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ARTICLE INFO ABSTRACT
Keywords: Objectives: To gain insights into the pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) and
Systemic lupus erythematosus identify potential drug targets through investigation of whole-blood human transcriptome.

Neuropsychiatric systemic lupus erythematosus

Methods: We analysed differentially expressed genes in peripheral blood from active central nervous system
Precision medicine

(CNS) lupus (n = 26) and active non-neuropsychiatric SLE (n = 38) patients versus healthy controls (n = 497)

D bili
Birctlligg?csl "y from the European PRECISESADS project (NTC02890121). We further explored dysregulated gene modules in
Transcriptome active CNS lupus and their correlation with serological markers. Lastly, we performed regulatory network and

Gene expression druggability analysis.
Results: Unsupervised weighted gene co-expression network analysis (WGCNA) revealed 23 dysregulated gene

modules and two subgroups of active CNS lupus. The interferon gene module was prominently upregulated in
subgroup 1, while the B cell, T cell, and cytotoxic/natural killer (NK) cell modules were downregulated. Sub-
group 2 showed less marked dysregulation patterns. Subgroup 1 had lower estimated proportions of lymphoid
cell subsets and proportionally more patients positive for anti-dsDNA antibodies compared to subgroup 2,
pointing to molecularly distinct subgroups or misclassification of subgroup 2. In silico prediction algorithms
demonstrated a greater anticipated response to anifrolumab, C3 inhibitors, and calcineurin inhibitors for patients
in CNS lupus subgroup 1 compared with subgroup 2.

Conclusions: Gene dysregulation patterns related to innate and adaptive lymphoid immunity separated active
CNS lupus patients into two distinct subgroups with differential anticipated response to type I interferon, C3, and
calcineurin inhibition. Our study provides a conceptual framework for precision medicine in NPSLE and im-
plications for overcoming the major clinical challenge of attributing neuropsychiatric features to SLE versus
other causes.
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1. Introduction

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a com-
mon manifestation of systemic lupus erythematosus (SLE) affecting up
to 20 % of the patients [1,2]. Mortality among patients with NPSLE is
estimated at 16 % within 10 years from diagnosis. Despite complete
resolution of NPSLE activity in several cases and low frequency of NPSLE
flares, neuropsychiatric syndromes are associated with long-term
neurological disability [3]. Importantly, NPSLE is associated with sub-
stantial impairments of patients’ health-related quality of life [4] and
overall damage accrual [5]. Hence, better management of NPSLE is an
urgent need.

The current management of NPSLE is empirical and extrapolated
from extra-neurological manifestations of SLE, or from non-SLE neuro-
logical conditions, mainly due to the lack of clinical trials [6,7]. To date,
only one randomised controlled trial (RCT) has been successful for se-
vere NPSLE, which demonstrated a clinical benefit from intravenous
cyclophosphamide [8,9]. The European Alliance of Associations for
Rheumatology (EULAR) has endorsed eminence- and evidence-based
recommendations for standardising and improving the care of SLE pa-
tients presenting with neuropsychiatric events [10]. However, these
recommendations were based on low-grade evidence, highlighting the
need for further research.

Research within NPSLE has been poor due to limited access to tissue,
the heterogeneity of clinical syndromes, and the overlap with neuro-
psychiatric events which are not related to SLE imposing the known
clinical challenge of correct attribution of symptoms [11,12]. Most
current evidence is derived from animal and neuroimaging studies. To
date, murine studies have led to only two clinical trials in NPSLE pa-
tients. One tested memantine but showed no benefit in improving
cognitive performance [13]. The other was announced in 2019 and is
testing captopril, with its primary outcomes involving hippocampal
metabolism and microglial activation assessed using brain positron
emission tomography (PET) [14]. Studies of translational nature using
human samples that could facilitate hypothesis generation for drug
development for NPSLE have been limited [15]. This need formed the
aim of the present study, which was to investigate the transcriptome of
patients with NPSLE to gain insights into underlying molecular mech-
anisms and identify potential drug targets.

2. Patients and methods
2.1. Study population

Peripheral blood samples and clinical information were collected
from 350 patients with SLE, all meeting the revised American College of
Rheumatology (ACR) criteria for SLE [16], as well as from 497 HC,
within the frame of the 5-year European PRECISESADS project
(NTC02890121) [17].

The complete set of inclusion and exclusion criteria is available in
Supplementary Table S1. Active CNS lupus was defined as a score of 8 or
more in the CNS descriptors of SLE Disease Activity Index 2000 (SLEDAI-
2K) [18] and/or physician-reported CNS involvement according to the
PRECISESADS case report form (CRF) (n = 26; see Supplementary Ma-
terial, page 5 for a list of CNS syndromes). Active SLE with no neuro-
psychiatric history was defined as a score of 8 or more in the clinical
version of SLEDAI-2K (cSLEDAI-2K) but zero score in the CNS de-
scriptors and absence of current or past CNS involvement according to
the PRECISESADS CRF (n = 38).

