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“Sus griegos, cuando emplearon el
marmol, copiaron sus construcciones
de madera, sin razén, porque otros lo
habfan hecho asi. Después sus
maestros del Renacimiento hicieron
copias en yeso de copias de marmol de
copias de madera. Ahora estamos aqui
nosotros haciendo copias de acero y
hormigén de copias de yeso de copias
de marmol de copias de madera.”

— Ayn Rand
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RESUMEN

Sea (C, P) una curva irreducible, o rama, en un germen (M, P) de una superficie compleja
analitica regular. El objetivo de este trabajo es dar una interpretacién geométrica a invariantes
analiticos de C, relacionados con el semimoédulo de valores diferenciales de C. Para hacer esto,
consideramos listas de foliaciones determinadas por las 1-formas que definen el semimédulo de
valores diferenciales de C (bases estdndar).

Nuestro trabajo esta principalmente limitado al caso de ctispides singulares, esto es, ramas
con un solo par de Puiseux (n,m), con2 <n < my mcd(n,m)=1.

En esta memoria presentamos tres resultados principales:

¢ Interpretacién geométrica del moduli analitico de ramas planas en términos de semirraices
analiticas y la Teorfa de Foliaciones.

* Obtencion de bases de Saito de una ctispide a partir de bases estdndar.

* Descripcién de un subconjunto de raices del polinomio de Bernstein-Sato de una ctispide
C en términos de su semimoédulo de valores diferenciales.

Estos resultados pueden encontrarse en nuestros trabajos [12, 13, 53].

Precisemos la terminologia basica para los enunciados y resultados en las tres direcciones
previas.

El semimédulo Ac de valores diferenciales de una rama C se define como sigue

Ac = {vc(w) : w una 1-forma}.

El valor diferencial vc(w) de w por C es igual a ordi(a) + 1, donde ¢*w = a(t)dt y ¢(t) es una
parametrizacion primitiva de C. El conjunto Ac es unI'c-semimdédulo, siendo I'c el semigrupo de
C. Enotras palabras, A +y € Ac, para cualquier y € T'c, A € Ac. Labase B = (A1, Ao, A1, ..., As)
de Ac es la tinica sucesién creciente minimal que genera Ac como I'c-semimédulo, esto es,
tenemos que

S
Ac = U(Ai+rc), con/\i¢/\j+1’c, parai # j.
i=—1

Por definicién, hay listas de 1-formas holomorfas S = (w-1, wo, w1, . . ., ws) satisfaciendo que
ve(wi) = Ay, parai =-1,0,...,s. Estas sucesiones S son denominadas bases estdndar minimales
de C.

De ahora en adelante, vamos a asumir que C es una ctspide con un solo par de Puiseux
(n, m). Consideremos

n:(M,E) — (M, P)

la minima resolucién de singularidades de C, obtenida como una composicién finita de
transformaciones cuadréticas. Denotamos por D C E la componente irreducible del divisor
excepcional creada en la tltima explosion de la resolucién 7. Nos referimos a D como el divisor
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cuspidal de C. Decimos que una foliacién F es totalmente D-dicritica cuando su transformado
estricto por 7 es regular, transversal a D, y tiene cruzamientos normales con E en todos los
puntos de D.

Ademas del valor diferencial vc(w) de una 1-forma w, estamos interesados en su wvalor
divisorial vp(w), que corresponde con la valoracién divisorial asociada a D. En sistemas de
coordenadas apropiados este valor es interpretado en términos de un grado pesado en los
monomios.

Sea B labase de Ac y S una base estdndar minimal, como en los parrafos previos. Un primer
resultado muestra que las 1-formas w1, wy, . .., ws definen foliaciones totalmente D-dicriticas.

Decir que una foliaciéon ¥ es totalmente D-dicritica implica que # tiene una familia de
ramas invariantes con el mismo par de Puiseux (n, m) que C. Esta observaciéon nos conduce a
uno de nuestros principales resultados:

Tomemos una de las 1-formas w; de la base estdindar minimal S con i > 1, un punto no
esquina Q € D de E, y denotemos por y = C(“g’i la curva invariante por w; teniendo a Q como
punto infinitamente préximo. Entonces el semimédulo de valores diferenciales de y es A, con
base

(A1, Ao, A1, e, Acr).

En particular, A, no depende de la eleccion del punto Q € D. Ademds, tenemos que v, (w;) = A;,
paraj = -1,0,...,i — 1, y por tanto (w-1, @y, ..., w;-1) es una base estindar minimal de y.
Cuando el punto Q pertenece al transformado estricto de C, decimos que y es una semirraiz
analitica de C.

Lo anterior muestra que las semirraices analiticas aproximan a C usando tipos analiticos méas
simples, en lo que se refiere al semimddulo de valores diferenciales. Ademads, podemos colocar
cualquier ctispide como una curva invariante de una 1-forma ws41 con propiedades similares
a las de una base estdndar minimal. Por ello podemos jerarquizar el espacio de moduli de
caspides planas en términos de semirraices analiticas. No obstante, mostramos que la definicién
que damos de semirrafz analitica no pasa bien al caso de ramas que no sean ctispides.

Detallemos el segundo punto sobre bases de Saito.

Sea Q}\A,P[C] el Op,p-médulo de gérmenes de 1-formas holomorfas con C como curva
invariante. Se trata de un Oy,p-médulo libre de rango dos. Cualquier base de Q}VLP[C] es
denominada base de Saito de C.

Mostremos como calcular una base de Saito cuando C es una ctispide, en términos de la
estructura combinatoria del semimdédulo de valores diferenciales.

Empecemos con una breve descripcién de la combinatoria de Ac. Consideremos la sucesion
de descomposicién

AqGCACAIC...CAs=Ac; A :u;iz_l(Aj+rC), i=-1,0,1,...,s.

Para cada indice i = 1,2, ...,s + 1, definimos los ejes u?, ui’”, u; y i; como

e u! =min{A;1 +nl € Ajp; { > 1}.
e u =min{A;i_1 + ml € Ajp; £ > 1}.
o u; =min{ul, u"} = min((A;-1 +Tc) N A;).

.ul

max{ul', u"}.

Los valores criticos ', t", ti y f; estan definidos por:t_1=n,to=my

t? = ti1+ Ll? - Aic1, flm
ti min{t!, t!"}, f;

tig+ul" —Aia

1<i<s+1
max{t!', "}
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Dada una base estandar minimal S = (w-1, wo, . . ., ws), tenemos que ¢; es el valor divisorial
vp(w;) de w;. Extendemos esta propiedad clave a los otros valores criticos de la siguiente manera.
Dado un valor critico T en el conjunto

{Ell E2/ sty ES+1/. ts+1}/

obtenemos de forma algoritmica una 1-forma w, tal que C es una rama invariante de w y
vp(w) = T. Ademds, si consideramos w41 y @s+1 dos 1-formas con C invariante, vp(ws+1) = ts+1
y vp(@s41) = fs+1. Probamos que {ws+1, @s4+1} es una base de Saito de C. Resaltamos que la
1-forma w41 coincide con la mencionada anteriormente al hablar de semirraices analiticas.

La construccién de bases de Saito, nos permite estudiar lo que llamamos pares de multi-
plicidades de Saito, siendo estos un nuevo invariante analitico de la curva, obtenidos como
una generalizacién de invariantes dados por Y. Genzmer. Mas precisamente, consideremos
7 : (My, EN) = (My, Po) una sucesién de transformaciones cuadréticas, con divisor excepcional
n Y (Pg) = EN y E ¢ EN una componente irreducible de EN. Definimos los dos siguientes
nameros

sg(C)
se(C)

min{vg(w); w pertenece a una base Saito de C},

max{ve(w); w pertenece a una base Saito de C}.

La pareja (sg(C), se(C)) es el par de multiplicidades de Saito de C con respecto de E. Cabe notar
que esta definicién se extiende al caso en el que C no sea una ctspide.

Probamos que para el caso del divisor cuspidal D, se cumple que (sp(C), sp(C)) = (541, fsi1),
demostrando asi que esta pareja de valores estd siempre determinado por el semimédulo de
valores diferenciales. No obstante, si tomamos E = E] el divisor tras una tnica explosi6n, deja de
ser cierto que el par (sg(C), sg(C)) esté determinado por el semimédulo de valores diferenciales.

Ahora presentamos nuestros resultados sobre raices del polinomio de Bernstein-Sato de C.

Consideremos el anillo no conmutativo A = C{x1,...,xp,d1,...,d,} de series de potencias
en 2p > 0 variables, y definamos 9 como el cociente de A por los conmutadores [x;, x;] = 0
y [9i, xj] = 6ij, donde 6;; es la delta de Kronecker. El anillo D es el conjunto de operadores
diferenciales en p variables, cuya accién en C{x1, ..., x,} se define considerando el elemento J;
como la derivada parcial con respecto a x;.

Tomemos D|p] el anillo de polinomios en la variable p y coeficientes en 9. Dada una
funcién g € C{x1,...,x,}, podemos extender la acciéon de D a cualquier funcién de la forma g*,
poniendo 9; - ¢¥ = pgP~1d;g.

Consideremos g € C{x1,...,x,}, y sea I el ideal (no nulo) de todos los posibles polinomios
B(p) € C[p] para los que existe un P € D|p] satisfaciendo la ecuacion:

P(p)- g"*" = B(p)g".

El generador ménico bg(p) de I es llamado el polinomio de Bernstein-Sato de g. Este no depende
de la ecuacién local g escogida de la hipersuperficie H = (g = 0), por tanto podemos hablar del
polinomio de Bernstein-Sato by (p) de H.

En el caso de una ctispide singular C, mostramos dos enunciados:

¢ El valor —A/nm es una raiz del polinomio de Bernstein-Sato de C, para cualquier A €

(A1 +Tc)\Tc.
® Sin < 4, entonces para cualquier A € Ac \ I'c, tenemos que —A/nm es una raiz del

polinomio de Bernstein-Sato de C.
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Terminamos esta seccién comentando brevemente posibles lineas de investigaciéon que
surgen a raiz de los resultados presentados.

El primer problema que se plantea es el de tratar de dar una generalizacién de todo lo
mencionado para ramas que no sean ciispides. La linea sobre la que trabajar pasaria por dar una
descripcion de la combinatoria del semimédulo de valores diferenciales de una rama con varios
pares de Puiseux, en términos analogos a los usados con los intervalos circulares. La evidencia
mostrada por el hecho de que el concepto de semirraiz analitica, tal y como lo hemos definido,
no pasa bien al caso de varios pares de Puiseux, nos hace pensar que no se trata de un objetivo
sencillo.

Otro problema que abordar es el estudio de los pares de multiplicidades de Saito. Los
resultados aqui mencionados, muestran que existen divisores para los que, al menos en el caso
cuspidal, los pares de multiplicidades de Saito estdn determinados por el semimédulo de valores
diferenciales (divisor cuspidal) o no lo estdn (divisor tras una tinica explosién). No hemos dado
ninguna explicacién sobre esta fenomenologia. El objetivo seria dar una caracterizaciéon que
nos permita decidir cuando los pares de multiplicidades de Saito respecto de un divisor estdn
determinados o no por el semimédulo. En caso afirmativo, dar una férmula cerrada para estos
valores. Recordamos que los valores divisoriales respecto de divisores cuspidales se expresan,
en coordenadas adaptadas, como valores monomiales con pesos, convirtiendo su estudio en un
problema combinatorio.

Como ultima linea de investigacién, sobre los polinomios de Bernstein-Sato, serfa averiguar
si la restriccion a que la multiplicidad sea a lo sumo 4 en el resultado que presentamos es
innecesaria o no.






INTRODUCTION

Let (C, P) be an irreducible curve, or branch, in a germ (M, P) of a complex analytic regular
surface. The goal of this work is to give a geometrical interpretation of analytic invariants of
C, related with the semimodule of differential values of C. In order to this, we consider lists
of foliations determined by the 1-forms that define the semimodule of differential values of C
(standard bases).

Our work is mainly restricted to the case of singular cusps, that is, branches with a single
Puiseux pair (n, m), with2 < n < m and gcd(n, m) = 1.

In this doctoral thesis we present three main achievements:

¢ Geometrical interpretation of the moduli of analytic plane cusps in terms of analytic
semiroots and Foliation Theory.

¢ Obtaining Saito bases of a cusp from standard bases.

¢ Description of a subset of roots of the Bernstein-Sato polynomial of a cusp C in terms of
the semimodule of differential values.

These results can be found in our works [12, 13, 53].

Let us precise the basic language required for the statements and results in the three previous
directions.

The semimodule Ac of differential values of a branch C is defined as follows

Ac :={vc(w) : w a 1-form}.

The differential value vc(w) of w by C is equal to ord;(ar) + 1, where ¢p*w = a(t)dt and ¢(t) is a
primitive parametrization of C. The set Ac is a I'c-semimodule, where I'c denotes the semigroup
of C. In other words, A + y € Ac forany y € I'c, A € Ac. The basis B = (A_1, Ao, A1, ..., As) of
Ac is the unique minimal increasing sequence that generates Ac as I'c-semimodule, that is, we
have .
Ac = U(A,‘ +T¢c), withA; ¢ /\j +Tc, fori # j.
i=—1

By definition, there are lists of holomorphic 1-forms S = (v-1, wo, w1, . . ., ws), satisfying that
ve(wi) = A4, fori =-1,0,1,...,s. Such sequences S are called minimal standard bases of C.

From now on, we assume that C is a cusp with a single Puiseux pair (1, m). Consider

n:(M,E)— (M,P)

the minimal resolution of singularities of C, obtained as a finite composition of quadratic
transformations. We denote by D C E the irreducible component of the exceptional divisor
created in the last blow-up of the resolution 7. The component D is called the cuspidal divisor
of C. We say that a foliation ¥ is totally D-dicritical when its strict transform by 7t is regular,
transverse to D, and has normal crossings with E at all the points of D.
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Besides to the differential value vc(w) of a 1-form w, we are interested in its divisorial value
vp(w), which corresponds with the divisorial valuation associated to D. In appropriate systems
of coordinates this value is interpreted in terms of a weighted degree of monomials.

Let B be the basis of Ac and S a minimal standard basis, as above. A first result is that the
1-forms w1, wy, . .., ws define totally D-dicritical foliations.

Saying that a foliation ¥ is totally D-dicritical implies that # has an infinite family of
invariant branches with the same single Puiseux pair (1, m) as C. This observation leads to one
of our main results:

Take one of the 1-forms w; of the minimal standard basis S with i > 1, a point Q € D not a
corner of E, and denote by y = C S" the invariant curve by w; having Q as infinitely near point.
Then the semimodule of differential values A, of y is A;_1 with basis

(/\—1/ AO/ /\1/ ceey Ai—l)‘

In particular, A, does not depend on the choice of the point Q € D. Moreover, we have that
vy(wj) = Aj, for j =-1,0,...,i—1,and hence (w-1, o, . . ., w;-1) is a minimal standard basis of
y. When the point Q belongs to the strict transform of C, we say that y is an analytic semiroot of
C.

Let us detail the second point about Saito bases. Let Q}\A, p [C] be the Oy p-module of germs
of holomorphic 1-forms with C as invariant curve. It is a free Oy p-module of rank two. Any
basis of Q}, ,[C] is called a Saito basis of C.

Let us show how to compute a Saito basis when C is a cusp, in terms of the combinatorial
structure of the semimodule of differential values.

Let us start with a brief description of the combinatorics of Ac. Consider the decomposition
sequence

i
A1CACAIC...CA=Ac; Ai= U()\]-+1“C), i=-1,0,1,...,s.
j=—1

For eachindexi =1,2,...,s + 1, we define the axes u', u!", u; and ii; as

e u! =min{A;1 +nl € Ajp; { > 1}
o u" =min{A;_1 + ml € Ajp; £ > 1}.
e u; =min{ul’, u"} = min((A;-1 +Tc) N Ai-2).

o ii; = max{u!, u"}.

The critical values t}', t!",t; and f; are defined by: t_1 =n,ty =m and

t? = ti1+ Z/lin —Ai-1, i‘;n = ti1+ u:." — A
ti min{t”, "}, Fi max{t!, "}

} 1<i<s+1.

Given a minimal standard basis S = (w_1, wy, . . ., ws), we have that t; is the divisorial value
vp(w;) of w;. We extend this key property to the other critical values in the following way. Given
a critical value T in the set

{f1, 12, ..., Fss1stsn},

we obtain, in an algorithmic way, a 1-form @ such that C is an invariant branch of v and
vp(w) = T. Furthermore, if we consider ws.1 and @41 two 1-forms with C invariant and
vp(@s+1) = ts+1 and vp(@s+1) = Fs+1 respectively, we prove that {ws.1, @s+1} is a Saito basis of C.

Now we present our results about roots of the Bernstein-Sato polynomial of C. Consider
the ring of non-commutative power series A = C{x1,...,xp,d1,...,dp} in2p > 0 variables, and
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let D be the quotient of A by the commutators [x;, x;] = 0 and [d;, x;] = 0;j, where 0;; is the
Kronecker’s delta. The ring D is the set of differential operators in p variables, whose action on
C{x1,..., xp} is defined by considering the element d; as the partial derivative with respect to x;.

We take D[p] the ring of polynomials in the variable p and coefficients in . Given any
function ¢ € C{x1, ..., x,}, we can extend the action of D to functions of the form g just by
putting 9; - g = pgP1d;g.

Consider ¢ € C{x1,...,x,} and let I be the (non-zero) ideal of all possible polynomials
B(p) € C[p] for which there exists a P € D[p] satisfying the equation:

P(p)- &' = B(p)g".

The monic generator bg(p) of I is called the Bernstein-Sato polynomial of g. It does not depend
on the chosen local equation g of the hypersurface H = (g = 0), hence we can speak about the
Bernstein-Sato polynomial by(p) of H.

In the case of a singular cusp C, we show two statements:

¢ The value —A/nm is a root of the Bernstein-Sato polynomial of C forany A € (A1 +T'c)\Tc.
e If n < 4, then for any A € Ac \ I'c, we have that —A/nm is a root of the Bernstein-Sato
polynomial of C.

The thesis is structured as follows:

Chapters 1-4 are mostly introductory. In Chapter 1 we introduce notions and notations
about plane curves: primitive parametrization, Newton polygon, resolution of singularities,
topological /analytic invariants, etc.

In Chapter 2 we introduce the concept of foliation in a complex analytic regular surface. We
recall the existence of resolution of singularities for foliations. We also prove a combinatorial
criteria about totally D-dicriticalness.

In Chapter 3 we study the combinatorial structure of semimodules appearing as semimodules
of differential values of cusps.

Chapter 4 is devoted to the introduction of the computational techniques of standard bases.
This theory is general and can be applied to other kinds of local algebra problems.

In Chapter 5 we present Delorme’s decomposition. The computations are done either with a
parametrization or an implicit equation.

In Chapter 6 we introduce the concepts of extended standard basis and standard system for
a cusp. They are used in Chapters 7 and 8.

In Chapter 7 we prove hierarchy results about the moduli of analytic plane cusps. Again, we
rely on the structure of the elements of a minimal standard basis seen in Chapter 5.

In Chapter 8 we use the structure of a minimal standard basis to compute a Saito basis of
the cusp C. The proof is based on the combinatorial techniques from Chapter 3 and the use of
Delorme’s decompositions. Moreover, we define new analytic invariants of curves.

Finally, in Chapter 9 we show how to detect roots of the Bernstein-Sato polynomial for the
case of cusps.

Now we proceed to summarize the content of each chapter of this work.

Plane Curve Singularities

Fix (Mo, Po) = (C2,0) a germ of a regular complex surface. Denote by Oy, p, its ring of complex
analytic functions. After choosing a local system of coordinates (x, y), we have that the ring
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Oy, p, coincides with the ring C{x, y} of complex convergent power series in x and y. A plane
curve (C, Py) in (My, Po) is a non trivial principal ideal (f) = I € Opy,,p,- We denote by f or by
f = 0 an implicit equation of C.

Assume that C is an irreducible curve, or branch. Then the implicit equation f is irreducible
as an element in C{x, y}. By Newton-Puiseux Theorem (see for instance [14]), there exists a
parametrization ¢ : (C,0) — (My, Pp) of C, with ¢(t) = (x(t), y(t)), where x(t), y(t) € C{t}.
Having a parametrization means that f o ¢ = 0. Additionally, we are going to assume that ¢ is
a primitive parametrization. In other words, the multiplicity of f at Py, which we recall is the
order of f at Py, coincides with the value min{ord;(x(t)), ord; (y())}.

We define the semigroup of C as:

I'c ={vc(h):h € Om,p,}; where vc(h):=ordi(ho ¢).

The semigroup of C admits a finite system of generators I'c = (B, By, - .. ) with B < B,y for
i=0,1,...,g —1. Itis a complete topological invariant. In fact, Zariski’s equsingularity theory
tell us that for two branches C and D the following statements are equivalent:

a) C and D are topologically equivalent, in the sense that there is an homeomorphism of the
ambient spaces sending C to D.

b) C and D share the same semigroup I'c =I'p.

¢) Cand D are equisingular, that is, they have the “same” resolution of singularities: same
dual graph.

We are interested in the notion of analytic invariants of a branch, that is, properties that
remain constant under analytic isomorphisms of the ambient spaces.
Similarly to the semigroup, we define the semimodule Ac of differential values of C by

Ac :={vc(w):we Q}VIO,PO},

where Q}VI(] P is the Oy, ,p,-module of holomorphic 1-forms in (M, Pg) and v (w) is the differential
value of w by C. The differential value of w is given by the number ord;(a) + 1, with ¢*w = a(t)dt.
The semimodule of differential values is an analytic invariant of C. The relevance, as analytic
invariant, of Ac relies on the following theorem proved by A. Hefez and M.E. Hernandes in [34].

Theorem. Let (C, Py) be a branch whose semigroup is Tc = (B, By, - - - ,Eg). There exists a system of
local coordinates such that C has a normal form parametrization defined as follows: if Ac \ T'c = 0, then
we put (tho, tP1). Otherwise, if we have that Ac \ Tc # 0, then we put

ot thz 4 3T gt 1)
i>Az,i¢Ac—B,

Here Ay = min(Ac \T¢) — :Eo is the Zariski’s invariant of C.

Moreover, we have that (C, Po) is analytically equivalent to another branch (C’, Po) if and only if there
exists r € C* with r'2~F1 = 1 and a; = r'~F1a for every coefficient a’ of a normal form parametrization of
C.

The previous theorem solves the analytic classification of plane branches. In [36] M.E
Hernandes and M.E.R. Hernandes extend the previous result to general plane curves.

Because of the previous theorem, we decided to study the relationship of the semimodule of
differential values with other analytic invariants of branches. We say that C is a cusp with Puiseux
pair (n, m), when the semigroup I'c of C is generated by the pair (1, m), thatis, I'c = (n, m),
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where 2 < n < m and gcd(n, m) = 1. In this situation the combinatorics of the semimodule of
the differential values are easier and well known, see [2, 21]. These combinatorics are one of the
main ingredients that we use along all our proofs.

Assume that C is a cusp with Puiseux pair (1, m). To simplify our computations, we place
ourselves in a system of coordinates (x, y) adapted to C. In other words (x, y) is defined as
a system of coordinates where we can find a primitive parametrization of C of the shape
(t",at™ + h.o.t.) with a # 0. Equivalently, we can take as implicit equation of C the following
one

f=y"+ux™ Z bix'y/; p#0.
ni+mj>nm
We can also define an adapted system of coordinates of C in terms of its resolution of singularities.
We precise this last notion. The blow-up with center 0 of (C2, 0) is defined as the germ space of
the sets
Blup == {((x,y),[a1 : az]) € U x PY(C) : xaz = yay},

being 0 C U c C? an open set. The blow-up can be considered in (M, Py) since this surface is
isomorphic to (C2,0). We denote by o : By, p, — (Mo, Po) the projection in the first coordinates.
We have that 671(P) = E! = P!(C) is the exceptional divisor of the blow-up o. Given g € O, p,,
we define the strict transform of g by ¢ as the implicit equation, in Blyy, p,, of the curve defined
by (g o o) — vp,(g)(E'), where we are using the notation of divisors as a simplification. The
notion of strict transform extends, inductively, to a finite sequence of blow-ups.

Notice that since n > 2, then C is singular at Py. Consider a singular plane curve (D, Pp) in
(Mo, Pp). In virtue of the classical Theorem of Resolution of Singularities for plane curves, we
can find a finite sequence of blow-ups 7 : (My, E N) — (M, Py), such that the strict transform D
of D by 7 is a non singular curve and the intersection points of D with the exceptional divisor
EN = n7}(Py) are a non singular points of EV.

We have a minimal resolution of singularities

TC (MN/ EN) - (MO/ PO)/

with © = 01 0 g3 0... oy, and N minimal upon all the resolution of singularities of C. Each o; is
a blow-up as above. Saying that (x, y) is a local system of adapted coordinates with respect to C
is equivalent to saying that we can compute 7 just in a combinatorial way. These sequences of
blow-ups are named cuspidal sequences. We say that a system of coordinates is adapted to 7 if it
is also adapted to C.

If we consider EN = n~1(Py) the exceptional divisor of 17, we can decompose this curve into
its irreducible components EN = E f] U Eé\] U...UE Ilf] , here the subscript indicates the order of
appearance. In particular, we call EY the cuspidal divisor of 7. It is also defined by saying that
the strict transform of C by 7 has no empty intersection with EII:]]. Since the divisor Eﬁlf only
depends on C, we also say that EY is the cuspidal divisor of C.

Moreover, given 7t a cuspidal sequence, which coincides with resolution of singularities of a
cusp C with Puiseux pair (1, m), we say that (1, m) is the Puiseux pair of 7.

Totally Dicritical Foliations

The definition of the semimodule of differential values of a branch C requires the use of
holomorphic 1-forms in the analytic surface (My, Py). For this reason, we study geometrical
properties of the foliations that give rise to the semimodule of differential values.
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A germ of a foliation ¥ in (M, Py) can be defined by a holomorphic 1-form w € Q}wo Po

that can be written as w = Adx + Bdy, with gcd(A, B) = 1, in a system of coordinates (x, y) at
(Mo, Pg). We can define foliations in general surfaces or analytic spaces, not just a germ, by
considering gluing conditions between the defining charts of the desired ambient space. We say
that a curve C defined by f = 0is an invariant curve by ¥ if w A df = fn, where df stands for
the differential of f and 7 is a holomorphic 2-form.
Suppose that the foliation ¥ defined by w is singular at Py, that is, A(0) = B(0) = 0. We
consider the matrix
)= | #O 50 )
20 %0

Denote by A, u the eigenvalues of J(w). We say that Py is a simple singularity of ¥ if J(w) is
non-nilpotent (that is (A, u) # (0,0)), and one of the following two conditions is satisfied:

1. Au =0 (saddle-node case).
2. Ap # 0and A/y is not a positive rational number.

We need the strongest concept of simple point with respect to a normal crossings divisor
E® ¢ My. Namely, we say that the point Py is a simple point of (M, E°, ) if one of two following
conditions is satisfied:

a) Py is a simple singularity of ¥, there exists an irreducible component of E° through Py
and all the irreducible components of E” are invariant by F .

b) The point Py is a regular point of ¥ and ¥ has normal crossings with EC. That is to say, if
L is the only invariant curve of ¥ through Py, then E® U L is a normal crossings divisor.

It is possible to define the notion of strict transform of a foliation by a blow-up ¢ : (M, E h—
(Mo, Py) with center Py. In local terms, consider Q € E! and (x1, y1) a local system of coordinates
of (M1, E') at Q, such that x; = 0 is a local implicit equation of El. Given a foliation ¥ defined
by a 1-form w, the strict transform of F by o at Q is the foliation defined by x; kr*w. Here k
is the maximum integer number such that x] *1*w is holomorphic at Q. The notion of strict
transform of a foliation extends inductively to finite sequences of blow-ups.

A. Seidenberg shows in [51] that there exists a resolution of singularities of # by considering
a finite sequence of blow-ups, in the following sense: we say that 7 : (My, EN) — (M, Po)
is a resolution of singularities of ¥ if its strict transform F by 7 has only simple points of
(Mn, EN, ).

Let @ : (Mn,EN) — (Mo, Py) be a sequence of blow-ups and consider an irreducible
component D of the exceptional divisor EN. Let u = 0 be a reduced implicit equation of D at a
point Q € D. The divisorial value vp(h) of a function i € Op, p, is the number of times that u
divides 7*h. The notion of divisorial value can be extended to 1-forms and 2-forms by means of
adequate logarithmic presentations in the sense of K. Saito [49].

Now assume that 7 is a cuspidal sequence with Puiseux pair (2, m) and cuspidal divisor D.
Let (x, y) be a system of adapted coordinates with respect to . Given a function & € O, p,, We

h= Z aaﬁx“yﬁ.

a,p>0

write h as

Since we are in a system of adapted coordinates, the divisorial value of h corresponds with
vp(h) = min{na +mp : a,g # 0} (see Proposition 2.3.2). Besides, for the case of 1-forms, we
have that given w = Adx + Bdy, then vp(w) = min{vp(xA), vp(yB)}. Finally, for n = gdx A dy,
we obtain that vp(n) = vp(xyg) (see Propositions 2.3.7 and 2.3.9).
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As we have already said, a foliation ¥ is totally D-dicritical when its strict transform by 7 is
regular, transverse to D, and has normal crossings with E at all the points of D. We also say that
1-form w is totally D-dicritical when the foliation defined by w is totally D-dicritical.

In this work we give an equivalent combinatorial condition to total D-dicriticalness. Let us
precise it. Consider w € QIl\/Io,Po such that vp(w) = q and write

» dx dy
w= Z x*yP {[Jaﬁ? +éaﬁ_}.

a,>0

The Newton cloud of w is NC () = {(a, B) : uap # 0 0or Eap # 0}, and the initial part of w is
given by
a dx dy
)= 3 5 ()
na+mp=q

We say that w is resonant if there exists a non zero constant u such that

dx dy
) = ux®yPim= —n=L\.
Inn,mlx,y(a)) ux®y {m . n y }

Let (b, d) be such that dn — bm = 1 and with the property that0 < b <nand 0 < d < m. We
define the region R"™ by R"™ = H"™ N H|"™, where

o
n,m
H+

{(a,p) €R% (n—b)a+(m —d)p > 0},
{(a, B) € R%; ba +dp > 0},

We say that w is pre-basic if NCy,,(Iny y nm(@)) = {(a,b)} and NCy y(w) C (a,b) + R"™. Note
that vp(w) < nm is a sufficient condition to assure that w is pre-basic, see Proposition 2.4.11.

We prove that being totally D-dicritical is equivalent to being pre-basic and resonant, see
Proposition 2.5.1).

Cuspidal Semimodules

We describe structural properties of the semimodule of differential values of a cusp.
Recall thatany I'-semimodule Ahasabasis B = (A_1, A, . . ., As) and we have the decomposition
sequence of A given by:

j
Ad=(Ag+D)CACAC-—-CA=A; Aj= U(A,»+r), for j=-1,0,...,s.
i=—1

Assume that I' is cuspidal, thatis, I' = (1, m). In this case A is called a cuspidal semimodule,
even if A does not correspond with the semimodule of differential values of a cusp. The axes
ul',ul",u; and ii;, and the critical values t_, to, t}', t", t; and f;, are structural parameters of A, as
in the case of the semimodule of differential values.

We say that A is an increasing semimodule if A; > u; fori =1,...,s. We have that A is the
semimodule of differential values of a cusp C if and only if A_1 = 1, Ag = m and A is increasing,
see [21, 2]. Furthermore, in this case, if S = (w-1, wy, . . ., ws) is a minimal standard basis of the
corresponding cusp C, we have that vp(w;) = t; fori = —-1,0,...,s, where D is the cuspidal
divisor of C, see Theorem 5.2.10.

In order to understand the structure of A we need to define extra parameters associated to

the semimodule. In particular we define the bounds k', k", the limits € |, {},, and the colimits
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ai+1, biy1, accordingly to the following relations (see Lemma 3.5.1):

n
i+1
m

— . m. _ .
ujl, = A,+ml’i+1—/\k;n+nal+1.

u = A+ nfﬁ_l = Ak? +mbiy,

The main technical results linking the previous parameters are the following ones:

a) The axes and critical values are ordered as follows (see Lemma 3.6.1):

1. w1 <up < ... <Ugyp <llgyr <llg <...<lii.
2.t <ty <...<tgy1 <Fsp1 <Fs<...<Hh.

b) The bounds k:.‘ and klf” are determined inductively once we know if u; = ul?’ or u; = ul?".
More precisely, if u; = u?, we have that kf =i—1and k;” = k;’il. Ifu; = ul?”, then k;’ = kf_l
and k" =i -1, see Proposition 3.5.9.

c) The relationship between bounds, limits and colimits is given by (see Proposition 3.6.3):

1. If k:.‘ =i-1, then EI?‘H +a;,1 = a; and l’;ﬁl +biy = ﬂlm.
2. If k;” =i-1, then Zl.”ﬂ +aj1 = l’f and (;ﬁl + b1 =b;.

The result a) allows to work with initial parts of elements of minimal standard basis. The results
b) and c) are key for the presentation of different versions of Delorme’s decomposition.

In the proof of above results, we have used the idea of circular intervals. Roughly speaking,
it corresponds to a reordering of the intervals of length 1, by considering its terms modulo #
and dividing them by m modulo #.

It is worth to mention that in [3] and in [41] the authors give a different approach to study
the combinatorics of these semimodules.

Standard Bases

The minimal standard bases that we consider in this work do not fit exactly with the classical
standard bases concerning ideals, algebras and modules. Nevertheless, both cases can be treated
with the same kind of techniques.

In this chapter, we recall the known general notions and algorithms about standard bases.

Delorme’s Decompositions

In this chapter, we present several results that can be considered as avatars of the classical
Delorme’s Decomposition Theorem in [21]. These statements are the technical core that supports
most of the proofs of the main results of this thesis. In particular, we end this chapter with a
refinement, in the cuspidal case, of the usual algorithms for computing a minimal standard
basis, and its use when the input is an implicit equation.

Consider Ac the semimodule of differential values of a cusp C with Puiseux pair (1, m) and
a minimal standard basis S = (w_1, wy, ..., ws) of C. Let B = (A_1, Ay, ..., As) be the basis of
Ac. Denote by A; the intermediate semimodules of the decomposition sequence of Ac, and
by t;, u; and k; the critical values, axes and bounds of Ac. Let us also take a local system of
coordinates (x, y) adapted to C. The main technical results in this work are the following ones:

Theorem (5.2.10). Foreach 1 < i < s we have the following statements

1. A; = sup{vc(w) : vp(w) = t;}, here D stands for the cuspidal divisor of C.
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2. Ifve(w) = Ay, then vp(w) = t;.

3. For each 1-form w with vc(w) € A1, there is a unique pair a,b > 0 such that vp(w) =
VD (x“yba),-). Moreover, we have that ve(w) = A;j + na + mb.

4. We have that A; > u;. In particular, the semimodules A; are increasing.

5. Let k = Aj + na + mb, then k ¢ Aj_1 if and only if for all w such that vc(w) = k we have that
vp(w) < vp(x"yPw;).

Note that the divisorial value of an element of a minimal standard basis is fixed by the critical

values.

Theorem (5.3.1 Decomposition Theorem). Consider indices 0 < j < i < s and denote by * one of the

elements n or m. Take w a 1-form such that vp(w) =t ,

and vc(w) > u?, . There is a decomposition of
the 1-form w given by

w = Zéz_l f;ja)[, 2)

such that vlfj = min{vc(f;]a)g); -1 < ¢ < j}, where vl*.]. = vc(f].”a)j) and vlfj = A+t —tj. In

particular, if j = i, we have that v, = A; +t7 | — t; = u;,,. Moreover if =1 < { < j, the following holds:

1. Ifj < i, we have that Vc(f;ja)g) = v’l.‘].for { =kj, and vc(f;ng) > v;fj,for any € # k;.
2. If j = i, we have that vc(f;ia)g) = v}, for{ = k;, and Vc(f;ia)g) > v, forany { # k}f.

1

The previous writing in Equation (2) is what we have call in this text a Delorme’s decompo-
sition of w.

Now let us sketch how to compute a minimal standard basis of the cusp C, when it is given
in by an implicit equation f = 0.

The main detail is the following one: given two 1-forms w, w’, such that vc(w) = ve(w’) < oo,
we need to find the unique constant u* such that ve(w + p*w’) > ve(w). This is done in a
straightforward way when starting with a primitive parametrization of C. In this chapter, we
present a new method to do that from an implicit equation.

We consider the weighted monomial order < with respect (1, m) in (Z50)?. The order < is
defined as: (a,b) < (c, d) if either na + mb < nc + md or na + mb = nc + md with a < c. Write
@ = Adx + Bdy and o’ = A’dx + B’dy and consider the vector fields X, = —Bdy + Ad, and
X = —=B’dy + A’dy. Put h, " “final reductions modulo {f}" of X,,(f) and X/,(f) respectively.
We show that ve(w) = ve(w’) implies that Ip(h) = Ip(h’), see Proposition 5.4.3. If we write
It(h) = ux"y® and It(h’) = w’x"y" (here Ip and It stand for the leading power and the leading
term respectively). Then we have that the coefficient u* we are looking for is u* = —pu/y’.

As a consequence of this procedure, we extend some results of D. Pol in [48] and ]. Briancon
et al. in [9] relatives to the extended jacobian ideal J(f) = (fx, fy, f) of C. Namely, given
S = (w-1, wy, ..., ws) a minimal standard basis of C, if we denote by h; a final reduction of
Xu;(f) modulo {f}, fori = -1,0,...,s, then {h_y, ho, ..., hs} is a minimal standard basis of
T ).

Standard Systems

In this chapter we enlarge the concept of minimal standard basis to extended standard basis and
standard systems.

We say that a sequence of 1-forms & = (w-1, wy, . .., Ws, Ws+1) is an extended standard basis of
C when S = (w-1, wy, . . ., ws) is a minimal standard basis of C and w1 satisfies the following

two conditions:
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1. vp(ws41) = tsi1.
2. ve(ws+1) = oo, thatis, C is invariant by w1 (see Lemma 2.1.1).

A standard system (&,&) for the cusp C is the data of an extended standard basis & =
(w-1, wo, w1, ..., ws, ws+1) and a family E =(01,d,..., &, ds+1) of 1-forms satisfying that

VD(cf)j) = f]', Vc(cf)]') =00, 1<j<s+1

We prove the existence of standard systems that complete a given minimal standard basis.
Moreover, we show that w11 and every @;, except @1, are basic and resonant, hence they are
totally D-dicritical.

Analytic Semiroots

Let w be a pre-basic and resonant 1-form in adapted coordinates with respect to the cusp C. By
the results in Chapter 2, we know that the foliation defined by w is totally D-dicritical, where D
is the cuspidal divisor of C. Consider a non-corner point P € D, there exists a unique branch
C}p invariant by w passing through P, named an w-cusp through P. The strict transform of C};
in P is non singular and transverse to D at P. Thus, the resolution of singularities of C}; is the
same as the one of C. Note that two of these curves Cj and C 8, with P # Q, are not in general
analytically equivalent, see Example 7.8)

Consider an extended standard system & = (w—_1, wo, . . ., ws+1) of the cusp C. Recall that w;
is totally D-dicritical for i > 1. We call analytic weak E-semiroot of index i > 1 to any w;-cusp Cp".
We say that Cp," is the analytic E-semiroot of C of index i if P is the infinitely near point of C in D.
We observe that the analytic &-semiroot of index s + 1 is the cusp C itself.

One of the most important results of this work is the following one:

Theorem. For any analytic weak E-semiroot y = Cp" of index 1 < i < s +1, then
81‘ = (a)_1,a)o,. ..,a),-)

is an extended standard basis of y and the semimodule of differential values is A, = A;_1. Moreover, we
have the equality of differential values

ve(we) =vy(we), for —-1<E<i-1
Let us expand & to a standard system
(&,8) = (w-1,@0, - .., Ws41; D1, D2, - - ., Ds11)-
We have the following;:

Theorem. Let § = Cl‘f" be an @;-cusp with 2 < i < s + 1. Then we have the equality of differential
values
ve(we) =vy(we), for —-1<€<i-1.

Moreover, we have the inclusion Aj—1 C Aj.
We give an example where the inclusion A;—; C Ay is strict.

We end the chapter with an example of a branch with two Puiseux pairs that shows that it is
not easy to generalize the previous results in a straightforward way.
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Saito Bases and Other Analytic Invariants

Consider (C, Py) any plane curve in (My, Pp). K. Saito showed in [49] that Q}VIO,PO [C]is a rank
two free Oy, p,-module. We say that a basis of le\/IO,PO[C ] is a Saito basis of C.

Y. Genzmer in [25] introduced an analytic invariant for curves depending on Saito bases.
More precisely, he defined the Saito pair of multiplicities of C as the following two numbers

SPO(C)
EPO(C)

min{vp,(w); w belongs to a Saito basis of C},

max{vp,(w); w belongs to a Saito basis of C},

where vp,(w) is the multiplicity of w at Py. Finding a Saito basis is the most complicated part
when determining the previous invariant. In this chapter we present a method to compute a
Saito basis of a cusp C. It is based on the information coming from the semimodule of differential
values. We build a Saito basis as follows:

Theorem (8.2). Denote by Ac the semimodule of differential values for the cusp C, with length s > 0.
Let to41 and Fq41 be the last critical values of Ac. Then, there are two 1-forms w41, @s+1 having C as an
invariant curve and such that vp(ws41) = tes1 and vp(@s41) = Fes1. Moreover, for any pair of 1-forms
as above, the set {ws+1, @s+1} is a Saito basis for C.

The existence of the 1-forms w41 and @s41, satisfying the required properties, follows from
the existence of standard systems proved in Chapter 6.

The proof of the previous theorem relies on the results about Delorme’s decompositions of
the 1-forms w41 and @s4+1. We proceed to give a sketch of the proof.

First, according to [49], we have the following result

Lemma (Saito’s Criterion). Let C’ be a curve defined by the implicit equation g = 0. Given
m, N2 € Q}VIO po|C’], then {n1,n2} is a Saito basis of C” if and only if

m A =ugdx Ady,
where u € O, p, is a unit, and (x, y) is the chosen coordinate system.

We use the Saito’s criterion to check that Theorem 8.2 is true when the basis the semimodule
of differential values of C is B = (A_1,A¢). In this case, by Theorem 1.5.2, we have that
C is quasi-homogeneous, that is, we can find coordinates such that (",+™) is a primitive
parametrization of C. It is a direct application of Saito’s criterion that w1 = nxdy — mydx
and @; = ny""'dy — mx™"ldx give a Saito basis of C. Note that vp(w1) = t; = n + m and
vp(@1) = F; = nm. Knowing that {w1, @1} is a Saito basis of C, we can verify that any couple of
1-forms with C invariant and the same divisorial values as {w1, @1} gives a Saito basis.

Now, if the basis B has more than two elements, we did not prove the theorem by checking
that ws4+1 and @41 satisfy Saito’s criterion. In fact, the proof is split in two parts: first, we find a
generator system of Q}\Ao, Po [C] that contains {ws+1, @s+1}. Second, we show that the previous
generator system can be reduced to just {ws+1, @s+1}-

We can generalize the Saito pair of multiplicities as follows. Let us consider 7’ : (My-, EN') —
(Mo, Po) a sequence of blow-ups and take E ¢ EN' an irreducible component of the exceptional
divisor. We define as before

se(C)
se(C)

min{ve(w); w belongs to a Saito basis of C}.

max{Ve(w); w belongs to a Saito basis of C}.
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The Saito pair of multiplicities (sg(C), sg(C)) with respect to E is an analytic invariant. When 7/
is just a single blow, we recover the one defined by Y. Genzmer. We show in Theorem 8.4.3 that
(sp(C),3p(C)) = (tss1, Fs+1)- In other words, the Saito pair of multiplicities, with respect to the
cuspidal divisor D, is determined by the semimodule of differential values of the cusp C.

Nonetheless, we give an example that shows that (sp,(C), sp,(C)) is not completely determined
by Ac. Anyway, in [27], it is shown that we can deduce some information about sp,(C) from the
semimodule of differential values.

Roots of the Bernstein-Sato Polynomial

Consider C a curve in (My, Py) with implicit equation f = 0. In [17], P. Cassou-Nogués gives
algebraic conditions that the coefficients of f must satisfy to assure that a particular rational
number is a root of the Bernstein-Sato polynomial.

In order to give the previous algebraic conditions, we need to use a special kind of adapted
coordinates that we call nice coordinates. First we define the cuspidal sets P, J, M as

P = {(p1,p2)€(Zzo)Z:OSp1<m—1,0§p2<n—1andnp1+mp2>nm},
J = {j=pyjn+pyjm—nm:(p1j p2;) € P},
M = {(m-p1-1,n—p>2—1):(p1,p2) € P}.

We say that (x, i) is a system of nice coordinates if in these coordinates we can find an implicit
equation of C as
f=x"+y"+ Zijplrfypsz; zj € C.
i€l

As we see, a nice equation does not depend on M, however, the conditions given by P.
Cassou-Nogueés do.

By means of those algebraic conditions and based on the computation of several examples,
we proposed ourselves to prove the following statement

Conjecture (9.3). Let C be a cusp with semigroup I'c = (n, m) and semimodule of differential values
Ac. Then for any element A € Ac \ T'c, the rational number —A/nm is a root of the Bernstein-Sato
polynomial of C.

Up to this moment, we have proven the previous conjecture when n < 4 (see Theorem 9.2)
and we have also showed that

Theorem (9.1). Let C be a cusp with semigroup I'c = (n, m) and semimodule of differential values Ac.
Assume that A = min(Ac \ T'c) exists. Then for any element A € (A1 +T¢c) \T'c C Ac, the rational
number —A[nm is a root of the Bernstein-Sato polynomial of C.

The idea for proving both theorems is the same one. We fix a semimodule of differential
values A and we apply the algorithm for computing it, in this way we see which are the algebraic
conditions that the coefficients of a nice equation of cusp must satisfy in order to have A as its
semimodule of differential values. Once we have obtained these conditions, we just compare
them with the ones given in [17]. This also explains why we did not give a general proof
independently of #, and why we limit ourselves to n < 4. The calculations become more complex
as the value of n increases.
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PrLANE CURVE SINGULARITIES

In this chapter we present the main object of study, germs of plane branches. They can be
defined as the zero set of an implicit equation or via a parametrization. We mostly consider
branches which are singular and the invariants that we can associate to them. In this work there
are two types of invariants that we are interested in: those which only depend on the topology,
and those which also relay on some analytic structure. For instance, O. Zariki showed that the
equisingularity is a complete topological invariant for germs of plane curves. Concerning analytic
invariants, the most relevant one presented in this chapter is the semimodule of differential
values of a branch.

At the end of the chapter, we focus on the study of the family of branches with a single
Puiseux pair. In this text, we call them cusps.

1.1 The Ring of Convergent Power Series

In this section, we will use [14, 30] as the main reference books. Along the whole text, we
denote by (Mo, O, ) a regular complex analytic surface. More precisely, the space (Mo, Op,) is
a ringed space in local C-algebras, locally isomorphic to C? with its structural sheaf of germs of
holomorphic functions.

We are mostly interested in studying local behaviours. Given G C My a compact set, we
denote by (My, G) the germ at G of the analytic space (Mo, Opr,). When G = {Po}, we simply
write (M, Pp). In this last case, we have that after choosing a system of local coordinates (x, y) of
My at Py, the local ring Oy, p, is isomorphic to the ring of convergent power series in two variables
Clx, v}

A plane curve (C, Oc) is a reduced analytic subspace of (Mo, On,) of codimension 1. At any
point P € C, the germ of the space (C, P) is defined by a principal ideal (f) C Om,,p different
from zero or the total ring. Note that f may not be reduced, nonetheless we always consider its
reduced structure.

The local ring Oc p is isomorphic to Op,p/(f). We say that f or f = 0 is a local implicit
equation of the curve (C,Oc) at P. Most of the time we will work with germs of plane curves
(C, P). When there is no confusion, we just write C without indicating the point P. We are only
going to deal with plane curves, for this reason, we usually substitute the term “plane curve” by
just “curve”.

Remark 1.1.1. Note that we can define the notion of hypersurface in a complex analytic space of

dimension p > 2 in a manner similar to the case of curves.

