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Resumen en Español

Contexto y motivación

El cambio climático es una realidad que nos afecta a todos. Según el Panel Intergubernamental

de Expertos sobre Cambio Climático (IPCC1 por sus siglas en inglés), la temperatura media

de la superficie global aumentó aproximadamente 1.1◦C entre 2011 y 2020 en comparación con

el peŕıodo preindustrial 1850–1900, mayormente provocado por las emisiones de gases de efecto

invernadero derivadas de actividades socioeconómicas humanas. Este calentamiento da lugar a

eventos meteorológicos extremos cada vez más frecuentes e intensos (p. ej. olas de calor, lluvias

torrenciales o seqúıas), con impactos en los ecosistemas, las economı́as y las comunidades a nivel

mundial (IPCC, 2021). No obstante, las diferentes regiones del planeta no están afectadas de

igual manera por el cambio climático. Algunas zonas son más vulnerables que otras debido a

variaciones regionales en la geograf́ıa, los diferentes sistemas climáticos y otros factores socioe-

conómicos. Los informes de evaluación más recientes del IPCC indican que las variaciones en

temperatura y precipitación en el futuro no se producirán de forma uniforme en todo el globo.

El IPCC reconoce estas diferencias y subraya la importancia de contar con datos climáticos

regionales con amplio detalle para guiar eficazmente en los planes poĺıticos de adaptación y

mitigación (véase la Fig. 1.1).

Las proyecciones de cambio climático del IPCC son posibles gracias al uso de un amplio volu-

men de modelos climáticos globales (GCMs, por sus siglas en inglés, véase Sec. 1.2.1). Estos

modelos son herramientas computacionales muy populares en el estudio del cambio climático,

ya que son capaces de reproducir condiciones pasadas y proyectar el clima futuro basándose en

una representación f́ısica del sistema climático. Los GCMs han evolucionado desde los años 60

(Manabe and Wetherald, 1967), desde simples esquemas atmosféricos a complejos Earth System

Models (ESMs), incluyendo componentes relacionadas con océanos, criosfera, biogeoqúımica y

qúımica atmosférica (Mcguffie and Henderson-Sellers, 2005; Edwards, 2011). El desarrollo de

los GCMs ha sido impulsado por iniciativas como el proyecto CMIP (Coupled Model Intercom-

1El IPCC es un organismo de las Naciones Unidas que proporciona evaluaciones sobre el estado del arte en
materia del cambio climático, con el fin de orientar en decisiones poĺıticas de mitigación del cambio climático y
acción global.
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parison Project en inglés), cuya sexta fase (CMIP6) supone el estado del arte en modelización

climática, mejorando notablemente en resolución espacial y en la representación de procesos

f́ısicos clave (Eyring et al., 2016). Sin embargo, a pesar de estos avances, los GCMs aún presen-

tan limitaciones importantes, como errores sistemáticos e incertidumbres en sus proyecciones

(Maraun et al., 2010) o, en su mayoŕıa, una resolución espacial demasiado grosera como para

simular fielmente el clima regional y local.

En relación a la limitación de la resolución grosera de los GCMs (muchos de ellos en torno a

100km× 100km), los investigadores en este campo, bajo iniciativas coordinadas como CORDEX

(COordinated Regional Downscaling EXperiment en inglés; Giorgi et al., 2009; Jones et al.,

2011) han desarrollado una serie de técnicas para regionalizar estos modelos globales, pudiendo

convertir las proyecciones climáticas globales en predicciones a mayor resolución (t́ıpicamente

25km×25km ó 12km×12km) o incluso a nivel puntual. Estas técnicas de regionalización, o

downscaling son esenciales para comprender cómo el cambio climático afectará espećıficamente

a distintas regiones, y aśı que comunidades enteras y responsables poĺıticos puedan tomar deci-

siones que salven vidas y el medio ambiente.

En el contexto del downscaling, existen enfoques dinámicos, mediante modelos regionales

anidados a GCMs; y estad́ısticos, que utilizan relaciones emṕıricas entre predictores de larga

escala de los GCMs, como la presión a nivel del mar (Sea Level Pressure en inglés, SLP), y

variables locales, como precipitación o temperatura a alta resolución (McSweeney et al., 2015;

Evin et al., 2021). En ambos casos, la calidad de la circulación atmosférica simulada por

los GCMs es esencial, pues errores en la representación de patrones sinópticos pueden propagar

errores a las proyecciones regionales (Addor et al., 2016; Maraun et al., 2017). Además, está bien

documentado en la literatura reciente que los GCMs presentan discrepancias e incertidumbres

importantes tanto en sus proyecciones futuras del clima como en sus simulaciones históricas (i.e.

Dawson et al., 2012; Chang et al., 2012a; Colle et al., 2013; Zappa et al., 2013; Masato et al.,

2013; Maraun et al., 2010; Maraun, 2016; Hochman et al., 2019), lo cual complica los esfuerzos

de CORDEX para obtener proyecciones regionales fidedignas. Asimismo, las tareas del IPCC

de extraer conclusiones del cambio climático con un nivel de confianza estad́ıstica suficiente se

ven condicionadas por estas discrepancias entre los GCMS.

Ante estas necesidades, la evaluación de modelos globales mediante variables de circulación

atmosférica de larga-escala, como la SLP, se ha considerado una práctica crucial (Jones et al.,

2011; McSweeney et al., 2015; Maraun et al., 2017). Esta evaluación basada en procesos permite

seleccionar GCMs f́ısicamente plausibles para su aplicación en estudios de impactos climáticos

y regionalización del clima, y está siendo ampliamente adoptada por CORDEX (Sobolowski
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et al., 2023) y los informes del IPCC (IPCC, 2021). En este contexto, cobran una impor-

tancia clave los datos de reanálisis, que combinan observaciones con modelos numéricos para

reconstruir pseudo-realidades climáticas pasadas (Fujiwara et al., 2017). Estos productos per-

miten una comparación objetiva entre simulaciones históricas de los GCMs y condiciones obser-

vadas (pseudo-observaciones), aunque también pueden introducir incertidumbres debido a las

diferencias en cobertura, resolución y sistemas de asimilación (Sterl, 2004).

Esta evaluación basada en procesos está poniendo en el punto de mira a la clasificación

sinóptica en tipos de tiempo (o Weather Types en inglés, WTs) mediante técnicas de clustering,

como herramienta para reducir la dimensionalidad del problema y evaluar de forma objetiva

los patrones de circulación atmosférica simulados (Sobolowski et al., 2023). En este contexto,

el análisis de agrupamiento o clustering puede suponer una herramienta útil y potente, ya que

puede resumir y reducir el volumen de los datos climáticos (Littmann, 2000; Huth et al., 2008).

Estas técnicas clasifican todas las muestras disponibles en un número determinado de grupos

(o clusters) siguiendo unas reglas de similitud, con el objetivo de que las observaciones dentro

de un mismo clúster sean más similares entre śı que a las de otros clústeres (Anderberg, 1973;

Cherkassky and Mulier, 1998). Su ventaja principal es que reduce sustancialmente la dimen-

sionalidad de los datos, lo cual simplifica su tratamiento desde un punto de vista estad́ıstico.

Entre las técnicas de clustering disponibles para esta aplicación, destaca la clasificación en

tipos de tiempo de Jenkinson and Collison (1977), que es una versión automatizada y obje-

tiva del método de Lamb (1972), basada en la SLP y ampliamente utilizada en el campo de

la climatoloǵıa. Esta metodoloǵıa permite identificar patrones representativos de circulación

atmosférica en la mayoŕıa de regiones del planeta, lo que facilita su uso en una comparativa

o evaluación de modelos, aśı como en la detección de cambios proyectados en la circulación

atmosférica bajo diferentes escenarios de cambio climático. A continuación se definen detalla-

damente los principales objetivos de esta Tesis, que van en sincrońıa con la resolución de la

problemática expuesta hasta ahora.

Objetivos de la Tesis

El objetivo principal de esta Tesis es ampliar el conocimiento sobre la representación, evaluación

y proyección futura de la circulación atmosférica de larga escala por parte de los Modelos

Climáticos Globales (GCMs) de las generaciones de CMIP5 y CMIP6, en el contexto del cambio

climático. Para ello, se emplea la clasificación de tipos de tiempo como herramienta para la

evaluación basada en procesos de los GCMs, junto con la estimación de cambios futuros en

la circulación atmosférica. Espećıficamente, la Tesis se estructura en torno a tres objetivos
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principales:

1. Evaluar el potencial y los ĺımites de la metodoloǵıa de classificación sinóptica de Jenkinson-

Collison Weather Typing (JC-WT) como herramienta de diagnóstico basada en procesos

para evaluar la circulación atmosférica de los GCMs.

• Analizar de forma global la aplicabilidad del método de clasificación JC-WT en el

extratrópico (incluyendo el Hemisferio Sur).

• Encontrar conexiones entre los JC-WTs y los principales modos de variabilidad at-

mosférica (como ı́ndices de teleconexión y bloqueos atmosféricos), con el fin de evaluar

la coherencia f́ısica, relevancia y capacidad diagnóstica del los JC-WTs.

2. Evaluar la capacidad de la nuevos GCMs de CMIP5/6, desarrollados para el Quinto y

Sexto Informe de Evaluación del IPCC (AR5 y AR6, respectivamente), para representar

los patrones de circulación atmosférica de larga escala. Esta evaluación basada en procesos

incluye:

• Analizar la incertidumbre observacional en base a la clasificación en JC-WT.

• Cuantificar la capacidad de los modelos CMIP5/6 de reproducir las clasificaciones

históricas de JC-WTs en el extratrópico, utilizando una serie de métricas de evalua-

ción basadas en caracteŕısticas de los JC-WTs.

3. Estimar los cambios futuros en los patrones de circulación atmosférica a escala sinóptica

(mediante clasificaciones JC-WTs) proyectados por los modelos, considerando aśı un

v́ınculo más cercano con la variabilidad climática a escala local, relevante para estudios

de impactos climáticos. Esto se realizará para las regiones extratropicales a partir de un

ensemble de modelos de CMIP5/6.

• Identificar cambios robustos en los JC-WT que emerjan sobre la variabilidad interna

del ensemble multi-modelos.

• Generar un catálogo global de JC-WTs de más de 50 GCMs basado tanto en sus

simulaciones históricas como para en proyecciones futuras.

Conclusiones principales

Los resultados principales de esta Tesis demuestran los v́ınculos entre la circulación atmosférica

en superficie y de larga-escala, probando el potencial del método JC-WT para detectar la influ-

encia de los principales modos de variabilidad atmosférica de baja frecuencia en la circulación
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regional. Además, se desarolla satisfactoriamente la evaluación de modelos basada en procesos,

no sin antes haber analizado en detalle la incertidumbre observacional de las clasificaciones de

JC-WT para diferentes reanálisis. Finalmente, se analizan las tendencias futuras de los JC-WT

principales. A continuación, se resumen las principales conclusiones para cada uno de los ob-

jetivos descritos en la sección anterior (en cursiva), para mayor claridad. Aunque esta sección

recoja las conclusiones más relevantes, se remite al lector a los Caṕıtulos 3, 4, 5 y 6 para mayor

detalle.

1. Evaluar el potencial y los ĺımites de la metodoloǵıa JC-WT como herramienta de diag-

nóstico basada en procesos para evaluar la circulación atmosférica de los GCMs.

• Analizar de forma global la aplicabilidad del método de clasificación JC-WT en el

extratropico (incluyendo el Hemisferio Sur).

En el Caṕıtulo 3 (Sec. 3.1), se estudian sus ĺımites de aplicabilidad de JC-WTs,

proporcionando una extensión de este método que lo justifica como una herramienta

potente y útil para la evaluación de modelos climáticos basada en procesos. Se

muestra que los JC-WTs pueden aplicarse de forma fiable en la mayoŕıa de las zonas

globales comprendidas entre las latitudes 23.5◦ y 80◦ en ambos hemisferios. Éste es

el primer estudio que aborda la aplicación global de los JC-WTs.

En la mayor parte de esta zona de aplicabilidad, se observa una gran diversidad de

tipos de tiempo, y baja frecuencia del tipo U (que representa las situaciones sinópticas

sin gradiente de presión). Como advertencia a una pérdida de aplicabilidad por parte

del método, se observa una transición brusca a partir de la cual la diversidad de

WTs disminuye al mismo tiempo que el tipo U se convierte en el tipo dominante.

Esta transición marca un umbral emṕırico de aplicabilidad regional en torno a una

variedad de 16 WTs.

• Encontrar conexiones entre los JC-WTs y los principales modos de variabilidad at-

mosférica (como ı́ndices de teleconexión y bloqueos atmosféricos), con el fin de evaluar

la coherencia f́ısica, relevancia y capacidad diagnóstica del los JC-WTs.

Según los resultados del Caṕıtulo 3, Sec. 3.2, el método JC-WT, basado en la cir-

culación en superficie, permite generar WTs que se correlacionan significativamente

con los principales modos de variabilidad de baja frecuencia, incluyendo el ı́ndice

de bloqueos atmosféricos. Esta evaluación regional es f́ısicamente coherente con la

huella que dejan estos modos de variabilidad en la variable geopotencial, en la mitad

de la troposfera, operando a escalas más grandes.
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La metodoloǵıa JC-WT reproduce teleconexiones y bloqueos bien conocidos y docu-

mentados, con tipos de circulación f́ısicamente interpretables en cuanto a sus patrones

espaciales y su ciclo estacional. Además, es posible que se estén descubriendo también

algunas relaciones no documentadas anteriormente, como la asociación entre tipos

ciclónicos en el desierto del Sahara occidental y Anatolia con el ı́ndice SCAND (ac-

tivo en DJF y JJA). De forma similar, y sin haber encontrado alguna documetación

previa sobre ello, en el caso de los eventos de bloqueo en el Atlántico Norte (ATL)

y el continente euroasiático (RUS) que afectan al clima europeo, la predominancia

del tipo puramente anticiclónico (A) no se expande más allá de la región fuente de

detección del bloqueo. Del mismo modo, el tipo A domina una fracción del Atlántico

Norte subtropical, describiendo un puente circumpolar zonal que permite delimi-

tar objetivamente el área de influencia de estos eventos de bloqueo en términos de

circulación en superficie (JC-WTs).

Estos resultados proporcionan una comprensión más detallada y matizada de los

mecanismos atmosféricos subyacentes que dan lugar a las diferentes configuraciones

de JC-WTs, y refuerzan la aplicabilidad y consistencia de esta clasificación como

herramienta útil para la evaluación de modelos y la investigación sobre impactos

climáticos. El análisis realizado en este caṕıtulo podŕıa aplicarse a otras regiones del

mundo donde teleconexiones o eventos de bloqueo jueguen un papel fundamental en

el clima regional, extendiendo aśı los resultados aqúı presentados sobre sus v́ınculos

con la circulación en superficie.

2. Evaluar la capacidad de la nuevos GCMs de CMIP5/6, desarrollados para el Quinto y

Sexto Informe de Evaluación del IPCC (AR5 y AR6, respectivamente), para representar

los patrones de circulación atmosférica de larga escala. Esta evaluación basada en procesos

implica:

• Analizar la incertidumbre observacional en base a la clasificación en JC-WT.

El TPMS (Caṕıtulo 4), que proporcionan una medida del grado de acuerdo en

las probabilidades de transición entre WTs, revelan una consistencia general en-

tre reanálisis dentro de este rango de aplicabilidad. En los resultados del Caṕıtulo 4,

se busca encontrar un equilibrio entre aplicabilidad de los JC-WTs y la incetidumbre

asociada a la observación. Por un lado, hay regiones donde el método JC-WT, en

principio, es aplicable pero su uso práctico se ve limitado por una gran incertidum-

bre entre reanálisis, como el Mediterráneo en JJA, y Madagascar y África austral

oriental en DJF. Por otro lado, existen regiones donde el método JC-WT es menos
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adecuado independientemente de la incertidumbre del reanálisis, como la Peńınsula

Arábiga y el Sahara en JJA, y África austral occidental y el centro de Australia en

DJF. Asimismo, en regiones con orograf́ıa compleja, la aplicación de la clasificación

JC-WT requiere atención, ya que la SLP se estima mediante algoritmos de reducción

de presión, diferentes en cada conjunto de datos. Las diferencias derivadas del algo-

ritmo de reducción de presión se confirman con las discrepancias encontradas entre

reanálisis en: Groenlandia, Antártida, América Central norte, América del Norte oc-

cidental, América del Norte central, Asia central, Asia del Sur y la meseta tibetana.

Tanto el umbral de diversidad de 16 tipos (mencionado anteriormente) como las áreas

con valores altos de TPMS muestran un desplazamiento hacia los polos durante el ve-

rano del hemisferio correspondiente. Este desplazamiento es especialmente marcado

para el TPMS durante JJA (verano boreal).

• Cuantificar la capacidad de los modelos CMIP5/6 para reproducir las clasificaciones

históricas de JC-WTs en el extratrópico, utilizando una serie de métricas de evalua-

ción basadas en caracteŕısticas de los JC-WTs.

En los resultados (Caṕıtulo 5) se observa una mejora general de CMIP6 respecto a

CMIP5 en varias métricas de evaluación relacionadas con las frecuencias simuladas de

los JC-WTs y sus secuencias temporales (probabilidad de persistencia y de transición

entre tipos). Los GCMs que mostraron un buen rendimiento en CMIP5 (como EC-

EARTH y HadGEM2-ES) también lo mantienen en CMIP6. Se encuentran grandes

mejoras para IPSL-CM5A-LR y GFDL-ESM4, mientras que permanecen sesgos im-

portantes en otros modelos de CMIP6 (como NorESM2-LM), debido a su limitada

capacidad para reproducir correctamente las probabilidades de transición observadas,

especialmente en ciertas estaciones del año.

En general, los GCMs muestran buena habilidad para representar las probabilidades

de transición entre JC-WTs. A pesar de diferencias significativas para ciertas tran-

siciones, la imagen conjunta de las matrices de transición indica que los modelos

son capaces de reproducir de forma razonable los patrones más probables según los

reanálisis, incluso en los modelos con peor rendimiento. Además, estos resultados

son consistentes entre los productos de reanálisis considerados.

No es posible emitir una recomendación general sobre qué modelos concretos uti-

lizar, ya que esto depende de las aplicaciones espećıficas, que suelen centrarse en una

estación del año concreta o en determinados tipos de tiempo (como los que generan

eventos extremos en una región). En este sentido, los resultados permiten identi-
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ficar qué estaciones y JC-WTs no reproduce correctamente un modelo en particular,

lo cual es útil en enfoques de downscaling estad́ıstico. Sin embargo, en el down-

scaling dinámico, debe buscarse un rendimiento general (todos los JC-WTs, todas

las estaciones).

3. Estimar los cambios futuros en los patrones de circulación atmosférica a escala sinóptica

(mediante clasificaciones JC-WTs) proyectados por los modelos, considerando aśı un

v́ınculo más cercano con la variabilidad climática a escala local, relevante para estudios

de impactos climáticos. Esto se realizará para las regiones extratropicales a partir de un

ensemble de modelos de CMIP5/6.

• Identificar cambios robustos en los JC-WT que emerjan a la variabilidad interna del

ensemble multi-modelos.

Al aplicar la clasificación JC-WT a escala global, se ofrece un marco completo

para entender los impactos del cambio climático en la circulación de larga-escala

(Caṕıtulo 6). Gracias a la metodoloǵıa basada en niveles de calentamiento global

(Global Warming Levels en inglés, GWL), se ha podido analizar la relación lineal

entre respuestas regionales y calentamiento global, aśı como estimar el Tiempo de

Emergencia (Time of Emergence, ToE) de señales robustas. Estos resultados tienen

implicaciones prácticas para investigadores en impactos climáticos, particularmente

en regiones donde los cambios en la circulación atmosférica pueden jugar un papel

fundamental.

Los resultados revelan tendencias significativas en los JC-WTs en regiones climáticas

clave, con cambios estad́ısticamente significativos en patrones de circulación recono-

cidos de las zonas extratropicales. Por ejemplo, se detectan tendencias positivas

significativas en regiones influidas por la teleconexión NAO y de ambos signos en la

zona afectada por la PNA. El tipo Ciclónico presenta tendencias robustas de am-

bos signos en Groenlandia y el Ártico canadiense. Además, el tipo Anticiclónico (A)

muestra tendencias negativas notables en el Mediterráneo en JJA y positivas en DJF,

aśı como tendencias robustas mayormente positivas en JJA para una amplia franja

del hemisferio sur (correspondiente al cinturón subtropical de altas presiones) y de

ambos signos para DJF. El tipo Oeste (Westerly) presenta cambios robustos posi-

tivos en su frecuencia en zonas subantárticas, mientras que el tipo No-Clasificado (U)

exhibe variaciones positivas destacadas en el Mediterráneo o cerca de los trópicos.

La emergencia de señales del cambio climático está estrechamente relacionada con
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la robustez de las tendencias encontradas. Aunque la mayoŕıa de señales emergen

con claridad en torno a la década de 2070, algunas regiones, como el Mediterráneo,

muestran señales emergentes tan tempranas como en las décadas actuales (2020s),

en particular para los tipos A y U. Esta variabilidad temporal refleja la interacción

entre la variabilidad natural del ensemble multi-modelo y la creciente influencia del

forzamiento antropogénico sobre la circulación atmosférica en los modelos.

La intensificación de las señales emergentes hacia finales del siglo XXI subraya la

importancia de estas tendencias para entender los escenarios climáticos futuros. Hay

evidencias de que los cambios en las frecuencias de los JC-WTs serán más importantes

que la variabilidad interna histórica en cada GCM, reforzando la solidez y relevancia

de estos cambios. Esto destaca el papel crucial de los patrones de circulación de

larga-escala en la configuración de las respuestas climáticas regionales, aportando

información de gran valor para responsables poĺıticos e investigadores que enfrentan

los desaf́ıos del cambio climático.

• Generar un catálogo global de JC-WTs de más de 50 GCMs tanto para sus simula-

ciones históricas como para sus proyecciones futuras.

Como resultado del logro de los diferentes objetivos de esta Tesis, y con el fin de

apoyar futuros estudios que puedan beneficiarse de las clasificaciones de JC-WTs, se

han creado varios repositorios de datos en ĺınea y de acceso abierto. Estos reposito-

rios contienen catálogos de JC-WTs derivados de múltiples GCMs y reanálisis. Se

describen en detalle en las Secciones 7.4 y 7.3.2, e incluyen clasificaciones JC-WTs

en una resolución 6-horaria para 61 modelos en el periodo histórico (1979–2005), y

41 modelos en escenarios futuros (2005–2100), aśı como para 5 reanálisis cubriendo

el periodo 1979–2005.

Publicaciones y Contribuciones

Las principales contribuciones de esta Tesis han dado lugar a varias publicaciones en revistas

cient́ıficas internacionales de alto impacto que incluyen proceso de revisión por pares, aśı como

en actas de congresos relevantes en los campos de la climatoloǵıa y la meteoroloǵıa. Más concre-

tamente, tres art́ıculos ya han sido publicados y otro se encuentra actualmente en proceso de

revisión, además de un caṕıtulo de libro en las actas del XII Congreso de la Asociación Española

de Climatoloǵıa (AEC). La información detallada de estas publicaciones puede encontrarse en

la Sección 7.2
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State of the art and methods
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Introduction

1.1 Context and motivation

Climate change is a present reality that affects every region of the world. According to the

Intergovernmental Panel on Climate Change (IPCC)1, mean global surface temperature has

increased by approximately 1.1◦C between 2011 and 2020 compared to the pre-industrial period

of 1850–1900, mainly due to greenhouse gas emissions from human activities. This warming

has led to more frequent and intense extreme weather events, such as heatwaves, heavy rainfall,

and droughts, impacting ecosystems, economies, and communities worldwide (IPCC, 2021).

However, not all regions of the world are equally affected by climate change. Some areas

are more vulnerable than others due to regional variations in geography, climatic systems, and

socioeconomic factors. For example, recent IPCC assessments show that changes in temperature

and precipitation will not occur uniformly across the world. Instead, regional climate responses

to a given level of global warming (such as 1.5°C, 2°C, or 4°C above pre-industrial levels) are

expected to vary substantially depending on geographic location, with some areas experiencing

amplified warming, shifts in rainfall patterns (Fig. 1.1), flooding in coastal areas due to sea-

level rise or severe droughts over extensive inland areas, among other expected impacts. The

IPCC acknowledges these differences and emphasizes the importance of comprehensive regional

climate data to guide successful adaptation and mitigation plans.

These statements and projections provided by the IPCC are possible thanks to the use of a

great volume of Global Climate Models (GCMs, Sec. 1.2.1). GCMs are popular computational

tools in the field of climate change studies that are capable of reproducing the past climate

and projecting future climate conditions based on a faithful description of the climate system.

However, some models have coarse spatial resolution, which is not sufficient to simulate the

regional climate. To do so, scientists employ a variety of techniques to downscale these global

1The IPCC is a United Nations (UN) body that provides scientific assessments on climate change to inform
policy and global action.

3
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Figure 1.1: Future projected changes of temperature (in ◦C) and precipitation (in %) for different
levels of mean global warming relative to mean global temperature in 1850–1900. These results are based
on multi-model ensembles of climate models (Sec. 1.2.1). Source: IPCC 2021, https://www.ipcc.ch/
report/ ar6/wg1/ figures/ technical-summary/

climate models, translating global climate projections into more local information. In order

to help communities and policymakers make well-informed decisions to safeguard lives and

the environment, downscaling techniques are essential to comprehend how climate change will

specifically affect specific regions.

In recent decades, climate change studies, along with the fields of weather forecasting and

climate modeling, have experienced an unprecedented surge in data production. Scientific

institutions worldwide aim to simulate and predict atmospheric processes with an ever-growing

resolution and complexity to improve the representation of the climate system. For example,

the daily production of meteorological and climate data worldwide is considerable. For example,

the European Centre for Medium-Range Weather Forecasts (ECMWF) produces approximately

144 TeraBytes (TB = 1012 bytes) of data per day, which is nearly 1 PB per week (Hawkes

et al., 2020). These amounts include both raw data and post-processed products. Moreover,

https://www.ipcc.ch/report/ar6/wg1/figures/technical-summary/
https://www.ipcc.ch/report/ar6/wg1/figures/technical-summary/
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there are more than 100 climate models from nearly 50 modeling centers available worldwide

encompassing more than 20 PetaBytes (PB = 1015 bytes) of climate-related data (Petrie et al.,

2021). Additionally, the improvement of existing GCMs and the development of new ones

will very likely increase this data volume. This abundance of data entails an unprecedented

opportunity to build a deeper understanding of the Earth’s climate system (as the IPCC does),

but it also presents an urgent problem: how to properly interpret all these data, as well as how

to assess and filter them for use in impact studies, policy creation, and adaptation planning.

In this context, clustering analysis may emerge as a useful and powerful tool for the purpose

to summarize and reduce the volume and variety of climate data (Littmann, 2000; Huth et al.,

2008). The clustering analysis refers to a set of techniques that aim to classify all samples

into a predefined number of groups (referred to as clusters) based on similarity rules. The

objective is to define groups (i.e. clusters) so that the observations within the same cluster

are more similar to each other than to those in other clusters (Anderberg, 1973; Cherkassky

and Mulier, 1998). The main advantage of clustering techniques is the substantial reduction

in the dimensionality of the samples, simplifying their use from a statistical point of view. For

that reason, clustering techniques have found wide applicability in numerous fields, including

engineering, computer science, medicine, social and earth sciences or economics (Hartigan,

1975; Everitt et al., 2011). This broad scope of applications highlights the central role that

clustering occupies within scientific research. In climate science, this Thesis can be framed in

the field of Synoptic Climatology2, a discipline which, broadly speaking, determines distinct

categories (clusters) of synoptic weather (or circulation) patterns, and then usually undertakes

an assessment of the weather conditions associated with these patterns (Lee and Sheridan, 2015)

(Sec. 1.5.1).

There is a wide range of clustering techniques, which can be classified according to numerous

criteria beyond the specific domain or field of application. One general approach to categorize

clustering methods is based on the nature of their “similarity” rules. Under this criterion,

clustering techniques are typically divided into objective and subjective approaches. Objective

techniques rely solely on the intrinsic properties of the data to define the rules that generate

the clusters. In contrast, subjective techniques incorporate domain-specific expert knowledge

to establish the classification rules applied to the data.

Even interpreting, handling, and understanding a single climate model requires considerable

computational resources and expert knowledge to properly distill its outputs. In fact, the

2Synoptic circulation refers to large-scale atmospheric flow patterns, typically spanning hundreds to thousands
of kilometers, that govern weather systems such as cyclones, anticyclones, and fronts, and are commonly analyzed
using pressure and wind fields at specific levels.
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complexity, diversity, and specialization of these models can be considered a challenge itself.

In another vein, GCMs show substantial spread in their future climate projections (Maraun

et al., 2010), as well as discrepancies in their historical simulations (e.g. Dawson et al., 2012;

Chang et al., 2012a; Colle et al., 2013; Zappa et al., 2013; Masato et al., 2013; Maraun, 2016;

Hochman et al., 2019) when contrasting them with observations. This complicates the efforts

of the scientific community to draw conclusions and key messages about climate change with a

certain level of statistical significance or confidence. In light of these model uncertainties, the

development of an objective and efficient method for the physical evaluation and interpretation

of the model outputs emerges as a key step, in order to extract meaningful insights from them

(IPCC, 2021; Sobolowski et al., 2023).

Throughout this Thesis, clustering analysis is used to identify, evaluate and project common

circulation patterns in state-of-the-art GCMs. The following Sections of this Chapter provide

the necessary background for this topic, which supports the overall objectives of the Thesis,

outlined in Section 1.6.

1.2 Modeling the climate system

An overview of the tools and datasets used to simulate and evaluate the climate system

is key to understand how climate projections are generated. This section introduces Global

Climate Models (GCMs), the core part of modern climate science, and describes their histor-

ical evolution, basic components, and known limitations. It also reviews the Coupled Model

Intercomparison Project (CMIP) and the improvements that have progressively led to CMIP6.

Additionally, the role of reanalysis datasets (gridded reconstructions that merge observations

with numerical models) as pseudo-observational references to assess the historical plausibility of

GCM simulations is introduced. Lastly, the section highlights the importance of process-based

GCM evaluation to support robust regional climate projections.