Before recruitment in PRECISESADS, all patients and HC provided
informed consent. The PRECISESADS protocol received approval from
local ethics review boards at all participating centres (see Supplemen-
tary Material, page 6 for a list of local investigators). The present study
was approved by the Swedish Ethical Review Authority (registration
number: 2022-03907-01).
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2.2. Sample data

Genome-wide RNA sequencing of peripheral whole blood was per-
formed using Illumina assays (Illumina Inc., San Diego, CA, USA), as
previously detailed [17]. Serum levels of selected cytokines and auto-
antibodies were measured, following protocols described elsewhere
[17]. Initially, a comprehensive analysis of 88 cytokines was conducted
on a subset of patients and HC using Luminex xMAP Technology
(Luminex Corporation, Austin, TX, USA). Subsequently, a custom panel
from R&D Systems (Luminex assay, Luminex Corporation, Austin, TX,
USA) was utilised to measure a subset of 14 cytokines, while 6 additional
cytokines were analysed using a quantitative sandwich enzyme immu-
noassay from Biorad Laboratories Inc. (Hercules, CA, USA). Autoanti-
body levels were measured using an automated chemiluminescent
immunoassay (IDS-iSYS, Immunodiagnostic Systems Holdings Ltd., East
Boldon, United Kingdom), a turbidimetric immunoassay (SPAPLUS
analyser, The Binding Site Group Ltd., Birmingham, United Kingdom),
and an enzyme-linked immunosorbent assay (ELISA) kit from EURO-
IMMUN Medizinische Labordiagnostika AG (Liibeck, Germany).

2.3. Bioinformatic and statistical analysis

We first performed differential gene expression analysis in patients
with active CNS lupus (n = 26) versus HC (n = 497), as well as in pa-
tients with active SLE but no history of NPSLE (n = 38) versus HC,
adjusting for age, sex, sequencing batch, and RNA integrity number
(RIN). Pathway enrichment analysis was performed by over-
representation analysis (ORA). We identified gene modules of rele-
vance to active CNS using weighted gene co-expression network analysis
(WGCNA) based on full transcriptome data and assessed their dysregu-
lation relative to age- and sex-matched HC at a 1:5 ratio (n = 130). Gene
expression data were used to estimate the relative proportions of 22
immune cell types; as such, relative increases in the proportion of certain
cell subsets result in decreases in other subsets due to the compositional
nature of the data. Correlation analyses were performed between dys-
regulation scores of gene modules and serum levels of selected sero-
logical markers using Spearman’s rank correlation coefficients, while
the Mann-Whitney U test was used to assess gene dysregulation in
relation to positivity for conventional autoantibodies, based on cut-offs
as recommended by the assay manufacturer [17]. Dysregulated gene
modules were assessed with regard to signalling molecule networks,
followed by druggability analysis. A detailed description of the analyt-
ical pipeline is found in the Supplementary Material, page 7-9.

2.4. Patient and public involvement

A patient research partner (YE) was involved in the design and
reporting of this research. The public was not involved in the design, or
conduct, or reporting or dissemination plans of this research.

3. Results

Demographics and clinical data of patients and HC, all of whom were
of White/Caucasian European descent, are presented in Table 1. The
group with active CNS lupus had lower renal activity compared to the
active non-neuropsychiatric SLE group (19 % versus 53 %; p = 0.015)
whereas no significant differences were observed in other organ
systems.

3.1. Transcriptomic aberrancies in active CNS lupus

We identified 6330 DEGs in active CNS lupus (n = 26) compared to
HC (n = 493). Among these, 4754 DEGs were shared between patients
with active CNS lupus and patients with active SLE but no history of
NPSLE (n = 38; Fig. 1A; detailed in Supplementary Material, sheets 1-2).
Of the remaining 1576 CNS lupus-specific genes (Figs. 1A), 361 DEGs



J. Lindblom et al.

exhibited a |log; fold change (FC)| >0.58 (Fig. 1B). Pathway enrichment
analysis showed that the active CNS lupus gene signature encompassed
DEGs related to chromosome segregation, among other pathways
(Fig. 1C; detailed in Supplementary Material, sheets 3-6). Patients with
active CNS lupus generally showed upregulation of the genes included in
the enriched “Chromosome segregation” gene ontology (GO) term,
where most genes from the active CNS lupus signature were identified
(Fig. 1D; detailed in Supplementary Material, sheet 5). This GO term
included the complement component 3 (C3), cell division cycle 20
(CDC20), proteinase 3 (PRTN3), and cathepsin C (CTSC) genes, under-
scoring the significance of inflammation and apoptosis in CNS lupus.
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3.2. Dysregulated gene modules and molecular subgroups of active CNS
lupus

Beyond DEG analysis, we examined dysregulated gene modules to
identify co-expressed genes involved in shared biological processes and
assess whether their dysregulation patterns could stratify patients with
active CNS lupus. We identified 23 gene modules among the 26 active
CNS lupus patients, of which eight were also identified in group with
active SLE but no history of NPSLE, and four were contiguous (detailed
in Supplementary Material, sheets 7-9). These 23 dysregulated gene
modules formed five main clusters, which were manually annotated