18
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Now, we proceed to recall a few concepts associated to the ring of convergent power series
in p > 1 variables. We say that ¢ € C{x1,...,x,} is regular of order k> 1 at the variable x,,, if
2 ok

98 o g
g(0) =0, E(O)_O’ a_x%(o)_ol...,

1 k
g g

—(0) =0, —=(0) # 0,
&x’; 1 ax';

where 0 = (0,0,...,0) € CP.
Given a polynomial 1 € C{x1, ..., xp-1}[xp], we say that h is a Weierstrass polynomial in the
variable Xp if h satisfies the following two conditions: first, the director coefficient of & is 1, that is

k- k-2

h=xk+ a2 + apox

p +-o4ag,  ak-1,0r-2,-..,a0 € C{x1,x2,...,xp1}.

Second, the coefficients are zero at 0, a;(0) =0 fori =0,1,..., k- 1.

Theorem 1.1.2. (Weierstrass preparation Theorem) Given § € C{x1,...,xp} regular of order k
at the variable x,, there exists a unique unit u € C{x1,...,xp} such that ¢ = uh where h €
C{x1,...,xp-1}[xp] is a Weierstrass polynomial in the variable x,.

Because of Theorem 1.1.2, we can define locally any irreducible curve in the space (Mg, Po),
possibly after renaming the variables, by an element of C{x}[y] with unitary director coefficient.
Another consequence of the Weierstrass preparation Theorem is the following.

Remark 1.1.3. The ring C{x1, ..., x,} is a noetherian unique factorization domain.

Let (C, Pp) be a plane curve defined by the implicit equation f = 0. The equation f can
be factorized as f = f/' f,* -+ f;*, with f; € C{x,y} fori = 1,2,...,s. Anirreducible factor f;
defines an irreducible component C; of C; each one of them is said to be a plane branch, or just
branch, of C. When C is irreducible, we omit the subscript and we identify the curve with its
only branch.

Given a curve (C, Pg) with implicit equation f € C{x, y}, we say that the curve C is singular
at Py if the jacobian matrix J(f) of f is zero at the point Pyg. Otherwise, we say that the plane curve
C is regular at Py. A first approach to classify singular curves is in terms of their multiplicity. If
we write f = > ;> fk with fx € C[x, y] an homogeneous polynomial of degree k. The function f,
or the curve C, has multiplicity kg at Py if fy = 0 for k < ko and fi, # 0. The cone fi, = 0 is called
the tangent cone of f, or the tangent cone of the curve C. We denote by vp,(f), or by vp,(C), the
multiplicity at Pg. Notice that f = 0 is singular at point Py if and only if the multiplicity vp,(f) is
at least 2. Additionally, the multiplicity does not depend on the system of coordinates.

Remark 1.1.4. By Hensel’s lemma, we have that the tangent cone of a branch is a single straight
line, that we count with multiplicity k.

1.2 The Newton-Puiseux Theorem

We can find parametrizations of branches using one variable power series. This is done by
means of the classical Newton-Puiseux algorithm, where the reader is refered to [14, 56] for more
details. The computation relies on the Newton polygon of the curve, that we proceed to define.

In general, given an element ¢ € C{x1,x2,...,Xp}, we can decompose it as a sum of its
ay, a ap

monomials, that is, g = ;50 gax®, With a = (a1, a2, ..., ap) € (Z>0) and x* = x]"x; x,

We define the Newton cloud of g as

NCxl,xz ,,,,, x,,(g) = {CY ' 8a F 0}/
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and the Newton polytope of g as:

NPy v (g) .= convex hull of ( U (a + (Rzo)i’)).
AENCxy 2y, 50 (8)

In the two dimensional case, the Newton polytope is called the Newton polygon.

We include the coordinate system in the notation for both the Newton cloud and the Newton
polytope, to remark their dependency on the coordinates chosen. We have introduced these
notions in a general p variable case, because they reappear in Chapter 4 when talking about
standard bases.

Figure 1.1: The figure above represents the Newton cloud of y® + xy° + 6x3y® — 7x4y? + 11x°y° + x°
(red dots) and its Newton polygon (blue part).

The border of a Newton polygon is always defined by two semi lines sg, se: one parallel to
the horizontal axis and the other one parallel to the vertical axis; and a set (it may be empty) of
segments {s;}¢c in (Rx0)? of strictly increasing negative slopes.

By a parametrization of a plane branch C with implicit equation f = 0, we mean a map

¢": C{x, y} = Owmy,p, = C{t} = Ocy,
such that ¢*(f) = 0. A parametrization can be identified with a non constant map
¢ :(C,0) = (Mo, Po),

given by ¢(t) = (x(¢), y(t)) with x(t), y(t) € C{t}, and in particular the kernel is (f). We also say
that ¢(t) is a parametrization of the curve. Besides, the map ¢* can be determined by ¢(t), just
by putting ¢*(h) = h o ¢. As stated above, we can compute parametrizations by means of the
Newton-Puiseux algorithm. In fact, these parametrizations can be seen as roots of an implicit
equation.

Just as a remark the reader is referred, for instance, to [29]. There it is treated a family of
hypersurfaces where we can find a parametrizations similarly to the case of plane curves. They
are called quasi-ordinary hypersurfaces.

Now, assume that the multiplicity of f at Py is vp,(f) = n > 2, and consider f, = 0 the
tangent cone of f. Up to reordering the coordinates (x, i), we can assume that f, = c¢(y + Ax)".
A parametrization ¢(t) of f or C is a primitive parametrization if ¢p(t) = (+", y(¢)). Note that in

y(t) = Z a;t!,

i>n

this case we have that

with gdc(n, {i:a; #0}) = 1.
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Theorem 1.2.1 (Newton-Puiseux Theorem). Any branch C admits a parametrization ¢(t) =
(x(t), y(£)) with x(¢), y(t) € C{t}.

Remark 1.2.2. Not only we can guarantee the existence of a parametrization, but also, we can

find a primitive one. For this reason, we will only work with primitive parametrizations.

We can recover implicit equations from primitive parametrizations as follows: consider

¢(t) = (t",5(t)) a primitive parametrization of C. An implicit equation of C is given by the

formula:
n—-1
fo = l_[ (y —-s (exp(2nik/n)x1/”) ), (1.1)
k=0
where x!/" is a n'’-root of x. It is satisfied the following:

* The curve defined by f; = 0 is irreducible.
* Given g € C{x,y}, then g(t",s(t)) = 0 if and only if f; divides g.

If s(t) is a polynomial, we have another way to compute an implicit equation of the branch C.
We can consider the polynomials x — t", y — s(t) € C[x, y, t]. The resultant of x — t" and y — s(¢)
with respect to the variable ¢ is an implicit equation of C, see [52] Theorem 4.39.

Assume that f = 0is an implicit equation of a branch C. By Weierstrass preparation Theorem
1.1.2, we can assume that f is either a Weierstrass polynomial in C{x}[y] or in C{y}[x]. This is
because x or y, but not both, do not divide the tangent cone of a branch C.

Example 1.2.3. We want to emphasize that any curve defined by the an implicit equation as
follows is irreducible:

f=y"+ux" + Z aijxiyf; u#0,

ni+mj>nm

where gcd(n, m) = 1. We make this observation, because most of the branches we are going to
consider are as above.

Remark 1.2.4. A parametrization ¢* of a branch f = 0 induces an isomorphism:

¢* : Oc,p, = C{x, y}/(f) = C{x(t), y(t)} c C{t},

Recall that ¢* sends x to x(t) and y to y(t). In this way we can see the local ring of a plane
branch in terms of an implicit equation or in terms of a parametrization.

Consider ¢(t) a primitive parametrization of the branch (C, Py). As we mentioned, the
parametrization can be written as:

(1) = (x(t), (1) = (¢", ) ait"). (12)

i>n
The characteristic exponents (Bo, 1, ..., Bg) of the branch C and the list (eq, e1, ..., eg) are
defined as follows

[ ] ,BO =e€eyp=n.
* For j > 1 the exponent f3; is the minimum index i > ;_; satisfying both a; # 0 and

ged(i, ej—1) < ej-1.

Next we define e; = gcd(ﬁj,e]-_l) <ej-1.
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The number of characteristic exponents is finite, and the index g is called the genus of the branch
C. We have that gcd(Bo, f1,...,Bg) = 1 = eg. Besides, the branch is singular if and only if ¢ > 1.

From these two lists, we can define the Puiseux pairs (n;, m;) of C, fori =1,2,...,4, as
n; = ej-1/ej and m; = B;/e;.

We say that a curve of genus one, or with a single Puiseux pair, is a cusp. At the end of the
chapter we will give an equivalent definition of cusp in terms of its resolution of singularities.

Primitive parametrizations allow to compute in an easy way intersection multiplicities. We
recall that given two functions f, ¢ € C{x, y}, the intersection multiplicity f and g at the point Py
is defined as

ipy(f, g) = dimc C{x, y}/(f, g)-

If f and g are implicit equations of two curves C; and C», the intersection multiplicity between
C1 and C; at Py is given by ip,(C1, C2) := ip,(f, §)-
Note that the intersection multiplicity is additive with respect of the product of functions:

iry(f, 8182) = ipy(f, &1) +ipy(f, 82)-

When f is an implicit equation of a branch C and ¢(t) a primitive parametrization, then the
intersection multiplicity is also given by

ipy(f, g) = ords(g o P) (1.3)

(see [56]). Note that when C; and C; are two regular curves, we have that
ipo(cl, Cz) > 1.

When the previous intersection multiplicity is exactly one, we say that C; and C; are transverse.
Otherwise, we say that they are tangent.

1.3 Resolution of Singularities

The resolution of singularities is a central problem is analytic/algebraic geometry, the reader
is referred to [4] for more a detailed introduction. We are going to describe the resolution of
singularities of germs of plane curves (see [14, 56]).

We consider a local system of coordinates (x, i) of the surface My at a point Py € M), defined
in an open subset U C M), that is, the point Py corresponds with (x = 0, y = 0). We consider the
next subvariety

Bl p, := {((x, y), [a1 : @2]) € U xPY(C) : xap = yas} ¢ U x P(C).

The first projection defines is a birational map o : Bly;,p, — U. We say that ¢ is the blow-up of U
with center Py. In particular, we have that 0=!(P) is just a point if P # Py and o~ !(Py) = P!(C).
The restriction map o : Bl p, \ 07 }(Pp) — U \ {Po} is an isomorphism.

Thus, following the approach in [14], we can “patch” Bl p, at My along U \ {Pp} via o,
obtaining a new complex regular surface M. This surface M; is also called the blow-up of My at
Py. In other words, M; is obtained by changing the set U by Bl p,.

We emphasize that the map ¢ extends to the whole surface M;. As a simplification, we
also denote by ¢ : M1 — M) this extension map of o : Bly,p, — U. The term blow-up will be
indistinguishably used to refer to the surface M; or the projection map o.

The curve E! = 671(Py) = P!(C) is named the exceptional divisor of the blow-up o.
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Let us describe Bl p, in terms of an atlas. Recall that the atlas of P!(C) is defined by
two charts V;, V, c P! (C) homeomorphic to two copies V7 and V, of C. The charts V1 and V,
correspond to the sets {[a : az] € PY(C) : @; # 0} withi =1,2.

This atlas allows to define two open charts Uy, U, of B Iu,p,, which are identified with two
open sets of Uy and U in C2. These charts are given by the maps

Ul g Cll C Blu,po,

(x1,y1) = ((x1, x1y1), [1 2 y1])

U, — U, € Bly,p,,

(x2,y2) P ((x2y2, y2), [x2 : 1])

The transition map between U; \ {y1 = 0} and Uy \ {x2 = 0} is given by the identification
x2 = 1/y1 and y» = x1y1. Sometimes, we will just write (x, y) = (x1, x1y1) or (x, y) = (X212, ¥2)
to denote the previous coordinate systems in the charts Uy, Us.

In these charts, we have that ¢ is defined by o(x1, y1) = (x1, x1y1) and d(x2, y2) = (x2y2, ¥2)
with (x;,y;) € U; for i = 1,2. Additionally, the exceptional divisor Elis given by the implicit
equation x1 = 0 in all the points of E! N Uj. Similarly, y» = 0 is a local implicit equation of E! in
all the points of E! N U,.

Now we consider finite compositions of blow-ups starting a germ of surface (My, Py). That
is, we consider compositions

0 (My, EN) 25 (My-1, ENTY 25 (Moo, EN2) 25 2 (M, Py).

Here the morphism o7 : (M, E') — (M, Py) is the blow-up of (M, Py) with center Py, the
morphism oy : (Ma, E?) — (My,EY)is the blow-up of the germ space (M;, E 1) with center a point
Py € E'. We put E2 = (07 0 02)"}(Py). Inductively, the morphism o; : (M;, E') — (M;_1, E""!) is
the blow-up of (M;_1, Ei~1) with center a point P;_q € E-land El = (610 020...00;) " (Py), for
i=2,3,...,N. The curve EV is called the exceptional divisor of the sequence 7. The irreducible
components of EN are isomorphic to P'(C), they cut two by two in a transverse way and a point
belongs to at most to two of them (normal crossings).

Given f = 0 a curve C, we define its tofal transform by m as the curve 7*(f) = f o = 0.
We define the strict transform of C by 7t as the union of the irreducible components of the total
transform of C different from the components of exceptional divisor. A local implicit equation
of the strict transform is obtained locally by dividing 7*(f) by local implicit equations of the
exceptional divisor as many times as possible.

Consider an intermediate exceptional divisor E "withi=1,...,N. We have that E' is the
union of i irreducible components E;, with j =1,..., 1. In an inductive way the curve E; is the
strict transform of E;‘l by o; for j < iand Ef = oi‘l(Pi_l). A point P € E' is said to be a corner
point if P is in the intersection point of Ef, N E; for two different indices 1 < ¢, j < i, otherwise we
say that P is a free point.

Remark 1.3.1. The intersection of two irreducible components of E’ is at most one point. In fact,
given j < i, then E!*! intersects E;” if and only if P; € E; An irreducible component of the
exceptional divisor intersects at most two other irreducible components.

Given a curve C defined by f = 0 and 7 : (M, EN) — (Mo, Po) a sequence of blow-ups
starting at Py, we say that C passes through P € EN if the strict transform of f at P is not a unit.
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More precisely, we define an infinitely near point of C as a point such that there exists a sequence
of blow-ups as before.

As mentioned before, the exceptional divisor of any sequence of blow-ups defines a curve
with normal crossings. More explicitly, given a curve (C, Pg) in (Mo, Pg), we say that it is a curve
with normal crossings at Py, if in some local coordinates (x, y) and for e = 0 or € = 1, then xy* =0
is an implicit equation of C.

The theorem of resolution of singularities of plane curves is stated as follows (see for instance
[56D).

Theorem 1.3.2 (Resolution of singularities). Consider (C, Py) a curve at the point Py € M. There
exists a finite sequence of blow-ups 1 : (My, EN) — (Mo, Po), with N > 1, satisfying that the total
transform of C has normal crossings at any point of EN.

The sequence Tt can be taken minimal, in the sense that for any other sequence of blow-ups 1’ satisfying
the previous conditions, then ' = p o w with p the identity map or a sequence of blow-ups.

Note that, under the conditions of the previous theorem, the strict transform of the curve C
by 7 is non singular.

A sequence of blow-ups as in Theorem 1.3.2 is said to be a resolution of singularities of C. If
is the minimal one, then we will say that 7t is the minimal resolution of singularities of the curve C.

Remark 1.3.3. In order to obtain the minimal resolution of singularities it is enough to blow-up
successively at points where the total transforms has no normal crossings. These points are
necessary in the strict transform of C.

Proposition 1.3.4. Consider C a curve in (Mo, Po), let us fix local coordinates (x, y) in Py and let Tc be
the tangent cone of C in this coordinates. Let 7 : (My, E') — (M, Py) be the blow-up with center P.
Then we have that

C'NE'=(Tc) nEY,

where C’ and (Tc)’ denote respectively the strict transforms by 1 of C and Tc.

Proof. Consider a local system (x, y) of coordinates in (M, Py). Take f = 0 an implicit equation
of C, then we can write

fen= D, fitty),

i=n=vp,(f)
where f; € C[x, y] is an homogeneous polynomial of degree i and f, = 0 defines the tangent
cone Te of C, withn > 1.
Now, we perform the blow-up o : (M1, E') — (M, Py) with center Py. We consider the chart
U; of (My, E') with coordinate system (x, y) = (x1, x1y1). The second chart is treated in a similar
way. In the coordinates (x1, /1) we see that the total transform F of f is given by

F=foo=x{ Y x"fiLy)=x(hLy)+x Y 70 m).

izn=vp,(f) i>n+1

The strict transform of f is given by x;"F in the chart U;, and the the strict transform of the
tangent Tc is given by £,(1,y1) = 0. Noting that U; N E! is x; = 0, from the above formula we
conclude that

C’'NE'nU; =(Tc) NE' Ny,

as desired. o
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Example 1.3.5. Let us describe the minimal resolution of singularities of the curve (C, 0) in (CZ, 0)
defined by the implicitequation f = y2—x3. First, we consider the blow-up o1 : (M1, E') — (C2,0)
with center 0. We are going to find the points where the total transform has no normal crossings.
These points must belong to the intersection of the strict transform C; of C and the exceptional
divisor E! = oy 1(0). The only point P; in C; N oy 1(0) is in the strict transform of the tangent
cone of y = 0 of C. It is precisely the origin of the first chart U; of M;. In this chart we have
coordinates (x1, y1) such that (x,y) = (x1, x1y1). The total transform of f is f; = x%(yf —x1). It
has no normal crossings at P; because the parabola y? = x1 is tangent to the line x1 = 0. Then
we have to perform a new blow-up with center P;.

Note that this parabola is the strict transform C; of C and its tangent cone is defined by x;1 = 0.
Let 05 : (M, E?) — (My, E') be the blow-up with center P;. By the same argument as above,
the next point P, € E? without normal crossings, if it exists, it is given by the strict transform of
y% = x1. Then P; belongs to the strict transform of the tangent cone x; = 0. Thus, it is precisely
the origin of the second chart U, of the blow-up o2, given in coordinates by (x1, y1) = (x2Y2, y2).
The exceptional divisor E? is locally given at P by the equation x> = 0, the total transform of
C is given f, = x3 yg’ (y2 — x2). We have three different lines at the point P, and this object has no
normal crossings. Note that the strict transform of C at P, is given by the line 1, = x».

Now, let us perform the blow-up o3 : (M3, E3) — (M,, E?) with center P,. We can read the
point P3 € E3 of the strict transform of Y2 = x2 in the first chart (x2, y2) = (x3, x3y3) as x3 = 0
and y3 = 1. In this point we have normal crossings for the total transform f3 = x§y3(y3 — 1).
Note that in coordinates ¥3 = x3 and i3 = y3 — 1 centered at P3, the total transform is written
as f3 = (5 + 1)3322 3. Hence, it is a unit times a monomial and the property of having normal
crossings is satisfied.

£
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Figure 1.2: Schematic drawing with the resolution of singularities of y> — x> step by step. The thick
curves represent different strict transforms of C by the different blow-ups.

We end this section showing how to perform the previous computations from a parametriza-
tion.

Assume that C is a branch in (My, Py) defined by a primitive parametrization ¢(t) =
(t", Yisn ait’) = (x(t), y(t)). We take a blow-up o1 : (M1, E') — (M, Py), and we consider the
two charts U; and U] of M, defined respectively by the systems of coordinates (x, y) = (x1, x1y1)
and (x}y},y;). The reader can check that C does not pass through any point of E* N U].

The strict transform C; of C by o1 in the chart U; is defined by the parametrization
(x1(t), y1(t)), where x1(t) = x(t) = t" and y1(t) = y(t)/x(t) = Y;s, ait’™. We see that the
curve passes through the point Py = (x; = 0,y1 = a,). If we take the coordinates ¥; = x1
and {1 = y1 + a,, then we read the point P; as (#; = 0, 71 = 0), and the parametrization of C;
becomes (¥1(t), 71(t)) = (t", Y s, ait'™™). Denote by k the minimum index, such that a; # 0 in
the previous parametrization of Cq

Now let us see what happens if we iterate the process. Consider the blow-up o7 : (M, E?) —
(My, E') with center P;. Again there are two charts to consider, U, and U defined by the
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’

2
Second, that k < 2n. In the first one, we are in the same situation as above. For this reason, let

coordinates (%1, #1) = (x2, x22) and (%1, 1) = (x}y5, y5)- There are two cases: first, that k > 2n.
us focus on the second case. If k < 21, we can check that the curve C does not pass through
any point of E2 N U,. Thus, we need to compute the strict transform C, of C by 01 0 g3 in the
coordinates (x5, y5). We see that C; has as parametrization

(x5(8), y5(5) = (Fa(8) /51 (1), 51(1)) = ()", 7 (1)),

where u(t) = t5/7(t) is an unit in C{t}. We can write the previous parametrization as a
primitive parametrization as follows: we have that #(t) = tkJu(t), if we take a change of
variables ' = t/ul/¥(t), with u'/¥ a k-root of the series u(t). Then, we notice that yo(t) = (k.
Giving a primitive parametrization.

We see that C passes through the point P = (x} = 0,y; = 0). Notice that the point P is
the corner point of the exceptional divisor E2. Furthermore, it follows that if n = 1, that is, if
the branch is regular, then this second case is impossible to happen. We summarize this last
observation in the next remark.

Remark 1.3.6. Assume that C is a branch in (Mg, Pp). They are equivalent:

¢ Cisregular.
e for any sequence of blow ups m : (My, EN) — (M, Py), the curve C never passes through
any of the corner points of the exceptional divisor EN.

Following the evolution of the parametrizations as indicated, we can show the following
result (see for instance [56] Theorem 3.5.5).

Theorem 1.3.7. Let C be a branch and C the strict transform of C by a blow-up o : (M, E') — (M, Po).
Denote by (Bo, p1, - - -, Bg) the characteristic exponents of C. Then the characteristic exponents of Cy are:

* (Bo,P1—Po, P2~ Po,---,Bg = Po) if 1 > 2Po.
* (B1—Po,Po,P2—P1+Po,---,Bg —B1+ Po). if f1 < 2Po and (B1 — Po) 1 Po-
* (B1—Po,B2—P1+Po,---,Bg = B1+Po) if (B1—Po) | Po.

In the case of a branch with a single Puiseux pair (1, m), the previous theorem is stated as
follows:

Theorem 1.3.8. Let C bea branch and Cy the strict transform of C by a blow-up o : (M1, E') — (M, P).
Assume that (n, m) are the characteristic exponents of C. There are three possible cases:

® (n,m — n) are the characteristic exponents of Cy, if m > 2n.

* (m —n,n) are the characteristic exponents of C1, if m < 2n and (m —n) { n.

o Cy is regular, if (n,m) = (n,n +1). Moreover, the intersection multiplicity ipl(Cl,El) at
Py = Cy N Elis given by ip,(C1, E') = n.

1.4 Topological Invariants

Consider two regular complex analytic surfaces (S1, P1) and (S, P2). O. Zariski in a series of
papers [57, 58, 59] studied, among other problems, when two reduced plane curves (Cy, P1)
in (51, P1) and (Cy, P7) in (Sz, Pa) are topologically equivalent. This is the so-called Zariski’s
equisingularity theory. In other words, when there exists an homeomorphism W : U; — U,
such that W(Cy N U;) = C, N Uy, where Uj and U, are open neighborhoods of P; and P, in Sy
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and S, respectively, taken such that two representatives of the germs C; and C; are well defined.
Note that being topologically equivalent defines an equivalence relation.

The notion of being topologically equivalent induces the one of topological invariant. A
property is a topological invariant if it remains equal for all the elements in same class under the
topological equivalence. A topological invariant is a complete topological invariant if it determines
the topological class.

If we ask the map W to be a biholomorphism between U; and U», we obtain the notion of
two curves being analytically equivalent. We can define in a similar way when a property is an
analytic invariant or a complete analytic invariant.

Zariski found out that the class of a curve under the topological equivalence only depends
on the resolution of singularities, in the following sense. Consider (C, Py) a singular branch,
and 7 : (My,EN) — (My, Py) the minimal resolution of singularities of C. As always, we
put EN = Uf\i 1E1N the decomposition into irreducible components of the exceptional divisor
EN = n71(Py), and denote P;_; the center of each blow-up ¢;. We define the dual graph of the
resolution as a labelled graph of with N vertices v; for i = 1,..., N, where v; represents the
curve EZN . Additionally, for i # j, the vertices v; and v; are connected by an edge if and only
if E IN N E]N # (0. Note that the label of each of the vertices is determined by the order of the
components of the exceptional divisor, as defined in the previous section. Finally, for any vertex
v; in the graph, we add an arrow for each irreducible component of the strict transform of C by
7t that passes through one of the points of E IN .

3

Figure 1.3: Dual graph of the curve y° — x'3.

Theorem 1.4.1 (Zariski’s Equisingularity). Two branches (C1, P1) and (Ca, Py) are topologically
equivalent if and only if their minimal resolutions of singularities produce equivalent dual graphs.

The Zariski’s Equisingularity Theorem states that the equivalence class of a dual graph
is a complete topological invariant of the curve. During the last decades many complete
topological invariants have appeared and their relations have been studied, see for instance
[24, 56]. Nonetheless, we are going to describe the ones we will use in this work. Furthermore,
we will only consider the irreducible case.

Another complete topological invariant is the semigroup of the branch C, denoted by I'c. It
is defined as the set of all possible intersection multiplicities of C with any other curve. More
precisely, consider ¢(t) a primitive parametrization of C, then

Fc:={vc(h): h € C{x,y}}; vc(h) := ordi(h o @)}

We recall that by Equation (1.3), vc(h) can be seen as the intersection multiplicity of f and h, for
f =0 an implicit equation of C.

Note that I'c is endowed with a semigroup structure, hence its name, because of the additivity
of the intersection multiplicity with respect to the product of functions. The concept of semigroup
of a branch can be extended to the non irreducible case, see [20].
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In [56] is given a method to compute a minimal set of generators of the semigroup
Bo/B1s---1B g), in the sense that any element of the semigroup can be written as a non negative
integer combination of (§,...,p g). In other words, given y € I'c, there exist a; € Z5 for
i=0,...,gsuch that

Moreover, any f3; cannot be written as a combination with non negative integer coefficients of
the other generators.

Let us describe how to compute the minimal set of generators of I'c from the characteristic
exponents (Bo, B1, - .., Bg) of C. We start by putting B, = fo and ; = p1. Now fori =2,...,g,
we have that

B = Zz__jgi—l +pi = Pi-1. (14)

We recall that the numbers ¢; are defined as ep = fo and ¢; = gcd(Bj,ej-1) forj=1,...,¢. The
previous formula allows us to obtain the generators of the semigroup from the characteristic
exponents and vice-versa. In fact, we have the following theorem, see for instance [56].

Theorem 1.4.2. Given an irreducible plane curve, its set of characteristic exponents, its semigroup or its
dual graph are equivalent complete topological invariants.

By Equation (1.4), since gcd(Bo, . . ., Bg) = eg = 1, then we have gcd(B,, By, - - .Bg) = 1. Hence,
there exists a minimum element cr € I'c such that, for any natural number k > cr, then we have
that k € I'c. The element cr is called the conductor of the semigroup. In [60] p. 13 it is shown
that the conductor satisfies the following formula:

8
cr= ) (ei1—e)(i = 1) = Byeg1 — Py —fo+ 1. (1.5)
i=1
The Equation (1.5) only holds for semigroups of branches. Note that to simplify the notation, we
write cr instead of cr...
When computing Saito bases in Chapter 8, we use the following property associated to the
conductor of the semigroup.

Lemma 1.4.3. ([56] Lemma 11.6.1.) Consider the map induced by a primitive parametrization
¢* 1 C{x, y} — C{t}, then we have that the ideal (+°7) C Im(¢p¥).

Finally, note that if the branch C has genus one and characteristic exponents (1, m), then the
semigroup is I'c = (n, m). Conversely, if I'c = (n, m) then the characteristic exponents of C are
(n, m). In this cuspidal case, we have that the conductor of I'c, according to Equation (1.5), is
cr=m=1)(m-1).

Example 1.4.4. The conductor cr of the semigroup I'c of a branch C does not determine I'c. In
other words, cr is topological invariant which is not complete. To see this observation, we can
consider the semigroups I't = (3,4) and I'; = (2,7). They are the semigroups of the branches
defined by the parametrizations (t3,t*) and (t?,”) respectively. Moreover, we see that the
conductor in both cases takes the value 6.

Remark 1.4.5. The conductor has a geometrical interpretation. Assume that C is a curve with
implicit equation f = 0, and denote by S? c C? a 3-sphere centered at the origin with radius
€ > 0 small enough. Then we can define the locally trivial fibration (called the Milnor fibration)
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g :S2\ {f =0} — S! given by the map g(p) = f(p)/||f(p)||. In [45], ]. Milnor showed that the
fibers of this map have the homotopy type of the joint union us of 2-spheres, where i is the
Milnor number of f. In the irreducible case, we have that yi is the conductor of the semigroup
of C. In general, we have that the Milnor number is the complex dimension of the C-vector

space C{x, y}/(fx, fy)-

1.5 The Analytic Classification

The problem of the analytical classification of equisingular curves was solved by A. Hefez, M.E.
Hernandes and M.E.R. Hernandes in a series of papers [34, 35, 36]. In this section we overview
their result for the particular case of branches.

1.5.1 Differentials and Differential Values

Here we recall some concepts related to the module of differentials. For a more detailed
introduction see [22]. Consider, as always, (Mo, Ou,) a complex analytic regular surface. We
denote by QZAO the Op,-module of holomorphic g forms of My, with g =1,2. Given Py € My a
point and (x, y) a local system of coordinates of My at Py, we have that Q}VIO,PO and Q%/IO,P[) are
generated as Opy,,p,-modules by dx and dy; and dx A dy respectively.

Take (C, Pp) a branch in (My, Py) with primitive parametrization ¢(t) = (x(t), y(t)). We
refer to the module of differentials of C as Q}:/ Po’ which is the C{x(t), y(¢)}-submodule of Q%:,O
generated by x’(t)dt and y’(t)dt. See [31] for other approximations.

Remark 1.5.1. By Remark 1.2.4, we have a natural epimorphism from Q}VIO, p, tO Qlc, p, defined by
w — ¢*w, where ¢*w is the pull-back of the 1-form w by the parametrization ¢. We recall that
if we write w = Adx + Bdy, then the pull-back of w is

9" (@) = (A1) + By (1) at.

We define the differential value of w by ve(w) := ordi(a(t)) + 1, with ¢*(w) = a(t)dt. Then the
set of differential values of C is

Ac ={vc(w):we Q}VIO,PO}'

Note that
Ac = {ordi(a(t)) +1: a(t)dt € Q}:,PO}.

The set of differential values satisfies the following properties:

1. For any function i € Oy, p, satisfying that h(Pp) = 0, we have that vc(h) = vc(dh) where
dh is the differential of /1. This implies that I'c \ {0} € Ac.

2. Given h € Opm,,p, and w € QIl\/Io,Po’

conclude that for any y € I'c and A € Ac, it is satisfied that A + y € Ac.

we have that ve(hw) = ve(h) + ve(w). Thus, we

3. The set of differential values Ac is an analytic invariant of C. More generally, the differential
value of a 1-form does not depend on the analytic system of coordinates, see [34].

Since the semigroup I'c has a conductor cr, the first property means that Ac is determined
by I'c and a finite set Ac \ I'c. Moreover, we have that any element of Ac \ I'c is bounded by cr.

The second property of Ac implies that Ac is a I'c-semimodule. For this reason, from now
on, we will refer to the set of differential values of C as the semimodule of differential values of C. In
Chapter 3, we give more details on the theory of semimodules.
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1.5.2 The Normal Form Parametrization Theorem

In [60], O. Zariksi shows that a singular branch (C, Py) satisfies that Ac = I'c \ {0} if and only if
C is quasi-homogeneous. We recall that C is a quasi-homogeneous branch if in some coordinates
(x,y) in (Mo, Pp), then y"™ — x™ is an implicit equation of C, for a Puiseux pair (1, m) with 2 < n.

If Ac # T'c \ {0}, we can consider the number Az = min(Ac \ I'c) — n, where n is the
multiplicity of C at Pg. The number A7 is the Zariski’s invariant introduced in [60]. Since Ac is
an analytic invariant, the Zariski’s invariant is also an analytic invariant.

Zariski’s idea was to use the information of the semimodule of differential values to find an
analytic change of coordinates which allows to compute a parametrization of the curve as simple
as possible. With this idea in mind, C. Delorme in [21] computed what he called ultra short
parametrizations of a branch. These ultra short parametrizations are primitive parametrizations
of the shape ¢(t) = (t", y(t)), where y(t) is a polynomial with as many zero coefficients as the
author could determine. However the computation is restricted to the case of cusps. It was in
[34] where the authors could find a parametrization as simple as possible, in the following sense:

Theorem 1.5.2 ([34] Theorem 2.1). Let (C, Py) be a branch whose semigroup is T'c = (n,El, .. ,Eg).
Then there exists a system of local coordinates in (Mo, Po) such that C has anormal form parametrization
defined as follows: if Ac \ T'c = 0, then we put (t", th). Otherwise, if we have that Ac \T¢c # 0, we
have that the normal form parametrization is

t P14 Az 4 Z aiti|, (1.6)
i>Az,igAc—n
where Az = min(Ac \T'c) —n is the Zariski’s invariant of C. The curve (C, Py) is analytically equivalent
to another branch (C’, Py) if and only if there exists r € C* with r’2~P1 = 1 and a; = r'"Pra for every
coefficient a; of a normal form parametrization of C’.

For a regular branch, its normal form parametrization is (¢, 0).

The previous theorem shows the relevance of the study semimodules of differential values
and its gaps. In Chapter 3, we give some results, in the cuspidal case, that points towards an
effective way on the determination of the gaps of a semimodule.

The idea of these normal forms or even the ultra short parametrizations is the following one:
we can take a primitive parametrization ¢(t) = (t", y(t)) of a branch C and write y(t) = 3 a;t'.
We follow an iterative argument from the terms of smaller degree in y(f) to the greater ones.
We determine the smallest i such that we can find a change of coordinates that sends ¢ to a
new parametrization ¢!(t) = (t",y'(t)), satisfying that y'(t) and y(t) coincide up order i — 1,
and with 1111 = 0. Then we restart the process with ¢!(#) as many times as needed. After a finite
number of steps, we obtain a parametrization ¢(t) = (t", y*(t)). If k is big enough we can
guarantee that we can find a last parametrization ¢**(t) = (t", y**1(t)) defined as before, with
the extra condition that y**1(#) is a polynomial in C[#].

It is worth remarking that P. Fortuny Ayuso in [23] gives the previous changes of coordinate
in terms of the 1-forms that give place to the semimodule of differential values. Even though we
are not going to compute any normal form parametrization, these results show the importance
of the semimodule of differential values to study the analytic classification of germs of plane
curves.

Our main goal is to connect the semimodule of differential values with other analytic
invariants of a branch. All the main results of this work points towards that direction. Specially
those in Chapters 8 and 9, when computing Saito bases for a cusp C, or when determining some
roots of the Bernstein-Sato polynomial of C.
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1.6 Cuspidal Sequences

We end this chapter with a brief description of the resolution of singularities of a cusp. We follow
the notations from Section 1.3. Consider 7 : (My, EN) — (M, Py) a sequence of blow-ups of
length N, where as before we write 1 = g1 0 02 0 ... 0 o as a composition of N blow-ups o;
with center P;_1 fori=1,2,...,N.

We say that 7 is a bamboo if the center P; of the blow-up 01 belongs to E; forj=1,...,N-1.
The minimal resolution of singularities of a branch is always a bamboo. A bamboo is said to
be a cuspidal sequence if P, P, ..., Py are free points for 1 < ¢ < N and P41, Pg42, ..., Pn-1 are
corner points. The index ¢ is the index of freeness of 7. The last irreducible component D := EII:]’ is
called the cuspidal divisor of .

Given a singular branch C, we say that C is a cusp if its minimal resolution of singularities is
a cuspidal sequence. Moreover, take a cuspidal sequence 7 with cuspidal divisor D. We say that
abranch C is a D-cusp if the strict transform C of C by 7 passes through a free point P € D, and
the curves D and C define a curve with normal crossings at P. We denote by Cusp(D) the set of
all D-cusps.

Remark 1.6.1. Note that, if for some i < N — 1 the center point P; of a cuspidal sequence 7 is a
corner point, by definition of bamboo, we have that P; € E : N E; for an index j < i. Therefore
by Remark 1.3.1, the next center corner point P;.; satisfies that: either Pi; € E:ﬂ N Ef” or

Efln E;”. It follows that if 7t is a cuspidal sequence of length N > 1, then the sequence

p2 =020030...00y is also cuspidal.

We define the Puiseux pair (1, m) of a cuspidal sequence 7 in an inductive way as follows. If
N =1, then we put (n, m) = (1,1). Otherwise, if N > 1, we take p with Puiseux pair (11, my).
Denote by {; the index of freeness of pa. Now if £ = 1, we put (n,m) = (my,n1 +mq). If £ > 1,
then we put (n, m) = (n1, my + n1), in this case, we have that {; = ¢ — 1.

Notice that by this construction, we obtain that the index of freeness of the sequence ©
is ¢ = [m/n]. Moreover, we always have that pair (1, m) constructed as above satisfies that
ged(n,m) =1.

Lemma 1.6.2. Assume that 1 is a cuspidal sequence with Puiseux pair (n, m), with cuspidal divisor D.
If C is a singular D-cusp, then the characteristic exponents of C are exactly (n, m).

Proof. The result follows by a recursively application of Theorem 1.3.8 and its proof, knowing
that the strict transform is at the end a regular branch. ]

The previous lemma explains why the pair (11, m) is called the Puiseux pair of a cuspidal
sequence 7. It corresponds exactly with the Puiseux pair of a branch whose minimal resolution
of singularities is 7. Nonetheless, we are extending the definition to include the case where
n=1

Now, fix 7t a cuspidal sequence with Puiseux pair (1, m), index of freeness ¢ and C a D-cusp.
We say that a regular branch (Y, Py) has maximal contact with © or with C, if P1, P, ..., P, are
infinite near points of Y. By Remark 1.3.6, the corner point Py, is never an infinitely near point
of the regular branch Y.

Remark 1.6.3. After a big enough number of blow-ups, we can obtain a maximal contact branch
in a natural way. Assume that the index of freeness ¢ of 7 satisfies that { < N — 1, and take the
sequence of blow-ups pg+1 = 0441 © 042 © ... 0 oy with index of freeness ¢’. Then the curve E;
has maximal contact with pg41.
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Indeed, the points Pgy1, Pry2, - .., Peyer are free for the sequence py41, but they are corner
points for 7. We only need to show that {Py,;} = Eﬁ: n Eﬁ
0+j
0+j°

+], forj=1,...,¢. Sincemisa
bamboo, by definition we have that Py,; € E

Additionally, P4 is a corner point for 7, then Py, € Eiﬂ fork < ¢ +j. If k > ¢, we have that

Py, is a corner point for pg,1, which is a contradiction. Moreover, we cannot have k < ¢, because

Bt A B
j+ i

is a bamboo. Therefore, k = ¢ concluding the result.

= for i < {, otherwise we will have that P;;,—1 € E f+j - contradicting the fact that 7

We can characterize a maximal contact branch with respect to a D-cusp, in terms of
intersection multiplicities.

Lemma 1.6.4. Let C be a D-cusp with Puiseux pair (n, m). A regular branch Y has maximal contact
with respect to C if and only if
ip,(C,Y) =m.

To prove the last lemma, we use a weaker version of the well known Noether’s formula.

Lemma 1.6.5 ([14] Lemma 3.3.4). Assume that C1 and C, are two curves in (Mg, Py), and o :
(M1, EY) = (Mo, Py) isa blow-up with center Py. Denote by S1, 5S> C EL, the points where C1 and C
pass through respectively; and by Cy and C the strict transforms of C1 and Cy by o. Then

ipy(C1, Ca) = vey(COvpy(Co) + ). in(Cy, Co).
PeS1NS,
Proof of Lemma 1.6.4. Assume that Y has maximal contact with C, then C and Y share Py, ..., Py
as infinitely near points. We recall that { = [m/n]. Now, we denote by C; and Y; the strict
transform of C and Y by m; =01 0020...0;, with1 <i < N.
By an iterative use of Lemma 1.6.5, and by definition of maximal contact branch, we have
that:

ip,(C,Y) = vpy(C)vpy(Y) + vp, (C1)vp, (V1) + ... vp,(Ce)vp,(Ye) + ip,, (Cpr1, Yeu1).  (1.7)
We note the following:

* vp,(Y;) =1for1 < i< { becauseY; is a regular branch.

¢ The characteristic exponents of C; are (n,m — ni) for 1 < i < {, and the ones of C; are
(m—nt,n).

® ip,.,(Ces1, Ye41) = 0, because Pyq is not an infinitely near point of Y.

Then, Equation (1.7) becomes the following:
ipy(C,Y)=nl +(m—nt)=m.

Now, for the converse result, the previous observations show that if the regular branch Y has
intersection multiplicity m with C, then they must share the points P;, P», ..., P, as infinitely
near points. Otherwise, by applying Lemma 1.6.5 we would end up with a lower intersection
multiplicity. |

We can always find a branch with maximal contact. Assume that

(1) = (x(t), y(1) = (t", > ait)

i>n
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is a primitive parametrization of C. Then we can consider the change of coordinates x; = x
and y; =y — Z:-';ll x/". Note that by definition of the characteristic exponents, we always have
that i/n is an integer number. We see that vc(y1) = m, thus the branch defined by y; = 0 has
maximal contact with respect to C.

Note that if (x, y) is a system of local coordinates in (My, Py) such that y = 0 has maximal

contact with respect to C, then we can write a primitive parametrization of the form
o) = (t", aut™ + h.o.t.), witha,, #0. (1.8)
Equivalently, by Equation (1.1), we have that C has an implicit equation f given by:

f=y"+bx" + Z zfjxiyf, with b # 0. (1.9)

ni+mj>nm

A system of coordinates (x, y) as above, is said to be a adapted system of coordinates with respect
to C. More generally, if (x, y) is a system of coordinates, such that y = 0 has maximal contact
with respect to a cuspidal sequence 7, we say the (x, y) is an adapted system of coordinates with
respect to 7.

Cuspidal sequences are determined by their Puiseux pairs and by a branch with maximal
contact. In fact, we have the following result.

Proposition 1.6.6. Take 1 < n < m and let (Y, Po) be a reqular curve. There exists a unique cuspidal
sequence 1 : (My, EN) — (M, Po) such that Y has maximal contact with 1 and (n, m) is the Puiseux
pair of 1.

Proof. If n = m =1, the only possibility is that N = 1 and then 7t consists in the blow-up of Py.
Let us proceed by induction on n + m and assume that n + m > 2. We necessarily have that
N > 2, let 01 be the first blow-up with center Py and P; the infinitely near point of Y in E 1 we
denote by Y; the strict transform of Y by oy at P;.

Assume first that 2n < m. We apply induction to Y; with respect to the pair n’, m’ where
n’ =mn, m’ = m —n; and we obtain a cuspidal sequence " over (M, P1) of length N’ with the
required properties. We construct 7 of length N = N’ + 1 by taking o; with center the point
Pl forj=2,3,... N"+1.

In the case that n < m < 2n, we consider the branch Y/ = E at P1, we apply induction to Y;
with respect to the pair n’, m’ where n’ = m —n, m’ = n and we obtain a cuspidal sequence 7’
over (My, P1) of length N’. We construct 7 of length N = N’ + 1 as before.

The uniqueness of 7 follows by an inductive argument invoking the uniqueness after one
blow-up. ]

By Theorem 1.4.1, all the elements in Cusp(D) are topologically equivalent. Besides, any
cusp is analytically equivalent to a D-cusp.

Proposition 1.6.7. Consider a cuspidal sequence 7 with Puiseux pair (n, m) and cuspidal divisor D.
Let C be a branch in (Mo, Po) with characteristic exponents (n, m). There is an D-cusp analytically
equivalent to C.

Proof. Choose a local coordinate system (x, y) adapted to m and let f € C{x, y} be an implicit
equation of C.

If n = 1, thebranch C isnonsingular. Then, there is an automorphism ¢ : (My, Py) — (M, Po)
such that ¢*(f) = y. The result follows in this case since y = 0 is a D-cusp.
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Assume that 2 < n < m. As we showed before, we can find a non singular branch Y defined
by g = 0 having maximal contact with C, that is, with the property that

ip,(Y,C) =m.

Take an automorphism ¢ : (Mg, Py) — (Mo, Py) such that ¢*(g) = y. We have that ¢*(f) is an
D-cusp, where ¢ is the associated map ¢ between local rings Op,,p, — OMy,py- m|

According to the above result, the analytic moduli of the family of branches equisingular to
the irreducible cusp y” — x™ = 0 is faithfully represented by the analytic moduli of the family
Cusps(D). In other words, every branch of genus 1 is analytically equivalent to a cusp.
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ToraLLy DicriTicAL FOLIATIONS

This chapter is devoted to study a family of two dimensional foliations called totally D-dicritical,
where D is a cuspidal divisor. In Section 2.1, we present the concept of foliation. In Section
2.2, we recall the theorem of resolutions of singularities for foliations in dimension two. In
Section 2.3, we define the notion of divisorial value along an irreducible component of the
exceptional divisor of a sequence of blow-ups. We particularize to the case of cuspidal sequences,
as presented in Chapter 1. Finally, in Section 2.4, we characterize the totally D-dicritical foliations.
Briefly speaking, they satisfy that D is a dicritical divisor without singularities in its free points.
This notion can be understood by saying that the foliation is transverse to the cuspidal divisor.
Our main references in this chapter are [11, 12].
We recall that (Mo, Oy, ) is a regular complex analytic surface.

2.1 Basic Notions

As in Chapter 1, we denote by Qll\/lo and QIZVIO the sheaves of differential 1-forms and 2-forms
respectively. Given w € Q}VIO(U), we denote by Sing(w) the singular locus of w, that is, the set of
points of U such that w takes the value zero. A point P € U is a singular point of w, if P belongs
to the singular locus of w, otherwise we say that P is regular.

A foliation ¥ is defined as a local data S = {(U;, w;)}ie1 with the following properties:

1. The set {U;};er is an open cover of M.
2. For every i € I, the element w; is a differential 1-form of Qay, (U;).
3. Foreveryi,j€ I, i# j, there exists a unit h;; € Op,(U; N U;) such that

wi lunu;= hijwi lunu;,

where w; |u,-mu/ denotes the restriction of w; to the open set U; N U;.
4. The singular locus Sing(w;) € U; has codimension two for every i € I.

In dimension two, a 1-form w always satisfies the integrability condition w A dw = 0.
Including the integrability condition to the 1-forms in the previous definition gives place to the
notion of codimension one foliation, for any dimension.

We can reinterpret the fourth condition about the singular locus as follows: assume that
w is one of the 1-forms defining conditions of a foliation ¥, and take (x, ) a local system of
coordinates in My where w is defined. Then we can write w = Adx + Bdy. Saying that the
singular locus of w has codimension 2 is equivalent to saying that gcd(A, B) = 1.
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36 2. Totally Dicritical Foliations

Note that a foliation # in (My, Py) is defined, in a small enough neighborhood U of Py, by a
holomorphic 1-form w, such that the singular locus of w is either the empty set or { Po}. For this
reason, given a 1-form w whose coefficients are coprime, we also say that v defines a foliation
in (My, Po). Besides, when talking about foliations in (Mg, Pp), we will refer indistinctly to the

geometrical object or a 1-form defining it.

1
Mo, Po’

w = Adx + Bdy, when we refer to the foliation defined by w, we mean the foliation defined by
w/gcd(A, B).
As in the case of curves, we can define the multiplicity of a foliation. More precisely, given

More generally, given a non null 1-form w € Q that we write in some coordinates as

w € Q}VIO,PO, we can write w in a system of coordinates as w = Adx + Bdy. Then the multiplicity
of w at Py is vp,(w) := min{vp,(A), vp,(B)}. If a foliation ¥ is defined by a 1-form w, then the
multiplicity of 7 at Py is vp,(F) := vp,(w). It can be checked that the multiplicity at Py does not
depend on the coordinates.

Consider ¥ a foliation defined by w € Qyy, p, and let (C, Py) be a curve defined by an implicit
equation f € Ou,,p,- We say that C is an invariant curve for w, or for ¥, if df A w = fn, where
ne Q%/IO,PO. When C is a branch, we say that C is an invariant branch for w or for ¥ .

Lemma 2.1.1 ([11] Lemma 3.4). Consider a local system of coordinates (x,y) in (My, Py). Let C be

a branch with implicit equation f € C{x, y} and primitive parametrization ¢(t) = (x(t), y(t)). Then,

1
‘Mo, Po’

In other words, that the differential value of w is vc(w) = oo.

given w € Q it is equivalent to say that C is an invariant branch for w than saying that ¢*(w) = 0.