1.2.1 Global Climate Models (GCMs)

Global Climate Models (GCMs), also known as General Circulation Models, set the ground for

modern climate science research. They constitute a sophisticated and complex software tool

to simulate both past and future global climate conditions by solving, numerically and compu-

tationally, physical equations about how Earth’s climate evolves (Fig. 1.2). GCMs have been

under development since the 1960s (Manabe and Wetherald, 1967), when they assimilated only

atmosphere-based components. More components were gradually added to the GCMs in order

to simulate more accurately interactions between different key components of the climate sys-



1.2. MODELING THE CLIMATE SYSTEM 7

tem (Fig. 1.3). Components such as the ocean (coupled ocean-atmosphere circulation models)

and sea-ice play an important role in seasonal forecasts; and land and vegetation, the carbon

and nitrogen cycles and atmospheric chemistry do it so for decadal and multi-decadal predic-

tions (Mcguffie and Henderson-Sellers, 2005; Edwards, 2011). The latter recent developments

of GCMs have promoted the emergence of more comprehensive Earth System Models (ESMs,

Eyring et al., 2016). ESMs integrate various components of the Earth’s system, including the

atmosphere, oceans, land surface, biogeochemical cycles and other biosphere processes, to pro-

vide a more comprehensive and holistic understanding of climate dynamics and interactions. By

incorporating these diverse elements, ESMs offer enhanced predictive capabilities and insights

into the complex processes driving climate change.

In practice, GCMs and ESMs give a detailed framework to analyze past climate variability,

as well as project future changes on different temporal scales (seasons, decades and centuries)

under different natural and anthropogenic forcing scenarios, based on emission of different levels

of greenhouse gases3. For simplicity, throughout this Thesis the acronym GCM will be used to

refer to both GCMs and ESMs interchangeably, considering that more recent models generally

feature higher resolution, greater complexity, and more interactive components compared to

previous ones (see Sec. 1.2.2).

In order to solve the pertinent processes on a specific scale, these components (e.g. at-

mosphere, ocean, land or vegetation) and their interactions are simplified versions of their

real-world counterparts, that operate on a discretized representation of the Earth (Figure 1.2).

The architecture of a GCM is built on a four-dimensional grid of longitude, latitude, vertical

layers, and time, with spatial resolutions ranging from ∼ 50 km to ∼ 300 km, around 10 and

20 atmospheric layers in the vertical axis and time steps from 1 to 6 hours. This gridded struc-

ture facilitates numerical simulations of climate variables in a standard format, as well as their

spatial analysis and visualization.

Despite their growing complexity and resolution, GCMs are still constrained by some man-

limitations. Due to their grids’ relatively coarse resolution, they are not able to resolve small-

to-mesoscale processes like fog formation, sea breezes, orographic effects, and local convection,

occurring on spatial scales below grid spacing. In order to represent the net effect of unre-

solved subgrid phenomena on such rough scales, parameterization schemes (through empirical

or semiempirical formulations) must be used to approximate these processes (Stensrud, 2007;

McFarlane, 2011). The problem of these parameterizations is that they add systematic biases to

the GCM, and their choice leads to more uncertainties. For example, in areas with complex to-

3Greenhouse gases, such as carbon dioxide and methane, are gases that have the ability to trap heat in the
Earth’s atmosphere.



8 1. INTRODUCTION

Figure 1.2: Scheme of a typical grid-based representation of the Earth system used in the numerical
computation of a GCM. Source: NOAA, http:// celebrating200years.noaa.gov/ breakthroughs/ climate
model/AtmosphericModelSchematic.png

pography such as the Andes or the Himalayas, convective precipitation is often underestimated

or misplaced (Tost et al., 2006). Furthermore, differences in the parameterizations among mod-

els (i.e. grid structure and physics) lead to significant spread in climate projections, even under

the same forcing scenarios (Maraun et al., 2010).

To address these limitations, multi-model ensembles are useful to quantify projections’ un-

certainty. Over the past decades, new and more refined models have been developed in order

to create ensembles, as well as to improve their resolutions (Fig. 1.4) and evolve in represented

components (Fig. 1.3). These advances have been possible thanks to the improvement of modern

computational tools and systems, and they have turned into consecutive generations of GCMs.

1.2.2 Overview of the Coupled Model Intercomparison Project

The Coupled Model Intercomparison Project (CMIP) has coordinated different standardized

generations of GCM experiments. CMIP was launched in 1995 with support of the Working

Group on Coupled Modelling (WGCM) and the World Climate Research Programme (WCRP),

with the goal of producing a publicly available dataset composed of an ensemble of models

adhering to specific standards and experimental protocols. CMIP is therefore the primary

http://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
http://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
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source of data for impact and adaptation studies, as well as for the description of the physical

risks of climate change by providing climate projections to understand past, present and future

climate changes (Meehl et al., 2000; Eyring et al., 2016). The large ensemble of models within

CMIP offers the advantage of quantifying uncertainty in climate simulations and projections

(IPCC, 2013).

Since its inception, CMIP has undergone multiple phases. The development of GCMs is

closely related to these different stages. The main focus of the first three generations, namely

CMIP1, CMIP2, and CMIP3, was to coordinate experiments using increasingly complex coupled

models. CMIP3 was the first generation to incorporate multi-model ensembles of fully coupled

atmosphere–ocean GCMs, and comprised 24 GCMs. The IPCC’s Fourth Assessment Report

(AR4; IPCC, 2007) concluded, for the first time with a confidence level greater than 90% that

anthropogenic greenhouse gas emissions were more likely to be responsible for most of the

warming observed since the middle of the 20th century.

CMIP5, the fifth phase, included 29 models and marked a significant change in experimental

design and model diversity towards experiments on near-term decadal prediction, carbon cycle

feedbacks, and regional climate modeling (Taylor et al., 2012) thanks to new computational

advances. The IPCC Fifth Assessment Report (AR5; IPCC, 2013), relied on CMIP5 and showed

greater integration of processes and impacts affecting at regional level, enhanced attribution of

observed changes, and advanced the assessment of Equilibrium Climate Sensitivity (ECS). The

ECS is the expected long-term warming following a doubling of atmospheric CO2 concentrations

compared to pre-industrial levels, and it is measured in degrees Celsius (◦C). It is among the

most significant predictors of the severity of the effects of future warming.

The sixth phase, known as CMIP6, was intended to be more modular, thorough and process-

oriented, building on the lessons learned in AR5. It is organized around a number of approved

Model Intercomparison Projects and a core set of DECK (Diagnostic, Evaluation and Char-

acterization of Klima) experiments (Eyring et al., 2016). CMIP6 consisted of more than 100

models developed by 49 different modeling centers around the world. Furthermore, CMIP6

models have better coupling between biogeophysical and biogeochemical components, higher

resolution, and a more realistic representation of cloud and aerosol processes (Eyring et al.,

2016).

Additionally, each generation of models has defined its own simulation time coverage. For

example, all models included in the CMIP5 and CMIP6 experiments comprise future projec-

tions of climate variables at least until 2100 (throughout the 21st century), and they cover the

historical period with simulations from 1850 to 2005 for CMIP5, and up to 2014 for CMIP6.
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Historical simulations are commonly used to evaluate model performance and assess their ability

to represent key climate processes and features.

Figure 1.3: Development of climate models over the last 50 years showing how the different components
were coupled into comprehensive climate models over time. In each aspect (e.g., the atmosphere, which
comprises a wide range of atmospheric processes) the complexity and range of processes has increased
over time (illustrated by growing cylinders). Note that the horizontal and vertical resolution has increased
considerably at the same time. For instance, for spectral models from T21L9 (roughly 500 km horizontal
resolution and 9 vertical levels) in the 1970s to T95L95 (roughly 100 km horizontal resolution and 95
vertical levels) at AR5. Source: IPCC wiki, http:// ipcc.wikia.com/wiki/ 151.5.2 Capabilities in Global
Climate Modelling

Each generation of CMIP has incorporated its own set of future scenarios, customized to

reflect the scientific and political priorities of each time. The CMIP3 ensemble was the first

generation of models to introduce different long-term climate projections, derived from the

Special Report on Emissions Scenarios (SRES; Nakicenovic et al., 2000) such as A1F1, A2,

A1B, B2 or B1. These are ordered by more economical aggressive and less environmental aware

to the opposite. In other words, these scenarios are socio-economically sensitive. Later, CMIP5

introduced the Representative Concentration Pathways (RCPs) as new standardized future

emission scenarios (van Vuuren et al., 2011). These scenarios (e.g., RCP2.6, RCP4.5, RCP6.0,

and RCP8.5) focus on the radiative forcing levels that would result from different emission

http://ipcc.wikia.com/wiki/151.5.2_Capabilities_in_Global_Climate_Modelling
http://ipcc.wikia.com/wiki/151.5.2_Capabilities_in_Global_Climate_Modelling


1.2. MODELING THE CLIMATE SYSTEM 11

Figure 1.4: Geographic characteristic and spatial resolution of the generations of climate models used
in the IPCC Assessment Reports: First Assessment Report, FAR (Houghton et al., 1990); Second As-
sessment Report, SAR (Houghton et al., 1996); Third Assessment Report, TAR (Houghton et al., 2001),
AR4 (IPCC, 2007) and AR5 (IPCC, 2013). The figures above show how successive generations of these
global models improved on the representation of Europe. These illustrations are representative of the most
detailed horizontal resolution. Vertical resolution in both atmosphere and ocean models is not shown, but
it has increased comparably with the horizontal resolution, beginning typically with a single-layer slab
ocean and ten atmospheric layers in the FAR and progressing to about thirty levels in both atmosphere
and ocean. Source: IPCC, https:// archive.ipcc.ch/ publications and data/ ar4/wg1/ en/ ch1s1-5.html
and http:// ipcc.wikia.com/wiki/ 151.5.2 Capabilities in Global Climate Modelling.

pathways. In order to increase the relevance of projections for mitigation and adaptation policy,

CMIP6 adopted the Shared Socioeconomic Pathways (SSPs), which reconnect emission scenarios

with narratives about global development trajectories (O’Neill et al., 2016; Riahi et al., 2016).

For example, RCP8.5 and SSP5-8.5 represent high emission futures (reaching a radiative forcing

of 8.5 W/m² by the end of the century), whereas RCP2.6 and SSP1-2.6 reflect significant

mitigation efforts (reaching an associated radiative forcing of 2.6 W/m²). These standardized

scenarios are essential for comparing projections from different models and time periods.

Figure 1.5 illustrates the projected evolution of atmospheric CO2 concentration throughout

the 21st century, based on 14 different scenarios from the IPCC’s AR4, AR5, and AR6 reports.

These different projected trajectories on CO2 concentrations are critical to determining the ex-

https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch1s1-5.html
http://ipcc.wikia.com/wiki/151.5.2_Capabilities_in_Global_Climate_Modelling
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Figure 1.5: Comparison of projected atmospheric CO2 concentrations in different SSPs (AR6), RCPs
(AR5) and SRESs (AR4) in 2000-2100. The data showed is approximate and based on interpolations of
the trends described in IPCC (2007), IPCC (2013) and IPCC (2021).

pected radiative forcing and global warming levels, directly influencing estimates of Equilibrium

Climate Sensitivity (ECS) and the magnitude of associated impacts. This summary emphasizes

the importance of the emission pathway, socio-economic development narratives and the model

generation in shaping our understanding of possible future climate outcomes.

In summary, the different IPCC Assessment Reports have served as a roadmap for upcoming

research projects, and as a summary of the current knowledge available. For example, the uncer-

tainties in aerosol–cloud interactions were highlighted in AR4, the need for better depiction of

decadal variability and short-term climate projections was highlighted in AR5 because CMIP5

models exhibited significant biases in their projections (IPCC, 2013), and regional-scale pro-

cesses, extreme events, and narratives were given additional attention as risk assessment tools in

AR6 (Zappa and Shepherd, 2017). The design and priorities of the upcoming CMIP generation

have been shaped by each report, establishing an iterative feedback loop between model develop-

ment and scientific evaluation. The development of GCMs from CMIP1 to CMIP6 demonstrates

the ongoing change towards more comprehensive, high-resolution, and policy-relevant climate

modeling frameworks. These developments, when combined with the IPCC’s recommendations,

are crucial for improving the reliability and applicability of climate projections for planning re-

gional climate adaptation and Earth system diagnostics, as well as for understanding the world

climate at once.
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1.2.3 Reanalysis

A reanalysis project involves integrating observational data with numerical simulation models

to generate datasets that accurately represent the atmospheric state, featuring variable vertical

and horizontal spatial resolutions and covering an extensive historical period of several decades

or more (Fujiwara et al., 2017). Hence, the resulting analysis is considered to be the “best”

estimate of the state of the atmosphere at a particular moment in time. The outputs from

reanalysis can be utilized in meteorological and climatological research, such as analyzing past

climate variations and changes, and more (see e.g. https://reanalyses.org for an overview).

Reanalyses ease the lack of observations for certain variables, at the surface and on vertical

levels, across large areas of the globe, producing a homogeneous record of past atmospheric

evolution, free from spurious non-climatic signals introduced by changes in model formulation,

assimilation systems, or data availability (Sterl, 2004). For this reason, they are commonly

referred to as pseudo-observations by climatologists. As a result, reanalyses provide physically

consistent multivariate datasets that would otherwise be difficult (or impossible) to obtain

through conventional observational methods with comparable spatial and temporal resolution.

As it builds upon assimilated observations, there is a rather good temporal correspondence with

real climatic conditions. Thus, they are valuable tools for understanding climate variability and

change, and for monitoring current climate conditions.

Reanalyses are often available on a six-hourly to hourly timescale, they can extend several

decades into the past and incorporate a massive amount of observations from extensive networks

of surface stations, ships, buoys, aircraft, satellites, etc. (Kalnay et al., 1996; Dee et al., 2011;

Hersbach et al., 2020). The representation of climate signals across different reanalysis products

is inevitably affected by temporal and spatial biases when assimilating these observations, as

well as changes in the global observing system, numerical model grid resolution, etc., leading

to reanalysis-related uncertainties (Brands et al., 2013; Fujiwara et al., 2017). Furthermore,

the density of the assimilated observations is a crucial factor in determining how realistic the

simulated atmospheric states are. If observations are available, the reanalyzed atmospheric

states are realistic and the system is consistent with them. When there are few or no observations

at all, the model creates its own “unbound” variability. This might be implausible and differ

significantly between different reanalysis systems (Sterl, 2004), leading to inhomogeneities that

exacerbate the problem of reanalysis uncertainty. As a result, there are well-known discrepancies

between reanalyses in specific regions and periods (see e.g. Brands et al., 2013). Some examples

of these discrepancies are the reconstruction of historical records of climate impact indices (e.g.

Bedia et al., 2012), forecast verification (Ramon et al., 2024) or downscaling approaches (Maraun

https://reanalyses.org
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and Widmann, 2018). In the latter, the selection of reanalysis predictors emerges as a critical

step in model performance (Brands et al., 2012a) and the associated plausibility of future

climate projections (Manzanas et al., 2015). Indeed, one of the main sources of uncertainty in

the evaluation of GCMs lies in the choice of reanalysis dataset used as the pseudo-observational

reference, an aspect that is specifically addressed in this Thesis (Sec. 1.6).

1.2.4 From global to regional climate projections: Downscaling

The application of GCM outputs at local scales is not straightforward due to their coarse

horizontal resolution (on the order of hundreds of kilometers), which challenges their direct

application in many climate impact applications. To overcome this limitation, downscaling is

aimed to refine and enhance the resolution of climate model outputs to provide more detailed

and localized climate information. Two main broad types of techniques exist, namely dynamical

and statistical downscaling. Dynamical downscaling relies on Regional Climate Models (RCMs),

which simulate the physical characteristics of the climate at higher resolution over a specific

region (e.g. continental-size domain), using the initial and boundary conditions provided by

GCMs (Figure 1.6). However, RCM outputs often exhibit substantial regional biases partly

inherited from their driving GCMs, and to date, no method has been able to fully correct these

biases (Christensen et al., 2008; Maraun, 2012). Secondly, statistical downscaling methods

(SDMs) are based on empirical statistical models that link large-scale variables or predictors,

e.g. sea-level pressure (SLP, Sec. 1.3.1) with local-scale surface variables, e.g. precipitation,

which serve as dependent variables in the model (see, for example, Benestad et al., 2008).

In this context, a reference international downscaling initiative stands out, named the Co-

ordinated Regional Downscaling Experiment (CORDEX). CORDEX (Giorgi et al., 2009; Jones

et al., 2011) is a project of the World Climate Research Programme (WCRP) and aims to

provide regionalized climate projections in all continental regions (at a common resolution of

50km×50km or 25km×25km worldwide and 12km×12km in Europe). Currently, it constitutes

the most comprehensive initiative for GCM–RCM (Giorgi, 2006; Feser et al., 2011) coupling ex-

periments. In particular, the EURO-CORDEX branch (Jacob et al., 2014, 2020) is specifically

responsible for delivering regional projections on the European continent. Moreover, within

CORDEX, Flagship Pilot Studies4 were developed to conduct RCMs simulations in domains

smaller than continental scales, at higher spatial resolutions (2–3 km), in order to investigate

specific processes such as urban heat islands or convection in high mountain regions.

Both dynamical and statistical downscaling techniques rely heavily on climate variables

4https://cordex.org/strategic-activities/flagship-pilot-studies/finished-flagship-pilot-studies/
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Figure 1.6: Illustration of the increase in grid resolution of a Regional Climate Model (RCM). Source:
WMO, https://www.wmo.int/ pages/ themes/ climate/ climate models.php

from GCMs related to atmospheric circulation (e.g. Sea-Level Pressure, SLP, Sec. 1.3.1),

which serve as initial and boundary conditions for dynamical downscaling, and as predictors in

statistical downscaling, to produce climate projections. For this reason, the selection of driving

GCMs for RCM is necessary in the design of downscaling experiments. GCM selection for

downscaling purposes is usually a two-step process (McSweeney et al., 2015), which requires,

first, the plausibility of the GCMs (historical and future) projections and, second, that the

selected GCMs cover a large fraction of the climate alternatives spanned by the full ensemble.

The selection of GCMs based on their ability to adequately simulate particular local surface

variables, such as temperatures or precipitation, is inadequate and may result in a suboptimal

selection of driving GCMs given the known discrepancies in how these variables are represented

by GCMs (Addor et al., 2016; Maraun et al., 2017). In the presence of systematic biases, a

sensible bias correction approach can substantially improve raw model fields from a statistical

point of view, and is recommended for specific variables and threshold-dependent climate indices

(see e.g. Dosio, 2016; Iturbide et al., 2020a). However, fundamental model errors may persist

after bias adjustment (Kim et al., 2024), and therefore a proper process-based validation is

required in order to identify poorly performing GCMs. Even though RCMs can add value

in this sense, by improving the misrepresentation of the driving data (Jones et al., 1995),

this improvement is incomplete, particularly when there are large errors in the driving GCM

(Diaconescu and Laprise, 2013). Moreover, even when bias correction methods improve the

applicability of climate simulations, in general, it cannot improve low model credibility, and

may even hide the lack of reliability of model output when applied inadequately (Maraun et al.,

2017), eventually resulting in poorly informed adaptation decisions. For this reason, a robust

evaluation of GCMs considering fundamental climate features, such as atmospheric circulation,

is a fundamental step in the design of downscaling experiments.

The selection of the driving GCM has a large effect on the performance of RCM simulations

https://www.wmo.int/pages/themes/climate/climate_models.php
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(as shown e.g. by Prein et al., 2019, in North America), which also has an impact on the

projected climate change signal (Turco et al., 2013). Thus, the choice of GCM is an issue of

paramount importance in GCM-RCM intercomparison experiments and climate change impact

applications. Until now, most downscaling efforts conducted an ad hoc GCM selection, which led

to unbalanced GCM-RCM matrices, with some GCMs being under/overrepresented. In order

to guarantee both physical realism and RCM ensemble diversity, the EURO-CORDEX CMIP6

GCM selection framework suggests an objective set of criteria, which combine data availability

and process-based plausibility criteria with a proper representation of the full-ensemble future

spread and model independence (Sobolowski et al., 2023). The growing consensus that informed,

process-aware GCM selection is crucial to provide trustworthy climate information for impact

studies and adaptation planning is supported by this structured, multi-criteria approach, which

is a significant improvement over earlier methods (McSweeney et al., 2015; Evin et al., 2021).

In order to gain a deeper understanding of the evaluation and selection of GCMs based on

large-scale processes, it is necessary to describe one of the main variables representing atmo-

spheric circulation (SLP) and the main modes of atmospheric variability. Later, Section 1.3.4

describes the influence of large-scale atmospheric circulation on the overall variability of local

surface climate, which helps to understand the usefulness and effectiveness of process-based

evaluation.

1.3 Large-scale climate variables and indices

In this Section, some key large-scale atmospheric variables and indices that play a fun-

damental role along this Thesis are introduced and defined. Characterization of large-scale

atmospheric circulation is essential to understand regional climate variability and its projected

changes under anthropogenic forcing. Among the most relevant variables related to atmospheric

circulation, Sea Level Pressure (SLP) is considered. In addition, some large-scale circulation

indices based on geopotential height at 500 hPa (Z500) are introduced, such as atmospheric

blocking events and teleconnection indices, as they represent fundamental dynamical processes

and drive regional climate.

1.3.1 Sea-Level Pressure

Sea-Level Pressure (SLP) is a key meteorological variable that represents atmospheric pressure

at sea-level. It is derived from surface pressure measurements that are adjusted using factors

such as altitude, temperature, and humidity; allowing a standardized comparison of pressure

data in different topographies and elevations (Wallace and Hobbs, 2006). The SLP is particularly
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relevant in weather and climate studies because it serves as a near-surface proxy for larger-scale

atmospheric circulation. In this way, the SLP can help experts in identifying and analyzing

large-scale circulation patterns and features, such as cyclones (marked by areas of low SLP

and often associated with precipitation), anticyclones (marked by areas of high SLP, diverging

winds and generally clear skies), and the pressure gradients that drive surface winds. The way

in which SLP patterns are spatially distributed is closely related to geostrophic flow, providing

a solid indicator to assess atmospheric dynamics at the surface level (Peixoto et al., 1992).

Another relevant feature of the SLP is its relative stability under global warming (Bhend and

Whetton, 2013; Xiong et al., 2020), especially compared to geopotential height at fixed pressure

levels. Since the total mass of the atmosphere tends to remain constant even with climate

change, SLP patterns maintain their physical reliability across climate models and observational

data (Trenberth and Smith, 2005). As a result, SLP has become a trusted input for process-

based evaluation of climate models (see Sec. 1.5). Furthermore, SLP data can be summarized

into a reduced set of patterns using classification techniques such as Clustering Analysis (Sec.

1.5.1), yielding a synoptic classification of representative SLP states for a particular location or

region of interest.

Although SLP is the primary and most essential tool for conducting a process-based evalua-

tion, it shows certain limitations that must be explicitly taken into account. The first drawback

arises from the nature and definition of the variable itself. Essentially, SLP is an estimated

variable in reanalyses and GCMs following a procedure highly sensitive to altitude and to the

original resolution of the orography of the dataset. Its reduction process is especially susceptible

to uncertainties in regions of complex orography, where large elevation differences, steep gradi-

ents, and variable surface temperatures challenge the general agreement among datasets. This

hinders a meaningful comparison of datasets based on SLP over these regions, which should be

also taken into account in model evaluation.

1.3.2 Atmospheric Blockings

Atmospheric blocking constitutes a major source of low-frequency variability in mid-latitudes.

They are associated with large-scale high-pressure systems, lasting several days to weeks, that

substantially modify the zonal flow by interrupting the eastward-travelling extratropical cy-

clones in the North Atlantic or by displacing their trajectories towards the north or south (Rex,

1950; Schwierz et al., 2004; Jury et al., 2019). Blocking episodes interrupt the typical westerly

flow, often leading to extreme weather events such as prolonged droughts, heatwaves, or cold

spells (Barriopedro et al., 2006). Their identification requires a dedicated methodology, such as
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the Blocking Intensity (BI) index, which relies on meridional gradients of Z500 over specific lati-

tude bands. Given their regional impacts and links to persistent circulation anomalies, blockings

are a crucial element in this Thesis. Since the first subjective definition of atmospheric blocking

by Rex (1950), there is no universally accepted criterion for their detection (Lupo, 2021), and

several objective methods are in use nowadays (see e.g. Pinheiro et al., 2019, for an overview).

1.3.3 Teleconnection patterns

Teleconnection patterns are a persistent and recurrent large-scale anomalies in atmospheric cir-

culation that link climate variability between distant regions of the globe (Wallace and Gutzler,

1981). The North Atlantic Oscillation (NAO), East Atlantic (EA), and Scandinavian Pattern

(SCAND) are some examples of teleconnection patterns affecting the European Climate, en-

capsulating recurrent and spatially coherent patterns of atmospheric variability (Barnston and

Livezey, 1987). These indices are typically derived through principal component analysis (PCA)

of standardized Z500 anomalies (Hurrell et al., 2003), and they represent dominant modes of

mid-tropospheric variability across the extratropics. The teleconnection indices considered in

this Thesis are briefly introduced next. Further details can be found in the references provided.

North Atlantic Oscillation (NAO) The NAO pattern consists of a north-south dipole of SLP

anomalies with two centers located over Iceland and the North Atlantic respectively (Barnston

and Livezey, 1987). The NAO is the strongest variability mode in winter and summer in

Europe. It can modulate the intensity and location of the North Atlantic jet stream and

storm track (Hurrell, 1995), which in turn affects temperature and precipitation (Trigo et al.,

2002) often extending from eastern North America to western and central Europe (Van Loon

and Rogers, 1978; Rogers, 1997). The positive phase of the NAO tends to be associated with

above average temperatures in the eastern United States and across northern Europe and below

average temperatures in Iceland, southern Europe and the Middle East. It is also related to

increased precipitation over northern Europe and Scandinavia and dry conditions over southern

and central Europe in winter (Bladé et al., 2011; Brands et al., 2012b; Casanueva et al., 2014).

Responses of opposite sign are typically found during its negative phase.

East Atlantic Pattern (EA) The EA pattern was originally defined by Wallace and Gutzler

(1981) and later reformulated by Barnston and Livezey (1987). The spatial structure of EA

is still a matter of debate (Comas-Bru and Hernández, 2018), and different authors provide

alternative descriptions. While some authors regard it as a north-south dipole of anomaly

centres, others characterize it as a SLP monopole south of Iceland and west of Ireland. In
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either case, it has a similar spatial structure to the NAO, although shifted slightly to the south,

together with the corresponding storm track in between (Comas-Bru and Hernández, 2018).

Its lower-latitude center contains a strong subtropical link in association with modulations

in the subtropical ridge intensity and location. This subtropical link makes the EA pattern

distinct from its NAO counterpart, which prevents simplistic relationships of natural proxies

with NAO (Mellado-Cano et al., 2019). The positive phase of EA is associated with above

average temperatures in southwestern Europe (Sáenz et al., 2001; Rodŕıguez-Puebla et al., 2010)

and below average in some parts of north America. It is also connected to enhanced winter

precipitation over the Atlantic watershed and weakening over southeastern Europe (Casanueva

et al., 2014).

Scandinavian pattern (SCAND) Also referred to as “Eurasia-1” by Barnston and Livezey (1987),

this pattern consists of a primary center of action over Scandinavia, with weaker centers of

opposite sign over western Europe and eastern Russia/western Mongolia (Bueh and Nakamura,

2007). Its positive phase is characterized by increased Z500 over Scandinavia and western

Russia. This suppresses anticyclonic activity and below average temperatures are found over

central Russia and western Europe (in particular, a reduction of warm days in the Iberian

Peninsula; Rodŕıguez-Puebla et al., 2010). Also, above average precipitation and more wet spells

tend to occur over central and southern Europe, whereas the opposite occurs for Scandinavia

across all seasons (Zveryaev, 2009; Casanueva et al., 2014).

1.3.4 Climate impacts induced by large-scale atmospheric dynamics

Regional climate variability is largely determined by large-scale atmospheric circulation (Soares

et al., 2019), which, particularly in the extratropics, exhibits recurrent spatial patterns operating

at multiple scales. Within the context of atmospheric circulation, SLP (Sec. 1.3.1) is considered

a fundamental variable, as it serves as a near-surface proxy of large-scale circulation. The

seasonal variability of large-scale mean sea-level pressure patterns exerts a direct influence on

the regional European climate. Different mechanisms explain this relationship, such as the

influence of some teleconnection indices, e.g. the NAO (Hurrell et al., 2003; Folland et al.,

2009), which is characterized by a seasonal-shift dipole system of high-low pressures, and then

is related to extreme seasonal temperature events (Favà et al., 2015), precipitation dry/wet spells

and extremes (Trigo et al., 2004; Busuioc et al., 2001; Casanueva et al., 2014), droughts (Bladé

et al., 2011), snow cover (Brands et al., 2014a), river flow (Massei and Fournier, 2012) or cereal

production (Rodŕıguez-Puebla et al., 2007). Other teleconnections, such as the Scandinavian

Pattern (SCAND) or the East Atlantic Pattern (EA, Wallace and Gutzler, 1981), also play an
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important role influencing precipitation and temperature variability in Europe (Sáenz et al.,

2001; Ramos et al., 2010; Casanueva et al., 2014; Comas-Bru and Hernández, 2018).

In addition to these recurrent patterns, the European climate is also affected by large-scale

anomalous situations caused by atmospheric blocking (characterized by persistent high pressure

systems, see Sec. 1.3.2). Recent studies show that precipitation anomalies are closely related to

the longitudinal position of the blocking centers (Sousa et al., 2017), which modify the storm

tracks. Also, the occurrence of these blocking situations has been associated with changes in

the precipitation distribution, and may result in drought or flood events in summer (Lupo,

2021), due to its ability to disturb the predominant cyclonic westerly flow (Sillmann and Croci-

Maspoli, 2009). Temperature extreme events have also been attributed to atmospheric blocking

situations (Buehler et al., 2011). One example is the severe heat wave which affected eastern

Europe and large parts of Russia in 2010 (Barriopedro et al., 2011). The strong linkage between

warm temperature extremes and the atmospheric blocking mechanism (Pfahl and Wernli, 2012)

is also involved in the positive heatwave trends observed in western Europe (Rousi et al., 2022),

having an impact on ecosystems and societies, including excess mortality, wildfires and droughts,

among others (Kautz et al., 2022). As a result, an adequate representation of atmospheric

circulation and high/low pressure variability becomes essential for a proper representation of

the main regional climate features, although current GCMs exhibit substantial errors in this

sense (Vial and Osborn, 2012; Dawson et al., 2012; Masato et al., 2013).

