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Abstract

Abstract

The reducer system is one of the critical core components of the marine
propulsion system, tasked with adjusting the output speed of steam turbines or gas
turbines to the optimal speed for propeller propulsion. Its dynamic performance
is crucial to the overall performance level and the stable, efficient operation of
the entire marine power system. Compared to traditional two-stage series
structures, the two-stage parallel compound gear system offers advantages such
as a higher transmission ratio and a more compact design, which are better suited
to the spatial constraints of marine installations. However, the transmission
coupling relationships in compound gear systems are complex, making the
modeling of flexible large components challenging, with high degrees of freedom
in the model equations. Moreover, as the compound gear system experiences
additional motion during the ship voyage, the accuracy of modeling significantly
influences the analysis of complex movements. Therefore, this paper focuses on
a two-stage parallel compound gear transimission system used in ships and
proposes a modeling method suitable for this parallel structure. A mechanical
model of the ship two-stage parallel compound gear transimission system in the
non-inertial reference frame of the planet carrier is establishes, and an improved
numerical solution method is proposed. The study investigates the dynamic and
static mechanical behaviors and further reveals the nonlinear vibration
characteristics associated with its motion states. Finally, dynamic models of the
two-satge parallel compound gear transimission system under navigation
conditions in two non-inertial reference frames is constructed and the dynamic
behavior of the gear system under fundamental ship motion is studied. The main
research contents are as follows:

(1) Based on the motion of the carriers and structural characteristics in the
two-stage gear system, a hybrid modeling strategy, wherein the first planetary
gear set is modeled using a moving reference frame, while the second stage
employs a fixed reference frame, is proposed. This approach accounts for
additional terms that arise during the modeling process, and through the
combination of moving and fixed coordinate systems, the mechanical model of
the two-stage parallel compound gear system is established, including quasi-static
and dynamic model. By introducing the non-inertial reference frame of the carrier,
factors such as Coriolis and centrifugal accelerations are comprehensively
considered in this method, effectively addressing the complexities associated with
modeling the two-stage parallel compound gear system. Compared to traditional
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unified coordinate system modeling methods, this approach successfully
overcomes challenges such as extensive transformation matrix calculations, the
potential loss of additional terms, and difficulties in solving time-varying stiffness
matrices.

(2) Based on the quasi-static and dynamic model, the static characteristics,
including load-sharing properties and global transmission errors, are first
analyzed. The effects of planet pin position errors and eccentricity errors on load-
sharing properties and global transmission errors are investigated. Furthermore,
the accuracy of the proposed modeling strategy is preliminarily explored by
analyzing the axial trajectories of components under eccentric error using the
static model. Due to the Newmark-beta method isn’t suitable for solving directly
equations with time-varying stiffness matrix, and the accumulation and accuracy
are ignored during the solving process. Therefore, a Newmark-beta method is
improved by proposing a strategy to verify the relative error during the calculation
process of each loop iteration. By using this method, the dynamic response of the
system is obtained and the dynamic and static vibration results are compared to
verify the accuracy of the dynamic model. Finally, the effects of gravity,
centrifugal force, and various errors on the dynamical characteristics are
investigated. It is found that the vibration frequency of the output shaft of the
studied compound gear system is related to the meshing phase and the meshing
frequency and its harmonic frequency is obtained through the analysis of the
global transmission error. Compared with the traditional Runge-Kutta method, the
improved Newmark-beta method is computationally fast and suitable for solving
the equations of multiple degrees of freedom and time-varying stiffness. The
dynamic model of the marine gearbox system is able to take into account a variety
of error factors, which comprehensively verifies the accuracy of the proposed
dynamic model, as well as demonstrates the ability of the dynamic model to
accurately capture errors and more accurately reflect the vibration characteristics
of the actual system.

(3) Regarding the nonlinear dynamic characteristics of the two-stage parallel
compound gear train, a pure torsional nonlinear dynamics model of a two-stage
parallel compound gear system for ships is firstly developed. The bifurcation way
of this compound gear system, which transforms its state of motion from chaotic
motion to stable periodic motion with the increase of the meshing damping ratio
for certain parameters, is revealed as a Hopf bifurcation by the combination of
bifurcation diagrams, Poincaré maps, phase trajectories, and time history
diagrams. The influence of the speed and the magnitude of the meshing error on
its nonlinear characteristics is investigated. Considering the transverse vibration,
a translational-torsional nonlinear dynamics model is developed to explore the
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nonlinear characteristics. It is shown that, based on the pure torsional model, it is
concluded that the period-doubling number of the ultimately stable motion of the
compound gear train is related to the least common multiple of the internal
meshing stiffness periods of the two stages. Compared with the pure torsion model,
the translational-torsion nonlinear dynamics model exhibits more complex motion
states, but the period-doubling number of the final stable motion is still related to
the least common multiple of multiple exciations’ cycles.