Proof. Since f(¢(t)) = 0, then

LFG0) = @O0 + £ @0y 1) =0,

with f; and f, the partial derivatives of f with respect x and y respectively. Assume without
loss of generality that x(t) # 0. Since the curve is defined at (M, Py), it implies that x’(¢) # 0.
Thus we have that

fy(@(B)y’'(#)
IEEZOI
Now write w = Adx + Bdy, and consider w Adf = (Af, —Bfy)dx Ady. We have that C is invariant
by w if and only if, along the points of C, it is satisfied that

fo(p(t)) = (2.1)

A(P(0) fy(@(£) = B(@ () f(p(t)) = 0.

By Equation (2.1), this condition is equivalent to

t
! y%))) (A1) + BE)y'(1) = 0. 22)
Note that f,(¢(t)) # 0, since otherwise, f will divide f, which is not possible. o

According to Camacho-Sad theorem, a foliation ¥ in (My, P) always has at least an invariant
curve (C, Py), see [10].

Consider ¥ a regular foliation in (M, Py) defined by a non singular 1-form w € Q!

Mo,Po
Py. Let C be a regular branch with ¢ = 0 an implicit equation. We say that C is transverse to ¥ if

at

w ANdg =vdx A dy, with v € Op,p, a unit. If v is not a unit, then we say that C is tangent. Notice
that being invariant is a particular case of being tangent.
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2.2 Resolution of Singularities of Plane Foliations

As in the case of curves, thanks to the results due to A. Seidenberg [51], we can find a resolution
of singularities of a foliation in (M, Pp). It is worth noting that, up to this moment, in the general
dimension case, it is unknown if a foliation admits a resolution of singularities. However, in the
two dimensional case, there always exists a resolution, and the way of finding one recalls the
case of plane curves. Even though, there are differences on the behaviour between the cases of
foliations and curves.

As in Section 1.3, consider 7t : (My, EN) — (Mg, Po) a sequence of blow-ups starting at Py,

1
Mo, Py’

w defines a foliation # in (M, Pp). We define the strict transform of w by 7 in an inductive way.

withm=010020...00yN. Given w € Q then 7t*(w) is the total transform of w. Assume that

We do it for o1 : (M1, E') — (My, Pp), and it is done recursively for 7.

We take 0} (w) the total transform of @ by o1, then we have an atlas in (M1, P1) defined by
the two charts U, Us, as in Section 1.3. In each chart, the 1-form a;(a)) may not define a foliation,
this is because the singular locus may not have codimension 2 in each chart. Thus, we need to
remove the common factors of the coefficients of ¢}(w) in each of the charts. In this way, we
obtain a foliation 7 which is the strict transform of ¥ by o1.

To clarify the concepts, let us make some computations. Consider w = Adx + Bdy with
gcd(A,B) = 1 and let 0y : (M1, E'Y) — (Mg, Py) be the blow-up at Py. Take U; the chart of
(My, EY) defined by the coordinate system (x, y) = (x1, x1y1). Then, we have that

oj(w) = A(xy,x1y1)dx1 + B(x1, x1y1)(x1dy1 + y1dx1) =

(A(x1, x1y1) + y1B(x1, x1y1))dx1 + x1B(x1, x1y1)dy1
Aq(x1, y1)dx1 + Bi(x1, y1)dy1.

The strict transform of w by o7 is x7 k 0}(w), with k > 0 such that gcd(A1, By) = x’l‘. It is satisfied
that k = vp,(w) + €, where € € {0, 1}. If € = 0, we have that E% is an invariant curve of the strict
transform of w by ¢1. In this case, we say that E% is a non dicritical divisor. Otherwise, if ¢ = 1,
then E] is not invariant by the strict transform of w by 01, and we say that E} is a dicritical divisor.

Now, assume that we have defined the strict transform of w by ty_1 =01 0020...00n-1,
and denote it by w’. Then the strict transform of w by 7 is the strict transform of @’ by on.

Similarly, given a foliation ¥ defined by w, the strict transform of ¥ by 7 is the foliation
defined by the strict transform of w by 7.

Remark 2.2.1. Consider ¥ a foliation in (M, Py), and denote by ¥ the strict transform of ¥ by
a single blow-up o : (M, E%) — (Mo, Pp). By classical results of differential equations, if Py is a
regular point of ¥, then there exists a unique regular invariant curve Y passing through Py.

Similarly, given a point P € E LifF’is regular at P. There are two cases: first, E } is a non
dicritical divisor, that is, E} is invariant by . Otherwise, E% is a dicritical divisor of ¥ . In this
second case, there must be a different branch Y from EJ, invariant by #'. In general, given any
point P of a dicritical divisor E}, there must be at least one invariant branch of ¥ different from
E}, passing through P.
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Figure 2.1: Schematic drawing of a dicritical divisor, the red circle is a real representation of E; = P!(C).
At any point P € E}, there is at least one invariant curve of the foliation passing through P.

Lemma 2.2.2. Consider ¥ a foliation in (Mo, Po) and a branch C. Denote by 1 a sequence of blow-ups
starting at Py. Denote by ' and C’ the strict transforms by 1 of ¥ and C. Then the branch C is
invariant by F if and only if C’ is invariant by F'.

Proof. By arecursive argument, it is only needed to verify the statement for the case when = = o4
is a blow-up. Consider the coordinate systems (x, ) and (x1, y1) in (Mo, Pg) and in an open set
of (M, E') respectively, such that (x, y) = (x1, x1y1). We are assuming without loss of generality
that C’ passes through a point of the chosen chart of (M3, EY).

Denote by f = 0 areduced irreducible implicit equation of C and by f’ = 0 its strict transform.
Then we have that f’ = xl‘k(f om)and @’ = xl‘k'n*w, with k, k” > 0. Therefore

W ANdf' = xl_k_kln*(a)) A —kf; 7Idxl + 7 (df)| .
1
We see that f’ divides w’ A df’ if and only if f divides w A df. ]

We remark that finding a resolution of singularities of a foliation resembles the case of plane
curves. Before, we were interested in finding a curve with normal crossings, here this role will
be played by simple points.

Letw € Q}VIO,PO define a singular foliation # in (Mg, Py) at Py. We write w = Adx + Bdy and
we consider the matrix

@) = ( -2 -2 )

2o %0

Assume that the matrix J(w) is neither null nor nilpotent. Denote by A, u € C the two
eigenvalues of J(w), such that y # 0. If the ratio A/ is not a positive rational number, then we
say that Py is a simple singularity of the foliation ¥ . Besides, if A = 0, we say that Py is a saddle node
singularity, otherwise, we say that Py is an hyperbolic singularity. If Py is a singularity, but it is not
a simple singularity, then we say that Py is a non reduced singularity.

Two important remarks must be made about simple singularities of foliations that reminds
the case of curves:

1. A simple singularity is stable by blow-up, that is, if we consider o7 : (M1, E'Y) — (My, Po)
the blow-up at Py, we have that all the singularities in E! of the strict transform of ¥ by o
are simple.

2. By Briot-Bouquet theorem, see [11], if Py is an hyperbolic singularity of ¥, then w has
exactly two invariant regular branches C1, C, such their tangent vectors are eigenvectors
of the matrix J(w). If Py is a saddle node singularity, then we have a similar result. The
only difference is that the branch associated to the eigenspace of zero eigenvalue may be
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non convergent. In other words, we can have an element f € C[[x, y]] \ C{x, y}, such that
w A df = fn with 1 a formal 2-form.

Simple singularities are the only ones allowed in a resolution of singularities of a foliation,
in the following sense: consider a normal crossings curve EY ¢ My. We say that the point P is
a simple point of (M, E%, F) of a foliation F in (M, Py), if one of two following conditions is
satisfied:

a) Py is a simple singularity of 7, there exists an irreducible component of E° through Py,
and all the irreducible components of E° are invariant by ¥ .

b) The point Py is a regular point # and # has normal crossings with E?. That is to say, if L
is the only invariant curve of ¥ through Py, then E° U L is a normal crossings divisor.

Theorem 2.2.3 (Resolution of Singularities [51]). Consider a germ of foliation ¥ in (Mo, Po). There
exists a finite sequence of blow-ups 1 : (M, EN) — (Mo, Po), such that the strict transform F of ¥ by
Tt satisfies that every point P € EN is a simple point of (M, EN, F).

We say that 7 as above is a resolution of singularities of ¥ .

2.3 Divisorial Value

The goal of this section and the next one is to characterize the differential 1-forms that appear
when computing the semimodule of differential values. To do so, we introduce in this section
the notion of divisorial value, we use it when studying the Newton Polygon of a 1-form. Most of
the results presented can be found in Section 3 of [12].

We fix 7 : (M, EN) — (M, Py) a sequence of blow-ups, with the usual notations established
in Section 1.3. Consider a holomorphic function & in (My, EV) defined globally in E := EN c EV.
The divisorial value ve(h) of h is obtained as follows. Take a point P € E and choose a reduced
local equation u = 0 of the germ (E, P), then we define the divisorial value of f as

ve(h):=max{a €Z: u™"h € Omy,p}-

Remark 2.3.1. Notice that vg(h) does not depend on the point P € E chosen. In fact, assume
that u = 0 is an implicit equation of E defined in an open set U C E. Given a different point
Q € U, since 1 = 0 is an implicit equation of E at Q, the divisorial value vg(h) is the same at the
points Q and P.

Finally, for any pair of points P, Q € E, we can take a sequence of opensets Uy, Uy, ..., Uy C E,
where U; and U are open neighbourhoods of P and Q respectively, with U; N Uj41 # 0 for
j=1,2,...,k—1. We denote by u; = 0 an implicit equation of E defined along all the points
Ui, fori € {1,...,k}. Since the divisorial value must be the same at U; N U;;+1 we conclude the
desired result.

We are using the fact that two implicit equations h’ = 0 and & = 0 of a curve C differ by
an unit, this implies that the definition of divisorial value is independent of the chosen local
equation.

Consider one of the center points P; of the sequence of blow-ups 7, with j € {0,1,...,N -1}
and a germ of holomorphic function / € Oy ;,p;- Then p;h is a germ of function in (My, E), that
is, p;h is globally defined in E, where p; = 0j 0 gj41 ... 0 on. We extend the definition divisorial
value with respect to E to h by putting vg(h) := vE(p;h).
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Proposition 2.3.2. Take (x, y) a local system of adapted coordinates with respect to a cuspidal sequence
n =1, and denote by D the cuspidal divisor of v,™. Consider a germ h € Opm, p, that we write as

= hapxyF, hag € C.
ap

Then vp(h) = min{na + mp; hap # 0}.

Proof. If n = m =1, m is just a single blow. In this case, we see that the divisorial value of a
function # is coincides with its multiplicity at Py, as desired. Let us work by induction on n + m
and assume that n + m > 2. We remark that vp(h) = vp(ojh). Consider the first intermediate
sequence pp = 02 © ... o gy, with adapted coordinates (x1, y1). Denote by ¢ the index of freeness
of 7ty"". There are two options: if £ = 1, then the coordinate system is given by (x, y) = (x1y1, y1)-
Otherwise, if £ > 2, then (x, y) = (x1, x1y1). Therefore, we have that

oh = Z haﬁforﬁyf ift >2;
a,p

orh =) hagxiy; Tif =1,
o p

Furthermore, if ¢ = 1 the Puiseux pair of p; is given by (1, m — n). On the contrary, if £ > 2, then
the Puiseux pair of p; is (n — m, n). We conclude by applying the induction hypothesis to the
previous expressions. O

Remark 2.3.3. The computations from the proof of Proposition 2.3.2 show that in the case
when 7" is a single blow-up, then vp(h) = vp,(h). Furthermore, in this case every system of

¥
coordinates is adapted with respect to n}'l.

2.3.1 Divisorial Value of a Differential Form

From now fix m = g1 0 02 0 ... 0 0N a sequence of blow-ups, where as always o; : (M;, E -
(M1, E""1) is a blow-up with center P; € Ei"!, fori =1,2,...,N and E° = {Py}. We denote by
Tj=010020...00;and pj = gj00j1 ©...00y the intermediate sequences, forj =1,2,...,N.
Finally, we fix the divisors

Ho=(xy=0)c My, Hj= n]._l(Ho) c M,

such that H; is locally given at P; by x;y; =0 for 0 < j < N — 1. We also consider Hy = H =
1 (Hp) € My. Each H j is, at every point, a curve with normal crossings in (M;, E)), containing
E/. We also write E = Ef].

Take a point Q € E;, not necessarily equal to P;, in particular we consider also the case j = N.
Select a local system of coordinates (u, v) in chart of (M;, E/) such that (u = 0) © Hj c (uv =0),
then we have that either H; = (u = 0) or H; = (uv = 0) locally at Q. The O, g-module
Q}VI]-,Q [log H;] of germs of H;-logarithmic 1-forms is the rank two free Op;,o-module generated by

dufu,dv if H;=(u=0),
dufu,do/v if H;=(uv=0).

In Chapter 8 we retake the notion of logarithmic forms in a more general setting. For the moment,
note that lew,-, oC Q}VI,-,Q [log H;]. Indeed, a differential 1-form w = Adu + Bdv may be written as

dou

w = uAd—u + Bdv = uAd—u +vB—.
u u v
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In a similar way, we define the Op;,o-module 3, ollog Hjl of Hj-logarithmic 2-forms as the
jr
rank one free O, o-module generated by

(dufu)yndo if Hj=(u=0),
(du/uy ndv/v if H;=(uv=0).

Again, we have that Q%/I]',Q C Q%\/I,, Q [log H;].
Now, let us consider a g-form w € Q?\/IN [log H], g = 1,2, defined in E. Selecta point Q € E
and a local reduced equation u = 0 of E at Q. We define the divisorial value vg(w) by

ve(w)=max{f € Z; uwe QZAN’Q[logH]}.

As in Remark 2.3.1 we can show that the divisorial value of a g-form is well defined, that is, it
does not depend neither on the chosen equation of E nor on the point Q.

Remark 2.3.4. Letw € QZAN [log E] be a g-form globally defined on E as before. Since E is one of
the irreducible components of H, we have that

QZ/IN [logE] C QZ/IN [log H].

Let us choose a reduced local equation u = 0 of E ata point Q € E as before. A direct computation
shows that

ve(w)=max{f € Z; uwe QZ/IN Q[log El}. (2.3)
This remark shows that the divisorial value of a g-form w € QZ/IN [log E] is independent of the
choice of the adapted coordinate system that defines Hy.

q

Definition 2.3.5. Forany w € Q M, Py

the divisorial value vg(w) is defined by ve(w) = VE (p;a)).

Remark 2.3.6. The notion of divisorial value of a 1-forms can be defined without using logarithmic
1-forms with respect to a curve. We could have defined it as the maximum number of times that
the implicit equation of E divides 7% up to obtaining a holomorphic 1-form. However, with
this definition, the divisorial value is no longer determined by just the monomials of the 1-form,
as we show later. There is an indeterminacy depending on if the divisor E is dicritical or not for

the 1-form w. By introducing the logarithmic 1-forms, this problem disappears.
Proposition 2.3.7. Consider a differential 1-form w = Adx + Bdy € Q}VIO p,s We can write @ as

w = xA(dx/x)+ yB(dy/y) € Qll\/fo,Po [log Ho].
Then, we have that ve(w) = min{ve(xA), ve(yB)}.

Proof. Write ¢ = xA and h = yB, thatis, w = g(dx/x) + h(dy/y). We proceed by induction on N.
If N =1, we have that E = (x; = 0) where (x, y) = (x1, x1y1) and

ojw = (018 + oyh)(dx1/x1) + oy (B)(dy1/y1).
Then ve(w) = min{ve (ol g + o} h), ve(at h)} = min{ve(g), ve(h)} and as desired. If N > 2, then
ve(w) = ve('w) = ve(ps(ojw)) = ve(ojw).
By induction hypothesis, we have
ve(ojw) = min{ve(o}g + o1h), ve(o1h)} = min{ve(g), ve(h)}

and we are finished. m]
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Corollary 2.3.8. Given f € Opm,,p, with f(Po) = 0and w = df, then ve(w) = ve(f).

Proof. If we write f = 3, 551 hapx®yF, then we have that

Xfy = Z ahapx®yPf;  yfy = Z‘Bh,,,ﬁx“yﬁ.
a,p a,p

By Proposition 2.3.7, we have that ve(df) = min{ve(x fx), vE(y fy)}. Now, by Proposition 2.3.2,
we obtain that

min{ve(xfy), ve(yfy)} = min{na + mp : ahag # 0 or has # 0}.

Since f(Py) = 0, the condition ah.p # 0 or fh.p # 0, is equivalent to /1,5 # 0. Concluding the
desired result. O

Similarly, we show that

2

Mo,Py’ that we can write as

Proposition 2.3.9. Consider a differential 2-formn = gdx A dy € Q
w=xygdx/x)A(dyly) € Qﬁ/fo,l’o [log Ho].
Then, we have that ve(n) = ve(xyg).

Proof. As in the proof of Proposition 2.3.7, we use an inductive argument on the length N of the
sequence of blow-ups 7. If N = 1, we take coordinates (x, y) = (x1, x1y1), such that E is defined
by x1 = 0. Additionally, we see that

oin = oj(xyg)dx1/x1 A dy1/y1.

Showing the desired result.
Finally, if N > 2, we have that

ve(n) = ve(r'n) = ve(ps(oin) = ve(ain).

By induction hypothesis, we have that

ve(oin) = ve(oi(xyg)) = ve(xyg).

1

Mo,Po’ then we have that

Corollary 2.3.10. Consider w, w’ € Q)
ve(w) + ve(w') € ve(w A @).
Proof. Let us write

w = xA(dx/x)+yB(dy/y); o =xA'(dx/x)+yB'(dy/y),

then we have that
wAw' =(xAyB —xA'yB)dx/x Ady/y.

By Propositions 2.3.7 and 2.3.9, we get that

vE(xAyB’ — xA'yB) > min{ve(xA) + ve(yB’), ve(xA’) + ve(yB)}
min{vg(xA), ve(yB)} + min{ve(xA’), ve(yB")} = ve(w) + ve(@”).

vE(w A @)

I\
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Remark 2.3.11. Propositions 2.3.7 and 2.3.9 show that we can compute divisorial values of
logarithmic forms in terms of their coefficients. In the cuspidal case, by Proposition 2.3.2, we
have that the divisorial value of a function can be seen as a monomial value. Therefore, we can
extend this monomial valuation to consider 1-forms and 2-forms.

We are not only interested on the divisorial values, but also on the terms of the coefficients
that they determine. They are what we call initial parts and we procced to define them.

2.3.2 Weighted Initial Parts

From now on, we assume that (x, y) is a local system of coordinates with respect to the cuspidal
sequence 7t = 71, , with cuspidal divisor D = E. Consider a non zero germ & € O, p, that we
writeash = X, g hapx®yP. Suppose that g = vp(h). We define the weighted initial part Iny y.q ,, (h)
by
Iny, i,y (h) = Z haﬁx“yﬁ.
na+mp=q
We can write

h = Inn,m;x,y(h) + l:iI VD(E) >q.
This definition extends to logarithmic differential 1-forms w € Qzl\/lo Po [log(Hop)] as follows. If
g = vp(w), we write

= fldx/x)+gly/y); f= D fapxyF, g= D gapxyP.
a>1,820 az0,p>1
We define
Iy ,y (@) = Z x"‘yﬁ(faﬁdx/x + Sapdy [Y)-

na+mp=q
As before, we have w = Iny y;x,y(w) + @, with vp(&) > q. When there is no confusion on the
Puiseux pair (1, m) and the coordinate system, we just write In(—) instead of Iny; ;x,y(—).

Remark 2.3.12. Note that the definition of initial part can be made in terms of graduated rings
and modules to be free of coordinates. Nonetheless, this “coordinate-based” definition is enough
for our purposes.

Next proposition shows the behaviour of the initial part under blow-up.

Proposition 2.3.13. Assume that N > 1, take w € Q}\Aorpo[log(Ho)]. If W = Ingmy,y(w), then
01 (W) = Inpy iy, (0 @), where (x1, y1) is a local system of adapted coordinates in a chart of (M, E),
with respect to the intermediate sequence of blow-ups pa.

Proof. Put q = vp(w) and denote by ¢ the index of freeness of 7. There are two cases: either
{=1or{>2 If{ > 2, then we consider the Puiseux pair of p, is given by (n1,m1) = (n, m — n)
and the coordinate system is defined by (x, y) = (x1, x1y1). Now we write
W= ( Z aa+1ﬁx“yﬁ)dx + ( Z baﬁ+1x“yﬁ)dy,
a,>0 a,p>0
and we have that in the local system (x1, y1),

o1(@) = ( 2 (@ap + ba+lﬁ)x“+ﬁyﬁ)dx * ( )y baﬁﬂx“ﬁyﬁ)dy.

a,$>0 a,$>0
Note that na + mfB = q is equivalent to n(a + ) + (m — n)B = g. Hence, just by doing a standard
computation, we show that 67(W) = Iny, my;xy,y, (0] @).
If ¢ = 1, we do the same, but in this case (x, y) = (x1y1, y1) and (11, m1) = (m — n, n). m]
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Now, consider a 1-form 1 whose initial part is given by

dx d
Inn,m;x,y(rl) = xayh {H? + C?y} .
We say that 7 is resonant if and only if ny +mC = 0.
The next proposition shows the relationship between the divisorial value of a function (resp.
1-form) with its intersection multiplicity (resp. differential values) with a cusp, as explained in
Chapter 1.

Proposition 2.3.14. Consider C a D-cusp in (Mg, Py) with Puiseux pair (n,m), for any function
g € Om,,p, we have the following:

a) ve(g) = vp(g).
b) Ifve(g) > vp(g), then vp(g) = nm.

1

Mo,Po” W€ have that

Similarly, for any 1-form w € Q

a’) ve(w) = vp(w).
b’) Ifve(w) > vp(w) and vp(w) < nm, then w is resonant.

The proof is based on the following remark.

Remark 2.3.15. Given (a,b),(a’,b’) € Zsg, such that na + mb = na’ + mb’ = ¢ < nm, then we
have that (a,b) = (a’, b’).

Proof. Since (x, y) is an adapted system of coordinates with respect to n;"m, then we can take
a primitive parametrization of C of the form (t", v(¢)t"), with v(t) € C{t} a unit, see Equation
(1.8). Take A, B two different monomials, Statements a) and a’) follow by noting that:

1. ve(x®y?) = vp(x*y®) = na + mb.
2. vc(A + B) = min{vc(A), ve(B)}.
3. By Proposition 2.3.2, we have that vp(A + B) = min{vp(A), vp(B)}.

Now, for Statement b), assume that vp(g) < nm, thenby Remark 2.3.15, we can write Iny; ;1 (g) =
A, with A a monomial. We see that vc(g) = vc(A) = vp(A). This is because of Statement a) and
items 1.- 3.

Finally, for Statement b’), consider a 1-form w whose divisorial value is smaller than nm,
then we have that

dx dy
o — ag,b
Ing,mpxy(@) =1 =x"y {tux +Cy }

Just a mere computation shows that vc(n) > vp(17) = vp(w) if and only if 7 is resonant. As in
Statement b), we show that if 1 is non resonant, then vc(w) = ve(n) = vp(n) = vp(w). O

In Proposition 2.3.14 Statement a’), we can give an interpretation on whether we have an
inequality instead of an equality.

Proposition 2.3.16. Let C be a D-cusp in (Mo, Po). Consider ¢(t) = (t", at™ + h.o.t) = (t",v(t)t"™)
a primitive parametrization of C, and take w € QIl\/Io,Po' We have that the curve C defined by the
primitive parametrization ¢(t) = (t",at™) is invariant by the 1-form 1 = Iny ;. (@) if and only if
ve(w) > vp(w).
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Proof. Denote by qo = vp(w) and write

a)=n+qu,

q>q0

in such a way Iny v,y (@) = wg and vp(wy) = g for all ¢ > go. We notice that, for any 1-form
0 such that In;, ;1 ,(6) = 0, we have that gf)*(@) = ati71dt, with @ € C and g = vp(6). Besides,
we also see that ¢*(0) = t97'(a + h.0.t.)dt. This applies to the terms w, and 7. If we write
$*(n) = ut1~1dt, then we have that C is invariant by 1 if and only u = 0. The condition u = 0 is
equivalent to vc(w) > vp(w). O

2.4 Basic and Pre-basic 1-Forms

This section is devoted to characterize the 1-forms w € Qll\/lg p, Whose total transform 7*w defines
a foliation that is transverse to D, and which has normal crossings with EN at every point of D.

2.4.1 Reduced Divisorial Value and Basic 1-Forms

Let us consider a non null differential 1-form w € Q}VIO p,r et Vo = x4’ be the monomial
defined by the property that w = V,,n, where 1 € Q}VIU p,1108(Ho)] is a logarithmic form that
cannot be divided by any nonconstant monomial. We define the reduced divisorial value rdvp(w)

to be rdvp(w) = vp(7n).

Definition 2.4.1. We say that w € Q}MO p, is @ basic 1-form if and only if its reduced divisorial value
satisfies that rdvp(w) < nm.

Given w a basic 1-form, then the initial part of w can be written as
Iy, e,y (@) = x”be, where W = 1Iny 2,y (1).

If w is a basic 1-form with w = V,,1. By Remark 2.3.15, there is exactly one pair (c, d) € Zio such
that cn + dm = vp(n) < nm, then we have that

dx dy
W=xyu—+C=}.
)
Now we show that being basic is preserved by blow-up.

Proposition 2.4.2. Assume that N > 2 and take w € Q}MO py+ If @ is a basic 1-form, then o} is also a
basic 1-form.

Proof. Write w = V,,n as before and denote g = rdvp(w) = vp(n) < nm. Recall that vp(n) =
vp(ojn). Since monomials are well behaved under the point center blow-up 01, it is enough to
show that there are ¢, d > 0 such that ojn = xiyiln’, with vp(n’) < nymy, where (11, my) is the

Puiseux pair of p; and (x1, y1) a system of adapted coordinates with respect to p,. Write
dx d
n= Z xayﬂqaﬁ, where g = flap— + Caﬁ—y, and (Uag, Cap) € 2.
a,p x Yy

Recall that g = min{na + mp; nap # 0}. Put r = min{a + B; 14p # 0}, thatis, r = vp () + 1. We
have two cases: ¢ =1 and ¢ > 2, where ¢ is the index of freeness of nZ’m.
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Assume first that ¢ > 2 and hence 2n < m. In this situation, we have that (x, y) = (x1, x1y1),
n=n,m =m-n>nand
* T ’_ a+p-r_B_, : r_ @ %
oj(n) = xy1’, wheren’ = ;ﬁxl YiTlap, Withnge = (ttap + Cap) 1 +Cap v
We only need to check that vp(n’) < nymy. Note that 7];5 # 0if and only if 17, # 0. Hence, we
have that

vp() min{ni(a +p =)+ mif; nap # 0} =

= min{n(a+p—7r)+(m—n)p; nap # 0} =

= min{na +mp —nr; nug # 0} = q —nr.
We have to verify that g — nr < nymj, where nymy = n(m —n) = nm — n2. If r > n, the result
follows since by hypothesis we have that g < nm. Assume that r < n. There are &, § with
Nap # 0 such that & + = r. Then

qg-—nr < na+mp-—nr=n(@+p)+(m-n)p—nr=
= (m-n)p < (m-nn,
since f < r < n.

Assume now that{ = 1and thusn < m < 2n. Wehave that (x, y) = (y1, x1y1),m1 =m-n <n,
my = n and

dyl
)

* ” ” =r_n : ” dx 1
o1(n) = yin”, where =§Sxﬁﬁw nwrwﬁh”w==@w27+(Ww+Cw 7

ap
Again, we have to verify that vp(’) < nimy. As before, we have that r];:ﬁ # 0 if and only if
Nap # 0. Hence
vp(n”) = min{mp+m(a+p—7r); nap #0} =
= min{(m-n)f+n(a+p—r); nap #0} =
= min{mp +na —nr; nup # 0} =g —nr.
We show that g — nr < nym; exactly as before. m]

We have the next result that follows directly from the computations in the proof of Proposition
2.4.2:

Corollary 2.4.3. Assume that N > 2. A basic differential 1-form w € Qil\/lg p, 18 resonant if and only if

ojw is resonant.

2.4.2 Pre-Basic 1-Forms

Let us introduce a slightly more general class of 1-forms that we call pre-basic forms. Consider the
pair of coprime positive integers (1, m), with 1 < n < m. There are unique b, d € Z> such that
dn — bm = 1 with the property that 0 < b < nand 0 < d < m. We call (b, d) the co-pair of (n, m).

Definition 2.4.4. We define the region R"™ by R™™ = H"™ 0 H"™, where

Hm
n,m
H+

{(a,B) € R?; (n—b)a + (m — d)p = 0},
{(a, B) € R%; ba +dp > 0},

and (b, d) is the co-pair of (n, m).
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Remark 2.4.5. If n = m =1, the co-pair of (1,1) is (b, d) = (0, 1). Then
HY = {(a,p); a2 0}, Hy' ={(a,p); p =0}
Thus, we have that R'"! is the quadrant R = RZ .
Remark 2.4.6. The slopes —(n — b)/(m — d) and —b/d satisfy that
—(n-b)/(m—-d)<-n/m<-b/d.
Indeed, we have —n/m < —b/d if and only if —dn < —mb = —dn + 1. On the other hand
—-n-b)/im-d)y<-n/m & mn->b)>nm-d) e bm<dn=bm+1.

We conclude that R™"™ is a positively convex region of R? such that (0, 0) is its only vertex
and we have that
R"™ N {(a,p) € R? na +mp =0} = {(0,0)}.
Given a point (a,b) € Rio' we define R"™(a, b) by R""(a,b) = R™™ + (a, b).

Fix (x, y) a local system of coordinates at (My, Py). Given a 1-form w € Q
w = Adx + Bdy. The Newton cloud of w is defined by

1

Mo, Po” W write it as

Nery(a)) = NCx,y(xA) U NCx,y(yB),
and the Newton polygon of w is given by

NPy (@) = convexhullof (| ] (1) + (Re0).
(i,))eNCy,y(w)

Definition 2.4.7. We say that v € Q}\AO p, is @ pre-basic 1-form if and only if there is a point
(a,b) € NCy,y(w) such that NC ,(w) C R""™(a, b).

If w is pre-basic, we have that
NCyy(0)N{(a,p) € R? na+mp =vp(w)} = {(a,b)}.
Thus, similar to the case of basic 1-forms, the initial part W of w has the form

d d
2% =x”yb {‘uah?x—i-cgh?y}. (2.4)

Example 2.4.8. We consider the pair (5, 8), whose co-pair is (5,3). The 1-form
w = xX3dy + x*ydx — 7x°dx + 11y°dy
is pre-basic, as we can see in the following figure.
Next lemma shows the behaviour of the co-pairs under blow-up.

Lemma 2.4.9. Let us consider a pair (n, m) with 1 < n < m and n, m are without common factor. Let
(b, d) be the co-pair of (n, m). We have that

o Ifm > 2n and we put (n1, my) = (n, m — n), then the co-pair of (n1, my) is (b1,d1) = (b, d - b).
e If m < 2n and we put (n1,m1) = (m — n,n), then the co-pair of (n1,my) is (b1,d1) =
(m—-n—-d+b,n-0>).
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.

8

Figure 2.2: Newton polygon of w, the dashed lines mark the borders of the region R>8(1,3).

Moreover, we have that W(R™™) = R™™  where W is the linear automorphism of R? given by
W(a,B) = (a+p,B), ifm=2n,and W(a,B) = (B,a +B), if m < 2n.

Proof. Let us show the first two statements. If m > 21, we have that
ding—bymy =(d—-bn—-b(m-n)=1.

Moreover, since 0 < by = b < n1 = n we conclude that (b1, d1) is the co-pair of (11, m1), in view
of Remark 2.3.15. If m < 2n, we have

diny—bymy=m-b)m—-n)—-(m-n—-d+bn=1.

We know that 0 < b < n, hence 0 < dy = n —b < mj = n and by Remark 2.3.15, we deduce that
(b1, d1) is the co-pair of (n1, my).

Now consider (a, ) € R? and put (a1, f1) = Y(a, ).
Case m > 2n. In order to prove that W(R™™) = R"™ it is enough to see that

(o, B) € H'"™ & (a1,p1) € H""™ and (a,B) € HY" & (a1, p1) € HIV™.
We verify these properties as follows:

(a1,p1) e H'™ & (m—-b)ar+(m—-di)p1 =20
(n=-b)a+B)+(m-n-d+b)p=20e
nm-ba+(m-dp=0s (a,p)c H'™.
bia1+dif1 20
b(a+p)+(d-b)p>0s
ba+dp>0e (a,p)e HI™.

(a1, p1) € HY™

t g8 0¢Q

Case m < 2n. In this case, we have that

(a,B) € Hz’m &  (a,B1)€ HIV™M (2.5)
(a,B) € H' o (ag,p1) € HIV™. (2.6)

and this also implies that W(R™™) = R™™. We verify the properties in Equations (2.5) and (2.6)
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as follows:
(a1,p1) € HIV™ & (n1—b)ar+(m —di)p1 20 &
& m-n—-(m-n-d+b)p+(n-n+b)a+p) =20
o dB+ba>0e (a,p)e HI™.
(al,ﬁl) € HT’W S bhag + d1ﬁ1 >0
& m-n-d+b)p+(n-b)a+p)=20e
& m-dp+n-ba=0e (a,p)ecH™.
The proof is ended. o

Now we show the stability of being pre-basic under blow-up.

1

Mo, Py W€ have that

Proposition 2.4.10. Assume that N > 2. For any w € Q

1. w is pre-basic if and only if o] w is pre-basic.
2. w is pre-basic and resonant if and only if o] w is pre-basic and resonant.

Proof. We consider two cases as in the statement of Lemma 2.4.9, the case m > 2n and m < 2n
and we define the linear automorphism W accordingly to these cases, as well as the Puiseux’s
pair (11, m1). A monomial by monomial computation shows that

NC, y(0ijw) = W(INCy,y(w)). (2.7)
In view of Lemma 2.4.9, we have that
W(R""™(a,b)) = R""™(W(a,b)). (2.8)

Statement 1 is now a direct consequence of Equations (2.7) and (2.8). Statement 2 follows from
Statement 1 and Corollary 2.4.3. o

We end this section studying simple properties about basic and pre-basic 1-forms.

Proposition 2.4.11. Take a differential 1-form w € Q}MO p, We have

1. If N =1, then w is pre-basic if and only if it is basic.
2. If w is basic then it is pre-basic.
3. If w is basic and resonant then it is pre-basic and resonant.

Proof. If N =1, we have n = m = 1and R'!(a,b) = (R)io + (a,b). Then being basic is the same
property of being pre-basic: the Newton Polygon has a_single vertex.

Assume now that w is basic. In view of the stability result of basic 1-forms by blow-up given
in Proposition 2.4.2, we have that & is basic, where @ is the pull-back of w in the last center of
blow-up Py_1 of the cuspidal sequence. By Statement 1, we have that & is pre-basic. Now we
apply Proposition 2.4.10 to conclude that w is pre-basic.

Statement 3 is easily deduced from Statement 2. ]

2.5 Totally dicritical Forms

Consider a 1-form w € Qzlle defined around the divisor cuspidal divisor D of 7t;"". Recall that
we have a normal crossings divisor H such that H O D, coming from our choice of adapted
coordinates, although if n > 2 the divisor H around D is intrinsically defined and it coincides
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with EN. We say that w is fotally D-dicritical with respect to H if for any point P € D there are
local coordinates (1, v) such that D = (1 = 0), H C (uv = 0) and w has the form

w=u"0"do,

where b = 0 when H = (u = 0). Note that w defines a non-singular foliation around D, this
foliation has normal crossings with H and D is transverse to the leaves.
The property of being totally D-dicritical can be read in terms of having a resonant pre-basic

1-form.

1

Proposition 2.5.1. For any w € QMO Po’

the following properties are equivalent:

1. The 1-form w is pre-basic and resonant.
2. w is totally D-dicritical with respect to H.

The proof of Proposition 2.5.1 requires the use of a simple version of the Frobenius Theorem,
see [11] Theorem 2.4, and a technical lemma:

Theorem 2.5.2 (Frobenius Codimension 1). Let (M, Opm) be an analytic space of dimension r > 2
reqular at a point P € M. Consider ¥ a regular foliation of codimension one in (M, P) defined by a
I-form w € Q}VLP. Then there are functions u, g € O p, such that u is a unit, P is a reqular point of dg
and w = udg.

We will only use this theorem when the ambient space is two dimensional.

Lemma 2.5.3. Assume that w € Qil\/lo,Po satisfies that 7*w is totally D-dicritical with respect to H.
Consider Py -1 the last center point of  and (xN-1, Yn-1) a coordinate system at Pn_1, such that Hy_q
is locally defined by the implicit equation xN_1yn-1 = 0. Denote by wn-1 the strict transform of w by
nin-1 at Pn—1. Then both xn-1 = 0 and yn-1 = 0 are invariant curves by wn-1.

Proof. Denote by wy the strict transform of w in (My, EN). After the last blow-up we obtain the
coordinate system (xn, yn) in a chart of (My, EN) defined by (xn-1, ¥n,) = (XN, XNYN). Since
T w is totally D-dicritical, then, at the point P = (xy = 0, yy = 0) there are coordinates (1, v)
such that we can write locally wy as wn = dv. Moreover, in this coordinate system the divisor
H is defined at P by uv = 0, where u = 0 is an implicit equation of the cuspidal divisor D. Note
that H is also defined at P by xyyn = 0 with xy = 0 defining D and yy = 0 the strict transform
of yn—1 = 0 by on. Thus, v = 0 and yn = 0 are implicit equations of the same curve. Therefore,
yn = O is invariant by wy. By Lemma 2.2.2 that is equivalent to say that yy_1 = 0 is invariant by

WN-1.
By taking the coordinate system defined by (xn-1, yn-1) = (X3 ¥}, Y5 ), We show in a similar
way that xy_1 = 0 is invariant by wx_1. m]

Proof Proposition 2.5.1. In view of the stability of the property “pre-basic and resonant” under
the successive blow-ups in the sequence 77, see Proposition 2.4.10, it is enough to consider the
case when N = 1. In this case we have a single blow-up.

Part 1: Statement 1 implies Statement 2

Assume that w is pre-basic and resonant and let us see that n*w is totally D-dicritical. By
definition of being pre-basic and resonant, we have that

d d
a):h(x,y)x“yb {d_x__]/}+ Z x“‘y‘S {[uaﬁd?anCaﬁ—y} , a,b>1,

X y a+p>1
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where (0, 0) # 0. Consider the local system of coordinates (x1, y1) defined locally in (M, E'),
and given by (x, y) = (x1, x1y1). The case (x, y) = (x1y1, y1) is treated in a similar way. We show
first that the at point P = (x; = 0, y1 = 0) there are coordinates (1, v) such that m*w = u*vbdy.
Note that H is defined by x1y1 = 0. In this system of coordinates we have that

d d d
wo = aat ol |- 3 P g+ B G
LS Y

Since @ + B > 1and b > 1, then we see that the 1-form n = h=1x*~ b yb ~I*w is holomorphic and
can be written as

n = —dy1 + y1A(x1, y1)dx1 + x1B(x1, y1)dy1. (29)

By Theorem 2.5.2 there exist a unit # and a function g, which can be assumed that g(0,0) = 0,
such that 7 = udg. Note that n Ady; = y1A(x1, y1)dx1 Ady;. This implies that y; divides g. Since
g is regular at the point P and g(0, 0) = 0, we conclude that ¢ = y1v, where v is another unit, in
particular x; = 0 is transverse to ¢ = 0. Thus if we take the coordinate system (x1, g), then

mw=u'x""¢"dg;  where u’ is an appropriate unit.
Finally, taking the coordinate system (1, g) with h = x1(u)"/*) we obtain the desired result.
Now consider the point Q = (x1 = 0, y1 = q) with g # 0. The divisor H at Q is defined by x; =
Consider the local coordinates x, = x1 and y» = y1 + q. By Equation (2.9), we have that

n= —d]/z + A(XQ, yz)dxz + X2B(XQ, yz)dyz.

Now, we have that terms of multiplicity 0 at Q of 1 are —dy, + udx,, where p may not be 0. Again,
by Theorem 2.5.2, we write 1 = updg, with the same properties as before. As in the previous
case, xp = 0 is transverse to g» = 0, because n A dxp = (=1 — x2B)dxz A dy,. Hence we can take
the coordinate system (x», g2), obtaining that

* _ 7. a+b . ’ . . .
T W = MZXZ ng/ where MZ 1S an appropnate unit.

Note that y; is a unit when seeing as an element of C{x, g»}. We conclude as before, ending the
first part of the proof.

Part 2: Statement 2 implies Statement 1

Now assume that 7" w is totally D-dicritical, we are going to show that w is pre-basic and
resonant. Suppose that w is not pre-basic, and write @ = x°y“n, with 1 a holomorphic 1-form
whose coefficients share no common factor. Put W = Iny 1,1, 4(17). There are two ways for w
not being pre-basic: first, if the Newton cloud NC ,(W) is more than one point. Second, if
NC,y(W)=(a,b),but NC, ,(w) & RV1(a,b). Assume the first situation, and write

] k, b+k dy
W= Z xRyt { —+ Ck—}
k=0 Y
with j > 1. Note that the multiplicity of 1 at Py is a + b — 1. As before, consider the local
coordinate system given by (x, y) = (x1, x1y1) defined in a open neighbourhood of (M3, E?) . If
the strict transform n’ of n by 7 is given by x*~ b+17*n, then the cuspidal divisor D, given by
x1 = 0is invariant by n’. Hence n’ defines a foliation which is non transverse to D. Recall that a

totally D-dicritical 1-form defines a foliation which is transverse to D, and also that " and n*w
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define the same foliation. Therefore D must not be invariant by ’. It follows that the divisor D is
a dicritical component of the foliation defined by 7', that is to say, the strict transform is given by
n'=xy a=brr*n. Since all the terms of multiplicity a + b — 1 in 1) are those of W, then we have that

0" =x7""'m"0, where0=n-W, (2.10)
is also holomorphic.
We see that
] bybk dy1
W = Zx 7yt {(#k+Ck)—+Ck }
k=0
After dividing by x””’ , we obtain

d
W= 27"t W = Zyb+k{(#k+Ck)_+C yyll}

note that, since 1’ is holomorphic we must have that px + Cx = 0 for all k, that is

j
— Z Ck]/§)+k_1d]/1~

k=0

Now, consider the polynomial p(T) = Zi:o CkTk. Since j > 1, we have that p(T) is non constant.
Denote by y € C any root of p(T). We put new coordinates x; = x2 and y; = y2 + . In this
system of coordinates, we have that the multiplicity of W’ at the point P = (x = 0, y» = 0) is at
least 1. Moreover, we notice two facts about the 1-form 6’ from (2.10):

1. dx1 may appear with a non zero constant coefficient in the expression of §’.

2. 6’ does not have non zero terms of the shape yjdy;, with s > 0. Indeed, if 0" has a non

zero term such as yjdy is because there is a a term of the shape x“b

a+b

yidyr in 6. This
y3dy, must come from a non zero term of 6 written as x***=51y*dy. The
multiplic1ty of x**t=5=1ysdy at Py is a + b — 1, which contradicts the fact that all the terms

last term Xy

of 6 have multiplicity at least a + b.

Thus, there are two cases: either n” has multiplicity at least one at P or it has multiplicity
zero. If vp(n’) = 1, then P is a singular point of 1/, hence n*w in not totally D-dicritical leading
to a contradiction. Recall that in the definition of totally D-dicriticalness, we have a foliation
defined locally by regular 1-forms. If vp(n’) = 0, since there are non zero terms of the shape
yl *dyy in 0’. Then dx; = dx; is the unique term, up to constant multiplication, of multiplicity 0 of
1’ . Therefore, 1’ is tangent with x, = 0, which is a local equation of D, again contradicting the
totally D-dicriticalness property. We conclude that NC,,(W) cannot be more than one point.

d d
W = x"y? {,u;x + C?y} .

We are going to show that NCy., () € R!(a, b). This is the same as showing that w is pre-basic,

Now, assume that

because 1 and w are related by the multiplication of a monomial. As before, we have that D
must be a dicritical component of the foliation defined by n’. Hence p + C = 0. Since W # 0, this
implies that 7, or equivalently w, is resonant. We write

dx dy dx dy
— 1y _ a,p 1=
n=ux"y {x y}+a+ﬁ§>u+bxy {#aﬁx +Caﬁy} W+0.
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Where o = Ca0 = 0 in order to have 17 holomorphic. If we show that, in the previous expression,
all the non zero terms of the summation 0 satisfy that thata = b = 1 and a,$ > 1, then
NC,,y(n) C RV(1,1).

Assume first that b > 1. Since y does not divide 7, then there exists a > 1, such that: either
tao #0o0r Cu1 #0.

If there is a > 1 with uu # 0, then we can write

nAdy = Z pjoxj_ldx ANdy+yH,
j=1

where H is a holomorphic 2-form. We have that n A dy — yH is non zero and non divisible
by y. Therefore, y = 0 is non invariant by 1. However by Lemma 2.5.3, we have the opposite
result, leading to a contradiction. This also shows that § > 1 for all non zero coefficients in the
summation 0.

If there exists & > 1, such that (4,1 # 0. Then we can consider the coordinate system

(x,y) = (x1, x1y1) induced by 7. We have that

’ —a— * d —u= dx d
0 =2t =y {—ﬂ} DI {(P‘aﬁ + L)+ Caﬁi}'
LE a+p>a+b 1 h

By assumption we have that there is a coefficient C,1 # 0, thus y; does not divide n’. This last
observation, combined by the extra assumption that b > 1, implies that 1" defines a singular
foliation at the point (x1 = 0, y; = 0). This contradicts that 7*w is totally D-dicritical. Therefore,
we have shown that b = 1 and g > 1. In a similar way we show thata =1and a > 1. ]

Remark 2.5.4. If n > 2 the axes xy-1yn-1 = 0 around Py_; coincide with the germ of EN-1 a¢
Pn-1. In this situation, the property of being basic and resonant does not depend on the chosen
adapted coordinate system.

Definition 2.5.5. Given a resonant pre-basic 1-form w, we say that a branch (C, Py) in (Mo, Py) is a
w-cusp if and only if it is invariant by w and the strict transform of (C, Py) by 7 cuts D at a free point.

Let us note that each free point of D defines a w-cusp and conversely, in view of the fact that
1w is totally D-dicritical with respect to H.
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CusPIDAL SEMIMODULES

In Chapter 1 we saw that a germ of a plane curve (C, Pp) in the analytic space (My, Py) defines a
set of differential values Ac and a semigroup I'c. As mentioned there, Ac has the structure of a
I'c-semimodule. We proceed to study these semimodules, specially when the semigroup we
take is the one a of a cusp. Most of the results that we present here can be found in [12, 13].

3.1 Basis of a Semimodule

TakeI C Zg an additive numerical semigroup, thatis, I is a monoid generated by (BO, El, .., E g)
with ged(B,, . .. ,Eg) =1, see [6]. Aset A C Zsgis al-semimodule,if y + A € Aforall y € I'and
Ae A

Definition 3.1.1. A nonempty finite increasing sequence of non negative integer numbers B =
(A1, Ao, ..., As) is a basis of the semimodule A if for any 0 < j < s we have that A; ¢ T(8B;-1), where
F(Bj_1) =(A1+D)URAp+T)U---U (A]'_l +T).

If A =T(8), we have a chain of semimodules
A1+TT=A1CAgC - CAs=A, (3.1)

where A; = I'(8;). We call decomposition sequence of A to this chain of semimodules. Let us note
that
A1 =minA and A; =min(A\Ajq), 0<j<s. (3.2)

These definitions are justified by next Proposition 3.1.2
Proposition 3.1.2. Given a semimodule A, there is a unique basis B such that A = I'(8B).

Proof. We start with A_; = min A. Note that I'(A_1) ¢ A. If (A1) = A, we stop and we put
s =-1. IT(A_1) # A, we put Ay = min(A \ T'(A_1)). Note that T'(A_1, Ag) € A. We continue in
this way and after finitely many steps we obtain that A = T'(A_1, A, ..., As).