Bhend and Whetton (2013) conducted a global assessment of the ability CMIP3 and

CMIP5 climate models to reproduce observed regional SLP trends. Their research uncov-

ered a widespread tendency to underestimate changes in observed SLP, particularly in tropical

regions and during winter in high-latitude areas. These inconsistencies were evident for both

generations of models and observation-based datasets, pointing to structural biases in the rep-

resentation of SLP dynamics. As a consequence, errors in the SLP fields tend to propagate into

other meteorological variables. In other words, if two models or reanalyses show differences in

their pressure patterns, those discrepancies will inevitably translate into differences in other sur-

face variables (Sterl, 2004). SLP biases affect the spatial patterns as well as the frequency and

duration of the main Euro-Atlantic wintertime weather regimes (Dawson et al., 2012; Fabiano

et al., 2020) and Atlantic and European winter blocking events (Vial and Osborn, 2012; Anstey

et al., 2013). For instance, the frequency of the latter are systematically underestimated, by

CMIP5 GCMs (Taylor et al., 2012). The representation of the Northern Hemisphere storm

tracks has improved in CMIP5 GCMs with respect to previous model versions (Zappa et al.,

2013), but they still underestimate cyclone intensity and present location biases (Chang et al.,
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2012a; Colle et al., 2013). Likewise, CMIP5 GCMs are able to capture eastern Mediterranean

weather regimes qualitatively, although they fail in reproducing quantitative features (Dawson

et al., 2012; Hochman et al., 2019). The most recent generation of GCMs (CMIP6, Eyring et al.,

2016) shows substantial improvements with respect to CMIP5 in the representation of atmo-

spheric circulation worldwide (Cannon, 2020), although more focused analyses are still needed

to adequately assess the implications at a regional scale for downscaling purposes (Addor et al.,

2016; Perez et al., 2014; Otero et al., 2018).

1.4 Observed variability and projected changes in atmospheric circulation

In this Section, previous studies’ conclusions regarding past and future projections of atmo-

spheric circulation and related variables are addressed. Sea-level pressure, unlike geopotential,

is generally insensitive to the general heating of the troposphere imposed by greenhouse gas

emissions since the total mass of the atmosphere is not expected to increase (Xiong et al.,

2020). However, horizontal temperature gradients driving thermal circulation cells have been

reported to change on multiple scales or are projected to do so in the future. Such thermody-

namic circulation changes include, for instance, a general strengthening of summer monsoon

systems in the northern hemisphere due to growing land-sea temperature gradients (Turner and

Annamalai, 2012; Eyring et al., 2021), a relative cooling of the Mediterranean Sea compared

to surrounding land areas (Tuel and Eltahir, 2020), and more frequent blocking events over

Greenland associated with surface feedback processes (Hanna et al., 2018).

Superimposed on these regional thermodynamic effects are the own dynamics of the large-

scale atmospheric circulation, operating at hemispheric scale. It is commonly described by

the number of circumpolar planetary waves (referred to as Rossby waves) in the geopotential

height field or jet streams, influenced by the hemispheric meridional temperature gradient. The

properties of these waves (length, amplitude and displacement) are largely considered to be

stochastic, even on decadal to multidecadal time-scale, in what is commonly referred to as

internal or unforced climate variability (Deser et al., 2012).

Several studies have shown that the dynamic components of atmospheric circulation are more

important to local-scale climate variability than the thermodynamic ones (Elbaum et al., 2022),

and that internal variability is of paramount importance in the extratropics (Maher et al., 2019;

Deser et al., 2020), particularly in the North Atlantic - European sector (Deser et al., 2017).

This variability complicates the detection of any externally forced change in the circulation, for

instance, induced by greenhouse gas emissions or low-frequency natural sea-surface temperature

variations. A remarkable exception from this is the response of the Southern Hemisphere circu-
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lation to ozone depletion during the 1980s and 90s, and the subsequent ozone recovery, achieved

by reducing the concentrations of inorganic halogens in the stratosphere agreed in the Montreal

protocol in 1987. Ozone depletion caused an increase in the hemispheric meridional temper-

ature gradient that drove a poleward shift and an intensification of the southern hemisphere

westerlies during austral summer. This trend reversed around 2000 due to ozone recovery, but

is now re-emerging in observations and projected to manifest in models along the 21st century,

not because of ozone depletion but due to the effects of greenhouse gas emissions (Thompson

et al., 2011; Banerjee et al., 2020; Goyal et al., 2021). Considering large internal variability, this

is to date the one circulation change in the extratropics that has been most clearly attributed

to an external forcing (Thomas et al., 2015).

Other continental to hemispheric-wide circulation observed changes can be less robustly

attributed to external forcings. These include:

1. A poleward expansion of the Hadley cell in both hemispheres driven by ozone depletion,

multi-decadal Sea Surface Temperature (SST) variability, and greenhouse gas emissions

(in the Southern Hemisphere, only) (Grise et al., 2019).

2. Contrasting findings concerning the Hadley cell intensity ranging from a forced strength-

ening to a forced weakening (Zaplotnik et al., 2022; Chemke and Yuval, 2023).

3. A northern hemisphere jet stream and storm track strengthening during winter, (Blackport

and Fyfe, 2022; Woollings et al., 2023; Franzke and Harnik, 2023) and weakening during

summer (Coumou et al., 2015; Chang et al., 2016; Gertler and O’Gorman, 2019; Dong

et al., 2022; Cox et al., 2024), with a forced response to Arctic sea-ice loss emerging at

the end of the 21st century (Barnes and Screen, 2015; Coumou et al., 2018; Kang et al.,

2023).

4. A weak forced poleward shift of the jet stream position on both hemispheres during both

the summer and winter seasons (Woollings et al., 2023).

For a comprehensive overview on continental to hemispheric wide atmospheric circulation

changes in observations and model projections, and the sources thereof, the interested reader

is referred to Shaw et al. (2024). In essence, all of the aforementioned studies focus on atmo-

spheric circulation changes at continental to hemispheric scale, looking, for instance, at zonal

mean values for specific seasons of the year. Both issues are currently acknowledged as “knowl-

edge gaps” (Shaw et al., 2024) and will be further examined in this Thesis. By addressing these

gaps, this Thesis aims to provide a better understanding of the expected changes in near-surface

circulation patterns across different seasons.
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1.5 Process-based evaluation of climate models

The evaluation of the performance of Global Climate Models (GCMs) is a fundamental

step in ensuring the credibility and robustness of future climate projections, especially when

such models are used as boundary conditions for downscaling experiments (Sec. 1.2.4). Several

criteria have been applied to assess GCM performance at both global and regional scales, in

order to determine which models represent key processes in a plausible way when compared to

observations. Some examples of globally applicable criteria include observationally constrained

metrics such as the Transient Climate Response (TCR; Ribes et al., 2021; Tokarska et al., 2020;

IPCC, 2021), models’ historical performance based diagnostics (Brunner et al., 2020), or the

consistency of future global temperature projections with observational constraints (Qasmi and

Ribes, 2022). At the regional scale, particularly over Europe, some examples of indices used

to assess model credibility are the position of the North Atlantic jet stream (Oudar et al.,

2020), large-scale processes performance of historical simulations (Palmer et al., 2023), or the

sea surface temperature (SST) anomaly for European surrounding water areas (Sobolowski

et al., 2023). These evaluation metrics serve as a benchmark for model selection in coordinated

downscaling frameworks like CORDEX.

In more detail, Palmer et al. (2023) proposed a CMIP6-based revision of the McSweeney

et al. (2015) scoring system tailored to Europe, integrating circulation-specific diagnostics into

the selection process. In fact, process-based evaluation of GCMs is a common denomination

for the validation of models based on their representation of certain processes, for instance,

related to atmospheric circulation. The idea of evaluating GCM performance by means of

atmospheric circulation started long time ago (Jones et al., 1993; Hulme et al., 1993), although

process-based GCM performance assessments have recently emerged, particularly within the

downscaling community (Sec. 1.2.4; Giorgi et al., 2009; Jones et al., 2011; McSweeney et al.,

2015; Maraun et al., 2017) in the framework of CORDEX, and the IPCC Assessment Reports

(Sec. 1.2.2). One of the common goals of CMIP and IPCC is enabling a systematic evaluation

of GCM performance in order to inform model developers and provide them essential inputs for

the assessment of climate change within IPCC reports (Eyring et al., 2016, 2019).

This type of GCM evaluation compares the historical model simulations with pseudo-

observations or reanalysis datasets (Sec. 1.2.3) in terms of the representation of atmospheric

processes or dynamics, such as storm tracks, blocking events, jet streams or synoptic circulation

patterns (Brands et al., 2013; Addor et al., 2016). Then, deviations between the models and

observed reference datasets are quantized using some statistical evaluation metric. The funda-

mental premise in process-based evaluations is that more reliable future projections will result
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from models that replicate more accurately important atmospheric processes in a historical

period and their climate drivers.

In this context, atmospheric circulation variables (such as sea-level pressure) or main modes

of atmospheric variability (like teleconnections or atmospheric blockings) are brought into focus

as key driving resources for process-based evaluation. The rationale behind using large-scale

atmospheric variables instead of local scale ones (e.g. temperature of precipitation) for evalua-

tion is two-fold. First, because regional climate variability is largely determined by large-scale

atmospheric circulation (Soares et al., 2019), and second, because such local-scale variables

emerge as an important source of uncertainty in climate projections of GCMs (Maraun et al.,

2010).

All in all, the IPCC and the CORDEX community have come to the common conclusion

that process-based evaluation is not only a desirable practice, but also a crucial step for the ad-

vance of climate modeling. It serves as an essential link between understanding the performance

of current models and trusting future climate projections. Assessing how well models represent

key dynamical processes, especially those driving regional climate such as atmospheric circu-

lation, blockings or storm tracks, becomes a requirement for climate simulations plausibility,

at the same time that models increase in complexity and output volume. These assessments

are essential for developing physically credible GCM projections that can be used in impact

studies and downscaling, as well as to guide the evolution of future CMIP generations. In this

context, synoptic scale classification techniques based on clustering analysis present a promis-

ing way to address this need in climate modeling: to find effective, impartial, and interpretable

configurations to evaluate dynamical model performance by reducing and simplifying the high

dimensionality of the “problem”.

1.5.1 Synoptic climatology and atmospheric circulation classification

The use of different clustering techniques is common in geosciences, particularly in synoptic

climatology (Lee and Sheridan, 2015), building upon the extensive collection of meteorological

data across the globe. Clustering techniques are mainly used to define Circulation Types (CT)

and Weather Types (WT). In this context, different atmospheric states represented by time

series of one or more meteorological variables are grouped into clusters (each corresponding

to a CT or WT) based on their similarity. Specifically, CTs often refer to clusters formed

from climate variables such as surface pressure and other upper-air variables (e.g., geopotential,

humidity), whereas WTs refer to clusters formed from surface-level climate variables (e.g.,

precipitation, surface temperature). International initiatives (e.g. Tveito et al., 2016) have
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defined and detailed CTs and WTs in a multitude of studies since 2005.

The application of circulation and weather type classifications has provided novel insights

into climatological trends and projections, turning them into practical and meaningful analytical

tools in this field. For example, Littmann (2000) employs WTs/CTs to classify mid-troposphere

atmospheric circulation over the Mediterranean Sea into 20 clusters. The daily sequence of clus-

ter occurrences is used to explain precipitation variability in the region. Moreover, Huth et al.

(1993) analyze daily winter climatic conditions (December–February) in Prague, identifying 44

weather types. This study uses up to eight variables to characterize the climatic conditions

(such as daily mean temperature, relative humidity, wind speed, etc.), effectively scaling the

data volume by a factor of eight. In a follow-up study, Huth et al. (2008) investigate the evolu-

tion of these techniques within the COST733 Action, presenting a three-fold approach for CTs

and WTs: the historical climatological analysis, the analysis of present climate variability, and

the evaluation of GCMs. In this way, the usefulness of CTs and WTs in process-based model

evaluation aligns with the needs previously identified by the IPCC and the CORDEX initiative.

Synoptic weather types are a useful tool as they summarize the whole range of variability

of the data into a few construable patterns (Huth et al., 2008; Littmann, 2000; Stryhal and

Huth, 2017). A well-known circulation classification method is the Lamb Weather Type (LWT)

Classification. The LWT classification is a subjective clustering approach defined by the clima-

tologist Hubert H. Lamb (Lamb, 1972) with the aim of studying the synoptic climatology over

the British Isles. The LWT classification is based on a number of rules which rely on meteoro-

logical expert knowledge. This differs from objective clustering algorithms, such as K-means or

Self-Organizing Map (SOM), which are data driven. Therefore, LWT classification is determin-

istic and has a straightforward and well-defined physical interpretation. This is an advantage

since the results obtained can be interpreted in terms of actual meteorological conditions, and

there is no source of added uncertainty as in stochastic clustering algorithms, whose results are

initialization-dependent. Later in the computer era, Jenkinson and Collison (1977) developed a

more objective scheme following Lamb’s principles, known as the Jenkinson–Collison Weather

Type (JC-WT) classification. The JC-WT approach is an automated procedure using a set of

equations based upon SLP (Sec. 2.2) and is able to reproduce circulation types with negligible

differences from the original LWT catalogue (Jones et al., 1993, 2013). Furthermore, unlike the

original LWT approach, the JC-WT scheme has the advantage of being automatically applicable

to different geographical locations through the introduction of some adjustment parameters to

account for changes in the relative grid spacing as a function of latitude. Taking all of this into

account, the JC-WT classification methodology emerges as a strong candidate among clustering
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techniques to perform a process-based evaluation of GCMs.

The JC-WT classification provides a robust Eulerian framework for characterizing daily

synoptic-scale circulation patterns, based on geostrophic wind and vorticity diagnostics derived

from SLP fields (Sec. 2.2). Unlike Lagrangian storm-tracking methods (e.g. Hodges, 1994),

which offer detailed insights into individual cyclone trajectories and intensities (Priestley et al.,

2020; Priestley and Catto, 2022), JC-WT captures broader atmospheric regimes, including anti-

cyclonic and directional flows, that may not manifest as distinct low-pressure centers. Similarly,

other popular Eulerian approaches like the Extratropical Cyclone Activity Extratropical Cy-

clone Activity (ECA) index (Wallace et al., 1988) or similar monthly variance statistics, can

effectively quantify storm track variability (see e.g, Chang et al., 2012b, 2016), but they lack

the categorical structure needed to assess regime shifts or blocking patterns. In contrast, JC-

WT enables the detection of persistent circulation changes through the aggregation of daily

types into broader categories, making it particularly suitable for long-term climatological anal-

yses (Trigo and DaCamara, 2000) and model intercomparison of historical simulations (Brands,

2022b,c; Brands et al., 2023a). For these reasons, the JC-WT classification provides a partic-

ularly suitable and interpretable framework for evaluating projected changes in atmospheric

circulation.

1.6 Objectives

Building on the previous context and motivation exposed, the main goal of this Thesis is to

expand the knowledge on the representation, assessment, and future projection of large-scale at-

mospheric circulation of Global Climate Models (GCMs) from CMIP5 and CMIP6 experiments

in the context of climate change. For this purpose, weather typing classification is used for

process-based GCM evaluation, along with the estimation of future changes in the atmospheric

circulation. Specifically, the Thesis is structured following three primary objectives:

1. Assess the potential and limits of the JC-WT methodology as a process-based diagnostic

tool to evaluate the atmospheric circulation of GCMs.

• Examine the global extratropical applicability of the JC-WT classification method

(including the Southern Hemisphere).

• Connect the JC-WTs to the main modes of climate variability (such as predominant

teleconnection indices and atmospheric blockings), as a way to evaluate the physical

consistency, meaningfulness and diagnostic capability of the classification scheme.
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2. Evaluate the ability of the new generation of GCMs from CMIP5/6, developed for the

IPCC Fifth and Sixth Assessment Report (AR5 and AR6, respectively), on their ability

to represent observed large-scale atmospheric circulation patterns. This process-based

evaluation involves to:

• Analyze the observational uncertainty in the JC-WT classification.

• Quantify the ability of CMIP5/6 models to reproduce historical JC-WTs classifi-

cations in the extratropics, focusing on a diversity of WTs features and evaluation

metrics.

3. Estimate projected future changes in the atmospheric circulation patterns on the synoptic

scale (by means of the JC-WTs classification) globally, thus considering a closer link to

local-scale climate variability relevant for impact studies.

• Identify emerging changes of JC-WT from model ensemble internal variability.

• Generate a catalog of global JC-WT from more than 50 GCMs for both their histor-

ical simulations and future CMIP5 and CMIP6 projections.

1.7 Structure

This Thesis is organized into three main parts, comprising seven chapters, each of them

aiming to address the objectives outlined in the previous section.

Part I (State of the art and methods) is made up of two introductory chapters. Chapter 1

introduces the motivation, objectives, and structure of the Thesis. This chapter sets the ground

for the topic by presenting the current context of the Global Climate Models (GCMs), their

evolution, reanalysis datasets, large-scale atmospheric circulation of GCMs and the need for

their process-based evaluation. To close this chapter, the main objectives of this Thesis are

introduced.

Chapter 2 explains the data sources and the methodological background necessary to sup-

port the subsequent analyses. It describes the details of the main methodological tool, the

Jenkinson–Collison Weather Type (JC-WT) classification, its application and its relationship

with the main modes of climate variability, the metrics used to evaluate model performance and

to examine their future changes.

Part II (Contributions) contains the main contributions of the Thesis. It is divided into four

chapters where the fundamental scientific objectives are addressed, including the results of four

scientific papers, led by the PhD candidate. Chapter 3, based on results from Fernández-Granja
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et al. (2023) and Fernández-Granja et al. (2024), explores the global suitability of the JC-WT

classification scheme, including its limitations and physical interpretability through links with

large-scale atmospheric modes. Chapter 4, based on results from Fernández-Granja et al. (2023)

assesses the uncertainty associated with reanalysis products. Chapter 5, based on results from

Fernandez-Granja et al. (2021), presents a process-based evaluation of GCMs, through their

ability to reproduce JC-WT characteristics, to support model selection in regional downscaling

frameworks. Chapter 6, based on results from Fernández-Granja et al. (2025) analyzes projected

changes in JC-WT frequencies under under climate change conditions, evaluating the emergence

of circulation changes in extratropical regions.

Finally, Part III (Concluding Remarks) presents the conclusions and future perspectives in

Chapter 7, summarizing the key findings of the Thesis, as well as discussing implications for

climate change impact assessments and model selection, software tools and datasets developed

during the Thesis, related contributions, and avenues for future research.
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Methodological and data framework

2.1 Data sources

This section describes the atmospheric circulation data used in this Thesis to support the

achievement of the objectives outlined in Section 1.6.

2.1.1 Reanalysis datasets

In this Thesis, reanalyses serve as a pseudo-observational reference to evaluate the performance

of Global Climate Models (GCMs). The premise is that the closer the GCMs reproduce the

reanalysis, the better their performance (Sec. 1.5). Up to five different reanalyses are taken

into account in this Thesis to adequately encompass the widest possible range of reanalysis

uncertainty, namely: ERA-Interim (Dee et al., 2011), ERA5 (Hersbach et al., 2020), ERA-20C

(Poli et al., 2016), JRA-55 (Kobayashi et al., 2015; Harada et al., 2016) and NCEP-NCAR

(Kalnay et al., 1996).

ECMWF ERA Interim Reanalysis (ERA-Interim) is one of the most popular datasets in

the contemporary atmospheric sciences, as it has received more than 20,000 citations to date.

However, the ECMWF Reanalysis 5 (ERA5) has recently replaced ERA-Interim. Whereas the

ERA-Interim covers the period 1979-2019 in a 3-hourly time resolution (not the case for some

variables, such as sea-level pressure (SLP), which is only available 6-hourly), ERA5 extends from

1950 onwards and it is continuously updated in hourly time-steps. Their spatial resolutions are

approximately 79 km for ERA-Interim and 31 km for ERA5 (1◦ ≈ 100km in the Equator),

with 60 vertical levels (from the surface up to 10 Pa) for ERA-Interim and with 137 vertical

levels (from the surface up to 1 Pa) for ERA51. ECMWF 20th Century Reanalysis (ERA-

20C) is ECMWF’s first atmospheric reanalysis covering the entire 20th century, from 1900

to 2010 (in a 6-hourly time resolution for SLP), with a 1.13◦ two-dimensional instantaneous

1https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interim-hello-era5
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diagnostic fields and 37 pressure levels vertically. However, this reanalysis only assimilates

observations of surface pressure and surface marine winds, thus assimilating less components

than other reanalyses. The Japanese 55-year Reanalysis (JRA-55), implemented by the Japan

Meteorological Agency (JMA), covers from 1958 to 2013 in a 3-hourly time resolution, and

has a 1.25◦ longitudinal-latitudinal spatial resolution. It also assimilates regular radiosonde

observations. Finally, the NCEP–NCAR Reanalysis 1 (NCEP), developed by the National

Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory, consists

of a 6-hourly dataset covering from 1948 to near present, with a global spatial coverage of

2.5◦ × 2.5◦ resolution and 28 vertical layers. The main characteristics of these reanalyses are

summarized in Table 2.1.

Reanalysis Nom. res. (◦) Modelling Center Reference

ERA-20C 1.13 ECMWF Poli et al. (2016)
ERA-Interim 0.75 ECMWF Dee et al. (2011)
ERA5 0.25 ECMWF Hersbach et al. (2020)
JRA-55 1.25 JMA Kobayashi et al. (2015); Harada et al. (2016)
NCEP Reanalysis 1 2.50 NCEP-NCAR Kalnay et al. (1996)

Table 2.1: Reanalyses used in this Thesis, their nominal resolution at the Equator (in ◦) and mod-
elling centers producing them. ECMWF: European Center for Medium Range Weather Forecasts; JMA:
Japanese Meteorological Agency; NCEP-NCAR: National Centers for Environmental Prediction / Na-
tional Center for Atmospheric Research.

2.1.2 Sea-Level Pressure data

For this Thesis, a significant computational effort was devoted to the download and handling of

6-hourly sea-level pressure (SLP) data from five different reanalyses and more than forty GCMs.

The main characteristics of the reanalyses (see also Sec. 2.1.1 for an overview) are summarized

in Table 2.1, and characteristics of the GCMs can be found in Tables 5.1 and 6.1. SLP data for

the historical period covering 1979–2005 for reanalysis and CMIP5 GCMs and up to 2014 for

CMIP6 were retrieved; as well as RCP8.5/SSP5-8.5 scenarios from CMIP5/6, respectively, until

2100. All these data were directly downloaded from the ESGF2 nodes (Cinquini et al., 2012;

Williams et al., 2016). Altogether, this corresponds to an estimated total of approximately 1500

GB of SLP data (1.5 TB).

Regridding of Sea-Level Pressure

As reanalyses and climate models operate at different native resolutions (Tables 2.1 and 6.1),

any validation or intercomparison exercise necessarily requires regridding them to a common

2The Earth System Grid Federation (ESGF) is a globally distributed data infrastructure that provides access
to climate model output and observational datasets for research and policy support: https://esgf.llnl.gov/nodes.
html.

https://esgf.llnl.gov/nodes.html
https://esgf.llnl.gov/nodes.html
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spatial grid. This step is crucial to ensure a fair and consistent comparison among datasets.

Several interpolation methods can be applied for this purpose, such as nearest-neighbor, bilinear,

or conservative remapping, among others.

In this Thesis, regridding by spatial averaging (upscaling hereafter) is performed for the

different datasets to match a common 2.5◦ resolution grid. This upscaling is designed to preserve

the smoothness and spatial consistency of the variable during the interpolation process onto a

coarser grid. It applies an aggregation function (the mean in this case) across the neighboring

points that fall within the new larger (coarser) gridbox. After upscaling, bilinear interpolation

is used (only if 2.5◦ is not a multiple of the original resolution).

2.1.3 Atmospheric Blockings data

The Blocking Index (BI) detection methodology introduced by Barriopedro et al. (2006) is used

for the atmospheric blocking estimation. BI is based on meridional differences of geopotential

height at 500 hPa (Z500, Z in the equations) over a 2.5×2.5◦ latitude-longitude grid encom-

passing the latitudinal range between 55 and 65◦N. A blocking situation is identified when the

criteria on Eq. 2.1–2.3 are fulfilled for at least one of the five ∆ values {−5.0◦,−2.5◦, 0◦, 2.5◦, 5◦}

and for five consecutive longitudes (i.e. spanning at least 12.5◦) for at least five consecutive

days:

Z(λ,Φ0)− Z(λ,ΦS)

Φ0 − ΦS
≥ 0 (2.1)

Z(λ,ΦN )− Z(λ,Φ0)

ΦN − Φ0
≤ −10 m/deg (2.2)

Z(λ,Φ0)− Z(λ,Φ0) > 0 (2.3)

where:

ΦN = 77.5◦N+∆

Φ0 = 60.0◦N+∆

ΦS = 40.0◦N+∆

using for the calculation the daily Z500 at latitude Φ and longitude λ, and the climatological

mean Z for that particular day.

In this Thesis, the BI dataset used for the European domain was shared upon request by
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Jury et al. (2019). Their calculation is based on the ERA-Interim Z500 field and encompasses

the period 1981-2005. The interested reader is referred to Jury et al. (2019) and the more

detailed description of the BI detection algorithm in Barriopedro et al. (2006).

For a meaningful representation of the signature of blocking on the JC-WT classifica-

tion for Europe, BI data over the Euro-Atlantic region are divided into three longitudinal

subdomains covering the western, central and eastern parts: the Eastern Atlantic (ATL,

30◦W–0◦E), western-central continental Europe (EUR, 0◦E–30◦E) and eastern Europe (Rus-

sia RUS, 30◦E–60◦E). For each subdomain, data consists on an aggregated single binary daily

time series, identifying the blocking days (1) according to the BI detection methodology; the

rest of the days were classified as non-blocking days (0).

2.1.4 Teleconnection patterns data

Data from teleconnection indices such as the North Atlantic Oscillation (NAO), East Atlantic

(EA), and Scandinavian (SCAND) are considered in order to achieve the objectives from this

Thesis. More details on the spatial patterns and influence of these teleconnections can be

found in Sec. 1.3.3. Monthly series for the main teleconnection indices affecting Europe were

retrieved from the NOAA Climate Prediction Center (https://www.cpc.ncep.noaa.gov/data/

teledoc/telecontents.shtml). These indices are derived from a rotated principal component

analysis of monthly mean standardized anomalies of Z500, with a 3-month moving window,

from 1950 to the present. In this work, the period 1979-2005 was used, which is common to the

considered reanalyses.

2.2 Jenkinson-Collison Weather Type (JC-WT) classification

The Jenkinson–Collison Weather Types (JC-WT) classification method is a widely used

circulation-typing scheme to characterize atmospheric patterns at the synoptic scale. Originally

developed as an objective reformulation of the Lamb Weather Types (LWT, Sec. 1.5.1) by Jenk-

inson and Collison (1977), it was designed to automate and generalize Lamb’s manually applied

classification over the British Isles (Lamb, 1972). The system relies on a deterministic classifi-

cation of weather types based on a number of rules requiring meteorological expert knowledge

for the interpretation of daily SLP charts, providing a straightforward and well-defined physical

interpretation of SLP patterns.

LWTs were originally developed centered in the British Isles (55◦N, 5◦W). The efforts of

Jenkinson and Collison (1977) to automatize LWTs made it possible to easily apply the classifi-

cation at any centering point over mid-latitudes (Jones et al., 1993, 2013). The original JC-WT

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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method is based on instantaneous 12 UTC SLP fields, extracting a grid of 16 points to compute

geostrophic wind direction and vorticity. Each couple of points has a separation of 5◦ latitude

by 10◦ longitude between them, making a grid of points covering 30° longitude by 20° latitude

(Fig. 2.1).

N

Figure 2.1: Spatial distribution of the grid point pattern (“cross”) of 16 points (in black) used in the
JC-WT classification scheme for any location worldwide. The background grid (in blue) represents a 2.5◦

regular underlying grid, to which all datasets have been interpolated. The square indicates the central
grid cell of the cross, located at latitude ψ (see equations in Table 2.2).

The formulation of the JC-WT classification uses six parameters related to wind-flow char-

acteristics: southerly flow, westerly flow, total flow, southerly shear vorticity, westerly shear

vorticity and total shear vorticity (see equations in Table 2.2). Depending on their values, the

SLP is classified in a given weather type following these rules defined by Jenkinson and Collison

(1977):

1. The direction of flow is tan−1(W/S), whereW and S are the westerly and southerly flows,

respectively. 180◦ is added if W is positive. The appropriate direction is calculated on

an eight-point compass allowing 45◦ per sector. For example, the Westerly type occurs

between 247.5◦ and 292.5◦.

2. If |Z| (total shear vorticity) is less than F (resultant flow), flow is essentially straight and

corresponds to a JC-WT pure directional type.

3. If |Z| is greater than 2F , then the pattern is strongly cyclonic (Z > 0) or anticyclonic

(Z < 0). This corresponds to JC-WT’s pure cyclonic and anticyclonic types.

4. If |Z| lies between F and 2F then the flow is partly (anti-)cyclonic and this corresponds

to one of JC-WT’s synoptic/direction hybrid types, e.g., anticyclonic easterly (AE) and

cyclonic northerly (CN).
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5. If F is less than 6 and |Z| is less than 6, there is light indeterminate flow corresponding to

JC-WT’s unclassified type U. The choice of 6 is dependent on the grid spacing and would

need tuning if used with a finer grid resolution.

The implementation requires an explicit inversion of the signs of the constants involved

in the calculation of geostrophic flow and vorticity terms, as well as a reversal in the spatial

ordering of the 16-point cross used as input (see Table 2.2). These adaptations are necessary

to ensure a physically consistent interpretation of directional flow and rotational features under

SH dynamics.

In the end, the JC-WT classification results in a set of 27 different weather types, including

one pure cyclonic (C), one pure anticyclonic (A), eight directional types (N, NE, E, SE, S, SW,

W, NW), sixteen hybrid types (directional + cyclonic/anticyclonic), and one unclassified (U)

type (Fig. 2.2). The latter represents weak or chaotic flows with no dominant geostrophic ten-

dency. Some state-of-the-art studies opt for different configurations of the JC-WT methodology

by reducing the number of weather types obtained from the SLP classification. For instance,

studies such as Trigo and DaCamara (2000) and Herrera-Lormendez et al. (2023) simplify the

classification into 11 types: the anticyclonic and cyclonic types, the eight directional types and

the unclassified type.
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Table 2.2: Equations of the different circulation parameters of the JC-WT classification, for Northern
(Jenkinson and Collison, 1977) and Southern Hemispheres (Sarricolea et al., 2018). Crosses in Fig. 2.1
displays the relative position of the points i = 1, . . . , 16, for any location worldwide where SLP values Pi

are considered.