Table 1
Characteristics of patients with active CNS lupus, active non-neuropsychiatric SLE, and healthy controls from the PRECISESADS study population.
Comparators
Active CNS lupus Active non-neuropsychiatric HC p active CNS lupus vs. active non-neuropsychiatric
SLE SLE
n=26 n=38 n=497
Demographics
Age (years); mean (s.d.) 45.5 (14.6) 48.0 (14.3) 47.1 0.498
(13.0)
Female sex; n (%) 25 (96.2) 35 (92.1) 393 (79.1) 0.895
White/Caucasian of European origin; n (%) 26 (100) 38 (100) 497 (100) N/A
Clinical data
Disease duration (years); mean (s.d.) 15.5(9.9) 16.2 (10.8) N/A 0.810
SLEDAI-2K score; mean (s.d.) 15.7 (7.2) 13.6 (4.1) N/A 0.140
CNS; n (%)
Seizure 2(10.0); N =20 0.0 (0.0); N =37 N/A 0.229
Psychosis 3(14.3;N=21 0.0 (0.0) N/A 0.076
Organic brain syndrome 2(9.5);N=21 0.0 (0.0) N/A 0.236
Visual disturbance 6 (28.6); N = 21 0.0 (0.0) N/A 0.002
Cranial nerve disorder 1(4.8;N=21 0.0 (0.0) N/A 0.762
Lupus headache 7 (33.3); N =21 0.0 (0.0) N/A 0.001
CVA 3(14.3); N =21 0.0 (0.0) N/A 0.076
Vascular; n (%) 3 (11.5) 11 (28.9) N/A 0.178
Musculoskeletal; n (%) 5(19.2) 17 (44.7) N/A 0.065
Renal; n (%) 5(19.2) 20 (52.6) N/A 0.015
Dermal; n (%) 15 (57.7) 27 (71.1) N/A 0.402
Serosal; n (%) 0 (0.0) 3(7.9) N/A 0.387
Immunologic; n (%) 16 (61.5) 31 (81.6) N/A 0.135
Constitutional; n (%) 1(3.8) 2 (5.3) N/A 1.000
Haematologic; n (%) 4 (15.4) 9 (23.7) N/A 0.621
Serological profile
Anti-dsDNA (U/mL); median (IQR) 2.1 (0.0-30.6); N = 33.5(2.2-102.4); N = 30 N/A 0.046
21
Anti-dsDNA (+; >40); n (%) 4(19.0); N =21 15 (50.0); N = 30 N/A 0.050
Anti-Sm (U/mL); median (IQR) 0.0 (0.0-0.0); N = 20 0.0 (0.0-0.0); N = 28 N/A 0.305
Anti-Sm (+; >10); n (%) 0(0.0); N =20 2(71);N=28 N/A 0.625
Anti-p>GPI IgG (U/mL); median (IQR) 0.0 (0.0-0.6); N=21 0.0 (0.0-0.0); N = 29 N/A 0.061
Anti-poGPI IgG (+; >20); n (%) 3(14.3;N=21 2(6.9); N =29 N/A 0.702
Anti-poGPI IgM (U/mL); median (IQR) 0.0 (0.0-1.5); N =21 0.0 (0.0-0.0); N =30 N/A 0.159
Anti-p>GPI IgM (+; >20); n (%) 2 (9.5); N =21 1(3.4);N=29 N/A 0.772
aCL IgG (U/mL); median (IQR) 0.0 (0.0-4.9; N=21 0.0 (0.0-0.4); N = 30 N/A 0.341
aCL IgG (+; >20); n (%) 3(14.3;N=21 3(10.0); N =30 N/A 0.979
aCL IgM (U/mL); median (IQR) 0.0 (0.0-0.0); N=21  0.00 (0.0-0.1); N = 30 N/A 0.960
aCL IgM (+; >20); n (%) 3(14.3;N=21 1(3.3); N=30 N/A 0.367
C3c (g/L); median (IQR) 1.1(0.6-1.4);N=21 0.8 (0.6-1.1); N =30 N/A 0.275
Low C3c (normal range: 0.81-1.57); n (%) 7 (33.3); N=21 15 (50.0); N =30 N/A 0.371
C4 (g/L); median (IQR) 0.2 (0.1-0.3); N=21 0.2 (0.1-0.2); N = 30 N/A 0.789
Low C4 (normal range: 0.13-0,39); n (%) 9 (42.9); N =21 12 (40.0); N = 30 N/A 1.000
Medications (current use)
Prednisone equivalent dose (mg/day); mean 3.5(3.0; N=18 4.1 (4.0); N =36 N/A 0.585
(s.d.)
Antimalarial agents; n (%) 18 (69.2) 28 (73.7) N/A 0.915
Immunosuppressants; n (%)
Azathioprine 2(9.5);N=21 8 (21.1) N/A 0.443
Calcineurin inhibitors 0(0.0); N=21 1(2.6) N/A 1.000
Leflunomide 0(0.0);N=21 0 (0.0) N/A N/A
Methotrexate 4 (19.0); N =21 3(7.9 N/A 0.396
Mycophenolic acid 1(4.8);N=21 12 (31.6) N/A 0.040

Data are presented as the number (percentage) or mean =+ standard deviation. In case of non-normal distributions, the median (interquartile range) is indicated. In case
of missing values, the total number of patients with available data is indicated. Statistically significant p values are in bold.