Let us show the uniqueness of 8 = (A_1, Ay, ..., A;s). Assume that A = I'(8’), for another
I'-basis B’ = ()\’_1,/\6, ...,A%). By definition of basis, we have that A_; = /\;( + y for some
-1<k<s"and y € I. Since A_; = minA and A} € A, we see that y = 0. Besides A’ | < A}.
Thus A_1 = A;(. Moreover, since B’ is an increasing sequence, we have k = —1. Now assume that
Aj= A; forany 0 < j < i — 1. Again, by definition of basis, we have that A; = A} + ) for some
-1<k<s"and y €I If k <i, then we know that Ay = A} and it would imply that A; € A, +T,

54
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in contradiction with the definition of basis of the semimodule, thus k > i. In view of Equation
(3.2) we have that A; = min (A \ [(8B¢_1)) = min (A \ r(B;_l)). Hence y = 0, noting that A’ < A7,
we conclude that A; = /\;( = )\;. m]

We say that the basis 8 = (A_1, Ao, ..., As) of A = I'(B) has length s. Moreover, the element
A; is called the i-element of the basis B, for =1 < i < s. When A_; = 0, we say that A is a normalized
semimodule.

Denote by n = min(T \ {0}), given the basis 8 = (A-1, Ao, A1, ..., As), we have that A; # A;
mod n. Hence, the length s is bounded by n — 2.

In Chapter 1, we introduced the notion of conductor for the semigroup of a branch. More
generally, we define the conductor of a I'-semimodule A as:

ca =min{k € Zso : Zsi C A},

see [3]. We notice the following: if A_; is the minimum element in A, then we have cp < cr+A_1.
More generally, given A; C A;;1 two consecutive semimodules of the decomposition sequence

of A, then we have that cp,,, < ca,;.

i+1

We say that a numerical semigroup I'is cuspidal if it is generated by two positive coprime
integers (n, m) with 2 < n < m. A T'-semimodule A is cuspidal when I" is cuspidal. From now on,
we fix a cuspidal semigroup I', and we denote nn < m its generators. By Equation (1.5), we have

that the conductor of a cuspidal semigroup I' is
cr=m—-1)(m-1).

As explained in Section 1.4, the semigroup of a cusp is a cuspidal semigroup. Moreover, the
semimodule of differential values of a cusp is a cuspidal semimodule.

3.2 Axes, Limits and Critical Values

From now on, we assume that A is a cuspidal I-semimodule, where I' is generated by the two
coprime integers 2 < n < m. We denote by B = (A_1, Ag, A1, ..., As) the basis of A. We introduce
the following structural values associated to A.

For1 < i < s+ 1, we define the axes u;‘, ul’,”, u; and ii; of A as follows:

e u!' =min{A; +nl € Ajp; { > 1}. We write u' = A;_1 +né!.
e u! =min{A;_1 + ml € Ajp; £ > 1}. Similarly, we put u]" = A;_1 + m{".
° ;= min{ul.",ul.’”} and ii; = max{uz’?,u;”}.

The numbers fi” and Flm are called the limits of A.

Example 3.2.1. Consider the cuspidal semigroup I' = (7,15) and let A be the I'-semimodule
defined by the basis 8 = (7,15,27,46). We are going to compute the axes to show how the
computations work.

We have that u] = min{15+7f € (7+T)} =22=15+7-1 =7+ 15. Similarly, we have that
u’ =min{15+15¢ € (7+T)} =105=15+15-6 = 7 + 7 - 14. Hence, we have that u; = uj =22
and iy = uy" = 105.

Next, we see that
uy =min{27+70 € (7+T)U(15+1)} =90=27+7-9=15+15-15.

ul =min{27 + 150 € (7+T)U(15+T)} =42 =27+15-1=7+7-5.
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Thus up = u}' =42 and i = u} = 90. Finally
uy =min{46 +7¢ € (7+IU(15+T)U(27+I)} =60=46+7-2=15+15-3.

ul" = min{46 +15¢ € (7+T) U (15+T) U (27 +T)} =76 =46 +15-2=27 +7-7.

Therefore, u3 = uj = 60 and #i3 = u3’ = 76. The reader can list all the elements of A and check
that the conductor of A is cx = 55.

Remark 3.2.2. If we consider the semimodule A’ = A — A, the new basis and the axes are shifted
by A and we obtain the same limits as for A. This is particularly interesting when A = A_; and
hence A’ is a normalized semimodule.

Remark 3.2.3. Let us note that 1
that A is normalized and thus ¢y,

< {" <nand that 1 < {!' < m. To see this we can suppose
<cr=Mm-1)(m-1)foranyj=-1,0,1,...,s. Assume that
" > n, we have

Aicg+m(f" =1) 2 (n —1)ym > cr 2 ca,.

Then A;_1 + m(fl.m —1) € Aj— in contradiction with the minimality of l’i’". A similar argument
proves that {!' < m.

Remark 3.2.4. Notice that u!' # u!" for each index 1 < i < s + 1. Indeed, if u!' = u!", then
nt! = ml"; given that n and m are coprime, then mk = {', for a positive integer k and hence
5171 > m which is a contradiction, by the previous remark.

Lemma 3.2.5. Let A be a cuspidal semimodule of length s. Take1 < i < s+1. IfA;_1+na+mb € A,
where a,b € Zs, then either a > " or b > {".

Proof. By definition, we have that:
Aisr+na+mb=Ar+nc+md, k<i-1,

where ¢, d are non negative integers. We proceed by inductionon a = ac + bd > 0. If @ = 0, then
ac = bd = 0. This implies that ab = 0, otherwise, ab # 0 and hence ¢ = d = 0, that is

Ail1 +na+mb= Ay,

which is a contradiction because Ay < A;—1. Now if a = 0, we end with the minimality of ¢! and,
similarly, if b = 0, we end by the minimality of Fl,”.

Assume that « > 0. Thenac # Oor bd # 0. If ac # 0, letusputa’ =a -1 > 0 and
¢’ =c—12> 0. We have that

Aicg+na’ +mb=A, +nc’ +md.
We conclude by applying an inductive argument. We apply a similar argumentif bd # 0. O

We define inductively the critical values t!',t!",t;, and f;, for =1 < i < s + 1 by putting

t.y=A_1=mnandty= Ay =m and

tl." = ti1 + Tlf?, = tq+ mﬁlm

i
ti min{t!,t"}, F max{t!", "}

} 1<i<s+1.

Noting that n{}' = ul.” —Ai_1and m(’i’” =u;" — Aj—1, we have that:

tl." = ti1+ ui" - Aic1, L
ti

; tig+ul" —Ai,
tiog+ui— Az, ti = tig+ili— Ao
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Definition 3.2.6. We say that the cuspidal semimodule A is increasing if we have A; > u;, for any
1<i<s,see(2]

The previous definition is motivated by the results in [21], where C. Delorme shows that the
semimodule of differential values of a cusp is increasing, with the (-1)-element of the basis equal
to n and the 0-element equal to m. Reciprocally, in [2], the authors show that given an increasing
semimodule A with (—1)-element and 0-element of the basis nn and m respectively, then there
exists a cusp whose semimodule of differential values is A. That’s way we mainly consider
cuspidal semimodules. Besides, it also explains why we use the convention of starting the basis
of the semimodule at index —1, because when considering the semimodule of differential values
of a cusp, the first two elements of the basis are given by the semigroup. We want to remark
that we could extend the notion of increasing semimodules for semimodules which are non
cuspidal, however, the semimodules of differential values of non cuspidal branches, they are not
increasing.

We finally note that if A is increasing, then each A; is also increasing, for 1 < i <'s.

Example 3.2.7. We continue with the computations from Example 3.2.1. We have have that
I' = (7,15) and the basis of the semimodule A is 8 = (7,15,27,46). We showed that

up =uy =22 iy =uy" =105
Uy = ué” = 42; ﬂz = l/lg =90
us = uf =60; i3 =uy =76

and hence we obtain

t =t"=22; ty = t{n =105
tr, =tI"=37; b, = f;l =85
t3 =t =51; I3 = i’;n = 67.

Finally, we notice that A1y = 27 > 22 = uj and A, = 46 > 42 = u;. Thus, A is an increasing
I'-semimodule.

Lemma 3.2.8. Let A be an increasing cuspidal semimodule. For any index 1 < i < s, we have that
/\i—A]' > ti—t]-,for—l < ] <.

Proof. By a telescopic argument, it is enough to prove the following statements:

e A, —A1>t,—tq,forl1<r<s.
e Aog—A_q1=>tyg—t_1.
The second statement is straightforward, because t_1 = A_; and tp = Ag. Let us prove that

Ar—Ap1 >t —tpq,forl1 <r<s.
The inequality A, — A,y > t, — t,_1 is equivalent to

L=t +u — A >t +u— A,
and this is equivalent to say that A, > u,. The result follows by recalling that A is increasing. O
Corollary 3.2.9. Let A be an increasing cuspidal semimodule. For any 1 < i < s, we have that

n n m m
Ui > tz‘+1 and Ui > tz‘+1'

Proof. Recalling that t,, = u!' ; — (A; — t;), it is enough to prove that A; — t; > 0. In view of

Lemma 3.2.8 and putting j = -1, we have that A; —¢; > A_1 —t_1 = 0. m]
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3.3 Circular Intervals

The circular intervals we describe here are useful for understanding the distribution of the
elements of an increasing cuspidal semimodule. We introduced the notion of circular interval
in [12], it is an alternative approach to the one in [2] where the authors use the notion of “lean
sets”, or the “mancala games" in [41] . Recall that we have fixed a pair of integer numbers (1, m)
with 2 < n < m and ged(n, m) = 1. The motivation comes from the following example.

Example 3.3.1. Consider the cuspidal semigroup I' = (5,11) and the cuspidal semimodule
A =T(5,11,18).

v e
[ ]
[ ]
[

15 20 25 30

.—.—.—@—.—H—.—O—.—.—.—Q—O—Q—.

30 35 40 45

Figure 3.1: First elements of A. The black dots represent the elements that do not belong to A. The
red circles are the multiples of 5 belonging to A. The green circles are the rest of elements belonging to
I'(5,11). The blue circles are the elements in (18 + I') \ I'(5, 11). Finally, the element 33 is marked, since
it can be checked that corresponds with the axis uj.

We notice that in the previous figure we can split the representation of the semimodule by
boxes of size n = 5. Each one of them is almost identical to the next one. Additionally, each time
a new multiple of m = 11 appears, we represent it by a green circle that is at distance one from
the previous one. This is because 11 = 1 mod 5. The idea behind circular intervals is to obtain a
similar representation of theses boxes when m may not be congruent with 1 modulo .

We are going to consider the unit circle S! ¢ C as a “clock” with “n-hours” as we explain
below.
Let ¢ : R — S! be the map given by

n

e(t) = exp (_2711‘\/—_1) .

We see the n-roots of unit as S! := ¢(Z). Note that there is a bijection
c:Z/nZ— S}

given by c(k + nZ) = (k). More than that, the bijection ¢ is an isomorphism of abelian groups,
where S! c C has the induced multiplicative structure coming from the complex numbers C.
Note that

c((k +nZ)+ (k' + nz)) = e(k)e(k’).

In particular c(k + 1 + nZ) = e(k)e(1).

Notation 3.3.2. In order to visualize in a better way the arithmetic of the abelian multiplicative
group S}, we introduce the following notations:

elk)y=ke, e(k)e(k’) =ke+ k..
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Note that there is no confusion possible with the addition in C. For instance, we have
(De=m-1)¢, (k+1)e =k:+1.and (k = 1)e = ke —=1e = ke + (1 = 1).

Let us consider two points P,Q € Sl. There are @ € Z and an integer number g with
0<B<n-1suchthatP = ¢(a)and Q = ¢(a + ). This number g, with 0 < f < n —1, does not
depend on the chosen a such that P = e(a) and we call it the separation S(P, Q) from P to Q, that
is, if P = &(a), we have that Q = e(a + S(P, Q)). Observe that S(P, P) = 0 and that

S(P,Q)+5S(Q,P)=mn, ifQ #P.

Additionally, if Q # Q' then S(P, Q) # S(P, Q") and S(Q, P) # S(Q’, P).
We define the circular interval < P, Q > to be

<P,Q>={e(a+k); k=0,1,...,5(P,Q)} c SL.
Note that if P # Q, we have that
<P,Q>U<Q,P>=8., <P,Q>n<Q,P>={P,Q}.
Remark 3.3.3. Given three points P, Q, R € S}l such that
Re<P,Q >,
We have that S(P,Q) = S(P,R)+ S(R,Q) < n -1.
To simplify the notation, we consider the total order in S}, defined by
0 <1 <2, <o <(n=1).

With this ordering, we see that given two elements z,z’ € S}, then we have the following
possibilities:

{z} ifz=2z2".

<z,z' >= {z,z+1:,2+2¢,...,27 = 1.,2} ifz <z
{z,z+1:,242¢,...,(n=1),0:,1,...,2" = 1,2’} ifz>2z.

Consider a list B = (z-1, zo, 21, . . - , Zs) of two by two distinct points z; € S},, with s > 0. For
any index 0 < i < s, we define the i-left bound bf(B) and the i-right bound b} (B) of B to be integer
numbers such that

-1<bY(B),bI(B)<i—1

and, moreover, the following holds:

1. If k = bf(B), then S(z, z;) < S(z4,z;), forany —1<g<i-1
2. Ifk = bi(B), then S(z;, zf) < S(zi,z4), forany —1<g<i-1.

By the properties of the separation between two points in S}, we have that S(zk, z;) < S(z,, z;) if
q # k and S(z;, zp) < S(zi, z4) if k # q.

Remark 3.3.4. Denote k = bf(B) and k = bi(B). The bounds are the integer numbers k, k with
—1 < k, k < i — 1 defined by the two following properties:

1. z; €< Zk, Zf >
2. Ifzj €< zg,zp >with-1<j< i, thenje {ik, k}.

Taking into account that S(P, Q) + S(Q, P) = n for Q # P, then bf(B) = b!(B) if and only if i = 0.
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3.4 Circular Intervals in a Cuspidal Semimodule

Let us recall that I' is generated by pair (1, m), with 2 < n < m and n, m are without common
factors.

We consider the quotient map p : Z — Z/nZ, which we also denote by p(k) = k. Since
gecd(n, m) = 1, the class 1 is a unit in Z/nZ, thus we have a ring isomorphism

E:Z/nZ - Z/nZ, &E(k)=k/m.

Let C : Z — S, be the map defined by C(k) = (c o & o p)(k). Notice that C(k + an) = (k) and that
C(mk) = e(k) = ke.
Consider the intervals I; = {nq,nqg+1,...,nq+n -1} CZ,q € Z. ForasetS C Z, we
define the g-level set R,(S) by
Re(S) =TSNy CSh.

Example 3.4.1. Consider the cuspidal semigroup I' = (7, 17) and the increasing I'-semimodule
A generated by the basis 8 = (7,17,26). We have that A N Ig = {42,43,45,47,48}. Now we
apply the map C to A N Is. First, we compute the residue modulo of the elements, obtaining
A={0,1,3,5,6}.

Now, we apply & to A, which corresponds with the division by 17. Note that 3 = 17 mod 7,

c to the 7 roots of the unity in C. We see that R¢(A) has two circular intervals, {0, 1,,2,} and

{4¢,5:}.
72

Figure 3.2: Level set R¢(A) from Example 3.4.1, the blue sectors represent the two circular intervals of
the level set.

Remark 3.4.2. If S C Zsatisfies the property thatn+SNI; 1 C SNI,;, wehavethat R;-1(S) C Ry(S).
This is the case of cuspidal semimodules.

Before continuing, let us remark the following thing: as it was stated, the construction of
circular intervals requires working with cuspidal semigroups, since we are using explicitly the
condition that gcd(n, m) = 1. One of the problems when generalizing all the results for more
complicated semigroups, such as the ones of curves which are not cusps, it is that we do not
know how to order the elements of Z/nZ in a proper way.

Now let us consider a cuspidal semimodule A of length s > 0 with basis

B = (A1, Ao, A1, en, M)

We see the basis 8 in S}, as B = ((B) = (z-1, 20,21, - . ., Zs), where we have that z; = ((A)), for
j=-1,0,1,...,s.
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Note that z; # zj, if i # j; indeed, saying that z; = z; means that A; — A; € nZ, that is not
possible in view of the definition of basis.

Take anindex 1 < i < s + 1. We define the fops q; and q;" of A by the property that u}" € I,»
and u;" € Ipn. We also define the fops g; and §; to be such that u; € I; and 7i; € I5;. Recall that

{uf uiy = {u;, i}

As a consequence, we have that {q?, q;”} ={qi,§i}. Note that q; < §;, since u; < ii;.
We also need to consider the integers v; that indicate the first levels Ry,(A) such that
z; € Ry, (A). In other words, each v; is defined by the property that A; € I, fori = -1,0,1,...,s.
The following statements concern the properties of being circular intervals for the levels of
A and some derived properties of the conductor.

Lemma 3.4.3. Consider u € I, denote r = C(u) and let q be such that q > v. For any p € Ry(u +T)
we have that < r,p >C Ry(u +T). In particular, the set Ry(u + T') is a circular interval.

Proof. The second statement is straightforward, since the union of circular intervals with a
common point is a circular interval. To prove the first statement, we proceed by induction on
the number ¢ of elements in < 7, p >. If { < 2, there is nothing to prove since < r,p >C {r,p} C
Ry(u + A). Assume that £ > 2; in particular we have that r # p. Consider the point = p — 1..
We have that < r,p >=<r,p > U{p} and the length of < 7, > is { — 1. Then, it is enough to
show that p € R;(u+T). Take an element u +na +mb € I, N (u+T) such that C(u +na +mb) = p.
Noting that 7 # p, we have that b > 1. There is q" < g such that yu +na +m(b — 1) € I,» and hence

p+n@+q—q)+mb-1)€l;N(u+I).
We have that ((u +n(a+q—¢') +m(b —1)) = p and thus f € Ry(u +T). O
Remark 3.4.4. For any u € Z3(, we have
#Ry(u+T) < #R;1(u+T)+ 1.

Indeed, this is equivalent to show that #p((u + ) N I;) < #p((u +T) N I;-1) + 1. Assume that
p1,P2 € p((u+T) N1y \ p((u +T) N I;-1). Notice that given p = y + na +mb € I; with a > 0,
then p —n € I,_1, thus we can take representatives p1, p2 € (u +I') NI, of p1 and p; of the form
p1 = p+mby, p2 = u+ mby. If p1 # p2, we have that |p1 — p2| > m > n and this is not possible.

Proposition 3.4.5. Assume that A is normalized (that is A1 = 0) and that R,;(As-1) is a circular
interval for any q > vs. We have:

1. <0¢ 25 —1e >C Ry(As—1), for g > g7, — 1.
2. <zs5,(n=1)e >C Ry(A), forq 2 g, - 1.

In particular, we have that Ry(A\) = SL, forany q > Gsi1 — 1. That is, cp < n(§ss1 — 1).

Proof. Statement 1: By Remark 3.4.2 itis enough to show that we have < 0., z, -1, >C Rq;1+1_1(As_1).
Since u! , = As + ndl | € As_q, thereis anindex k < s — 1 such that As + n{,; = Ay + na + mb.
By the minimality of £, ,, we have that a = 0 and hence A5 + nf!" , = Ay +mb.

Assume that the next statements are true:

a) If zx > z;, then < 0,,z; >C Rq;zﬂ(/\k +T).
b) If zx < z4, then < zg, zs >C Rqsnﬂ()\k +TI)and < 0, zx >C Rq;zﬂ_l(/\s_l).
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If zx > z5, by the minimality of £’ |, we have that z; ¢ Rq;'+1—1(/\k +I'); now, in view of Remark
3.4.4 and noting that < 0, zs >=< 0,25 — 1. > U{z,}, we obtain that

<0¢,2zs—1 >C ng’ﬂ—l(/\k + F) C ngﬂ—l(/\s—l)-
If z; < z;, we obtain as above that < zy,z; — 1, >C ng+1_1()\k +T), then
<0¢,2zs =1 >=< 0,2 >U < zg,2s — 1, >C ngﬂ_l(/\s_l).

If remains to prove a) and b).

Proof of a): We can apply Lemma 3.4.3 to have that < zj,z; >C Rgr (Ax +T). We end by
noting that < 0., zs >C< z, zs >.

Proof of b): Again by Lemma 3.4.3 we have that < zx,z; >C Rgr (Ax +T). On the other
hand, we know that ngﬂ_l(As,l) is a circular interval since g7, — 1 > v5 and it contains 0, and
Zr. Moreover z; ¢ Rq;zﬂ_l(/\s_l) and z; > zk, then the circular interval Rq§+]_1 (As-1) contains
< 0¢, zk >.

Statement 2: It is enough to show that <z, (n — 1), >C Rq;rzﬂ_l(/\). By an argument as before,
there is an index k < s — 1 such that u;’jrl =Ag + m(’s”il = Ar + na. Take zx # z; as above. By
Lemma 3.4.3, we have that < z;,z >C Rq;n” (As +T). Let us see that zy ¢ ngnﬂ_l(/\s +T). We
proceed by contradiction, assume that zj € Rgm -1 (As +T). This implies that Ay +n(a—1) € A;+T

and hence there are non negative integer numbers «, § such that
ully > As +na+mp = A +n(a—1).

If a — 1 < a, we have that Ay = A + n(a —a + 1) + mp and this contradicts the fact that Ay < As;
hence a — 1 > a and we have

As+mB=Ar+n(a-1-a).

Since a — 1 — & < a, we have that g < ¢!, ,. This contradicts the minimality of the limit £]", ;.
Since zx ¢ Rgn —1(As +T), we can apply Remark 3.4.4 which tells us that

< Zs,Zk > \{Zk} C ng”ﬂ—l(/\s + F) C Rqsmﬂ_l(/\).

Note also that zj € nglﬂ_l(A). Then we have that < zg, z; >C Rq:xﬂ_l(A). As before we have
to consider two cases: if zg > zi, then < z,,(n — 1), >C< z5, 2} >C Rq;n+l_1(A). Otherwise, if
zs < zk, we recall that z; ¢ Ry(As—1); since Ry(As_1) is a circular interval containing z; and 0.,
but not containing zs, we have that

<zg,(n =1)e >C Ryp(As-1) C ng’Ll—l(As—l) c Rq;"ﬂ—l(A)-
We conclude that < zg, (n — 1), >=< z5,zx > U < z,(n — 1), >C R‘i?lrl(A)‘ O

Proposition 3.4.6. Assume that A is normalized and increasing. Then R,(A) is a circular interval for
any q 2 qs+1.

Proof. Let us proceed by induction on the length s of A. If s = —1, we have A = A_; =T and
the result follows by Lemma 3.4.3 applied to u = 0. Let us suppose that s > 0 and assume by
induction that the result is true for A;—;. We have that A = A;_1 U (A; 4+ T'). This implies that

Ry(A) = Ry(As-1) URy(As +T), ¢ 0.
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By induction hypothesis, we know that R;(As-1) is a circular interval for any q > qs. Moreover,
by the increasing property, we have that

Use1 > As > Us = As-1.

In particular, we have that gs41 > g5 and R;(As-1) is a circular interval for any g > g5+1. On the
other hand, by Lemma 3.4.3, we know that R;(As +I') is a circular interval for any g > v. Since
s+1 = vs, we have that R;(As +T') is a circular interval for any g > gs41. Thus, both

Ry(As-1) and Ry(As +T)

are circular intervals for g > g5+1. We need to show that their union is also a circular interval.
It is enough to show that they are not disjoint, because the union of two non disjoint circular

intervals is again a circular interval. We have two cases:

n
s+17

Ak +mb for k < s, hence we have that z; € Ry, (Ax +T) C Ry, ,(As-1) obtaining the desired

result. If ug,1 = us"frl, similarly as the previous case we have that #1541 = A541 + mﬂg’il =Ar +na

for k < s, and we have that z; € Ry,,,(As +T).

Ifusy=u then as in the proof of Proposition 3.5.9, we have that us+1 = As11 + 1l | =

O
Corollary 3.4.7. Assume that A is increasing. Then iis41 > cp + n, where cy is the conductor of A.

Proof. We assume without loss of generality that A is normalized, because we notice that for the
semimodule A" = A’ + A, we have that its conductor and axes are shifted by A’ with respect the
ones of A.

First, let us show that R;(As-1) is a circular interval for g > vs.

If s = 0, we have that A;_; = A_; =T, we apply Lemma 3.4.3 by taking y = 0. Assume now
that s > 1. By Proposition 3.4.6, we know that R;(As_1) is a circular interval for any q > gs.
Moreover, we have that As > u; since A is an increasing semimodule. This implies that v; > g,
hence we get that R;(A;s-1) is a circular interval for any q > vs, as desired.

We end the proof as follows. By Proposition 3.4.5, we have that R;(A) = S}, for any
g 2 §s+1 — 1. This implies that for any k > n§s+1 — n, we have that k € A, and hence k > cy. We
conclude by that, by definition of the tops, we have that fis11 > n§s41. m]

Remark 3.4.8. Notice that Proposition 3.4.5 and 3.4.6 are also true for increasing cuspidal
semimodules such that A_; is a multiple nk of n. Indeed, in this case, we obtain the desired
statements by applying the propositions to A — nk.

In [3] is given an explicit formula for the conductor of a semimodule. Nonetheless, for our
purposes, the previous bound in terms of the axis 541 is enough.

3.5 Distribution of the Elements of the Basis

Along this section, we consider a cuspidal semimodule A of length s > 0 with basis 8, that we
read in S! as B = {(8B) as in the previous section. We are going to describe a pattern for the
distribution of the points z; in

B =1(z-1,20,21,---,2s)

m

by computing the bounds bf(B) and b!(B) of B in terms of the axes u!,; and u",.

Lemma 3.5.1. Take 0 < i < s. There are unique integer numbers k' and k" such that:
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1 -1<k'k"<i-1
2. Thereis bisv1 > O such that u',, = Aj +nl | = /\k? + mbj,1.
3. Thereis aj.1 = 0 such that ul."_il =Ai + ml’i’zl = /\kim +najyq.

Proof. The existence of k' and k!" comes from the definition of axes and limits. Let us show their
uniqueness. Assume that there is another k # ki with —1 < k < i — 1 and a natural number b
such that

u;:_l =A; + Tlfi’:_l = Ak;r + mb,'+1 =Ar + mb.

Then either Ay € (/\k;z +7T) or /\k;z € (Ax +T) in contradiction with definition of basis. The
uniqueness of k" is shown in the same way. o

The numbers b;,1 and a;,1 are the colimits of A.

Notation 3.5.2. We denote the indexes k; and k; of iij+1 by

kl' — k:l/ lf uf+1 = u?+1/ %i - k:l/ lf ﬁi+1 = u?+1/
k", ifuig = ully. k", ifdiig = ull.
Remark 3.5.3. Note that 1 < b;,1 < n. To see this, it is enough to consider when A is normalized.
Indeed, if b;;1 > n, we have that

A+ n(ff’ﬂ -1)= /Lklfr +m(biy1)—n=(m-1n>cr > CAj_q-
Thus A; + n(é’l.”Jr1 —1) € Aj_1 in contradiction with the minimality of £ l.”H. Now;, as a consequence,
we have that the separation S (zk;z, z;) is given by S (zk‘g«, z;) = bis1. Recalling that 1 < l’i’il <mn,

m

see Remark 3.2.3, we have that the separation S(z;, Zk;”) is given by S(z;, zk;u) =11

We will show that k' = bf (B)and k!" = b (B), for this reason we will use the same terminology
of i-left bound, i-right bound or bound, established for the indexes b;, bf, b:” and b;, to the indexes
ki, kf’, k;” and k;. Before showing this relationship, we make a simple example.

Example 3.5.4. Take the semimodule A = T'\ {0}. The basis of Ais B = (n, m). Note that A_; = n
and Ay = m; thus, wehave A_; =n+T and Ag = A =T\ {0}.
The limit £} is the smallest positive integer such that

m+nly =Ag+nll € Ag=n+T.

After solving the equation m + n{}' = n + mby, we obtain that {{' = 1 = b;. Moreover, we have

n

51

=n+m=t].

In the same way, in order to compute {{*, we solve m + m{}" = n + nay, obtaining £;' =n —1
and a1 = m — 1. Therefore, ui” =nm = ti".

We conclude that uy = uj = n+m, iy = uf" = nm,t; =t and f = t'. As expected, we have

that ki = k' = —1, that are the 0-bounds of the list
B= (OSI 16) = (Z—l/ZO)/

(note that {(m) = 1,).

Any cuspidal semimodule A with basis (1, m, . . .) has the same first axes, first critical values,
first limits, first colimits and 0-bounds as the ones computed above, since their computation
depends only on Ag =T\ {0}. As we said before, the semimodule of differential values of any
cusp satisfies this property.
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Lemma 3.5.5. Consider 0 < i < s and take integer numbers =1 < k, k' < i -1, with k # k’. Assume
that we have the following equalities:

Ai +ne = Ag + mb; Ai +ne’ = A + mb’, (3.3)
where e, e’ € Zand 0 < b,b" < n. Then we have that e < e’ if and only if b < b’.
Proof. Equations (3.3) lead us to:

Ak
A

A +n(e—e’)y+m(b’ -D),

A +n(e’ —e)+m(b-1).

Note that Ay ¢ A + T'and A € Ax + T, since Ax and Ay are different elements of the basis of A.
We conclude that b < b’ if and only if e < ¢’. ]

Proposition 3.5.6. Consider 0 < i < s and take integer numbers =1 < k, k'’ < i —1, with k # k’. We
have

1. Assume that A; + ne = Ay + mb, A; + ne’ = Ay + mb’, wheree,e’ € Zand 0 < b,b’ < n. Then
e<e & Ai+ne <A +ne’ & S(zk,zi) < S(zw, zi). In particular, taking k = ki, we have
S(zk;,,zl-) < S(zpr, zi).

2. Assumethat Ai +mf = A +na, Aj + mf’ = A +na’ wherea,a’ € Zand 0 < f, f < n. Then
f<fleli+mf<Ai+mf & S(zi,zk) < S(zi,zr). In particular, taking k = k", we have
S(zi, z,m) < S(zi, zkr).

Km
i

Proof. Notice that S(z;, zx) = f and S(z;, zr') = f’, this proves the second statement. For the first
statement, we apply Lemma 3.5.5, by noting that S(z, z;) = b and S(zy/, z;) = b’. m]

Corollary 3.5.7. We have that k! = bf(B) and k" = bI(B), for 0 < i < s.

Remark 3.5.8. Take an integer number A € Z. Then 8’ = A + B is the basis of A’ = A + A and
B’ = {(B’) = B + A,. Thus, the bounds of B’ are the same ones as the bounds of B. Anyway,
the axes for A’ are the ones of A shifted by A, this implies also that bounds, limits and colimits
coincide for both semimodules.

For the particular case when the semimodule A is increasing, we can give a more accurate
description of the bounds, as shown in next proposition:

Proposition 3.5.9. Assume that A is increasing and take 1 < i < s. We have

1. Ifu; = ul’?, then kf =i—1and ki'” = k?iy
2. Ifuj =u", then k! = k' and k" =i —1.

Proof. In view of Remark 3.5.8, it is enough to consider the normalized case A_; = 0. Let us do
the proof of Statement 1; the proof of Statement 2 is similar and we do not explicit it. Thus, we
take the assumption that u; = u".

First, let us suppose that i = 1. By considering the bounds in the list (z_1, zo, z1), we deduce
that k| = k(' = —1 and either z; €< z_1,29 >, or z1 €< 20,21 >. Let us show that we actually
have that z; €< zp,z-1 >, which implies that k} = 0 and k{" = —1 as desired.

Since A_; =T, we have that R;(A-1) is a circular interval for g > 0, due to Lemma 3.4.3.
Recall that uj’ = u; € I;,. Noting that z_; = 0. and applying Proposition 3.4.5 we have that

<z,20—1¢ >CRy(Ax1), q=q]-1=q1-1.
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On the other hand, we have that zg € R;(A), for any g > g1 since Ag < u1 and hence vg < 7.
Thus, we have < z_1,zp >C Ry, (Ao). Note that A1 > uy, since A is increasing; this implies that
z1 ¢ Ry, (Ag), hence we necessarily have that z; ¢< z_1,zg >, therefore z; €< zg,z_1 >.

Now, assume that i > 1. Our first step is to show that z; €< zj» , zyn >. By Proposition
3.4.6, we have that R;(A;-2) is a circular interval for g > g;-1. Since Zkn and Zgm, belong to
Ry, (Ai—2) we have that

Either < Zkr 2k, >C qu_l (Aj—p), or < Zgm 2k, >C qu_l (Aj=2).
Noting that and z;-1 ¢ Ry, ;(Ai—2) and z;—1 €< Zin , Zkn >, We conclude that
< Zk:_ril, Zk;’—l >C qu_l (Ai_z).

Noting also that z; ¢ R,,_, (Ai-2), we obtain that z; €< Zin , Zkn, >, as desired.
Thus, we have z;,z;_1 €< zj» 2k > and hence there are two possibilities: either z; €<
i i—

Zkr ,Zi-1 >, OF Zj €< Zj-1,Zkn, >. If we show that z; €< zi1,zkn, > holds, then the proof is

over. By Proposition 3.4.5 we have that
<0¢zi-1 =1 >C Ry—1(Ai2) € Ry-1(Ai-1).

Since z;-1 € Ry;(Ai-1), we have that < 0, z;-1 >C Ry, (Aj—1). If zin | €< 0g,zi1 >, taking into
account that 0, = z_1, then we would have that S(0,, z;-1) < S(Zk?,lf z;i—1). This contradicts the
fact that kf_l = bf_l(B). Hence, we have that zpr | €< 0¢,z;—1 > and

<zgr,zi-1 >C Ry (Aima).
Since z; ¢ Ry;(Ai-1), we obtain that z; €< z;_1, Zgn > as desired. O

Remark 3.5.10. Note that Proposition 3.5.9 implies the following statements:

1 Ifk! =i-1,thenu; = u.
2. Ifk;" =i-1,thenu; = ul?”.

Indeed, we have that i — 1 € {k!', k["}; if k!' = i — 1, then necessarily k" # i — 1 (note that i > 1)
and we are in the situation of the first statement of Proposition 3.5.9. Similar argument when
k" =i-1.

1

3.6 Relations between Parameters

Let A be an increasing cuspidal semimodule with basis 8 = (A_1, A, A1,...,As) and let us
denote

B=0U8B)=(z-1,20,21,---,%s)-

In this section we describe inductive features of axes, limits and co-limits of A.

Lemma 3.6.1. Take1 < k < i < s + 1. We have:

1. The axes and the critical values u;, t; satisfy that u; > uy and t; > t.
2. The axes and the critical values i;, t; satisfy that fi; < il and t; < Fy.

Proof. It is enough to consider the case k =i — 1.
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Let us prove Statement 1. By definition of the axes, we have that u; > A;_;. Since the
semimodule is increasing, we have that A;_1 > u;_1. We get that u; > u;_1. Moreover, by
definition of critical value, we see that

ti=tion + (ui — Aizg) > tioq.

This ends the proof of Statement 1.

Let us prove Statement 2. We do it for the case that ii; = ul.” =Ai1+ nfi”, the proof for the
case ii; = u!" runs in a similar way. By Proposition 3.5.9, there are two cases: either k' | =i —2
or k", =i —2. We shall see that #I; < #l;_; and that I < i simultaneously in each of the cases
above.

Case k?_l =i — 2. By Remark 3.5.10, we see that u;_1 = ”?—1 and ii;_1 = ul.”il. Hence we can
write:

fii=ul = Aoy +nll = Aig+mb; 34)

Aiop + mgim—l =Ar+na;q1 withk <i-2. (3.5)

=
2
_
Il
=
1l

In order to see that ii; < ii;_1, we need to show that b; < ¢ lrf ;- To do this, we are going to exclude
the possibility b; > £!".:

e If{", = b;, we deduce that i;_1 = ii; from equations (3.4) and (3.5). Hence, we have
il :)\,-_1+n€i" = A +naj_1 =11, k<i-2.

Then A;_1 € Ay +T or Ay € A;—1 +T, contradicting the fact that 8 is a basis.
e If ", < b, by equation (3.4) and by Corollary 3.4.7, we have that:

ii—n=Aq1+n{] =1)=Aj2+mbi—n2>2Air+ml" +m—n

Sl 1+ M =12 CA, +1 > CAp,.

We get that A;_1 + n(€ —1) > ca,, and thus Aj—q + n(€! — 1) € A, contradicting the

minimality of F;‘.

It follows that b; < [l.”il, concluding that #; < #i;_1, in the case k;‘_l =i-2.
Let us see now that ; < f;_1 in this case k?_l =i — 2. From equations (3.4), (3.5), using the
fact that ii; < ii;—1 and the property of increasing semimodule, we have that:

Aiep + mfﬁl =dj_1 > =Aj-1 + nfl” > uj—q + nl’zn
Consequently, m€", > u;—1 — Aj—» + n{!" and
Fioi=tio+ mfzn_ll >tio+ui1—Aio+ Tlfln =ti_1+ nfl” =

This ends the proof that f; < ;_1 in this case.

Case k", = i —2. Note that #i;-1 = u!' | and k' | = k', in view of Remark 3.5.10 and

2
Proposition 3.5.9 . Thus, we can write
i = ui” = A1+ nt’i" = A + mb;, with k = k?—l = k?_z <i-2, (3.6)
flj_1 = ui”_l = Ao+ Tllji"_l = Ay + mb;_1, with k = k?_z <i-2. (3.7)

Let us proceed in a similar way as before to show that b;_; > b;:

e Assume that b;_1 = b;. Then p(A;_1) = p(Ai—2), absurd.
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e Assume that b;_1 < b;. Then, we have that

ﬁi—nz/\i_1+n(€f—1) /\k+mbi—n

/\k + (bl - 1)TYZ =11+ (bl - bi_1 - l)m

j1=>n+ CA;yp-

Then A;_1 + n(l’f —1) € Aj—», in contradiction with the minimality of Zl.”.

We conclude that b;_1 > b; and thus ;-1 > ii;.
Let us see now that f; < f;_; in this case k", =i —2. From equations (3.6), (3.7), using the
fact that ii; < ;-1 and the property of increasing semimodule, we have that:

Aig+nll =il 1 >i; = Ay +nll >uiq+nl].
Consequently, n€!" | > uj—1 — Aj— + né! and
fioi=tio+nll | >tig+uig—Aip+nll =tig+nll =1
This ends the proof. o
Corollary 3.6.2. Let A be a cuspidal increasing semimodule with basis
B =(Aq, Ao, A1, As)

such that A_q = n and Ao = m. We have that F1 = i, = nm and the following holds

thy<bhh=nm and ", <bh=nm,
forany 1 < i <s. Similarly, for the axes.
Proof. Itis enough to recall that f; = nm in view of Example 3.5.4. |

We finish this chapter with two technical results required in Chapter 8.

Proposition 3.6.3. Consider 1 < i < 's. We have

L Ifk! =i—1,then £ +ai1 = a;jand £}, + bir = .
2. Ifk" =i—1,then £ | +ajy1 =€ and {7}, +biy1 = b;.

Proof. Notice that shifting the semimodule any integer number does not change the value of the
limits and the colimits. Therefore, we can assume without loss of generality that A is normalized
and thus A_1 = 0.

Let us prove Statement 1. By hypothesis, we have that k! = i — 1. In view of Remark 3.5.10
and Proposition 3.5.9, we also have that k" = kI",. Let us write:

ully = Aj+nlly =Ai1+mbiy, (3.8)
uﬁl = A+ m({il = Akz’.” +naiy1, (39)
ul’." = Ai+ mﬁi’” = /\kinil +na; = Aklm +na;. (3.10)

From equations (3.8) and (3.9) we obtain that
nffﬂ +najy1 + /\kf" =mbj + m(’ﬁl +Aiq. (3.11)
By equation (3.10) we can substitute )\k;n = Ai-1 + m{" — na; in equation (3.11) to obtain

n(ll +aiyr —a;) =m(ly + by —£"). (3.12)
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Since n and m have no common factor, we have that n divides ¢, + bj+1 — ¢;
Let us see that fﬁl +biv1 —{" = 0 and hence (’Z’H +bii1 = (’1?" as desired. If fﬁl +bin =" #0
we are in one of the following three cases

a) |68, + b1 =" =2 2n, b) &L +biy =" =-n, o) +bi—{" =n.

Let us see that each of these cases leads to a contradiction.

Assume first that we are in case a). Noting that ¢, b1, fl?" > 1, there is at least one of them

i+1/
that is strictly bigger than n. Let us consider the three possibilities:

e If £, > n, we have that m{, > nm and then A; + m{’}; > nm. This implies that
Ai+m(’, —1) > (n—1)m > cr 2 cp,,. Then, we have that A; + m({}; — 1) € Aj-,
contradicting the minimality of {7,. Recall that the conductor of the semigroup is
cr=(m—-1)(m-1).

e If{ > n, we do the same argument as before.

* Ifbiy1 > n, we have that A; + nf' | = Ai_y + mbi+1 > nm and then

Ai+n( . —1)>m—-1n =cr = ca,,

i+1
Then A; + n(¢ o 1) € Aj—1 and this contradicts the minimality of e,

Assume that we are in case b), that is ﬂi’ﬁl + by — Fl?" = —n. this implies that l)i’" > 1 and we do
the same argument as before to obtain a contradiction.

Assume that we are in case c), thatis ¢}, + biy1 — {" = n. We have that (!, + biy1 > n.
By Remark 3.5.3 we see that the separation S(zl 1,zi) is given by S(zi—1,z;) = bi41 (recall
that k! = i — 1) and that the separation S(z;, zkm) is given by S(zl,zkm) = {,. Noting that
zj €< zj-1, Zkn > and z;_1 # Zgm, We conclude that

n > S(ziz, zir) = S(zi-1, zi) + S(zi, zin) = binn + 4

This contradicts bit1 + £, > n. The proof that Z'” +biy = fz.’" is ended. Moreover, since
1 T biva =" =0, by equatlon (3.12), we Conclude that ' +aiy1 = a;, as desired.
The proof of Statement 2 runs in a similar way to the above arguments. o

Next corollary will be useful in our computation of Saito bases in Chapter 8:
Corollary 3.6.4. Consider2 < j+1<gq<s+1. Then

+¢m

st ) =bg >0,

]+1 ( j+2
under the assumption that i1 = tj"il and by = t], for j +2 < € < g — 1. In a symmetric way, we have
that

+ 0"

ny —
st -+€q)—aq>0,

]+1 ( j+2

under the assumption that fi.q = t]’.‘+1 and b =t", forj+2< < q-1
Proof. We prove the first assertion, the second one is similar. Let us consider the difference

Em

m
j+1 -

j+2°

Since t]+1 =t
that

by Proposition 3.5.9, we have that k;’+1 = j. By Proposition 3.6.3, we conclude

j+17

m mo_ .
€]+1 €‘+ —b]+2.
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Now, let us study the difference b — f],’isl. Since tjyp = t]’.’iz, we have that k}’ﬁz =j+1. By
Proposition 3.6.3 we conclude that

bj+2 - g]nj::‘; = bj+3.
Following in this way, we conclude that

G — (Ga + i+ + () =bg >0,

as desired. m]



4

STANDARD BASESs

In order to compute the semimodule of differential values of branches, we need to compute
standard bases. This notion is our main computational tool in this work. Standard bases were
firstly introduced by H. Hironaka in [38] when he was studying the resolution of singularities
of algebraic varieties in characteristic 0. The concept of standard basis is quite similar, in its
definition, to the one of Grobner basis. In this chapter, we basically give the notations and
definitions needed to understand this concept, additionally, we give the algorithms that compute
a standard basis.

We treat the notion of standard basis in the cases of ideals, algebras and modules. As a
remark, in the case of cusps, the computations are easier. For this reason the reader can skip
the sections about of algebras and submodules. Nonetheless, we add them to the text for
completeness, this way the reader may find the required techniques to study semimodules of
differential values for branches which are not cusps.

We use [31] as our main reference, there it is only treated the formal case. Since we are only
interested in the holomorphic case, we added minor modifications to the formal case.

4,1 Standard Bases of an Ideal

In this section we recall the notion of standard basis for an ideal. We follow [31] along the first
three sections.

Let p be a positive integer. Fix a monomial order < of (Z3o)?, that is, < is a total order
satisfying that 0 < s for all s € (Z»0)¥, and if 51 < sy, then s; +s < sy + s forall s, s1, 52 € (Zx0)".
Additionally, we ask < to satisfy the finiteness property. In other words, for all sg € (Z3¢)”, the set
{s < s09:5 € (Zxp)P} is finite.

Example 4.1.1. The following two monomial orders are the main ones that we are going to use
along this work.

¢ The natural order in Zs.

¢ Consider a pair of positive integers (1, m) such that 2 < n < m. Then given (a, b), (c, d) €
(Z0)*, wesay that (a, b) < (c,d)ifand only if either na+mb < nc+md orna+mb = nc+md
with a < ¢. We call this order the weighted order with respect (1, m).

Given s, t € (Zs0)P, we say that s divides t, or that t is divisible by s, if t —s € (Z»0)?, we
denote it by s | . Consider a set A C (Z»0)?, a subset D C A is said to be a set of divisors of A if
for all s € A there exists f € D such that ¢ | s. The set D is a minimal set of divisors if ¢ | ¢’ implies
thatt =t/,forall t,t’ € D.

71
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Remark 4.1.2. Any non empty set A C (Z3o)” has always a finite minimal set of divisors, see
[31] p.3 Theorem 1.

If g # 0, then we define the leading power of g with respect to < as

,,,,, .(8)),

x,(g) is the Newton cloud of g, as defined in Chapter 1. Besides, we

Ip(g) := min(NCy,

we recall that NCy,
set Ip(0) = (c0,00,...,00) > a for any & € (Zso)?. The leading term of g is It(g) := agxP where
B =1Ip(g)if g # 0and [t(0) := 0.

,,,,,

Definition 4.1.3. Given an ideal I C C{x1,...,x,} and a subset B C 1. We say that B is a standard
basis of I if B generates I as an ideal, and for any h € I, there exists b € B such that Ip(b) | Ip(h). We
say that B is a minimal standard basis, if for all b € B, then B \ {b} is not a standard basis.

We are going to explain how to compute a minimal standard basis. First, we introduce some
terminology. Given a set B C C{xy,...,x,} and two elements g, € C{x1,...,x,}, we say that r
is a reduction modulo B of g, if there exist a € C, a € (Z»0)?, and b € B, such that

r=g—ax“b,

with either r = 0 or Ip(g) < Ip(r). If there exists a reduction r of g modulo B, we say that g is
reducible modulo B.

We denote by 1« a final reduction as the Krull limit of a sequence of reductions starting of
g until obtaining either the zero element or an element non reducible by B any longer. More
precisely, we consider a sequence

ro=8 1 > — ... —...

where 7; is a reduction of ;-1 modulo B. An element 7’ € C{xy,...,x,} is called a partial
reduction of ¢ modulo B if there exists a finite sequence of reductions, as above, starting at g that
gives r’. In the definition of final (resp. partial) reduction of g, we are including the case where
g is non reducible modulo B, in that case g will be its own final (resp. partial) reduction.

Remark 4.1.4. Artin’s Approximation Theorem, see [5], states that given a formal solution of
a system of holomorphic equations there exists a convergent solution as close as desired to
the formal one in the Krull topology. Thus, when B is finite, saying that a final reduction of g
modulo B is zero implies that g belongs to the ideal generated by B. Additionally, the reciprocal
result is also true, that is, if g € (B), then g is reducible modulo B. In particular, 0 would be a
final reduction of ¢ modulo B.

Take non zero functions g1, g2 € C{x1,...,x,} with [t(g;) = a;x% for i = 1,2, the minimal
S-process of g1, 2 is

lem(x®1, x92) ay lem(x®1, x%2)
xa 81 a_z x®2

Smin(gl/ gZ) =

82,

where Icm(x®, x*2) is the usual least common multiple.
We recall now an algorithm to compute a standard basis.

Biichberger’s Algorithm

INPUT: (g1,...,8j) =1 € C{x1,...,x,} ideal and a monomial order <.
OUTPUT: B standard basis of I.
START:
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Put B ={g1,...,8j}
loop {

for all distinct pairs of elements hy, hy € B:
Compute s = Spmin(h1, h2) and 7 a final reduction of s modulo B.
if 7o, # 0 then:
Add re to B.

if all the final reductions computed are 0 then:

Return.

} end loop

Consider I € C{x1,...,x,} anideal and the C-vector space Q = C{x1,...,x,}/I, when the
complex dimension of Q is finite we have that:

dich = #((Zzo)p \ IP(I))

If p = 2 we can rewrite the previous formula. Assume that B = {g1, ..., g;} isa minimal standard
basis of an ideal I ¢ C{x,y}. Put Ip(g;) = (a;,b;) fori = 1,...,j, and suppose that they are
ordered such that:

0<m<ay<...<aj; by>by>...>b;20.