The advantages of this circulation typing method have been exploited in different studies

in the Northern Hemisphere (NH). For instance, JC-WTs have been centered in the Iberian

Peninsula in [10◦W, 40◦N ] (Trigo and DaCamara, 2000) and [5◦W, 40◦N ] (Ramos et al., 2014a),
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Figure 2.2: Composite maps of SLP (hPa) and isobars for the 27 JC-WTs centroids for a classification
centered over south-western Europe (40◦N, 10◦W), as an example. Note that the WTs are arranged in
3 groups of 9 WTs around the cyclonic (left panels and blue labels) and anticyclonic types (right panels
and red labels) making a similar distribution to Self-Organized Maps (Kohonen, 1982) while following the
cardinal directions (this explains that pure directional types, in green label, are beside its corresponding
hybrid directional type, in blue or red). Purely directional types are arranged in the center, around the
U type.

in the western Mediterranean basin [5◦E, 40◦N ] (Grimalt-Gelabert et al., 2013), in southern

Scandinavia [15◦E, 60◦N ] (Chen, 2000), in Central Europe [10◦E, 50◦N ] (Donat et al., 2010),

in south-west Russia [55◦E, 55◦N ] (Spellman, 2017), in Ireland [10◦W, 55◦N ] (Fealy and Mills,

2018a), in Serbia [20◦E, 42.5◦N ] (Putnikovic et al., 2016) and in southeastern China (Wang and

Sun, 2020; Wu et al., 2020). Otero et al. (2018) obtained, for the first time, a spatially continuous

application of the JC-WT classification throughout Europe [13◦W − 34◦E, 34◦N − 71◦N ] and,

in an unprecedented study, Brands (2022a) derived JC-WTs on every grid-box covering the

majority of the NH extratropical region to evaluate GCM performance. However, to the best

of my knowledge, the JC-WT classification has seldom been used in the southern hemisphere

(SH), by Sarricolea et al. (2018) in southern Chile [72.5◦W, 42.5◦S] and Brands et al. (2023b)

in the course of this Thesis. These cases required an adaptation of the JC-WT equations to the

SH circulation.

The JC-WT classification, built upon SLP fields only, is somewhat limited in its ability to

infer other atmospheric features related to atmospheric circulation in a broad context. However,

important information regarding low-level circulation physics can also be inferred from the

analysis of the JC intermediate parameters, such as air flows and shear vorticities. The relatively

easy interpretation of these airflow indices and the simplicity of the JC method, which allows

transferability to other regions with a simple implementation, make it the preferred classification

scheme in previous studies (e.g. Otero et al., 2018). Moreover, as shown by Conway and Jones

(1998), circulation patterns fundamentally control meteorological characteristics on the surface,

whereby the use of SLP has many advantages.
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The above-mentioned teleconnection patterns and blocking events, however, operate on

spatial scales covering entire continents, ocean basins and even the entire hemisphere. This

scale is too coarse to capture the whole variability range of extratropical low and high pressure

systems, whose relative positions determine the origin and properties of the air masses reaching

a given location. In other words, any link between continental-to-hemispheric phenomena and

local-scale climate variability is expected to materialize via atmospheric circulation anomalies

on an intermediate scale, here referred to as “regional” or “synoptic”. An approach to account

for this can be the JC-WT classification, which, to date, has not been applied in this sense.

One of the goals of this Thesis is to contribute to the understanding and extension of the

JC-WT classification methodology. Despite the fact that the JC-WTs are recommended to

be applied in a limited range from middle to high latitudes (approximately from 30◦ to 70◦)

by Jones et al. (2013), the limits of applicability of JC-WTs are explored here, by obtaining

them systematically in all locations of the globe, even in the Southern Hemisphere (Sec. 3.1).

Additionally, the meaningfulness of the obtained JC-WTs is addressed, associating them with

main teleconnection indices for different regions of the world (Sec. 3.2). Such analysis is inspired

by previous studies such as Sarricolea et al. (2018), who investigated the JC-WTs associated

with the teleconnections affecting central-southern Chile, namely El Niño - Southern Oscillation

(Trenberth, 1997), Pacific Decadal Oscillation (Mantua and Hare, 2002) and Antarctic Oscil-

lation (Limpasuvan and Hartmann, 1999) also known as Southern Annular Mode (Gong and

Wang, 1999).

2.3 Measures for JC-WTs evaluation

2.3.1 Relative bias

One salient feature of a weather type is its probability of occurrence, which can be estimated

by the relative frequency of occurrence in a sample, i.e. the proportion of records classified in a

particular category over the complete time series length. From the historical record of observed

weather types occurring at discrete T time steps X1, X2, . . . , XT , the frequency of occurrence of

the JC-WT ℓ per season s is denoted as f(ℓ, s) and calculated as the number of time steps falling

in type ℓ divided by the total number of time steps in the season s ∈ {DJF,MAM,JJA, SON}.

Thus the relative bias ε is considered to compute the deviation of the JC-WT frequency with

respect to a reference data set:

εm(ℓ, s) =
fm(ℓ, s)− fo(ℓ, s)

fo(ℓ, s)
(2.4)



2.3. MEASURES FOR JC-WTS EVALUATION 37

where fm(ℓ, s) refers to the frequency in the model m and fo(ℓ, s) is the reference observed

(in this case, reanalysis) frequency. The model (m) can be any of the considered GCMs or

any of the reanalyses other than that used as observational reference. The relative bias is a

non-dimensional measure, which is zero for a perfect agreement of frequencies.

2.3.2 Kullback–Leibler divergence

This measure (KL; Kullback and Leibler, 1951), also known as relative entropy, is used to

quantify the degree of disparity between a GCM and the reanalysis in the representation of

the different JC-WT probabilities. For this purpose, the JC-WT classifications obtained by

the GCMs and reanalysis are handled as discrete Probability Mass Functions (PMFs), whose

dissimilarity is measured through KL divergence (see e.g. Jiang et al., 2011; Sharma and Seal,

2019). The use of KL divergence in the comparison of two PMFs is more appropriate than

using a distance function on a metric space (e.g. Euclidean distance) due to multiple facts: the

PMFs may be differently distributed, have different sample sizes, different geometric centers or

contain extreme probabilities that may disrupt the comparison negatively (Weijs et al., 2010;

Jiang et al., 2011). Therefore, the KL divergence is not symmetric and it is not affected by any

biases derived from the probability of the samples, thus avoiding the more frequent JC-WTs

unduly influencing the evaluation results.

The KL divergence of a discrete probability distribution, P (x), with respect to another,

Q(x), both defined on the same probability space X (in our case, spanned by the JC-WTs) is

defined within the Information Theory (Cover and Thomas, 2006) as:

KL(P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(2.5)

The KL divergence is a measure of the statistical “distance” of the model distribution (P (x))

with respect to the reanalysis one (Q(x)). It is zero for a perfect match (P (x) = Q(x) ∀x ∈ X)

and takes positive values without an upper bound for increasingly different distributions.

2.3.3 Transition Probability Matrix Score

JC-WT persistence or, more generally, transition probabilities between two different types are

also important. They determine key temporal features such as spell duration, serving as an

effective tool for the assessment of the model’s ability to reproduce circulation pattern sequences

(Gibson et al., 2016; Hochman et al., 2019; Fernandez-Granja et al., 2021). In order to estimate

the differences among datasets (either among reanalyses or to evaluate GCMs), the probability
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of transition of one type into another is assessed and analyzed using a Transition Probability

Matrix (TPM), briefly described next. Let the discrete random variableXt represent a particular

JC-WT at time t, whose values xt ∈ {1, . . . ,K}, where K = 27 is the total number of WTs.

This variable is considered at two consecutive time steps, Xt−1 and Xt, to construct the K×K

transition probability matrix A, where Aij = p(Xt= j | Xt−1= i), representing the probability

of transitioning from WT i to WT j. Hence, each row of the matrix adds one,
∑
j

Aij = 1.

The TPM thus provides a visual “fingerprint” on how a given dataset represents the JC-WT

classification centered on a given grid cell.

In order to summarize the TPM information, the Transition Probability Matrix Score

(TPMS) is introduced. The TPMS allows assessing model performance (compared to reanalysis)

based on their TPM fingerprint, defined as:

TPMS =
∑
p∈A∗

|pm − po| (2.6)

where pm and po are the transition probabilities in the model and in the observational

reference (reanalysis), respectively, whose (absolute) difference is calculated considering the

subset of transition probabilities A∗ from the complete matrix (A), that are significantly different

from the reanalysis, following the two-proportion Z-Test. In order to include the “missing”

transitions in the score (i.e. either transitions that exist in the reanalysis but are never simulated

by the model, or transitions that are simulated by the model but do not occur in the reanalysis),

these are assigned a zero probability (i.e. either pm = 0 or po = 0) and included in the A∗ subset.

As a result, the larger the departure from zero (perfect agreement), the larger the dissimilarity

of the TPM fingerprints between the GCM and the reanalysis.

2.3.4 Two-Proportions Z-Test

The Two-Proportions Z-Test is used to assess statistically significant differences between models

and reanalysis. It is used for proportions, which in this case arise from relative frequencies

(proportion of time steps classified in a given JC-WT) and transition probabilities (proportion

of time steps in JC-WT i with transition to JC-WT j). The test statistic takes into account

the potentially different sample size in the model and reanalysis data. This test was performed

for each combination of JC-WT ℓ, season s and model m, using a 95% confidence to establish

significant probability or relative frequency differences. This parametric test is used to identify

significant differences in their resulting weather type frequencies.
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2.4 Estimates of future climate change

2.4.1 Global Warming Levels

Global Warming Levels (GWLs) are the basis for a climate change approach that quantifies

impacts and responses as a function of specific thresholds in Global Surface Air Temperature

(GSAT) relative to a pre-industrial baseline, typically 1850–1900. This method differs from

traditional fixed period-based analyses by using a temperature increment axis instead, allowing

a more direct and policy-relevant connection to climate targets such as those specified in the

Paris Agreement (Iturbide et al., 2022; Seneviratne et al., 2021). This framework enhances

comparability across emission pathways, climate models and disciplines, thus enabling inter-

disciplinary assessments of risks and responses. For example, in Chapter 1 of the IPCC AR6

report (“Framing, Context and Methods”, IPCC, 2021), GWLs are introduced to support a

single analytical structure across Working Groups I, II and III, that facilitates homogeneous

risk assessments and the synthesis of their reported outcomes.

Methodologies based on GWLs typically obtain the 20 or 30-year running means of

GSAT during the 21st century (Vautard et al., 2014; Nikulin et al., 2018), and identify the

first time slice that it surpasses predefined warming levels (e.g. +1.5°C, +2°C, +3°C or

+4°C) above the pre-industrial period, for each individual model. Once these time slices are

estimated, they are used to extract anomalies of regional climate variables (e.g., precipitation,

temperature extremes, circulation indices) compared to a defined common baseline period

(Seneviratne and Hauser, 2020; Diez-Sierra et al., 2023). In order to implement these

GWLs from GCMs, GSAT data is retrieved from the public IPCC ATLAS github repository

(https://github.com/SantanderMetGroup/ATLAS/tree/devel/datasets-aggregated-regionally/

data/CMIP5/CMIP5 tas landsea for CMIP5 and https://github.com/SantanderMetGroup/

ATLAS/tree/devel/datasets-aggregated-regionally/data/CMIP6/CMIP6 tas landsea for

CMIP6). Note that the GSAT signal over land and sea is estimated.

An advantage of this methodology comes from the empirical scaling relationships found

between regional climate impacts and global warming, which has been found for multiple vari-

ables for both CMIP5 and CMIP6 model ensembles. Although GWLs are calculated globally,

Seneviratne and Hauser (2020) introduced the concept of “regional climate sensitivity” as the

change rate of a regional climate variable (e.g. precipitation) per degree of global warming. This

approach reveals quasi-linear and often robust relationships across world regions. However, the

literature also notes significant multi-model spread in these responses, especially for circulation

patterns, highlighting the need for robust statistics for multi-model ensembles and detection of

https://github.com/SantanderMetGroup/ATLAS/tree/devel/datasets-aggregated-regionally/data/CMIP5/CMIP5_tas_landsea
https://github.com/SantanderMetGroup/ATLAS/tree/devel/datasets-aggregated-regionally/data/CMIP5/CMIP5_tas_landsea
https://github.com/SantanderMetGroup/ATLAS/tree/devel/datasets-aggregated-regionally/data/CMIP6/CMIP6_tas_landsea
https://github.com/SantanderMetGroup/ATLAS/tree/devel/datasets-aggregated-regionally/data/CMIP6/CMIP6_tas_landsea
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emergent signals (James et al., 2021).

In the context of this Thesis, near-surface circulation changes are analyzed using a GWL

approach. Regional climate sensitivity plots are used to illustrate the relationship between a

specific climate variable or derived climate index (in this case, future anomalies in the WTs

frequencies) and global warming, as described by Seneviratne and Hauser (2020) and Diez-Sierra

et al. (2023). These plots have also been used by the IPCC to assess the regional sensitivity to

global warming in the Interactive Atlas (Gutiérrez et al., 2021, http://interactive-atlas.ipcc.ch),

referred to as GWL scaling plots (or simply GWL plots hereafter).

2.4.2 Time of Emergence

Time of Emergence (ToE) is a widely used concept in climate science that refers to the point

at which a climate change signal becomes statistically prominent from the background noise

of natural climate variability (Hawkins and Sutton, 2012). That is, the signal would show an

anthropogenically driven trend for the specific variable. Following Seneviratne et al. (2016),

ToE is defined as the first time a projected anomaly exceeds a threshold related to the standard

deviation of historical variability, and remains consistently beyond that threshold over time.

This criterion ensures that the emergence is not simply a transient excursion due to variability,

but reflects a sustained shift.

As introduced in IPCC AR6 (IPCC, 2021), ToE is closely related to the concepts of detection

and attribution. It shows the point in time when the “forced” climate signal emerges from the

envelope of internal variability. In this context, “signal” refers to long-term trends driven

by external forcings (e.g., greenhouse gas emissions), and “noise” refers to the internal and

unforced variability of the climate system. This concept can be applicable to a wide range of

climate variables, from global temperature anomalies to regional-scale precipitation patterns,

extreme events, or circulation changes. For example, Kirchmeier-Young et al. (2019) use ToE

to identify the GWL at which a significant anthropogenic signal appears first in the probability

of the occurrence of extreme temperature and precipitation events, based on large ensembles

of climate models. Kirchmeier-Young et al. (2019) also address the importance of spatial and

temporal scale in determining ToE. They demonstrate, using perfect-model large ensembles,

that emergence tends to occur earlier for variables averaged over larger areas or longer periods,

due to improved signal-to-noise ratios. For instance, large-scale temperature metrics show

earlier emergence compared to local precipitation extremes, which are noisier and more subject

to internal variability. ToE is applied in this Thesis to evaluate the emergence of signals of

JC-WTs frequencies.

http://interactive-atlas.ipcc.ch
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2.5 Software and computing resources

All the software used and implemented to achieve the objectives of this Thesis relies on

R programming language (R Core Team, 2020). In addition to some libraries and functions,

this Thesis builds mainly on climate4R (C4R; Iturbide et al., 2019), a bundle of R packages

developed by the Santander Meteorology Group. C4R is an open-source software framework

available on GitHub3. GitHub is a web-based platform used for version control and collaborative

software development, and is also the main tool to contribute to the C4R framework. It allows

multiple people to work on projects simultaneously, track changes, and manage different versions

of their code. Software developers use it extensively to host and review code, manage projects,

and build software together. It integrates with Git, a distributed version control system, to

provide powerful collaboration features and tools for developers.

The C4R framework emerged as an increasingly used R-based environment (R Core Team,

2020), oriented towards climate services. It aims to gather under a single software the various

procedures needed in climate studies, from data access to processing and visualization, designed

for a broad range of climate data users.

The structure of the C4R environment is outlined in Figure 2.3. This environment is compat-

ible with two basic types of climate data structures: gridded (or grid-boxes) and station-based

(point locations). All datasets or grids (whether observational, reanalyses, seasonal forecasts,

or climate projections) accessible through C4R follow a consistent and compatible metadata

structure. Moreover, C4R is compatible with NetCDF (Network Common Data Form), which

is a data format widely used in climate science to store and share information. NetCDF allows

researchers to organize gridded climate data in a structured way, including helpful metadata

(as units or coordinates), making them standard and reusable.

Thus, C4R constitutes a powerful framework for handling climate data, offering nearly 100

functions distributed across four core packages: loadeR (Cofiño et al., 2018; Iturbide et al.,

2019), mainly focused on climate data access; transformeR (Iturbide et al., 2019), which pro-

vides tools for data transformation, manipulation, and conversion, among other capabilities;

downscaleR (Bedia et al., 2020), which focuses on statistical downscaling and bias correction

techniques; and visualizeR (Fŕıas et al., 2018), for visualizing climate data. Moreover, sev-

eral additional packages are fully integrated into C4R for specific application domains, such

as species distribution modeling for ecological studies (Iturbide et al., 2018), the calculation

of climate indices for drought or fire risk analysis (e.g. Bedia et al., 2018), and a specialized

module for metadata annotation of climate products (Bedia et al., 2019). In particular, this

3https://github.com/SantanderMetGroup/climate4R

https://github.com/SantanderMetGroup/climate4R
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Figure 2.3: Schematic overview of the climate4R (C4R) working environment, which consists of three
layers: (a) Climate Data Services based on NetCDF-Java and THREDDS to load local or remote data, in-
cluding datasets from the Santander Climate Data Service (User Data Gateway, UDG); (b) A core of basic
R packages for data access and post-processing, composed of four main packages for data loading, transfor-
mation, downscaling and bias adjustment, and visualization. These core packages form the foundation for
additional sector-specific impact study packages, thereby extending C4R functionalities to specific appli-
cations. (c) External packages, connected via functions adapted to the C4R data model. (d) Additional
climate packages that provide extended functionality, including metadata tracking (“provenance”) and
unit control and transformation (based on the UDUNITS software). Arrows indicate possible data flows,
and blue shading highlights internal developments. All components are distributed under the GNU General
Public License. Logos of THREDDS, NetCDF-Java, and UDUNITS are courtesy of UCAR / Unidata.
The R logo is © 2016 The R Foundation. The RDF icon used by METACLIP is © 1994–2006 W3C. This
figure is taken from the official C4R repository at https:// github.com/SantanderMetGroup/ climate4R.

Thesis makes extensive use of loadeR, transformeR, geoprocessoR (for data geo-processing)

and visualizeR.

Regarding the computing resources used in this Thesis, large computing and storage re-

sources were required for the data curation, calculation of JC-WTs classifications and postpro-

cessing. The research group hosting this Thesis, i.e. the Santander Meteorology Group, has

access to its own computing and storage infrastructure, the Santander Climate Data Service

(SCDS). This service, which includes a node of the Earth System Grid Federation (ESGF)

and is part of the Spanish node of the IPCC Data Distribution Center, makes use of the high

performance infrastructure owned by the University of Cantabria (with a computing capacity

of 512 cores and 2PB of storage) and allows external users to transparently access and process

climate data.

https://github.com/SantanderMetGroup/climate4R
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Contribution to the JC-WT methodology

Section 2.2 introduces the concept of JC-WTs, explaining its methodological basis, historical

evolution, and providing examples of its applications, as well as emphasizing their relevance in

the broader context of atmospheric variability and climate change research. In this Chapter,

my contributions to the Jenkinson-Collison Weather Typing (JC-WT) classification method for

atmospheric circulation are presented, which are based on two manuscripts: Fernández-Granja

et al. (2023) and Fernández-Granja et al. (2024).

3.1 Exploring the limits of the JC-WTs applicability

3.1.1 Experiment setup

The first part of this Chapter (Sec. 3.1) examines the applicability and limitations of the method

on a global scale, including the Southern Hemisphere. This alone constitutes a contribution to

the method, as no previous study has applied JC-WTs comprehensively over all global locations,

particularly in the Southern Hemisphere where their application has seldom been explored

(Sec. 2.2). These results are based on SLP from ERA-5 reanalysis in 1979-2005 and global

coverage, which has been interpolated to a 2.5◦ regular grid (Sec. 2.1.2). In order to produce

the classification for the entire globe, the center of the cross is displaced from one grid-box

to another through all points of the reference 2.5◦ regular SLP grid within a band from 80◦S

to 80◦N. Note that grid-boxes within 90◦S − 80◦S and 80◦N − 90◦N are beyond the range

of computational applicability of the JC-WT method since the cross extends 10◦ north-south

from its center (Fig. 2.1). Note also that the z∓w coefficients from the JC-WTs equations (Table

2.2), included in the westerly shear vorticity estimation, are undefined at ψ = ±5◦ cross center

latitudes, and take nonphysical, negative values in between. Therefore, this latitudinal band

has been excluded from our calculations. Here, the method is intentionally pushed to its limits

in order to explore whether it can be applied anywhere between 30 and 70 degrees North or

45
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South, as was estimated by Jones et al. (2013), or even beyond (Fig. 3.1).

A ANE AE ASE AS ASW AW ANW AN NE E SE S SW W NW N C CNE CE CSE CS CSW CW CNW CN U

80ºN

66.5ºN

23.5ºN

5ºN
0º
5ºS

23.5ºS

66.5ºS

80ºS

Figure 3.1: Example of a single, 6-hourly record of the Jenkinson-Collison Weather Type catalogue
obtained from ERA-5, corresponding to the SLP state at {1979-01-01} 00:00:00 UTC. The 26 JC-WT
circulation types are indicated in the legend, ranging from purely anticyclonic (A) and its hybrids (ANE
to AN), pure directional (NE to N) and purely cyclonic (C) and its hybrids (CNE to CN). Type 27,
unclassified (U), is depicted in grey. For reference, dashed grey lines depict some latitudes such as the
Equator, the Tropic of Cancer (23.5◦N) and Capricorn (23.5◦S) and the Arctic and Antarctic Circles
(± 66.5◦), and they are also included in subsequent figures.

Two main aspects are addressed in order to investigate the suitability of the method for

all regions of the world: (1) the number of different weather types, accounting for the regional

circulation’s diversity, and (2) the occurrence of the unclassified (U) type, showing weak pressure

gradient with no clear vorticity behaviour, also known as barometric swamp (Grimalt-Gelabert

et al., 2013). For the diversity criterion, weather types attaining relative frequencies above 0.1%

are considered. This means that the specific WT must have 40 or more occurrences in the total

record of nearly 40,000 time steps (6-hourly data over 27 years, equivalent to approximately 1.5

annual occurrences). This threshold is consistent with Brands (2022b), who applied the same

criterion since some JC-WTs were found to occur with relative frequencies as small as 0.47%

even in “optimal” conditions, such as over the British Isles, where the method was originally

formulated (Perry and Mayes, 1998). In light of both measures (weather type diversity and

type U frequency) jointly considered, the aim is to obtain empirical evidence of the global

geographical boundaries for the applicability of the JC-WT classification.
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3.1.2 Worldwide diversity of the JC-WTs and presence of unclassified days

Number of WTs

JJA

DJF

Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Relative frequency of Unclassified

JJA

DJF

Year

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.2: Summary of the Jenkinson-Collison global classification calculated upon the SLP from
ERA-5 (6-hourly, 1979-2005), considering the whole annual series (top row) and DJF and JJA seasons
(rows 2–3 respectively). Left column: Number of weather types per grid-box with a relative frequency of
occurrence above 0.1%. Right column: Relative frequency of the Unclassified type (U) per grid-box.

Low diversity of WTs and frequent barometric swamp are here assumed to be indicative

of the method working at its theoretical limits. The global distribution of the total number of

distinct WTs (Fig. 3.2, left) shows a marked latitudinal gradient, with a decreasing diversity

of types towards the tropics. Conversely, the frequency of the U type (Fig. 3.2, right) exhibits

a sudden increase in the tropics, following a pattern similar to weather types diversity (left).

In general, the lower the diversity of types, the higher the frequency of the U type, with a

few regional exceptions, where reduced diversity coincides with small U-type frequencies. Such

exceptions are found year-round over Antarctica and the Tibetan Plateau; and to a lesser degree

also over Greenland and the southern Indian Ocean at mid-latitudes.
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Figure 3.2 reveals a remarkable empirical threshold of around 16 different types correspond-

ing to at least half the temporal records falling into the U type. This threshold is interpreted as

an applicability criterion in the following and is generally met polewards at the Tropics latitudes

on both hemispheres (±23.5◦), which extends the range of application suggested by Jones et al.

(2013), from 30◦ to 70◦.

The aforementioned thresholds exhibit seasonal excursions which affect the Mediterranean,

Middle-East and southwestern United States during JJA season (boreal summer), as well as the

mid-latitude eastern South Atlantic and eastern South Pacific for DJF (boreal winter). These

seasonal fluctuations go hand in hand with the seasonal shifts of the monsoon region and the

Intertropical Convergence Zone (ITCZ; Barry and Carleton, 2013), where local scale processes

of deep convection are predominant and may alter to some extent the applicability of the JC-

WT classification beyond the extra-tropics. Applying the method under these circumstances

makes little sense, since synoptic variability is, either missing at the considered scale, or it is

represented by other variables than SLP.

In the Mediterranean Basin, for instance, suitability is optimal during DJF (maximum JC-

WT diversity and a negligible U-type frequency), which is due to a southward shift of the

Atlantic storm tracks in combination with autochthonous cyclogenesis over the Mediterranean

Sea (see e.g. Fita et al., 2007). In JJA, however, the U-type frequency increases hand in hand

with a shrinking type diversity, hence compromising the usefulness of the classification during

this season.

Miró et al. (2020) used a modified version of the JC method, which combines the JC clas-

sification at the surface with an upper air classification based on 500 hPa geopotential height,

obtaining a better differentiation within the U type, for a small region in the Pyrenees. Further

research is needed for an overall and systematic application of the cited modified version, since

expert local knowledge is needed to fine-tune the parameters, hence preventing its automated

application in large-scale assessments.

In summary, for both hemispheres, the favourable area of application widens towards the

Equator in winter and retreats towards the respective pole in summer (Fig. 3.2).

3.2 Signature of JC-WTs in large-scale atmospheric circulation dynamics

3.2.1 Experiment setup

The second part of the Chapter presents an in-depth analysis of the physical links of the JC-

WT classification with major modes of atmospheric circulation (Sec. 3.2). In such analysis,
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intermediate links are found between continental-to-hemispheric and local scales of climate

variability, by means of the JC-WTs. We hypothesize that there is a significant link between

these indices and the JC-WTs. As they modulate large-scale circulation, they could influence

the frequency and configuration of JC-WTs. Therefore, incorporating them into the analysis

improves the physical interpretability of the classification results and supports the use of JC-

WTs in the process-based evaluation of GCMs (one of the goals of this Thesis).

Firstly, the influence of the Blocking Index (BI, Sec. 2.1.3) on JC-WTs is analyzed. For

every grid-cell in the previously described subdomains (ATL, EUR and RUS; Sec. 2.1.3), the

most frequent WT given a blocking day is selected. It is then tested whether this conditional

frequency is significantly different from the climatological (unconditioned) frequency for that

WT. To this aim, the two proportions Z-test implemented in the prop.test function from

the R package stats (v3.6.3, R Core Team, 2020) is used, considering a 95% confidence level.

For this matter, JC-WTs at 12-UTC from the 6-hourly series from ERA-Interim are retrieved

(because BI is calculated daily) for 1981-2005 at the domains previously described in Sec. 2.1.3.

Secondly, the association between teleconnection indices (Sec. 1.3.3) and JC-WTs is assessed by

performing a correlation analysis. For this purpose, monthly time series of teleconnection indices

(Sec. 2.1.4) and monthly frequencies for each WT are considered. For every grid-cell, the WT

with the highest significant Spearman’s correlation coefficient with a given teleconnection index

is selected, at annual, JJA (boreal summer) and DJF (boreal winter) timescales. Statistical

significance is tested by using the cor.test function from the R package stats (v3.6.3, R

Core Team, 2020), using a 95% confidence level. These results are based in 6-hourly JC-WTs

obtained from ERA-Interim in the region from 20◦N to 80◦N and 75◦W to 75◦E for the time

period 1979-2005.

3.2.2 Sensitivity of JC-WTs to blocking events

Blocking events may, in theory, be captured by the JC-WT methodology as the size of the

high-pressure anomaly produced by the blocking situation is comparable to the size of the

input “cross” of 16 SLP points used in the JC-WT approach (Fig. 2.2). Figure 3.3 shows the

composites of SLP anomalies conditioned on each of the three blocking centers (Sec. 2.1.3),

indicating distinct surface high-pressure signatures around the blockings in all cases. According

to Jury et al. (2019), the climatological probabilities of the ATL, EUR and RUS blockings in

the period 1981-2005 are around 0.13, 0.14 and 0.10, respectively.

In general, the characteristic spatial distribution of blocking frequencies has been described

in the literature as a bimodal geographical distribution with major peaks over the North Atlantic
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and eastern North Pacific in all four seasons (Croci-Maspoli et al., 2007; Pfahl and Wernli,

2012), with some secondary longitudinal discrepancies depending on the blocking detection

methodology and input variables (e.g. Pelly and Hoskins, 2003).

ATL EUR RUS

−7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5 6.0 7.5

Figure 3.3: SLP anomaly (hPa) during blocking conditions in the three subdomains considered in this
analysis, namely Atlantic (ATL, 30◦W-0◦E), western Europe (EUR, 0◦E-30◦E) and continental Europe
(RUS, 30◦E-60◦E). See Sec. 2.1.3 for more details on the three subdomains and blockings detection.

Figure 3.4 shows the spatial “fingerprint” of blocking on the JC-WT classification, as rep-

resented by the most frequent type in each grid-box of the Euro-Atlantic region conditioned on

blocking occurrence. It is then tested whether this conditional frequency is significantly different

from the climatological (unconditioned) frequency of that WT. If not statistically significant,

the result is hatched. As a result, the purely anticyclonic (A) type is most frequent in the three

subdomains under blocking conditions. In all of them (ATL, EUR and RUS panels of Fig. 3.4),

blocking events break the prevailing subpolar low-pressure conditions with the dominance of

type A ridges, that penetrates poleward. The low pressure situation is found in the upper left

panel of Fig. 3.4 (overall climatology of the most frequent JC-WT under no blocking conditions)

within the two parallel lines (indicating the latitudinal band 55◦N-65◦N) where blocking centers

are searched.

However, the A type predominance is not confined to these “source regions” but rather

forms a zonal circumpolar belt located at mid-to-high latitudes over the European continent,

which shifts southward to the sub-tropics over the Atlantic, thereby describing pronounced

latitudinal variations. This pattern is consistent with the spatial extent of the blocking centers

previously described in the literature (Croci-Maspoli et al., 2007; Pfahl and Wernli, 2012).

For EUR blocking events, anomalously positive A-type occurrence along this belt is significant

mainly over the eastern Atlantic-European region. For ATL and RUS blocking events, A-

type frequency is significantly positive in central-to-eastern Europe and around the Azores.

During RUS blocking events, E-NE type frequency is significantly positive over western Asia,

transitioning from hybrid anticyclonic types in this area (ASE, AS in Fig. 3.4-RUS).

