝐶 .
Assume that 𝜆1 = min(Λ𝐶 \ Γ𝐶) exists. Then for any element 𝜆 ∈ (𝜆1 + Γ𝐶) \ Γ𝐶 ⊂ Λ𝐶 , the rational
number −𝜆/𝑛𝑚 is a root of the Bernstein-Sato polynomial of 𝐶.

Theorem 9.2. Let 𝐶 be a cusp with semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ and semimodule of differential values Λ𝐶 .
Assume that 𝑛 ≤ 4. Then for any element 𝜆 ∈ Λ𝐶 \ Γ𝐶 , the rational number −𝜆/𝑛𝑚 is a root of the
Bernstein-Sato polynomial of 𝐶.

We conjectured that Theorem 9.2 holds for any 𝑛, that is:

129
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Conjecture 9.3. Let 𝐶 be a cusp with semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ and semimodule of differential values Λ𝐶 .
Then for any element 𝜆 ∈ Λ𝐶 \ Γ𝐶 , the rational number −𝜆/𝑛𝑚 is a root of the Bernstein-Sato polynomial
of 𝐶.

P. Cassou-Noguès in [17] gives algebraic conditions to assure that a rational number is a root
of the Bernstein-Sato polynomial of a cusp 𝐶. These algebraic conditions are given in terms
of the coefficients of an implicit equation of the cusp, which is written in a particular kind of
coordinates.

The idea of the proofs of both theorems is the following one: we take an implicit equation
of 𝐶 and we find algebraic conditions on its coefficients such that given natural number is a
differential value. This is done by using the techniques from Chapter 5. Afterwards, we compare
the computed conditions with those in [17].

9.1 Cuspidal Sets and Systems of Nice Coordinates

In this section, we introduce three sets 𝑃, 𝑀 ⊂ (Z≥0)2 and 𝐽 ⊂ Z≥0 which are related with the
semigroup of a cusp, and also with roots of the Bernstein-Sato polynomial. Moreover, the results
in [17] require to write an implicit equation of the cusp 𝐶 in a particular system of coordinates
with respect to 𝐶. These systems of coordinates will be also introduced in this section.

Fix (𝑛, 𝑚) a pair with 𝑔𝑐𝑑(𝑛, 𝑚) and 2 ≤ 𝑛. We define the cuspidal sets 𝑃, 𝐽 and 𝑀 as:

𝑃 := {(𝑝1 , 𝑝2) ∈ (Z≥0)2 : 0 ≤ 𝑝1 < 𝑚 − 1, 0 ≤ 𝑝2 < 𝑛 − 1 and 𝑛𝑝1 + 𝑚𝑝2 > 𝑛𝑚},
𝐽 := { 𝑗 = 𝑝1, 𝑗𝑛 + 𝑝2, 𝑗𝑚 − 𝑛𝑚 : (𝑝1, 𝑗 , 𝑝2, 𝑗) ∈ 𝑃},

𝑀 := {(𝑚 − 𝑝1 − 1, 𝑛 − 𝑝2 − 1) : (𝑝1 , 𝑝2) ∈ 𝑃}.

Note that the previous sets are empty if 𝑛 = 2. These cuspidal sets appear in a natural way when
studying cusps (see [15, 17, 46]). Given 𝑗 ∈ 𝐽, we write (𝑝1, 𝑗 , 𝑝2, 𝑗) to refer to the unique element
in 𝑃 such that 𝑗 = 𝑝1, 𝑗𝑛 + 𝑝2, 𝑗𝑚 − 𝑛𝑚.

Remark 9.1.1. If we consider the weighted order ⪯ with weights (𝑛, 𝑚), then we have that 𝑗 < 𝑗′

if and only if (𝑝1, 𝑗 , 𝑝2, 𝑗) ≺ (𝑝1, 𝑗′ , 𝑝2, 𝑗′).

Remark 9.1.2. The cuspidal sets are empty if and only if 𝑛 = 2 or (𝑛, 𝑚) = (3, 4), (3, 5). Moreover,
if they are non empty, then we have that (1, 1) ∈ 𝑀 since (𝑚 − 2, 𝑛 − 2) ∈ 𝑃. We will use that
(1, 1) ∈ 𝑀 in some of the proofs ahead.

Next lemma shows the relationship between the elements in 𝐽 and the elements in the
semigroup of 𝐶. We will see later that the elements in Λ𝐶 \ Γ𝐶 are described in terms of the
set 𝐽, where Γ𝐶 is the semigroup of the cusp and Λ𝐶 the semimodule of differential values, see
Lemma 9.2.1.

Lemma 9.1.3. We have that
𝐽 = {ℓ ∈ Z≥0 : ℓ + 𝑛, ℓ + 𝑚 ∉ Γ𝐶}.

As a consequence, for any ℓ ∈ 𝐽, the element ℓ + 𝑛 + 𝑚 does not belong to the semigroup Γ𝐶 .

Proof. The proof of the equality 𝐽 = {ℓ ∈ N : ℓ + 𝑛, ℓ + 𝑚 ∉ Γ𝐶} is given in [46], Lemma 1.4.
Now, if ℓ + 𝑛 + 𝑚 ∈ Γ𝐶 , this implies that ℓ + 𝑛 + 𝑚 = 𝑛𝑎 + 𝑚𝑏, with at least one of the

coefficients 𝑎, 𝑏 different from 0. Hence, either ℓ + 𝑛 ∈ Γ𝐶 or ℓ + 𝑚 ∈ Γ𝐶 . □
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Next lemma describes the relationship between the semigroup Γ𝐶 and the elements in the
set 𝑀.

Lemma 9.1.4. Consider a cuspidal semigroup Γ𝐶 = ⟨𝑛, 𝑚⟩ with 𝑛 ≥ 3. We have that

1. if 𝜆 ∉ Γ𝐶 with 𝜆 > 𝑛 + 𝑚, then there exists 𝑗 ∈ 𝐽 such that 𝜆 = 𝑗 + 𝑛 + 𝑚.
2. If 𝜆 + 𝑛𝑎 + 𝑚𝑏 ∉ Γ𝐶 with 𝜆 > 𝑛 + 𝑚 and 𝑎, 𝑏 ≥ 0, then we have that the element (𝑎 + 1, 𝑏 + 1)

belongs to 𝑀.

Proof. Statement 1 is a consequence of Lemma 9.1.3, because we have that𝜆−𝑛−𝑚,𝜆−𝑛,𝜆−𝑚 ∉

Γ𝐶 .
For Statement 2. Write 𝜆 = 𝑗+𝑛+𝑚 with 𝑗 = 𝑛𝑝1, 𝑗 +𝑚𝑝2, 𝑗 −𝑛𝑚 and 𝜆+𝑛𝑎+𝑚𝑏 = 𝑗′+𝑛+𝑚

with 𝑗′ = 𝑛𝑝1, 𝑗′ +𝑚𝑝2, 𝑗′ − 𝑛𝑚, where (𝑝1, 𝑗 , 𝑝2, 𝑗), (𝑝1, 𝑗′ , 𝑝2, 𝑗′) ∈ 𝑃. Since 𝜆+ 𝑛𝑎 +𝑚𝑏 ∉ Γ𝐶 , we have
that 𝜆 + 𝑛𝑎 + 𝑚𝑏 < 𝑐Γ = (𝑛 − 1)(𝑚 − 1). Therefore,

𝑛𝑎 + 𝑚𝑏 ≤ 𝑛𝑚 − 𝑛 − 𝑚 − 𝜆 < 𝑛𝑚.

Thus, in virtue of Remark 2.3.15, we obtain

𝑎 + 1 = 𝑝1, 𝑗′ − 𝑝1, 𝑗 + 1 = 𝑚 − (𝑚 − 𝑝1, 𝑗′ + 𝑝1, 𝑗 − 2) − 1

𝑏 + 1 = 𝑝2, 𝑗′ − 𝑝2, 𝑗 + 1 = 𝑛 − (𝑛 − 𝑝2, 𝑗′ + 𝑝2, 𝑗 − 2) − 1.

We need to check that (𝑚 − 𝑝1, 𝑗′ + 𝑝1, 𝑗 − 2, 𝑛 − 𝑝2, 𝑗′ + 𝑝2, 𝑗 − 2) ∈ 𝑃. By definition of 𝑃, we have to
show that:

a) 0 ≤ 𝑚 − 𝑝1, 𝑗′ + 𝑝1, 𝑗 − 2 ≤ 𝑚 − 2.
b) 0 ≤ 𝑛 − 𝑝2, 𝑗′ + 𝑝2, 𝑗 − 2 ≤ 𝑛 − 2.
c) 𝑛(𝑚 − 𝑝1, 𝑗′ + 𝑝1, 𝑗 − 2) + 𝑚(𝑛 − 𝑝2, 𝑗′ + 𝑝2, 𝑗 − 2) > 𝑛𝑚.

Let us show a) and b): recall that 𝑛𝑎+𝑚𝑏 ≤ 𝑛𝑚−𝑛−𝑚−𝜆. Moreover 𝜆 > 𝑛+𝑚 and we get that

𝑛𝑎 + 𝑚𝑏 < 𝑛𝑚 − 2𝑛 − 2𝑚. (9.1)

Consequently, we obtain that

0 ≤ 𝑎 ≤ 𝑚 − 3; 0 ≤ 𝑏 ≤ 𝑛 − 3.

These last inequalities combined with the fact that

𝑎 = 𝑝1, 𝑗′ − 𝑝1, 𝑗 ; 𝑏 = 𝑝2, 𝑗′ − 𝑝2, 𝑗 ,

give us the desired result.
Now, let us show c): we have that

𝑛(𝑚 − 𝑝1, 𝑗′ + 𝑝1, 𝑗 − 2) + 𝑚(𝑛 − 𝑝2, 𝑗′ + 𝑝2, 𝑗 − 2) = 2𝑛𝑚 − 𝑛𝑎 − 𝑚𝑏 − 2𝑛 − 2𝑚.