(4) Considering the external non-inertial system of the ship hull, combined
with the ship working environment and motion characteristics, the mathematical
models of absolute acceleration and absolute velocity of the sun and planet gears
in two non-inertial systems are derived. The dynamics model of the studied
compound gear system in the internal and external non-inertial systems is
established. The effects of the ship rocking motion and pitching motion conditions
on the dynamics of the components of the compound gear system during normal
navigation have been investigated. The study shows that the motion trend of each
component of the ship matches well with that of the rocking motion, the maximum
rocking angle of the vibration response of the components also agrees with that
of the external rocking motion, and the response results prove the correctness of
the constructed dynamics model. The analysis of the results of the load sharing
ratio of the first stage shows that under the influence of the ship pitching motion,
the planet gears exist in disengaged contact, which results in the non-uniformity
of the load transferred by the planets and affects the reliability of the whole gear
system.

In this paper, based on the combination of moving and fixed coordinate
system modelling method, the dynamics model of two-stage parallel compound
gear system of ship is proposed, and the research results provide a theoretical
basis for the design and maintenance of the compound gear system of the ship,
and it has an important role and significance for promoting the development of
the two-stage parallel compound marine gear system.

Keywords: Double-helical gear, Planetary gear train, Dynamic modeling,
Vibration characteristics, Ship motion
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Chapter | General Introduction

Chapter 1 General Introduction

1.1 Research background and significance

Gear structures have been essential and indispensable components in many
machines, significantly enhancing productivity since their invention. The
planetary gear train, also known as the epicyclic gear train, is one such gear
structure and finds widespread use in various mechanical industries, including
helicopters, wind turbines[1-3], robot arms[4], and other rotary machinery. As
shown in Fig.1-1, a basic planetary gear train comprises a sun gear, a ring gear, a
carrier, and N planet gears. The sun gear, ring gear, and carrier are regarded as the
central components and can be configured in various combinations of input and
output members. This configuration allows for the attainment of different
transmission ratio values and rotation directions for the output members based on
the kinematic relationships[5].

Sun

Planet

Carrier

Ring
Fig.1-1 Basic components of planetary gear train

Specifically speaking, compared to a pair of gears, the planetary gear train
transmission offers several advantages. One of the main benefits is power split.
The input power is theoretically equally distributed among each path of the planet
gears, reducing the load carried by each planet gear and thereby extending its
working life. Another significant advantage is its compact layout, i.e., enabling
the accommodation of more gears within the same space, thus enhancing
flexibility in the application. Addationally, other advantages include a high
transmission ratio, smooth operation, efficient power transmission, durability, the

-1-
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capability for compound stages designs, and so on [6].

In many industries, planetary gear transmissions utilize either spur or helical
gears, the former are commonly employed in heavy-load machinery operating at
low speeds, whereas the latter are easily found in automatic transmission requiring
low vibration and noise levels. This reference is due to the smoother and quieter
nature of helical transmissions compared to spur gear transmissions. However,
helical gear transmissions generate significant axial forces, necessitating the use
of thrust bearings for offsetting. Consequently, in industries with heavy-load and
high-speed such as Geared Turbofan Engines (GTF), a double-helical planetary
gear system is often the preferred choice, as depicted in Fig.1-2.

Fig.1-2 Diagram of GTF. a) Engine (from Internet) and b) Fan drive gear system [7]

In practical applications, despite the perfection of gear designs and the
implementation of vibration reduction measures, vibration and noise inevitably
exist. Currently, the benchmark for high-quality machines is to control vibration
and noise within specific tolerances.

Moreover, due to the complexity of planetary gear transmissions and the
multitude of meshing contacts, accurately obtaining the dynamic behavior of
planetary gear systems remains a formidable challenge. Factors such as time-
varying meshing stiffness, dynamic positioning, and various errors further

S
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complicate this task, especially for configurations with multiple stages and
complex structures. Many aspects of planetary gear dynamics, especially in terms
of coupling dynamics, remain inadequately understood.

Therefore, in this research, the focus is on the compound planetary gear
system, with the objective of establishing a coupling dynamics model. This model
incorporates rotor dynamics, gear system dynamics, nonlinear dynamics, and
other methodologies, while comprehensively considering the working
environment and nonlinear factors. Investigating the dynamic characteristics of
the system is deemed essential and meaningful in light of complexities.

1.2 Literature review

According to existing research articles, the modeling for gears has developed
from a linear time-invariant model and a linear time-varying model to a nonlinear
time-varying model. One of the primary time-varying parameters is the meshing
stiffness. Thus, research on the meshing stiffness remains hotpot in the literature.