aCL: antibodies against cardiolipin; anti-p,GPIL: antibodies against f»-glycoprotein I; anti-dsDNA: antibodies against double-stranded DNA; anti-Sm: antibodies against
Smith; C3c: complement component 3c¢; C4: complement component 4; CNS: central nervous system; HC: healthy controls; Ig: immunoglobulin; IQR: interquartile
range; N/A: not applicable; s.d.: standard deviation; SLE: systemic lupus erythematosus; SLEDAI-2K: Systemic Lupus Erythematosus Disease Activity Index 2000.
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based on their compositions as NK cells and platelets, lymphocyte sig-
nalling, inflammation, interferon (IFN), and plasma cells and ubiquiti-
nation. The active CNS lupus patients were clustered into two distinct
subgroups (Fig. 2A). Subgroup 1 (n = 11; 36 %) had significantly higher
haematological activity compared to subgroup 2 (n = 15; 0 %; p =
0.047; Table 2). Four of nine patients with available data in subgroup 1
(44 %) but none among 12 patients in subgroup 2 were anti-dsDNA
positive. Subgroup 1 was characterised by prominent upregulation of
the IFN and inflammation (II) gene modules and downregulation of the
B cell, T cell, and cytotoxic/NK cell gene modules compared with HC,
while subgroup 2 showed less marked dysregulation. Similarly, dysre-
gulation scores differed between the two patient subgroups for all
aforementioned gene modules (p < 0.001 for all), with exception of the
IFN gene module (p = 0.217; Supplementary Fig. S1 and Supplementary
Table S2). The two patient subgroups did not differ in overall disease
activity or CNS manifestations as measured by SLEDAI-2K and its CNS
descriptors (Table 2). Further clustering within subgroup 2 revealed two
distinct patient subsets, with one subset displaying greater down-
regulation of B cell and T cell gene modules, as well as gene modules
within the inflammation cluster, compared with the other patient subset
(Fig. 2A).

3.3. Immune cell subsets in active CNS lupus

Cell deconvolution analysis revealed a relative abundance of
myeloid cells in patients with active CNS lupus patients within subgroup
1 (n =11), as indicated by a higher estimated neutrophil to lymphocyte
ratio (NLR) in this subgroup than in patients within subgroup 2 (n = 15),
in patients with active non-neuropsychiatric SLE patients (n = 38), and
in matched HC (n = 130; Fig. 2B; Supplementary Table S3-5S4). The
active CNS lupus subgroup 1 also had lower estimated proportions of
resting NK cells (Fig. 2C) and naive B cells (Fig. 2D) but not memory B
cells (Fig. 2E), activated dendritic cells (Fig. 2F), or naive CD4™" T cells
(Fig. 2G) compared with subgroup 2 and with patients with active non-
neuropsychiatric SLE. Additionally, subgroup 1 was characterised by a
relative abundance of resting memory CD4" T cells (Fig. 2H) but not
activated memory CD4" T cells compared with subgroup 2 (Fig. 2I).
Lastly, estimated CD8' T cell proportions (Fig. 2J) were lower and
plasma cell proportions were higher in subgroup 1 versus subgroup 2
(Fig. 2K; Supplementary Material, sheet 10).

3.4. Cytokine and autoantibody profiles in relation to dysregulated gene
modules

We next assessed gene module dysregulation scores in relation to
serological markers, autoantibody positivity, and low complement
levels to investigate how whole-blood gene dysregulation relates to
conventional immunological markers. Among patients with active CNS
lupus (n = 26), dysregulation of the cell cycle gene module in whole
blood correlated with serum C-X-C motif chemokine ligand 13 (CXCL13)
levels (Fig. 3A; Supplementary Table S5-S27). Likewise, dysregulation
of the inflammation (IV) module correlated with levels of C-C motif
chemokine ligand 4 (CCL4) and growth differentiation factor 15
(GDF15), while dysregulation within the IFN module correlated with C-
X-C motif chemokine ligand 10 (CXCL10) and interleukin 1 receptor
antagonist (IL-1RA) levels. Dysregulation of the regulation of tran-
scription module correlated with IgM anti-PC levels, as did dysregula-
tion of the T cell module. Lower dysregulation scores of the B cell
module and the cytotoxic/NK cell gene module were associated with
anti-dsDNA positivity (Fig. 3B; Supplementary Table S28-S33).

3.5. Druggability analysis
The chief regulators and motifs of the most enriched signalling

molecule networks, based on genes within the prominently dysregulated
gene modules, are detailed in the Supplementary Table S34. The

Journal of Translational Autoimmunity 11 (2025) 100296

interferon regulatory factor 9 (IRF9) gene was identified as the main
regulator in the most enriched signalling molecule network deriving
from the genes in the IFN gene module, as shown for the active CNS
lupus subgroup 1 in Fig. 4. Drugs associated with genes in this network
included the proteasome inhibitor bortezomib and the N-methyl-D-
aspartate receptor (NMDAR) antagonist memantine. Detailed results
from the signalling molecule network and druggability analysis are
provided in the Supplementary Material, sheet 11, and Supplementary
Fig. $2-S8.