By Equation (9.1), we have that 𝑛𝑎+𝑚𝑏 < 𝑛𝑚−2𝑛−2𝑚, thus we conclude 2𝑛𝑚−𝑛𝑎−𝑚𝑏−2𝑛−2𝑚 >

𝑛𝑚 . □

As mentioned before, the results in [17] require to write the implicit equation of the cusp 𝐶

in a particular system of coordinates that we are going to introduce now.
In [60], Zariski proved the existence of a system of coordinates (𝑥, 𝑦) in (𝑀0 , 𝑃0) such that 𝐶

has an implicit equation given by

𝑓 = 𝑥𝑚 + 𝑦𝑛 +
∑
𝑗∈𝐽

𝑧 𝑗𝑥
𝑝1, 𝑗 𝑦𝑝2, 𝑗 ; 𝑧 𝑗 ∈ C, (9.2)
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We will call this system of coordinates (𝑥, 𝑦) a nice system of coordinates of 𝐶. An implicit equation
as the one of the Equation (9.2) will be called a nice equation of 𝐶. Note that a system of nice
coordinates is an adapted system of coordinates with respect to 𝐶.

Now we show how a nice equation allows us to compute the roots of the Bernstein-Sato
polynomial of a cusp.

For any 𝑗 ∈ 𝐽, we define the rational numbers

𝛼 𝑗 =
𝑛𝑝1, 𝑗 + 𝑚𝑝2, 𝑗 + 𝑛 + 𝑚

𝑛𝑚
; 𝛽 𝑗 = 𝛼 𝑗 − 1 =

𝑗 + 𝑛 + 𝑚

𝑛𝑚
.

By Lemma 9.1.4, given 𝜆 ∈ Λ \ Γ𝐶 , then 𝜆/𝑛𝑚 corresponds with 𝛽 𝑗 for some 𝑗 ∈ 𝐽.
According to [17], we have that either −𝛼 𝑗 or −𝛽 𝑗 is a root of the Bernstein polynomial of 𝐶.

Moreover, for any (𝑎, 𝑏) ∈ 𝑀, there is a complex function 𝐼0((𝑎, 𝑏), 𝑓 )(𝜌), such that its residue at
𝜌 = −𝛽 𝑗 is given by

𝑅𝑒𝑠 𝑓 (𝑎, 𝑏)(𝛽 𝑗) =
Γ(𝛽 𝑗)−1

𝑛𝑚

∑
ℓ∈𝐽 , 𝛿ℓ∈N∑

𝛿ℓ ℓ=𝑘

(−1)
∑

𝛿ℓΓ

(∑
𝛿ℓ 𝑝1,ℓ+𝑎
𝑚

)
Γ

(∑
𝛿ℓ 𝑝2,ℓ+𝑏

𝑛

) ∏ 𝑧
𝛿ℓ
ℓ

𝛿ℓ !
, (9.3)

where 𝑘 = 𝛽 𝑗𝑛𝑚 − 𝑛𝑎 − 𝑚𝑏 and Γ(−) is the Euler’s Gamma function. Furthermore, next result
characterizes when the values 𝛼 𝑗 and 𝛽 𝑗 are roots of the Bernstein-Sato polynomial of 𝐶.

Theorem 9.4 ([17]). Assume that 𝐶 is defined by the nice equation

𝑓 = 𝑥𝑚 + 𝑦𝑛 +
∑
𝑗∈𝐽

𝑧 𝑗𝑥
𝑝1, 𝑗 𝑦𝑝2, 𝑗 .

and consider 𝑏(𝜌) its Bernstein-Sato polynomial. Then −𝛽 𝑗 is a root of 𝑏(𝜌) if and only if there exists
(𝑎, 𝑏) ∈ 𝑀, such that 𝑅𝑒𝑠 𝑓 (𝑎, 𝑏)(𝛽 𝑗) ≠ 0. Otherwise, if −𝛽 𝑗 is not a root of 𝑏(𝜌), then −𝛼 𝑗 is.

We want to emphasize that some of the roots of the Bernstein-Sato polynomial of a cusp
only depend on the topological class. However, the ones of the form 𝛽 𝑗 are not topological
invariants. In fact, we can consider the most easy example: we take the quasi-homogeneous
curve 𝑓 = 𝑥𝑚 + 𝑦𝑛 . Then all the possible residues are zero and no 𝛽 𝑗 is a root of the Bernstein-Sato
polynomial of 𝑓 = 0. In contrast, in the next example we find a cusp with a root of the shape 𝛽 𝑗 .

Example 9.1.5. Consider the cusp 𝐶 defined by the nice equation

𝑓 = 𝑥11 + 𝑦5 + 𝑥9𝑦 + 3𝑥7𝑦2.

We notice that the Puiseux pair of 𝐶 is (5, 11). The cuspidal sets are

𝑃 = {(9, 1), (7, 2), (5, 3), (8, 2), (6, 3), (9, 2), (7, 3), (8, 3), (9, 3)},
𝐽 = {1, 2, 3, 7, 8, 12, 13, 18, 23},

𝑀 = {(1, 1), (2, 1), (3, 1), (1, 2), (4, 1), (2, 2), (5, 1), (3, 2), (1, 3)}.

5

5 10

Figure 9.1: The blue points represent the elements of 𝑀, the red ones the elements in 𝑃.
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We get that 𝑧1 = 1 and 𝑧2 = 3.
Let us compute the residue𝑅𝑒𝑠 𝑓 (2, 1)(𝛽8), where 𝛽8 = 23/55. We see that 𝑘 = 23−5·2−11·11 =

2. The sequences of non negative integers (𝛿ℓ )ℓ∈𝐽 , such that
∑

ℓ∈𝐽 𝛿ℓℓ = 2:

• 𝛿1 = 2 and 𝛿ℓ = 0 if ℓ ≠ 1.
• 𝛿2 = 1 and 𝛿ℓ = 0 if ℓ ≠ 2.

Now we apply Equation (9.3) to compute the residue 𝑅𝑒𝑠 𝑓 (2, 1)(23/55). Before that, recall that
the Euler Gamma function satisfies that Γ(𝜌 + 1) = 𝜌Γ(𝜌).

𝑅𝑒𝑠 𝑓 (2, 1)(23/55) =
Γ(23/55)−1

55

(
Γ

(
2·9+2

11

)
Γ

(
2·1+1

5

)
· 12

2!−

− Γ

(
7·1+2

11

)
Γ

(
2·1+1

5

)
· 3

)
=

=
Γ(23/55)−1

55 Γ

(
9
11

)
Γ

(
3
5

) (
9
22 − 3

)
=

=
Γ(23/55)−1

55 Γ

(
9
11

)
Γ

(
3
5

) (
−57

22

)
.

In fact, we are not interested in developing the product involving the Gamma functions. It is
enough to see that they are non-zero, hence we can conclude that the residue 𝑅𝑒𝑠 𝑓 (2, 1)(23/55)
is non zero. By Theorem 9.4, we conclude that −23/55 is a root of the Bernstein-Sato polynomial
of 𝐶. Using the techniques exposed in Section 5.4, we can check that 23 ∉ Γ𝐶 is the 2-element of
the basis of semimodule of differential values of 𝐶. This is in correspondence with what we
expected from Conjecture 9.3.

9.2 Roots of the Bernstein-Sato Polynomial and Zariski’s In-
variant

Fix (𝐶, 𝑃0) a cusp with Puiseux pair (𝑛, 𝑚) and 𝑛 ≥ 3. Consider the associated cuspidal sets
𝑃, 𝐽 , 𝑀. The cuspidal divisor of 𝐶 will be denoted by 𝐷. The goal of this section is to prove
Theorem 9.1.

Next lemma relates the 1-element of the basis of the semimodule of differential values of 𝐶
with the coefficients of a nice equation of 𝐶. Moreover, these conditions are also related with the
residues introduced in Equation (9.3).

In the proofs of the results of this chapter, we are going to consider the weighted monomial
order ⪯ with weights (𝑛, 𝑚), as in Example 4.1.1.

Lemma 9.2.1. Let 𝐶 be a cusp with Puiseux pair (𝑛, 𝑚). Consider 𝑓 a nice equation of 𝐶, as in Equation
(9.2). The following statements are equivalent:

1. 𝜆1 = 𝑗1 + 𝑛 + 𝑚 with 𝑗1 ∈ 𝐽 is the 1-element of the basis of Λ𝐶 .
2. 𝑧ℓ = 0 for ℓ < 𝑗1 and 𝑧 𝑗1 ≠ 0, where the 𝑧 𝑗 denotes the coefficient of the nice equation 𝑓 .
3. 𝑅𝑒𝑠 𝑓 (1, 1)((ℓ + 𝑛 + 𝑚)/𝑛𝑚) = 0 for ℓ < 𝑗1 and 𝑅𝑒𝑠 𝑓 (1, 1)((𝑗1 + 𝑛 + 𝑚)/𝑛𝑚) ≠ 0.

Before proving the Lemma 9.2.1, we remark that the equivalence of the Statements 1 and 2 is
well known (see [15]). However, we include here a proof using an approach similar to the one
that we will use later on the proof of Theorem 9.2.

Notation 9.2.2. Given 𝑟, 𝑔 ∈ C{𝑥, 𝑦}, when we say that 𝑟 is a reduction of 𝑔, we mean that 𝑟 is a
reduction of 𝑔 modulo { 𝑓 }. We do similarly with final and partial reductions.
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Proof Lemma 9.2.1. We prove first the equivalence between the two firsts statements, and later
the equivalence between the two last ones.

Part 1: Statement 1 is equivalent to Statement 2.

Assume that the 1-element of the basis of the semimodule Λ𝐶 of differential values of 𝐶 is
𝜆1 = 𝑗1 + 𝑛𝑎 +𝑚𝑏, with 𝑗1 ∈ 𝐽. We are going to compute the first elements of a minimal standard
basis of the module of differentials of 𝐶 with Delorme’s algorithm.