1.2.1 Solving methods of gear meshing stiffness

In general, gear meshing stiffness (GMS) represents one kind of stiffness
excitation, and displacement excitation is another main factor. The variation in
meshing stiffness depends on the number of teeth pairs engaged in a meshing
cycle, which is related to the contact ratio.

1.2.1.1 Spur Gear

Typically, the contact ratio of spur gears ranges between 1 and 2, i.e., contact
alternating instantaneously between one and two pairs of teeth. Currently,
analytical methods, finite element methods(FEM), and hybrid methods are the
primary approaches for calculating the meshing stiffness of spur gears.

Kuang and Yang [8] proposed an analytical method, namely Kuang and Yang
method. Cai and Hayashi [9] proposed another analytical method known as Cai
and Hayashi method, which calculates the meshing stiffness of a pair of spur gears,
based on mean stiffness and contact ratio. In recent years, the development of
analytical methods has been developed rapidly, some authors [10 - 17] enhanced
these methods to account for factors such as tip relief, profile modification, actual
manufacturing, tooth faults (e.g., pitting and wear), friction and so on.

Since the 21st century, due to the advancements in computer computing
processing power, the finite element method has been gradually developed.
Therefore, many researchers have begun using FEM and hybrid method. Cooley
[18] and others [19 - 21] have employed FEM to calculate meshing stiffness.

_3-
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For hybrid models, Vedmar and Henriksson [22] proposed a hybrid approach
in 1998, which combines global linear deformation and local nonlinear
deformation. Fernandez et al [23] proposed an advanced hybrid method for
calculating the meshing stiffness of external gears based on the FEM and Hertzian
contact theory, and verified the model by comparing it to Cai method and Kuang
method. Subsequently, Iglesias et al [24] expanded this method to calculate the
meshing stiffness for internal gears, accounting for mesh coupling of gear body
deformation, and applied it to planetary gear systems. Zheng et al [25] developed
an analytical-FEM method to incorporate the effect of centrifugal force into the
calculation of mesh stiffness.

1.2.1.2 Helical gear

Unlike spur gears, the engagement and disengagement of teeth in helical
gears occur gradually, resulting in a smoother transmission compared to spur
gears.

Based on three methods used of spur gear, the slice method [26 - 30] is the
most commonly used method for calculating the meshing stiffness of helical gear.
Moreover, several factors [31 - 33], such as time-varying backlash, root profile,
and spatial crack, have been taken into account.

1.2.2 Research status on single-pair gear dynamics systems

The investigation of gears can be tracted back to the works of Ross [34],
Bckingham [35] from the 1920s to the 1930s. In the 1950s, Tuplin [36] employed
mass-spring models to calculate the dynamic load of high-speed gear pairs, and
tooth dynamic loads was their primary research focus. Subsequently, Gregory et
al [37] conducted experimental studies to extend the theoretical analysis results
of spur gear pairs. Since the 1980s, models, incorporating addational components
such as shafts, rotors, bearings, and squeeze film dampers, appeared [38 - 40].

For a pair of gears, numerous models have been proposed and developed in
the past decades. Research on gear pair models is mainly divided into transmission
error or quasi-static models, single and multi-degree of freedom models, and
linear and nonlinear models.

1.2.2.1 Transmission error

Transmission error and related aspects are another area of study for spur,
helical or double-helical gears. Due to losses in the transmission process, the
actual position of the output shaft may deviate from the ideal position, resulting
in transmission error.
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In 1978, Mark [41] derived a general expression for the static transmission
error (STE). In 1986, Tavakoli and Houser [42] employed an optimization
algorithm to study the minimization of STE. Ozguven and Houser [43] studied
dynamic mesh and tooth load by using loaded STE and dynamic transmission error
(DTE), analyzed subsequently the influence of mesh stiffness, damping, and error.
In 1996, Houser et al [44] compared the predicted DTE and STE with measured
results to validate the prediction model. Zhang and Fang [45] presented the load
transmission error of helical gear with modified tooth surfaces in 1997. Song and
Singh [46] developed an analytical expression to predict DTE by considering
friction, results showed that the influence of sliding friction on the DTE of helical
gears could be ignored compared to spur gears. By considering tip contact that
can happen when a teeth pair engages, a semi-analytical model and a non-Hertzian
contact mechanics model were combined by Bruzzone et al [47] to study static
transmission error. Lee et al [48] proposed an analytical method to calculate the
TE and analyzed the range of the transmission error caused by various
uncertainties such as mechanical and thermal deformation.