Subsequently, we assessed anticipated response to therapies within
each active CNS lupus subgroup by modulating gene targets of interest,
identified as described above. Response scores from in silico prediction
modelling are detailed in the Supplementary Table S35. A greater pro-
portion of patients in the active CNS lupus subgroup 1 displayed an
anticipated benefit from the anti-interferon-a/pf receptor (IFNAR)
monoclonal antibody anifrolumab (73 % versus 20.0 %; p = 0.015), C3
inhibitors (73 % versus 20 %; p = 0.015), and calcineurin inhibitors (91
% versus 20 %; p = 0.001) compared with subgroup 2 (Fig. 5). A
numerically greater proportion of patients in subgroup 1 (72.7 %)
compared with those in subgroup 2 (26.7 %) showed anticipated benefit
from spleen tyrosine kinase (SYK) inhibitors, but the difference did not
reach statistical significance (p = 0.054; Supplementary Table S36).

An overview of results from the druggability analysis is shown in
Fig. 6.

4. Discussion

Management of NPSLE remains a clinical challenge, largely due to
marked heterogeneity and the difficulty in attributing neuropsychiatric
features to SLE. These factors underscore the need for tailored treatment
strategies targeting specific molecular pathways. In this study, we ana-
lysed the peripheral blood whole-genome transcriptome of SLE patients,
focusing on CNS lupus. Patients with active CNS lupus exhibited distinct
gene expression profiles compared to those with active SLE yet no his-
tory of NPSLE, with 1576 unique DEGs. Unsupervised clustering
revealed two molecular subgroups of active CNS lupus, differing in
estimated immune cell subset proportions, and suggesting divergent
pathogenetic mechanisms. Specific gene modules correlated with sero-
logical markers, including the cell cycle gene module, which correlated
with the B cell chemoattractant CXCL13. Molecular network analysis
combined with druggability assessment and in silico predicted response
to treatments identified potential therapeutic targets and opportunities
for drug purposing, providing a basis for future clinical trials in NPSLE.

We identified mechanisms specific to patients with active CNS lupus.
First, we confirmed enhanced chromosome segregation, previously re-
ported in SLE [19]. We then demonstrated 23 dysregulated gene mod-
ules involving several immune pathways, following a pipeline
previously applied in lupus nephritis (LN) [20]. These modules stratified
active CNS lupus patients into two molecular subgroups. Subgroup 1
exhibited prominent downregulation of B cell, T cell, and NK cell gene
modules, while subgroup 2 showed limited dysregulation. The IFN gene
module was notably upregulated in subgroup 1, reinforcing the role of
IFN signalling across SLE manifestations. In silico druggability analysis
predicted a higher therapeutic response in subgroup 1 to type I IFN re-
ceptor blockade, as well as C3 and calcineurin inhibition, suggesting
subgroup-specific therapeutic implications. Conversely, subgroup 2
demonstrated no strong predicted response to conventional immuno-
suppressants, likely reflecting greater biological heterogeneity. This
subgroup may represent either misclassified NPSLE, supported by its
molecular similarity to HC, or a difficult-to-treat NPSLE group, under-
scoring the challenge of accurate symptom attribution in clinical
practice.

The molecular differences between the two subgroups prompted us
to explore potential alterations in circulating immune cells. Subgroup 1
demonstrated a distinct profile, characterised by a relative abundance of
myeloid cells, reflected by an elevated NLR, alongside reduced B cells, T
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Fig. 1. DEGs in patients with active CNS lupus and active non-neuropsychiatric SLE versus HC. (A) The Venn diagrams show DEGs (top) and (B) the subset of DEGs
that exceeded the |logs FC| >0.58 threshold (bottom) in patients with active CNS lupus (n = 26) versus HC (n = 497; in green), and in patients with active non-
neuropsychiatric SLE (n = 38) versus HC (n = 497; in purple). (C) The enriched BP GO terms from over-representation analysis are plotted, based on CNS lupus-
specific DEGs in patients with active CNS lupus versus HC (panel A, n = 1576). The size of the dots represents the gene count, and the gene ratio at the bottom
of each dot plot represents the ratio between the gene count and the total number of genes included in the GO term. The colour of the dots corresponds to the FDR-
corrected p-value from the pathway enrichment analysis. (D) The heatmap shows gene expression patterns in patients with active CNS lupus (green) or active non-
neuropsychiatric SLE (purple) from the BP chromosome segregation GO term. Only DEGs that exceeded the |log, FC| >0.58 threshold in the DEG analysis among
patients with active CNS lupus versus HC are included in the heatmap. Columns denote SLE patients and rows denote CNS lupus-specific DEGs, measured by z-scores
in relation to HC, clustered using hierarchical clustering with the Ward method. BP: biological process; CNS: central nervous system; DEGs: differentially expressed
genes; FC: fold change; FDR: false discovery rate; GO: gene ontology; HC: healthy controls; SLE: systemic lupus erythematosus.