Since (𝑥, 𝑦) is local system of nice coordinates, we can put 𝜔−1 = 𝑑𝑥 and 𝜔0 = 𝑑𝑦. Then the
axis 𝑢1 is

𝑢1 = min(Λ0 ∩ (𝜆−1 + Γ𝐶)) = 𝑛 + 𝑚 = 𝜈𝐶(𝑥𝜔0) = 𝜈𝐶(𝑦𝜔−1),

where Λ𝑖 denotes the 𝑖𝑡ℎ element of the decomposition sequence of Λ𝐶 , with 𝑖 = −1, 0, . . . , 𝑠.
Let us consider the 1-form 𝜃 = 𝑥𝜔0 + 𝜇+𝑦𝜔−1 and compute the tuning constant 𝜇+. As

explained in Remark 5.4.4, in order to find 𝜇+, it is enough to compute final reductions of 𝑋𝑥𝜔0( 𝑓 )
and 𝑋𝑦𝜔−1( 𝑓 ). Starting by 𝑋𝑥𝜔0( 𝑓 ), we find:

𝑟0 = 𝑋𝑥𝜔0( 𝑓 ) = 𝑥 𝜕
𝜕𝑥 ( 𝑓 ) = 𝑥 𝑓𝑥 = 𝑚𝑥𝑚 +

∑
ℓ∈𝐽

𝑝1,ℓ 𝑧ℓ 𝑥
𝑝1,ℓ 𝑦𝑝2,ℓ . (9.4)

The leading power 𝑙𝑝(𝑟0) = (𝑚, 0) is not divisible by (0, 𝑛) = 𝑙𝑝( 𝑓 ). Thus, 𝑟0 is its own final
reduction. For 𝑋𝑦𝜔−1( 𝑓 ), we have:

𝑋𝑦𝜔−1( 𝑓 ) = −𝑦 𝜕
𝜕𝑦 ( 𝑓 ) = −𝑦 𝑓𝑦 = −𝑛𝑦𝑛 −

∑
ℓ∈𝐽

𝑝2,ℓ 𝑧ℓ 𝑥
𝑝1,ℓ 𝑦𝑝2,ℓ .

Here, 𝑙𝑝(𝑋𝑦𝜔−1( 𝑓 )) = (0, 𝑛). We can take the reduction

𝑟−1 = 𝑋𝑦𝜔−1( 𝑓 ) + 𝑛 𝑓 = 𝑛𝑥𝑚 +
∑
ℓ∈𝐽

(𝑛 − 𝑝2,ℓ )𝑧ℓ 𝑥𝑝1,ℓ 𝑦𝑝2,ℓ . (9.5)

Since 𝑙𝑝(𝑟−1) = (𝑚, 0) is not divisible by (0, 𝑛), we can put 𝑟−1 as final reduction of 𝑋𝑦𝜔−1( 𝑓 ). By
Proposition 4.1.5, we find:

𝑖𝑃0(𝑋𝑦𝜔−1( 𝑓 ), 𝑓 ) = 𝑛𝑚 = 𝑖𝑃0(𝑋𝑥𝜔0( 𝑓 ), 𝑓 )

From Equations (9.4) and (9.5), the leading terms are 𝑙𝑡(𝑟−1) = 𝑛𝑥𝑚 and 𝑙𝑡(𝑟0) = 𝑚𝑥𝑚 . Therefore,
the tuning constant 𝜇+ is −𝑚/𝑛. For convenience, instead of 𝜃, we take the 1-form

𝜂 = 𝑛𝜃 = 𝑛𝑥𝜔0 − 𝑚𝑦𝜔−1 = 𝑛𝑥𝑑𝑦 − 𝑚𝑦𝑑𝑥.

We define 𝑟1 to be the following partial reduction of 𝑋𝜂( 𝑓 ):

𝑟1 := 𝑛𝑟0 − 𝑚𝑟−1 =

∑
ℓ∈𝐽

(𝑛𝑝1,ℓ + 𝑚𝑝2,ℓ − 𝑛𝑚)𝑧ℓ 𝑥𝑝1,ℓ 𝑦𝑝2,ℓ =

=

∑
ℓ∈𝐽

ℓ 𝑧ℓ 𝑥
𝑝1,ℓ 𝑦𝑝2,ℓ .

(9.6)

The leading power of 𝑟1 is an element (𝑝1, 𝑗 , 𝑝2, 𝑗) ∈ 𝑃. By definition of the cuspidal set 𝑃,
we have that 0 ≤ 𝑝2, 𝑗 < 𝑛 − 1. Thus (𝑝1, 𝑗 , 𝑝2, 𝑗) is not divisible by (0, 𝑛). Therefore 𝑟1 is a final
reduction of 𝑋𝜂( 𝑓 ). Moreover, by Propositions 4.1.5 and 5.4.3

𝑖𝑃0(𝑋𝜂( 𝑓 ), 𝑓 ) = 𝑛𝑝1, 𝑗 + 𝑚𝑝2, 𝑗 ,

𝜈𝐶(𝜂) = 𝑛𝑝1, 𝑗 + 𝑚𝑝2, 𝑗 − (𝑛 − 1)(𝑚 − 1) + 1 = 𝑗 + 𝑛 + 𝑚.
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By Lemma 9.1.3, we have that 𝑗 + 𝑛 + 𝑚 ∉ Γ𝐶 = Λ0 ∪ {0}. We also note that the divisorial
value of 𝜂 is 𝜈𝐷(𝜂) = 𝑛 + 𝑚 = 𝑡1. Since 𝜆1 is the 1-element of the basis, we have that

𝜆1 = min(Λ𝐶 \Λ0),

see Section 3.1. Furthermore, by Theorem 5.2.10, it is also satisfied that

𝜆1 = sup{𝜈𝐶(𝜔) : 𝜈𝐷(𝜔) = 𝑡1}.

We conclude that 𝜆1 = 𝑗 + 𝑛 + 𝑚, that is, 𝑗 = 𝑗1. In fact, we have shown that 𝜈𝐶(𝜂) = 𝜆1. This
implies that 𝜂 is its own final reduction modulo {𝜔−1 , 𝜔0}, where 𝑟1 is a final reduction of 𝑋𝜂( 𝑓 ).

By Equation (9.6) and Remark 9.1.1, stating that the leading power of 𝑟1 is (𝑝1, 𝑗1 , 𝑝2, 𝑗1) is
equivalent to saying that 𝑧ℓ = 0 for ℓ < 𝑗1 and 𝑧 𝑗1 ≠ 0. This shows that Statement 1 is equivalent
to Statement 2.

Part 2: Statement 2 is equivalent to Statement 3.

Fix 𝑗1 ∈ 𝐽. Let us compute 𝑅𝑒𝑠 𝑓 (1, 1)((𝑗 + 𝑛 + 𝑚)/𝑛𝑚), for 𝑗 ∈ 𝐽 with 𝑗 ≤ 𝑗1. Since 𝐽 ≠ ∅, then
the set 𝑀 is not empty and then we have that (1, 1) ∈ 𝑀 by Remark 9.1.2. We can apply Equation
(9.3). Notice that 𝛽 𝑗 = (𝑗 + 𝑛 + 𝑚)/𝑛𝑚.

Start by taking ℓ1 = min(𝐽). By Equation (9.3), we have to find sequences (𝛿ℓ )ℓ∈𝐽 of non
negative integer numbers, such that

∑
ℓ∈𝐽 𝛿ℓℓ = ℓ1. Since ℓ1 = min(𝐽), the only possible sequence

is the one defined by 𝛿ℓ1 = 1 and 𝛿ℓ = 0 for ℓ ≠ ℓ1. Therefore, by Equation (9.3):

𝑅𝑒𝑠 𝑓 (1, 1)((ℓ1 + 𝑛 + 𝑚)/𝑛𝑚) = 0 ⇔ 𝑧ℓ1 = 0.

This proves that Statement 2 is equivalent to Statement 3 if ℓ1 = 𝑗1.
Now assume that ℓ1 < 𝑗1, and proceed in an inductive way. Take 𝑘 ∈ 𝐽 such that 𝑘 < 𝑗1.

Suppose that 𝑅𝑒𝑠 𝑓 (1, 1)((ℓ + 𝑛 +𝑚)/𝑛𝑚) = 0 for all ℓ ≤ 𝑘 < 𝑗1 is equivalent to 𝑧ℓ = 0 for all ℓ ≤ 𝑘.
Denote by ℓ𝑘 = min{ℓ ∈ 𝐽 : ℓ > 𝑘}, let us show that, if 𝑧ℓ = 0 for ℓ ≤ 𝑘, then

𝑅𝑒𝑠 𝑓 (1, 1)((ℓ𝑘 + 𝑛 + 𝑚)/𝑛𝑚) = 0 ⇔ 𝑧ℓ𝑘 = 0.

Applying this argument inductively will prove the equivalence between Statements 2 and 3. We
compute the sequences of non negative integer numbers (𝛿ℓ )ℓ∈𝐽 such that

∑
ℓ∈𝐽 𝛿ℓℓ = ℓ𝑘 . There

are two kind of possible sequences: first, the one given by 𝛿ℓ𝑘 = 1 and 𝛿ℓ = 0 if ℓ ≠ ℓ𝑘 . Second, all
the non zero 𝛿ℓ satisfies that ℓ < ℓ𝑘 . Since 𝑧ℓ = 0 for ℓ < ℓ𝑘 , we have, again by Equation (9.3), that

𝑅𝑒𝑠 𝑓 (1, 1)((ℓ𝑘 + 𝑛 + 𝑚)/𝑛𝑚) = 0 ⇔ 𝑧ℓ𝑘 = 0,

as desired. □

As a consequence of the previous lemma we have the next result showing that several
residues are non zero. In fact, next lemma and Theorem 9.4 prove Theorem 9.1.