Results show a significantly increased frequency of the purely anticyclonic (A) type condi-
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EUR RUS

Not Conditioned ATL

A ANE AE ASE AS ASW AW ANW AN NE E SE S SW W NW N C CNE CE CSE CS CSW CW CNW CN U

Figure 3.4: Climatological maps of the most frequent daily Jenkinson-Collison weather type under
different blocking conditions (period 1981-2005). Top left: Overall climatology of the most frequent JC-
WT, under no blocking conditions. Two parallel lines indicate the latitudinal band (55◦N-65◦N) where
blocking centers are searched for in the BI methodology (Sec. 2.1.3). Top right: most frequent JC-WT
conditioned on blocking events centered on the Eastern Atlantic (ATL). Bottom left: Same as before but
for the European subdomain (EUR). Bottom right: Same as before, but for the Eastern Europe subdomain
(RUS). White hatched pixels exhibit frequencies that are not significantly different from the climatological
(un) frequency after two-sided Z-test of proportions with a confidence level of 95%. White rectangles show
the three blocking subdomains (more details in Sec. 2.1.3).

tioned on the different blocking situations (32, 38 and 38% of days for ATL, EUR and RUS,

respectively) as compared to the A-type climatological (unconditioned) frequencies (around 14-

20% of days in the three subdomains, Fig. 3.5). Also, the purely cyclonic type (C) drops to a

marginal probability during the blocking events in the three subdomains.

Regarding the seasonal cycle of these JC-WT frequencies (Fig. 3.6), blocking events simul-

taneously enhance the A-type and reduce the C-type monthly frequencies, respectively. For

example, the probability of A type conditioned to blocking occurrence is 0.38 in September for

ATL, and this frequency is reduced to less than its 25% when taking into account all days in

the dataset (climatological, unconditioned frequency).

Additionally, considering their seasonal cycle, blocking events in ATL and EUR are more

likely to correspond to non-summer events, while blocking situations over RUS are relatively

more frequent in summer and therefore more closely associated with heat and drought-related

events. This is in agreement with other analyses on the seasonal distribution of blocking situa-

tions (Barriopedro et al., 2006; Lupo, 2021), which show a reduced activity during summer in

the Euro-Atlantic region, and an increase in the blocking frequency over eastern Europe (RUS)
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Figure 3.5: JC-WT frequencies for the three considered blocking domains: ATL, EUR and RUS.
Upper row: Climatological (unconditioned) frequencies for each JC-WT. Bottom row: JC-WT frequencies
conditioned on the three blocking events. Frequencies are calculated as the mean of all grid-cells within
each subdomain in the period 1981-2005. Panels within each blocking are arranged as in Fig. 2.2; see the
key in the lower right panel.

and western Asia (commonly referred to as the continental blocking sector). Here, it is shown

that this characteristic blocking seasonality has a direct influence on the prevailing monthly

JC-WTs, as illustrated in Fig. 3.6 for the pure types A and C.

These characteristic JC-WT configurations can be linked to specific regional climate events.

For example, the prevalence of cyclonic conditions in southwestern Europe and E-NE flow over

that part of the continent, as indicated by the most frequent JC-WT (Fig. 3.4-ATL), may be

often related to extreme cold events in winter. This pattern is well supported by the connection

between eastern North Atlantic blocking (ATL) and cold extremes in Europe, induced by the

northerly advection on the eastern flank of the block (see e.g. Sillmann et al., 2011; Buehler

et al., 2011). On the other hand, the increased relative frequency of continental blocking events

and increased anticyclonic (A type) frequencies over the RUS subdomain in summer (Fig.3.6)

can trigger heatwaves that affect vast areas of continental Europe and western Asia. A well-

studied example is the unprecedented Russian heat event of summer 2010, associated with a

persistent blocking event of these characteristics (Grumm, 2011).

Overall, these results highlight the sensitivity of the JC-WT classification to blocking events,

that leads to characteristic spatial and temporal patterns with a direct physical interpretation

in the resulting atmospheric configurations.
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Figure 3.6: Monthly JC-WT frequencies of types A (purely anticyclonic, upper row) and C (purely
cyclonic, lower row) for ATL, EUR and RUS subdomains (left, center and right columns respectively).
Frequencies are calculated similarly to Fig.3.5. The green line in each subplot corresponds to climato-
logical (unconditioned) frequencies and blue line corresponds to blocking-conditioned frequencies. These
monthly frequencies are relative to the maximum in each panel, indicated in the corresponding titles.

3.2.3 Sensitivity of JC-WTs to teleconnection patterns

The main modes of atmospheric variability in Europe (Sec. 1.3.3) also present distinct surface

pressure patterns, as shown, for instance, by the SLP anomalies during their positive phase

(Fig. 3.7). Annual anomalies exhibit the characteristic dipoles of NAO and SCAND patterns,

and the EA monopole west of the British Isles, with extended anomalies of opposite sign over

subtropical areas. Their seasonal cycle entails a northward shift of the patterns during the

summer season.

As with blockings, the JC-WT classification shows a remarkable sensitivity to teleconnec-

tion patterns. The spatial distribution of the most correlated JC-WT exhibits a strong seasonal

variability and distinct relationships with the three analyzed teleconnection indices, further re-

inforcing the idea of their complementarity in describing different aspects of European climate

variability (Fig. 3.8). JC-WTs capture the predominant spatial modes in each case providing

a characteristic signature for each mode of variability. For example, the characteristic dipole
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Figure 3.7: SLP anomalies (hPa) during positive NAO, SCAND and EA (in columns) phases for
year-round or season-specific values (annual, DJF and JJA, in rows) calculated from the ERA-Interim
reanalysis for 1979-2005.

structure of the NAO, with a low-pressure centre over Iceland, is well captured through the

highest correlation with the purely cyclonic type (C) over its centre and its associated hy-

brid types in the surroundings (Hurrell, 1995). The same holds for the Azores high centre,

represented by the anticyclonic type (A) and its related hybrids. At an intermediate lati-

tude between both centres, a predominance of the purely directional type W and associated

types occurs, characterizing the prevailing westerlies across the storm track. Correlations are

statistically significant over almost the entire Euro-Atlantic region if year-round data are con-

sidered (Fig. 3.8, upper left panel). Furthermore, the NAO systematically contracts northward

in summer and expands southward in winter (Barnston and Livezey, 1987), a displacement

that is accordingly captured by the spatial pattern of the prevailing JC-WTs in those sea-

sons (Fig. 3.8, see JJA and DJF). During winter, the links over eastern North America, the

North Atlantic Ocean and Europe (the core NAO region hereafter) remain significant (compare

with https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.loading.shtml). Dur-

ing summer, the remote links over the subtropical area right below the core NAO region are

lost, as well as the significant links in Eastern Europe/Western Asia. Additionally, unclassified

(U) type becomes more frequent (as shown in Sec. 3.1 and in line with the findings by Otero

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.loading.shtml
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et al., 2018) and significantly stands out as the most correlated with summer NAO over the

central-eastern part of the Mediterranean Sea.

JJA JJA JJA

DJF DJF DJF

Year Year Year
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NAO SCAND EA

Figure 3.8: JC-WT yielding the highest positive Spearman product-moment correlation coefficient with
the North Atlantic Oscillation (NAO), Scandinavian pattern (SCAND) and East Atlantic pattern (EA).
The correlations are obtained on a monthly basis considering the index value for each month and the
monthly frequencies for each WT. Results are displayed for the annual series, winter (DJF) and summer
(JJA). White hatching hides grid points with non-significant correlation for a confidence level of 95%.

Interestingly, the association of EA and SCAND indices with the JC-WTs is restricted

to a smaller region than for NAO (Fig. 3.8, central column). The JC-WTs associated the

strongest with the SCAND likewise reflect the core area for this index, forming a tripole of

cyclonic types located in southwestern Europe and west Siberia, contrasted by anticyclonic

types over Scandinavia. This pattern can be found in any of the seasons considered, showing

a characteristic seasonal displacement, consistent with the SCAND seasonal cycle (Bueh and

Nakamura, 2007). In addition, significant centers of action as depicted by JC-WT cyclonic types

are detected over Anatolia and the western Sahara desert. This center appears in all seasons and,

to the best of my knowledge, has no direct reflection in the Z500 loading patterns Barnston and

Livezey (1987) (compare with https://www.cpc.ncep.noaa.gov/data/teledoc/scand map.shtml).

A secondary SCAND center of action, found only in summer, consists of anticyclonic types to

the south and southwest of Iceland.

https://www.cpc.ncep.noaa.gov/data/teledoc/scand_map.shtml
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The spatial pattern of EA is well represented by the predominant JC-WTs depicted in

Fig. 3.8 (right column). The statistically significant correlation progressively declines in summer

over Europe and western Asia, in turn unveiling a significant link with the classification over the

North Atlantic Ocean. The correlation pattern depicts a southward-shifted NAO-like pattern

having its largest extension during winter, revealing, on the one hand, a zonal belt of anticyclonic

types ranging from the subtropical North Atlantic to eastern Europe, and, on the other hand,

a cyclonic belt further north, extending from the central North Atlantic to western Siberia. In

summer, this pattern is largely reduced and restricted to the subtropical North Atlantic and

south of Iceland.

Overall, these results demonstrate physically consistent and interpretable links between

NAO, SCAND and EA teleconnection indices with the synoptic-scale variability as described

by the JC-WT classification, as reflected by characteristic weather type configurations associated

with specific states of these major modes of atmospheric variability.

Similarly, as an extrapolation of the previous analysis to regions out of the Euro-Atlantic

domain, high and consistent correlations with JC-WTs are also found for teleconnections af-

fecting the North Pacific and the Southern Hemisphere (Fig. 3.9). Teleconnections like the

Pacific–North American Pattern (PNA; Hurrell, 1995) and the Antarctic Oscillation (AAO;

Gong and Wang, 1999) show strong significant correlation with JC-WTs in the core area for

these indices. In particular, PNA forms a dipole of anticyclonic-cyclonic types located in the

North Pacific Ocean; and, AAO is constructed by a westerly-type-belt around the Antarctic

Circle.

This outcome reinforces the robustness and consistency of the JC-WT classification in cap-

turing large-scale patterns across different regions in both hemispheres, thereby strengthening

the Euro-Atlantic-focused findings discussed above. Although these results fall outside the

main scope of this chapter, which is primarily oriented towards GCM selection activities within

EURO-CORDEX, it is worthwhile to highlight the strong performance of the method in other

regions of the globe.
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Figure 3.9: Jenkinson-Collison weather type yielding the strongest positive correlation coefficient with
the PNA and AAO indices at each grid-box of the North Pacific region and between 50◦ and 70◦ South,
respectively. PNA data were retrieved from https://www.cpc.ncep.noaa.gov/ data/ teledoc/ pna.shtml,
and AAO data were extracted from https://www.cpc.ncep.noaa.gov/ products/ precip/CWlink/ daily ao
index/ aao/ aao index.html. Non-statistically significant correlations (at a confidence level of 95 %) are
marked in white. Monthly JC-WT frequencies and index values are taken into account. Here JC-WTs
are derived from the ERA-5 reanalysis (1979-2005).

https://www.cpc.ncep.noaa.gov/data/teledoc/pna.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao_index.html
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao_index.html
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4

Observational uncertainty in atmospheric circulation

Given the sparse network of stations measuring large-scale atmospheric circulation variables

(such as pressure at different height levels) worldwide, reanalyses stand out as the best tools

to analyze climate variability and change (Sec. 1.2.3). This Chapter describes the main results

of Fernández-Granja et al. (2023) and Fernandez-Granja et al. (2022) about the effect of the

choice of the reanalysis dataset in the JC-WT classification.

4.1 Experiment setup

The global JC-WT classification is estimated from five reanalysis products (Sec. 2.1.1) using

the 6-hourly SLP data. Table 2.1 summarizes their features and provides references for further

details. Prior to the JC-WT calculation and in order to intercompare all reanalyses, their SLP

fields are interpolated to a common 2.5◦ regular longitude-latitude (Sec. 2.1.2). Their common

27-year period 1979-2005, coincident with the AR5 CMIP5 historical baseline (Taylor et al.,

2012), is considered. Bear in mind that ERA-20C is produced through the assimilation of just

SLP and marine winds, being therefore not fully comparable to the others, which assimilate a

wider range of surface, upper-air and satellite observations. However, it has also been included

in the intercomparison experiment for the sake of diversity. The reanalysis uncertainty is here

analyzed by following an “all-against-all” validation scheme, so every reanalysis have been

validated against each other.

The JC-WT method was conceived for extratropical applications since significant pressure

gradients within the cross, required for a meaningful classification, are expected to occur mainly

in these latitudes. Consequently, Jones et al. (2013) recommended the JC-WT classification

for any mid-to-high latitude region (approximately from 30◦ to 70◦). However, the JC-WT

classification is obtained here beyond this range, following the results in Chapter 3, in order to

achieve a more complete picture of the observational uncertainty worldwide.

59
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Discrepancies in the resulting JC-WT classification among reanalyses are estimated con-

sidering the relative bias of their WT frequencies (Sec. 2.3.1). Annual and seasonal relative

biases for each WT are computed between all pairs of reanalyses in Table 2.1. The statistical

significance of these differences is taken into account using a two-proportions Z-test, with the

null hypothesis that the relative frequencies of a given type for two different reanalyses are the

same.

Moreover, reanalysis differences in their representation of transition probabilities are evalu-

ated with the TPM Score (Sec. 2.3.3), envisaged to provide a quantitative measure of dissimi-

larity between two transition probability matrices. As a result, the larger the TPMS departure

from zero (perfect agreement), the larger the dissimilarity of the TPM fingerprints between the

reanalyses for a given center grid cell.

4.1.1 Regional synthesis

A regional assessment is presented using the latest set of climatic reference regions defined by

the IPCC (Iturbide et al., 2020b) in order to provide a synthesized overview of the results of this

Chapter (Fig. 4.1). In favor of avoiding the inclusion of unsuitable areas for the application of

the JC-WT methodology (based on the findings presented in Chapter 3) and providing a more

meaningful summary for regional intercomparison, the intertropical range (23.5◦S − 23.5◦N) is

excluded from the original polygon dataset. As a result, some of the original IPCC regions are

modified to exclude this area (see the blue polygons in Fig. 4.3). The IPCC regions affected

by this modification are indicated with an asterisk throughout the text. The modified polygon

layer is included for reproducibility of the results (https://doi.org/10.5281/zenodo.15847558,

more details in Sec. 7.3.2).

4.2 Sensitivity of JC-WT classification to the temporal frequency of Sea-

Level Pressure

A further consideration regarding the uncertainties in the JC-WT classification associated

with SLP involves the temporal resolution of the variable. The choice of temporal resolution and

time frequency, such as daily-mean, instantaneous at 12 UTC (original Lamb WT configura-

tion), or 6-hourly values, can influence both absolute frequency distributions and the transitions

between weather types. Hence, this issue must be carefully considered, as it may significantly

affect the outcomes of the evaluation. In this regard, it can be hypothesized whether a higher

temporal resolution will increase the variability of the transitions between JC-WTs, allowing

https://doi.org/10.5281/zenodo.15847558
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Figure 4.1: Updated AR6 IPCC reference regions (top panel); land regions are in grey shading and
oceanic regions in blue shading. The Caribbean (CAR), Southeast Asia (SEA) and the Mediterranean
(MED) regions are considered both land and oceanic regions, so they have blue and gray shadings. Indexes,
acronyms and full names of the regions are enumerated in the table in bottom panel. Source: Iturbide
et al. (2020b).

for a more accurate identification of short-time transitional types that would otherwise be mis-

classified in daily-mean fields; or, conversely, it will reduce variability coming at the expense

of certain level of redundancy when describing the transition probabilities of more persistent

types.

As an example, Fig. 4.2 illustrates the transition probability matrices (TPMs, Sec. 2.3.3)

of JC-WTs derived from ERA-Interim SLP data at three different time frequencies (6-hourly,

daily-mean, and instantaneous at 12 UTC, respectively), for the original Lamb WT location

over the British Isles (55°N, 5°W). The number and diversity of transitions increase notably

when using daily-mean or 12 UTC data, including many low-probability transitions that are

not presented with 6-hourly data. Most of those transitions might be considered spurious,
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Figure 4.2: Transition Probability Matrices (TPM, Sec. 2.3.3) derived from ERA-Interim for the JC-
WTs classification at 5ºW-55ºN (i.e. center of the “cross” located over the British Isles), considering
different time resolutions for the SLP (period 1981-2010). Each element of a matrix, Aij, represents the
probability of going from JC-WT in row i to JC-WT in column j. Therefore, the persistence probability
of a JC-WT can be found by looking at the diagonal of the matrix. Non-observed transitions have been
blanked to differentiate them from low-probability ones.
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arising from suboptimal temporal aggregation (daily means) or sparse sampling (single-time

snapshots), and do not reflect real synoptic transitions. This effect is analogous to that found

in tropical cyclone tracking, where higher temporal sampling significantly reduces positional

uncertainty (i.e. Voskresenskaya et al., 2022). Therefore, where available and preferably, 6-

hourly SLP data might provide a more faithful and physically consistent representation of

synoptic-scale circulation variability and transitions.

4.3 Effect of observational uncertainty on JC-WT classification

Another source of uncertainty in the intercomparison of JC-WTs classifications across dif-

ferent datasets (reanalyses and GCMs) can arise from discrepancies in their SLP fields, derived

from the different pressure reduction procedures, highly sensitive to altitude and dataset’s res-

olution (Sec. 1.3.1). In this regard, differences in the SLP fields between reanalyses (ERA-5 is

used as reference) are shown in Figures 4.3 and 4.4.
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Figure 4.3: Difference in annual mean SLP (Pa) for four reanalyses with respect to ERA-5 (1979-2005).
Blue polygons depict the modified IPCC-AR6 regions (Sec. 4.1.1). The modified IPCC region polygon
layer (blue lines) with the region identification codes are depicted in the top-left. Note that the original
IPCC regions that have been modified to exclude the intertropical range (see Sec. 4.1.1) are marked with
an asterisk.

The problematic regions are those where the pressure reduction algorithms usually yield

worse results due to the strong orographic influence. The different reanalyses apply varying

pressure reduction schemes and orographic representations. These methodological differences

lead to annual discrepancies of up to approximately 5 hPa in mountainous and high-elevation
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regions such as the Andes, Himalayas, Greenland, Antarctica or even the Rocky Mountains

(Fig. 4.3), directly affecting the robustness of SLP-based classifications. Furthermore, these

discrepancies increase when looking at seasonal scales (up to 10 hPa in JJA or DJF in high-

elevation regions, according to Fig. 4.4). Therefore, caution is required when interpreting cir-

culation diagnostics in areas with complex orography, especially when comparing results across

multiple datasets or model outputs.
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Figure 4.4: As Fig. 4.3, but for seasonal mean SLP differences between JRA-55 and ERA-5 (1979-
2005).

As different reanalysis present differences in their SLP fields, these are expected to propagate

to their JC-WT. Thus, their choice might eventually affect model evaluation experiments.

Next, reanalyses are compared in terms of their transition probability matrices (TPM). First,

in order to illustrate how the TPM works (Sec. 2.3.3), a comparison of the TPM from several

reanalyses is presented for the specific location over the Brithis Isles (55◦N-5◦W, Figs. 4.5 and

4.6). The TPM of ERA-Interim (Fig. 4.5, panel top-left) provides the reference fingerprint of

the transitions among JC-WTs and the persistence probability of a given JC-WT (diagonal

cells). As expected, the largest probabilities of remaining in the same state are associated with

the most frequent JC-WTs. In particular, more than 60% (50%) of the days with type A (C)

stay in the same JC-WT, followed by persistent SW, W, SE and E types (all above 30%). The

most frequent transitions to a different state are from ANE, AN and ANW to A type and from

CSE, CS, CSW to C type, all with probabilities above 40%. ASE to SE and AS to S type

complete the picture of most common transitions. This pattern is in general very similar in
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the remaining reanalyses used as alternative references, with the largest deviations occurring in

ERA-20C (see Figs. 4.5 and 4.6).

In Figure 4.7, discrepancies in all weather type transitions in all grid-boxes over the globe

for all reanalyses are estimated in terms of TPMS (Sec. 2.3.3) relative to ERA5. As expected,

ERA-20C and ERA-Interim are more similar to ERA-5 than NCEP and JRA-55, as revealed

by the TPMS (Fig. 4.7 and Fig. 4.8). For the latter two datasets, large TPMS values are

obtained over Greenland (GIC), Antarctica (WAN, EAN), Northern Central-America (NCA*),

West North-America (WNA), Central North-America (CNA), central Asia (WCA, ECA, EAS),

Southern Asia (SAS*) and the Tibetan Plateau (TIB), where values larger than 10 are found. In

the Southern Hemisphere, large discrepancies between reanalyses are found over South America

(SWS* and SES regions). The above mentioned regions present complex orography, with high-

altitude mountain systems such as the Himalayas, the Andes and the Rocky Mountains or thick

ice sheets like Antarctica and Greenland. The discrepancies found in these regions of complex

terrain are likely related to the differences in the SLP fields in the reanalyses (Fig. 4.3). They

can be particularly critical for Antarctica, which is mostly ice sheet several kilometers high.

Therefore, the poor representation of the SLP by the different reanalyses prevents from the

application of the JC-WTs classification in these regions, as shown by their high TPMS values

(Fig. 4.7). TPMS calculated for the remaining pairs of reanalyses can be found in Fig. 4.8.

The seasonal comparison between JRA-55 and ERA-5 (Fig. 4.9) generally reveals a sea-

sonal march of the largest TPMS values towards the pole of the summer hemisphere (Northern

Hemisphere in JJA and Souther Hemisphere in DJF). This is similar to the results found for

type diversity and U-type frequency (Sec. 3.1), where the ITCZ (Barry and Carleton, 2013)

may determine the JC-WT applicability to some point in that oscillating latitudinal band. In

particular, the seasonal TPMS values for North Central-America (NCA*) and the Sahara re-

gion (SAH*) are larger than the annual ones (Fig. 4.9). In the Mediterranean (MED), Central

North-America (CNA) and in West North-America (WNA), the TPMS values are the largest

in JJA and lowest in DJF. Reflecting the aforementioned seasonal march, the TPMS values for

South South-America (SSA), West South-Africa (WSAF*), East South-Africa (ESAF*), Mada-

gascar (MDG*) and Central Australia (CAU) reach their maximum in DJF, with a much larger

magnitude than in any other season.

According to Fig. 4.9, moderately high TPMS values are found throughout the year in the

mid-latitude Indian Ocean, which extend to the eastern South Atlantic and eastern South Pacific

during DJF (austral summer), particularly affecting the Southern-Ocean (SOO) region. These

differences might be caused by scarce observations in that area (and the resulting increase in
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Figure 4.5: Transition probability matrices of the reanalysis products derived from instantaneous 12-
UTC JC-WT classifications. Non observed transitions have been blanked to differentiate them from low-
probability ones (see also Fig. 4.6). The transition probabilities of each reanalysis are compared against
ERA-Interim, used a reference to calculate the TPMS (in each panel’s title). Transition probabilities
significantly different from those observed in ERA-Interim are indicated by crosses. In addition, JC-WT
transitions present in each reanalysis but not observed in ERA-Interim are indicated by empty circles.
Likewise, solid circles indicate JC-WT transitions not present in each reanalysis, but that occur in ERA-
Interim.
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Figure 4.6: Detail of missing transition probabilities, as captured by the different reanalysis products
used in this study.

reanalysis uncertainty) and, noteworthy, they again coincide with a relatively low type diversity,

as reported in Sec. 3.1.

The large TPMS values found along the margins of the East Antarctic Ice Sheet (EAIS)

are spatially aligned with an abrupt shift of the easterly katabatic winds blowing down the ice

sheet to quasi-persistent westerlies at mid-latitudes, driving the Antarctic Ocean divergence

zone (Davis and McNider, 1997). This singular regional modulation of the wind field might

be resolved in a distinct manner by the two reanalyses, and so is the pressure reduction to

mean sea-level over the ice sheet itself. Notably, the TPMS values over the West Antarctic

Ice Sheet are systematically lower than those over the EAIS (compare WAN to EAN regions,

respectively).

4.3.1 Regional assessments

In order to shed some light on regional TPMS, the relative biases of WTs frequencies for each

IPCC region are investigated. These biases reveal misrepresentations of the synoptic conditions

and their frequencies by the different reanalyses. As an illustrative example, results for the
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TPMS reanalysis vs. ERA5 (as ref.)
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Figure 4.7: Annual Transition Probability Matrix Scores (TPMS, Sec. 2.3.3) of NCEP, ERA-Interim,
ERA-20C and JRA-55 against ERA-5 (used as reference).

Mediterranean (MED) region are shown (Fig. 4.10). The respective results for the remaining

IPCC regions can be obtained by following the working example on analysis reproducibility

Notebooks (Sec. 7.3.2).

Results show biases of different magnitude and sign, depending on the reanalysis. The ma-

jority of statistically significant differences (marked with asterisks) occur for the most frequent

WTs (Fig. 4.10, see WTs frequencies for ERA-5 in the right panel). The largest and most sig-

nificant biases are found during summer, which coincides with high TPMS values (Fig. 4.9). For

the least frequent weather types, reanalyses do not exhibit significant differences with respect

to ERA-5, especially in spring, autumn and for the annual results. The unclassified type is

the most frequent WT in all seasons except in winter. It exhibits significant differences among

reanalyses in all seasons, especially during summer and autumn.

The consistency among reanalyses for the MED region is next analyzed in detail by compar-

ing their respective pairwise transition probability matrices (Fig. 4.11), using the TPMS as a

complementary evaluation measure of observational dissimilarity in addition to biases in WTs

frequencies (Fig. 4.10). In terms of annual TPMS (not shown), a good agreement among reanal-

ysis is found in general, similar to the results attained for winter (Fig. 4.11, lower right panels),

spring and autumn. The best agreement between all reanalyses is found in winter with the
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Figure 4.8: Annual TPMS calculated between different reanalysis pairs (specific pairs are found in the
sub-panels titles). Blue lines show the IPCC regions, whose abbreviations are depicted in the top-left
sub-panel.

lowest TPMS values (< 4). These results are consistent with Brands (2022b), who found simi-

lar results for this region when comparing JC-WT frequencies from JRA-55 and ERA-Interim

using the mean absolute error. Higher TPMS values are found all along the Mediterranean

Sea and the Iberian Peninsula in summer for all pairs of reanalyses. The high TPMS values

are located mainly in the southern part of the region, showing a marked latitudinal gradient

to lower TPMS values northward. This TPMS pattern aligns with the results found for type

diversity and U-type frequency (Sec. 3.1).

The differences in the transitions of the weather types through the TPM are examined

choosing two arbitrary grid boxes with different behaviors, one over the Balearic Islands and

another over Santiago de Compostela (Fig. 4.12). For brevity, results for two distinct reanalyses
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TPMS JRA vs ERA5
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Figure 4.9: Seasonal Transition Probability Matrix Scores (TPMS, Sec. 2.3.3) of JRA-55 reanalysis
against ERA-5 (used as reference).

are shown, namely ERA-Interim against NCEP in summer (Fig. 4.12, upper panel) and winter

(Fig. 4.12, lower panel). Generally, the most likely transition for most JC-WTs is to remain in

the same state. This is not the case for the Balearic Islands in summer (top-left panel), where

most of the transitions occur from or to the U-type. Consequently, the U-type is found to be the

most frequent type in summer (approx. 50%, Fig. 3.2). As a result, the TPMS from this TPM

compared to the NCEP counterpart is 12, considerably larger than the other TPMSs displayed

in Fig. 4.12.

The discrepancies between ERA-Interim and NCEP classifications in summer can be ex-

plained by the dissimilarities in the six intermediate parameters involved in the JC-WT clas-

sification (Table 2.2). As illustrated in Fig. 4.13, in summer the six parameters show a lower

correlation between reanalyses in the Mediterranean Sea compared to other locations of the

domain. The correlation coefficients are particularly low for the southerly flow (s) and the

total flow (f , norm of southerly and westerly flow). In this example (using ERA-Interim and

NCEP), the meridional component of the pressure gradient (s) emerges as the main responsible

for the discrepancies between the reanalyses in terms of the resulting classifications, more than

the zonal component (w) and the shear vorticities (zw, zs, z), which exhibit greater agreement.

However, the degradation of parameter correlation may vary in magnitude and importance be-
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Figure 4.10: Left: Annual and seasonal relative biases of weather type frequencies (in rows) for the dif-
ferent reanalyses (in columns within each season) against ERA-5 (used as reference) for MED. Asterisks
indicate statistically significant biases following the two proportion Z-test (Sec. 2.3.4). Right: Annual
and seasonal regional weather type frequencies as represented by ERA-5 for MED, used as reference for
the relative biases on the left. Each box represents the spatial variability of each type frequency within
MED, where the box upper/lower boundaries show the inter-quartile range and the lower/upper whiskers
extend to the 10th and 90th percentiles respectively. Circles indicate the median frequency.

tween reanalysis pairs. This finding suggests that small differences in the SLP fields can lead

to significant differences in the JC-WT characteristics under situations of very weak pressure

gradients, as reflected by the discrepancies of the intermediate parameters.

4.3.2 Relationships between observational uncertainty and JC-WT applicability

All things considered, a relationship between three factors is found, namely large TPMS values

between reanalysis pairs (Fig. 4.7 and 4.9), a small number of WT (i.e. low WT diversity)

and a high frequency of the U-type (Fig. 3.2). These three factors should be analyzed together

because the large TPMS in some regions might come from the limitations in the suitability of

the JC-WT classification. In regions where the classification method is suitable, the TPMS

purely reflects the uncertainty among reanalyses. Figure 4.14 summarizes Figs. 3.2, 4.7 and
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Figure 4.11: Transition Probability Matrix Scores (TPMS, Sec. 2.3.3) for pairs of reanalyses in summer
(red bordered and labeled panels) and winter (blue bordered and labeled panels), considering the all-against-
all intercomparison scheme.

4.9 for all IPCC regions and analyzes the connection between the number of distinct WTs and

observational uncertainty (TPMS). The results suggest an inverse relationship between TPMS

and number of JC-WTs.

Considering the criterion of JC-WT diversity, the method might be less suitable for regions

like SAS* and EAN, where few distinct WTs appear (median below 16 types). Seasonally,

other regions also stand out by their low number of WTs, e.g. CAU or WSAF* in boreal

winter and TIB, ARP*, SAH*, NCA* and WCA in boreal summer (Fig. 4.14). There is a

large spatial variability in terms of WTs diversity in some regions where the applicability of

the WT classification is questionable, such as EAN, TIB, ARP*, SAH* or WSAF*. Regardless

of the median number of WTs, these regions show grid cells where all WTs are registered.

Additionally, there are some regions that stand out for having large TPMS (i.e. reanalysis

uncertainty) despite their large number of WTs: EAN, NCA*, SWS*, ESAF*, SES, EAS, ECA

and GIC; only in DJF regions TIB, SSA and WAN add to the list; and MED, WNA and CNA
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Figure 4.12: Transition probability matrices (TPM) of JC-WTs from ERA-Interim. Two upper panels
correspond to summer (JJA) and the two lower panels to winter (DJF). The two left TPMs refer to the
grid box located over the Balearic Islands (large TPMS against NCEP in Fig. 4.11) and the two right
TPMs refer to a grid box over Santiago de Compostela (low TPMS against NCEP in Fig. 4.11). The
persistence of a WT can be found by looking at the diagonal of the matrix (Sec. 2.3.3). Non-observed
transitions have been blanked to differentiate them from low-probability ones.

in boreal summer.