Proposition 4.1.5 ([31] p.32 Lemma 1). With the notations as above, the dimension of Q = C{x, y}/I
as C-vector space is finite if and only if ay = b; = 0. Besides, in the finite case, we have that

j
dimcQ = Z bi—1(a; —a;i-1).
is

Remark 4.1.6. The set of leading powers {Ip(gi)}i=1,..,j, with {g1, ..., ¢;} a minimal standard
basis of I € C{x1,...,x,}, does not depend on the minimal standard basis chosen. In particular,
we also have that two minimal standard bases of an ideal I have the same number of elements.

Moreover, there always exists a finite standard basis of an ideal I ¢ C{x1,...,x,}.

4.2 Standard Bases of a Subalgebra

As we said before, we are interested in computing minimal standard bases of submodules, in
order to do that, we need first to compute them for the case of subalgebras.

The purpose of using this theory is to study the case where our subalgebra is C{x(t), y(t)},
being (x(t), y(t)) a primitive parametrization of a curve.

Consider aset G C C{x1,...,xp}, and define G* a G-product as

G* = 1_[ g, gi€Gforalliel, wherea = (ay,...,as).
il
I finite
The G-products play a similar role as the monomials in the previous section. For simplicity, we
are going to assume that G = {g1, ..., ¢} is always a finite set, in this case, we omit the index I

in the product, and we use the usual notation
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We also consider T = C{fy,..., fi} € C{x1,...,x,} a C-subalgebra, where f; is a non zero
element of the ideal (x1, x, . .. ,xp) forl<i</{.

The following definitions are adaptations of the ones given in the previous section, but for
the case of subalgebras.

Given g,r € C{x1,...,xp}, we say that r is a reduction of ¢ modulo G and that g is reducible
modulo G, if there exist a G-product G* and a € C, such that

r=g-aG*"
with either r = 0 or Ip(r) > Ip(g). As before, we can consider a sequence of the form:
Q=1 DI = — ... —...

where 7; is a reduction of r;_; modulo G for i > 1. If G c T, again, because of the finiteness
property of the monomial order, we have that the sequence converges to an element 7. In fact,
it is satisfied that 7 € T, that is, it is a convergent power series. Indeed, there are two cases:
either 7o = 0 or 7o # 0. If 7o = 0, then is clear that 7, € T. Otherwise, if 7, # 0, then by the
finiteness property of the monomial order, we have that the sequence that defines r., must be
finite. Therefore, the element 7., is the finite sum of holomorphic power series, and thus, it is
also convergent.

We say that the limit . is a final reduction of g modulo G, if either ro, = 0 or Ip(reo) # Ip(G*)
for every G-product. As before, we refer to any of the intermediate elements of the sequence as
partial reductions of g modulo G.

We say that G is a standard basis of algebras if

(Ip(G)) = Ip(C{G}).

The set G is a standard basis of T, if G is a standard basis of algebras and T is generated by G. We
say that G is minimal if for any g € G, Ip(g) € {Ip(G\ {g})).

Up this point, everything is similar to what was defined in the previous section. However,
the notion of minimal S-process must be changed.

Consider G = {f,..., fo} € C{x1,...,xp}, forany (a1,...,a¢) = a € (Zs0)!, we denote by
pri(a) := a; with 1 < 7 < p. We consider the system of diophantine equations S:

{ {
Dapn(p(f) = Y piprlp(f)
i=1 i=1
! {
D aipry(p(f) = D BipryIp(£)
i=1 i=1

The set of solutions of S has a minimal set of divisors D(fi, . .., fr) C (Zx0)*. We will denote
any element of D(fi, ..., fi) as (a, B), with a, B € (Z»0)".
We define the minimal S-process Syin(G, @, B) of G as a sum of two G-products

Smin(G, a, B) := G* + bGP,
where (a, f) is an element of D(g1, ..., g¢) and b € C*, such that
Smin(G/ a/ﬁ) =0 or ZP(Smin(G/ a/ﬁ)) > IP(GDC) = ZP(Gﬁ)

It is possible that T does not have a finite standard basis, see [31], however in the case it
exists, we can compute one in a similar way as in the case of ideals:
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Biichberger’s Algorithm

INPUT: T = C{fy,..., fe} aC{xy,..., xp}-subalgebra and a monomial order < in (Z5o)".
OUTPUT: G standard basis of T.
START:

PutG={f1,--~;fl’}'

loop {
Compute any S-minimal process s = Smin(G, @, ) of G and 7« a final reduction of
s modulo G.
if o # 0 then:
Add r to G.
if all the final reductions computed are 7., = 0 then:

Return.

} end loop

4.3 Standard Bases of a Submodule

Here we describe what is a standard basis for a submodule. We put as before T = C{fi, ..., fr} C
C{x1,...,xp} aC{xy,..., xp}-subalgebra. We only deal with a particular type of submodules of
C{x1,...,xp}. Weset T=Cllfi,..., fill € Cl[x1, ..., xp]] and let M be a complete T submodule
of C[[x1,...,xp]]. We consider the T submodule M C C{x1,...,x,} as the set of convergent
elements of M.

As before, we say that H C M is a standard basis of M if H generates M as T-module and

(Ip(H)) = (Ip(M)).

We say that H is a minimal standard basis if for any m € H we have that Ip(m) ¢ (Ip(H \ {m})).

Assume that G is a standard basis of T. Take H C C{x1,...,x,} and h,r € C{x1,...,x,}.
We say that r is a reduction of ¢ modulo (H, G), or that that g is reducible modulo (H, G), if there
are a G—product G* m € H and a € C with:

r=g-aG%m

satisfying that: either r = 0 or Ip(r) > Ip(g). We are going to assume that G and H are finite sets,
in fact, we can assume that G = {f1, ..., fr}. We consider, again, a sequence of reductions:

§=Tro D1 DI ... T

which converges to an element r., € M, because of the finiteness property of the order and the
completeness of M. If r, = 0 or 7o cannot be reduced more, we say that r. is a final reduction
of ¢ modulo (H, G). The intermediate elements of the sequence are called partial reduction of g
modulo (H, G).
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Given my, my two different elements of H, we consider the system of diophantine equations

S:

4 !l
prim) + Y apn(p(f)) = pri(ma)+ > Bipr(ip(f))

i=1 i=1

! !
pro(m) + > aipry(Ip(f)) = pry(ma)+ > Bipry(Ip(fi),

i=1 i=1

We denote by D(m1, my; fi,..., fr) C (Zs0)% the minimal set of divisors associated to the set of
solutions of S. Again any of its elements is denoted by (a, §) with a, € (Zx)".
Given a my, my € H, we define the minimal S-process Syin(m1, mp, &, a?) as:

¢
q
Smin(my, ma, at, a?) = G“lml + uG“zmz, with G = l_l g;l" ,q=1,2.
i=1

where (a!, a?) € D(my, my; 81,...,8j)and a € C* such that
Ip(Spin(my, ma, at, a?)) > lp(G“lml) = lp(G“zmz).
We now give the corresponding algorithm that computes a minimal standard basis of M.

Biichberger’s Algorithm

INPUT: T = C{G} a C{x1,..., x,}-subalgebra with G a standard basis, M a T-submodule of
C{x1,...,xp} generated by B = {my, ..., m,;} and a monomial order < in C{x1,...,xp}.
OUTPUT: H standard basis of M.
START:
PutH =B ={my,...,mg}.
loop {
Compute any S-minimal process s = Smin(h1, h2, a', a?) with hq, hy € M. Compute
T'e a final reduction of s modulo (H, G).
if 7o # 0 then:
Add re to H.
if all the final reductions computed are 7., = 0 then:

Return.

} end loop

4.4 Formal vs Convergent

We end this chapter with a brief explanation on the differences between the formal and the
convergent cases. Since we find those differences quite small, we chose the previous presentation
instead of restarting the theory from scratch, proofs included. Besides, this work did not pretend
to be a reference on standard basis, rather on its applications when applied to plane curves.
Nonetheless, just to make things clear we put this small note.
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We first remark that we demanded our monomial order to satisfy the finiteness property.
This condition is required in both the formal and convergent cases when computing standard
bases for algebras and modules. However, for ideals, in the formal case it is not, see [31].
Next example shows that modifications are needed when passing from the formal case to the
convergent one.

Example 4.4.1. In (Z50)*> we consider the lexicographic monomial order, that is, (a, b) < (c, d) if
either b < dorb = d and a < c. This monomial order does not have the finiteness property since
(k,0) < (0,1) for all k € Z5o.

We take the following family:

B={fy=x"—x""+nly" :n>1},

and the function ; = —x. Note that I¢(f,) = x" for all n. We have thatr, =r1 + f1 = —x2+ yisa
reduction of r; modulo B. Similarly, r3 = o + f = —x3 + y+ 2}/2 is a reduction of ¥, modulo B.
We see that we can continue this process indefinitely. After an infinite number of reductions, we
obtain a final reduction 7. = },,»1 n!y" modulo B, which is not convergent.

Example 4.4.1 shows that when considering any monomial order the final reduction of a
function r modulo a set of functions B may not be an element of the ring C{x1, ..., x,}. Recall
that having a ring closed under final reductions is necessary when applying the Biichberger’s
algorithm.

If we impose the finiteness property in the monomial order, as we did, then the number of
reductions used to compute a non zero final reduction is always finite. In other words, if we start
with convergent elements then a final reduction is always written as a polynomial combination
of convergent functions, which is again convergent.

We notice an extra thing, Example 4.4.1 is constructed by using an infinite set B. When
applying Biichberger’s algorithm for ideals, we only deal with sets of finite cardinal. We do not
know if only imposing the set B to have finite cardinal would solve the convergence problem.

For the rest of theory, it is the same as the one we can found in [31]. We only restrict ourselves
to work over the complex numbers and hence we can apply Artin’s Approximation Theorem.
We recall that we needed it, because saying in our context that a final reduction of a function is 0,
implies that the function can be written as a formal combination of the elements our standard
basis. By means of that theorem, we can assure the existence of a convergent one, and state that
the original element is generated by the standard basis.
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DELORME’Ss DECOMPOSITIONS

We need to find the semimodule of differential values of a cusp C. This could be done by
means of Biichberger’s algorithm of modules from Chapter 4. Nonetheless, due to the works
of C. Delorme [21], we can improve the previous method in the cuspidal case. The goal of
this chapter is to explain in detail, and to generalize, the results of Delorme. To do so, we use
the combinatorics introduced in Chapter 3. In relationship with the results from [9, 48], in
the last section we show how to do all the computations with an implicit equation. Note that
Biichberger’s algorithm is thought to be used in principle with a primitive parametrization.
These last results are used in Chapter 9, when discussing about the Bernstein-Sato polynomial.

5.1 Standard Bases for the Module of Differentials

We first start with an explanation on how standard bases can allow us to compute the semimodule
of differential values. Before that, we have to give the relationship between standard bases and
the semigroup of a branch. We are going to use usual order in Z,( as a monomial order.

Fix (C, Pp) a branch, with ¢(¢) = (x(¢), y(t)) a primitive parametrization. By Remark 1.2.4,
we have that the C{t}-subalgebra C{x(t), y(f)} is isomorphic to the local ring of C.

Assume that G = {ho, h1 ..., hg} € C{x(t), y(t)} is a minimal standard basis of C{x(t), y(t)}.
Hence, given g(t) € C{x(t), y(t)}, we can write

ordi(g) = > ynordi(h), yi € Zso.
heG

Recall that the parametrization ¢ induces a surjective map C{x, y} — C{x(t), y(t)}. Thus we can
write g(t) = r o ¢(t) for some r € C{x, y}, thatis, vc(r) = X jeg Yn ord¢(h). By the minimality of
the standard basis, we have that the set {ord;(%) : h € G} is the minimal set of generators of the
semigroup I'c of the curve C, as defined in Chapter 1. In other words, if the the elements of G
are properly ordered, we have that ord;(h;) = Ei, fori=0,1,...,g.

For example, assume that C is a cusp with Puiseux pair (1, m) and (x, y) is a system of
adapted coordinates with respect to C. By Equation (1.8), we can write ¢(t) = (+", v(t)t™), where
v(t) is a unit in C{t}. In this situation we have that I'c = (n, m). Then {x(t), y(#)} is a minimal
standard basis of C{x(t), y()}.

Now return to the general case, where the branch C may no longer be a cusp, and take
the module QEPO of differentials of C defined in Section 1.5. Note that Q%:,Po can be seen
as a C{t}-module. Let H = (-1, 1o, ..., {s) be a minimal standard basis of the module of
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differentials QL , . By definition of standard basis, given an element iy € QL , , we can write
C,Py C,Py

8
ord¢(¢) = ord;(¢;) + Z a]-,gj, for some i € {-1,0,...,s} and &; > 0 for all j.
=0

By Remark 1.5.1, we have a surjection QIl\/Io,Po — Qc,p, given by the pull-back map ¢*. Recalling
the definition of differential value v¢(w) of a 1-form w, introduced in Section 1.5, we have that
B = (ord(1-1) + 1, 0rds (o) + 1, ..., ord;(s) + 1) is the basis of the semimodule of differential
values of C, assuming that the values are properly ordered. Note that for any i # j, we do not
have ord;(¢;) ¢ ord:(y);) + I'c, otherwise, 1; is reducible modulo ({¢;}, G). Hence, in order
to find the basis of the semimodule of differentials of C, we only need to compute a minimal
standard basis of Q¢ , .

Furthermore, we can take a sequence of 1-forms S = (w-1, wo, . . ., ws) in Q}\/Io Po’ such that
¢*(w;) = ¢;fori =-1,0,...,s. As an abuse of notation, we say that S is a minimal standard

basis of the module of differentials of C.

Note that a sequence like S can be defined by the property vc(w;) = A; fori = -1,0,...,s,
where A; is the i-element of the basis of the semimodule of differential values of C, see Section
3.1. In fact, from now on, we only use this notion of minimal standard basis of the module of
differentials of C and never the original one. Moreover, we just write standard basis, instead of
standard basis of an object, when the reference of the object is well understood. Since, in the last
section of this chapter, we are going to compute standard bases of some ideal in C{x, y}, we
thought that it would be appropriate to give a brief explanation on why a series of two variables
holomorphic 1-forms are called a standard basis of a curve. This treatment can be also found in
[32].

5.2 Structure of the Semimodule of Differential Values

The structure of the semimodule of differential values of an irreducible curve C was described
by Delorme in [21]. In this section, we use a different approach to describe the semimodule of
differential values of a cusp. This approach will be useful when constructing a Saito basis of C
in Chapter 8.

Fix C a cusp with Puiseux pair (1, m) and n > 2. Let Ac =T'c(A-1,A0,A1,...,A;) be the
semimodule of differential values of C with

A_1CA0C...CAS ZAc,

its decomposition sequence (see (3.1)). We selecta minimal standard basis S = (w-1, wo, w1, ..., @s)
of the cusp C. From now on, we fix a system of adapted coordinates (x, y) with respect to C,
and D the cuspidal divisor of C.

Furthermore, as the coordinate system and the Puiseux pair are fixed, we are going to denote
the initial parts as In, instead of Iny, i;x,y, as defined in Chapter 2.

We begin by giving some results about the 1-forms w_; and wo.

Lemma 5.2.1. We have that A_1 = n and Ay = m.

Proof. Since (x, y) is system of adapted coordinates with respect to C, we can take a parametriza-
tion of C given by (t", v(t)t"™), where v(t) is a unit. Recall that vc(Adx + Bdy) is the order in ¢ of
the expression

nt" A", v(E)t") + o ()" B(E", v(E)t"){m + to’(t)/v(t)}. (5.1)
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We see that this order is > n and that vc(dx) = n. Hence n = A_;. Moreover, the terms in
Equation (5.1) of degree smaller than m come only from the first part nt" A(t", t"v(t)) of the
sum and they are values in I'c. Since m = vc(dy), we conclude that Ag = m. O

Remark 5.2.2. The 1-forms w_1, wg can be written as

h_1dx + g_1dy, with h_1(0,0) # 0;
hodx + gody, with g0(0,0) # 0, vc(hodx) > m.

w1

wo

Thus, we can write any differential 1-form w in a unique way as @ = Aw_1 + Bwy and we have
that {w-1, wo} is a basis of Qll\/lo,Po'

5.2.1 The Zariski’s Invariant

In this subsection, we deal with properties of the 1-forms that give place to A as their differential
value. In other words, we study the properties about the 1-form w. In the next subsection we
treat the behaviour of the 1-forms w; withi = 2,...,s. This is done in terms of divisorial values.
We cite the work of O. Gémez-Martinez [28] that essentially contains several of the results in this
subsection.

Recall that A1 = min(Ac \ Ag). Since A_; = n and Ag = m, we have that Ag = (n + T'¢c) U
(m+Tc) =Tc \ {0} and we get that A1 = min(Ac \ I'c). In particular, we have that A1 — n is the
Zariski’s invariant, see Section 1.5.2.

When studying the 1-forms associated to a minimal standard basis, we do it in terms of their

initial parts. For this reason we introduce the concept of reachability that we proceed to define.

1
Mo,Po’

x“y? and a non zero constant y, such that

Given two 1-forms w,n € Q we say that 7 is reachable by w if there exist a monomial
In(n) = px*y" In(w).
In the situation above, we get that vp (1 — ux*y’w) > vp(n).

Remark 5.2.3. Let w be a 1-form with In(w) = nxdy — mydx. If v’ is a resonant 1-form, then w’
is reachable by w.

Many of the following proofs are based in computational techniques. Thus, in order to
simplify the notations, we introduce the next convention.

Notation 5.2.4. Take two 1-forms w, w’ € Q}VIO Py’

ve(w’) < co. We will denote by u* the unique non zero constant with the property that

with the same differential value ve(w) =

m = w + ptw’ satisfies that ve (1) > ve(w). The constant u* is called the tuning constant. We
want to remark that in some occasions, we will write recursively n, = m1 + u*w” for 0” € Q}VIO,PO
with ve(w”) = ve(m). In this situation, the new tuning constant ™ constant may be different to
the one we use when constructing 11, but both of them will be denoted by u* without any other

indication.
Next result characterizes the 1-forms with differential value equal to A.

Proposition 5.2.5. We have the following properties:

1. Ifs =0, then oo = sup{vc(w); @ € Q}wo p,s VD(@) =1 +m}.

2. Ifs > 1, then Ay = sup{vc(w); w € Q}MO py VD(@) =1 +m} < oco.
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Proof. Assume that s = 0 and hence Ac = Ag = I'c \ {0}. Let us consider the 1-form 1 =
xwo + pryw-q, for the tuning constant u*. We have that vc(n) > n + m = vp(n). Moreover, since
s = 0, we have that vc () € T'c and then there is a monomial function g such that

vp(dg) = vc(dg) =vc(n) > n +m.

Consider the 1-form, such that n' = 1 + u*tdg, we have that vp(n!) = vp(n) = n + m and
ve(n') > ve(n). We repeat the argument with n! and in this way we obtain 1-forms n* with
vp(n*) = n +m and vc(n*) > n + m + 1 + k. This proves the first statement.

Assume now that s > 1. Let us first show that

1

Mo,py VD(@) =1+ m}.

A < sup{ve(w); w € Q

We put again 1 = xwo + u*yw-1. If ve(n) ¢ I'c, we have that vc(n) > Aq since Ay is the
minimum of the differential values not in I'c. Assume that vc(1) € I'c and hence

ve(n) =na+mb >n+m.

Taking the function ¢ = x"y’, we can consider 1; = 1 + u*dg. Note that vp(n;) = n + m, since
vp(dg) = na+mb > n+m. We restart with 11 instead of 1), noting that vc (1) < ve(n1). Repeating
finitely many times this procedure, we obtain a new 1-form fj = n — dg such that vp(fj) = n + m

and either vc(f]) > cr = (n — 1)(m — 1) or vc(i}) ¢ T'c, in both cases we have that vc (7)) > Ay.

1
Mo,Po’

w1 from §, we recall that vc(w1) = A1. Let us show that it is not possible to have @ such that

It remains to show that A1 > sup{vc(w); w € Q vp(w) = n + m}. Consider the 1-form
vp(@) =n +m and ve(@) > ve(wr). In this situation, both w1 and @ are basic and resonant, see
Proposition 2.3.14. By Remark 5.2.3, the 1-form w1 is reachable by @ and thus there is a constant
pand a,b > 0 such that the 1-form w% =wy — yx”ybd) satisfies that

vp(wy) > vp(w1),

and we have that vc(a)%) = vc(w1) = A1. We restart with the pair a)%,
an infinite sequence of 1-forms w1, w;, 3, ... with strictly increasing divisorial values. Up to a
finite number of steps, we find an index k such that vD(a)i‘ )> A1 = vc(wll‘). This contradicts the

fact vc(a)ll‘) > vD(w’f). O

@. In this way, we obtain

Corollary 5.2.6. Any 1-form w € Q}\AO p, Such that vp(w) = n +m and vc(w) ¢ T'c satisfies that
ve(w) = Aq.

Proof. In view of the previous result, we have that vc(w) < Aj. Since ve(w) ¢ I'c, we also have
that ve(w) = As. O

Corollary 5.2.7. Any 1-form w € Q}VIG Po such that ve(w) = Ay satisfies that vp(w) = n + m.

Proof. Invirtue of Proposition 5.2.5, there exists a 1-form n such that vc(n) = Ay and vp(n) = n+m.
Assume that
vp(w) >n+m

in order to obtain a contradiction. Since Ay ¢ I'c, both w and 1 are basic and resonant. By
Remark 5.2.3, the 1-form w is reachable by 1. Then there is a function g with vc(g) > 0 such that

vp(w — gn) > vp(w).

Put w! = @ — gn. Since vc(gn) > A1, we have that ve(w!) = A;. We restart with the pair

w!, . After finitely many repetitions we find w* with ve(0*) = A1 and vp(w¥) > A4, thisis a
contradiction. O
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Note that Corollary 5.2.7 applies to ws, that is, vp(w1) = n + m. The following two lemmas
are necessary steps in order to prove an inductive version of Proposition 5.2.5 valid for all indices
i=1,2,...,s:

Lemma 5.2.8. Assume that s > 1 and consider an integer number k = na + mb + Ay € Ay +I'c. The
following statements are equivalent:

1. k¢Tc.
2. vp(w) < vp(x*yPw) for any w € Q}VIO,PO such that ve(w) = k.

Proof. Note that k = vc(x“yba)l) >n@+1)+mb+1)= vD(x”th1).

Assume that k € I'c, then k = na’ + mb’ > vD(x“yba)1). Taking w = d(xu'yb'), we have
ve(w) = vp(w) = k > vp(xyPwr).

Now assume that k ¢ I'c. Let us reason by contradiction assuming that there is @ with
ve(w) = kand vp(w) > vp(x*yP w1). We have that w is basic and resonant since vc(w) € T'c. Then
w is reachable by wj, that is, there are a’, b’ > 0 and a constant u such that vp(x* y” w;) = vp(w)
and

vp(@ — ux”y" w1) > vp(w) > vp(x"y wy).

Since na’ + mb’ > na + mb, we have that vc(x"/yb'an) > k and hence vc(w!) = k, where

! = @ — ux"y” w;. Repeating the procedure with the pair w!, w1, we obtain a sequence

w, b, w?, ...
with strictly increasing divisorial value and such that v (w/) = k for any j. This is a contradiction.
o

Next lemma describes the divisorial value vp(w) of the 1-forms w whose differential values
are not in the semigroup I'c of C.

Lemma 5.2.9. Let w € Qzlvlo p, be a I-form such that ve(w) = A ¢ T'c. There are unique a, b > 0 such
that vp(w) = vD(x”ybcul). Moreover, we have that A > na + mb + Aq.

Proof. Note that w is basic and resonant and thus, by Remark 5.2.3, the existence and uniqueness
of a, b is assured. Moreover, if A < na + mb + Ay, we can find a constant y such that

vp(w — yx“yba)l) > vD(x“ybwl)

and ve(w — yx“ybwﬂ =A Putw! =w - yx“ybcu1, we have that vc(w!) = A ¢ Tc. As before, we
get that
vp(wh) = vD(x””ybla)1), with na; + mby > na + mb

1

and thus A < naj + mb; + A1. We repeat the process with the pair w", w1, in order to have a

sequence w, wl, w?,... with strictly increasing divisorial values and such that ve(w!) = A for

any j. This is a contradiction. ]

5.2.2 General Case

In the previous subsection, we have shown that vp(w1) = f1 = n + m, where t; is the critical
value introduces in Section 3.2. Here we prove the 1-forms w with differential value vc(w) = A;
have divisorial value vp(w) equal to the critical value ¢;.

Theorem 5.2.10. For each 1 < i < s we have the following statements
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1. A; = sup{vc(w) : vp(w) = t;}.

2. va(j(a)) = A;, then vp(w) = t;.

3. For each 1-form w with vc(w) € Ai-1, there is a unique pair a,b > 0 such that vp(w) =
vp(x*yPw;). Moreover, we have that vc(w) > A; + na + mb.

4. We have that A; > u;.

5. Letk = Aj + na + mb, then k ¢ A;_1, if and only if for all w such that vc(w) = k, we have that
Vo) < vo (T w;).

In particular, the semimodules A; are increasing, fori =1,2,...,s.

Proof. Assume thati =1 and thent; = n +m = u;. We have

¢ Statement 1 is proven in Proposition 5.2.5.

¢ Statement 2 is proven in Corollary 5.2.7.

* Statement 3 is proven in Lemma 5.2.9.

¢ Statement 4 follows from the fact that A1 > n + m = vp(w1) = us.
¢ Statement 5 is proven in Lemma 5.2.8.

Now, consider i > 2 and assume by the induction hypothesis that the Statements 1-5 are true for
indices f with1 < £ <i-1.

As in many proofs in Chapter 3, we have two cases: either u; = u' or u; = u}" (we follow the
notations established there). Assume that u; = u' = A;_1 + n{!'. The computations in the case
uj = u" = Aji_1 + m{" are similar ones.

The proof is founded in three claims as follows:

o Claim 1: There is a 1-form n with vp(n) = t;, whose initial part is proportional, by a constant, to
the initial part ofx"ina)i_l and such that either vc(n) = cr or ve(n) € Ai—1.

o Claim 2: Any 1-form @ with vc(w) € Ai—1 is reachable by xi wi_q.

o Claim 3: Let 1) be a 1-form such that vp(n) = t; whose initial part is proportional to the initial part
ofxez‘”a)i,l and such that either vc(n) = cr or ve(n) € Ai—1. Then ve(n) = A;.
We recall to the reader that the notion “initial part” refers to the concept of weighted initial part

defined in Section 2.3.

Proof of Claim 1: Recall that t; = vp(wj-1) + u; — Ai—1 = vp(wi-1) + nt. Let us start with
m= x4 w;_1. We have that

vp(m) =nll +vp(wi-1) =ti, vc(m)=nl' +Ai1 =u; € Aja.

By Statement 5 applied to vc(11) € Ai-a, there is ] with ve(177) = ve(n1) and vp(n]) > vp(m).
Since vc(n]) = ve(m1), then we can write

f=m+yun; with ve@@ > velm) = ui.

Recall that u* denotes the tuning constant. Since vp(17) > vp(11), we have that vp(7j) = vp(11) =
t; and the initial part of 7} is the same one as the initial part of ; = xi wiq. If ve(fl) = cr or
ve(f) € Ai—1, then n = 7j is the 1-form we were looking for. Assume that vc(7j) € Aj—1. Let us
write

ve()=na+mb+A,, €<i-1.

Let us see that vp(fj) < vp(x"y’wy); this is equivalent to verify that t; — t, < na + mb. Since
ve (i) > u;, in view of Lemma 3.2.8 we have

na+mb>ui—/\g:n€f+/\i_1—/\42n€f+ti_1—tg=ti—tg.
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On the other hand, we have that vc(f) = vc (x“yba)g). Thus, writing 1 = 7} + y+x”ybw(z, we have
that vc (1) > ve(R}) and vp (1) = vp(fj). Moreover, the initial part of fj; is the same one as the
initial part of xb wi_q.

If vc(ij1) € Ai-1, we repeat the procedure starting with #j1, to obtain fj, such that vc(ij2) >
ve(fi1) and vp(fjz) = t;. After finitely many repetitions, we get a 1-form 7 such that vp(n) = ¢,
whose initial part is the same one as the one of x% w;_1 and either ve(n) = cror ve(n) € Ai-1.
This proves Claim 1.

Proof of Claim 2: Take w such that A = vc(w) € Ai—1. Note that A ¢ A;_». By Statement 3, we
have that w is reachable by w;_1. Thus, there are a, b > 0 and a constant u such that

vp(w — yx”yba)i_l) > vp(w) = vD(x”yba)i_l) =na+mb +ti_1.

and moreover, we have that A = ve(w) > na + mb + Aj—1 = k (note that A # k since A ¢ Aj_1).
Consider the 1-form v’ = w — yx“ybwi_l. We know that

ve(@) =k, vp(w) > vpx"y wiy).

By Statement 5, we conclude that k € A;_,. Therefore, by applying Lemma 3.2.5, we have that
either a > ¢! or b > {". Let us show that we necessarily have that 2 > ¢, this would imply
that o’ is reachable by x% wi_1. Assume that b > El?”. By Statement 4, we know that A;_; is an
increasing semimodule. By Corollary 3.4.7, we know that k = ii; > ca, , +n. Sinceve(w) = A > k,
we have a contradiction with the assumption that A ¢ A;_1. Therefore a > {!'. This ends the
proof of Claim 2.

Proof of Claim 3: The conditions which satisfy vc(n) imply that ve(n) > A;. Assume that
A =ve(n) > Aj. Recalling that ve(w;) = A; ¢ Aj—1 and that the initial part of 1 is proportional
to the initial part of x% w;_1, we can apply Claim 2 and we get that w; is reachable by 1. Then
there are a,b > 0 and a constant y such that vp(w; — px*y’n) > vp(w;). Put w! = w; — ux"y’n.
We have that vc(a)}) = A; since ve(ux®y¥n) > A > A;. In this way we produce an infinite list of
1-forms with strictly increasing divisorial value

w; = w?,a)il, a)f, e
such that vc(a)f ) = A4, for any j > 0. Therefore, we exists an index j we such that vD(wf ) > cr
and then A; > vD(a)f) > cr and this is a contradiction. So we necessarily have that vc () = A;.
This ends the proof of Claim 3.

Proof of Statements 1 and 2: In view of Claim 1 and Claim 3, there is a 1-form n with vp(n) = ¢t;
such that vc(n) = A; and whose initial part is proportional to the initial part of x% w;_;. In
order to prove Statement 1, it remains to prove that if vp(w) = f; then vc(w) < A;. Assume that
A =ve(w) > Ai = ve(n). The 1-form w is basic and resonant and it has the same divisorial value
as 1. Hence there is a constant p # 0 such that the 1-form n!' = 1 — pw verifies that

vp(n') > ti =vp(n) = vp(w).

The 1-form 171 satisfies that vc(nl) = A; ¢ Aji_1. By Claim 2, there are a4,b > 0 and a constant p’
such that

vp(?) > vp(n'), with n?*=n' - u'x"y"n.

We have that vc(7%) = A; and vp(n?) > vp(n!). Repeating this procedure, we have a list of
1-forms 171, 1]2, ... with strictly increasing divisorial value such that v¢ (nj ) = A; for any j. We
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find a contradiction just by considering one of such 1/ with vp(1)/) > cr. This ends the proof of
Statement 1.

Let us prove Statement 2. Choose w with vc(w) = A;. By Claim 2, we have that w is reachable
by 1 and hence vp(w) > t;. Assume by contradiction that vp(w) > t;. There is a constant p and
a,b > 0witha + b > 1 such that

vp(@') > vp(w), where w!=w - pux"yby.

Since vc(px“ybn) = na +mb + A; > A;, we have that vc(w?) = A;. Repeating the argument,

1

we get a sequence of 1-forms @’ = w, !, ... with strictly increasing divisorial value such that

ve(w!) = A; for any j. This is a contradiction.

Proof of Statement 3: By Claim 2, we have that w; is reachable by xi wi_q. By Statement 2
(already proved) we have that vp(w;) = t;. Hence the initial part of w; is proportional to the
initial part of x% w;_1. Consider a 1-form @ with vc(w) € Aj—1. By Claim 2 the 1-form w is
reachable by x4 w;_1 and hence it is reachable by w;. Then, there are a,b > 0 such that

vp(x"yP w;) = na + mb + t; = vp(w).

Since vc(w) ¢ Ai—1, we have that nm > vc(w) > vp(w) > na 4+ mb, this implies the uniqueness of
a,b. Let us show that vc(w) > na +mb + A;. Assume by contradiction that ve(w) < an +bm + A;.
Consider ! = w — ux*y’w; such that vp(w') > vp(w). In view of the hypothesis about
ve(w), we have that ve(w') = ve(w). Moreover, if vp(w!) = vp(x"y" w;) we also have that
vc(w) < nay + mby + A;. The situation repeats and we obtain an infinite sequence of 1-forms
@ = w,w', @?,... with strictly increasing divisorial values, such that vc(w/) = vc(w) for any

j = 0. This is a contradiction.

Proof of Statement 4: Noting that vD(x[zﬁ wj-1) = t;, by Statement 1 we have A; > vc(x[fl wj-1) =
nl’f + Ai_1 = uj. On the other hand, since A; ¢ A;_1, we have that A; # u; and hence A; > u;.

Proof of Statement 5: Consider k = A; + na + mb. Assume first that k ¢ A;_;1. Let w be such
that vc(w) = k. We have to prove that

vp(w) < vp(x"yPw;) = na + mb + t;.

In view of Statement 3, we know that w is reachable by w;. Hence there are a’,b” > 0 and a
constant y such that vp(w — ux® y¥ w;) > vp(w). Hence

vp(w) = vp(x" y¥ w;) = na’ + mb’ +t;.

Assume by contradiction that vp(w) > vp(x*yPw;) = na + mb +t;. This implies that na’ + mb’ >
na + mb and thus

vc(x“'yh'w,-) =na"+mb' +A; >k=na+mb+A; = vc(x”ybw,-) =ve(w).

Put o' = w — ux”y" w;. We have that vc(w!) = k. Repeating the argument with !, we obtain

an infinite list of 1-forms @° = w, w!, w?, ... with increasing divisorial values and such that

ve(w!) = k ¢ Aj_1. This is a contradiction.
Assume now that k € A;_1. There is an index ¢ < i — 1 such that

k=na+mb+A; =na’ +mb’ + A,.

By Lemma 3.2.8, we have that A; — Ay > t; — t; and hence na + mb + t; < na’ + mb’ + t;. The
1-form x”’yb'wg satisfies that k = vc(x”'yh'a)g) and

vD(x“'yb'a)g) =na' +mb' +t; >na+mb+t; = vD(x“yha)i).

This ends the proof. |
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As a consequence of the previous theorem and its proof, we have the following result about
the initial parts of the elements of a minimal standard basis.

Corollary 5.2.11. For each 1 < i < s, the 1-forms w; are basic and resonant. In particular, for the
adapted coordinate system (x, y), the initial parts can be written as

d
In(w;) = pixcfyd" (md% - n?y) , nci+md; =vp(w;) =t; < nm.

Proof. Applying Lemma 3.2.8, since Ac is increasing, we have that
vp(w;i) =t; < Aj = vel(w;) < nm.
The statement follows from these inequalities, and Proposition 2.3.14. o

Remark 5.2.12. From the previous corollary and Proposition 2.5.1, we have that the 1-forms w;,
with i > 1, are totally D-dicritical.

5.2.3 Delorme’s Algorithm

We end this section presenting an algorithm that computes minimal standard bases of the
module of differential of a cusp. This method is based in the previous Theorem 5.2.10.

Following the ideas and the notation from Chapter 4, givenn € Q}VIO Po’ S={64,...,6¢} C

Q}\/IO,PO and G = {g1,..., 8} C Oum,p,- We say that 1 is reduction of n modulo (S, G), or
just S if there is no confusion with G, if n” = n + u*G*6;, where u* is the tuning constant,
vc(G*0;) = ve(n) < o0 and G is a G-product.

Similarly, if there is a sequence

n:no—)nlﬁTIZ—)...—)nq—)...

such that ); is reduction modulo (S, G) of n;_1, for i > 1, we say that any 1; is a partial reduction
of 1. Moreover, if we denote by 7., the limit of that sequence, we say that 1 is a final reduction
of 1, that is, 11« is no longer reducible modulo (S, G).

Delorme’s Algorithm

INPUT: A cusp C and G = {f-1, fo} with vc(f-1) = n and ve(fo) = m.

OUTPUT: S minimal standard basis of the cusp C.

START:
PutSp ={w-_1 =dfo1,wo=dfp},i=1,By=(A-1=n,Ap=m)and Ay = (n +T).
loop {

Compute u; = min{(A;—1 + ) N A2} and put Aj_1 = Aj2 U (A1 +T).
Find k <i -1, h, i’ G—products such that vc(hwi-1) = vc(h' wi) = u;.
Putn = hwi—1 + pth wg.
Compute 1, a final reduction of 7 modulo S;_;.
if vc (o) = oo then:

Put S = S;_1 and Return.

otherwise:
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Put w; = e and S; = Si—1 U {wi}.
PutA; =ve(w;i), Bi=n,m,A1,...,Aj))andi =1+ 1.

} end loop

Recall that in a system of adapted coordinates (x, y) with respect to the cusp C, we can put
f-1 = xand fy = y. The previous algorithm works because of the following ideas: first, by
means of Lemma 3.2.8, we have that vp(n) = t;, and that no partial reduction of 1 has a different
divisorial value. Second, by Theorem 5.2.10 we have that the i-element of the basis of the module
of differential values A;, in case it exists, it is greater than the axis u;. Moreover, we also have
that A; = sup{vc(w) : vp(w) = t;} = min(Ac \ Ai—1). Thus, if  has a non trivial final reduction
Neo modulo S;—1 = {w-1, wo, . .., wi-1}, then it must be that vc (1) = A;. Otherwise, it implies
that the i-element of the basis does not exist.

Notice that the condition on finding a trivial final reduction can be simplified by just
demanding to compute a partial reduction 1, modulo S;_; , such that vc(,) > ca,,. This
implies that 7, is again reducible modulo S;_i.

This algorithm is an adapted version of the one presented in Chapter 4 when computing
standard bases of modules. The Biichberger’s algorithm for modules can be used with any
branch, however, as mentioned, the algorithm stated above is specific for cusps. The main
problem on giving a generalization of the main results in this work is to adapt the Biichberger’s
algortithm to more general branches.

We now give an example of application of the previous algorithm.

Example 5.2.13. We consider the cusp C defined by the primitive parametrization
P(t) = (£, 1 + 12 + 7t5) = (x(t), y(t)).

We notice that the Puiseux pair of C is (5, 11) and that (x, y) is an adapted system of coordinates
with respect to C, see Section 1.6. We are going to compute a minimal standard basis of C.

We start by putting w_; = dx and wy = dy. Note that ¢*dx = 5t*dt and ¢*dy = (11+10 +
12t + 91412)dt. 1t follows that vc(dx) = 5 = A_j and v (dy) = 11 = Ay, as we already knew.

This example will also show how the results from Chapter 3 can be used to simplify the
computations. We need to find u;. As we saw in Example 3.5.4, we have that u; = n +m = 16.
Moreover, we recall that the O-left and right bounds are kg =-1= kom, see Example 3.5.4. We
need to compute the smallest positive solutions of these equations.

uf Ao +nl = A1 +mby =11+ nl] =5+ mb;

uy Ao +mb" = A +na; =11+ mb" =5+ nma

We deduce that £ =1 = by, {]" = 4 and a; = 10. Therefore, we obtain 16 = uy = u} <uj’ =1 =
55. By Proposition 3.5.9, the new bounds are ki = 0 and k{" = —1.

Hence, we have that vc(xwg) = ve(yw-1) = 16. By taking the pull-back by ¢, we obtain that

(11415 + 12¢10 + 914Y7)dt
(515 + 5¢10 + 35¢t17)dt.

¢*(xawo)
¢ (yw-1)

If we put 1 = xwp — 11/5yw-1, we have that ¢*n = (+'° + 14t17)dt. Thus, vc(n)) = 17. We note
that 17 ¢ (5+T¢c) U (11 +T'¢c). We add w1 = xwp — 11/5yw—_1 to our candidate set of minimal
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standard basis, and A1 = 17 to the basis of the semimodule of differential values. Now, we repeat
the process, we start by computing the axis u5.

uy A +nb) = Ag+mby =17 + nt) =11+ mby

uy' M +ml)' = A +nay =17 + ml)' =5+ nas.

< ult =i =50.

We obtain that £} =1 = by, £’ = 3 and a = 9. This implies that 22 = up = u] 7

Again, by Proposition 3.5.9, we have that k) = 1 and k' = —1.
The previous computation shows that ve(xw1) = ve(ywo) = 22.

O (xwr) = (tH +14t%2)dt
¢ (ywo) (11£21 + 23122 + 180t%3 + 175t%* + 637t%%)dt.
By putting 1 = xw1 — 1/11yw,, we see that ¢p*n = (131/11t% + h.o.t.)dt, thatis, vc(n) = 23. As

before, we notice that 23 ¢ (5+TI'c) U (11 +T'¢c) U (17 + I'c). Hence we put wy = nand A, = 23. A
new iteration shows that

uy  =23+50 =17 +mbs — uj =28

uf'  =23+116 =5+5a; — u' =45

Then ve(xw;z) = ve(ywi) = 28. We check that wz = xwy — 131/11yw; satisfies that vc(ws) = 29
which does not belong to (5+T¢c) U (11 +I'c) U (17 +Tc)U (23 +T¢).

We could check that the algorithm stops by computing a new 1-form with the previous
procedure whose final reduction gives infinite differential value. However, we also recall
that the length of the basis of a semimodule is bounded by n — 2. Since we have computed
up to the 3-element of the basis of Ac, we can conclude that the algorithm has finished and
S = (w-1, wy, w1, wa, w3) is a minimal standard basis of C, and 8 = (5,11, 17, 23, 29) is the basis
of the semimodule of differential values Ac.

5.3 Delorme’s Decomposition

In this section we prove the following result:

Theorem 5.3.1. Consider indices0 < j < i < sand+ € {n, m}. Take w a 1-form such that vp(w) = t7 ,

and vc(w) > u? . Then, there is a decomposition of the 1-form w given by

w=3_, flo, (52)
such that the following properties hold. Let v’l.‘j be defined by v’lfj =vc( f].ij wj). Then we obtain:
1 v} = min{vc(f, we); =1 < € < j}.
2. U:j =Aj+t, —tjin particltflan if j = i we have that v}, = A; + 1t
3. If j < i, we have that Vc(f;]a)g) = vlf].,for {
-1<{ <.
4. If j = i, we have that vc(ﬁiwg) = vy, for £ = k]*. and vc(fé,iia)g) > o, for any € # k]*. and
1< <j.

* %
i T h = Uy

k; and Vc(f;ja)g) > vj, for any { # k; and

We recall that k; makes reference to the bounds introduced in Section 3.5.

A decomposition of a 1-form w as the one in Theorem 5.3.1 is called a Delorme’s decomposition
of w.
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Remark 5.3.2. Notice that Theorem 5.3.1 can be used to write w;;1 in terms of w_1, wy, . . ., W;
for0 < i < s—1. Indeed, let us choose » € {n, m} such that u? , = u;+1,and hence t; ; = t;11. We
have that vp(wi+1) = tiv1 and ve(wis1) = A1 > uir1. By Theorem 5.3.1, if we fix j with 0 < j < i
we have an expression

Wit1 = f].l] wj + /lile—l + - folj wo + fijla)_l, (5.3)
such that Aj +tiy1 —t; = vc(f].”a)j) = vc(fklja)kj) < vc(f;]a)g), forany ¢ # kj, with-1< ¢ <j-1.

Theorem 5.3.1 was proved by C. Delorme in [21] for the case where j =i < s and w = w;
is an element of a minimal standard basis of C. In [12], we prove a first generalization of the
result of Delorme that included the case where w was a 1-form with divisorial value t;,1 and C
invariant, that is, vc(w) = . The version stated here can be found in [13].

The proof of Theorem 5.3.1 requires the following Lemma.

Lemma 5.3.3. Consider 1 < i < s and = € {n,m}. Given a 1-form n with vc(n) > u: , and

*

vp(n) > t7,,, we have that:

1

1. Ifvp(n) < nm, there is a 1-form a such that:

@ vol - a) > vp(n). |
(b) There is a decomposition a« = },,__, gewy, where vc(gewy) > ur,, and vp(gewe) > t
forany -1 < ¢ <.

*

i+17

2. Ifvp(n) = nm, there is a decomposition n = Ys__, gewq where each term satisfies that v (gew) >
Ui
Proof. Let us prove first statement (2). By Remark 5.2.2, we have that {w-1, wo} is a basis of
Q}, . Therefore, we can write 7 in a unique way
0,40

1= 8-1w-1+ goWo- (54)

Moreover, since the initial parts are In(w-1) = Adx and In(wy) = pdy, then we have that

vp(n) = min{vp(g-1w-1), vp(gowo)}

Noting that vp(w) = nm, we have that vp(g-1w-1) = nm and vp(gowo) = nm. By Lemma 3.6.1,

we have that il;1 < i1, besides u? ; < 41, and hence

* ~ ~
U; 1 < Uiy < il =nm.

*

We conclude that vc(gewe) > vp(gewe) > nm > u?, ,,

for { = -1, 0. Then the decomposition in
equation (5.4) satisfies the required properties.

Let us prove now statement (1). By Remark 2.3.15, the Newton cloud of initial part of 77 is a
single point:

dx d
In(n) = x"y” (oc_17 + ocO?y) .

where vp(n) = na + mb. There are two possibilities: either 7 is resonant or not. If ) is not
resonant, by Proposition 2.3.14, we have that vc (1) = vp(n) = na + mb. Since In(w_1) = Adx and
In(wo) = udy, we have that {In(w-1), In(wp)} is a basis of Qzlvro p,- Thus, we can consider

a= In(r]) = ho1In(w-1) + hoIn(wyp), h-1 = H_lxu—lyb, ho = ygx”yb_l. (5.5)
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For u_1 and po appropriate non zero constants. We have that vp(n — a) > vp(n). Moreover we
also have that vp(a) = vp(n) > u},,. Since

vp(a) = min{vp(g-1w-1), vp(gowo)},
;+1’

hence we also get that vp(gewe) > t;,,, for £ = -1,0.

we conclude that vc(gewy) = vp(gewe) = vp(a) > u} ,, for i = —=1,0. Moreover, in view of

Corollary 3.2.9 we have that u? , > t:

i+17
Thus, the expression in Equation (5.5) satisfies the desired properties.
Now, let us assume that 1) is resonant. Up to multiply 1 by a non-null scalar, we have that

d
In(q):xuyb (md—x—n?y), VD(n):ng+mb >t

*
X i+1°

Let us define the index k := max{{¢ < i : i is reachable by w/}. Since 1 is resonant, then k > 1.
By definition of k, there exists a monomial uxy? such that vp(ux‘y“wg) = vp(n) and

vp(n') > vp(n), wheren =1n- yxcydwk.

The desired decomposition will be given just by the expression & = ux‘y”wy. Since vp(a) =
i1
First, let us assume that k = i and hence a = uxy?w;. Write

vp(n) > t;,,, we only need to verify that ve (x“y?wi) > u

vp(a) =nc+md+t; =vp(n) >t;,.

Recalling thatt: | =t; + ui,, —Ai, we obtain that nc + md + A; > u: ,. Hence, we conclude by
noting that

vc(xcyda)i) =nc+md+A; > ul,,.

Now, let us consider the case when 1 < k < i—1. Assume by contradiction that vc(x¢ yd wg) <

*

u,, <vc(n). Taking into account that " = n — px°y?wy, we see the following:

vp(') > vp(x ylwy) = nc + md + ty;

ve(') = ve(x“ylwy) = ne + md + Ag.

By Statement 5 in Theorem 5.2.10, we have that nc + md + Ay € Ay_1. In view of Lemma 3.2.5,
this implies that either ¢ > ¢/’ , or d > {", |. There are four possibilities:

— n n . — n m
Ugr1 = A +nlf and ¢ > £ ; Upe1 = A +nll andd > (] ;

— m n . _ m m
Ugs1 = A +ml’ and ¢ > {7 ; Ugsr = A +mll and d > {7 .

The cases from the first line behave in a similar way as those in the second one, therefore, we
will only show what happens in the first two cases.

Case ug41 = u;:*;l =Ar+ M}?ﬂ
If we show that x%+1wy is reachable by wi+1, we contradict the maximality of k, as desired. By

and ¢ > { . In this case we have that 1] is reachable by xlawy.