Lemma 9.2.3. Let 𝐶 be a cusp with Puiseux pair (𝑛, 𝑚) and assume that the 1-element 𝜆1 of the basis of
Λ𝐶 is given by

𝜆1 = 𝑗1 + 𝑛 + 𝑚, with 𝑗1 ∈ 𝐽.

Then for any 𝜆 = 𝜆1 + 𝑛𝑎 + 𝑚𝑏 ∈ Λ𝐶 \Λ0 = Λ𝐶 \ Γ𝐶 , we have that 𝑅𝑒𝑠 𝑓 (𝑎 + 1, 𝑏 + 1)(𝜆/𝑛𝑚) ≠ 0.
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Proof. By Lemma 9.1.4, we can write 𝜆1 = 𝑗1 + 𝑛 + 𝑚 with 𝑗1 ∈ 𝐽 and 𝑗1 = 𝑛𝑝1, 𝑗1 + 𝑚𝑝2, 𝑗1 − 𝑛𝑚.
Moreover, by Lemma 9.2.1, we have that if 𝑓 is a nice equation of 𝐶 as in Equation (9.2), then
𝑧ℓ = 0 for ℓ < 𝑗1 and 𝑧 𝑗1 ≠ 0.

Now take𝜆 = 𝜆1+𝑛𝑎+𝑚𝑏 ∈ Λ𝐶 \Λ0 that we write as𝜆 = 𝑞+𝑛+𝑚 with 𝑞 = 𝑛𝑝1,𝑞+𝑚𝑝2,𝑞−𝑛𝑚
and 𝑞 ∈ 𝐽. Note that we have the equalities: 𝑝1,𝑞 = 𝑝1, 𝑗1 + 𝑎 and 𝑝2,𝑞 = 𝑝2, 𝑗1 + 𝑏, where (𝑝1, 𝑗1 , 𝑝2, 𝑗1)
is the element in 𝑃 associated to 𝑗1 ∈ 𝐽.

As before, we can express:

𝑞 + 𝑛 + 𝑚

𝑛𝑚
=

𝑛𝑝1,𝑞 + 𝑚𝑝2,𝑞 + 𝑛 + 𝑚

𝑛𝑚
− 1 = 𝛽𝑞 .

By Lemma 9.1.4, we know that (𝑎 + 1, 𝑏 + 1) ∈ 𝑀. Observe that 𝑗1 = 𝛽𝑞𝑛𝑚 − 𝑛(𝑎 + 1) −𝑚(𝑏 + 1).
Again, since 𝑧ℓ = 0 for ℓ < 𝑗1, we only have to consider a single non zero sequence (𝛿ℓ )ℓ∈𝐽 : 𝛿 𝑗1 = 1
and 𝛿ℓ = 0 for ℓ ≠ 𝑗1, because the other sequences have zero contribution to the computation of
the residue 𝑅𝑒𝑠 𝑓 (𝑎 + 1, 𝑏 + 1)(𝜆/𝑛𝑚), when applying Equation (9.3). We conclude that

𝑅𝑒𝑠 𝑓 (𝑎 + 1, 𝑏 + 1)(𝜆/𝑛𝑚) = 0 ⇔ 𝑧 𝑗1 = 0.

However, this contradicts the fact that 𝑧 𝑗1 ≠ 0, ending the proof. □

9.3 Cusps with Multiplicity up to 4

As in the previous section, we fix 𝐶 a cusp with Puiseux pair (𝑛, 𝑚), semigroup Γ𝐶 , semimodule
of differential values Λ𝐶 and cuspidal divisor 𝐷. In this section we prove Theorem 9.2. Hence,
we impose the extra condition that 𝑛 ≤ 4.

We recall that the length 𝑠 of the basis (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) of the semimodule of differential
values of 𝐶 is bounded above by 𝑛−2. Additionally, we have that 𝜆−1 = 𝑛 and 𝜆0 = 𝑚. Therefore,
Theorem 9.2 is trivial if 𝑛 = 2. In that case, we have that Λ𝐶 \ Γ𝐶 = ∅ and there is nothing to
prove. By the same argument if 𝑛 = 3, we have that either Λ𝐶 \Γ𝐶 = ∅ or Λ𝐶 \Γ𝐶 = (𝜆1 +Γ𝐶) \Γ𝐶 .
Thus by Theorem 9.1, Theorem 9.2 is also true when 𝑛 = 3. We are left to show that it also
holds when 𝑛 = 4. The rest of the section is devoted to show that the theorem holds under the
assumption 𝑛 = 4. Consider 𝑓 ∈ C{𝑥, 𝑦} a nice equation of 𝐶 as in Equation (9.2):

𝑓 = 𝑥𝑚 + 𝑦4 +
∑
𝑗∈𝐽

𝑧 𝑗𝑥
𝑝1, 𝑗 𝑦𝑝2, 𝑗 ; 𝑧 𝑗 ∈ C.

We proceed in a similar way as in the previous section. We are going to find all possible
Γ𝐶-semimodules Λ such that Λ can be the semimodule of differential values of a cusp 𝐶 with
multiplicity four. Later, we are going to find the conditions on the coefficients of an implicit
equation of 𝐶 imposed by the restriction of having Λ as the semimodule of differential values of
𝐶. Finally, we will see that the computed conditions imply that certain residues, described in
Equation (9.3), are non zero.

Since 𝑔𝑐𝑑(4, 𝑚) = 1, it follows that 𝑚 = 4𝛼 + 𝜖 with 𝛼 ≥ 1 and 𝜖 ∈ {1, 3}. Before studying all
possible semimodules of differential values, we give the following remark about cuspidal sets
and nice equations.

Remark 9.3.1. Take 𝑛 = 4 and 𝑚 = 4𝛼 + 𝜖 with 𝛼 ≥ 2 and 𝜖 ∈ {1, 3}. For 0 ≤ 𝛽 ≤ 𝛼 − 2 and
0 ≤ 𝛽′ ≤ 2𝛼 − 2 we have that

𝜖 + 4𝛽 = 4(3𝛼 + 𝜖 + 𝛽) + (4𝛼 + 𝜖)1 − 𝑛𝑚,

2𝜖 + 4𝛽′ = 4(2𝛼 + 𝜖 + 𝛽′) + (4𝛼 + 𝜖)2 − 𝑛𝑚.



9.3. Cusps with Multiplicity up to 4 137

Thus, the cuspidal sets 𝐽 and 𝑃 are

𝐽 = {𝜖 + 4𝛽, 2𝜖 + 4𝛽′ : 0 ≤ 𝛽 ≤ 𝛼 − 2, 0 ≤ 𝛽′ ≤ 2𝛼 − 2},

and
𝑃 = {(3𝛼 + 𝜖 + 𝛽, 1), (2𝛼 + 𝜖 + 𝛽′, 2) : 0 ≤ 𝛽 ≤ 𝛼 − 2, 0 ≤ 𝛽′ ≤ 2𝛼 − 2},

with the natural correspondence between 𝐽 and 𝑃.
Therefore , we can write the nice equation 𝑓 of 𝐶 as:

𝑓 = 𝑥4𝛼+𝜖 + 𝑦4 +
𝛼−2∑
𝛽=0

𝑧𝜖+4𝛽𝑥
3𝛼+𝜖+𝛽𝑦 +

2𝛼−2∑
𝛽′=0

𝑧2𝜖+4𝛽′𝑥
2𝛼+𝜖+𝛽′𝑦2. (9.7)

We can particularize Remark 9.1.1. More precisely, for any 𝛽 ≥ 0, we have that

(3𝛼 + 𝜖 + 𝛽, 1) ≺ (2𝛼 + 𝜖 + 𝛽, 2) ≺ (3𝛼 + 𝜖 + 𝛽 + 1, 1).

Lemma 9.3.2. Denote by ℬ the basis of the semimodule Λ𝐶 . Then one of the following statements must
be satisfied:

1. ℬ = (4, 4𝛼 + 𝜖).
2. ℬ = (4, 4𝛼 + 𝜖,𝜆1) with 𝜆1 > 𝑢1 = 𝑛 + 𝑚 = 4(𝛼 + 1) + 𝜖 and 𝜆1 ∉ Γ𝐶 .
3. ℬ = (4, 4𝛼 + 𝜖,𝜆1 ,𝜆2) with

𝜆1 = 𝑛 + 𝑚 + 𝜖 + 4𝑞 = 4(𝛼 + 1) + 2𝜖 + 4𝑞 with 0 ≤ 𝑞 ≤ 𝛼 − 2.

𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞.

If 𝛼 = 1, then Case 3 is not possible.

Lemma 9.3.2 was proven in [33]. There, the authors use their normal form theorem from [34]
to show the result. For completeness, we provide a proof using only combinatorial techniques.

Proof. Put 𝜆−1 = 𝑛 = 4 and 𝜆0 = 𝑚 = 4𝛼 + 𝜖. We recall that, as explained in Section 3.2, the
only conditions that an increasing sequence (𝜆−1 ,𝜆0 ,𝜆1 , . . . ,𝜆𝑠) must satisfy in order to be the
basis of a semimodule of differential values are the following: 𝜆−1 = 𝑛, 𝜆0 = 𝑚, 𝜆𝑖 > 𝑢𝑖 for
𝑖 = 1, . . . , 𝑠 and 𝜆𝑖 ∉ 𝜆 𝑗 + Γ𝐶 , for 𝑖 ≠ 𝑗 and 𝑖 , 𝑗 = −1, 0, 1, . . . , 𝑠. The three options above verify
these conditions. Let us show that there are no other possibilities.

The number of the elements of the basis is at most 4 because 𝑠 ≤ 2. Additionally, we see that
all possible semimodules of differentials values with 𝑠 = 0, 1 are covered. Case 1. corresponds
to a quasi-homogeneous curve and hence 𝑠 = 0. Of 𝑠 = 1, we only need that the 1-element of the
basis 𝜆1 is greater than 𝑢1. Therefore, we must show that if the length of the basis 𝑠 is 2, the
basis corresponds to Case 3.