74 4. OBSERVATIONAL UNCERTAINTY IN ATMOSPHERIC CIRCULATION

w s f

zw zs z

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 4.13: Temporal correlation (Spearman correlation coefficient) of the six intermediate Jenkinson-
Collison (JC) parameters (see equations in Table 2.2) from NCEP against ERA-Interim, in summer.
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Figure 4.14: TPMS (in red and referred to the right Y-axis) of JRA-55 against ERA-5 and the number
of WTs (in blue and referred to the left Y-axis) of ERA-5 for each IPCC region (the lower the TPMS
and the higher the number of WTs, the better). The three different panels correspond to annual, winter
and summer results. The limits of the boxes show the spatial interquartile range and whiskers depict the
10th and 90th percentile. The median values are represented with a circle inside the boxes. In the three
panels, regions are sorted by decreasing order of the 75th percentile of the ERA-5 number of WTs at
annual scale.
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5

Historical Variability in JC-WT Classification:

Process-Based evaluation of GCMs

This Chapter focuses on the process-based evaluation of GCMs stemming from the two

latest CMIP (CMIP5 and CMIP6). For this purpose, the JC-WT classification over the original

Lamb (1972) domain is used, considering reanalysis as reference dataset for model validation.

The main results of this Chapter are included in Fernandez-Granja et al. (2021).

5.1 Experiment setup

Here, the JC-WT classification is obtained in its original location (British Isles, 55◦N-5◦W)

defined by Lamb (1972) to classify daily mean SLP patterns from CMIP historical GCM sim-

ulations and several reanalyses. Furthermore, this geographical location is crucial for assessing

atmospheric circulation within the Atlantic sector of the EURO-CORDEX domain, making

it particularly advantageous for ranking GCMs in the context of this downscaling initiative

(Sec. 1.2.4) and for the intercomparison between model generations (Sec. 1.2.2). Regarding

reanalysis data, the ERA-Interim reanalysis (Dee et al., 2011) is considered as the main quasi-

observational reference to evaluate model simulations. For all datasets, the 30-year period

1981-2010 is considered, which follows the World Meteorological Organization (WMO) guide-

lines on the calculation of climate normals (WMO, 2017) and represents a typical historical

period in future climate assessments. This period leads to a sample of ca. 11000 days per

dataset.

GCM historical simulations from CMIP5 and CMIP6 experiments are used to evaluate dif-

ferent model generations. A set of 9 model pairs (Table 5.1) is selected to specifically account

for potential model improvement. Each GCM pair was developed in a different modeling center,

although this does not guarantee model independence (Boé, 2018). As CMIP5 historical exper-

iment ends in 2005, the period 2006-2010 from the RCP8.5 scenario run was considered to fill

77
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the common 1981-2010 analysis period. This has been done in previous studies (e.g. Casanueva

et al., 2020) and there is no expected impact on the results, since the difference in the forcing

across scenarios is very small for the filled period.

Following some previous studies using the JC-WTs scheme in a location near the British

Isles, all days are classified in 26 classes that are assigned to a specific WT (see e.g. Trigo

and DaCamara, 2000; Brands et al., 2014b; Ramos et al., 2014b; Pereira et al., 2018). The

Unclassified (U) type is not considered in this configuration, as its frequency of occurrence is

negligible for the target location. Therefore, U-type time steps are reassigned to other weather

types by just not applying rule n◦ 5 from Jenkinson and Collison (1977) WT assignation rules

(see Sec. 2.2). For illustrative purposes, Figure 5.1 shows composite maps of SLP for the 8

most common JC-WTs over an extended European domain, as derived from the ERA-Interim

(Dee et al., 2011) reanalysis. These 8 JC-WTs gather 74% of the days and are consistent with

previous studies (Trigo and DaCamara, 2000; Brands et al., 2014b; Fealy and Mills, 2018b).

CMIP5 Grid (◦) CMIP6 Grid (◦) Modeling Center (CMIP5) CMIP6

CanESM2 2.81 CanESM5 2.81 Canadian Centre for Climate Modelling and Analysis

CNRM-CM5 1.41 CNRM-CM6-1 1.41 Centre National de Recherches Météorologiques - Centre
Européen de Recherche et de Formation Avancée en Cal-
cul Scientifique

EC-EARTH 1.13 EC-EARTH3 0.70 (Irish Centre for High-end Computing) EC-EARTH Con-
sortium

GFDL-ESM2M 2.26 GFDL-ESM4 1.00 NOAA - Geophysical Fluid Dynamics Laboratory

HadGEM2-ES 1.59 UKESM1-0-LL 1.59 Met Office Hadley Centre

IPSL-CM5-LR 2.96 IPSL-CM6A-LR 1.98 Institut Pierre-Simon Laplace

MIROC5 1.41 MIROC6 1.41 (Japan Agency for Marine-Earth Science and Technology,
JAMSTEC) JAMSTEC, AORI, NIES and R-CCS

MPI-ESM-LR 1.88 MPI-ESM1-2-LR 1.88 Max Planck Institute for Meteorology

NorESM1-M 2.21 NorESM2-LM 2.21 Norwegian Climate Center - Norwegian Meteorological
Institute

Reanalysis Grid (◦) Modeling Center

ERA-Interim 0.75 European Center for Medium Range Weather Forecasts

JRA-55 0.56 Japanese Meteorological Agency

NCEP 2.5 National Centers for Environmental Prediction / National
Center for Atmospheric Research

ERA-20C 1.13 European Center for Medium Range Weather Forecasts

Table 5.1: Set of CMIP5 and CMIP6 models used in the study, their nominal resolution at the Equator
(in ◦) and modelling center (top). Reanalysis datasets used (bottom).
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Figure 5.1: Composite maps of daily mean SLP (hPa) for the Jenkinson-Collison Weather Types (JC-
WTs) derived from ERA-Interim for the period 1981-2010. A subset of the 8 (out of 26) most frequent
JC-WTs annually is displayed. Sub-panels are labelled with their JC-WT abbreviation (frequency in %)
and sorted in decreasing frequency order from top to bottom and from left to right. The colorbar is
centered on average sea-level atmospheric pressure (reds are highs and blues are lows). JC-WT’s grid
coordinates are also indicated over the British Isles domain. Similar composite maps are obtained for the
GCMs and reanalyses in Table 5.1; their spatial correlations with the ERA-Interim pattern are shown in
Fig. 5.2.
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5.2 Observed JC-WT frequencies

In Chapter 4, observational uncertainty in atmospheric circulation is analyzed using five dif-

ferent reanalyses, including ERA-Interim. Results presented there (Figs. 4.7, 4.9) show that the

observational uncertainty (as evaluated with the Transition Probability Matrix Score, TPMS) in

the area centered in the British Isles (55ºN, 5ºW) is, in general, relatively low compared to other

regions of the world. This conclusion also holds for the SLP spatial patterns associated with the

most frequent JC-WTs (Fig 5.2, left panel). Similarly, Brands (2022b) compared ERA-Interim

against JRA-55 for the entire Northern Hemisphere on an annual scale, and also reported a

low discrepancy between reanalyses in terms of Mean Absolute Error (MAE) of the JC-WTs

in the British Isles. Despite the reduced reanalysis spread in this region, three additional re-

analysis products (Table 5.1) are considered to account for observational uncertainty: JRA55

(Kobayashi et al., 2015; Harada et al., 2016), NCEP–NCAR reanalysis (hereafter NCEP, Kalnay

et al., 1996), and the ECMWF ERA-20C (Poli et al., 2016), hence allowing for a quantitative

measure of multimodel spread compared to reanalysis uncertainty.
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Figure 5.2: Spatial Correlations of SLP patterns associated with the eight dominant JC-WTs of all
models (right panels, CMIP5 and CMIP6) and reanalyses (left panel) included in Chapter 5 with respect
to ERA-Interim (depicted in Fig.5.1), considering the spatial domain shown in Fig. 5.1.

The resulting frequencies of the observed JC-WTs, as represented by the four reanalysis

products, are analyzed first. In Fig. 5.3, JC-WT seasonal frequencies are depicted, sorted

in decreasing order according to annual ERA-Interim JC-WT frequencies. In general, small

differences in the frequencies are found between the reanalysis for all seasons. The common set

of eight prevailing JC-WTs has, however, different seasonal frequencies. In DJF, Westerly (W)

and Southwesterly (SW) flow types are more frequent than the Cyclonic (C) type, and both

exceed the annual time-scale reference. Westerly flow decays in March–April–May or boreal
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Figure 5.3: Comparison of the seasonal relative frequencies of JC-WTs obtained from the four different
reanalysis (ERA-Interim, JRA, NCEP and ERA-20C, in colors) for the JC-WT classification over the
Bristish Isles. The JC-WTs are sorted in decreasing order of their annual frequencies in ERA-Interim,
indicated with horizontal segments in all panels for reference.

spring (MAM) and JJA, and the Anticyclonic (A) type becomes more prevalent in summer.

Types A, C , W and SW are the four most frequent JC-WTs in all seasons. Types S (South),

NW (Northwesterly) and AW (Anticyclonic Westerly) are among the eight most dominant in

all seasons. Pure-directional type N (North) is also in the top-8 except in winter, when it is

less frequent than type ASW (Anticyclonic Southwesterly). However, N type represents close

to 5% of the days in all seasons and also appears among the first eight JC-WTs for annual

ERA-Interim. In light of these results, the following JC-WT subset is used hereinafter for a

more detailed analysis of model biases (Sec. 5.3): A, C, W, SW, NW, S, AW and N.

The observational uncertainty in the JC-WT relative frequencies is small, as their mag-

nitudes are similar among the different reanalysis datasets, with the exception of ERA-20C

(Fig. 5.3). This reanalysis shows lower JC-WT relative frequencies as compared to ERA-Interim,

JRA and NCEP, especially in the two most frequent types (A and C), which is compensated

mainly by an increased frequency in the S and SW flow types. This fact could be due to the

different data sources of the ERA-20C reanalysis compared to the other available reanalyses,

which, in turn, might lead to differences in the JC-WTs classification (see also Chapter 4.3). The
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ERA-20C reanalysis only assimilates sea-level pressure data from surface-only observations to

maintain consistency over time (Poli et al., 2016). In contrast, the rest of the reanalyses (show-

ing a more consistent distribution of JC-WT frequencies) assimilate many surface, upper-air

and satellite observations (Fujiwara et al., 2017). Our findings are in line with previous liter-

ature, which highlights the poor representation of upper atmospheric processes because data

from the free atmosphere are not available in surface-only input reanalyses. For example, lower

cyclones in the Northern Hemisphere (Wang et al., 2006), fewer northern high-latitude blocking

frequency (Rohrer et al., 2018), and lower occurrence of westerly circulation types (Stryhal and

Huth, 2017) have been detected for ERA-20C and other surface-only input reanalyses.
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Figure 5.4: Kullback–Leibler Divergence (KL, Sec. 2.3.2; seasonal and annual values, in columns
within each panel) for the different reanalyses (left panel) and GCM experiments (right panels, CMIP5
and CMIP6). The 26 JC-WTs need to be considered as the KL formulation expects PMFs where the sum
of the probabilities of the samples is equal to 1.

Figure 5.4 (left panel) shows the similarity between the reanalyses ERA-20C, JRA and

NCEP with respect to ERA-Interim by using the KL Divergence (Sec. 2.3.2). Again, among

the reanalyses, ERA-20C shows the largest differences with respect to ERA-Interim (KL =

0.008) compared to the other reanalyses (0.003 for both the JRA and NCEP). Given the good

agreement in the JC-WTs classification regardless of the use of ERA-Interim, JRA and NCEP, in

the following ERA-Interim is used as reference. Further results considering the other reanalyses

as reference are provided in Figs. 5.5, 5.6 and 5.7 for a more comprehensive picture of the

reanalysis uncertainty. Interestingly, JRA and NCEP agree better with ERA-20C than ERA-

Interim in terms of KL divergence (Fig. 5.7). This aligns well with Chang and Yau (2016), who

found that major storm tracks in the Northern Hemisphere in ERA-20C and JRA are in good

agreement with radiosonde observations.
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Kullback−Leibler Divergence: GCM & Reanalysis vs NNRP
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Figure 5.5: As Fig. 5.4 but with NCEP as reference.
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Figure 5.6: As Fig. 5.4 but with JRA-55 as reference.

5.3 Evaluation of modeled JC-WTs frequency

Model agreement with ERA-Interim reanalysis is analyzed first in terms of the KL divergence

(Fig. 5.4, right panels). However, as annual KL divergence can hide the compensation of large

biases, both annual and seasonal timescales are later considered for the analysis of relative biases.

Overall, there is a clear improvement from CMIP5 to CMIP6, although large KL divergences in

CMIP5 in specific seasons only slightly diminish or move to another season in CMIP6. Similar
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Kullback−Leibler Divergence: GCM & Reanalysis vs ERA−20C
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Figure 5.7: As Fig. 5.4 but with ERA-20C as reference.

conclusions hold when the other three reanalyses are used as reference (see Figs. 5.5, 5.6 and

5.7). At annual timescales, CMIP6 EC-EARTH3 exhibits the lowest deviation (KL = 0.007),

followed by UKESM1-0-LL (0.009), HadGEM2 (0.009), EC-EARTH (0.022) and IPSL-CM6A-

LR (0.026). EC-EARTH3 also shows slightly better performance than ERA-20C at the annual

scale, which deteriorates in the seasonal analyses (e.g. KL = 0.046 in winter, KL = 0.031 in

spring) probably due to biases in the timing along the year and the persistence of the weather

types. The largest KL divergences occur in winter for most CMIP5 and CMIP6 models, followed

by summer and spring.



5.3. EVALUATION OF MODELED JC-WTS FREQUENCY 85

MIROC5 (14, 14, 21, 16)
GFDL−ESM2M (16, 18, 11, 21)

NorESM1−M (21, 15, 7, 20)
CanESM5 (19, 20, 9, 18)

NorESM2−LM (12, 21, 20, 17)
IPSL−CM5−LR (20, 19, 16, 19)

CNRM−CM5 (15, 12, 19, 14)
MPI−ESM−LR (13, 11, 17, 13)

CanESM2 (18, 17, 15, 15)
CNRM−CM6−1 (8, 8, 18, 12)

MIROC6 (11, 13, 13, 10)
MPI−ESM1−2−LR (9, 16, 14, 6)

GFDL−ESM4 (7, 9, 6, 11)
IPSL−CM6A−LR (17, 10, 10, 9)

EC−EARTH (10, 5, 5, 7)
UKESM1−0−LL (4, 4, 8, 5)
HadGEM2−ES (5, 6, 12, 8)

ERA−20C (3, 3, 3, 3)
EC−EARTH3 (6, 7, 4, 4)

JRA (2, 1, 2, 1)
NCEP (1, 2, 1, 2)

A C W SWNW S AW N

DJF

A C W SWNW S AW N

MAM

A C W SWNW S AW N

JJA

A C W SWNW S AW N

SON

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

Relative bias

Figure 5.8: Relative bias of JC-WT frequencies for the different reanalyses and GCM experiments
with respect to ERA-Interim (in rows: reanalyses in black font, CMIP5 GCMs in red, CMIP6 GCMs in
blue) for the four seasons (in columns). Rows are sorted following the ranking given by the annual KL
Divergence in Fig. 5.4 (seasonal rankings are given in brackets). Crosses indicate statistically significant
biases following a Z-test of proportions (Sec. 2.3.4).
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Figure 5.9: As Fig. 5.8 but with NCEP as reference.

To explain such differences the seasonal GCM biases for the main JC-WT frequencies are
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analyzed next. The KL divergence of the CMIP5 and CMIP6 models allows to rank them

according to their ability to reproduce synoptic conditions with respect to their agreement

with ERA-Interim. The general improvement of CMIP6 considering the annual KL divergence

(Fig. 5.4) is also evident in terms of relative biases (Fig. 5.8). Overall, smaller biases are

found for CMIP6, except for IPSL-CM6A-LR in winter, NorESM2-LM and CanESM5 in spring,

and NorESM2-LM in summer. All models present the worst performance for the two most

frequent JC-WTs (namely anticyclonic and cyclonic) in winter (in agreement with Fig. 5.4), with

opposite sign biases. Along the four seasons, most models overestimate cyclonic type frequencies

whereas they simulate too few anticyclonic conditions. The latter might be associated with the

general underestimation of the frequency of the European winter blocking, which is a well-

known drawback of CMIP5 models (see e.g. Masato et al., 2013). Overall, CMIP6 GCMs

reduce biases in the frequency of the A and C types compared to their CMIP5 counterparts,

especially NorESM2-LM and GFDL-ESM4, although statistically significant differences with

ERA-Interim still remain.

Results are not conclusive for the other main JC-WTs, for which different magnitude and

sign of biases are found depending on the model. The frequency of W and SW types is overes-

timated by NorESM2-LM and CanESM5 in spring (also NorESM2-LM in summer), performing

worse than their CMIP5 counterparts. AW type is underestimated by most models in spring,

regardless of the CMIP experiment. Most GCMs do not exhibit significant differences with

respect to ERA-Interim for the least frequent weather types, especially in MAM and Septem-

ber–October–November or boreal autumn (SON). The overall conclusions about the CMIP6

improvement over CMIP5 also hold for the SLP spatial patterns of the most frequent WTs

(Fig. 5.2). Finally, GCM evaluation with respect to the three other reanalyses leads to similar

conclusions and similar rankings (see Figs. 5.9, 5.10 and 5.11).

Despite the improvement of CMIP6 models upon their CMIP5 predecessors, some biases

still remain, which might be due to the limitations in simulating the most frequent conditions

(such as A and C types) and the transitions from one type into another.

5.4 JC-WT transition probabilities from GCMs

In order to shed some light on the biases found, the transition probabilities from one type

to another are investigated, since they might explain the misrepresentation of the synoptic

conditions and their frequencies by most GCMs already depicted in Fig. 5.8. Overall, the ability

of the GCMs to reproduce qualitatively the reference TPM regardless of the CMIP generation

is remarkable (see Figs. 5.12b-c and also 5.13-5.20).
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Figure 5.10: As Fig. 5.8 but with JRA-55 as reference.
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Figure 5.11: As Fig. 5.8 but with ERA-20C as reference.
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(b) CMIP5 IPSL-CM5A-LR (TPMS=4.17)
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(c) CMIP6 IPSL-CM6A-LR (TPMS=1.93)
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Figure 5.12: Transition probability matrix (A) of JC-WTs for ERA-Interim (a), the CMIP5 model
IPSL-CM5A-LR (b) and its new version CMIP6 IPSL-CM6A-LR (c) for the historical period 1981-
2010 for the JC-WT classification over the British Isles. Aij = p(Xt = j|Xt−1 = i) represents the
probability of going from JC-WT in row i to JC-WT in column j. Therefore, the persistence probability
of a JC-WT can be found by looking at the diagonal of the matrix. Non observed transitions have been
blanked to differentiate them from low-probability ones. Transition probabilities significantly different from
those in ERA-Interim, obtained from a two-proportions Z-Test (Sec. 2.3.4), are indicated by crosses. In
addition, JC-WT transitions simulated by the model but not observed in ERA-Interim are indicated by
empty circles. Likewise, solid circles indicate JC-WT transitions not simulated by the model, but that
occur in ERA-Interim. The corresponding TPMS values attained against ERA-Interim are indicated in
parenthesis in the titles of panels (b) and (c).



5.4. JC-WT TRANSITION PROBABILITIES FROM GCMS 89

CMIP5 EC-EARTH

A C

S
W W

A
W

N
W S

A
S

W N

A
N

W S
E

C
S

W C
S E

N
E

A
S

C
S

E

A
N

C
W C
N

C
N

W

A
S

E

C
N

E

C
E

A
E

A
N

E

A
C

SW
W

AW
NW

S
ASW

N
ANW

SE
CSW

CS
E

NE
AS

CSE
AN
CW
CN

CNW
ASE
CNE

CE
AE

ANE

A C S
W

W A
W

N
W

S A
S

W

N A
N

W

S
E

C
S

W

C
S

E N
E

A
S

C
S

E

A
N

C
W

C
N

C
N

W

A
S

E

C
N

E

C
E

A
E

A
N

E

A
C
SW
W
AW
NW
S
ASW
N
ANW
SE
CSW
CS
E
NE
AS
CSE
AN
CW
CN
CNW
ASE
CNE
CE
AE
ANE

CMIP6 EC-EARTH3

A C

S
W W

A
W

N
W S

A
S

W N

A
N

W S
E

C
S

W C
S E

N
E

A
S

C
S

E

A
N

C
W C
N

C
N

W

A
S

E

C
N

E

C
E

A
E

A
N

E

A
C

SW
W

AW
NW

S
ASW

N
ANW

SE
CSW

CS
E

NE
AS

CSE
AN
CW
CN

CNW
ASE
CNE

CE
AE

ANE

A C S
W

W A
W

N
W

S A
S

W

N A
N

W

S
E

C
S

W

C
S

E N
E

A
S

C
S

E

A
N

C
W

C
N

C
N

W

A
S

E

C
N

E

C
E

A
E

A
N

E

A
C
SW
W
AW
NW
S
ASW
N
ANW
SE
CSW
CS
E
NE
AS
CSE
AN
CW
CN
CNW
ASE
CNE
CE
AE
ANE

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Does not occur in reanalysis
Does not occur in the model (but it does in reanalysis)
Significantly different probability from reanalysis

Figure 5.13: Transition probability matrices of CMIP5 EC-EARTH and CMIP6 EC-EARTH3.

All GCMs TPM fingerprints capture fairly well the pattern of ERA-Interim (used as ref-

erence), although there are important deviations in the magnitude of their probabilities in

some cases. As a result, most GCMs fail to achieve the high persistence probabilities of the

most frequent cyclonic and anticyclonic JC-WTs. In particular, considering the statistical sig-

nificance of their probabilities, the high-persistence probability of the anticyclonic JC-WT is

only adequately reproduced by a few models, namely CMIP5 EC-EARTH and HadGEM2-ES

(Figs. 5.13 and 5.15), and the CMIP6 models IPSL-CM6A-LR (Fig. 5.12c) and UKESM1-0-LL

(Fig. 5.15). The probability of persistence of the purely cyclonic JC-WT (the second most

frequent in the historical record) is significantly well reproduced by the CMIP5 models EC-

EARTH, HadGEM2-ES, MPI-ESM-LR, as well as their CMIP6 counterparts (Figs. 5.13, 5.15

and 5.18, respectively), CMIP5 CanESM2 (Fig. 5.20, left panel) and CMIP6 NorESM2-LM

(Fig. 5.19, right panel).
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Figure 5.14: Transition probability matrices of CMIP5 GFDL-ESM2M and CMIP6 GFDL-ESM4.
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Figure 5.15: Transition probability matrices of CMIP5 HadGEM2-ES and CMIP6 UKESM1-0-LL.

The TPM information of all GCMs (and reanalyses) is quantitatively summarized with the

TPMS in Figure 5.21. The improvement of CMIP6 over CMIP5 is especially remarkable for

IPSL-CM6A-LR and GFDL-ESM4 models. Both GCMs are able to capture more correctly

the transition probabilities between the principal JC-WTs (such as A, C, SW or W types)

than their CMIP5 counterparts, but not yet the persistence probabilities of A and C types

(Fig. 5.12 and 5.14, respectively). Interestingly, the TPMS spread associated with the obser-

vational uncertainty is much reduced in the case of the CMIP6 ensemble, pointing to a better
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Figure 5.16: Transition probability matrices of CMIP5 MIROC5 and CMIP6 MIROC6.

general agreement in their representation of atmospheric circulation, with the exception of two

out-lying, poor-performing models, namely NorESM2-LM and CanESM5, which deteriorate in

CMIP6 (Fig. 5.21). Although NorESM2-LM improves on the persistence probability of the

cyclonic type, the transitions from CNE to C and from ASW to SW get worse in CMIP6 (Fig.

5.19), in line with the reduced bias of C type in winter and the large biases found for SW type

in spring and summer (Fig. 5.8). Similarly, CanESM5 presents too persistent C type and too

high transition probabilities from AW and SW to W (Fig. 5.20), which might be related to the

overestimation of the frequencies of W type in winter and spring (Fig. 5.8).
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Figure 5.19: Transition probability matrices of CMIP5 NorESM-M1 and CMIP6 NorESM2-LM
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Figure 5.17: Transition probability matrices of CMIP5 CNRM-CM5 and CMIP6 CNRM-CM6-1.
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Figure 5.18: Transition probability matrices of CMIP5 MPI-ESM-LR and CMIP6 MPI-ESM1-2-LR.
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Figure 5.20: Transition probability matrices of CMIP5 CanESM2 and CMIP6 CanESM5
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Figure 5.21: Transition probability matrix scores (TPMS) for CMIP5/CMIP6 models (red/blue sym-
bols), considering as reference different reanalysis products (different markers). The results are presented
as CMIP5-CMIP6 GCM pairs, in ascending order of TPMS from left to right, attained by CMIP5 mod-
els and ERA-Interim as reference (solid circles). Boxplots on the right summarize the results for each
individual observational reference (each marker indicating the median) and CMIP project (color).

As for the JC-WTs frequencies (Fig. 5.3), very similar TPMs are found for JRA (TPMS =

0.71) and NCEP (TPMS = 0.76) compared to ERA-Interim and a larger TPMS for ERA-20C

(TPMS = 1.11, see also Fig. 4.5). The improved performance of CMIP6 compared to CMIP5

is independent of the reanalysis used as reference (Fig. 5.21), in line with the results of Cannon

(2020). Overall, the differences due to the choice of the reference dataset are smaller than model

and experiment uncertainties.
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5.5 Discussion of process-based evaluation outcomes

While there is a general increase in spatial resolution and an integration of more complex

components in CMIP6, these developments take place unevenly for each GCM. For instance,

EC-EARTH which is a skillful CMIP5 model improves upon most CMIP6 GCMs, partly due to

its rather high resolution (Table 5.1). A substantial improvement is found for GFDL and IPSL

in CMIP6, which have been developed at higher resolutions than their CMIP5 predecessors.

Conversely, CanESM and NorESM, which keep a coarse resolution in CMIP6 (the only ones

above 2◦), deteriorate their TPMS in CMIP6. All the above suggests that the increase of spatial

resolution is a factor of improvement in the representation of the atmospheric circulation in the

GCMs.

Previous studies also find that increasing horizontal resolution of the GCMs leads to a

large improvement in the models’ simulation of the main Euro-Atlantic wintertime weather

regimes (Dawson et al., 2012; Strommen et al., 2019) and, particularly, Northern Hemisphere

(D’Andrea et al., 1998) and European winter blocking (Matsueda et al., 2009; Berckmans et al.,

2013; Davini et al., 2017). The better performance of higher-resolution simulations can be

attributed to the more realistic orography (Jung et al., 2012) and more realistic representation

of Rossby wave breaking processes, which are known to be important in maintaining persistent

anomalies (Woollings et al., 2008; Masato et al., 2012). A recent work based on results of the

PRIMAVERA project (Fabiano et al., 2020) shows that the weather regimes tend to be more

tightly clustered in the increased resolution simulations, thus resembling the observed ones

more closely. However, increased resolution does not improve all aspects in the same way. For

instance, Fabiano et al. (2020) find an improvement of the spatial pattern, but limited impact

on the frequency of occurrence and persistence of the weather regimes. While resolution stands

as a relevant factor, it is not decisive, since some models (here CNRM, HadGEM, MIROC and

MPI) improve on TPMS in CMIP6 even though they keep the same resolution. According to

Dawson and Palmer (2015) the simulation of spatial and temporal aspects of weather regimes at

low resolution can be significantly improved by the introduction of a stochastic physics scheme,

highlighting the importance of small-scale processes on large-scale climate variability. Indeed

further improvements are needed to alleviate remaining biases, for instance, better location of

the winter blocking is associated with realistic Gulf Stream sea surface temperature (O’Reilly

et al., 2016).

Another outcome of this Thesis is that the use of different observational references stands

as a minor source of uncertainty compared to model and experiment uncertainties, as expected

following results from Chapter 4, which show small observational uncertainty in the studied
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region here. With this regard, results are robust to the selected reference reanalysis and the

improvement of CMIP6 over CMIP5 is independent of this choice (in agreement with Cannon,

2020).

Note that model internal variability is not considered in this study and observational un-

certainty is used as reference for substantive changes in the ability of the models to represent

the circulation types. Other sources of uncertainty related to the WT classification method re-

main. Results might be sensitive to the circulation classification algorithm used and, therefore,

rankings, model performance and even CMIP6 quantitative improvements are particular for

the JC-WT classification. Cannon (2020) also found an overall improvement in CMIP6 models

when using two objective classification algorithms. Thus, a qualitative improvement of CMIP6

is noteworthy regardless of the classification algorithm and evaluation metrics. However, this

remains as another source of uncertainty and is a very interesting aspect to tackle in future

work.

The results obtained in this Chapter have important implications for downscaling appli-

cations. Any systematic bias in the simulation of WTs (whether in their frequency, seasonal

distribution, or prevailing circulation regimes) can significantly affect the realism and reliability

of regional climate projections derived through downscaling (Sec. 1.2.4). The process-based

evaluation results shown in this Chapter can inform the selection or weighting of global climate

models (GCMs) prior to downscaling. For example, models that accurately reproduce the ob-

served WT distributions and their seasonal variability are expected to produce more credible

regional projections when used as input for downscaling experiments. However, GCMs exhibit-

ing large discrepancies can propagate errors related to atmospheric circulation into local-scale

projections.

Interestingly, the models exhibiting in this Chapter the best performance in reproducing

the features of reanalysis-based JC-WTs, namely EC-Earth3, UKESM1-0-LL, MIROC6, IPSL-

CM6A-LR, and MPI-ESM1-2-LR, largely overlap with those identified as highly plausible in

the recent EURO-CORDEX model selection framework (Sobolowski et al., 2023). Despite

minor differences in model configurations (e.g., the use of EC-Earth3 instead of the veg variant,

or the lower-resolution version of MPI-ESM1-2), this convergence reinforces the robustness of

the plausibility criterion applied in this Thesis. Specifically, the consistency between large-

scale circulation realism, quantified here via JC-WT frequencies, and the broader plausibility

metrics used in the CORDEX framework (which include regional circulation patterns, blocking

frequency, and storm-track behavior) support the use of process-based evaluation approaches

as a complementary tool for model selection in downscaling workflows.
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6

Projected Global Changes in Atmospheric Circulation

In this Chapter, an analysis of JC-WT trends and the emergence of climate change signals

in the future projections from GCMs is conducted. The main results are included in Fernández-

Granja et al. (2025).