cells, and NK cells. This may reflect increased lymphocyte infiltration
into the CNS, consistent with murine models of NPSLE showing B and T
cell infiltration in brain tissue [21-23]. However, migration is unlikely
to fully explain the specific reduction in naive and resting memory
subsets, which are not typically infiltrated into inflamed tissues. One
possible explanation is increased differentiation of these subsets into
activated or effector cells in response to immune activation, as sup-
ported by the gene signatures observed in patients with CNS lupus.
Additionally, sequestration in lymphoid organs, or alterations in
lymphocyte development or survival, may also contribute to these
findings. Subgroup 1 also displayed higher estimated proportions of
neutrophils and plasma cells, suggesting a role for both inflammatory
mechanisms and autoantibodies. In contrast, subgroup 2 showed no
significant deviations from HC. Additionally, anti-dsDNA antibodies
were present only in subgroup 1, with an abundance similar to what has
been reported in patients with active NPSLE [24]. This finding aligns
with the observed molecular differences and suggests a higher inflam-
matory burden in subgroup 1. Headache was more prevalent in sub-
group 2, a common symptom among patients with SLE yet rarely
attributed to the disease [25]. These findings imply that subgroup 2 may
have been misclassified having CNS lupus and highlight the potential
utility of molecular profiling to improve attribution accuracy and
diagnostic precision in NPSLE.

We further explored associations between gene modules and sero-
logical markers. No strong correlations were observed with autoanti-
bodies, except IgM anti-PC levels which correlated with the regulation of
transcription and T cell gene modules. Given their inverse relationship
with cardiovascular events in autoimmune diseases [26], IgM anti-PC
may confer protection against thrombotic NPSLE. CXCL13 levels
correlated with the cell cycle module, and CCL4 and GDF15 with an
inflammation module. CXCL13 has been proposed as a potential
biomarker of activity in SLE and LN [27,28], and CXCL13 and CCL4
were shown to have utility in SLE-related haemolytic anaemia, while
their roles in NPSLE remain elusive [29]. GDF15 is elevated in SLE and
associated with disease activity, yet, again, its role in NPSLE is not
thoroughly studied [28,30]. CXCL10 correlated with the IFN module,
consistent with its known induction via IFN«a [31] and its association
with SLE activity. Our findings suggest that CXCL10 warrants further
investigation in NPSLE [28].

A prominent feature in both CNS lupus subgroups was the upregu-
lation of IFN, particularly in subgroup 1. Druggability analysis of IFN
gene-based signalling networks revealed bortezomib, carfilzomib,
memantine, irinotecan, panulisib, and tosedostat as promising inhibi-
tory agents. The proteasome inhibitors bortezomib and carfilzomib were
of particular interest based on upregulation of genes within the PSMB
family and, given prior reports of the clinical utility of bortezomib in
refractory SLE [20,32] and NMDA receptor encephalitis [33], although
adverse events limits its use [34]. Memantine, which targets the gluta-
matergic system through NMDA receptors [35], has been trialled for
cognitive impairment in SLE without significant benefit [13]. However,
participants in that trial had advanced disease, and the lack of efficacy
might be due to irreversible brain damage. Irinotecan, a topoisomerase 1
inhibitor, has demonstrated efficacy in ameliorating SLE by modifying
DNA relaxation and anti-dsDNA binding in two distinct mouse models of
lupus [36,37]. In a case report of LN, low-dose irinotecan yielded

favourable outcomes without raising safety concerns [38], though evi-
dence in NPSLE is lacking. Targeting the phosphoinositide 3 kinase
(PI3K) and mammalian target of rapamycin (mTOR) pathways with
panulisib counteracts the IFN module. Panulisib was developed for
treating cancer, yet the pathways it targets are also implicated in SLE
[39], and our study indicates that it might offer therapeutic benefits in
NPSLE. The aberrant IFN module can also be effectively reversed by the
aminopeptidase inhibitor tosedostat, which has shown benefit in acute
myeloid leukaemia [40].

Druggability analysis for the B cell, NK cell, and mitochondrial
modules revealed several compounds that could reverse immune aber-
rancies among patients in the CNS lupus subgroup 1. The B cell module
unveiled two noteworthy yet non-B cell-specific targets, i.e., lamotrigine
and topiramate. Both drugs, classified as sodium channel blockers, are
widely used in neurological and psychiatric conditions [41] and could
be of interest for the symptomatic management of certain NPSLE man-
ifestations [6]. The NK cell module uncovered potential drugs involved
in the modulation of tyrosine kinases through the ELF1 gene, including
sunitinib and axitinib. Axitinib is an RTK inhibitor that enables sup-
pression of angiogenesis via VEGF inhibition [42]. Clinical experience
with axitinib is limited to cancer, but tyrosine kinases play a crucial role
in transmitting signals from leukocyte antigen receptors, innate immune
receptors, and cytokine receptors. This signalling is essential for the
activation and infiltration of leukocytes into target organs, suggesting
that axitinib could potentially reduce immune cell infiltration into the
brain.