Assume that 𝛼 ≥ 2 and 𝑠 = 2 later we will show that it is not possible to have 𝛼 = 1 and 𝑠 = 2.
There are two possibilities for the 1-element of the basis 𝜆1:

a) 𝜆1 ≡ 3𝑚 mod 4.
b) 𝜆1 ≡ 2𝑚 mod 4.

Case a). If 𝜆1 ≡ 3𝑚 mod 4, let us see that the 2-element of the basis cannot exists. To do that, let
us compute the axis 𝑢2 and see that for any 𝜆 > 𝑢2, we have that 𝜆 ∈ Λ1. Recalling the results
from Chapter 3, we have by Example 3.5.4 and Proposition 3.5.9 that the bounds are 𝑘𝑛1 = 0 and
𝑘𝑚1 = −1. Thus, the axis 𝑢2 can only take the following two values:

i) 𝑢2 = 𝑢𝑚
2 = 𝜆1 + 𝑚ℓ 2

𝑚 = 𝑛 + 𝑛𝑎2.
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ii) 𝑢2 = 𝑢𝑛
2 = 𝜆1 + 𝑛ℓ 2

𝑛 = 𝑚 + 𝑚𝑏2.

i). If 𝑢2 = 𝜆1 + 𝑚ℓ 2
𝑚 = 𝑛(𝑎2 + 1), since 𝑛 = 4 and 𝜆1 ≡ 3𝑚 mod 4, then, ℓ 2

𝑚 = 1. Hence, for
any 𝜆 > 𝑢2 we find that 𝜆 > 𝑢2 = 𝜆1 + 𝑚 > 2𝑚. Assume that we write 𝜆 ≡ 𝛿𝑚 mod 4 with
𝛿 ∈ {0, 1, 2, 3}. If 𝛿 = 0, 1, 2, we could write 𝜆 = 𝛿𝑚 + 4𝑐 for 𝑐 ≥ 0 and 𝜆2 ∈ Γ𝐶 . If 𝛿 = 3, then
𝜆 = 𝜆1 + 4𝑐′ with 𝑐′ ≥ 0 and 𝜆 ∈ 𝜆1 + Γ𝐶 .

ii). If 𝑢2 = 𝜆1 + 𝑛ℓ 2
𝑛 = 𝑚(𝑏2 + 1), we have that 𝑏2 ≥ 2 since we are assuming that 𝜆1 ≡ 3𝑚

mod 𝑛. Thus we obtain 𝜆 > 𝑢2 ≥ 3𝑚. As before, we could write 𝜆 = 𝛿𝑚 + 4𝑐 with 𝑐 ≥ 0 and
𝛿 ∈ {0, 1, 2, 3}. This means that 𝜆 ∈ Γ𝐶 . Therefore, the case 𝑢2 = 𝜆1 + 𝑛ℓ 2

𝑛 = 𝑚(𝑏2 + 1) implies
the non-existence of the 2-element of the basis.

In conclusion the assumption 𝜆1 ≡ 3𝑚 mod 4 implies that the 2-element of the basis cannot
exist.

Case b). Assume that 𝜆1 ≡ 2𝑚 mod 4. First, we note that 𝜆1 < 2𝑚, otherwise, we could write
𝜆1 = 2𝑚 + 4ℓ for ℓ ≥ 0 implying that 𝜆1 ∈ Γ𝐶 . This would contradict the fact that 𝜆1 ∈ Λ𝐶 \ Γ𝐶 .
Moreover, we have the extra condition 𝜆1 > 𝑢1 = 𝑛 + 𝑚 = 4(𝛼 + 1) + 𝜖. In other words

4(𝛼 + 1) + 𝜖 < 𝜆1 < 2𝑚 = 4(2𝛼) + 2𝜖.

Taking into account that we are assuming that 𝜆1 ≡ 2𝑚 mod 4, the last two inequalities are
equivalent to

𝜆1 = 4(𝛼 + 1) + 2𝜖 + 4𝑞, with 0 ≤ 𝑞 ≤ 𝛼 − 2.

Hence 𝜆1 must be as stated in Case 3. We only have to determine the possibilities for the
2-element of the basis. First, we find the value of the axis 𝑢2, since the bounds are 𝑘𝑛1 = 0 and
𝑘𝑚−1 = −1, we have the to compute the smallest value associated to the minimal solutions of the
following equations

𝜆1 + 𝑛ℓ 𝑛2 = 𝑚(𝑏2 + 1); 𝜆1 + 𝑚ℓ𝑚2 = 𝑛(𝑎2 + 1).

We can check that 𝑢2 = 𝜆1 + 4(𝛼 − 𝑞 − 1) = 2𝑚 = 8𝛼 + 2𝜖. Assume that 𝜆 > 𝑢2 and that 𝜆 ∉ Λ1,
as the 2-element of the basis must satisfy.

The conditions 𝜆 > 𝑢2 = 2𝑚 > 𝜆1 and 𝜆 ∉ Λ1 imply that 𝜆 ≡ 3𝑚 mod 4. Otherwise, we could
write 𝜆 = 𝜆𝑘 + 4𝑐 for 𝑘 = {−1, 0, 1} and 𝑐 ≥ 0, recall that 𝜆−1 = 𝑛, 𝜆0 = 𝑚 and the assumtion
𝜆1 ≡ 2𝑚 mod 4. Arguing as before, we find that

𝑢2 < 𝜆 < 𝜆1 + 𝑚 = 8𝛼 + 4 + 4𝑞 + 3𝜖 < 3𝑚.

From the previous inequalities and 𝜆 ≡ 3𝑚 mod 4 we get

𝜆 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞.

This shows that the basis is as in Case 3.

Finally, we notice that if 𝛼 = 1, it is not possible to have a cusp 𝐶 such that its semimodules of
differential values has basis of length 2. Indeed, assume that 𝜖 = 1, then we have that Γ𝐶 = ⟨4, 5⟩.
The conductor of the semigroup is 𝑐Γ = (4 − 1)(5 − 1) = 12. Then the axis is 𝑢1 = 9. This implies
that if the 1-element of the basis 𝜆1 exists, then it must be 𝜆1 = 11 > 9 (note that 10 = 2 · 5 ∈ Γ𝐶).
Thus, we compute the new axis and we have that 𝑢2 = 15 > 𝑐Γ. Therefore given 𝜆 > 𝑢2, we see
that 𝜆 ∈ Γ𝐶 . We conclude that the semimodule of differential values of a cusp with Puiseux pair
(4, 5) cannot have a basis of length 2. If 𝜖 = 3 we proceed in a similar way. □
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Remark 9.3.3. The proof of Lemma 9.3.2 shows that in case of having a basis as in Case 3, then
for any 𝜆 ∉ Λ1 with 𝜆 > 𝑢2, we have that

𝜆 = 8𝛼 + 3𝜖 + 4𝛽 with 0 ≤ 𝛽 ≤ 𝑞.

Now, consider the 2-element of the basis 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝛽 ≤ 𝑞′. Given 𝜆 ∈ Λ2 \Λ1 =

Λ𝐶 \ Λ1, then 𝜆 = 8𝛼 + 3𝜖 + 4𝛽 with 𝑞′ ≤ 𝛽 ≤ 𝑞. This is equivalent to saying that 𝜆 = 𝜆2 + 𝑛𝑎

with 0 ≤ 𝑎 ≤ 𝑞 − 𝑞′.

By Lemma 9.3.2, there are three cases to consider in the proof of Theorem 9.2. In the first
one, where the length of the basis is 𝑠 = 0, there is nothing to prove because Λ𝐶 \ Γ𝐶 = ∅. In
the second one, with 𝑠 = 1, since Λ𝐶 \ Γ𝐶 = (𝜆1 + Γ𝐶) \ Γ𝐶 , the theorem holds by Theorem 9.1.
Hence we only need to prove the third case with 𝑠 = 2. In that case, again by Theorem 9.1, we
only need to show that for any element 𝜆 ∈ Λ𝐶 \Λ1, then −𝜆/𝑛𝑚 is a root of the Bernstein-Sato
polynomial. Note the elements Λ𝐶 \Λ1 are described in the previous remark. The rest of the
chapter is devoted to show that given 𝜆 ∈ Λ𝐶 \Λ1, then −𝜆/𝑛𝑚 is a root.

As in the previous section, we split the study of the relationships between differential values,
coefficients of a nice equation and residues in several technical lemmas.

Lemma 9.3.4. Let 𝐶 be a cusp and assume that the basis of the semimodule of differential values is
(𝑛, 𝑚,𝜆1 ,𝜆2) with

𝑛 = 4, 𝑚 = 4𝛼 + 𝜖, 𝜆1 = 4(𝛼 + 1) + 2𝜖 + 4𝑞,

where 𝛼 ≥ 2, 𝜖 ∈ {1, 3} and 0 ≤ 𝑞 ≤ 𝛼 − 2. They following statements are equivalent:

1. 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞 is the 2-element of the basis.
2. 𝑧2𝜖+4𝛽′ = 0 for 𝑞 ≤ 𝛽′ < 𝑞 + 𝑞′ and 𝑧2𝜖+4(𝑞+𝑞′) ≠ 0, if 𝑞′ < 𝑞. Or

2(4𝛼 + 𝜖)𝑧2𝜖+8𝑞 − (3𝛼 + 𝜖 + 𝑞)𝑧2
𝜖+4𝑞 ≠ 0,

if 𝑞′ = 𝑞.

Before giving the proof, we recall that the term “reduction” means “reduction modulo { 𝑓 }”
when referring to functions.

Proof. Assume that the 2-element of the basis of Λ𝐶 is 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞.
Essentially, the proof follows a similar reasoning as in Lemma 9.2.1 Part 1. We will apply
Delorme’s algorithm to compute a minimal standard basis of 𝐶. In this way, we will obtain a
1-form 𝜔2 whose differential value is 𝜆2. During the process, we will derive the desired algebraic
conditions given in Statement 2.