6.1 Experiment setup

In this experiment, the JC-WT methodology is applied to classify instantaneous 6-hourly

SLP patterns from a multi-model ensemble of 41 Global Climate Models (GCMs) from both

CMIP5 and CMIP6 (Table 6.1). The GCMs were previously interpolated into a common regular

grid of 2.5◦ (Sec. 2.1.2). Their future simulations for the most extreme forcing experiments

are considered, i.e. Representative Concentration Pathway (RCP) 8.5 for CMIP5 (Moss et al.,

2010) and Shared Socioeconomic Pathway (SSP) 5-8.5 for CMIP6 (Riahi et al., 2017), using

the projected SLP fields for the entire simulation period (2006-2100 for CMIP5 and 2015-2100

for CMIP6). Here, the same JC-WTs aggregation approach as in Trigo and DaCamara (2000)

and Herrera-Lormendez et al. (2023) is applied, reducing the 27 original types to 11 (Sec. 2.2).

This strategy eases (1) a simpler interpretation and comparability of the results; (2) a clearer

depiction of emerging trends and patterns; and (3) a larger sample size for each weather type,

thereby improving the consistency and robustness of the results across regions and models. The

JC-WT classification is obtained for all the grid-points in a band from 30◦ to 70◦ north and

south (Jones et al., 2013), resulting in a 6-hourly database of the JC-WT classification for the

ensemble of GCMs (Sec. 7.3.2).

The corresponding JC-WT classification for the historical simulations are obtained from the

existing JC-WT historical catalogs from Brands (2022a) and Brands et al. (2023c) for the periods

1979-2005 for CMIP5 and 1979-2014 for CMIP6. This yields a complete and methodologically

consistent database of continuous 6-hourly series spanning the period 1979-2100 for the 41 GCM

ensemble. Furthermore, GSAT is analyzed for each GCM from the pre-industrial baseline period
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(1850–1900) as well as until the end of the 21st century (1979-2100) for the global warming levels

calculation (GWL, Seneviratne et al., 2021; Iturbide et al., 2022, see Sec. 2.4.1). As for SLP,

data for the strong emission scenarios (RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6) were

considered for GSAT, allowing to find GWLs well beyond the observed range.

Following Diez-Sierra et al. (2023), here GWL plots (Sec. 2.4.1) are used to examine how

changes in one variable (with respect to a baseline) relate to a given GWL for a specific time pe-

riod (e.g., 10 years) in the 21st century. Typically, GWLs are calculated using the pre-industrial

baseline period of 1850–1900. However, since the SLP of the historical GCM simulations does

not always cover the entire baseline period, a more recent climate baseline is sometimes used

to calculate the changes of the target variable (JC-WT frequencies in this Thesis). Thus,

1979–2005 is used as the reference period to assess changes in JC-WT frequencies, while the

pre-industrial baseline (1850–1900) is used to determine the increase in GSAT.

As an example, Fig. 6.1 represents a GWL scaling plot for the Anticyclonic type (A) based

on CMIP5 and CMIP6 data at a specific location near the British Isles (50◦N, 15◦W ). The X-

axis shows global warming levels, indicated as the change from the specific decade of the GSAT

in the 21st century relative to the pre-industrial baseline period of 1850–1900, ranging from +0◦

to +7◦C. The Y-axis displays changes in the A-type frequency for each decade compared to the

1979–2005 period. These results are derived from a total of 41 CMIP5 and CMIP6 models (dots

colored by decade, adding up to 410 points).
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Figure 6.1: Seasonal trends of the Anticyclonic type (A) from the 41 GCMs in boreal summer (JJA,
left panel) and winter (DJF, right panel) at a grid-box location near to British Isles (50◦N, 15◦W ). Each
point represents the projected future change in the A-type frequency for each GCM and decade (the latter
depicted with different colors) as a function of global warming. Individual model slopes (β parameter)
are represented in grey (dashed lines represent slopes that are not statistically significant at the 90%
confidence level). The 41 GCM ensemble mean slope is indicated at the bottom right (mean ± standard
deviation) and displayed in red in the graph. See Sec. 6.1 for more details.

Following this GWL scaling approach, a potentially significant linear response between a

certain JC-WT frequency and the GWL is explored. For this purpose, a simple linear regression
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GCM (res. gb) Identifier Modeling Center

CMIP5

ACCESS1-0 (192 x 144) https://hdl.handle.net/21.14106/b7ea1cf25565c7ac36b826ad5c43eb588b30cbb3 Commonwealth Scientific & Industrial Research Organisation (CSIRO); Bu-
reau of Meteorology (BoM)

ACCESS1-3 (192 x 144) https://hdl.handle.net/21.14106/18192275afea195193c9c8b4245d06bc708b7a38 Commonwealth Scientific & Industrial Research Organisation (CSIRO); Bu-
reau of Meteorology (BoM)

bcc-csm1-1 (128 x 64) https://hdl.handle.net/21.14106/2823d590c8bdf3761b6ff768f2e52902526921d3 Beijing Climate Center (BCC)

CanESM2 (128 x 64) https://hdl.handle.net/21.14106/690bf891d54d83646e500832582c2fc81d2152d6 Canadian Centre for Climate Modelling and Analysis (CCCma)

CCSM4 (288 x 192) https://hdl.handle.net/21.14106/caa97cfc28635a781d6f755a062a99346a99f39b National Center for Atmospheric Research (NCAR)

CMCC-CM (480 x 240) https://hdl.handle.net/21.14106/a82b1965d08222fbdc1f56625e0421dab1f57a62 Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)

CNRM-CM5 (256 x 128) https://hdl.handle.net/21.14106/070ace82a225a0711f1b34229324b1e009c18e2e Centre National de Recherches Météorologiques (Meteo-France/CNRM);
Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique (CERFACS)

CSIRO-Mk3-6-0 (192 x 96) https://hdl.handle.net/21.14106/590d1c7fa6b38c31e087d5a245671c89b02888d2 Commonwealth Scientific & Industrial Research Organisation (CSIRO);
Queensland Climate Change Centre of Excellence (QCCCE)

EC-EARTH (320 x 160) https://hdl.handle.net/21.14106/4008a720db188e0c395097b1e1dc007f20e82872 EC-EARTH Consortium

GFDL-CM3 (144 x 90) https://hdl.handle.net/21.14106/a4c2dbb73867d154aafcb9f07b9b328de301060c Geophysical Fluid Dynamics Laboratory/NOAA (GFDL)

HadGEM2-CC (192 x 144) https://hdl.handle.net/21.14106/2b2d36ad24aad406396b406439ee2f4911f99903 Met Office Hadley Centre (MOHC)

HadGEM2-ES (192 x 144) https://hdl.handle.net/21.14106/4f619df8f27c18626c7b81c0e234a8bd152b28b2 Met Office Hadley Centre (MOHC)

inmcm4 (180 x 120) https://hdl.handle.net/21.14106/0b59f7a1c3beb6d39af494d11e06eb6abfe313ee Institute of Numerical Mathematics (INM)

IPSL-CM5A-LR (96 x 96) https://hdl.handle.net/21.14106/fbabf3ddc00dbe7a90153c40afbb72633ce762c9 Institut Pierre-Simon Laplace (IPSL)

IPSL-CM5A-MR (96 x 96) https://hdl.handle.net/21.14106/3d7f84c87248914f02e646a109dc79702978d366 Institut Pierre-Simon Laplace (IPSL)

MIROC5 (256 x 128) https://hdl.handle.net/21.14106/e1bc91c12e24571ef9e03cc0109345868c06d4e3 Atmosphere and Ocean Research Institute, the University of Tokyo (AORI);
National Institute for Environmental Studies (NIES); Japan Agency for
Marine-Earth Science and Technology (JAMSTEC)

MIROC-ESM (128 x 64) https://hdl.handle.net/21.14106/53a5e7159b12b806c4aa008d0489f218f3134ad7 Atmosphere and Ocean Research Institute, the University of Tokyo (AORI);
National Institute for Environmental Studies (NIES); Japan Agency for
Marine-Earth Science and Technology (JAMSTEC)

MPI-ESM-LR (192 x 96) https://hdl.handle.net/21.14106/629557221f1d1394ecaa7661d3577d9d8dca2626 Max Planck Institute for Meteorology (MPI-M)

MPI-ESM-MR (192 x 96) https://hdl.handle.net/21.14106/598a93901a5e7a563d38ff019e53f56909853935 Max Planck Institute for Meteorology (MPI-M)

NorESM1-M (144 x 96) https://hdl.handle.net/21.14106/c8e0b84a1444a87a40cd36a29ed41e186a0f6bc1 NORCE Norwegian Research Centre (NORCE); Norwegian Meteorological
Institute (MET Norway)

CMIP6

ACCESS-CM2 (192 x 144) https://doi.org/10.22033/ESGF/CMIP6.2281 CSIRO-ARCCSS

ACCESS-ESM1-5 (192 x 144) https://doi.org/10.22033/ESGF/CMIP6.2288 Commonwealth Scientific & Industrial Research Organisation (CSIRO)

BCC-CSM2-MR (320 x 160) https://doi.org/10.22033/ESGF/CMIP6.1725 BCC

CMCC-CM2-SR5 (288 x 192) https://doi.org/10.22033/ESGF/CMIP6.1362 CMCC

CNRM-CM6-1 (256 x 128) https://doi.org/10.22033/ESGF/CMIP6.1375 Centre National de Recherches Météorologiques (Meteo-France/CNRM);
Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique (CERFACS)

CNRM-CM6-1-HR (720 x 360) https://doi.org/10.22033/ESGF/CMIP6.1385 Centre National de Recherches Météorologiques (Meteo-France/CNRM);
Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique (CERFACS)

CNRM-ESM2-1 (720 x 360) https://doi.org/10.22033/ESGF/CMIP6.4226 Centre National de Recherches Météorologiques (Meteo-France/CNRM);
Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique (CERFACS)

EC-EARTH3 (512 x 256) https://doi.org/10.22033/ESGF/CMIP6.181 EC-EARTH Consortium

FGOALS-g3 (180 x 80) https://doi.org/10.22033/ESGF/CMIP6.1783 CAS

HadGEM3-GC31-MM (432 x 324) https://doi.org/10.22033/ESGF/CMIP6.10846 Met Office Hadley Centre (MOHC)

IPSL-CM6A-LR (144 x 144) https://doi.org/10.22033/ESGF/CMIP6.1534 Institut Pierre-Simon Laplace

KIOST-ESM (192 x 96) https://doi.org/10.22033/ESGF/CMIP6.1922 KIOST

MIROC-ES2L (128 x 64) https://doi.org/10.22033/ESGF/CMIP6.902 Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Na-
tional Institute for Environmental Studies (NIES); Institute of Industrial
Science, the University of Tokyo (IIS)

MIROC6 (256 x 128) https://doi.org/10.22033/ESGF/CMIP6.881 Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Na-
tional Institute for Environmental Studies (NIES); Institute of Industrial
Science, the University of Tokyo (IIS)

MPI-ESM1-2-HR (384 x 192) https://doi.org/10.22033/ESGF/CMIP6.741 MPI-M DWD DKRZ

MPI-ESM1-2-LR (192 x 96) https://doi.org/10.22033/ESGF/CMIP6.742 MPI-M AWI DKRZ DWD

MRI-ESM2-0 (320 x 160) https://doi.org/10.22033/ESGF/CMIP6.621 MRI

NESM3 (192 x 144) https://doi.org/10.22033/ESGF/CMIP6.2021 NUIST

NorESM2-LM (144 x 96) https://doi.org/10.22033/ESGF/CMIP6.502 Norwegian Climate Center

NorESM2-MM (288 x 192) https://doi.org/10.22033/ESGF/CMIP6.506 Norwegian Climate Center

TaiESM1 (288 x 192) https://doi.org/10.22033/ESGF/CMIP6.9684 AS-RCEC

Table 6.1: Details on the General Circulation Models (GCMs) used in this Chapter, along with their
persistent identifiers (PIDs). The table includes their resolution expressed as number of longitudinal ×
latitudinal grid-boxes (gb) worldwide, and the respective modeling centers. The provided URLs correspond
to the primary PIDs for model outputs prepared for the CMIP5 and CMIP6 projects. Specific sub-PIDs
for historical and RCP8.5/SSP5-8.5 experiments are accessible through these primary PIDs, along with
further metadata.
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is fitted between decadal changes of JC-WT frequency and GWLs, for each GCM independently.

The results presented are based on two key parameters, namely 1) the slope (coefficient β),

representing the linear trend of the WT frequency projected by the GCM as the global warming

increases; and 2) the p-value, that indicates the probability that the relationship between the

independent (GWLs) and dependent (JC-WT frequency changes) variables occurred by chance,

using a significance t-test against the null hypothesis, at 90% confidence level, that the linear

slope of the corresponding regression model is zero. Multi-model mean slope is considered

to assess the overall ensemble trend. Additionally, in order to address multi-model ensemble

uncertainty, a robustness test is applied following the IPCC simple approach (IPCC, 2021).

This test ensures that at least the 80% of the GCMs show a statistically significant slope. This

analysis is performed for each grid-box covering the entire area of study.

The spatial location and the time when robust JC-WTs frequencies signals emerge

(Sec. 2.4.2) at grid-box level are estimated here applying the advanced method for ToE detec-

tion from IPCC-WGI AR6 (Gutiérrez et al., 2021, Cross-Chapter Box Atlas.1), in decade-long

intervals. This approach was used in previous studies to analyze climate change as a func-

tion of global warming by estimating the threshold above which the signal of change emerges

consistently from natural variability (Seneviratne et al., 2016; Kirchmeier-Young et al., 2019).

This method categorizes the multi-model ensemble signal into three types: (1) robust signal,

(2) conflicting signal, and (3) no change or not robust signal. Categories 1 and 2 represent

cases where more than two-thirds of the models show a change greater than their model-specific

natural variability threshold (γ). Then, if more than 80% of the models agree on the direction

of change, the signal is classified as robust (category 1); if not, it is classified as conflicting

(category 2). In this Thesis, category 1 is further subdivided into 1a (positive change) or 1b

(negative change) which allows to analyze not only the emerging signals in different circula-

tion patterns but also their respective signs. Category 3 indicates either no significant change

or a lack of robust change, with less than two-thirds of the models showing a robust signal.

The threshold used to detect robustness of a GCM signal (understood as decadal signals that

stand out from historical natural variability) is γ = 1.645
√
2/10 ∗σhist, corresponding to a 90%

confidence interval for decadal variability, where σhist represents the model-specific interannual

standard deviation from the detrended baseline period 1979–2005. The decade of emergence

is estimated for each grid-box as the first decade when the signals in the WTs frequencies are

categorized as robust (category 1, i.e. at least two-thirds of the GCMs show a change greater

than their respective γ and more than 80% of the GCMs agree on the direction of change).
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6.2 Major trends in circulation patterns

In this section, global seasonal trends in the frequencies of JC-WTs are analyzed. Firstly, a

climatological historical picture of multi-model ensemble JC-WTs frequencies is provided (Fig.

6.2 and Fig. 6.3) serving as a reference for the depicted trends (Fig. 6.4).

Std Dev

0 10 20 30 40 50 60

Climatological frequencies

[%]

A C

U W

A C

U W

Figure 6.2: Global JC-WTs frequency of Anticyclonic (A), Cyclonic (C), Unclassified (U), and Westerly
(W) types for the multi-model ensemble mean and their standard deviation for the historical period 1979-
2005 in JJA.
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In order to illustrate the GWL approach, trends are examined from a single grid-box, repre-

sented by a GWL plot (Fig. 6.1). For this particular point near the British Isles (50◦N, 15◦W ),

the resulting multi-model mean linear scaling is β = 2.574 in boreal summer, with a standard

deviation of 1.215. This means that every 1◦C increase in global warming, the frequency of the

A type increases by 2.574% relative to the historical baseline. As expected, the GSAT signals

corresponding to the first decade (yellow dots) show the lowest GWLs and the lowest changes

in JC-WT frequency. It is also noticeable that the models exhibit greater agreement in the

first decades, with the multi-model spread progressively increasing throughout the 21st century.

These changes exhibit a strong seasonal dependency, as for the same location and weather type,

the JC-WT frequency shows minimal variations with global warming in winter.

The application of this approach to all gridboxes in the domain of study allows to analyze

the evolution of the different seasonal JC-WT frequencies along the 21st century worldwide

(Fig. 6.4 for summer –JJA– and winter –DJF–, and Fig. 6.5 for autumn –SON– and spring

–MAM–). For the sake of brevity, results for the Anticyclonic (A), Cyclonic (C), Unclassified

(U), and Westerly (W) types are presented first (Fig. 6.4), as they have the most robust trends.

Results for the remaining types (NW, N, NE, E, SW, S and SE) can be found in Figs. 6.6 for

JJA, 6.7 for DJF, 6.8 for SON and 6.9 for MAM.

The projected JC-WT frequencies depicted in Fig. 6.4 unveil robust trends along the 21st

century in JJA and DJF over sizeable extratropical global areas. During JJA, a significant

increase in the frequency of A-type occurrences is detected, with certain trends reaching up to

3.0% per degree of global warming, within the subtropical high-pressure belt of the Southern

Hemisphere. This region, where A-type is a dominant circulation type (Liljequist, 1970; Barry

and Carleton, 2013), is highlighted by the main high-pressure centers along this belt (Figs. 6.2

and 6.3). Conversely, during DJF, significant negative trends are found for the A type in the

same Southern Hemisphere high-pressure centers, ranging from -2.0% to -2.5% per degree of

global warming.
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Figure 6.3: As in Figure 6.2, but for DJF.
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Figure 6.4: Maps depicting the multi-model mean trend (slope, β) of the 41 GCM ensemble (30◦ − 70◦

North and South) for the frequencies of Anticyclonic (A), Cyclonic (C), Unclassified (U), and Westerly
(W) JC-WTs, for JJA (upper panels) and DJF (lower panels). Blue (negative trend) and red (positive)
polygons depict grid-boxes where the ensemble provides robust results (i.e., at least 80% of models have
a significant trend at a 90% confidence level, see Sec. 6.1).
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Figure 6.5: As in Figure 6.1 but for autumn (SON) and spring (MAM).
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Figure 6.6: As in Figure 6.4, but for JJA only and WTs: Northeasterly (NE), Northerly (N), North-
westerly (NW), Eeasterly (E), Southwesterly (SW), Southerly (S) and Southeasterly (SE).
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Figure 6.7: As in Figure 6.6, but for DJF.

Simultaneously, there is a robust increase in the C type, along with a notable rise in the

frequency of the A-type at latitudes just south of these centers. Results indicate that, for both

seasons, there is a robust increase of up to 3.0% per degree of global warming in the frequency

of the W-type in the Subantarctic Belt, accompanied by a simultaneous robust decrease in the

frequency of the W-type in the latitudes immediately above it. All this suggests a southward

displacement of the whole zonal circulation that contracts towards Antarctica. The projected
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Figure 6.8: As in Figure 6.6, but for SON.

positive trends of W-type in lower Southern Hemisphere latitudes are consistent with observed

trends towards the positive phase of the Southern Annular Mode (SAM, Marshall, 2003), with

the maximum increment occurring in austral summer (DJF), as well as projected circulation

responses of SAM under global warming scenarios (Kushner et al., 2001). The positive SAM

phase is characterized by lower anomalous air pressure over Antarctica and higher anomalous
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Figure 6.9: As in Figure 6.6, but for MAM.

air pressure over the mid-latitudes (Lee et al., 2019), with strong effects on the atmospheric and

oceanic circulation system, including warming and drying over Patagonia, increased upwelling

of warm Circumpolar Deep Water, and glacier recession in western Antarctica and the Antarctic

Peninsula (Thompson and Solomon, 2002), among other impacts. On the other hand, mostly

non-robust trends are projected for the U-type (containing the samples with lowest pressure
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gradient) over most regions, except in a few regions from the Northern Hemisphere like the

Mediterranean basin, Eastern Siberia and Eastern and Western America, restricted to JJA.

The detected changes for the A, W and U types point to a redistribution or displacement

of A, W and U flows moving poleward. The high pressure centers with positive trends in the

subtropical belt are receiving U-type flow from the intertropical band, where it is most prevalent

(see Fig. 6.2 and Sec. 3.1), and constraining the A-type flow poleward. This could explain

the positive trends of the A-type in the Southern Hemisphere, in regions where Westerly flows

would typically dominate (Barry and Carleton, 2013; Fernández-Granja et al., 2023, Figs. 6.2

and 6.3). A similar situation might be occurring with the W-type, which becomes more frequent

near the Antarctic Circle and less frequent at immediate higher latitudes, where the A-type is

increasing. These results are coherent with a poleward expansion of the Hadley cell (Grise

et al., 2019) and a poleward shift of the jet stream position (Woollings et al., 2023) in both

hemispheres and seasons, and suggest a projected positive trend of the positive AMO phase

consistent with current observations.

Additionally, Fig. 6.4 illustrates that, in general for JJA and DJF, trends of the A-type are

opposite to those of the C-type. These two types might change in opposing ways throughout

the century. An example of this behavior can be found in the northern Pacific Ocean, where

dipoles of increasing-decreasing frequency for the A-type are identified, as well as dipoles of

decreasing-increasing frequency for the C-type. This area is influenced by the Pacific/North

American (PNA) teleconnection pattern (Barnston and Livezey, 1987, PNA), which describes

the flow pattern over the Northeast Pacific sector. In Fig. 3.9 (Sec. 3.2.3), JC-WTs with strong

correlations with the PNA are explored, depicting a pressure dipole of high and low systems

shown by this A-C types dipole. In Fig. 6.4, the trends in both A and C types are consistent with

the location of PNA pressure anomalies over western Canada and the Aleutians (van den Dool

et al., 2000). During JJA, when the positive phase of the PNA is weaker (van den Dool et al.,

2000; Chen and den Dool, 2003), the occurrence of the cyclone-anticyclone dipole decreases. In

contrast, during DJF, when the PNA positive phase is stronger, the frequency of this dipole

is projected to increase robustly throughout the 21st century. Additionally, the frequency of

W-type might also increase robustly in the North Pacific in DJF, likely due to the flow produced

by the convergence of an increasingly frequent A-C dipole.

In the Atlantic, the North Atlantic Oscillation (NAO) teleconnection pattern is represented

by the JC-WT dominant frequencies with a characteristic surface pressure anomaly pattern

of high/low (types A/C) pressure centers over the Azores/Iceland (see Fig. 3.8 in Sec. 3.2.3).

Results for future trends unveil a robust increase in the frequency of the A-type (Fig. 6.4),
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reflecting the high-pressure anomaly associated with the positive phase of the NAO, especially

in boreal summer. This positive trend in the NAO region represents the strongest trend of

the A-type during summer in the northern hemisphere, pointing to a robust increase of the

frequency of positive summer NAO phase. Although the summer NAO is weaker and confined

to northern latitudes compared to its winter counterpart, with a southern lobe located over

the British Isles (Folland et al., 2009), it has a significant association with precipitation in the

Mediterranean, among other regional climate impacts (Bladé et al., 2011). In the same vein,

a significant summer reduction in the frequency of the A-type is found in the Mediterranean

Basin and the Iberian Peninsula (Fig. 6.4). This change may be associated with the projected

reduction in climatological SLP values in the Mediterranean, as previously identified in CMIP5

models (Giorgi and Lionello, 2008). Furthermore, it could be connected to the projected pole-

ward expansion of the Hadley cell, as found in both CMIP5 and CMIP6 models (Grise et al.,

2019), especially when considering the substantial increase in the frequency of the U-type in

the Mediterranean during summer. Moreover, in boreal winter, A-type shows a robust positive

trend in the central-eastern Mediterranean. This robust circulation change is likely related to

a projected increase of SLP in DJF for that region (Giorgi and Lionello, 2008), connected to a

relative cooling phenomenon of the Mediterranean Sea compared to its surrounding land areas

and associated with a decrease in precipitation (Tuel and Eltahir, 2020).

From a regional perspective, our findings over Europe align with recent related studies. For

example, Herrera-Lormendez et al. (2023) report a notable summer increase in the frequency of

U, NE, and E types over Europe using an ensemble of eight CMIP6 models, alongside a reduction

in west-dominated patterns. Moreover, a negative trend in cyclonic circulations during winter

is found, which is consistent with the results presented in Figs. 6.4 and 6.7 (here based on a

larger ensemble).

We highlight additional robust trends displayed in Fig. 6.5, related to projected JC-WT fre-

quency changes throughout the 21st century in MAM and SON across the extratropical regions.

Particularly noteworthy are the trends associated with type U in SON over the Mediterranean

and the southern part of North America (at the boundary with the subtropical zone of the

Northern Hemisphere). According to Fig. 6.2, type U is the most representative pattern in

both the Mediterranean and southern North America during JJA, which suggests a shift in

the prevailing synoptic regimes from the boreal summer to autumn. Similar situations can be

observed for other JC-WTs in Fig. 6.5 during both MAM and SON, especially in the South-

ern Hemisphere, where types A, C, and W are projected to exhibit significant trends that are

spatially comparable to those occurring in JJA, albeit generally weaker in intensity. Several
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studies have highlighted that climate change may not only shift the frequency of specific syn-

optic patterns but also alter the timing and duration of seasons themselves, resulting in earlier

springs, delayed autumns, and prolonged summer-like circulation conditions (????) Synoptic

regimes are evolving throughout the year, especially in regions where seasonal boundaries are

shifting.

6.3 Emergence of climate change signals

Here the Time of Emergence (ToE) of changes in the seasonal frequencies of JC-WTs is

analyzed worldwide, indicating the time at which the robust trends detected in Sec. 6.2 stand

out from the internal variability. JJA and DJF ToE is represented in (Fig. 6.10), and SON

and MAM ToE is depicted in Fig. 6.11. The decade of emergence is identified as the first

decade in which the WT frequency anomaly (with respect to a historical baseline) exceeds a

model-specific threshold, based on the standard deviation of historical WT frequencies. The

emergence is considered robust when it is fulfilled by at least two-thirds of the models and at

least 80% of the models agree on the direction –either positive or negative– of the change in

WT frequency (Sec. 6.1).

A progressive emergence of significant frequency changes is identified in the course of the

21st century (Fig. 6.10). Furthermore, the emergence is spatially consistent with the extent

of the robust trends found before (Fig. 6.4). Note that here, the ToE estimation relies on the

IPCC’s advanced method for robustness and agreement, which includes additional filtering for

uncertainty due to internal variability, making it more restrictive than the simple method for

assessing trend significance.

Emergent signals are notably present in most weather types during the summer season (JJA

in the Northern Hemisphere and DJF in the Southern Hemisphere). While climate change

signals typically emerge in the far future in most grid boxes (2070–2100), some examples of

earlier emergence also occur. For example, A-type exhibits early emergence during the initial

decades of the 21st century in the Mediterranean (negative signal, i.e. less frequent A-type), the

Pacific coast of North America (negative and positive) and Central Asia (negative) during JJA,

as well as the Southern Hemisphere subtropical high-pressure belt (both positive and negative)

and the Mediterranean (positive) during DJF. Similarly, early positive emergence is observed

for U-type in the Mediterranean during JJA, and for C-type in DJF around the Polar Circle

over Greenland (negative) and the NE Arctic region of Canada (positive).

Remarkably, C and W types show extensive emergence across the Southern Hemisphere

during the late 21st century in austral summer (DJF). These regions already showed robust
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Figure 6.10: Time of Emergence (ToE, Sec. 2.4.2), represented as decade intervals, of the multi-model
ensemble over the area of study (30◦−70◦ North and South, grey gridboxes depict areas out of the domain
of analysis) for the frequencies of Anticyclonic (A), Cyclonic (C), Unclassified (U), and Westerly (W)
JC-WTs, in JJA (upper panels) and DJF (lower panels). Polygons from Fig. 6.4 enclose robust trend
areas throughout the 21st century –blue (negative trends) and red (positive trends)–. White grid-boxes
indicate locations where no significant signal emerges along the 21st century.
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Figure 6.11: As in Figure 3 from the Manuscript, but for SON and MAM.
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trends in Fig. 6.4, reinforcing the findings of an on-going increase of the SAM positive phase and

its associated impacts (Sec. 6.2). Examining JC-WT trends and emergence of their projected

signals together reveals that robust trends (Fig. 6.4) do not always correspond to the earliest

emergence (see the overlaid polygons in Fig. 6.10 showing robust trends from Fig. 6.4). This

holds true for W and C types in DJF in the Southern Hemisphere, where robust trends are

detected but signals do not emerge until the last decades of the 21st century. It similarly occurs

with A type in the NAO region (JJA) and just below the subtropical high-pressure belt (JJA

and DJF), as well as in the North Pacific for A and C types during DJF. An exception to this

can be found in the Mediterranean, where changes in A (DJF and JJA) and U (JJA) types

emerge in the first decades.

As shown in Fig. 6.1, the variability in the changes of WT frequencies among models increases

throughout the 21st century. The continued emergence of WT signals into the last decades of

the 21st century suggests that such WT frequency changes, relative to the historical baseline,

are projected to accelerate faster than the internal variability of the ensemble. This supports

the consistency and robustness of these emergent signals, as they do not only persist, but they

also intensify over time.
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7

Conclusions, Contributions and Future Perspectives

7.1 Key findings

Here, the key findings of the Thesis are outlined, for each of the goals listed in Section 1.6

(in italic), for clarity.

1. Assess the potential and limits of the JC-WT methodology as a process-based diagnostic

tool to evaluate the atmospheric circulation of GCMs

• Examine the global extratropical applicability of the JC-WT classification method

(including the Southern Hemisphere)

This Thesis is the first research work addressing the global application of the JC-

WTs. Its spatial limits of applicability are defined in Chapter 3 (Sec. 3.1), providing

an extension of this popular classification method that can serve as a potential tool

for process-based climate model evaluation. It is shown that the JC-WT approach

can be reliably applied over most of the regions within 23.5◦ and 80◦ latitude in

both hemispheres. Over most of this area of applicability, a large diversity of WTs

is found, while the U-type (representing situations with weak pressure gradients)

occurs with low frequency. The loss of applicability of the method is identified with

the transition zone where the diversity of WTs decreases sharply at the same time

that the U-type becomes the dominant type. This transition marks an empirical

applicability threshold of 16 distinct WTs.

• Connect the JC-WTs to the main modes of climate variability (such as predominant

teleconnection indices and atmospheric blockings), as a way to evaluate the physical

consistency, meaningfulness and diagnostic capability of the classification scheme.

The JC-WTs method, based on near-surface circulation, is able to produce WTs that

significantly correlate with the main modes of low-frequency variability, including

119
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atmospheric blockings (Chapter 3, Sec. 3.2). This regional evaluation is physically

consistent with the imprint these variability modes have on the geopotential in the

mid-troposphere, operating on larger-scales.

The methodology reproduces well-known teleconnections and blockings, with phys-

ically interpretable circulation types in terms of spatial pattern and seasonal cycle.

Moreover, to the author’s knowledge, it also reveals some previously undocumented

relationships, such as the association between cyclonic circulation types in the west-

ern Sahara desert and Anatolia with the SCAND index (active in DJF and JJA). In

the same vein, for the North Atlantic (ATL) and continental (RUS) blocking events

affecting European climate, the predominance of the purely anticyclonic type is not

confined to the source region of detection of the blocking. It also reigns over a sub-

stantial fraction of the subtropical North Atlantic, depicting a zonal circumpolar

bridge that allows to objectively delimit the area of influence of these events in terms

of near-surface circulation.