Corollary 5.2.11, the 1-forms w41 and wy are resonant and it is enough to show that

vp(xfnwr) = vp(wks1)-

n
k+1

implies that tj 41 =t

We have that vp(wg41) = fx4+1 and vD(x‘}fﬂ wy) =t + nl} .. Letussee thatti,1 =t +né; | inour

case. We have that t// | =t + n{, ,. Moreover, the fact that uy+1 = u

n
k+1

n
k+17

as desired.

— n — n m
Case ug1 = up, = A +nl andd > {

i\1- By Lemma 3.6.1, we see that

ne+md+ Ag 2 A +ml’ | =Gk 2 0 > uj,.

This ends the proof. |
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Proof of Theorem 5.3.1. Let us take w being such that vp(w) = t!,; and vc(w) > u;,, as in the

1
statement. We will consider three cases:
a)i=0; b)i>0,j=1;, ¢ i>0,0<j<i.

1

Mo, Po’ the 1-form w can be written as

Case a): i = 0. Since {w_1, wo} is a basis of Q
w=fRw1+ f(;)oa)o. (5.6)

Looking at the computations in Example 3.5.4, we see that t] = uj < nm and k; = —1. Therefore,
we need to prove that v¢ (f??a)_l) = vc(foooa)o) = uj.

Recall that, up to constant, we have that In(w_) = dx and In(wp) = dy. Then, one of the
following cases occurs:

(i) vp(f{ wo) = t] and vp(fQw_1) > t].
(ii) VD(fP?w_l) =t} and vD(fOOOwo) >t

Assume that we are in case (i). Since vp( f(?o) + vp(wp) < nm, we have that

vD(fOOO) < nm.

This implies, by Proposition 2.3.14, that vp( fooo) =v¢( fé)o). Therefore, we can write
ve(fyPwo) = ve(£y°) + ve(wo) = vp(fy°) + vp(wo) = vp(fy wo) = t] = uj.

Moreover, since vp( ff)?a)_ﬂ > t] = uj, we have that

1/
ve(flw-1) > vp(fQw-1) > t] = uj.

Noting that vc(ffga)_l + fé)oa)o) > uj and that vc (foooa)o) = uj, we conclude that vc (f??a)_l) =
ve(fyPwo) = u}.
We do a similar argument in the case that vp( f_O? w-1) = t].

Caseb): i > Oand j = i . We do the proof in the case * = 1, the case * = m runs in a similar way.
Note that:
vp(w) =t <nm, vp(w)=t', <ul, <vc(w),

in view of Corollary 3.6.2 and Corollary 3.2.9. We deduce that the 1-form w is resonant. Since

n
i+17

w;j is also resonant and t fﬂ =t; + nl" ., we have that
vp(w) = vp(ximw;).
We deduce that there is a non-null scalar y # 0 such that
In(w) = ‘uIn(xginﬂ w;) = yx"iz‘nﬂ In(w;).
Thus, the 1-form 1, = w — ux‘+1 w; satisfies the following two properties:

n
vp(m) >y, velm) = ve(xwp) = Ujpy-

The second one comes from the fact that vc(w) > u”’ | = A; + n{!’ . Take the bound k = k'
and the colimit b = b;41. We recall that

n — ) n —
uly =Ai+nll, = Ax +mb.
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Hence, the 1-form y wy satisfies that vc(y wy) = ul I 1- On the other hand, the divisorial value

vp(yPwy) is given by

1

vp(yPwy) = mb + ty.

Let us show that vp (y? wy) > t , = vp(w). We have

thy<mb+ty & ti+nll, <ty +mbe

ti —tp <mb—nf

i+1 <

n
=mb — n€ 1+u — Uiy

=t < (ul.+1 -n ;l+1)—(ui+1 —mb) = A; — Ag.
We conclude, since t; — tk < Aj — Ag in view of Lemma 3.2.8.

Take 2 = m — " yPwy such that ve(nz) > ul',,. Note that vp(n2) > t7,,. Applying Lemma

5.3.3, we geta decomposmon

7]2 = — ‘uxéi’lla)l‘ — [Jzyha)k = Z h[wf, VC(thf) > u;/:_l/ VD(hl’C‘)[) > t:'/l+1/
=-1
having the desired properties.
Casec): i > 0,0 < j < i. Let us reason by inverse induction on j, recalling that the case j = i
has already been proven. By induction hypothesis, we can decompose w as:

W= My, (5.7)

where v;jﬂ = vc(fjlﬁleﬂ) = min{vc(f;jJrla)g); -1 < ¢ < j+1}. Notice that in the Case b), we
have proven the case where j + 1 = i. In view of Remark 5.3.2, we can apply Case b) to wj+1 to
obtain a decomposition:

C‘)j+l = Zé:_l f[j]a)fl (58)

where 141 = vc (fjjj w;j) = min{vc (f;ja)[); { < j}, and the minimum is only reached at the bound
k = kj+1. If we substitute the expression of wj+1 given in (5.8) into the expression of w given in
(5.7), we obtain

. 1, i i

w =S+ e (5.9)
Let us show that equation (5.9) gives the desired decomposition. In order to do this, we only
have to show that

i) vel((f™ + f“f]lﬁl)w,-) = ve((f" + fjiﬁw )=
ii) vel( f”“ f]’fl' Jwoe) > vy, for € # j, k
Recall that vl b = A , - t]+1 and v =Aj+t;, —t;. Hence, by Lemma 3.2.8, we have that
v} i < 01] e Moreover, by the properties of the decomposition given in equation (5.7), we get that:
(f,”“) =0y = Ajs1s (5.10)
vc(f‘, a)g) > 01]+1 l], for{ <j+1. (5.11)

Using the expression given in (5.10) and the properties of the decomposition given in (5.8), it
follows that:

ij ij+1 ij
ve(f ] oo =ve (I3 +ve(f we) =
:ZJ;.F].Jr1 - A]'+1 + Vc(f[”a)g) >

ZUZ-]-_H - Aj+1 + Ujt1,
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where the last inequality is an equality just for ¢ = j, k. Now, taking into account that
uj+1 = Aj +tj11 —tj and that v?}H =t,, + Aj+1 — tj+1, we obtain that

Vi1 — A U = At — = 0
Finally, since Vc(f;j+1a)() > v;*], for ¢ < j +1, by expression (5.11), we get that

i+ | gjj ij+l .
VC((f[] +fZ]] ]il )C()[) > vij’
where, again, we have an equality just for { = j, k. ]

From the previous result we can deduce that a 1-form with divisorial value equal to ¢ ;
(resp. t",) and differential value greater than u , (resp. u'},) is basic and resonant.

*

Corollary 5.3.4. Consider 1 < i < s and let w be a 1-form such that vp(w) = t;,, and vc(w) > u]

with = € {n, m}. For any decomposition

satisfying the stated properties in Theorem 5.3.1, then we have that In(w) = In( fjij w;). In particular, w is
basic and resonant.

Proof. We only need to show that vD(f].ija)j) < vD(f;ja)g) for ¢ < j. We know that vc(fjija)j) <

Vc(f;ja)g) for £ < j. Besides, vp(w) = t7, ; < nm and hence w is basic because i > 1. Therefore,

we have that nm > vp( f].ij ), and consequently, the divisorial value and the differential value
coincide vp( f].ij ) =ve( fjij ). Furthermore:
ij ij ij ij
ve(fw) = ve(f) + Aoz ve(Fw)) = ve (£ + ;.
By Lemma 3.2.8, we have that A; — A, > t; — t, thus
ij ij ij
ve(fy) +te > velf ) = velf;") + ;.
If vc(f;j) > nm, then vD(f;j) > nm, see Proposition 2.3.14. Hence, we have that
ij . ij
vo(fw0) > £,y = vo(flwy).
Indeed, if v ( f;j ) < nm, we get that v¢( f;j ) =vp( f;] ). With this, we conclude that
ij ij ij ij ij ij
vp(fy @e) = vp(fy) +te = ve(fy) +te > ve(f;) +tj = vp(f;) + ) = vp(f; w)).
Finally, we see that w is resonant, because v¢(w) > vp(w) and Proposition 2.3.14. |

Now we describe the initial parts of w; and @.

Proposition 5.3.5. Let w be a 1-form such that vp(w) = t] and vc(w) > uj. Let us write (in a unique
way)
w = f_1a)_1 +f0a)0.

Then, we have that

1. Ift] = t1, we have that In(w) = u(mydx — nxdy), where u # 0.
2. If t} = Fy, we have that In(w) = u(In(df)), where f = 0 is a reduced equation of the cusp C.
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In particular, we have that In(w) = In(f-1w-1) + In(fowo).

Proof. 1f t] = 1, since t; = n + m, we see that In(w) can be written as
In(w) = p_1ydx — poxdy.

Moreover, we have that t; = 3 = n + m and hence vc(w) > vp(w). The result follows by
Proposition 2.3.14, which asserts that w is a resonant 1-form.
Ift] = f1 = nm, we also have that #i; = nm. The initial part In(w) has the form

In(w) = p-1x™ 'dx + poy" dy.

If the initial part of w is not a multiple of In(f), we get that vc(w) = nm, which is a contradiction
with the hypothesis. o

5.4 Standard Bases from an Implicit Equation

This section is devoted to explain how to use Delorme’s algorithm without using a primitive
parametrization. The techniques from this section will be used when computing roots of the
Bernstein-Sato polynomial.

In this section we approach two questions. First, computing a differential value using
an implicit equation. Second, computing the tuning constants u* needed in several steps of
Delorme’s algorithm. In fact, we can find a solution of both problems in [31] for the more general
case of the namely complete intersection curves. However, the approach used to find tuning
constants by means of resultants implies some computational problems. For this reason we
include our version here.

The first question has a well known solution. More precisely, denote by Xy, p, the Op,,p,-
module of germs of vector field in (My, Py). Take C a branch defined by the implicit equation
f =0. Consider w = Adx + Bdy a 1-form, we denote by X,, € X, p, to the vector field

.— B9 2
X, =B -AZ.

Notice that the definition of X, depends on the chosen coordinate system. The following lemma
is a weaker version of the Proposition B.1 in [18]

Lemma 5.4.1 ([18] Proposition B.1). Let C be a branch (not necessarily a cusp) defined by the implicit

equation f = 0. Then we have that for any 1-form w € Q}\AO Py

Vc(a)) = ipO(Xa,(f),f) —cr+1. (5.12)

In virtue of Proposition 4.1.5, we can obtain ip,(X,(f), f) by computing a minimal standard
basis of the ideal (X, (f), f). This is done by means of an implicit equation, hence we can
compute the differential value vc(w) without using directly a parametrization.

Now assume that C is a cusp with Puiseux pair (1, m). Suppose that (x, y) is a local system
of coordinates adapted to C and take an implicit equation f = 0 of C as in Equation (1.9), that is,

f=ux"+y" + Z zapx®yP, with y # 0and zag € C.

a,$>0
na+mp>nm

With this setting the computation of the tuning constants u* relies on finding a minimal standard
basis of the ideal (X, (f), f). We want to remark that our procedure for computing tuning
constants only works in the cuspidal case. As in Example 4.1.1, we consider the weighted order
with respect to (1, m), where we recall that (a, b) < (c, d) if and only if either na + mb < nc + md
orna+mb=nc+mdanda <c.
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Proposition 5.4.2. Consider a vector field X € Xu,,p, and the ideal I = (X(f), f), with the assumption
that f + X(f).

1. Suppose that Ip(X(f)) # (0,n —1). Denote by h a final reduction of X(f) modulo {f}. Then:

a) Iflp(h) = (a,0), then { f, h} is a minimal standard basis of I.
b) Iflp(h) = (a,b) withb > 0, then {f, h, Syin(f, 1)} is a minimal standard basis of I, where
Smin(f, h) is a minimal S-process of f and h, where [p(Spmin(f, h) = (a +m, 0).

2. Suppose that Ip(X(f)) = (0,n — 1), and let g be a final reduction of f modulo {X(f)}. Then
{X(f), g} is a minimal standard basis of I, where Ip(g) = (m,0).

Notice that in the case 1.b), we are saying that S, (f, 1) is not reducible modulo {f, I1}.

Proof. The proofs of the three statements are pretty similar; for this reason, we omit the one for
Statement 2. Assume, as in Statement 1, that Ip(X(f)) # (0, n — 1). We recall that we write f as
in Equation (1.9).

f=ux"+y" + Z zapx®yP, with y # 0and zag € C.
a,p=0
na+mp>nm

Thus, the condition Ip(X(f)) # (0, n — 1) is equivalent to Ip(X(f)) # Ip(f,). It follows that the
term a% with a € C of the vector field X is zero. From the equation of f, we deduce that there
are no monomials of the form xy* with k < n. Therefore, Ip(X(f)) # (0, c) with ¢ < n.

To compute a minimal standard basis of the ideal I, we apply Biichberger’s algorithm. First,
we find a generator system B = { f1, f»} of I, such that neither f; is reducible by f,, nor vice versa.
Next, we will compute the minimal S-process S.,in(f1, f2) and a final reduction modulo { f1, f>}.
Finally, we iterate the process as many times as needed. In fact, we show that either { f, 2} is
the desired standard basis, or the algorithm finds one after the first iteration.

Since f does not divide X(f), we know that I # (f), meaning that we need at least two
generators for the minimal standard basis. Because Ip(X(f)) # (0, ¢c) withc < nand Ip(f) = (0, n),
if f is reducible modulo {X(f)}, then Ip(X(f)) = (0, n), implying that X(f) is reducible modulo
{f}. Therefore, we set fi = f and f, = h, where h is a final reduction of X(f) modulo {f}.

Let the leading power of h be Ip(h) = (a,b) with b < n. Otherwise, h — y’x"y"~" f would
give us a new reduction of i for an appropriate constant u’, contradicting the fact that # is a
final reduction of X(f) modulo {f}.

We have to check that for the case b = 0, the algorithm has found a standard basis, and hence
minimal, since neither f nor & can be omitted. On the contrary, if b # 0, we have to compute an
extra element. In both cases, we can write

St = Suin(f, ) = x"f = pay"~"h,

where 1 is the unique constant such that Ip(S1) > Ip(x*f) = Ip(y"~"h).

a+m

We claim that the leading term of S; is [#(S1) = ux®*™, where i is the constant appearing in
the implicit equation f. This is consequence of the following two facts: first, the Newton cloud
of h has no points of the form (c, d) with nc + md = na + mb and d > n. Otherwise, it would
follow that ¢ < a and that Ip(h) # (a,b). Second, the leading term of x” f — [t(x"f) is ux™*™.
Since I#(51) = ux®*™, then S; does not admit any reduction modulo {f, h}, unless b = 0.

Case b = 0: for any partial reduction r of S;, we have that

Ip(r) = (c,d) > Ip(S1) = (a + m,0) > (a,n) = Ip(x"f).

We have the following;:
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e Ifd > n, then r can be reduced modulo {f}.

e If ¢ > a, then r can be reduced modulo {/}.

e If c < aand d < n, then we have that nc + md < na + mn, in contradiction with the
assumption that (¢, d) > (a, n).

In conclusion, if b = 0, then r is reducible modulo {f, h}. Since r is any partial reduction of S;
modulo { f, h}, it follows that 0 is a final reduction of S; modulo {f, h}. Thus the Biichberger’s
algorithm stops and {f, 1} is a minimal standard basis of I. This ends the proof of Statement
1.a).

atm yyve have that in this case S is its own

Case b # 0: As we said before, since I#(S1) = ux
final reduction modulo { f, h}, in particular we have that Ip(S1) = (a+m, 0) as desired. Therefore,
by the Biichberger’s algorithm, it is necessary to add S to our candidate of standard basis { f, h1}.
We only need to verify that the algorithm stops here. In other words, we have to compute all
new possible minimal S-process and see that they have 0 as a final reduction modulo {f, #, 51}.

There are only two new minimal S-process to consider:

S2=Suin(f,51) = x""f—wy"S
53 = Smin(h/ Sl)

x"™h — ygybsl.

Here p» and 3 are the unique constants such that Ip(S2) > Ip(x**™ f) = (a + m,n) and
Ip(S3) > (x™h) = (a + m,b). In order to show that their final reductions modulo {f, i, 51} are
zero, it suffices to show that any pair (¢, d) > (a + m, b) is divisible by (0, n), (a, b) or (a + m, 0),
that is, the leading powers of f, h and S;.

We have that nc + md > n(a + m) + mb, hence

e If0<c<a,thend >n+b>nand(0,n)divides (c, d).
e Ifa<c<m+a,thend > b and (a,b) divides (c, d).
e Ifc > a+ m,then (a + m,0) divides (c, d).

Hence the final reductions of Sy and S3 modulo {f, 11, S1} are 0, ending the proof of Statement
1.b). O

The previous result can be used to particularize Lemma 5.4.1.

Proposition 5.4.3. Take a 1-form w € lev{o p, Such that f 4 Xo(f). Put h € Owm,p, a final reduction of
Xo(f) modulo { f}, with leading power Ip(h) = (a,b). Then we have that

ve(w)=n(a+1)+m(b+1)—nm.
Proof. By Lemma 5.4.1 we have that
VC(C‘)) = lPo(Xw(f)/f) —Cr + 1

By Proposition 5.4.2, we can determine the set of leading powers of a minimal standard basis of
the ideal (X,,(f), f). By direct application of Proposition 4.1.5, we find that

ipy(Xo(f), f) = na +mb.

The last equality combined with fact that cr = (n — 1)(m — 1) give us the desired result.
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Remark 5.4.4. Proposition 5.4.3 solves the problem of computing the tuning constants u* in the
case we are interested in. Suppose thatn;, n, € QIlVIO/PO are two 1-forms with vc(11) = ve(m2) < oo.
Let us see how to compute the tuning constant of the 1-form n; + u*n,. First, consider h;
and h; final reductions of X, (f) and X;,(f) modulo {f} respectively. Put Ip(h1) = (a,b) and
Ip(hy) = (c, d) the leading powers, where b, d < n. By Proposition 5.4.3, we have that

n@+1)+mb+1)—nm=vc(ip)=vc(mp) =n(c+1)+m(d+1)—nm.

The conditions 0 < b, d < n imply that (a, b) = (¢, d). The previous equalities can be translated
to leading terms as

lt(h1) = pxy?;  1t(h) = pox"y?.

Here 111 and p; are non zero constants. If we put u* = —pu1 /2 as the tuning constant, we observe
the following: the leading power Ip(hy + u*hy) > Ip(h1),Ip(h2). Since hy + u*h; is, at least, a
partial reduction of X, 1+, (f), by Propositions 5.4.3, we verify that vc (n1 +u*n2) > ve(m), ve(n).

Since we know how to compute differential values and tuning constants, we can apply
Delorme’s algorithm without a parametrization.

To end this chapter, we show how a minimal standard basis of the module of differentials is
related with a minimal standard basis of the extended jacobian ideal of C, when considering the
weighted monomial order with respect (1, m). We recall that the extended jacobian ideal of f is
J(f) =(f, fx, fy), where f,, f, are the partial derivatives of f with respect x and y respectively.

In [9], it is given a description of minimal standard basis of the extended jacobian ideal,
when f is generic. Besides, according to [48], if we have a minimal standard basis of J (f), then
we can obtain the semimodule of differential values of C. Moreover, in [16], standard bases of
(f) are used to find a similar result to Theorem 1.5.2 when dealing with the implicit equation of
a cusp.

Theorem 5.4.5. Assume that C is a cusp with a Puiseux pair (n, m) and let f € Oy, p, be an implicit
equation of C. Suppose also, that the local system of coordinates (x, y) is adapted with respect C. Denote
by (A-1, Ao, ..., As) the basis of the semimodule of differential values Ac of C and take (w-1, wo, - .., Ws)
a minimal standard basis of the module of differentials of C. Fori = —-1,0,1,...,s, let hj € Opm,,p, be a
final reduction of X, (f) modulo { f}, then

B={h_1,ho,..., hs}
is a minimal standard basis of J (f) with respect the weighted order with respect (n, m).

Proof. Put

f=ux"+y"+ Z Zapx®yP, with u # 0and zag € C.
a,$>0
na+mp>nm

It is enough to show the following three statements:

1. B is a generator system of the ideal J (f).
2. Given g € J (f), there exists at least one element b € B, such that Ip(b) divides Ip(g).
3. Given h;, hj € B with h; # hj, then the leading powers satisfy that Ip(h;) 1 Ip(h;).

Statement 1: We need to show that the ideal generated by B coincides with J(f). Given

w € QIl\/Io,Po’ by definition we have that any final reduction of X, (f) is an element of J(f).

Therefore, we only need to show that f, f, and f belong to the ideal (B).
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By Remark 5.2.2, the pair {w-1, wo} is a basis of the Op,,p,-module Q}wo Po* Hence, we can
write the 1-form dx as

dx = g-1w-1 + gowo with g-1,80 € OMO,PO' (5.13)

Besides, we also have that vc(w-1) = n and vc(wo) = m, thus by Equation (5.12), we see that
ipy (X, (f), f) = nm—mand ip,(Xe,(f), f) = nm—n. Therefore, by Proposition 5.4.3, the leading
powers of h_q and hg are Ip(h_1) = (0, n — 1) and Ip(hg) = (m — 1, 0). Since both leading powers
are smaller than (0, n), thatis, (0,n—1), (m—1,0) < (0, n), then the only possibility is that X,,_, (f)
and X, (f) are not reducible modulo {f}. In particular, Ip(X,_,(f)) = Ip(h-1) = (0,n — 1) and
Ip(Xwo(f)) = Ip(ho) = (m —1,0). These last equalities imply that X,, ,(f) = h—1 and X, (f) = ho.
Thus, by Equation (5.13)
—fy = Xax(f) = g-1h-1 + goho.

This shows that f, € (B). In the same way, we find that f; € (B). We only need to prove that
f € (B). Since, we already know that f, f, € (B), it is equivalent to show that

1 1 nm-na-mp
P (e gun) = Y ey e ®)
a,$>0
na+mp>nm

We are going to define a sequence of functions f;, g¢ for ¢ > 1 satisfying the following two
conditions:

o f[ = f - g, with Q1 € (B).
* g = Xw(f) —pf, forsomen, € le\/IO,PO and p € Opm,,p,-
The functions f; and g; will show that f € (B). We construct them in an iterative way. We start
with g1 = (Exfc + 2y fy) and 1 = Lxdy — Lydx, thatis, i = f — g1.
Now assume that we have constructed f; and g, as desired. Then there are three cases:
a) fr=0.
b) Ip(fe) is not divisible by the leading power of any element of B.
c) Ip(fe) is divisible by the leading power of some element of B.

Case a): the proof of the statement is over since we can write f = g € (B).

Case b): write Ip(f¢) = (a, ), which by assumption is not divisible by any leading power of
any element of B. In particular, («, §) is not divisible by Ip(h_1) = (0, n — 1). Hence, («, ) is not
divisible by (0, 7). This means that —f; is a final reduction of X;,(f) modulo {f}. Therefore, by
Proposition 5.4.3, we obtain that vc(1) = A = n(a + 1) + m(B + 1) — nm. Since A is a differential
value, we have that A = A; + np + mq forsome -1 <i < sandp,q = 0.

Set (ci, di) = Ip(h;), this means that A; = n(c; + 1) + m(d; + 1) — nm. Thus, we find that
na +mp =n(c; + p) + m(d; + q). Therefore,

a=ci+p—km;, B=di+qgq+kn, keZ

If k > 0, then B > n and («a, B) is divisible by (0, n — 1) = Ip(h_1) which is a contradiction. If
k <0, then («, ) is divisible by (m —1,0) = Ip(hp) again a contradiction. Finally, if k = 0, then
(a,B) = (ci + p,di + q) and («a, ) is divisible by (c;, d;) which is another contradiction. Thus,
Case b) cannot happen.

Case c): in this case we construct the functions fr+1 and g¢+1. Again, set (o, ) = Ip(fr) and
consider (c;, d;) = Ip(h;), such that («, B) is divisible by (c;, d;). Then, we write

Nes1 = e+ px*~ iy,
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where i is the unique constant such that the function
ges1 = go +ux " yP iy,

satisfies that Ip(f — ge+1) > Ip(f — ge).
By hypothesis on g;, we can write g, = X, (f) — p’f with p” € Opy,,p,. Additionally, £; is a
final reduction of X,,,(f) modulo {f}, we have that

pxciyf=dip; = X pxaciyb-di o, (f) = p"f, p” €Omyp,-

Thus, if we write p = p’ + p”, we get that g¢41 = Xj,,,(f) — pf. Finally, we put fr41 = f — ge+1
and we restart the process.

This entire procedure shows that a final reduction of fi modulo B is 0, implying that f; € (B),
in particular, we find that f € (B). This concludes the proof of Statement 1.

Statement 2: Take g € J(f) such that Ip(g) = (a, B) is not divisible by any leading power of
any element of B. By Statement 1, we can write

S
g= Z gihi,
i=—1

for some functions g; with i = -1,0,...,s. We consider the 1-form w = }}__; giw;. Asin
Statement 1, the assumption of non divisibility implies, in particular, that («, 8) is not divisible
by (0,n —1) = Ip(h_1). Hence, Ip(g) is not divisible by (0, ) and g is a final reduction of X, (f).

By Proposition 5.4.3, vc(w) = A = n(a + 1) + m(B + 1) — nm. Repeating exactly the same
arguments that in Case b) from Statement 1, we find a contradiction with the assumption that
(a, B) is not divisible by any leading power of the elements of B.

Statement 3: Consider h;, hj € B, with i # j. Assume that (cj,d;) = Ip(h;) is divisible by
Ip(hi) = (ci, d;). Since h;, h; are, respectively, final reductions of X, (f) and Xo; (f) modulo {f},
then by Proposition 5.4.3, we have that

Vc(a)i) A= n(ci+1)+m(di +1)—nm

ve(wj)

Aj=n(cj+1)+m(d;j +1)—nm

Since (c;, d;) | (cj,dj), we have that ¢; — c; > 0 and d; — d; > 0. Therefore, A; — A; = n(cj —¢;) +
m(d; — d;) € Tc. This contradicts the fact that A; and A; are two different elements of the basis of
Ac. [m}

We give an example of application of the previous theorem.
Example 5.4.6. Asin Example 5.2.13, we take the cusp C defined by the primitive parametrization
P(t) = (1, "1 + 12+ 7¢8) = (x(t), y(t)).

We showed that 8 = (5,11, 17,23, 29) is the basis of the semimodule Ac¢ of differential values.
We are going to check this by using an implicit equation. Take a minimal standard basis
(w-1, wo, ..., ws) of the module of differentials of C. As in Theorem 5.4.5, we denote by h; a final
reduction of X, (f) modulo {f}, fori = -1,0,...,s, where f stands for an implicit equation of
C.

By Proposition 5.4.3, in order to compute the basis of the semimodule of differential values
of C, we only need to know the pairs Ip(h;). Since the set {h_1, ho, ..., hs} is a minimal standard
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basis of the extended jacobian ideal J (f) of C, we do not need to compute the 1-forms to obtain
the basis of semimodule. More precisely, it is enough to obtain any minimal standard basis of
J (f), recall that by Remark 4.1.6, the set of leading powers does not depend on the minimal
standard basis chosen.

Since we do not want to compute the basis of Ac with a parametrization, we need to obtain
an implicit equation of C. We can compute one by means of Equation (1.1). An easier option, in
terms of complexity, is to compute the resultant of the polynomials (x — x()) and (y — y(t)) with
respect to the variable ¢, as explained in Section 1.2. This time we relay on SageMath to do the
computations, included those about the computation of the basis (see [54]). We proceed to give,
and explain, the commands used.

We first define the polynomial ring in three variables x, i, t with coefficients in the algebraic
closure of Q. We recommend not to use the field of complex numbers, since they have a numerical
precision and this could induce some errors on the computations.

R.<x,y,t> = PolynomialRing(QQbar, 3)

We define the parametrization of the branch.

u=1t"5

v=1t"11+ t712 + 7%t"13

We compute an implicit equation of the branch by using the resultant method mentioned
above.

f = (x - w.resultant(y - v, t)

We obtain as a result:

16807*x"13 + 211*x712 + x"11 + 1470*x"10%y + 5*X"9%y + 40*x"7%y"2
+ 35*x"5%y"3 - y"5

We can check that

f(u,v,t)=0.

Now, we consider a new polynomial ring in two variables x, y with the desired monomomial
order given by the pair (5, 11).

M.<x,y>= PolynomialRing(QQbar,2,order=TermOrder (’negwdeglex’, (5,11)))

Since we have changed the ring, we have to redefine f to be an element in M. This is done just
by rewriting:

f = 16807*%x"13 + 211*x712 + x"11 + 1470*x"10*%y + 5%*x"9*y + 40*x"7*y"2 + 35*%x"5%y"3
-y ~ 5

Next, we define our ideal:

fx = f.derivative(x)

fy = f.derivative(y)

I = ideal(fx, fy, f)

We compute a standard basis of I.

B = I.groebner_basis()

By Proposition 5.4.3, the basis of the semimodule of differential values is given by:

conductor = (5-1)*(11-1)

results = [b.1t().degree() - conductor + 1 for b in B]

We check that the array results returns the desired basis of the semimodule of differential
values Ac.
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STANDARD SYSTEMS

In the cuspidal case, we can enlarge the concept of minimal standard basis of the module
of differentials. This way we can include extra 1-forms whose role will be prominent when
describing Saito bases in Chapter 8. Up to this point we have mainly focus on the critical values
t;; in contrast, standard systems include also information coming from the critical values f; for
1<i<s+1

This chapter is devoted to give the definition of standard systems and to show their existence.

Fix C a cusp with Puiseux pair (1, m) and cuspidal divisor D. We say that a sequence of
1-forms & = (w-1, wy, . .., Ws, Ws11) is an extended standard basis of C,if S = (w_1, wy, ..., ws) is
a minimal standard basis of C and w1 satisfies the following two conditions:

1. vp(wst1) = tsi1.
2. ve(ws+1) = oo, thatis, C is invariant by w1 (see Lemma 2.1.1).

Definition 6.1. A standard system (&, &) for the cusp C is the data of an extended standard basis
& = (w-1, w0, w1, ..., Ws, ws+1) and a family E = (@, d,... 0 0ss+1) of 1-forms satisfying that

VD((T)]') = 1?]', Vc(cf)]') =00, 1<j<s+1

We say that a standard system (€, &) for C is a special standard system if there are expressions
@j = hjws1 + fj@Ds+1, where hj, fj € Opy p, forany 1< j < s.

The inclusion of the notion of special standard system is just a formalism. Indeed, by the
already mentioned Theorem 8.2, all standard systems are special.

Note that the 1-forms w; and @;, except w-1, wg and @1 are basic and resonant, see Corollary
3.6.2 and Proposition 2.3.14. Thus, by Proposition 2.5.1, they are totally D-dicritical.

Remark 6.2. We introduce the notion of extended standard basis separated from the one of
standard system because the 1-forms in & do not share some of the properties that have the
1-forms in &. We will explain this in more detail in Chapter 7.

In the next propositions, we saw the existence of standard systems. The proof of both
propositions is very similar, however, we prefer this split presentation.

Proposition 6.3. Let C be a cusp and Ac its semimodule of differential values, with basis B =
(A1, Ao, A1, ..., Ag). Assume that s > 1. There are two 1-forms w1 and @s41 having C as an invariant
curve such that vp(ws41) = tss1 and vp(@ss1) = ey

101
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Proof. Let us select a minimal standard basis S = (w-1, wg, w1, . .., ws) of the cusp C. As we have

already done, let us denote by * a chosen element * € {n, m}. We have to find @}, € Qll\/lo Po [C]

*

s+1°
We do the detailed proof for * = n. The case * = m runs in a similar way. Then, we have to

find 0? ;| € Q}\AO,PO[C] such that vp(w?,,) = t,,.

Let us recall that u , = As + nl = Ay + mb, where we denote ¢ = (' |, k = k! and b = by,

such that vp(w},,) =t

the limits, bounds and colimits, see Lemma 3.5.1. Recall that k < s. Consider the 1-forms
no = x‘ws, m =yl

Note that vp(no) = t',=ts +nland vp(m1) > t” . Since we have

s+1°
VD(T]1) =mb +t; > VD(T]()) = s+l &
ts—ty<mb—-nl = (M::+1 —Ag) — (u;:_l —As) = Ag — A

and A; — Ag > t; — t; follows by Lemma 3.2.8. Moreover, the differential values coincide

ve(no) =ve(m) = ul,,.

Thus, we write 01 = g + u*n;, where u* is the tuning constant. We get that

vp(01) =t!,,, vc(01) >vc(no) =ve(m) =ul,,.
We consider three cases:

a) vc(0:1) = co. Then we end by taking w?,, = 0.
b) vc(61) = nm.

c) ve(61) < nm.

Case b): let ¢(t) be a primitive parametrization of C. We have that ¢*(61) = ¥(t)dt, with
ord;(Y(t)) = nm —1 > cr. In view of Lemma 1.4.3, there is a function h(x,y) such that
¢*(dh) = Y(t)dt. If we take !, = 61 — dh, we have that vc(w!, ;) = . In order to finish, we
have to see that vp(dh) >t ,. Since t” , < 1 = nm (see Lemma 3.6.1), we just need to see
that vp(dh) = nm. By Proposition 2.3.14, if vp(dh) < nm, we obtain that vc(dh) = vp(dh), in
contradiction with the fact that vc(dh) = nm. Thus vp(dh) is at least nm as desired.

Case c): write vc(01) = Aj + na + mpB > u!

iy for a certain index —1 < i < 5. Consider the

1-form 1, given by
= x“yﬁa)i, vp(n2) = ti + na + mp.

Let us see that vp(n2) > tI | = t; + nl = vp(61). Assume first that i = s, we know that
ul .y = As +nl <vc(n) = As + na + mp, hence naw + mp > nl and ts + na + mp > t; + nl as
desired.

Assume now that i < s. We have

n

1= A+l =

ve(m)=Ai+na+mp>u
Sna+mp—nl>A; —A; >ts—t; =

= ti+na+mp >ts +nl.

Consequently, vp(12) > vp(61).
On the other hand, we have that vc(n2) = vc(61). Hence, we can write 0, = 01 + u*mnp, we
obtain that
vp(62) =vp(01) =t,;, vc(62) > vc(61).
We restart the procedure with 0,, since the differential value is strictly increasing, in a finite
number of steps we arrive to case b) or to case a), this ends the proof. ]
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Now, we proof the existence of the 1-forms @; for i < s. The proof runs in a very similar way.

Proposition 6.4. Let C be a cusp and Ac its semimodule of differential values, with basis B =
(A1, Ao, A1, .o, Ag). Assume that s > 1. Forany i =1,...,s, there is I-form &; having C as an
invariant curve, such that vp(&@;) = f;.

Proof. 1f i =1, we can take @1 = df, where f = 0 is an implicit equation of C. Indeed, it is clear
that C is invariant by df. Moreover, by Example 3.5.4, we know that vp(df) = nm = f;.
Assume that i > 2. Let us select a minimal standard basis S = (w-1, wg, w1, ..., ws) of the
cusp C. In fact, we only need the elements of a minimal standard basis up to index i — 1. Without
loss of generality we are going to assume that f; = t", hence it; = u/".
Let us recall that ui" = A;j_1 +nl = A + mb, where we denote { = Bl,”, k= k?_l and b = b; the
limits, bounds and colimits, as defined in Chapter 3. Recall that k < i — 1. Consider the 1-forms

no=x‘wict, m =yl

Note that vp(no) = t!' = t;-1 + nf and vp(11) > t!'. Since we have

tii+nl &
(u] = Ax) = (U] = Ais1) = i1 = Ak

vp(m) = mb + tx > vp(no)

tiig —t <mb-nt

and A;j_1 — Ax > t;_1 — t follows by Lemma 3.2.8. Moreover, the differential values coincide

ve(no) = ve(m) = u;'.
Thus, we write 01 = 1o + u*n1, where u* is the tuning constant. We get that
vp(61) =t!, vc(01) > ve(no) = ve(n) = u!'.

We consider three cases:

a) vc(61) = 0. Then we end by taking &; = 0.
b) vc(61) = nm.
c) ve(61) < nm.

Case b): let ¢(t) be a primitive parametrization of C. We have that ¢*(61) = ¢(t)dt, with
ord¢(¢(t)) = nm —1 > cr. In view of Lemma 1.4.3, there is a function h(x, y) such that
¢*(dh) = ¢(t)dt. If we take @; = 01 — dh, we have that vc(®;) = o. In order to finish, we
have to see that vp(dh) > t!'. Since t!' < f1 = nm (see Lemma 3.6.1), if we only need to see
that vp(dh) = nm. By Proposition 2.3.14, if vp(dh) < nm, we obtain that vc(dh) = vp(dh), in
contradiction with the fact that vc(dh) > nm. Thus vp(dh) is at least nm as desired.

Case c¢): we have that v¢(61) > ii;, thus by Corollary 3.4.7, we have that vc(61) is greater
than the conductor of the semimodule A;_; appearing in the decomposition sequence of Ac (see
Chapter 3). Therefore, vc(01) € A;-1 and we can write vc(61) = Aj + na + mp > ul', for a certain
index —1 < j < i — 1. Consider the 1-form 7, given by

= x“yﬁa)j, vp(n2) = tj + na + mp.

Let us see that vp(12) > t!' = t;-1 + nf = vp(01). Assume first that j = i — 1, we know that

ul' = Aisg +nl <vc(n2) = Ai-y + na + mp, hence na + mp > nl and t; + na + mp > tiy +né

as desired.
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Assume now that j < i —1. We have

ve(m) =Aj+na+mp>ul' =i 1 +nl =
:na+mﬁ—n€>/\i_1—/\j>ti_1—t]-=>

:»tj+na+mﬁ>ti_1+n€.

Therefore, vp(12) > vp(61).
On the other hand, we have that vc(72) = vc(61). Hence, we can write 8, = 61 + u*na, we
obtain that

vp(62) =vp(01) =t}!, vc(62) > vc(6h).

We re-start the procedure with 6,, since the differential value is strictly increasing, in a finite
number of steps we arrive to case b) or to case a), this ends the proof. ]
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ANALYTIC SEMIROOTS

In this chapter we introduce the concept of analytic semiroot of a cusp C. The goal is to find
cusps whose analytic type “approximate” the one of C. This resembles the case of approximate

roots with a similar property with topological classes instead (see [1]).

1
Mo,Po

defines a totally D-dicritical foliation. Then we have that each non corner point P of D defines a

Consider C a cusp with Puiseux pair (1, m) and cuspidal divisor D. Suppose that w € Q

branch C} invariant by @ whose strict transform, by the minimal resolution of singularities of C,
is non singular and transverse to D at P. The curve C} has the same resolution of singularities
as C. We recall that C} is called an w-cusp through P, see Definition 2.5.5.

When w is an element of an extended standard basis, we obtain the desired notion of analytic
semiroot.

Definition 7.1. Consider C a cusp and let & = (w-1, wo, . . . , Ws, Ws+1) be an extended standard basis
of C. Denote by D the cuspidal divisor of C. For any index 1 < i < s + 1 and any non corner point
P € D, we say that the w;-cusp Cp," is an weak analytic E-semiroot of index i of C. When P is the
infinitely near point of C, we just say that Cp," is the analytic E-semiroot of index i of C.

The next result shows the relationship between the semimodule of differential values of a
cusp and its analytic semiroots.

Theorem 7.2 (Theorem 8.8 [12]). Consider C a cups with & = (w-1, wo, ..., Ws+1) an extended
standard basis. Forany 1< i < s+ 1and y = C," a weak analytic E-semiroot of C, we have that

Si = (a)—ll @O, .-y a)i)

is an extended standard basis of y and the semimodule of differential values is A, = A;_1. Moreover, we
have the equality of differential values

ve(wk) =vy(wy), for -1<k<i-1

Recalling the definition of increasing semimodule satisfied by Ac (A; > u;), we have that the
previous theorem is a consequence of the next more general technical results.

Proposition 7.3. Consider an index 1 < i < s + 1 and a element » € {n, m}, excluding the case where
i =1and+=m. Let w be a 1-form such that vc(w) > u; and vp(w) = t;. Take y = C} an w-cusp.
Then we have that vc(we) = vy (wg) = Ag for £ = =1, ... ,i — 1. Moreover, Ay is precisely the {-element
of the basis of Ac.

Recall that these 1-forms are totally D-dicritical, since they are basic and resonant.
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Proposition 7.4. Consider an index 1 < i < s+ 1. Let w be a 1-form such that vc(w) > u; and
vp(w) = t;. Take y = Cj an w-cusp. Then Ay = A;-1.

Before giving the proofs of both propositions, let us note that Proposition 7.3 implies the
following.

Corollary 7.5. Aq; D Aji_1.

Moreover, Proposition 7.3 gives a version of Theorem 7.2 for the case of standard systems.
In particular, for the 1-forms @;, with vp(@;) equal to the critical value f; and with C invariant,
see Definition 6.1.

Theorem 7.6. Consider y = CI“;"' an @;-cusp with 2 < i < s+ 1. Then we have the equality of differential
values
ve(we) = vi(we), for —-1<€<i-1.

Moreover, we have the inclusion Aj—1 C Aj.

Proof of Proposition 7.3. Note that for any basic non resonant 1-form 1, by Proposition 2.3.14, we
have that

ve(n) =vp(n) =v,(n).

This is particularly true for the case of exact 1-forms. Notice that if n = dg with g(0,0) = 0, then
we know that vp(1) = vp(g). Hence, for any germ of function g € O, p,, we have that

min{vc(dg), nm} = min{v,(dg), nm}. (7.1)
Since (x, y) is not only a system of adapted coordinates with respect to C, but also with respect
to y, then
ve(dx) =vy(dx) =n=A_1, vc(dy)=v,(dy)=m=Ao.
The previous equalities imply that the statement of the theorem is true for { = —1,0. Let us

assume that theorem is true for any ¢ = -1,0,1,...,j, with 0 < j < i — 2. We apply Theorem

5.3.1 to obtain a decomposition
j+1

w = Zfewe

{=-1
such that vc(frwe) 2 vij41, where vj41 < v;; = uiy1 < nm (Corollary 3.6.2) and there is a single
k < jsuch that ve(fjr1wjr1) = ve(fywi) = vij+1. We deduce that

j
ve (Z ffa)é’) = ve(frwk) = vijs.

=1

On the other hand, by induction hypothesis and noting that v;+1 < nm, we have that
min{vc(fewe), nm} = min{v, (frwe), nm}, €=-1,0,1,...,].
In particular, we have that

j
vy(frwk) = Oij+1,  Vy (Z ﬁfwe) = Uij+1-

(=1

Since v, (w) = oo, we have that v, (fj;1wj+1) = vij+1. Hence we have

vijr1 = ve(firiwjs) = vy (fir1wjs)-
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Noting that vc(fj+1) = v, (fj+1), we conclude that vc(wjy1) = vy(wjs+1). This shows that
ve(we) = vy(we) = Agfor £ =-1,0,1,...,i - 1.

Let us inductively prove that A; is the {-element of the basis of A, with £ = -1,0,1,...,i-1.
The result is clear for £ = —1,0. If £ = 1, we notice that the critical value t; is the for both A¢ and
A, since they share the (-1)-element and the 0-element of their bases. Then, by Theorem 5.2.10,
we have that

A1 < sup{v, (1) : vp(n) = t1} = min(A, \ Ag) < A1.

Hence all the previous inequalities are equalities and we have that A, is the 1-element of the
basis of A,.

Now assume that the result holds for 1 < ¢ < i — 2. Let us show that the Ay, is the
(£ + 1)-element of the basis of A, . As before, we notice that v}, (w¢+1) = Ag41 and vp(wes1) = tera,
since the elements of the bases of Ac and A, are the same up to index {. We have that the critical
value ty,1 is the same for both semimodules. Thus

Agr1 < sup{vy(n) : vp(n) = tep1} = min(Ay, \ Ag) < Aggr.
We conclude the desired result. ]

Proof of Proposition 7.4. Denote by 8’ = (A", A(, ..., A],) the basis of A,. In virtue of Theorem
7.3 we have that Ay = A; for ¢ =-1,0,...,i — 1. We only must show thats’ =i—1. Ifs’ >i—1,
by definition there exists a 1-form @’ such that vy (w’) = A} < co. By Theorem 5.2.10, we see that
vp(w’) = t; = vp(w;) since the elements of the bases of Ac and A, are common up to index i — 1.
Therefore,

A = max{v, (7); vp(y) = £i}.

But we know that v, (w) = oo > A/, this is the desired contradiction. m|

Now, we give several examples of different phenomena related to the previous results. First,
we show that the inclusion in Corollary 7.5 may be strict.

Example 7.7. We consider the 1-form w = 7x?dy — 18xydx — 14/9ydy. Notice that w is basic
and resonant with respect to the pair (7,18). We take the w-cusp C given by the primitive
parametrization

(1) = (¢7, 18 + +22 +10/9t%° + 319/243t% + 1178/729t3 + h.o.t.).

As a remark, we can compute ¢(t), by considering the parametrization @(t) = (7, 18 + 2;0:19 ajtl).
Imposing the condition ¢*w = 0, we find the values of the coefficients a;.

The reader can use the techniques from Chapter 5 to see that the basis of the semimodule of
differential values of C is (7,18,29). We also have that il = u)' =119=29+5-18=7+16-7
and t, = 115.

Now, we take the 1-form n = 7xy°dy — 18y°dx — 4x'®dx. We have that vp(n) = f, and
ve(n) = 123 > 119. We consider the n-cusp C; defined by the primitive parametrization
¢1(t) = (#7,2¢'8 +1/32t%2 - 5/4096t° + h.0.t.). The basis of the semimodule of differential values
of Cyis (7,18,29,40,...). We do not compute all the elements of the basis, since we would need
a more detailed parametrization. With the truncated parametrization that we have, we can check
that vc, (w2) = 40, where w, = 7x?dy — 18xydx — 64ydy. This shows that the semimodules of
differential values of C and C; are different.

The next example shows that in general the analytic semiroots are not analytically equivalent.
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Example 7.8. Consider the curve C given by the primitive parametrization ¢(t) = (+7,+ +
130 + 33 4 £36) with I'c = (7,17) and semimodule of differential values Ac = I'¢(7,17,37,57). A
minimal standard basis of C is given by the 1-forms w_1 = dx, wo = dy, w1 = 7xdy — 17ydx and

wy = 3757x?ydx — 1547xdy — 4624y*dx + 1904xydy + 1183y>dy.
All the w;-cusps are defined by the primitive parametrization
pa(t) = (7, at7 + a3 + a*tB + ...

with a € C*. If we consider a new parameter t = a~2/13
/13y 1y = g21/13

given by the parametrizations

u and the we make the analytic change of

variables x1 = a Yy, we obtain that the family of cusps of w; are the curves C,”

¢q(u) = W, u"” +u® + a7ty 4. ).

From the results above, we have that Acg =A1 =T¢(7,17,37) foralla € C*. Since 33 ¢ A1 —7, by

2

Theorem 1.5.2, two curves Cgl and C;, are not, in general, analytically equivalent for a1, 4, € C*.

Recall that as it was mentioned in Sei:tion 1.5, finding normal form parametrizations, used to
determine if two curves are analytically equivalent, is done by modifying the terms of smaller
degree in the parametrization, and then iterating for bigger degree terms. Therefore, the
displayed coefficients of the parametrizations ¢,(u) correspond with the ones of their normal

form parametrizations.

Finally, we give an example showing the underlying problems to generalize the concept of
analytic semiroot to more general families of branches.

Example 7.9. Consider the branch C defined by the primitive parametrization ¢(t) = (+10, t15+¢18),
Notice that the characteristic exponents of C, as defined in Chapter 1, are (10, 15,18). Thus,
by Equation (1.4), we have I'c = (10, 15, 33). In fact, we see that for z = yz — x3, we have that
ve(z) = 33.

By means of Biichberger’s algorithm presented in Section 4.3, we can compute a minimal
standard basis for C. Because of the difficulty of the computations we omit all of them. Moreover,
for our purposes we only give a truncated minimal standard basis. We take the following 1-forms:
w-1 =dx, wg = dy, w1 =2xdy - 3ydx, wy = dz, w3 = -1lyws + xdz, w4 = —11x2%wq + ydz. They
give us the differential values A_; = 10, Ag = 15, A1 = 28, A, = 33, A3 = 46, A4 = 51, and the basis
of the semimodule of differential values of C is (10, 15,28, 33,46,51, ...), as we said, we do not
need the whole basis.