Aberrant activation of mitochondrial pathways in the CNS lupus
subgroup 1 could be effectively reversed by the angiotensin-converting
enzyme (ACE) inhibitor captopril and SYK inhibitors including cerdu-
latinib and entospletinib. A recent study that used the DNRAb+ mouse
model demonstrated microglia-mediated dendritic pruning, which was
reversed by depleting activated microglia. Notably, treatment with
captopril, a BBB-penetrating ACE inhibitor, significantly mitigated
microglia activation and improved the cognitive function of the mice
[43]. In line with that study, our findings provide support for testing
captopril for cognitive impairment in SLE. Activation of TLR5 pathways
has been observed in SLE patients who do not attain low disease activity
or remission [44,45]. In conformity, we found TLR5 upregulation in the
active CNS lupus subgroup 1. Research has identified impaired meta-
bolism as a critical aspect of SLE pathogenesis, thereby proposing mTOR
inhibitors such as everolimus as a potential therapeutic approach [46,
47]. Real-world data from 27 patients with active SLE demonstrated its
efficacy in treating musculoskeletal manifestations with no safety con-
cerns; however, patients with NPSLE were not included in the study
[48]. Sirolimus has been evaluated in an open-label phase 1/2 trial
comprising 43 active SLE patients, yielding promising results [49].
Coupled with our results, further exploration of mTOR in NPSLE has
merit. To this end, our data suggest that inhibition of SYK, which is
directly linked to the B cell and the Fcy receptors, could potentially be a
therapeutic option in NPSLE [50,51].

Our study has several limitations. The cohort comprised exclusively
White/Caucasian patients of European descent, limiting general-
isability. The cross-sectional design precluded the examination of intra-
individual transcriptomic changes over time, and the lack of cerebro-
spinal fluid and imaging data limited our ability to provide
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Fig. 2. Dysregulated gene modules in patients with active CNS lupus. (A) The heatmap shows replicated gene modules and their dysregulation in relation to the gene
expression of age- and sex-matched HC (n = 130), as measured by the z-score, in patients with CNS lupus (n = 26). Columns denote CNS lupus patients, and rows
denote gene modules, clustered using hierarchical clustering with the Ward method. (B) The bar plot displays deconvolution results of estimated relative immune cell
type proportions across active CNS lupus subgroups (n = 11 for subgroup 1 and n = 15 for subgroup 2), patients with active non-neuropsychiatric SLE (n = 38), and
HC (n = 130). (C-K) Violin plots displaying distributions of estimated relative immune cell subset proportions across active CNS lupus subgroups, patients with active
non-neuropsychiatric-SLE, and HC for (C) resting NK cells, (D) naive B cells, (E) memory B cells, (F) activated dendritic cells, (G) naive CD4" T cells, (H) resting
memory CD47 T cells, (I) activated memory CD4™ T cells, (J) CD8" T cells, and (K) plasma cells. Selected immune cell subsets of particular relevance are labelled,
and comparisons for all immune cell subsets are provided in Supplementary Material, sheet 10. NK: natural killer; SLE: systemic lupus erythematosus.
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Table 2
Characteristics of subgroups of patients with active CNS lupus from the PRECISESADS study population.
Active CNS lupus subgroups p
1 2
n=11 n=15
Demographics
Age (y); mean (SD) 43.7 (15.1) 46.8 (14.6) 0.550
Female sex; n (%) 11 (100.0) 14 (93.3) 1.000
White/Caucasian of European origin; n (%) 11 (100.0) 15 (100) N/A
Clinical data
Disease duration (y); mean (SD) 13.7 (6.7) 16.9 (11.8) 0.736
SLEDAI-2K score; mean (SD) 16.5 (5.7) 15.2 (8.4) 0.333
CNS; n (%)
Seizure 2(22.2);N=9 0(0.0);N=11 0.369
Psychosis 0(0.0;,N=9 3(25.0; N=12 0.322
Organic brain syndrome 0(0.0;N=9 2(16.7); N=12 0.592
Visual disturbance 2(22.2;N=9 4(33.3);N=12 0.944
Cranial nerve disorder 0(0.0;N=9 1(83);N=12 1.000
Lupus headache 2(22.2;N=9 5(41.7);N=12 0.640
CVA 2(222);N=9 1(8.3);N=12 0.787
Vascular; n (%) 2(18.2) 1(6.7) 0.774
Musculoskeletal; n (%) 3(27.3) 2(13.3) 0.698
Renal; n (%) 2(18.2) 3(20.0) 1.000
Dermal; n (%) 6 (54.5) 9 (60.0) 1.000
Serosal; n (%) 0 (0.0) 0 (0.0) N/A
Immunologic; n (%) 8 (72.7) 8 (53.3) 0.551
Constitutional; n (%) 1(9.1) 0 (0.0) 0.874
Haematologic; n (%) 4 (36.4) 0 (0.0) 0.047
Serological profile
Anti-dsDNA (U/mL); median (IQR) 30.6 (0.0-68.7); N =9 1.2 (0.0-10.7); N =12 0.154
Anti-dsDNA (+; >40); n (%) 4(44.4);N=9 0(0.0); N=12 0.045
Anti-Sm (U/mL); median (IQR) 0.0 (0.0-0.0); N =8 0.0 (0.0-0.0); N =12 0.221
Anti-Sm (+; >10); n (%) 0(0.0;N=38 0(0.0); N=12 N/A
Anti-poGPI IgG (U/mL); median (IQR) 0.0 (0.0-0.6); N=9 0.0 (0.0-0.2); N =12 0.374
Anti-poGPI IgG (+; >20); n (%) 2(22.2);N=9 1(8.3);N=12 0.787
Anti-p,GPI IgM (U/mL); median (IQR) 0.0 (0.0-1.5); N =9 0.0 (0.0-0.4); N =12 0.624
Anti-BoGPI IgM (+; >20); n (%) 1(11.1xN=9 1(8.3);N=12 1.000
aCL IgG (U/mL); median (IQR) 0.2 (0.0-4.9; N=9 0.0 (0.0-2.2); N =12 0.386
aCL IgG (+; >20); n (%) 2(22.2;N=9 1(83);N=12 0.787
aCL IgM (U/mL); median (IQR) 0.0 (0.0-0.0);N=9 0.0 (0.0-0.4); N =12 0.887
aCL IgM (+; >20); n (%) 1(11.1);N=9 2(16.7); N=12 1.000
C3c (g/L); median (IQR) 1.0 (0.5-1.2); N =9 1.2 (0.8-1.5); N = 12 0.256
Low C3c (normal range: 0.81-1.57); n (%) 4 (44.4); N=9 3(25.0); N =12 0.640
C4 (g/L); median (IQR) 0.1 (0.1-0.2;N=9 0.2 (0.2-0.3); N =12 0.047
Low C4 (normal range: 0.13-0,39); n (%) 6 (66.7); N =9 3(25.0; N =12 0.143
Medications (current use)
Prednisone equivalent dose (mg/day); mean (SD) 45+33;N=8 2.7 +27;N=10 0.173
Antimalarial agents; n (%) 8 (72.7) 10 (66.7) 1.000
Immunosuppressants; n (%)
Azathioprine 1(11.1);N=9 1(8.3);N=12 1.000
Calcineurin inhibitors 0(0.0;N=9 0(0.0); N=12 N/A
Leflunomide 0(0.0;N=9 0(0.0); N=12 N/A
Methotrexate 2(22.2);N=9 2(16.7); N=12 1.000
Mycophenolic acid 1(111);N=9 0(0.0); N=12 0.882