In conclusion, these findings demonstrate the links between near-surface and large-

scale atmospheric circulation by underlining the potential of the JC-WT classification

approach to detect the imprint of the main modes of atmospheric low-frequency

variability on the regional near-surface circulation. These results provide a more

detailed and nuanced understanding of the underlying atmospheric mechanisms that

give rise to the different JC-WT configurations. They further support the consistency

and usefulness of the JC-WT classification, remaining as a valuable tool for process-

based model evaluation purposes and climate impact research. These results may

provide an opportunity to perform the same analyses in other regions of the world

where there are known teleconnections or other blocking events, thereby extending

the results presented here about their links with near-surface circulation.

2. Evaluate the ability of the new generation of GCMs from CMIP5/6, developed for the

IPCC Fifth and Sixth Assessment Reports (AR5 and AR6, respectively), on their abil-

ity to represent observed large-scale atmospheric circulation patterns. This process-based

evaluation involves:

• Analyze the observational uncertainty in the JC-WT classification.

The TPMS (Chapter 4), which provide a measure of WTs transition probability

agreement, unveils a general consistency between reanalyses within the applicability

range described in Sec. 3.1. On the one hand, there are regions where the JC-WT
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approach is in principle applicable but its practical use is hampered by a large re-

analysis uncertainty. These are the Mediterranean (MED) in JJA, and Madagascar

(MDG*) and East Southern-Africa (ESAF*) in DJF. On the other hand, there are re-

gions where JC-WT is less suitable irrespective of the reanalysis uncertainty. These

are Arabian-Peninsula (ARP*) and SAHara (SAH*) in JJA, and West Southern-

Africa (WSAF*) and Central Australia (CAU) in DJF. Likewise, there are regions

with complex orography where the JC-WT classification should be taken with cau-

tion as the SLP is estimated through pressure reduction algorithms, differently for

each dataset. This analyses confirm the expected large discrepancies among reanal-

yses there: Greenland (GIC), Antarctica (WAN, EAN), Northern Central-America

(NCA*), West North-America (WNA), Central North-America (CNA), central Asia

(WCA, ECA, EAS), Southern Asia (SAS*) and the Tibetan Plateau (TIB). Both

the 16-type diversity threshold (found in Chapter 3, Sec. 3.1) and large TPMS areas

exhibit a seasonal march towards the pole of the respective summer hemisphere. This

excursion is particularly strong for the TPMS during JJA (boreal summer).

• Quantify the ability of CMIP5/6 models to reproduce historical JC-WTs classifica-

tions in the extratropics, focusing on a diversity of WTs features and evaluation

metrics.

Results from Chapter 5 show a general improvement of CMIP6 over CMIP5 in terms

of several statistics related to the simulated frequencies of the JC-WTs and to their

temporal sequences (persistence probability and transition probability from one type

to another). Well-performing GCMs in CMIP5 (e.g. EC-EARTH and HadGEM2-

ES) also exhibit a good performance in CMIP6. Large improvements are found for

IPSL-CM5A-LR and GFDL-ESM4, whereas important biases remain or move along

the year in other CMIP6 GCMs (e.g. NorESM2-LM). Such remaining biases relate

to their inaccuracies in representing observed transition probabilities, that in general

tend to occur for specific seasons.

Overall, GCMs show a remarkable ability to represent transition probabilities be-

tween JC-WTs. Despite some significant differences for particular transitions, the

GCM TPM fingerprints are generally able to faithfully represent the pattern of most

likely transitions as represented by the reanalysis, even for the worse performing

models. Furthermore, these results are consistent across reanalysis products.

A general recommendation about the use of specific GCMs is difficult to make, since

it depends on the applications of interest, which are usually focused on a given sea-



122 7. CONCLUSIONS, CONTRIBUTIONS AND FUTURE PERSPECTIVES

son or might be more sensitive to some weather types (e.g. those leading to extreme

events in a particular area). In this sense, based on these results, a climate data user

could identify specific seasons and JC-WTs which particular GCMs fail to reproduce

plausibly. This application-dependent selection can be feasible for statistical down-

scaling. However, for dynamical downscaling a general performance (all JC-WTs, all

seasons) should be sought.

3. Estimate projected future changes in the atmospheric circulation patterns on the smaller

synoptic scale (by means of the JC-WTs classification) globally, thus considering a closer

link to local-scale climate variability relevant for impact studies.

• Identify emerging changes of JC-WT from model ensemble internal variability.

By applying the JC-WT classification globally, Chapter 6 provides a comprehensive

framework for understanding the impacts of climate change on global large-scale cir-

culation. A more detailed understanding of the temporal and spatial dynamics of

these changes is possible thanks to a methodology based on the scaling by means

of Global Warming Levels (GWL). This way, linear relationships between regional

responses and global warming are analyzed, along with the estimation of the emer-

gence (ToE) of robust signals. These results have practical connections with climate

impact researchers, particularly in areas where shifts in atmospheric circulation are

likely to play a fundamental role.

The analysis in Chapter 6 reveals significant trends in JC-WTs across key climatic

regions, with statistically significant trends which might be connected to substantial

changes of well-known circulation patterns (Chapter 3, Sec. 3.2) closely related to

the JC-WTs across the extra-tropics. For instance, significant trends are identified in

regions influenced by recurrent teleconnection patterns such as the NAO and PNA.

The Cyclonic type also exhibits robust trends of both signs over Greenland and

the Arctic region of Canada. Additionally, the Anticyclonic type shows significant

negative changes in the Mediterranean in JJA and positive in DJF; and significant

positive trends across an extensive area in the Southern Hemisphere encompassing

the subtropical high-pressure belt. The Westerly type shows significant positive

changes in the subantarctic regions, meanwhile the Unclassified type exhibits notable

positive variations in the Mediterranean or near the intertropics. Our results may

also support findings from state-of-the-art studies suggesting shifts in weather regimes

and seasonal synoptic patterns.
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The emergence of climate change signals is closely related to the robustness of these

trends. While most signals emerge prominently by the 2070s, some regions show

earlier emergence, such as the Mediterranean, where anticyclonic and unclassified

types display emergent signals as early as in the present decades (2020’s). This

variability in the timing of emergence reflects the interplay between natural variability

and the growing influence of anthropogenic forcing in the atmospheric circulation of

models.

The intensification of emergent signals toward the late 21st century highlights the

importance of these trends when understanding future climate scenarios. Such JC-

WT changes are projected to grow faster than the historical internal variability in

each GCM independently, reinforcing the robustness and relevance of these changes.

This Chapter focuses on the critical role of large-scale circulation patterns in shaping

regional climate responses, offering valuable insights for policymakers and researchers

addressing the challenges of a changing climate.

• Generate a catalog of global JC-WT from more than 50 GCMs for both their historical

simulations and future CMIP5 and CMIP6 projections.

Derived from the different objectives of this Thesis, and in order to support future

studies that may benefit from the JC-WT classifications, several open-access online

data repositories were generated. These repositories contain JC-WT catalogs de-

rived from multiple GCMs and reanalysis datasets. They are described in detail in

Sections 7.3.2 and 7.4 and include JC-WT classifications at 6-hourly resolution for

41 models under future scenarios (2005–2100) and 5 reanalyses covering the period

1979–2005. These datasets collectively take up a total of 11.5 GB. In this way, it

was possible to substantially reduce and summarize the 1500 GB of SLP data from

reanalyses and GCMs (Sec. 2.1.2) into weather types, with the application of the

JC-WT classification method.

7.2 Related publications and contributions

The main contributions of this Thesis (Part III) have resulted from a number of publi-

cations in international journals and conference proceedings that are relevant to the fields of

atmospheric sciences and meteorology. More specifically, three papers were published in peer-

reviewed journals, another one is currently in review process, and an additional publication can

be found in the proceedings of the 12th Congreso de la Asociación Española de Climatoloǵıa

(AEC):
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• Section 3.1 in Chapter 3 and the entire Chapter 4 are based on Fernández-Granja,

J. A., S. Brands, J. Bedia, A. Casanueva and J. Fernández: “Exploring the limits of

the Jenkinson–Collison weather types classification scheme: a global assessment based

on various reanalyses”. Climate Dynamics, 2023, doi:10.1007/s00382-022-06658-7 (1st

quartile in JCR1).

• Section 3.2 in Chapter 3 is based on Fernández-Granja, J. A., J. Bedia, A. Casanueva,

S. Brands and J. Fernández: “The signature of the main modes of climatic variability as

revealed by the Jenkinson-Collison classification over Europe”. International Journal of

Climatology, 2024, doi:10.1002/joc.8569 (2nd quartile in JCR).

• Section 4.3 in Chapter 4 is also based on Fernández-Granja, J. A., S. Brands, J. Bedia,

A. Casanueva and J. Fernández: “Regional assessment of the Jenkinson-Collison Weather

Types classification and Observational Uncertainty based on different reanalyses over the

Mediterranean region”. Retos del cambio climático: impactos, mitigación y adaptación.

[Madrid]: Asociación Española de Climatoloǵıa; Agencia Estatal de Meteoroloǵıa, pp.

55-66, 2022, ISBN: 978-84-125772-1-1.

• The entire Chapter 5 is based on Fernández-Granja, J. A., A. Casanueva, J. Bedia and

J. Fernández: “Improved atmospheric circulation over europe by the new generation of

cmip6 earth system models”. Climate Dynamics, 2021, doi:10.1007/s00382-021-05652-9

(1st quartile in JCR).

• The entire Chapter 6 is based on Fernández-Granja, J. A., J. Bedia, A. Casanueva,

S. Brands and J. Fernández: “Emerging near-surface extratropical circulation changes

due to climate change: A weather typing based global analysis”. Under review in npj —

Climate and Atmospheric Science, 2025, (1st quartile in JCR).

Furthermore, the previous contributions were presented in these national and international

conferences, as presenter and first author:

• European Geosciences Union, EGU 2021 (Vienna, Austria. April 19–31, 2021): oral

presentation. Transition probabilities between synoptic weather types as a fingerprint for

climate model evaluation. J. A. Fernández-Granja, A. Casanueva, J. Bedia, J. Fernández.

• European Geosciences Union, EGU 2022 (Vienna, Austria. May 23–27, 2022): oral

presentation. A worldwide assessment of the Jenkinson-Collison atmospheric circulation

1Journal Citation Reports (JCR) is an online tool hosted by Web of Science that allows the measurement
of the relative importance of a journal within its corresponding thematic based on the number of citations its
papers receive annually.
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classification and observational uncertainty based on different reanalysis. J. A. Fernández-

Granja, S. Brands, J. Bedia, A. Casanueva, J. Fernández.

• 12º Congreso de la Asociación Española de Climatoloǵıa (AEC) (Santiago

de Compostela. October 18–21, 2022): oral presentation. Regional assessment of the

Jenkinson-Collison weather types classification and observational uncertainty based on

different reanalyses over the Mediterranean region. J. A. Fernández-Granja, S. Brands, J.

Bedia, A. Casanueva, J. Fernández.

• Congreso CLIVAR 2023 (Madrid. January 24–26, 2023): oral presentation. Assess-

ment of the Jenkinson-Collison weather type classification in the Mediterranean: suitabil-

ity of the method and reanalysis uncertainty. J. A. Fernández-Granja, S. Brands, J. Bedia,

A. Casanueva, J. Fernández.

• European Geosciences Union, EGU 2023 (Vienna, Austria. April 24–28, 2023):

poster presentation. Characterization of Mediterranean large-scale atmospheric circula-

tion based on Jenkinson-Collison weather type classification. J. A. Fernández-Granja, A.

Casanueva, J. Bedia, S. Brands, J. Fernández.

• International Conference on Regional Climate ICRC-CORDEX 2023 (Trieste,

Italy. September 25–29, 2023): oral presentation. Performance, dependencies and spread

of the CMIP global climate models for selected CORDEX domains as described by the

low-level circulation. J. A. Fernández-Granja, S. Brands, A. Casanueva, J. Bedia, J.

Fernández.

• World Climate Research Program (WCRP) Open Science Conference (Kigali,

Rwanda. October 23–27, 2023): poster presentation. Global assessment of future changes

in low-level circulation based on the Jenkinson–Collison weather type classification. J. A.

Fernández-Granja, A. Casanueva, J. Bedia, S. Brands, J. Fernández.

• European Geosciences Union, EGU 2024 (Vienna, Austria. April 14–19, 2024):

oral presentation. Global changes in low-level circulation types under future anthropogenic

forcing. J. A. Fernández-Granja, A. Casanueva, J. Bedia, S. Brands, J. Fernández.

• 15th International Meeting on Statistical Climatology (IMSC 2024) (Toulouse,

France. June 24–28, 2024): oral presentation. Global-scale evaluation of classifications

methods for atmospheric circulation. J. A. Fernández-Granja, J. Stryhal, R. Huth.
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• 13º Congreso de la Asociación Española de Climatoloǵıa (AEC) (San Lorenzo

del Escorial (Madrid). January 22–24, 2025): oral presentation. Global analysis of emerg-

ing changes in atmospheric circulation patterns under climate change: Insights from the

Jenkinson-Collison classification. J. A. Fernández-Granja, A. Casanueva, J. Bedia, S.

Brands, J. Fernández.

7.3 Open Software implementations and research reproducibility

7.3.1 Contributions to open source climate Software

Within this Thesis, most software contributions were carried out in the climate4R framework

(Sec. 2.5), more precisely in the transformeR package. Several functions were implemented

to introduce and extend the library’s functionalities in clustering analysis. In particular, I in-

cluded the implementation of clusterGrid2, as a wrapper of several clustering methods such

as K-means or self-organizing maps, among others; and lambWT3, for the JC-WT classification

method. My contribution also involved pre-processing and post-processing of the input/output

for these functions and the adaptation of other functions to allow dealing with classes (WTs).

Beyond the implementation of different weather-typing methods, the contributions of this The-

sis to the climate4R framework have facilitated their integration in specific downscaling and

bias adjustment methods, thus contributing to other research lines of the group, such as the

development of weather-type conditioned calibration methods of satellite products in tropical

regions (Mirones et al., 2023). Furthermore, other auxiliary functions were implemented to

develop some of the methodologies involved in the Thesis (such as GWLs, ToE or evaluation

metrics in Chapter 2).

7.3.2 Reproducibility and data availability

Reproducibility and transparency are essential components of high-quality scientific develop-

ment. FAIR principles (Findability, Accessibility, Interoperability and Reuseability) are nowa-

days well established in the scientific community, offering users guidelines to encourage the

re-use of their data and code (Wilkinson et al., 2016).

In accordance with these guidelines, a set of notebooks were developed in R program-

ming language. They contain the software code implementations for the methodological as-

pects of this Thesis and allow users to reproduce the main outcomes. They are available in a

dedicated GitHub repository: https://github.com/SantanderMetGroup/notebooks/tree/devel.

2https://github.com/SantanderMetGroup/transformeR/blob/devel/R/clusterGrid.R
3https://github.com/SantanderMetGroup/transformeR/blob/devel/R/lambWT.R

https://github.com/SantanderMetGroup/notebooks/tree/devel
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Each notebook is linked to the related published paper (see Table 7.1). An environment with

R version 4.2.3 (2023-03-16) and the latest version of the climate4R framework (v2.5.4) are

required to run these notebooks. Besides, climate4R can be conveniently installed using a ded-

icated conda image, which eases the installation of all needed dependencies (for installation

instructions, see https://github.com/SantanderMetGroup/climate4R).

Section Manuscript Notebook

Chapter 3,
Sec. 3.1 and
Chapter 4,
Sec. 4.3

Fernández-Granja et al. (2023):
Exploring the limits of the

Jenkinson–Collison weather types
classification scheme: a global assessment

based on various reanalyses

2021_JC_Worldwide_-

suitability.Rmd

Chapter 5

Fernandez-Granja et al. (2021): Improved
atmospheric circulation over Europe by
the new generation of CMIP6 Earth

system models

2020_Lamb_ClimDyn.Rmd

Chapter 6

Fernández-Granja et al. (2025):
Emerging near-surface extratropical
circulation changes due to climate

change: A weather typing based global
analysis

2024_JCWT_trends.Rmd

Table 7.1: References to the reproducible Jupyter notebooks, along with citations to the corresponding
papers and the related results sections of this Thesis.

Additionally, datasets with the generated JC-WT catalogs (from GCMs and reanalysis

datasets) are provided via Zenodo4. Two datasets were created within this Thesis: one with

the JC-WT catalogs from the 5 reanalyses and the modified layer of IPCC regions (Sec. 4.1.1),

and another one with the JC-WT catalogues derived from the 41 GCM future simulations used

in Chapter 6:

• Fernández-Granja, J. A., Bedia, J., Brands, S., Casanueva, A., and Fernández, J.:

“Global Extra-tropical Circulation Database based on the Jenkinson-Collison Classi-

fication calculated with 6-hourly mean sea-level pressure fields from various reanaly-

sis datasets”, (1.1.0-alpha) [Data set]. Zenodo, 2022, https://doi.org/10.5281/zenodo.

15847558

• Fernández-Granja, J. A., Bedia, J., Brands, S., Casanueva, A., and Fernández,

J.: “Global Jenkinson-Collison Weather Type (JC-WT) classifications until 2100 from

4Zenodo is a free, open-access repository developed by CERN under the European OpenAIRE programme,
that enables to share, preserve, and cite a wide range of research outputs (publications, datasets, and software)
by assigning persistent Digital Object Identifiers (DOIs) to each submission.

https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/notebooks/blob/master/2021_JC_Worldwide_suitability.Rmd
https://github.com/SantanderMetGroup/notebooks/blob/master/2021_JC_Worldwide_suitability.Rmd
https://github.com/SantanderMetGroup/notebooks/blob/master/2020_Lamb_ClimDyn.Rmd
https://github.com/SantanderMetGroup/notebooks/blob/devel/2024_JCWT_trends.Rmd
https://doi.org/10.5281/zenodo.15847558
https://doi.org/10.5281/zenodo.15847558
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CMIP5/6 GCMs under anthropogenic forcing experiments (RCP 8.5 and SSP5-8.5)”,

(Beta) [Data set]. Zenodo, 2024, https://doi.org/10.5281/zenodo.14282539

7.3.3 Computing requirements and scalability considerations

In order to reproduce the results shown in this Thesis, a virtual machine with the following

specifications was used:

• Operating system: Ubuntu 22.04.6 LTS (64-bit)

• Memory: 64 GB

• Processor: 2× Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz (16 cores, 32 threads)

Note that some of the notebooks shown in Sec. 7.3.2 can run on computers with less RAM. In

order to provide a quantitative reference of the computational requirements associated with the

JC-WT classification, a benchmarking test was performed using the microbenchmark function

in R. The test consisted of executing ten times, in a single core, the classification of the 94-

year-long SLP time series (2006-2100) corresponding to the EC-Earth model under the RCP8.5

scenario for a single grid-box. Results yielded a minimum execution time of 29.7 seconds, a mean

of 30.5 seconds, and a maximum of 31.4 seconds. This setup assumes that SLP data are already

interpolated to a common 2.5°×2.5° grid and spatially subsetted to the 16-point cross required

by the method (see Fig. 2.1). Considering that the JC-WT classification is applied over 34 lati-

tudinal rows (covering 30°–70°, North and South) and 144 longitudes columns (180°W to 180°E),

the total number of grid-boxes per model is 4896. Under the described hardware conditions,

the full global JC-WT computation for a single model and scenario requires approximately 41

hours. Importantly, all years are processed at once, as empirical testing confirmed a linear scal-

ing with the size of the temporal dimension in the WTs calculations; thus, avoiding temporal

subsetting may improve computational efficiency. When the WT calculations is scaled to large

ensembles (e.g., CMIP5/6), the software implementation can benefit from parallel executions

in different cores over grid-boxes or model members, for instance. Output storage requirements

are moderate, with the JC-WT classifications for 94 years occupying approximately 450 MB

per model and scenario.

7.4 External collaborations and partnerships

Within the framework of this Thesis, synergies have been developed leading to collabora-

tions with researchers from the Instituto de F́ısica de Cantabria (IFCA) and the University

https://doi.org/10.5281/zenodo.14282539
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of Cantabria, as well as with external and international institutions. This is evidenced by the

co-authorship of papers and conference proceedings (Sec. 7.2) of external and international re-

searchers (Dr. Swen Brands, Dr. Jan Stryhal and Prof. Radan Huth). This Thesis also gave me

the chance to contribute to their work as well, and such collaborations are consolidated in four

more publications, two Zenodo repositories, a 3-month research stay in the Czech Academy

of Sciences and contributions to the selection of driving CMIP6 GCMs for the most recent

EURO-CORDEX experiment:

• Brands, S., Fernández-Granja, J. A., Bedia, J., Casanueva, A. and Fernández, J.: “A

global climate model performance atlas for the southern hemisphere extratropics based on

regional atmospheric circulation patterns”. Geophysical Research Letters, 50, 2023, doi:

10.1029/2023GL103531 (1st quartile in JCR).

• Mirones, Ó., Bedia, J., Fernández-Granja, J. A., Herrera, S., Van Vloten, S. O., Pozo,

A., Cagigal, L., and Méndez, F. J.: “Weather-type-conditioned calibration of Tropical

Rainfall Measuring Mission precipitation over the South Pacific Convergence Zone”. In-

ternational Journal of Climatology, 43(2), 1193–1210, 2023, doi: 10.1002/joc.7905

• Brands, S., Fernández-Granja, J. A., Fernández, J., Bedia, J., Casanueva A. and J.

J. Taboada: “Performance of the CMIP6 global climate models over the Iberian Penin-

sula and relationships with the simulated climate system complexity”. Retos del cambio

climático: impactos, mitigación y adaptación. [Madrid]: Asociación Española de Clima-

toloǵıa; Agencia Estatal de Meteoroloǵıa, pp. 67-79, 2022, ISBN: 978-84-125772-1-1.

• Brands, S., Fernández-Granja, J. A., Bedia, J., Casanueva, A. and Fernández, J.:

“Southern Hemisphere Lamb Weather Types from historical GCM experiments and vari-

ous reanalyses (2.0) [Data set]”. Zenodo, 2023, doi: 10.5281/zenodo.7872012.

• Brands, S., Fernández, J., Hidalgo, H., Barimalala, R., Ashfaq, M., Bettolli, M. L.,

Hadjinicolaou, P., Solman, S., Maraun, D., Cavazos, T., Fernandez-Granja, J. A.,

González-Abad, J., Mindlin, J., Soto-Navarro, J., Somot, S., Paquin, D., Kawase, H., Dri-

ouech, F., Orr, A., . . . Gutiérrez, J. M.: “CORDEX Collection of Regional-Scale Climate

Processes and Metrics for Climate Model Evaluation”. Zenodo, 2025, doi: 10.5281/zen-

odo.15348836

• Reseach Stay: From 23 March 2023 to 27 June 2023 (3 months and 4 days) at the

Institute of Atmospheric Physics of the Czech Academy of Sciences (Prague, Czech Re-

public) under the supervision of Prof. Radan Huth. This research stay, undertaken at an
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international R+D5 centre, is closely related to a publication in progress and the future

work of this Thesis (see Sec. 7.5).

• Stryhal, J., Fernández-Granja, J. A., and Huth, R.: “Unveiling seasonal synoptic-

scale links: A global evaluation of atmospheric circulation and climate connections”. In

preparation.

7.5 Prospective directions for future research

Throughout this Thesis, multiple sources of uncertainty have been assessed in the various

analyses conducted (e.g., observational uncertainty), and necessary sensitivity tests of the dif-

ferent results presented (such as sensitivity to the temporal resolution of the data, among other

tests). However, conclusions rely on a single alternative regarding the clustering or synoptic

classification algorithms, the JC-WTs classification method. This implies that a comprehensive

methodological uncertainty analysis remains pending; that is, an examination of how the results

of this Thesis might vary if alternative and well-known synoptic classification methods, such as

K-means (Hastie et al., 2001), Self-Organizing Maps (SOM; Kohonen, 1982), or Principal Com-

ponent Analysis (PCA; Preisendorfer and Mobley, 1988), among others, are employed instead

of the JC-WT classification.

The choice of the JC-WTs methodology for this Thesis was strongly motivated by the various

advantages already documented in the literature (Sec. 2.2). Thus, this algorithm was consid-

ered, a priori, a better candidate than other existing methods for conducting a process-based

evaluation of climate models. Although methodological studies exploring different clustering

algorithms for various applications have been conducted (see Sec. 1.5.1 for more information),

the current literature lacks studies specifically addressing methodological uncertainty in process-

based model evaluations.

Huth et al. (1993, 2008) conducted reviews and comparisons of different synoptic classi-

fication methods, including objective, automated, and multi-variable techniques. These two

articles are highlighted references in this field. In fact, Prof. R. Huth and other researchers

from his institution, the Institute of Atmospheric Physics (IAP) of the Czech Academy of Sci-

ences (CAS) in Prague (Czech Republic), were actively involved in the COST733 Action on

this topic (Philipp et al., 2010). Furthermore, Stryhal and Huth (2017), both from IAP (CAS),

performed a comparison of winter circulation patterns from reanalyses throughout Europe us-

ing different classification methods. They found significant discrepancies in the classification

outcomes when applying different WT methods to the same pair of reanalyses, highlighting the

5R+D: Research and Development
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strong methodological dependence and the lack of direct correspondence between the resulting

WTs from different methods.

The aforementioned international research centre (IAP, CAS) was selected for the research

stay undertaken as part of this Thesis (Sec. 7.4), given their strong expertise in synoptic clas-

sification methodologies. The objective of the stay was to analyze the methodological uncer-

tainty associated with process-based evaluations of large-scale climate models. The outcomes

derived from this stay are work in progress and expect to be submitted to a scientific jour-

nal in the coming months. That work aims to present a global-scale evaluation of up to five

different WTs methods (Jenkinson-Collison, Grosswettertypes (Hess and Brezowsky, 1969),

Lund method (Lund, 1963), Principal Components and K-means), taking into account different

method-specific configurations, by assessing the impact of atmospheric circulation on multiple

surface climate variables (2-meter mean, maximum, and minimum temperature, total precip-

itation, 10-meter wind gust, and total cloud cover). Results reveal the WT method with the

strongest links to the surface variables, region by region, covering the entire globe. The seasonal

variability of these links is further examined as well as the influence of the configuration of the

WT method. These results aim to assist researchers with the methodological choices in the

development of future studies related to WTs, enrich the overall comprehension of atmospheric

circulation, improving our capacity to identify and study regions with significant climatic in-

teractions, and ultimately refine the sensitivity assessments of this Thesis. The classification

methods employed in this work rely exclusively on SLP fields. However, recent studies have ad-

dressed the potential of incorporating additional atmospheric levels, such as mid-tropospheric

geopotential height (Z500), to better capture circulation patterns. For instance, Miró et al.

(2020) propose a modified version of the JC-WT method that integrates Z500 information in

a regional application over Catalonia, demonstrating an added value of such vertical extension

when correlating the WTs with daily precipitation. It might be worth opening the door to new

methods incorporating Z500 in order to perform global process-based evaluations of GCMs.

In other aspects, Brands et al. (2025) address the results of ongoing WCRP-CORDEX

(Sec. 1.2.4) activities to identify regional-scale climatic phenomena, relevant for global climate

model evaluation against observational datasets. The identified climate phenomena, also known

as “processes” or “diagnostics”, have distinct aspects (or features), each of which can be de-

scribed by one or several metrics for evaluation. Brands et al. (2025) complements the work

of the WCRP-CMIP Model Benchmarking Task Team (MB-TT Team, 2024), which currently

focuses on global or continental-scale diagnostics. In contrast, the CORDEX approach operates

at a finer scale, employing high-resolution diagnostics at the synoptic scale that require daily
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or sub-daily data. The results presented in this Thesis are being shared with the MB-TT to

foster synergies and support further decision-making. In particular, the JC-WTs (as climate

“process”) and the TPMS (as “diagnostics”), both important tools in this Thesis, have been

included in this benchmark to evaluate CMIP7, the future GCMs generation. This paves the

way for continued support to process-based evaluation within the CORDEX framework, in view

of the forthcoming new generation of climate models, as part of future work.
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T. Iwasaki, A. Kitoh, V. Pope, D. Randall, E. Roeckner, D. Strauss, W. Stern, H. Van den

http://ieeexplore.ieee.org/document/6404471/


BIBLIOGRAPHY 139

Dool, and D. Williamson, 1998: Northern Hemisphere atmospheric blocking as simulated by

15 atmospheric general circulation models in the period 1979-1988. Climate Dynamics, 14,

385–407, doi:10.1007/s003820050230.

Davini, P., S. Corti, F. D’Andrea, G. Rivière, and J. von Hardenberg, 2017: Improved win-

ter european atmospheric blocking frequencies in high-resolution global climate simulations.

Journal of Advances in Modeling Earth Systems, 9, 2615–2634, doi:10.1002/2017MS001082.

Davis, A. and R. McNider, 1997: The development of antarctic katabatic winds and implications

for the coastal ocean. Journal of the atmospheric sciences, 54, 1248–1261.

Dawson, A. and T. N. Palmer, 2015: Simulating weather regimes: impact of model resolution

and stochastic parameterization. Climate Dynamics, 44, 2177–2193, doi:10.1007/s00382-014-

2238-x.

Dawson, A., T. N. Palmer, and S. Corti, 2012: Simulating regime structures in weather and cli-

mate prediction models: REGIMES IN WEATHER AND CLIMATE MODELS. Geophysical

Research Letters, 39, doi:10.1029/2012GL053284.

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A.

Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot,

N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy,
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L. A. Da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj,

J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark,

J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner,

A. Tabeau, and M. Tavoni, 2017: The Shared Socioeconomic Pathways and their energy, land

use, and greenhouse gas emissions implications: An overview. Global Environmental Change,

42, 153–168, doi:10.1016/j.gloenvcha.2016.05.009.

URL https://www.sciencedirect.com/science/article/pii/S0959378016300681

Riahi, K., D. Vuuren, E. Kriegler, J. Edmonds, B. O’Neill, S. Fujimori, N. Bauer, K. Calvin,

R. Dellink, O. Fricko, W. Lutz, A. Popp, J. Crespo Cuaresma, S. Kc, M. Leimbach, L. Jiang,

T. Kram, S. Rao, J. Emmerling, and M. Tavoni, 2016: The shared socioeconomic pathways

and their energy, land use, and greenhouse gas emissions implications: An overview. Global

Environmental Change, 42, doi:10.1016/j.gloenvcha.2016.05.009.

Ribes, A., S. Qasmi, and N. P. Gillett, 2021: Making climate projections conditional on historical

observations. Science Advances, 7, eabc0671, doi:10.1126/sciadv.abc0671.
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