Our interest now focus in both w; and ws. If we denote by 7 : (My,EN) — (My, Po) a
minimal resolution of singularities of C, notice that the divisor E% is dicritical for both w3 and
w4. More precisely, both 1-forms have infinite families of curves topologically equivalent to C.
We consider the branches C3 and C4, defined by the primitive parametrizations ¢3(t) and ¢4(t)
respectively, as follows:

da(t) = (19,415 + 418 172621 + 1247 —5/8t%7 +7/8t*° + h.o.t.)
Gda(t) = (19,415 + 18 +17/10¢ + 84/25t* + 7163/1000t% + h.o.t.),

such that Cs is invariant by w3 and Cjy is invariant by w4. We can check that the basis of the
semimodule of differential values of C3 is (10, 15,28, 33, 51, . . .), with vc,(ws) = 51. In the case
of C4, we have that the basis is (10, 15, 28, 33, 46, . . .), where vc,(w3) = 46. In other words, w4 is
a 1-form that belongs to a minimal standard basis of C3, and w3 belongs to a minimal standard
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basis of C4. Therefore, if we would like to extend our notion of analytic semiroots to non cuspidal
branches, we have that C3 and C4 are analytic semiroots of C. However, we also see that C3 is an
analytic semiroot of Cy4, and vice-versa, Cy4 is an analytic semiroot of C3. Nonetheless, 46 € Ac,,
but 46 ¢ Ac,. Concluding that we can not generalize Theorem 7.4 to branches with a more
complicated semigroup.
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SAa1TO BASEs AND OTHER ANALYTIC

INVARIANTS

Let (C, Py) be a plane curve in (M, Py). In Chapter 2 we introduced informally the module of
logarithmic 1-forms along C. We now precise the definition. Consider a meromorphic 1-form 7 in
(Mo, Py), that is, in any coordinate system (x, y), we can write 1 = Adx + Bdy, where A, B are
meromorphic functions. Take f = 0 an implicit equation of C.

We say that 1 is a logarithmic 1-form along C if fn and 1 A df are both holomorphic. We
denote by Q}\/IO,PO [logC] the module of logarithmic 1-forms along C.

By changing the curve by any hypersurface in any regular ambient space, and the 1-forms for
g-forms we extend the notion to the one of logarithmic g-forms along a hypersurface. However,
as always, we are only going to work with our two dimensional case, thus we do not need this
notion with such generality.

K. Saito introduced in [49] the notion of the logarithmic forms. Its relevance comes from the
study of the Gauss-Manin connection, which appears when dealing with the monodromy map
around a singular point of a hypersurface, see [8, 47].

Saito showed that Qll\/lo,Po [logC] is a free O1,,p,-module of rank two. Denote by Q}VIO, po L€l
the O, p,-submodule of Qzlvio, M, 8iven by the 1-forms w such that C is invariant by . We have
that lev{g,PD [logC] is isomorphic to QIl\/Io,Po [C] as Ow,,p,-modules, this isomorphism is given by
the multiplication by f. Hence Qil\/lo,Po [C] is also free module of rank two. Any basis {11,172} of
Q}\/IO,PO [C] is called a Saito basis for C. A part from this, he also gave a characterization of the
elements of a Saito basis. The result is the following.

Lemma 8.1 (Saito’s Criterion [49]). Let C’ be a curve defined by the implicit equation g = 0. Given
1,12 € Q}VIO p,LC'], then {n1,m2} is a Saito basis for C” if and only if

m AN =ugdx Ady,
where u € Opm,,p, is a unit, and (x, y) is the chosen coordinate system.

For the rest of the chapter, we assume that C is a cusp with Puiseux pair (1, m). As before,
we denote by D the cuspidal divisor associated to the minimal resolution of singularities of C
and (x, y) is a system of adapted coordinates with respect to C. Our main goal in this chapter is
to prove the following result:

Theorem 8.2. Denote by Ac the semimodule of differential values for the cusp C, with length s > 0. Let
to41 and fs4q be the last critical values of Ac. Then, there are two 1-forms ws1, @s+1 having C as an
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invariant curve and such that vp(ws41) = ts1 and vp(@si1) = fs41. Moreover, for any pair of 1-forms
as above, the set {ws11, @s+1} is a Saito basis for C.

Note that the existence of the 1-forms w;41 and @s41 is given by Propositions 6.3 and 6.4.
Hence, we have to prove that {ws+1, @s+1} is a Saito basis for C. We prove it in several steps:

1. We prove Theorem 8.2 in the case s = 0.

2. We show that & U {ws+1} generates the Oy, p,-module Qzlvlo, Po [C], for any standard system
(&,8) for C that includes ws41 and @s.1.

3. We show that any pair of 1-forms w1, @s+1 having C as invariant curve and such that
vp(ws+1) = ts+1 and vp(@s+1) = 541 are included in at least one special standard system
(&,&). This result is proved in Proposition 8.3.1.

4. We conclude as follows. We start with {ws1, @s+1} and we consider a special standard
system (&, &) containing them. By Statement 3, any 1-form « in the Saito module
Q}VIO,PO[C ] is a combination

@ = hwse1 + 255 foy.

Since (§,&)is a special standard system, each 1-form @, is a combination of ws+1, @s+1,
forany { = -1,0,1,...,s. In this way, we find a writing w = fws+1 + §@s+1, as desired.

The proof of Statement 2 relies on having proved Theorem 8.2 when s = 0, which corresponds
to a quasi-homogeneous cusp. We consider this situation in next section.

8.1 The Quasi-Homogeneous Case

The statement of Theorem 8.2 when s = 0 is well know, see for instance [49]. Let us show it, for
the sake of completeness. We recall that, by Theorem 1.5.2, the cusp C is quasi-homogeneous,
and thus, C is analytically equivalent to the curve f = 0, where f = y" + ux"”, forany y € C*. In
fact, we could assume u = —1. We can take

wy = nxdy —mydx, @ =df = ymx""'dx +ny"dy.

By Lemma 8.1, we have that {w1, @1} is a Saito basis for C. Note that vp(w1) =t =n +m
and vp(@1) = 1 = nm.
Take now w, @ in Q}VIO’PO [C] being such that

vp(w)=ti=n+m, vp(®)=*t =nm.
Let us see that {w, @} is a Saito basis for C. Write
w = Awi + Baq, (T):Aa)1+l§cb1.

Since 1 + m < nm, we see that A is a unit. It is also obvious that A is not a unit. If we show that
B is a unit, the determinant AB — BA is a unit and hence {w, @} is a Saito basis. Note that

vp(Awr) # nm.
Indeed, if vp(Aw1) = vp(A) + n + m = nm, we conclude that

vp(A)=nm—-n—-m=cr—-1¢eTlc.
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This is a contradiction, since cr — 1 € I'c. Recall that by definition of conductor, cr is the smallest
element in I'c such that k € I'c, for any k > cr. We also recall that the divisorial value with
respect to D always belongs to I'c. Then, we have that

vp(®) = nm = vp(B&1) = vp(B) + nm.

This implies that B is a unit, as desired.

8.2 Generators of the Saito Module

Let us consider a standard system (&, ) of C given by
&= (a)*ll wo, W1,...,Ws, ws+l)/ 8 = ((Dl/ (:)2/ ey C‘N)S/ (DS+1)-

In next Proposition 8.2.5 we describe a generator system of the Saito module QIl\/Io,Po [C].

Our arguments run by first by writing initial forms as a combination of those of our candidate
of generator system. This would allow us to conclude in virtue of Artin’s Approximation Theorem.
This is done by working in an ordering the initial parts in terms of their divisorial values. To do
this, we just need the concept of “partial standard system”.

Consider an index 0 < j < s. A j-partial standard system associated to the extended standard basis
& is a pair (&, Sj), where &/ is a list

8] = (d)j+1/ C‘D]'+2/ sy CDS+1)/

such that vp(@¢) = f; and @y € Q}\AO PO[C],forj +1<{<s+1
We start by a lemma concerning the structure of the critical values of an increasing cuspidal
semimodule:

Lemma 8.2.1. Let A be an increasing cuspidal T'-semimodule of length s > 1, whereI' = (n, m). Assume
that the basis B = (A_1, Ao, A1, ..., As) satisfies that A_y = n and Ay = m. Consider the set

T = {ts+1/ ;21 E3/ sy ES+1}/

where t;, t; are the critical values of A corresponding to the index j. Then, there are two nonnegative
integer numbers p, q € Z>0 such that

{np+n+m,mg+n+m}cT.
Moreover, we have that p < m —2and g < n —2.

We remark that, as we saw in Chapter 3, we have that s < n — 2. Thus, the assumption s > 1
implies that n > 3.

Proof. We start by noting that by Corollary 3.6.2, we have that any element in T is strictly smaller
than f; = nm. This gives us the desired bounds on the indexes p and g.

Now, by definition of critical values, we know that one of the following mutually excluding
properties holds:

(D) bh=ti+nly =n+m+nly
(D) f =t +ml =n+m+mly
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Let us do the proof in the case (I), the case (II) has a similar proof. We can take p = {J and hence
bh=n+m+ np € T. Then, it is enough to find an element of T of the form n + m + mq.

Assume first that s = 1. Then ts41 = f2 = t; + m€)' =n +m +m{J'. Taking g = {J', we have
that ts11 = n +m + mg € T, ending the proof when s = 1.

Assume now that s > 1. There are two cases:

a) Forany 2 <i < s, we have that tj.1 —t; = m{" .
b) There is an index i (that we take to be the minimum one) with 2 < i < s such that
tiv1—ti= Tlljfﬂ.

Assume we are in case a). Recall that t, = t; + m{J’, since fr=t + nt). By a telescopic
computation, we see that t;11 € T may be written as

fp1 =t +m (Z;;f;ﬂ) =n+m+mq.

Assume we are in case b). For any 2 < j < i, we have that t; = t;_1 + mf;”. By a telescopic
computation, we obtain that t; = t; + mp;. The element t;+1 € T is given by t;41 = t; + m{}, and
hence we have that

fiv1 =t +m(p; + €1,

as desired. This ends the proof. o

Remark 8.2.2. As a consequence of Lemma 8.2.1, we have the following property. Assume that
Ac is the semimodule of differential values of a cusp C and (&, 5’) is a standard system, where

8 = (a)_l,wo,a)l,...,a)s,a)s+1), 8 = (67)1,652,...,(:)5,6)54_1).

Consider the set 7 = {ws41, @2, ..., @s, Ds+1}. Assuming that (x, y) is a system of adapted
coordinates with respect to the cusp C, there are two 1-forms 11,12 € 7 such that

In(n1) = wix? (mydx —nxdy), In(nz) = poy?(mydx — nxdy),
where 1 #0# ppand0<p<m-2,0<g<n-2.

Next lemma is the key argument for finding our generator system of Saito’s module. It will
be also important in order to find the Saito bases we are looking for.

Lemma 8.2.3. Let us consider a standard system (&,8) and a 1-form w € Q}VIO PO[C]. Assume that
(x, y) is a system of adapted coordinates with respect to C. Then, the initial form In(w) is a combination,
with quasi-homogeneous coefficients, of the initial forms

In(@1), ..., In(@s+1), n(ws+1)-

Proof. Assume that ¢(t) = (+",a,,t™ + h.o.t) is a primitive parametrization of C, with a,, # 0.
Let us denote by W = In(w). By Proposition 2.3.16, the 1-form W has a quasi-homogeneous
curve Cp as an invariant curve, where ¢(t) = (", a,,t™) is a primitive parametrization of C.
Equivalently, C; is defined by the implicit equation y" + ux™ = In(f), for f = 0 an implicit
equation of C, where again p # 0. Let us invoke the result of Theorem 8.2 for the case of length
zero established in subsection 8.1. In this case we consider the two 1-forms

Wi = nxdy —mydx, Wy = ny" 'dy + umx™ 'dx,
that give a Saito basis {W;, Wi} of Cy. This gives a decomposition

W =HW; + leh



114 8. Saito Bases and Other Analytic Invariants

where we can take H, G; to be quasi-homogeneous with respect to the weights (1, m). By
Statement 2 of Proposition 5.3.5 and up to multiply @ by a constant, we have that

II’I(CT)1) = Wl .

Now, we are going to show the existence of a decomposition

s+1
HWy = Gs41Wsy1 + Z GWy,  where Wy = In(@), Wss1 = In(ws+1), 8.1)
=)

with all the coefficients G¢41 and Gy being quasi-homogeneous.
Let 6 = vp(HWj). Since H is a quasi-homogeneous polynomial, we can write

Now, it is enough to show that each of the 1-forms Wy is reachable by one of the 1-forms in the
set
T = {C‘)5+1/ (:)2/ ey CDS+1}-

We consider two cases:

a) There is a differential 1-form W,g # 0 such thata > m or g > n.
b) For any W,p # 0 we have that « < m and § < n.

Assume we are in case a). By a straightforward verification, we see that all the terms W, # 0
satisfy the condition that either a > m or g > n. Note that the indexes of the 1-forms W,z and
Wy are related by a = a’ + m{ and = ' + n{, for some ¢ € Z. In view of Lemma 8.2.1 and
Remark 8.2.2, we see that each W, # 0 is reachable by an element of 7.

Assume now that we are in case b). Then, following the same argument as before, we have
that there is only one 1-form W,z # 0 and hence, we have

HWi = papx® 'y (mydx —nxdy), 1<a<m,1<B<n.
Moreover, we have that G;W; = 0. Indeed, we know that
GiW; = Gi(ny" dy + umx™ ldx)
and, if we write, as before,
Y e B B
o'+l m=5

Then, the terms Wafﬁr fit in the description of a) and with the same divisorial value as Wyg, this
contradicts the already proven fact that if one term satisfies condition a), then the rest of the
terms must also satisfy condition a). We conclude that

In(w) = W = HWi = uapx® ™ yP " (mydx — nxdy) = papx ' yP = Wh.

Note that w is then reachable by wi. Let q be the maximum index 1 < g < s + 1 such that w is
reachable by w,. Note that the case g = s + 1 is precisely a case covered by the statement we aim
to prove. Thus, we assume that 1 < g < 5. Write

n=w- y”x“ybwq, vp(1) > vp(w).
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We have that vc(n) = ve(x®y? wy). We can invoke Statement 4 in Theorem 5.2.10 to obtain that
ve(n) € Ag-1, that is
Ag+na+mbe Agq.

Where we recall that A;_; is an element of the decomposition sequence of Ac. By Lemma 3.2.5,

we have that either a > {’;’H orb > {’;”H. Assume thata > l’(’;ﬂ. Ifug = ug 1, then w is reachable

m
q+17

as required. We recall that the reachability is obtained by the fact that the initial parts of w1

by wg+1, contradicting the maximality of g, if 1541 = u we obtain that w is reachable by @1,
and @,+1 are proportional to the ones of xl w, and y‘]’?“ w,, see Theorem 5.3.1. Same arguments
for the case that b > fl’;il. This ends the proof. ]

Remark 8.2.4. Let (&,8)), with &/ = (@js1, @j+2, ..., @s41), be a j-partial standard system, with
j = 1and take a 1-form w € le\/lo P[,[C ] such that vp(w) < f]'. By the same arguments as in the
preceding lemma, noting that f; < f;_1 < --- < f;, we see that there is a combination

s+1
In(w) = Gs41Wsy1 + Z wafz where Wf =In(@¢), Ws1 = In(ws41), (8.2)
(=j+1

all the coefficients being quasi-homogeneous of the corresponding degree.

Proposition 8.2.5. The set T = {ws41, @1, D2, ..., Ds+1} is a generating system of the Saito O, p,-
module Q}\A p[C]-
0,570

Proof. Take w € Q}MO Po [C], we know the existence of a decomposition

s+1
In(w) = Gs41Wsy1 + Z GIWI/ where Wl = In(@¢), Ws1 = In(ws41),
=1

with all the coefficients G541 and G, being quasi-homogeneous. We re-start the procedure of
Lemma 8.2.3 with

s+1

Gsp1ws41 + Z Gy
=1

W =w-

In this way, we obtain a formal expression w = §s11ws+1 + Zzz% §[d)g. By a direct application of
Artin’s Approximation Theorem [5], we obtain the desired convergent expression

s+1 ~ ~
W= Qs41Ws41 T 25:1 Sewy.

8.3 Existence of Special Standard Systems

We recall that in Definition 6.1, we introduce the notion of special standard system. This
subsection is devoted to provide a proof of the following result

Proposition 8.3.1. Assume that the length s of the semimodule Ac of differential values of the cusp C is
s > 1. Take two 1-forms ws41 and @s4q in le\/lo PO[C] such that vp(ws+1) = tsp1 and vp(@ss1) = Fear.
Then, there is a special standard system (&, S) for C containing ws+1, @s+1 in the sense that

&= (a)*ll wo, W1,...,Ws, ws+1)/ S = ((Dl/ (:)2/ ey C‘N)S/ (I)S+l)-

The proof of the above proposition follows directly from next result
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Proposition 8.3.2. Assume that the length s of the semimodule Ac of differential values of the cusp C is
s > 1. Take two 1-forms ws41 and @s4q in Q}VIO PO[C] such that vp(wsy1) = tsp1 and vp(@s41) = tsi1.
For any index 1 < j < s there are functions f;, f] such that

VD(fja)sH + ]?jd)erl) = Ej‘
Along the whole proof, we consider an extended standard basis
& = (w1, wo, w1, ..., Ws, Ws41)
ending at ws11. The proof of Proposition 8.3.2 is quite long. In order to make clear the arguments,
we do it in two steps:

e Step 1: case j = s. That is, we find @5 € Q}VIU PO[C] such that vp (@) = fs.
o Step 2: The general case.

Even though in Step 2 we assume taking a in index j < s, in fact, the proof also holds to the case
of Step 1. Thus, the reader can skip the Step 1.

8.3.1 First Case

This subsection is devoted to the proof of Proposition 8.3.2 when j = s. We are going to prove
that there is a combination
s = ]?567)54.1 + fsa)5+1
such that vp(@®s) = fs.
There are two possible cases: ts41 = ts + n€:+1 and tg41 =t + mé’s"_il. Both cases run in a
similar way. We assume from now on that ;1 = 5 + nl’;ﬂr1 and hence we have f;1 = 5 + me .
With the notations as in Chapter 5, let us write Delorme’s decompositions of @s4+1 and ws41 as

follows
S
@541 = [le[”la)s + ﬁzxus*lwksm +1, 1= Z hywy, (8.3)
{=-1
S
wsr1 = mxbes + wywe +n, 1= Z hwy (8.4)
=1

where we have the following properties:
1. In(ws+1) = p1 In(x%1@s). Recall that teq = ts +ne .
2. In(@s41) = 1 In(y[s"il ws). Recall that fs, 1 = ts + mel,.
3. vc(‘ulx‘]s"na)s + yzybb‘“ wgr) > vc(‘ulx[sﬂﬂws) = vc(pzyb5+1 wgr) = u;1+1 = us,1. Recall that
u;l+1 =As+ n€5n+l
4. vc(ﬁly‘@il s + fiax" s wpm) > vc(yly"s"il ws) = ve(upx™ wym) = ul,, = fis+1. Recall that

mo _ m
U1 = As + m€s+1

5. Forany —1 < ¢ < 5, we have that vc(hyw() > ul,, and ve(hpwe) > ul,

= Ak? + mbgyq.

= )\ksm +nagyq.
»
Let us consider the 1-form 6y € Q}MO Po [C] defined by

Mmoo~ - o
0o = p1x"s11@s41 — i1y M wsy1 = & + Co,

where & = ﬁg,xes”+l+“5*1a)k§n - #3y"§'11+bs+1wk?, with fis = pifio, ps = fiip2 and such that (o =
Yi—_1 &fwe. In virtue of Equations (8.3) and (8.4), we obtain that (o = pxbad — gytiag,
therefore

§Y = wxbnhy — fuy%ah,, fort=-1,0,...,s. (8.5)
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In a more general way, given a pair of functions f, f € Oy, p,, We write
07 =00+ fdss1 + fwsi1 = E+Cf € Qyy 5 [Cl,

where Cf,f =(o+ fcbs+1 + fwss1. We also write Cf,f =2 g{’fa)g. Let us note that 8y = 6,
Co=Copand g) = g?’o, for-1<{<s.

In order to prove the desired result, we are going to show the existence of a pair f, f such
that vp(6 ) = fs.

We have two options: u; = u]' and u; = u]". Both cases run in a similar way. So, we fix the
case that us = u!". Hence, we have t; = t, ii; = u" and t; = . By Proposition 3.5.9, we know
that k! =s —1and k' = k" ,. Let us check that the divisorial value of & is fs.

Lemma 8.3.3. vp(&) = fs.

m
s+1

Proof. By Proposition 3.6.3, the colimits as,1 and b1 satisfy that bgq +¢7 , = €" and as41 + L’;’H =

as. Hence, we have that

m m

&= —[,13:1/5 Wi + [lg,xasa)kgn = _H3]/[S ws-1 + Flgxaswk;ri] .

Let us show that vp(&) = f. Note that vp(y5 ws—1) = me" + tq = tI* = k. Thus, it is
enough to show that vD(x”Sa)k;u_l) > ts = t". We have VD(x“Sa)kzn_]) = nas + tgn . Since
ulm = mll" + As_1 = nas + )\k:z_l, then, by Lemma 3.2.8, it follows that

nas —me' = Asq—Apn > teq —tn =

= nas+he > fs = ts_1 +ml".
We conclude that vp(&) = . m]

The problem is reduced to finding f, f such that vp(C £7) > ts. We proceed to verify this.

We say that a pair of functions f, f is a good pair if and only if we have that v¢ (g{ A wy) > i,
forany { = -1,0,...,s.

We end the proof as a direct consequence of the following lemmas:
Lemma 8.3.4. The pair f =0, f = 0is a good pair.
Lemma 8.3.5. If f, f is a good pair, then VD(g{’fa)g) >F for-1<t<s—1andvp(gl ' ws) # F.

Corollary 8.3.6. Assume that f,f is a good pair. Then, we have that either vD(GJ;,f) = f5 or
vp(0; ) = vp(gl’ ws) <.

Lemma 8.3.7. If f, f is a good pair and vp (0 7r) < s, then there is another good pair fy, fi such that
VD(gslrfla)s) > VD(gé[,fws)'

Indeed, by Lemma 8.3.4, there is at least one good pair, by Lemma 8.3.5 and Lemma 8.3.3 we
obtain Corollary 8.3.6. Now, we apply repeatedly Lemma 8.3.7 to get that vp( gsf g ws) > s, hence,
in view of Lemmas 8.3.3 and 8.3.4, we get that vD(g{’fws) > f; and vD(GJ;,f) = f, as desired.

The rest of this subsection is devoted to proving the above three Lemmas 8.3.4, 8.3.5 and
8.3.7.
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Proof of Lemma 8.3.4. We have to prove that
vc(g?a)g) > fs, forany £ = -1,0,...,s.

By Equation (8.5) we have that g? = ‘ulx‘/?+1 hy — ﬁlym1 hy, for any ¢ = -1,0,...,s. Now, it is
enough to show that

vc(x‘};il hywe) > iis and Vc(]/:'l*lh[a)[) > .

We have that
A ~ -
ve(xbahwe) = nll  +ve(hwe) > nll  +ully =nll | +ilsy
= nféﬂrl +nasy1 + /\kgn = Tl(fsn+l + as+1) + Ak;’il
= nag+ A =ul =i
s—1 S
em
ve(ysahewy) = mll +ve(hewe) > mbl +uly = mll +usy

= mgsnil + mbs+1 + /\k;t = m(gsnil + b5+1) + A1

= mﬂs’” +/\5_1=us’”=ﬂs.

Recall that the equalities 5211 +as41 = as and €ﬁ1 + bs41 = ¢ comes from Proposition 3.6.3. This
ends the proof of Lemma 8.3.4. O

Proof of Lemma 8.3.5. Along the proof of this lemma, we just write g{ 4= 8¢, in order to simplify
the notation.

Let us first show that vp(gsw¢) > £, for any —1 < ¢ < s — 1. Recall that vc(grwy) > iis and
write

ve(gewe) = ve(ge) + A > s = ul' = As1 + mé".

Noting that As_1 — Ay > ts_1 — ty, in view of Lemma 3.2.8, we have that
VC(gl’) +As1 > Asp s =t + mesm

and thus we have v (gy) + tg > to_1 + ml" = 1" = f;.
There are two cases: if vp(g¢) < nm, then vc(gr) = vp(ge) (Proposition 2.3.14). Second,
vp(ge) = nm. Noting that fs < nm, see Corollary 3.6.2, we conclude in both cases that

vp(gewe) = vp(ge) + te > s,

as desired.
Let us show that vp(gsws) # f;. Assume by contradiction that vp(gsws) = fs. Recalling that
te =t0, b =t t1 = ts_ 1 +nll and t!* = ts_1 + ml", we have

vp(gsws) = t, = VD(gs) +ts =1 = vp(gs) + th=tl'=>
= vp(gs) +ts—1 +nll =t +ml' =

= ml" =vp(gs)+nll.

This implies that m{" € I'c is written in two different ways as a combination of n, m with
nonnegative integer coefficients. This is not possible, since m{* < nm, in view of Remark 3.2.3.
The proof of Lemma 8.3.5 is ended. ]

Proof of Lemma 8.3.7. Assume that f, f is a good pair with vp (60 7s) < fs. Let us find another

good pair fi, fi such that vD(g;l’fla)s) > vD(gf’fws).
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Since vp(&) = s (Lemma 8.3.3), 07 p =&+ 5 rand vp(07 ) < ts, we know that In(07 ;) =
In(C ;). In particular vp(Cf ;) = vp(0f ). Applying Lemma 8.3.5, we get that

In(6 ) = In((7 ) = In(g!’ 0s) = In(g]”) In(ws).

Noting that vD(Gf,f) < ts < nm, we have that vD(g;['f) < nm. Hence, for certain a,b > 0 and

y’ # 0, we can write In( g{ / ) = w'x"y". Now we consider the decomposition

gf,f = U’xaths +1', vp() > VD(x”yba)s).

As vc(0f ¢) = oo, we have that vc(n') = ve(p'x"yPws) = na + mb + Ag. Let us apply Theorem
5.2.10, Statement 5, to the integer number k = na + mb + As. Since the 1-form 1’ satisfies both
ve(®) =kand vp(n') > vD(x”yba)s), we conclude that k € A;_;. By Lemma 3.2.5, we know that
one of the following properties holds:

or b>{"

n
ax>{ 1

s+1

n

-1, then we have that

Let us show that 6 7 s is reachable by w;41 or from @s41. Assume thata > ¢
vD(QJ;,f) = na+mb+ts=nl  +ts+n(a—"L)+mb=t +n(a-"L,)+mb.

Noting that ts41 = t{,,, we have that 67 ; and x*~1yP w1 have the same initial parts (up to a

m

constant) and thus 0 7 is reachable by w;s41. In the same way, if we assume that b > {" |, we
have
VD(GJz,f) = na+mb+ts=ml, +t; +m(b - ) +na=t", +mb-"L",)+na.

We conclude as above that 6 7 is reachable by @s41.
Assume now that a > €S”+1 and hence 0 7 is reachable by w1, the case b > 55"_11 is treated in
a similar way. There is a constant 3 # 0 such that

vp(07 f =3xSy wsi1) > vp (05 ).
Letusput fi = fand f; = f — uzx® %1y, Note that
67,5 = B7p — X"y wsin

and hence VD(Qfl,fl) > VD(ijf).
Let us verify that fi, fi is a good pair. Using the decomposition of ws1 in Equation (8.4), we
write

x”_€s+1ybws+1 = Z;:_l g,fwe,
We note that
Crp=Crp—Hax" Syl wsia.

Since f,f is a good pair, we have that vc(gl,f’fwg) > iis. Thus fl,fl is a good pair if vc(ggwg) > ilg,
for¢ =-1,0,...,s. Let us show that this is true. Since the terms g{fa)g, for -1 < f < s, come from
the decomposition of ws,1 times a monomial, as a consequence of Theorem 5.3.1 we see that

ve(glws) < ve(gpwe), for —1< ¥ <s.

Hence, it is enough to show that vc(glws) > ;. Notice that

In(C7 ;) = In(g]" ws) = p3 In(x* 1y s 1) = 3 In(glws),
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where the last equality comes from Corollary 5.3.4. Thus, we have
Ff oy 2 / 7
vp(gs” ws) = vp(giws) < ts < nm.
Therefore, vD(géI ! ) = vp(g?l) < nm. This implies that

vo(g! ) = ve(g!”) = ve(gl) = vp(g)).

Since f,f is a good pair, we conclude that vc(giws) = vc(gf’fws) > ils. If b > {7, then Qf,f is
reachable by @1 and we proceed in a similar way. This ends the proof of Lemma 8.3.7. o

8.3.2 Induction Step

This subsection is devoted to the proof of Proposition 8.3.2 when 1 < j < s, assuming that the
resultis true forj +1,j +2,...,s. We are going to prove that there is a combination

CD]' = ]?jd)s+1 +fja)s+l

such that vp(@;) = fj, under the assumption that for any j + 1 < ¢ < s there is a combination
¢ = fi@ss1 + frwss1, such that vp (@) = Fp.

The proof is very similar to the case j = s. Recall that vD(cDjJrl) = fjﬂ. There are two options,
either fj,1 = t;?:rl orfj1 = t;‘ﬂ+1' In both cases, the proof runs in a similar way. We fix from now
on the option #j41 = t}f’ﬂ.

Let us define the number g € {j +2,...,s + 1} as follows

) s+, iff=t), forf=j+2,j+3,...,5+1,
1= min{¢; f, =t", j+2 < { < s+ 1}, otherwise ,

and define the 1-form aq as follows:

- {a)sH, iffp=ty, forl=j+2,j+3,...,s+1,
g =

@y,  otherwise.

Let us note that vp(@,) = tg' in both cases.
Now, we proceed as follows:

1. First, we find a combination 6y of @;+1 and 5q such that vp(6y) < fj. Note that 6y should
be a combination of @s4+1 and ws41, in view of the induction hypothesis.
2. Next, we find a 1-form @; — 6y that is a combination of

d)j+l/ d)j+2/ cec CT)S+1/ Ws+1,
in such a way that vp(@;) = f;.

Consider Delorme’s decompositions of @;.1 and c’Jq as introduced in Theorem 5.3.1, that we
write as follows

j
- - ()m - ) - - ~
Wjv1 = 1y f*la)j + [uzx“/”a)k]m +1n, 1= Z heawe, (8.6)
(=1
j
w; = Moj+ ka;_z +n, n= 321 hywy, (8.7)

where M, N are monomials in such a way that we have the following properties:
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1. In(@j+1) = fih In(ye}":l wj) = ﬂlyml In(wj). Recall that fj,1 = t; + m{"

j+1
2. Vc(ﬁly[frzla)]’ + ﬁzx”fﬂa)k]m) > Vc(]/fﬂil a)j) = vc(x“f“a)k}n) = u}’ﬁl = dljy1.
u]."il = /\j + mt’]”il = /\k;” + najq.
3. ve(hgwe) > ilj41 = ”}Zy for¢{ =-1,0,1,...,].
4. In(@y) = In(Mw;) = MIn(w)).
5. Vc(Mw]' + Na)k;«) > Vc(Ma)j) = Vc(ka]r}) = A]' + t;" -t = vqm—l,j'
6. ve(hpwy) > )\]' + tg" —tj= vqm—l,j’ for{=-1,0,1,...,j.

Let us compute the monomials M and N. We have that

t;” = vp(@4) = vp(M) + vp(wj) = vp(M) = t;" —t;.

By a telescopic argument, we obtain

tg =t + (L1 — 1)

— m _ t. n

=ty i+ (e~ ta) + 0l
_ m_ 4. m n
=ty —tio+ m€j+2 + nfjH

. t’;n - t/+3 + (t]+3 - t/'+2) + mf]"j_z + nf;(l_'_l

g ~ 1t

— m _ 4. m m n
=ty —tis+ m(€j+3 + l’].+2) + n€j+l

=ty —tg +m(£’;"_1 +

m n
s T ) + by

+
— m m m m n
= m(f +€q_1+~-+€].+3+€j+2)+n€j+1.

This implies that M = ylx”yb, where

g:f”

—_ pm m m m
Ry b_fq +€q_1+~~-+€j+3+€

j+27
Let us compute now the monomial N. We know that
vc(Na)k]n) =vp(N) + /\k;' =vc(Mwj) = Aj + na +mb.
Then, we have that
vp(N) =A; - /\k]r_x + na + mb.
Recalling that ”]7'1+1 =Aj+ n(’]ﬁrl = /\k;} + mbj.1, we obtain that

vp(N) = A]-—/\k]_n +na+mb =

= mb]'+1 -n{

].”+1 +na+mb=m(bj1 +b).

b]‘+1 +b

This implies that N = poy

t;”—tj:nu+mb.

Recall that

(8.8)

Let us note that b < £, in view of Corollary 3.6.4. In a more precise way, we have that

j+17

ﬁj”jrl — b = b;. Now, we consider the 1-form 0 given by

~ ~ by~ o o ~ b~
Op = mx"@j41 — Yy 1@y = X M Djp1 — 1y @y
We write 6y = & + (o, where

~ a+a; ~ bg+b+b;
pfiax f”wk;ﬂ—ywzyl f”wk;

3

~ 0" +a; ~ 0" +b;
= ppfipx i+ ]Hﬂ)k;”—[il}lz]/]” " wpen
]
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and (g = Zé:_l g?cu[, with
g?a)g = ([Jlxe/n“ E( - ﬁ]]/b” hg)a)g, forf{ =-1,0,... ,j. (89)
In a more general way, given a list of functions 1, f in Opm,,p,, Where

f= (f~‘j+1,]?j+2, e /]?s+l)/

we write
O = 60+ X1 fede + fwsn = E+ G € Q) 4 [Cl,

where C?,f = (o + Z;Z}Hﬁd)g + fws+1. We also write C?,f = Y- gi’fa)g. Let us note that
6o = 00,0, Co = Lopand g0 = g*, for -1 < £ < s.

In order to prove the desired result, we are going to show the existence of a list £, f such that
vp(0f ;) = £;.

We have two options: u; = u;.‘ and u; = u]T”. Bot~h cases run in a similar way. We fix the case
that u; = u]”. Hence, we have t; = t?, ilj = u}m and t; = t]'.“. By Proposition 3.5.9, we know that
k;? =j—-1and k;.” = k],”il. Let us see that

Lemma 8.3.8. vp(&) = f;.

Proof of Lemma 8.3.8. By Proposition 3.6.3, the colimits a j+1 and bjq satisfy that bj,1 + 3]’7_11 = l’]’."

and aj41 + (?].”H = a;. Hence,we have that

&

~ 0 4aig ~ 0" +biyq
x T opm — T opn
Hip2 k; Uip2y k;

- ~ oo
frfiX wir = a2y @j-1.

Note that VD(ye]." wj-1) = ml" +tjq =t = f;. Thus, it is enough to show that vD(xufa)k]rzil) >
tj = t;”. We have vD(x“fa)kjnil) =naj+ tk}’h' Since u;." = mi’j’” +Ajo1 =naj+ /\k,-”ilf then
naj — mfj"’ = A]'_l - /\kj"il > tj—l - tk}'il =
= naj+ tk;’il > {]' = t]'_l + ml’}”,
by Lemma 3.2.8. We conclude that vp (&) = f;. O

Now, the problem is reduced to finding a list (?, f) such that VD(C?, f) > f]-. We proceed
to verify this. We say that a list of functions (£, f) is a good [ist if and only if we have that
Vc(g?fa)() > iij, forany £ = -1,0,...,].

We end the proof as a direct consequence of the following lemmas:

Lemma 8.3.9. The list (?, f) =1(0,0) is a good list.

Lemma 8.3.10. If (£, f) is a good list, then vD(gf’fa)g) >t for-1<€<j—1land vD(g]?,’fa)]-) # f.
Corollary 8.3.11. Assume that (?, f) is a good list. Then, either we have that vD(GE f) = fj or
v(6; ) = volg™ w)) < I

Lemma 8.3.12. If (£, f) is a good list and vp(0f ) < f;, then there is another good list (£, f1) such that

fl/ 1 ?/
vo(gi ' wy) > vp(g)’ w)).
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Indeed, by Lemma 8.3.9, there is at least one good list, by Lemma 8.3.10 and Lemma 8.3.8
we obtain Corollary 8.3.11. Now, we apply repeatedly Lemma 8.3.12 to get that vp (g;’f wj) > F,

hence, in view of Lemmas 8.3.8 and 8.3.9, we get that vD(g;’fa)j) > fj and vD(Ggf) = f]- as desired.
The rest of this subsection is devoted to proving the above Lemmas 8.3.9, 8.3.10 and 8.3.12.

Proof of Lemma 8.3.9. We need to show that
vc(g?a)g) > iij, forany £ = -1,0,...,].
By Equation (8.9), we have g?a)g = (ylx[/]'q“ﬁg - ﬁlybﬂ he¢)we. Now, it is enough to show that

n ~
vc(xé}f“hgcu[) > ﬁ]' and Vc(yb" heawy) > ﬁj.

We have
o~ ~ N
ve(x M hywy) = né’]’ﬂrl +ve(hpwy) > nl’]’ﬂrl + u}’il = nfj”ﬂ +1lj41
= nf}:_l + najiq + /\k/’.” = n(f}ﬂl + a]-+1) + Ak;’il

_ ) — M
= na]+)\k;_gl—uj = ilj.

Let us consider now vc(ybq hewy). We have that
Vc(yb”’hga)g) > mbq + /\]‘ + tqm — tj.

Let us show that mb,; + A; + t;” —t; = iij. Recall that ii; = u;” =Aj1+ mf}”. Thus, we have to
prove that
mbq +)\j+tg1 —f]'—)\]'_l —mfj’.” =0

Note that k}“ =j—1landthenA; - A;q = —nl’}ﬂrl + mbj.1. Then we have to verify that

mby — nt

j+1+mb/+1+t;”—tj—m€jm =0

Recalling that, by Equation (8.8), t{' — tj = na + mb = nﬂ}ﬂrl + mb and that b, = f;’il — b, we have
to verify that

m(e"

Y= b) = nlly +nlly +mb+mbjy —ml" =0.

+

We have to see that b1 + é}'ﬁl = 6}”, and this follows from Proposition 3.6.3. m]

Proof of Lemma 8.3.10. Along the proof of this lemma, we just write gi’f = gy, in order to simplify
the notation.
Let us first show that vp(gewy) > f]-, for any -1 < ¢ < j — 1. Recall that vc(gew¢) > iij and
write
Vc(gea)g) = Vc(g[) + Ay > ﬂ]' = M]m = )\]‘_1 + mﬂj’”

Noting that Aj_1 — A; > tj_1 — t;, in view of Lemma 3.2.8, we have that
ve(ge) +Aja1 > Aj+tja—te+ mﬂ].m

and thus we have vc(ge) +t¢ > £ + m(’j’” = t;." =1j.
There are two cases: if vp(g¢) < nm, then vc(gy) = vp(ge) (Proposition 2.3.14). Second,
vp(ge) = nm. Noting that fj < nm, see Corollary 3.6.2, we conclude in both cases that

vp(gewe) = vp(ge) +te > F,
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as desired.
Let us show that vp(gjw;) # ;. Assume by contradiction that vp(gjw;) = f;. Recalling that
=0 F = =t n g m
t] t] s t] , t] tio1+ nf} and t] ti-1+ mﬂ} , we have
VD(g]C‘)]) = E] = VD(g]) + t/ = E] = VD(g]) + t]n = t;ﬂ =

= VD(g]‘) + i1+ 7’l€]’1 =tj1+ mf]m =

= m(’}” =vp(gj) + nZ]’?.
This implies that mfjm € I'c is written in two different ways as a combination of n, m with non
negative integer coefficients. This is not possible, since mﬁ}” < nm, in view of Remark 3.2.3. O

Proof of Lemma 8.3.12. Assume that f, f isa good list with vp (6¢ f) < t;. Let us find another good
list £1, f! such that

fl,f1 1,
vo(8! " wp) > vb (gl w)).

Let us note that vp (05 f) = vp( g;’f w;j) < fj and, more precisely, we have that

= In(g a),) = In(6; f)
In view of Remark 8.2.4, there is a decomposition

s+1
W = G Wi + Z Gl’wb
=j+1
where the coefficients are quasi-homogeneous. Moreover, all the forms W, Ws,q, W, for
j+1<{<s+1 are resonant with divisorial value < nm. We conclude that all those forms are
given by the product of monomial and 1-form

dx d
mE
x Yy
Since 6 ¢ Is resonant, we can assume without loss of generality that all the coefficients
Gsi1, Gj+1, Gj+2, ..., Gg41 are zero except exactly one of them. Note that vp(W) < f]- < nm

implies that the Newton cloud of W is a single point. Thus, we have that
W = Gs41Ws4q or there is {p such that W = GgOWgO.

Let us write S = Wi, in the first case and S = W{O in the second one. Then we have that W = GS,
where G = Gg41 in the first case and G = G[O in the second one.
Now we define the list (f!, f1) by

( ]+1/ ]+1/'-' S+1’f ) = (f f) (G]+1/ ]+2/'-'/GS+1/ GS+1)'

_ .
By construction we obtain that vp (g; ! w;j) > vp( g;’f wj).

We have just to verify that (f, fHisa good list. We do it in the case that S = W, 4, the other
cases run in a similar way. Note that

/ fl fl
C'f‘l,fl = C’{/f = Gsws41 = 8y
{=-1

Let us write w41 using Delorme’s decomposition: ws1 = Zé?l cywp, where we know that
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1. In(ws+1) = In(cjwj).
2. Vc(C]'a)]') < vel(epwy), for € =-1,0,1,... e

Note that gf'ﬂ = g!f’f — Gsy10¢, for £ = -1,0,1,...,j. Then, in order to show that we have a
good list, it is enough to show that vc(Gsyic i a)]') > ilj. We now verify this inequality.

We know that vp(gjw;) = vp(Gs+1cjw;j) < nm, since they share initial part. Noting that the
divisorial values are under nm, we have that

vp(gj) =vc(gj), vD(Gs+icj) = ve(Gssacj).

We conclude that vc(Gs+icjwj) = ve(gjwj) > iij, as desired. O

8.4 New Discrete Analytic Invariants

Consider C a plane curve and 7 : (My, EN) — (M, Po) a sequence of blow ups starting at P.
Fix E ¢ EN any of the irreducible components of EV.

Lemma 8.4.1. For any Saito basis w, w’ of C, we have that
ve(w) +ve(@’) < ve(xyf), j=1,2,...,N,
where f = 0 is an implicit equation of C.
Proof. Since w, w’ is a Saito basis, by Saito’s Criterion (Lemma 8.1, we have that

d
cu/\a)’:ufdx/\dy:uxyf(d?x/\—y),

y

where u is a unit. The property follows from Corollary 2.3.10, that states that
ve(w) + ve(w') € ve(w A @).
O

Thanks to the previous lemma we can define the pair (sg(C), sg(C)) of Saito multiplicities at E
by

se(C)
Se(C)

min{vg(w); w belongs to a Saito basis for C}. (8.10)

max{vg(w); w belongs to a Saito basis for C}. (8.11)

Note that sg(C) is equal to the minimal divisorial value of the elements of any Saito basis,
whereas sg(C) does not follow directly from a given Saito basis.

Remark 8.4.2. In [26], the author introduces an invariant related with (sz1(C), sz1(C)), where
E! is the exceptional divisor appearing after the blow-up of Py in (M, Py). More precisely, the
author defined in a similar way the pair of Saito multiplicities, but just considering multiplicities
at Py, instead of divisorial values. The relationship between both objects comes from observing
that

vel(w) = vpy(w) + 1.

Moreover, note that the invariance under local biholomorphism of divisorial values shows that
the pair of Saito multiplicities is an analytic invariant of the curve.
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With the idea of finding relationships among different analytic invariants of plane curves.
We would like to know if the pairs of Saito multiplicities may be deduced from the knowledge
of the semimodule of differential values, at least, when C is a cusp. The answer is positive when
considering the last pair (sp(C), sp(C)) and D the cuspidal divisor of the minimal resolution of
C as we show in next result.

On the other hand, we present an example of two D-cusps having the same semimodule of
differential values such that the pair of Saito multiplicities at E* do not coincide (see Examples
8.4.4 and 8.4.5).

Theorem 8.4.3. Take 71, a cuspidal sequence with n > 2, D its cuspidal divisor. Let C be a D-cusp,
then (sp(C),5p(C)) = (ts+1, Es+1), where tsiq and Fs. are the last critical values of the semimodule of
differential values of C.

Proof. By Theorem 8.2, we have that there are two 1-forms ws41, Ws+1 € Q}VIO Po [C] defining a
Saito basis for C and such that

VD (Ws+1) = tss1 < Fsx1 = vp(@s41).

This proves that sp(C) = ts41 and fs11 < 5p(C). Now, let w, @’ be another Saito basis, with

vp(w) = tey1 and vp(w’) > vp(@ss1) = Fs41. Let us write
w=hwse1 + hds1, ' = gwss1 + §Wsa1,

where 6 = h§ — ¢l is a unit in Oy, p,. Therefore, the divisorial values verify that vp(h) = 0 and
vp(g) > 0, hence & is a unit and g is not a unit. Since 0 is a unit, we have that § is a unit. If
vp(@’) > fs41 = vp(@s+1), we necessarily have that

VD(gwerl) = VD(gd)erl) =vp(@s4+1) = Es+1-

Let us see that this is not possible. Assume that 5,1 = t; + ”€;1+1 and hence fs1q = £ + mﬂs”_il (the
case ts+1 = ts + m{!, | runs in a similar way). We have

vp(8) + tss1 = Esy1 = vp(g) + nll = mll,.

Noting that vp(g) € I'c, we obtain two different ways of writing m{!" | < nm as a combination
of n, m with non-negative integer coefficients. This is a contradiction. ]

We are going now to present the example of two cusps C;1 and C; corresponding to the
Puiseux pair (7, 36), such that the (common) semimodule of differential values has a basis
B = (7,36,123) and such that the Saito pairs of multiplicities with respect to the first divisor E*
are different for C; and C,.

Example 8.4.4. Consider the cusp C; invariant by the 1-form
@ = 36x3(7xdy — 36ydx) — 560y°dy,

with a parametrization ¢1(t) = (7,3 + 116 + 29—8151% + h.0.t.). The basis of the semimodule of
differential values of C; is (7, 36, 123), with a minimal standard basis given by

S =(w-1 =dx, wy = dy, w1 = 7xdy — 36ydx).
We have u) = Ay + nl)) = Ag + mb, thatis 123 + 7¢) = 36 + 36, we obtain that

@ =by=3, ul=144.
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Similarly, we found out that
uy' =231=123+36{)' =7+7ay, €'=3, ap=232.
Hence up = uj and iz = uj'. Moreover, we have
tr=tl =ti+nly =43+7-3=64, b =t)'=t;+ml)' =43+36-3 =151.

We see that vp(w) = t, = 64. Hence we can take wy; = w to obtain an extended standard
basis of C; and also, we consider w, = w as one of the generators of a Saito basis for Cj.
Notice that vei(w) = 4, since vp,(w) = 3. We can take @& to be a 1-form with divisorial order
vp(@2) = £, = 151 and C; being invariant by @&,. By Delorme’s decomposition in Theorem 5.3.1,
we can write @, as

@y = yYlwr + ptxPdx + n; N2 = fordx + fody + fi(7xdy — 36ydx),

where u* is the tunning constant, such that vc, (frwe) > fi; = 231, for £ = -1,0, 1.
Let us compute vpi(@;). Assume that we have vei(frwy) > 5, for £ = -1, 0, 1, then we obtain
that vpi(@,) = 5. In view of Lemma 8.4.1, we know that

sp1(C1) +5p1(C1) < v (xyf)=7+2=9,

Thus, we have (sg1(C1), sp1(C1)) = (4, 5) since the Saito basis w, @; gives the maximal pair (4, 5).
It remains to show that vpi(fpwe) > 5, for £ = —1,0,1. We consider two situations;
vp(fe) = nm and vp(fy) < nm. In the first situation we have that

vp(f)zn=7.
In the case that vp(fy) < nm we have that
vp(fe) = ve,(fe) > 231 = Aq.
Moreover, looking at the monomials in the expression of f;, we have that

vp(fe) < mvpy(fe) = 36vp,(fo)-

Thus we have:

vpy(f) #12 R 1 5 Blda o550 po g,

36
ve(fron = V”O(fO)*lZ%efO;” > EFhi1=Z>5 (=0
VPo(f1)+2Z%+2 > 23;/‘1+2:%:5; /=1.