In order to simplify the computations along all the proof, we ignore the terms with leading
power greater than (3𝛼 + 𝜖 − 1 + 𝑞, 2), that is, given 𝑔 ∈ C{𝑥, 𝑦} and assume that 𝑔 =

∑
𝑎 𝑗𝑘𝑥

𝑗𝑦𝑘 .
When we write

𝑔 = 𝑔1 + ℎ.𝑜.𝑡.,

we mean that 𝑔1 =
∑

𝑏 𝑗𝑘𝑥
𝑗𝑦𝑘 where 𝑏 𝑗𝑘 = 0 for (𝑗 , 𝑘) ≻ (3𝛼 + 𝜖 − 1+ 𝑞, 2) and 𝑏 𝑗𝑘 = 𝑎 𝑗𝑘 otherwise.

We introduce the previous convention for the following reason: consider a 1-form 𝜂 with
divisorial value 𝜈𝐷(𝜂) = 𝑡2. By Theorem 5.2.10, we know that 𝜈𝐶(𝜂) ≤ 𝜆2. Thus, by Propositions
5.4.2 and 5.4.3, we have that

𝑖𝑃0(𝑋𝜂( 𝑓 ), 𝑓 ) ≤ 𝜆2 + 𝑛𝑚 − 𝑛 − 𝑚 = 4(3𝛼 + 𝑞′ + 𝜖 − 1) + (4𝛼 + 𝜖)2.

Therefore, if 𝑟 is a partial or final reduction of 𝑋𝜂( 𝑓 ), then 𝑟 satisfies the following property:
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(★) The leading power of 𝑟 is at most (3𝛼 + 𝑞′ + 𝜖 − 1, 2).

Since 𝑞′ ≤ 𝑞, we are not concerned with the behaviour of the monomials with leading power
greater than (3𝛼 + 𝑞 + 𝜖 − 1, 2).

We start computing a 1-form that could later be identified as 𝜔2. Since𝜆1 = 4(𝛼+1)+2𝜖+4𝑞 =

𝑚 + 𝑛 + 𝜖 + 4𝑞 with 0 ≤ 𝑞 ≤ 𝛼 − 2, by Lemma 9.2.1, we have that 𝑧ℓ = 0 for ℓ < 𝜖 + 4𝑞 and
𝑧𝜖+4𝑞 ≠ 0. Hence, we can write Equation (9.7) as

𝑓 = 𝑥4𝛼+𝜖 + 𝑦4 +
𝛼−2∑
𝛽=𝑞

𝑧𝜖+4𝛽𝑥
3𝛼+𝜖+𝛽𝑦 +

2𝑞∑
𝛽′=𝑞

𝑧2𝜖+4𝛽′𝑥
2𝛼+𝜖+𝛽′𝑦2. (9.8)

We now apply Delorme’s algorithm. Since (𝑥, 𝑦) is a system of nice coordinates with respect to
𝐶, we can take 𝜔−1 = 𝑑𝑥 and 𝜔0 = 𝑑𝑦 and then we have 𝜈𝐶(𝜔−1) = 𝑛 and 𝜈𝐶(𝜔0) = 𝑚. Similarly
as in proof of Lemma 9.2.1, we find that the 1-form 𝜔1 = 𝑛𝑥𝑑𝑦 −𝑚𝑦𝑑𝑥 satisfies that the function
𝑟1 given by

𝑟1 = 𝑋𝜔1( 𝑓 ) − 𝑛𝑚 𝑓 = 𝑛𝑥 𝑓𝑥 + 𝑚𝑦 𝑓𝑦 − 𝑛𝑚 𝑓 =
∑
𝑗∈𝐽

𝑗𝑧 𝑗𝑥
𝑝1, 𝑗 𝑦𝑝2, 𝑗

=

𝛼−2∑
𝛽=𝑞

(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑥
3𝛼+𝜖+𝛽𝑦 +

2𝑞∑
𝛽′=𝑞

(2𝜖 + 4𝛽′)𝑧2𝜖+4𝛽′𝑥
2𝛼+𝜖+𝛽′𝑦2 ,

(9.9)

is a final reduction of 𝑋𝜔1( 𝑓 ). Moreover, the leading power of 𝑟1 is 𝑙𝑝(𝑟1) = (3𝛼 + 𝜖 + 𝑞, 1). By
Proposition 5.4.3, the differential value of 𝜔1 is 𝜈𝐶(𝜔1) = 𝜆1.

We now compute the candidate for 𝜔2. As in the proof of Lemma 9.3.2, the axis 𝑢2 is
𝑢2 = 𝜆1 + 4(𝛼 − 𝑞 − 1) = 2𝑚. In particular, we have:

𝑢2 = 𝜈𝐶(𝑥𝛼−𝑞−1𝜔1) = 𝜈𝐶(𝑦𝑑𝑦).

This implies that 𝑡2 = 𝑡1 + 4(𝛼 − 𝑞 − 1) = 4(𝛼 − 𝑞) + 𝑚 < 2𝑚. Therefore, by Delorme’s algorithm
we need to compute the tuning constant 𝜇+ for the 1-form 𝜃 = 𝑥𝛼−𝑞−1𝜔1 + 𝜇+𝑦𝑑𝑦. Later, we will
compute a final reduction of 𝜃 modulo {𝜔−1 , 𝜔0 , 𝜔1}.

Computation of 𝜇+: We must compute final reductions of 𝑋𝑥𝛼−𝑞−1𝜔1( 𝑓 ) and 𝑋𝑦𝑑𝑦( 𝑓 ). For the
first one, by Equation (9.9), we have that

𝑟2 = 𝑥𝛼−𝑞−1𝑟1 = 𝑥𝛼−𝑞−1(𝑋𝜔1( 𝑓 ) − 𝑛𝑚 𝑓 )

=

𝛼−2∑
𝛽=𝑞

(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑥
4𝛼+𝜖+𝛽−𝑞−1𝑦+

+
2𝑞∑

𝛽′=𝑞

(2𝜖 + 4𝛽′)𝑧2𝜖+4𝛽′𝑥
3𝛼+𝜖+𝛽′−𝑞−1𝑦2 ,

(9.10)

which is indeed a final reduction of 𝑋𝑥𝛼−𝑞−1𝜔1( 𝑓 ) since its leading power (4𝛼 + 𝜖 − 1, 1) is not
divisible by (0, 4). Similarly, for 𝑋𝑦𝑑𝑦( 𝑓 ), we have that

𝑟0 = 𝑋𝑦𝑑𝑦( 𝑓 ) = 𝑦 𝜕
𝜕𝑥

= (4𝛼 + 𝜖)𝑥4𝛼+𝜖−1𝑦 + (3𝛼 + 𝜖 + 𝑞)𝑧𝜖+4𝑞𝑥
3𝛼+𝜖+𝑞−1𝑦2 + ℎ.𝑜.𝑡.

(9.11)

Again, the leading power 𝑙𝑝(𝑟0) = (4𝛼 + 𝜖 − 1, 1) is not divisible by (0, 4). Therefore, by
Equations (9.10) and (9.11), the tuning constant is 𝜇+ = −(𝜖 + 4𝑞)𝑧𝜖+4𝑞/(4𝛼 + 𝜖). Equivalently,
we can write:

𝜔 = (4𝛼 + 𝜖)𝜃 = (4𝛼 + 𝜖)𝑥𝛼−𝑞−1𝜔1 − (𝜖 + 4𝑞)𝑧𝜖+4𝑞𝑦𝑑𝑦. (9.12)
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This way we have that 𝜈𝐶(𝜔) > 𝜈𝐶(𝑥𝛼−𝑞−1𝜔1) = 𝜈𝐶(𝑦𝑑𝑦). Notice that 𝜈𝐷(𝜔) = 𝑡2 = 4(𝛼 − 𝑞) + 𝑚,
because 𝜈𝐷(𝑥𝛼−𝑞−1𝜔1) = 𝑡2 = 4(𝛼 − 𝑞) + 𝑚 < 2𝑚 = 𝜈𝐷(𝑦𝑑𝑦).

Computation of a final reduction of 𝜔: Note that it is the same than computing a final reduction
of 𝜃. For this purpose, we should recursively construct 1-forms 𝜔𝑖 of the form

𝜔𝑖 = 𝜔𝑖−1 + 𝜇+ℎ𝑖𝜔𝑘 ,

where 𝑘 ∈ {−1, 0, 1}, 𝑖 ≥ 0, ℎ𝑖 is a monomial, and 𝜔0 = 𝜔. This process continues until we obtain
a 1-form whose differential value is 𝜆2.

To shorten the proof we do it in a single step, we take all the reductions modulo {𝜔−1 , 𝜔0 , 𝜔1}
simultaneously. We compute a partial reduction 𝑋 of 𝑋𝜔( 𝑓 ). Using Equations (9.10) and (9.11),
we define 𝑋 as

𝑋 = (4𝛼 + 𝜖)𝑟2 − ((𝜖 + 4𝑞)𝑧𝜖+4𝑞)𝑟0 =

=

2𝑞∑
𝛽=𝑞+1

(4𝛼 + 𝜖)(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑥
4𝛼+𝜖+𝛽−𝑞−1𝑦+

+
2𝑞∑

𝛽′=𝑞

(4𝛼 + 𝜖)(2𝜖 + 4𝛽′)𝑧2𝜖+4𝛽′𝑥
3𝛼+𝜖+𝛽′−𝑞−1𝑦2−

− (𝜖 + 4𝑞)(3𝛼 + 𝜖 + 𝑞)𝑧2
𝜖+4𝑞𝑥

3𝛼+𝜖+𝑞−1𝑦2 + ℎ.𝑜.𝑡.,

(9.13)

since 𝑟0 and 𝑟2 are final reductions of 𝑋𝑦𝑑𝑦( 𝑓 ) and 𝑋𝑥𝛼−𝑞−1𝜔1( 𝑓 ) respectively. Comparing Equation
(9.12) with Equation (9.13), we verify that 𝑋 is a partial reduction of 𝑋𝜔( 𝑓 ).