Data are presented as the number (percentage) or mean =+ standard deviation. In case of non-normal distributions, the median (interquartile range) is indicated. In case
of missing values, the total number of patients with available data is indicated. Statistically significant p values are in bold.

aCL: antibodies against cardiolipin; anti-p,GPI: antibodies against f2-glycoprotein I; anti-dsDNA: antibodies against double-stranded DNA; anti-Sm: antibodies against
Smith; C3c: complement component 3c; C4: complement component 4; CNS: central nervous system; HC: healthy controls; Ig: immunoglobulin; IQR: interquartile
range; N/A: not applicable; s.d.: standard deviation; SLEDAI-2K: Systemic Lupus Erythematosus Disease Activity Index 2000.

complementary insights. Selection bias may have occurred due to
exclusion criteria such as recent use of cyclophosphamide or belimu-
mab, cell depleting therapies, and glucocorticoids exceeding 15 mg/day
of a prednisone equivalent, potentially omitting severe NPSLE flares.
Nevertheless, the glucocorticoid restrictions minimised their interfer-
ence with gene expression. The small sample size constituted a limita-
tion and precluded correction for multiple comparisons in serological
analyses and analyses stratified by patient subgroups. Overall, our re-
sults are hypothesis-generating and should be interpreted with caution.
Among strengths of our investigation was the specific focus on active
CNS lupus and the inclusion of well-defined cases of active SLE with no
history of neuropsychiatric events, as a comparator group, ensuring
clinically relevant comparisons. Unsupervised clustering identified

distinct molecular subsets, and druggability analysis revealed thera-
peutic targets specific to molecular clusters and patient subgroups,
highlighting the potential for precision medicine in NPSLE.

5. Conclusions

Gene dysregulation patterns related to innate and adaptive lymphoid
immunity separated active CNS lupus patients into two distinct sub-
groups with differential anticipated response to type I interferon, C3,
and calcineurin inhibition. Our study provides a conceptual framework
for precision medicine in NPSLE and informs approaches to address the
major challenge of accurately attributing neuropsychiatric features to
SLE.
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Fig. 3. Dysregulated gene modules in relation to serological markers in patients with active CNS lupus. (A) The correlation heatmap shows Spearman’s rank
correlation coefficients for correlations between levels of selected serological markers and dysregulation scores for gene modules as measured by z-scores. (B)
Dysregulation of gene modules in relation to autoantibody positivity or low levels of C3c or C4. The group without autoantibody positivity or low levels of C3c or C4
for each comparison was considered the reference group. Red and blue colours denote higher and lower z-scores compared with the reference group, respectively. p-
values are derived from Mann-Whitney U tests. Asterisks denote statistically significant correlations or differences. Anti-dsDNA: antibodies against double-stranded
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Fig. 4. The IRF9 signalling molecule network and annotated drug targets in patients with active CNS lupus. Genes in the interferon gene module were imputed in
iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. One of the most enriched signalling molecule networks,
based on normalised enrichment score, is plotted, with the chief regulator IRF9 in the central node. The colour of the nodes ranges from light blue (downregulated
genes) to increasing intensities of red (upregulated genes) based on the gene dysregulation (z-scores) in the CNS lupus patient subgroup 1. Coloured dots next to
genes indicate drugs modulating these genes, with corresponding drug names listed to the right. Minus and plus signs denote inhibition and stimulation, respectively.
Selected drugs of particular relevance are labelled, and the full list of drugs is provided in the Supplementary Material, sheet 10. CNS: central nervous system; IRF9:

interferon regulatory factor 9.
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