Example 8.4.5. Take the cusp C, with Puiseux pair (7, 36) invariant by the 1-form
@’ = 36x3(7xdy — 36ydx) — 560y°dy + y(7xdy — 36ydx).
and defined by a parametrization as follows
Po(t) = (#7, 130 + #116 — L3 4 Lo pla6 1416 4 poot).
The basis of the semimodule of differential values is (7, 36, 123). We can take

S = (w1 =dx, wo = dy, w1 = 7xdy — 36ydx).

as minimal standard basis for C; (thus, it is the same one as for C1). We repeat the arguments
done before for C;. We can take w} = @’ as one of the generators of a Saito basis for C;, with
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’

5, = w', @), where @)

vp(w’) = tp. Again, we obtain a partial standard system (w-1, wo, w1, @ 4

can be written as

1
oy =P+ Pdx vy = fler,
=-1
with u’ being an appropriate constant and vc,(f,/w¢) > 231. Thus, again we found that
ver(f/we) > 5. We have that vii (@) = 5.
Now, we have that
(vpr(@’), ver(@3)) = (3,5).

This implies that sz1(Ca) = 3 < 4 = s51(C1). Hence the Saito pairs of multiplicities at E! for C;
and C, are different.

Moreover, the pair (3,5) is not maximal yet: the 1-form 1 = @), — y?w)}, satisfies that {1, v}
is a Saito basis and vgi1(n) = 6. Hence the Saito’s pair of multiplicities at E! for the cusp C; is
equal to (sg1(Ca), 5p1(C2)) = (3, 6).

We end this chapter remarking that our Theorem 8.2 and the method used to construct the
previous examples were used in [27] to show the following. Consider n = nje; and m = myeq,
with 71, m1 coprime positive integers. For any 2 < k < | n/2] + 1 there exists a curve C with
the same topological type as the one defined by the implicit equation y" — x™ = 0 such that
sp1(C) = k. In fact, 2 and | n/2] + 1 are the minimum and the maximum values that the number
sp1(C) can take, showing that all the possibilities for sgi1(C) are achieved.
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RooT1s oF THE BERNSTEIN-SATO POLYNOMIAL

In this chapter, we prove that some roots of Bernstein-Sato polynomial of a cusp C are determined
by the semimodule of differential values of C.

Let us start giving the definition of Bernstein-Sato polynomial in a general context. Consider
the ring of non-commutative power series A = C{xy,..., Xp, adi, ..., 8;,} in 2p variables, and
define D to be the quotient of A by the commutators [x;, x;] = 0 and [d;, x;] = 6;;, where §;; is
the Kronecker’s delta. The ring D is the set of differential operators in p variables, whose action
on C{x1,...,xp} is defined by the partial derivative d; with respect to x;.

We take D|[p] the ring of polynomials in the variable p and coefficients in . Given any
function ¢ € C{x1,...,x,}, we can extend the action of D to functions of the form g, just by
putting 9; - g = pgP~1d;ig.

According to [8], there exist non zero P € D[p] and B(p) € C[p] such that

P(p) - ¢"*! = B(p)g".

Then the ideal of C[p] of all B(p) for which there is an operator P € D|[p] satisfying the last
condition is non zero. Since it is a principal ideal, it admits a monic generator denoted by b(p)
which is called the Bernstein-Sato polynomial of g. The name is due to L.N. Bernstein and M. Sato
who discovered, in the algebraic case, the existence of such a polynomial independently in [7]
and [50].

From the works of M. Kashiwara and B. Malgrange, we know that all roots of the Bernstein-
Sato polynomial are negative rational numbers (see [39, 43]). The Bernstein-Sato polynomial is
an analytic invariant of the hypersurface ¢ = 0 (see [55]). The relevance of this polynomial in
the singularity theory comes from the fact that the roots of the Bernstein-Sato polynomial of a
hypersurface H with isolated singularity determine the eigenvalues of the monodromy of the
Milnor fiber of H (see [44]).

In this chapter we prove the following results:

Theorem 9.1. Let C be a cusp with semigroup I'c = (n, m) and semimodule of differential values Ac.
Assume that Ay = min(Ac \ T'c) exists. Then for any element A € (A1 +T¢c) \T'c C Ac, the rational
number —A[nm is a root of the Bernstein-Sato polynomial of C.

Theorem 9.2. Let C be a cusp with semigroup I'c = (n, m) and semimodule of differential values Ac.
Assume that n < 4. Then for any element A € Ac \ I'c, the rational number —A /nm is a root of the
Bernstein-Sato polynomial of C.

We conjectured that Theorem 9.2 holds for any #, that is:

129
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Conjecture 9.3. Let C be a cusp with semigroup I'c = (n, m) and semimodule of differential values Ac.
Then for any element A € Ac \I'c, the rational number —A [nm is a root of the Bernstein-Sato polynomial
of C.

P. Cassou-Nogues in [17] gives algebraic conditions to assure that a rational number is a root
of the Bernstein-Sato polynomial of a cusp C. These algebraic conditions are given in terms
of the coefficients of an implicit equation of the cusp, which is written in a particular kind of
coordinates.

The idea of the proofs of both theorems is the following one: we take an implicit equation
of C and we find algebraic conditions on its coefficients such that given natural number is a
differential value. This is done by using the techniques from Chapter 5. Afterwards, we compare
the computed conditions with those in [17].

9.1 Cuspidal Sets and Systems of Nice Coordinates

In this section, we introduce three sets P, M C (Zs0)? and | C Zso which are related with the
semigroup of a cusp, and also with roots of the Bernstein-Sato polynomial. Moreover, the results
in [17] require to write an implicit equation of the cusp C in a particular system of coordinates
with respect to C. These systems of coordinates will be also introduced in this section.

Fix (n, m) a pair with gcd(n, m) and 2 < n. We define the cuspidal sets P, | and M as:

P = {(pl,pz)e(ZZO)Z:OSm<m—1,0§p2<n—1andnp1+mp2>nm},
J = A{j=pyjn+pyjm—nm:(pj,pa;) € P},
M = {(m-p1-1,n—p2—1):(p1,p2) € P}.

Note that the previous sets are empty if n = 2. These cuspidal sets appear in a natural way when
studying cusps (see [15, 17, 46]). Given j € |, we write (p1,]-, pz,]-) to refer to the unique element
in P such that j = py jn + p jm — nm.

Remark 9.1.1. If we consider the weighted order < with weights (1, m), then we have that j < j’
if and only if (p1,j, p2,j) < (p1,j, P2,j7)-

Remark 9.1.2. The cuspidal sets are empty if and only if n = 2 or (n, m) = (3,4), (3, 5). Moreover,
if they are non empty, then we have that (1,1) € M since (m —2,n —2) € P. We will use that
(1,1) € M in some of the proofs ahead.

Next lemma shows the relationship between the elements in | and the elements in the
semigroup of C. We will see later that the elements in Ac \ I'c are described in terms of the
set |, where I'c is the semigroup of the cusp and Ac the semimodule of differential values, see
Lemma 9.2.1.

Lemma 9.1.3. We have that
J={l€Zsp:0+n,l+m¢lc}.

As a consequence, for any { € |, the element £ + n + m does not belong to the semigroup I'c.
Proof. The proof of the equality | = {{ e N: { +n,{ +m ¢ I'c} is given in [46], Lemma 1.4.

Now, if { + n + m € T¢c, this implies that ¢ + n + m = na + mb, with at least one of the
coefficients a, b different from 0. Hence, either { + n € T'c or { + m € T'c. O
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Next lemma describes the relationship between the semigroup I'c and the elements in the
set M.

Lemma 9.1.4. Consider a cuspidal semigroup T'c = (n, m) with n > 3. We have that

1. if A ¢ T'c with A > n + m, then there exists j € | such that A = j + n + m.
2. IfA+na+mb¢TcwithA >n+manda,b > 0, then we have that the element (a +1,b + 1)
belongs to M.

Proof. Statement 1 is a consequence of Lemma 9.1.3, because we have that A —n—m, A —n,A—m ¢
Ic.

For Statement 2. Write A = j+n+m with j = npy j+mpy;j—nmand A+na+mb =j +n+m
with j* = npy jy + mpa,jy — nm, where (p1,, p2,j), (p1,j, p2,i7) € P. Since A + na +mb ¢ I'c, we have
that A + na + mb < cr = (n — 1)(m — 1). Therefore,

na+mb<nm-n-m-A<nm.
Thus, in virtue of Remark 2.3.15, we obtain
a+1l = py—p1j+1 :m—(m—pllj/+p1,j—2)—1
b+1 = PZ,j’—PZ,j+1 =n—(n—p2,]v+p2/j—2)—1.

We need to check that (m — p1,j» + p1,; —2,1n — p2,j» + p2,j — 2) € P. By definition of P, we have to
show that:

a)OSm—pl,]v+p1,]-—2$m—2.
b)OSI’l—pZ,]‘/+p2J—ZSTl—2.
c) n(m—pyjy+p1j—2)+mmn—pyy+ps;—2)>nm.

Let us show a) and b): recall that na +mb < nm —n —m— A. Moreover A > n +m and we get that
na +mb < nm —2n — 2m. 9.1)
Consequently, we obtain that
0<a<m-3;, 0<b<n-3.

These last inequalities combined with the fact that

a=prj—pri; b=p2i—paj,

give us the desired result.
Now, let us show c¢): we have that

n(m—pyjy+p1j—2)+m(n —pyjp+p2j—2) =2nm—na—mb—2n —2m.

By Equation (9.1), we have thatna+mb < nm—2n—2m, thus we conclude 2nm-na—-mb—-2n-2m >
nm. O

As mentioned before, the results in [17] require to write the implicit equation of the cusp C
in a particular system of coordinates that we are going to introduce now.

In [60], Zariski proved the existence of a system of coordinates (x, y) in (My, Po) such that C
has an implicit equation given by

f=x"+y"+ Z zjxPLiyP2i;  z; € C, (9.2)
j€l
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We will call this system of coordinates (x, y) a nice system of coordinates of C. An implicit equation
as the one of the Equation (9.2) will be called a nice equation of C. Note that a system of nice
coordinates is an adapted system of coordinates with respect to C.

Now we show how a nice equation allows us to compute the roots of the Bernstein-Sato
polynomial of a cusp.

For any j € ], we define the rational numbers
npj+mpaj+n+m

ai = =ai—1=
j - ;o Bi=aj

j+n+m

nm
By Lemma 9.1.4, given A € A\ I'c, then A/nm corresponds with f; for some j € J.

According to [17], we have that either —a; or —f; is a root of the Bernstein polynomial of C.
Moreover, for any (a,b) € M, there is a complex function Ip((a, b), f)(p), such that its residue at

p = —Bj is given by

r(ﬁj)_l S o[ 2 0epreta 2 Oep2,etb Z??
Ress(a, b)) =—2— " (1) fr( b )r( 23 )]_[6—[!, 9.3)

le], 6peN
> O¢l=k

where k = fjnm — na — mb and I'(~) is the Euler’s Gamma function. Furthermore, next result
characterizes when the values a; and f8; are roots of the Bernstein-Sato polynomial of C.

Theorem 9.4 ([17]). Assume that C is defined by the nice equation
f=x"+y"+ Z zjxPLiyP2i,
i€l
and consider b(p) its Bernstein-Sato polynomial. Then —p; is a root of b(p) if and only if there exists
(a,b) € M, such that Res¢(a,b)(B;) # 0. Otherwise, if —f; is not a root of b(p), then —a; is.

We want to emphasize that some of the roots of the Bernstein-Sato polynomial of a cusp
only depend on the topological class. However, the ones of the form f; are not topological
invariants. In fact, we can consider the most easy example: we take the quasi-homogeneous
curve f = x™ +y". Then all the possible residues are zero and no ; is a root of the Bernstein-Sato
polynomial of f = 0. In contrast, in the next example we find a cusp with a root of the shape f;.

Example 9.1.5. Consider the cusp C defined by the nice equation
f=xl+y°+ 20y + 3272

We notice that the Puiseux pair of C is (5, 11). The cuspidal sets are

P = {01),(7,2),(5,3),(8,2),(6,3),9,2),(7,3),8,3),09,3)},
] = {1,2,3,7,8,12,13,18,23},
M = {(1,1),21),61),@1,2),41),2.2),051),3,2),(1,3)}

Figure 9.1: The blue points represent the elements of M, the red ones the elements in P.
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We get that z; = 1and z, =3
Let us compute the residue Res (2, 1)(s), where g = 23/55. We see that k = 23-5-2-11-11 =
2. The sequences of non negative integers (6¢)¢ej, such that 3} e; 6, = 2:

e )1=2and 6, =0if £ # 1.
e oo =1land 6, =0if £ # 2.

Now we apply Equation (9.3) to compute the residue Res¢(2,1)(23/55). Before that, recall that
the Euler Gamma function satisfies that I'(p + 1) = pI'(p).

(a()-3)-
e U CIERE

L ()r(e)[-3)

Resy(2,1)(23/55) = L2/ 1( (29+2)r(21+1)

In fact, we are not interested in developing the product involving the Gamma functions. It is
enough to see that they are non-zero, hence we can conclude that the residue Res(2,1)(23/55)
is non zero. By Theorem 9.4, we conclude that —23/55 is a root of the Bernstein-Sato polynomial
of C. Using the techniques exposed in Section 5.4, we can check that 23 ¢ I'c is the 2-element of
the basis of semimodule of differential values of C. This is in correspondence with what we
expected from Conjecture 9.3.

9.2 Roots of the Bernstein-Sato Polynomial and Zariski’s In-

variant

Fix (C, Py) a cusp with Puiseux pair (n,m) and n > 3. Consider the associated cuspidal sets
P,J, M. The cuspidal divisor of C will be denoted by D. The goal of this section is to prove
Theorem 9.1.

Next lemma relates the 1-element of the basis of the semimodule of differential values of C
with the coefficients of a nice equation of C. Moreover, these conditions are also related with the
residues introduced in Equation (9.3).

In the proofs of the results of this chapter, we are going to consider the weighted monomial
order < with weights (1, m), as in Example 4.1.1.

Lemma 9.2.1. Let C be a cusp with Puiseux pair (n, m). Consider f a nice equation of C, as in Equation
(9.2). The following statements are equivalent:

1. A = j1+n+muwith j; € ] is the 1-element of the basis of Ac.
2. z¢ =0 for { < jyand zj, # 0, where the z; denotes the coefficient of the nice equation f.
3. Resp(1,1)((£ +n +m)/nm) =0 for £ < j; and Resg(1,1)((j1 +n +m)/nm) # 0.

Before proving the Lemma 9.2.1, we remark that the equivalence of the Statements 1 and 2 is
well known (see [15]). However, we include here a proof using an approach similar to the one
that we will use later on the proof of Theorem 9.2.

Notation 9.2.2. Given r, g € C{x, y}, when we say that r is a reduction of g, we mean that r is a
reduction of ¢ modulo {f}. We do similarly with final and partial reductions.
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Proof Lemma 9.2.1. We prove first the equivalence between the two firsts statements, and later
the equivalence between the two last ones.

Part 1: Statement 1 is equivalent to Statement 2.

Assume that the 1-element of the basis of the semimodule Ac¢ of differential values of C is
A1 = j1 + na +mb, with j; € |. We are going to compute the first elements of a minimal standard
basis of the module of differentials of C with Delorme’s algorithm.
Since (x, y) is local system of nice coordinates, we can put w_; = dx and wo = dy. Then the
axis uq is
ur =min(Ag N (A1 +T¢)) =n+m =ve(xwo) = ve(yw-1),

th

where A; denotes the i*" element of the decomposition sequence of Ac, withi = -1,0,...,s.

Let us consider the 1-form 6 = xwp + p*yw-1 and compute the tuning constant u*. As
explained in Remark 5.4.4, in order to find u*, it is enough to compute final reductions of Xy, (f)
and Xy,_ (f). Starting by Xy4,(f), we find:

ro = Xuwg(f) = X (f) = xfe = mx™ + ) prozexPiiyres, (9.4)
le]

The leading power Ip(rp) = (m, 0) is not divisible by (0, n) = Ip(f). Thus, r is its own final
reduction. For X,,_,(f), we have:

Xy (f) = =y 55(f) = ~yfy = —ny" - D pezextryt,
le]

Here, Ip(Xyw_,(f)) = (0, n). We can take the reduction

r-1= Xy (f) +nf =nx" + Z(n — pa,0)zexPriyP2e, (9.5)
le]

Since Ip(r-1) = (m,0) is not divisible by (0, 1), we can put r_; as final reduction of Xy, (f). By
Proposition 4.1.5, we find:

iPo(Xya)fl (f)r f) =nm= iPO(an)o(f)/ f)

From Equations (9.4) and (9.5), the leading terms are I¢(r_1) = nx™ and [t(rp) = mx™. Therefore,
the tuning constant u* is —m/n. For convenience, instead of 6, we take the 1-form

n=n6 =nxwy—myw-1 = nxdy —mydx.
We define r1 to be the following partial reduction of X (f):

r1i=nrg—mr_y = Z("Pl,é’ + mpay — nm)zxPriyP2t =
le]

= Z bzgxP1tyPat,

le]

(9.6)

The leading power of r1 is an element (p1,, p2,;) € P. By definition of the cuspidal set P,
we have that 0 < py ; < n — 1. Thus (p1,j, p2,j) is not divisible by (0, n). Therefore r1 is a final
reduction of X, (f). Moreover, by Propositions 4.1.5 and 5.4.3

ipy (X (f), f)
ve(n)

npi,j+mpa,;,

npij+mpyi—(n-1)(m-1)+1=j+n+m.
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By Lemma 9.1.3, we have that j + n + m ¢ I'c = Ag U {0}. We also note that the divisorial
value of nis vp(n) = n +m = t;. Since A; is the 1-element of the basis, we have that

/\1 = min(Ac \ AQ),
see Section 3.1. Furthermore, by Theorem 5.2.10, it is also satisfied that
A =sup{vc(w) : vp(w) = t1}.

We conclude that Ay = j + 1 + m, that is, j = j;. In fact, we have shown that vc(n) = A1. This
implies that 7 is its own final reduction modulo {w-1, wo}, where r1 is a final reduction of X;,(f).

By Equation (9.6) and Remark 9.1.1, stating that the leading power of r1 is (p1,j,, p2,j,) is
equivalent to saying that z; = 0 for £ < j; and zj, # 0. This shows that Statement 1 is equivalent
to Statement 2.

Part 2: Statement 2 is equivalent to Statement 3.

Fix j1 € J. Let us compute Ress(1,1)((j + n +m)/nm), for j € ] with j < j1. Since | # 0, then
the set M is not empty and then we have that (1,1) € M by Remark 9.1.2. We can apply Equation
(9.3). Notice that ; = (j + n + m)/nm.

Start by taking ¢; = min(J). By Equation (9.3), we have to find sequences (0¢)¢e; of non
negative integer numbers, such that },c; 6¢¢ = £1. Since £; = min(]), the only possible sequence
is the one defined by 6, = 1 and 6, = 0 for ¢ # {;. Therefore, by Equation (9.3):

Resp(1,1)((lh +n+m)/nm) =0 & zy = 0.

This proves that Statement 2 is equivalent to Statement 3 if {1 = jj.

Now assume that #; < j;, and proceed in an inductive way. Take k € | such that k < jj.
Suppose that Res¢(1,1)((¢ +n +m)/nm) = 0forall { < k < ji is equivalent to z; = 0 for all £ < k.
Denote by ¢ = min{¢ € | : { > k}, let us show that, if zy = 0 for ¢ < k, then

Resp(1,1)((lk + n+ m)/nm) =0 & z¢ = 0.

Applying this argument inductively will prove the equivalence between Statements 2 and 3. We
compute the sequences of non negative integer numbers (0¢)¢ej such that 3 ,c; 6¢f = €. There
are two kind of possible sequences: first, the one given by 6, = 1and 6, = 0if £ # {;. Second, all
the non zero 6, satisfies that £ < f. Since z¢ = 0 for ¢ < {, we have, again by Equation (9.3), that

Resp(1,1)((lk + n+m)/nm) =0 & z4 =0,

as desired. O

As a consequence of the previous lemma we have the next result showing that several
residues are non zero. In fact, next lemma and Theorem 9.4 prove Theorem 9.1.

Lemma 9.2.3. Let C be a cusp with Puiseux pair (n, m) and assume that the 1-element Ay of the basis of
Ac is given by
M=j1+n+m, withj; € ].

Then for any A = Ay + na +mb € Ac \ Ao = Ac \ T'c, we have that Res¢(a +1,b +1)(A/nm) # 0.
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Proof. By Lemma 9.1.4, we can write A1 = j1 + n +m with j; € J and j1 = npy,j, + mpaj, — nm.
Moreover, by Lemma 9.2.1, we have that if f is a nice equation of C as in Equation (9.2), then
z¢ =0for{ < j;and z;, # 0.

Now take A = Ay +na+mb € Ac\Agthatwewriteas A = g+n+mwith g = npy j+mpa;—nm
and q € ]. Note that we have the equalities: p1 4, = p1,j, +a and p2 4 = p2,j, + b, where (p1j,, p2,j;)
is the element in P associated to j; € J.

As before, we can express:

g+n+m npigtmprgt+tn+m

= - 1 = .
nm nm ‘Bq

By Lemma 9.1.4, we know that (a +1,b + 1) € M. Observe that j; = f;nm —n(a +1) — m(b +1).
Again, since z; = 0 for £ < j;, we only have to consider a single non zero sequence (9¢)¢ej: 6j, = 1
and 6y = 0 for ¢ # j;, because the other sequences have zero contribution to the computation of
the residue Resg(a +1,b + 1)(A/nm), when applying Equation (9.3). We conclude that

Resf(a+1,b+1)(A/nm)=0& zj; =0.

However, this contradicts the fact that z i # 0, ending the proof. O

9.3 Cusps with Multiplicity up to 4

As in the previous section, we fix C a cusp with Puiseux pair (1, m), semigroup I'c, semimodule
of differential values Ac and cuspidal divisor D. In this section we prove Theorem 9.2. Hence,
we impose the extra condition that n < 4.

We recall that the length s of the basis (A_1, Ap, A1, ..., A;) of the semimodule of differential
values of C is bounded above by n —2. Additionally, we have that A_; = n and Ay = m. Therefore,
Theorem 9.2 is trivial if n = 2. In that case, we have that Ac \ I'c = 0 and there is nothing to
prove. By the same argument if # = 3, we have that either Ac \I'c =0 or Ac\I'c = (A1 +T¢c)\Tc.
Thus by Theorem 9.1, Theorem 9.2 is also true when n = 3. We are left to show that it also
holds when n = 4. The rest of the section is devoted to show that the theorem holds under the
assumption n = 4. Consider f € C{x, y} a nice equation of C as in Equation (9.2):

f=x"+y*+ Z zjxPriybai; zj € C.
i€

We proceed in a similar way as in the previous section. We are going to find all possible
I'c-semimodules A such that A can be the semimodule of differential values of a cusp C with
multiplicity four. Later, we are going to find the conditions on the coefficients of an implicit
equation of C imposed by the restriction of having A as the semimodule of differential values of
C. Finally, we will see that the computed conditions imply that certain residues, described in
Equation (9.3), are non zero.

Since gcd(4, m) =1, it follows that m = 4a + € with « > 1 and € € {1, 3}. Before studying all
possible semimodules of differential values, we give the following remark about cuspidal sets
and nice equations.

Remark 9.3.1. Taken =4 and m =4a + e witha > 2and e € {1,3}. For 0 < < a —2 and
0 < B’ < 2a — 2 we have that

€+4p
2e +4p’

4Ba+e+p)+(da+e)l—nm,

42a+e+p)+(da+e)2 —nm.
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Thus, the cuspidal sets | and P are
J={e+4p, 2e+4p": 0<p<a-2,0<p <2a-2},

and
P={Ba+e+B,1),2a+e+p,2): 0<B<a-2,0<p <2a-2},

with the natural correspondence between | and P.
Therefore , we can write the nice equation f of C as:

a-2 202
f = yhate | y4 n ZZ€+4ﬁx3a+e+ﬁy n Z Z2€+4ﬁ/x2a+e+ﬁ'y2_ 9.7)
B=0 B'=0

We can particularize Remark 9.1.1. More precisely, for any > 0, we have that
Ba+e+B,1)<Ra+e+p,2)<Ba+e+p+1,1).

Lemma 9.3.2. Denote by B the basis of the semimodule Ac. Then one of the following statements must
be satisfied:

1. B=4,4a +¢).
2. B=@,4a+e, M) withAy >uy=n+m=4a+1)+eand A, ¢ Tc.
3. B=4,4a +€,A1,Ay) with

AM = n+m+e+4g=4a+1)+2e+4q with 0<g<a-2.
Ay = Ba+3e+4q" with 0<q <q.

If a =1, then Case 3 is not possible.

Lemma 9.3.2 was proven in [33]. There, the authors use their normal form theorem from [34]
to show the result. For completeness, we provide a proof using only combinatorial techniques.

Proof. Put Ay = n =4 and Ag = m = 4a + €. We recall that, as explained in Section 3.2, the
only conditions that an increasing sequence (A_1, Ag, A1, ..., As) must satisfy in order to be the
basis of a semimodule of differential values are the following: A_1 = n, Ag = m, A; > u; for
i=1,...,sand A; ¢ Aj +TI¢c,fori #jand i,j=-1,0,1,...,s. The three options above verify
these conditions. Let us show that there are no other possibilities.

The number of the elements of the basis is at most 4 because s < 2. Additionally, we see that
all possible semimodules of differentials values with s = 0, 1 are covered. Case 1. corresponds
to a quasi-homogeneous curve and hence s = 0. Of s = 1, we only need that the 1-element of the
basis A1 is greater than u;. Therefore, we must show that if the length of the basis s is 2, the
basis corresponds to Case 3.

Assume that a > 2 and s = 2 later we will show that it is not possible to have @ = 1 and 5 = 2.
There are two possibilities for the 1-element of the basis A1:

a) A1 =3m mod 4.

b) A1 =2m mod 4.
Case a). If A1 = 3m mod 4, let us see that the 2-element of the basis cannot exists. To do that, let
us compute the axis #, and see that for any A > u,, we have that A € A;. Recalling the results

from Chapter 3, we have by Example 3.5.4 and Proposition 3.5.9 that the bounds are ki = 0 and
ki = —1. Thus, the axis u> can only take the following two values:

i) up =ult = A1 +mls =n+nay.
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ii) up =u) = Ay +nl3 =m+mb,.

i). Ifup = A1 + ml’,ﬁ =n(ap +1), since n = 4 and A1 = 3m mod 4, then, l’,%l = 1. Hence, for
any A > up we find that A > u, = Ay + m > 2m. Assume that we write A = 6m mod 4 with
6€{0,1,2,3}. If 6 =0,1,2, we could write A = 6m + 4c for c > 0 and A; € T'c. If 6 = 3, then
A=A +4c’ withe’ >0and A € A +T¢.

ii). If up = Ay + n2 = m(by + 1), we have that b, > 2 since we are assuming that A; = 3m
mod n. Thus we obtain A > u, > 3m. As before, we could write A = 6m + 4c with ¢ > 0 and
6 € {0,1,2,3}. This means that A € T'c. Therefore, the case uy = A1 + n2 = m(by + 1) implies
the non-existence of the 2-element of the basis.

In conclusion the assumption A1 = 3m mod 4 implies that the 2-element of the basis cannot
exist.

Case b). Assume that A; = 2m mod 4. First, we note that A1 < 2m, otherwise, we could write
A1 =2m +4¢ for { > 0 implying that A; € I'c. This would contradict the fact that A1 € Ac \ Tc.
Moreover, we have the extra condition A; > u; = n + m = 4(a + 1) + €. In other words

da+1)+e <Ay <2m=4Qa) + 2¢.

Taking into account that we are assuming that A1 = 2m mod 4, the last two inequalities are
equivalent to
AM=4a+1)+2e+49, with 0<g<a-2.

Hence A1 must be as stated in Case 3. We only have to determine the possibilities for the

2-element of the basis. First, we find the value of the axis u», since the bounds are k;’ =0and

k™

following equations

= —1, we have the to compute the smallest value associated to the minimal solutions of the

M +nly =m(by+1); Ay +ml)' =n(a +1).

We can check that up = A; +4(a — g — 1) = 2m = 8a + 2¢. Assume that A > up and that A ¢ A4,
as the 2-element of the basis must satisfy.

The conditions A > uy = 2m > Ay and A ¢ A; imply that A = 3m mod 4. Otherwise, we could
write A = Ay +4c for k = {-1,0,1} and ¢ > 0, recall that A_; = n, A\; = m and the assumtion
A1 =2m mod 4. Arguing as before, we find that

Uy <A <Ay +m=8a+4+4q+3e < 3m.
From the previous inequalities and A = 3m mod 4 we get
A=8a+3e+4q with 0<q <g.

This shows that the basis is as in Case 3.

Finally, we notice that if @ = 1, it is not possible to have a cusp C such that its semimodules of
differential values has basis of length 2. Indeed, assume that € = 1, then we have that T'c = (4, 5).
The conductor of the semigroup is cr = (4 — 1)(5 — 1) = 12. Then the axis is 1 = 9. This implies
that if the 1-element of the basis A1 exists, then it must be A; = 11 > 9 (note that 10 =2-5 € I'¢).
Thus, we compute the new axis and we have that u; = 15 > cr. Therefore given A > uy, we see
that A € I'c. We conclude that the semimodule of differential values of a cusp with Puiseux pair
(4,5) cannot have a basis of length 2. If € = 3 we proceed in a similar way. o
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Remark 9.3.3. The proof of Lemma 9.3.2 shows that in case of having a basis as in Case 3, then
for any A ¢ Aq with A > up, we have that

A=8a+3e+4p with 0<p<qg.

Now, consider the 2-element of the basis Ay = 8a +3e€ +4q’ with0 < f < g’. Given A € Ap \ Aq =
Ac \ Ay, then A = 8a + 3¢ + 4p with ¢’ < < g. This is equivalent to saying that A = A, + na
with0<a<g-¢"

By Lemma 9.3.2, there are three cases to consider in the proof of Theorem 9.2. In the first
one, where the length of the basis is s = 0, there is nothing to prove because Ac \ T'c = 0. In
the second one, with s = 1, since Ac \T'c = (A1 +I'c) \ I'¢c, the theorem holds by Theorem 9.1.
Hence we only need to prove the third case with s = 2. In that case, again by Theorem 9.1, we
only need to show that for any element A € Ac \ Ay, then —A/nm is a root of the Bernstein-Sato
polynomial. Note the elements Ac \ A1 are described in the previous remark. The rest of the
chapter is devoted to show that given A € Ac \ Ay, then —A/nm is a root.

As in the previous section, we split the study of the relationships between differential values,
coefficients of a nice equation and residues in several technical lemmas.

Lemma 9.3.4. Let C be a cusp and assume that the basis of the semimodule of differential values is
(n,m, A1, Ap) with
n=4, m=4a+e, A =4(a+1)+2e+4q,

where @ > 2, € € {1,3} and 0 < q < o — 2. They following statements are equivalent:
1. A2 =8a +3€ +4q" with 0 < q" < q is the 2-element of the basis.
2. zoerap =0forq < B’ < g +q" and zaeq(g+q)) #0,if q" < g. Or

2(4a + €)ZZe+8q -QBa+e+ Q)Z§+4q #0,

ifq' =q.

Before giving the proof, we recall that the term “reduction” means “reduction modulo {f}”
when referring to functions.

Proof. Assume that the 2-element of the basis of Ac is A, = 8a +3e€ +4¢’ with 0 < ¢’ < ¢q.
Essentially, the proof follows a similar reasoning as in Lemma 9.2.1 Part 1. We will apply
Delorme’s algorithm to compute a minimal standard basis of C. In this way, we will obtain a
1-form w; whose differential value is A;. During the process, we will derive the desired algebraic
conditions given in Statement 2.

In order to simplify the computations along all the proof, we ignore the terms with leading
power greater than (3a + € — 1 + ¢, 2), that is, given g € C{x, y} and assume that g = 3, a;xx/y*.
When we write

g=g1+hot,

we mean that g1 = Y bjxx/y* where bjx = 0for (j, k) > (3a + € —1+¢,2) and bjx = a;x otherwise.
We introduce the previous convention for the following reason: consider a 1-form 1 with
divisorial value vp (1) = t2. By Theorem 5.2.10, we know that vc(17) < A. Thus, by Propositions
5.4.2 and 5.4.3, we have that

ipg(Xy(f), f) < Aa+nm—n—-m=4Ca+q"+e—1)+ (4a +€)2.

Therefore, if v is a partial or final reduction of Xy (f), then r satisfies the following property:
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(%) The leading power of r is at most 3 + g4’ + € — 1, 2).

Since g’ < g, we are not concerned with the behaviour of the monomials with leading power
greater than Ba + g +€—1,2).

We start computing a 1-form that could later be identified as w,. Since A1 = 4(a+1)+2e+4g =
m+n+e+4q with0 < g < o —2, by Lemma 9.2.1, we have that z; = 0 for ¢ < € + 44 and
Ze+aq # 0. Hence, we can write Equation (9.7) as

a-2 2q
f = ylate 4 y4 + Z Ze+4ﬁx3a+e+ﬁy + Z ZZe+4ﬁ’x2a+€+ﬁ/y2‘ 9.8)
B=q p'=q

We now apply Delorme’s algorithm. Since (x, y) is a system of nice coordinates with respect to
C, we can take w_1 = dx and wp = dy and then we have vc(w-1) = n and vc(wp) = m. Similarly
as in proof of Lemma 9.2.1, we find that the 1-form w; = nxdy — mydx satisfies that the function

r1 given by
11 =X (f) —nmf =nxfe + myfy, —nmf = ijjxplffypsz
jel
a=2 2q (9.9)
— Z(e +4ﬁ)ze+4ﬁx3a+e+ﬁy + Z(ze +451)Z26+4‘B’x2a+e+ﬁ' 2’

B=q B=q
is a final reduction of X, (f). Moreover, the leading power of r; is Ip(r1) = 3a + € + q,1). By
Proposition 5.4.3, the differential value of w1 is vc(w1) = A1.
We now compute the candidate for w;. As in the proof of Lemma 9.3.2, the axis uy is
Uy = A1 +4(a — g — 1) = 2m. In particular, we have:

uy = ve(x* 1 w1) = ve(ydy).

This implies that t, = t1 + 4(a — g — 1) = 4(a — q) + m < 2m. Therefore, by Delorme’s algorithm

we need to compute the tuning constant p* for the 1-form 6 = x*~7"1w; + u*ydy. Later, we will

compute a final reduction of 8 modulo {w-1, wo, w1}.

Computation of u™: We must compute final reductions of X a—-1,, (f) and Xy 4,(f). For the
first one, by Equation (9.9), we have that

rp = x40y = x"‘_q_l(Xw1 (f)—nmf)

a=2
— Z(e + 4ﬁ)ze+4ﬁx4a+e+ﬁ—q—1y+
B=q (9.10)
29
+ Z(Ze + 4ﬁ/)z26+4ﬁ,x3a+€+ﬁ’_q—lyZ,
p'=q

which is indeed a final reduction of X «-4-1,,(f) since its leading power (4a + € — 1,1) is not
divisible by (0, 4). Similarly, for X4, (f), we have that

ro = Xyay(f) = y 3¢

9.11)
= (4o +e)x* ™y + Ba + e + q)ze+4qx3“+€+q_ly2 + h.o.t.

Again, the leading power Ip(ro) = (4a + € — 1,1) is not divisible by (0,4). Therefore, by
Equations (9.10) and (9.11), the tuning constant is u* = —(€ + 4q)zc444/(4a + €). Equivalently,
we can write:

w=@a+e)0=la+e)x" T o —(e+ 4q)zcraqydy. (9.12)
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This way we have that vc(w) > ve(x¥ 7 w1) = v (ydy). Notice that vp(w) =ty = 4(a — q) +m,
because vp(x* 1 wy) = tp = 4(a — q) + m < 2m = vp(ydy).

Computation of a final reduction of w: Note that it is the same than computing a final reduction
of 0. For this purpose, we should recursively construct 1-forms @’ of the form
' =+ uThiwy,
where k € {-1,0,1},i > 0, h; is a monomial, and w® = w. This process continues until we obtain
a 1-form whose differential value is A,.
To shorten the proof we do it in a single step, we take all the reductions modulo {w_1, wo, w1}

simultaneously. We compute a partial reduction X of X, (f). Using Equations (9.10) and (9.11),
we define X as

X=@a+e)—((e+ 4q)ze+4q)70 =
2q

= Z (4a +€)(e + 4ﬁ)ze+4ﬁx4“+€+ﬁ‘q‘ly+
p=q+1
29

+ 2(401 +€)(2e + 4ﬁ’)zze+4[;fx3“+€+ﬁ/_’7_1 2_
B'=q

—(e+49)Ba+e+ q)zg+4qx3“+e+‘7‘1y2 +h.o.t.,

(9.13)

since rg and r; are final reductions of X, 4,(f) and X,a--1,, (f) respectively. Comparing Equation
(9.12) with Equation (9.13), we verify that X is a partial reduction of X,,(f).

Since vp(w) = ty, thenby the property (x), we have that Ip(X) < (3a+4q’+e—1, 2). Inparticular,
this implies that X # 0. Moreover, by Equation (9.13), we observe that Ip(X) > Ba + € -1, 2).

The function X encodes the necessary information to compute the desired final reduction of
. Write
— i,k
X = Z ajpx'y”,
j,k=0

and assume that there exists a minimum index { with g < { < q+q’, satisfying that asa+c+e-g-12 #

0. Note that by Equation (9.13), having aza+e+p'—g-1,2 # 0 is the same as having ze.+4p # 0, where

q < B’ < 2q. In other words, we are assuming that zoc14p = 0 for g < ” < £ and that zpc44¢ # 0.
We take the 1-form w’ given by

¢
w'=w- Z (e + 4ﬁ)ze+4ﬁxﬁ_qydy, (9.14)
B=q+1

which is going to be a final reduction of w modulo {w-1, wo, w1}. Notice that for any g > g, we
have that

vp(xP~Tydy) > vp(ydy) =2m > t) = 4@ — q) + m = 8a + € — 4q.
Thus, vp(w’) = t5. Next, observe that:
Xop-ayay(f) = (da + e)xtarerb=a-ly L ho.t.,

where we see that X,s-¢,4,(f) is non reducible modulo {f}. Since X is a partial reduction of
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X (f), we can define a partial reduction X’ of X, (f), given by the expression:

{
X' =X- Z (€ + 4,8)Z€+4ﬁXxl“‘lydy(f) =
p=g+1
2q
_ Z (4& + 6)(6 + 4ﬁ)ze+4ﬁx4a+€+ﬁ_q_ly+
i (9.15)

2q

+ 2(40( +¢€)(2e + 4ﬁ’)zze+4ﬂ/x3a+e+ﬁ’_‘7_l 2_
p=t

_ 2 3a+e+q-1,,2
(e+4q)(3a+e+q)ze+4qx y-+ho.t.

Since zpe+4¢ # 0, we have that the leading power of X’ is I[p(X’) = Ba + € + ¢ — g —1,2), note
that the first summation starts at the index ¢ + 1 and € < 3. Thus, we have that Ip(X’) is not
divisible by Ip(f) = (0,4). Hence, X’ is a final reduction of X, (f). By Proposition 5.4.3, we have
that

ve(w') =8a +3e+4(f—q) = A.

We note the following: first, A < A,, with the equality achieved if and only if { = g + 4’. Second,
A ¢ Aq. Thus, for A, to be the minimum element in Ac \ A;, weneed { =g+ gq'.

Finally, if £ does not exist, meaning a3, +e+p-1,2 = 0 for g < f’ < g + q’, we can construct X’
as before by setting ¢ = g + g’ in the expression of w’ in Equation (9.14). However, this time, by
Equation (9.15), X’ may not be a final reduction of X, (f). Nonetheless, we see that its leading
power is greater than (3a + € + g’ — 1,2). But, as we saw before, that is not possible, since
vp(w’) = t; and property ().

Therefore, ¢ exists and it takes the value ¢ = g + g’. In this situation, we put w, = @’ and X’
is a final reduction of X, (f).

Conclusion: As mentioned before, by Equation (9.15), having a3a+c+p—g-12 = 0 for g < g’ <
q + q’ is equivalent to having z¢44p' = 0. Additionally, the condition a3q+e+q-1,2 # 0 is the same
as Zoei4(g+q) # 01if " < ¢, and to
(4a + €)(2€ + 8q)z2e485 — (€ +4q)(Ba + € + q)z§+4q + 0o

2(4a + €)zoer8g — (B + € + q)z§+4q £ 0,

if ¢ = q, as desired. Finally, all the previous computations also show that if we assume Statement

2, then ve(w2) = 8a + 3e +44’. O

Next lemma shows the relationship between differential values and residues.

Lemma 9.3.5. Let C be a cusp and assume that the basis of the semimodule of differential values is
(n, m, A1, Ap) with
n=4, m=4a+e, A =4a+1)+2e+4g,

where @ > 2, € € {1,3} and 0 < q < a — 2. They following statements are equivalent:

1. A2 =8a +3€ +4q" with 0 < q" < q is the 2-element of the basis.
2. Resg(a —q,1)((8a + 3€ + 4y)/nm) = 0 for all non negative integers y < q’ and Ress(a —
q,1)((8a + 3¢ +4q")/nm) # 0.
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Remark 9.3.6. Note that (@ — ,1) belongs to the cuspidal set M for 0 < § < @ — 2, and in
particular, (o — gq,1) € M, showing that we are in position to apply Equation (9.3). To verify this,
note that

(=g, 1) =(m—-1,n-1)=(p1,p2),
where (p1, p2) = 3a + € + f — 1,2) is an element of the cuspidal set P, as shown in Remark 9.3.1.

Proof. Assume that A» = 8a + 3¢ + 44’ with 0 < g’ < g. We need to compute the residues
Resg(a —q,1)((8a +3€ +4y)/nm) for 0 < y < ¢q’. Let us consider two cases: y < q’and y = q’.
If 0 < y < q’, we observe that:

k=8a+3c¢+4y-4(a—q)—(da+e)l =2e+4(g+y)e].

Hence, in virtue of Equation (9.3), we need to find the sequences of non negative integer numbers
(0¢)¢ej, such that:

Zﬁée =2e+4(qg+y)=k.

le]
Note that by Remark 9.3.1 the elements in | are of the form € +4f and 2¢ +4’, where 0 < g < a2
and 0 < f’ < 2a — 2. Moreover, as shown in the proof of Lemma 9.3.4, we can take a nice

equation f of C, given by:
a=2 20-2
f=adave by ZZ€+4ﬁx3a+E+ﬁy + Z ZZe+4ﬁ’x2a+e+ﬁ/y2~
P=q p'=q

Noting that both summations begin at index g > vy, the previous two observations lead to the
fact that 62¢44(54+y) = 1 and 67 = 0, for € # 2€ + 4(q + y), is the single sequence of (0¢)se; that is
relevant in the computation of Res¢(a — g,1)((8a + 3¢ + 4y)/nm). More precisely, by Equation
(9.3), it can be checked that any other sequence will give a zero contribution to the value of the
residue. Then, again by Equation (9.3), we conclude that

Resf(a—q,1)((8a +3e +4y)/nm) #0 & Zpera(y4+q) % 0. (9.16)

Consider the case y = q’. Again we have to consider sequences (0¢)sej such that

Z 06 =2e+4(qg+q).
le]
There are two possibilities: q° < g or g’ = q. Assume first 4’ < g. Following the same argument
as before, all the sequences except at most one have zero contribution to the computation of the
residue. The only possible relevant sequence is 0ze14(+¢) = 1 and 6, = 0if £ # 2¢ + 4(q + g'). By
Equation 9.3
Resp(a—q,1)((8a +3e +4q")/nm) # 0 & Zoeya(g+q) # 0. (9.17)

Finally, if 4" = g, then there are two relevant sequences: first, 62c+s5 = 1 and 6 = 0 if £ # 2¢ + 84.
Second, 0¢+4g = 2 and 8¢ = 0if { # € +4q. Hence, by Equation (9.3) we obtain the following:

r (8a+35+4q )_1
nm 22, 23a+e+q)+(a—q) 3
L [ (e gy

8a+3e+4q )
nm m

Resf(a—q,1) ( P

Datet2q)+(a—
—  Zoessgl (—( arer ,Z)Jr(a q)) r (%)] )

Using the fact that the Euler’s Gamma function satisfies that I'(p + 1) = pI'(p), we can extract a
common factor in the previous equation. This leads to:

8a+3e+4q

Resf(a—q,1) (T) #0© 2(4a +€)zoe1g — Ba+ e+ q)z§+4q +#0. (9.18)

By Equations (9.16)-(9.18), we have to show that Statement 1 is equivalent to
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® Zoeysprq) =0for0 <y <gq'.
o if ql <q, then Z2e+4(q'+q) # 0.

e if " = q, then 2(4a + €)zoc1g — (B + € + q)z§+4q #0

Thus, we see that Statement 1 and 2 are equivalent in virtue of Lemma 9.3.4. O
As a consequence of the previous lemmas we obtain the following.

Lemma 9.3.7. Let C be a cusp and assume that the basis of the semimodule of differential values is
(n, m, A1, Ap) with
n=4, m=4a+e, A =4(a+1)+2e+4g,

wherea >2,e€{1,3}and0< g < a—2. If A, =8a +3e +4q" with 0 < q’ < q is the 2-element of
the basis, then for any Ay + na + mb ¢ Ay, we have that

Resf(a—q+a,b+1)((A2 +na+mb)/nm) # 0.

Before giving the proof of the lemma, let us explain why this gives the proof of Theorem 9.2.
As mentioned before, we were left to show that given A € A\ I'c, then —A/nm is a root of the
Bernstein-Sato polynomial of C. By Theorem 9.4 it is sufficient to show that a certain residue is
non-zero, which is given by Lemma 9.3.7.

Proof. Fix f a nice equation of C as in Equation (9.7). We need to show that for a given
A=Ay +na+mbé¢ A witha,b > 0, then

Resg(a—q+a,b+1)(A/nm) 0.

By Remark 9.3.3, since A ¢ A, we have thatb =0and 0 < a < g —¢’. If 2 = 0, we have already
shown that Res¢(a —q,1)(A2/nm) # 0, see Lemma 9.3.5. Thus, assume that 1 < a < g —¢’, notice
that we are assuming that 4’ < 4. By Remark 9.3.6, we have (¢« — g +a,1) € M.

We can write A explicitly as A = 8a + 3¢ + 449’ + 4a. Subtracting n(a — g + a) + m, we find:

A-nla—g+a)—-m=2ec+4(g+¢q).

In other words, we have to compute sequences (8¢)¢ej such that 3 £6, = 2e+4(q+4’). Since g’ < g,
there is only one relevant sequence to the computation of the desired residue: d¢14(4+4/) = 1 and
the rest 8¢ = 0 for ¢ # 2¢ + 4(q + q’). Any other sequence gives zero contribution to the residue.
Thus,

Resf(a—q+a,1)(A/nm) #0 & zperqgrq) # 0

and we have shown in Lemma 9.3.4 that zy¢,4(514) # 0. O

We end this Chapter with a brief discussion about the Conjecture in 9.3 higher multiplicities.
When considering cases where 1 > 5, several problems arise. The most important one is that
it does not seem possible to apply all the previous techniques in an inductive way. However,
following similar steps, we could try to give a proof for each particular value of n. If we want to
give a proof for the next case n = 5, we would need to determine all possible semimodules, as in
Lemma 9.3.4. Nonetheless, the complexity of this point is pretty high when compared with the
multiplicity four case. Not only that, but we also need to deal with some partitions of natural
numbers, as shown in Equation (9.3), to find residues. Some description about these partitions
may be needed.

There is a last problem not at all mention on this text. The choice of the element (a,b) € M
when computing Res¢(a, b)(f;). Note that Theorem 9.4 only demands to have a non zero residue
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for a particular element (a,b) € M. Along all the proofs we did not explain how we found the
appropriate value to take. The idea was the following: we have an element A € Ac \ I'c, which
corresponds with the differential value vc(w) of a 1-form w. We look at the divisorial value
vp(w) = na + mb. Then we check that (a,b) € M is our desired candidate. When computing
examples, this idea does not give the expected results anymore when n = 5. Nonetheless,
Conjecture 9.3 still holds in those cases.

This conjecture was initially motivated by the results in [17] where the author gives an
stratification of the topological class associated to the Puiseux pair (6,7) in terms of the roots
of the Bernstein-Sato polynomial. Let us remark that in [17] there is no mention to differential
values. However, we can check, with the methods exposed in this thesis, that every branch with
Puiseux pair (6, 7) satisfies Conjecture 9.3. Besides, more particular examples can be checked
with the method checkRoot in Singular (see [19]).
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