Since 𝜈𝐷(𝜔) = 𝑡2, then by the property (★), we have that 𝑙𝑝(𝑋) ⪯ (3𝛼+𝑞′+𝜖−1, 2). In particular,
this implies that 𝑋 ≠ 0. Moreover, by Equation (9.13), we observe that 𝑙𝑝(𝑋) ⪰ (3𝛼 + 𝜖 − 1, 2).

The function 𝑋 encodes the necessary information to compute the desired final reduction of
𝜔. Write

𝑋 =

∑
𝑗 ,𝑘≥0

𝑎 𝑗𝑘𝑥
𝑗𝑦𝑘 ,

and assume that there exists a minimum index ℓ with 𝑞 ≤ ℓ ≤ 𝑞+𝑞′, satisfying that 𝑎3𝛼+𝜖+ℓ−𝑞−1,2 ≠

0. Note that by Equation (9.13), having 𝑎3𝛼+𝜖+𝛽′−𝑞−1,2 ≠ 0 is the same as having 𝑧2𝜖+4𝛽′ ≠ 0, where
𝑞 ≤ 𝛽′ < 2𝑞. In other words, we are assuming that 𝑧2𝜖+4𝛽′ = 0 for 𝑞 ≤ 𝛽′ < ℓ and that 𝑧2𝜖+4ℓ ≠ 0.

We take the 1-form 𝜔′ given by

𝜔′ = 𝜔 −
ℓ∑

𝛽=𝑞+1
(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑥

𝛽−𝑞𝑦𝑑𝑦, (9.14)

which is going to be a final reduction of 𝜔 modulo {𝜔−1 , 𝜔0 , 𝜔1}. Notice that for any 𝛽 > 𝑞, we
have that

𝜈𝐷(𝑥𝛽−𝑞𝑦𝑑𝑦) > 𝜈𝐷(𝑦𝑑𝑦) = 2𝑚 > 𝑡2 = 4(𝛼 − 𝑞) + 𝑚 = 8𝛼 + 𝜖 − 4𝑞.

Thus, 𝜈𝐷(𝜔′) = 𝑡2. Next, observe that:

𝑋𝑥𝛽−𝑞 𝑦𝑑𝑦( 𝑓 ) = (4𝛼 + 𝜖)𝑥4𝛼+𝜖+𝛽−𝑞−1𝑦 + ℎ.𝑜.𝑡.,

where we see that 𝑋𝑥𝛽−𝑞 𝑦𝑑𝑦( 𝑓 ) is non reducible modulo { 𝑓 }. Since 𝑋 is a partial reduction of
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𝑋𝜔( 𝑓 ), we can define a partial reduction 𝑋′ of 𝑋𝜔′( 𝑓 ), given by the expression:

𝑋′ = 𝑋 −
ℓ∑

𝛽=𝑞+1
(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑋𝑥𝛽−𝑞 𝑦𝑑𝑦( 𝑓 ) =

=

2𝑞∑
𝛽=ℓ+1

(4𝛼 + 𝜖)(𝜖 + 4𝛽)𝑧𝜖+4𝛽𝑥
4𝛼+𝜖+𝛽−𝑞−1𝑦+

+
2𝑞∑
𝛽′=ℓ

(4𝛼 + 𝜖)(2𝜖 + 4𝛽′)𝑧2𝜖+4𝛽′𝑥
3𝛼+𝜖+𝛽′−𝑞−1𝑦2−

− (𝜖 + 4𝑞)(3𝛼 + 𝜖 + 𝑞)𝑧2
𝜖+4𝑞𝑥

3𝛼+𝜖+𝑞−1𝑦2 + ℎ.𝑜.𝑡.

(9.15)

Since 𝑧2𝜖+4ℓ ≠ 0, we have that the leading power of 𝑋′ is 𝑙𝑝(𝑋′) = (3𝛼 + 𝜖 + ℓ − 𝑞 − 1, 2), note
that the first summation starts at the index ℓ + 1 and 𝜖 ≤ 3. Thus, we have that 𝑙𝑝(𝑋′) is not
divisible by 𝑙𝑝( 𝑓 ) = (0, 4). Hence, 𝑋′ is a final reduction of 𝑋𝜔′( 𝑓 ). By Proposition 5.4.3, we have
that

𝜈𝐶(𝜔′) = 8𝛼 + 3𝜖 + 4(ℓ − 𝑞) = 𝜆.

We note the following: first, 𝜆 ≤ 𝜆2, with the equality achieved if and only if ℓ = 𝑞 + 𝑞′. Second,
𝜆 ∉ Λ1. Thus, for 𝜆2 to be the minimum element in Λ𝐶 \Λ1, we need ℓ = 𝑞 + 𝑞′.

Finally, if ℓ does not exist, meaning 𝑎3𝛼+𝜖+𝛽′−1,2 = 0 for 𝑞 ≤ 𝛽′ ≤ 𝑞 + 𝑞′, we can construct 𝑋′

as before by setting ℓ = 𝑞 + 𝑞′ in the expression of 𝜔′ in Equation (9.14). However, this time, by
Equation (9.15), 𝑋′ may not be a final reduction of 𝑋𝜔′( 𝑓 ). Nonetheless, we see that its leading
power is greater than (3𝛼 + 𝜖 + 𝑞′ − 1, 2). But, as we saw before, that is not possible, since
𝜈𝐷(𝜔′) = 𝑡2 and property (★).

Therefore, ℓ exists and it takes the value ℓ = 𝑞 + 𝑞′. In this situation, we put 𝜔2 = 𝜔′ and 𝑋′

is a final reduction of 𝑋𝜔2( 𝑓 ).

Conclusion: As mentioned before, by Equation (9.15), having 𝑎3𝛼+𝜖+𝛽′−𝑞−1,2 = 0 for 𝑞 ≤ 𝛽′ <

𝑞 + 𝑞′ is equivalent to having 𝑧2𝜖+4𝛽′ = 0. Additionally, the condition 𝑎3𝛼+𝜖+𝑞′−1,2 ≠ 0 is the same
as 𝑧2𝜖+4(𝑞+𝑞′) ≠ 0 if 𝑞′ < 𝑞, and to

(4𝛼 + 𝜖)(2𝜖 + 8𝑞)𝑧2𝜖+8𝑞 − (𝜖 + 4𝑞)(3𝛼 + 𝜖 + 𝑞)𝑧2
𝜖+4𝑞 ≠ 0 ⇔

2(4𝛼 + 𝜖)𝑧2𝜖+8𝑞 − (3𝛼 + 𝜖 + 𝑞)𝑧2
𝜖+4𝑞 ≠ 0,

if 𝑞′ = 𝑞, as desired. Finally, all the previous computations also show that if we assume Statement
2, then 𝜈𝐶(𝜔2) = 8𝛼 + 3𝜖 + 4𝑞′. □

Next lemma shows the relationship between differential values and residues.

Lemma 9.3.5. Let 𝐶 be a cusp and assume that the basis of the semimodule of differential values is
(𝑛, 𝑚,𝜆1 ,𝜆2) with

𝑛 = 4, 𝑚 = 4𝛼 + 𝜖, 𝜆1 = 4(𝛼 + 1) + 2𝜖 + 4𝑞,

where 𝛼 ≥ 2, 𝜖 ∈ {1, 3} and 0 ≤ 𝑞 ≤ 𝛼 − 2. They following statements are equivalent:

1. 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞 is the 2-element of the basis.
2. 𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)((8𝛼 + 3𝜖 + 4𝛾)/𝑛𝑚) = 0 for all non negative integers 𝛾 < 𝑞′ and 𝑅𝑒𝑠 𝑓 (𝛼 −

𝑞, 1)((8𝛼 + 3𝜖 + 4𝑞′)/𝑛𝑚) ≠ 0.
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Remark 9.3.6. Note that (𝛼 − 𝛽, 1) belongs to the cuspidal set 𝑀 for 0 ≤ 𝛽 ≤ 𝛼 − 2, and in
particular, (𝛼 − 𝑞, 1) ∈ 𝑀, showing that we are in position to apply Equation (9.3). To verify this,
note that

(𝛼 − 𝛽, 1) = (𝑚 − 1, 𝑛 − 1) − (𝑝1 , 𝑝2),
where (𝑝1 , 𝑝2) = (3𝛼 + 𝜖 + 𝛽 − 1, 2) is an element of the cuspidal set 𝑃, as shown in Remark 9.3.1.

Proof. Assume that 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞. We need to compute the residues
𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)((8𝛼 + 3𝜖 + 4𝛾)/𝑛𝑚) for 0 ≤ 𝛾 ≤ 𝑞′. Let us consider two cases: 𝛾 < 𝑞′ and 𝛾 = 𝑞′.

If 0 ≤ 𝛾 < 𝑞′, we observe that:

𝑘 = 8𝛼 + 3𝜖 + 4𝛾 − 4(𝛼 − 𝑞) − (4𝛼 + 𝜖)1 = 2𝜖 + 4(𝑞 + 𝛾) ∈ 𝐽.

Hence, in virtue of Equation (9.3), we need to find the sequences of non negative integer numbers
(𝛿ℓ )ℓ∈𝐽 , such that: ∑

ℓ∈𝐽
ℓ𝛿ℓ = 2𝜖 + 4(𝑞 + 𝛾) = 𝑘.

Note that by Remark 9.3.1 the elements in 𝐽 are of the form 𝜖+4𝛽 and 2𝜖+4𝛽′, where 0 ≤ 𝛽 ≤ 𝛼−2
and 0 ≤ 𝛽′ ≤ 2𝛼 − 2. Moreover, as shown in the proof of Lemma 9.3.4, we can take a nice
equation 𝑓 of 𝐶, given by:

𝑓 = 𝑥4𝛼+𝜖 + 𝑦4 +
𝛼−2∑
𝛽=𝑞

𝑧𝜖+4𝛽𝑥
3𝛼+𝜖+𝛽𝑦 +

2𝛼−2∑
𝛽′=𝑞

𝑧2𝜖+4𝛽′𝑥
2𝛼+𝜖+𝛽′𝑦2.

Noting that both summations begin at index 𝑞 > 𝛾, the previous two observations lead to the
fact that 𝛿2𝜖+4(𝑞+𝛾) = 1 and 𝛿ℓ = 0, for ℓ ≠ 2𝜖 + 4(𝑞 + 𝛾), is the single sequence of (𝛿ℓ )ℓ∈𝐽 that is
relevant in the computation of 𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)((8𝛼 + 3𝜖 + 4𝛾)/𝑛𝑚). More precisely, by Equation
(9.3), it can be checked that any other sequence will give a zero contribution to the value of the
residue. Then, again by Equation (9.3), we conclude that

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)((8𝛼 + 3𝜖 + 4𝛾)/𝑛𝑚) ≠ 0 ⇔ 𝑧2𝜖+4(𝛾+𝑞) ≠ 0. (9.16)

Consider the case 𝛾 = 𝑞′. Again we have to consider sequences (𝛿ℓ )ℓ∈𝐽 such that∑
ℓ∈𝐽

ℓ𝛿ℓ = 2𝜖 + 4(𝑞 + 𝑞′).

There are two possibilities: 𝑞′ < 𝑞 or 𝑞′ = 𝑞. Assume first 𝑞′ < 𝑞. Following the same argument
as before, all the sequences except at most one have zero contribution to the computation of the
residue. The only possible relevant sequence is 𝛿2𝜖+4(𝑞+𝑞′) = 1 and 𝛿ℓ = 0 if ℓ ≠ 2𝜖 + 4(𝑞 + 𝑞′). By
Equation 9.3

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)((8𝛼 + 3𝜖 + 4𝑞′)/𝑛𝑚) ≠ 0 ⇔ 𝑧2𝜖+4(𝑞+𝑞′) ≠ 0. (9.17)

Finally, if 𝑞′ = 𝑞, then there are two relevant sequences: first, 𝛿2𝜖+8𝑞 = 1 and 𝛿ℓ = 0 if ℓ ≠ 2𝜖 + 8𝑞.
Second, 𝛿𝜖+4𝑞 = 2 and 𝛿ℓ = 0 if ℓ ≠ 𝜖 + 4𝑞. Hence, by Equation (9.3) we obtain the following:

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)
(

8𝛼+3𝜖+4𝑞
𝑛𝑚

)
=

Γ

(
8𝛼+3𝜖+4𝑞

𝑛𝑚

)−1

𝑛𝑚

[
𝑧2
𝜖+4𝑞
2 Γ

(
2(3𝛼+𝜖+𝑞)+(𝛼−𝑞)

𝑚

)
Γ

( 3
4
)
−

− 𝑧2𝜖+8𝑞Γ
(
(2𝛼+𝜖+2𝑞)+(𝛼−𝑞)

𝑚

)
Γ

( 3
4
) ]

.

Using the fact that the Euler’s Gamma function satisfies that Γ(𝜌 + 1) = 𝜌Γ(𝜌), we can extract a
common factor in the previous equation. This leads to:

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞, 1)
(

8𝛼+3𝜖+4𝑞
𝑛𝑚

)
≠ 0 ⇔ 2(4𝛼 + 𝜖)𝑧2𝜖+𝑞 − (3𝛼 + 𝜖 + 𝑞)𝑧2

𝜖+4𝑞 ≠ 0. (9.18)

By Equations (9.16)-(9.18), we have to show that Statement 1 is equivalent to
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• 𝑧2𝜖+4(𝛾+𝑞) = 0 for 0 ≤ 𝛾 < 𝑞′.
• if 𝑞′ < 𝑞, then 𝑧2𝜖+4(𝑞′+𝑞) ≠ 0.
• if 𝑞′ = 𝑞, then 2(4𝛼 + 𝜖)𝑧2𝜖+𝑞 − (3𝛼 + 𝜖 + 𝑞)𝑧2

𝜖+4𝑞 ≠ 0

Thus, we see that Statement 1 and 2 are equivalent in virtue of Lemma 9.3.4. □

As a consequence of the previous lemmas we obtain the following.

Lemma 9.3.7. Let 𝐶 be a cusp and assume that the basis of the semimodule of differential values is
(𝑛, 𝑚,𝜆1 ,𝜆2) with

𝑛 = 4, 𝑚 = 4𝛼 + 𝜖, 𝜆1 = 4(𝛼 + 1) + 2𝜖 + 4𝑞,

where 𝛼 ≥ 2, 𝜖 ∈ {1, 3} and 0 ≤ 𝑞 ≤ 𝛼 − 2. If 𝜆2 = 8𝛼 + 3𝜖 + 4𝑞′ with 0 ≤ 𝑞′ ≤ 𝑞 is the 2-element of
the basis, then for any 𝜆2 + 𝑛𝑎 + 𝑚𝑏 ∉ Λ1, we have that

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞 + 𝑎, 𝑏 + 1)((𝜆2 + 𝑛𝑎 + 𝑚𝑏)/𝑛𝑚) ≠ 0.

Before giving the proof of the lemma, let us explain why this gives the proof of Theorem 9.2.
As mentioned before, we were left to show that given 𝜆 ∈ Λ \ Γ𝐶 , then −𝜆/𝑛𝑚 is a root of the
Bernstein-Sato polynomial of 𝐶. By Theorem 9.4 it is sufficient to show that a certain residue is
non-zero, which is given by Lemma 9.3.7.

Proof. Fix 𝑓 a nice equation of 𝐶 as in Equation (9.7). We need to show that for a given
𝜆 = 𝜆2 + 𝑛𝑎 + 𝑚𝑏 ∉ Λ1 with 𝑎, 𝑏 ≥ 0, then

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞 + 𝑎, 𝑏 + 1)(𝜆/𝑛𝑚) ≠ 0.

By Remark 9.3.3, since 𝜆 ∉ Λ1, we have that 𝑏 = 0 and 0 ≤ 𝑎 ≤ 𝑞 − 𝑞′. If 𝑎 = 0, we have already
shown that 𝑅𝑒𝑠 𝑓 (𝛼− 𝑞, 1)(𝜆2/𝑛𝑚) ≠ 0, see Lemma 9.3.5. Thus, assume that 1 ≤ 𝑎 ≤ 𝑞− 𝑞′, notice
that we are assuming that 𝑞′ < 𝑞. By Remark 9.3.6, we have (𝛼 − 𝑞 + 𝑎, 1) ∈ 𝑀.

We can write 𝜆 explicitly as 𝜆 = 8𝛼 + 3𝜖 + 4𝑞′ + 4𝑎. Subtracting 𝑛(𝛼 − 𝑞 + 𝑎) + 𝑚, we find:

𝜆 − 𝑛(𝛼 − 𝑞 + 𝑎) − 𝑚 = 2𝜖 + 4(𝑞 + 𝑞′).

In other words, we have to compute sequences (𝛿ℓ )ℓ∈𝐽 such that
∑
ℓ𝛿ℓ = 2𝜖+4(𝑞+𝑞′). Since 𝑞′ < 𝑞,

there is only one relevant sequence to the computation of the desired residue: 𝛿2𝜖+4(𝑞+𝑞′) = 1 and
the rest 𝛿ℓ = 0 for ℓ ≠ 2𝜖 + 4(𝑞 + 𝑞′). Any other sequence gives zero contribution to the residue.
Thus,

𝑅𝑒𝑠 𝑓 (𝛼 − 𝑞 + 𝑎, 1)(𝜆/𝑛𝑚) ≠ 0 ⇔ 𝑧2𝜖+4(𝑞+𝑞′) ≠ 0

and we have shown in Lemma 9.3.4 that 𝑧2𝜖+4(𝑞+𝑞′) ≠ 0. □

We end this Chapter with a brief discussion about the Conjecture in 9.3 higher multiplicities.
When considering cases where 𝑛 ≥ 5, several problems arise. The most important one is that
it does not seem possible to apply all the previous techniques in an inductive way. However,
following similar steps, we could try to give a proof for each particular value of 𝑛. If we want to
give a proof for the next case 𝑛 = 5, we would need to determine all possible semimodules, as in
Lemma 9.3.4. Nonetheless, the complexity of this point is pretty high when compared with the
multiplicity four case. Not only that, but we also need to deal with some partitions of natural
numbers, as shown in Equation (9.3), to find residues. Some description about these partitions
may be needed.

There is a last problem not at all mention on this text. The choice of the element (𝑎, 𝑏) ∈ 𝑀

when computing 𝑅𝑒𝑠 𝑓 (𝑎, 𝑏)(𝛽 𝑗). Note that Theorem 9.4 only demands to have a non zero residue
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for a particular element (𝑎, 𝑏) ∈ 𝑀. Along all the proofs we did not explain how we found the
appropriate value to take. The idea was the following: we have an element 𝜆 ∈ Λ𝐶 \ Γ𝐶 , which
corresponds with the differential value 𝜈𝐶(𝜔) of a 1-form 𝜔. We look at the divisorial value
𝜈𝐷(𝜔) = 𝑛𝑎 + 𝑚𝑏. Then we check that (𝑎, 𝑏) ∈ 𝑀 is our desired candidate. When computing
examples, this idea does not give the expected results anymore when 𝑛 = 5. Nonetheless,
Conjecture 9.3 still holds in those cases.

This conjecture was initially motivated by the results in [17] where the author gives an
stratification of the topological class associated to the Puiseux pair (6, 7) in terms of the roots
of the Bernstein-Sato polynomial. Let us remark that in [17] there is no mention to differential
values. However, we can check, with the methods exposed in this thesis, that every branch with
Puiseux pair (6, 7) satisfies Conjecture 9.3. Besides, more particular examples can be checked
with the method checkRoot in Singular (see [19]).
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