In addition, several authors have conducted significant work based on
transmission errors. Lin et al [49] utilized STE to predict dynamic loading
responses. In 2006, Velex and Ajmi [50] presented some original formulas
simulating gear excitations by using simulated or measured transmission errors,
and validated their effectiveness by comparing results with references. The
following year, the same authors [51] derived analytical expressions for dynamic
tooth loads or tooth dynamic factors based on the harmonics of the load quasi-
static transmission error. In 2011, Velex et al [52] also presented approximate
analytical results for quasi-static transmission errors in spur and helical gears with
low and high contact ratios. Lin and He [53] proposed an analytical method to
determine transmission errors in helical gears considering assembly errors,
machining errors, and tooth modifications. Velex et al [54] presented analytical
formulas for the optimum combinations of profile relief and lead crown for
narrow-faced helical gears based on transmission error.

In recent years, both theoretical and experimental research on double-helical
gear pairs has been done. In 2015, Kang and Karhaman [55] conducted theoretical
and experimental studies on the dynamic behavior of double-helical gear pairs.
They built a double-helical gears test plotform, allowing for the adjustment of left
and right staggered angles, and implemented a measurement system capable of
capturing three-dimensional vibration motion and dynamic transmission errors
under high-speed conditions. The accuracy of the proposed model in predicting
3D gear vibration was demonstrated through direct comparison with measured
data. It was shown that the left and right stagger angle is the most critical

-5-
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parameter affecting the dynamic response. In 2021, the same authors [56]
researched the quasi-static characteristics of double-helical gear pairs under low-
speed conditions. Their focus was on the key design and manufacturing
parameters related to double-helical gears. They directly compared measured and
predicted values, including loaded static transmission errors, axial stress, root
stress, and right-to-left load-sharing factors, to validate quasi-static models.
Consequently, these two research studies contribute to a deeper understanding of
the quasi-static behavior of double-helical gear pairs.

1.2.2.2 Research methods of single-degree-of-freedom and multi-degree-of-fre

edom dynamical systems

At the beginning, single-mesh gear models with a single degree of freedom
(pure torsional models) predominated. The simplest model was the pure torsional
model, which considered only one DOF for each component. However, as the need
for more accurate actual models, additional factors such as damping and friction
were incorporated.

Amabili and Rivola [57] proposed a single-degree-of-freedom (SDOF )model
with meshing damping, in which the damping was assumed to be proportional to
mesh stiffness. Li and Kahraman [58] proposed a transient, non-Newtonian, mixed
electrohydrodynamic lubrication model of spur gear pairs for capturing the
transient behavior of the contact process from the root to the top of gear teeth.
The following year, the same authors [59] presented a two-degree-of-freedom
(2DOF) interface damping model for gear pairs.

Friction is a common factor considered in the gear dynamic model. Vaishya
and Singh [60] presented a dynamic model incorporating sliding friction to
accurately obtain dynamic meshing force among gear teeth.

Subsequently, models with more DOF were studied. Various studies [61 -
66] explored coupling motion among transverse, torsional, and axial, some of
them also took eccentricity and gyroscopic effect into account.

1.2.2.3 Research methods of nonlinear dynamical systems

Nonlinear factors have a significant influence on gear dynamics, particularly
at high speeds.

Wang et al [67] conducted a review of basic concepts, mathematical models,
and solving methods for nonlinear gear-driven systems. They summarized the
effects of nonlinear factors (such as backlash, time-varying meshing stiffness, and
vibro-impact) on both linear and nonlinear systems and discussed critical issues
in further research on the nonlinear vibration.
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Gill-Jeong et al [68] analyzed the effects of viscosity, film width, and
backlash on the nonlinear dynamic behavior considering lubrication and sliding
friction.

Zhou et al [69] established a nonlinear model considering backlash,
transmission error, and meshing stiffness. They studied nonlinear dynamic
response using the Incremental Harmonic Balance Method (IHBM) and observed
jump discontinuity phenomena caused by backlash.

Various excitations, including vibro-impacts and periodic excitation [70,71],
were considered to study nonlinear behavior.

Bifurcation and chaos are typical nonlinear phenomena. Chang-Jian et al [72]
established a single-degree-of-freedom spur gear system with and without
nonlinear suspension, analyzed dynamic orbits of the system using bifurcation
diagrams and phase diagrams. They demonstrated a diverse range of periodic, sub-
harmonic, and chaotic behaviors.

Xia et al [73] developed a nonlinear model considering time-varying meshing
stiffness, gear backlash, static transmission error, and tooth-face friction. They
researched bifurcations and chaos characteristics of the system under lightly and
heavily loaded conditions and investigated in detail the parametric effects of
rotational speed, damping ratio, and gear backlash on the dynamic behaviors.

Other studies [74 - 83] have explored errors (eccentricity, pitch deviation),
multi-meshing, faults (cracks and wear), tooth features, modifications, Hertz
contacts, and rattle, contributing to the understanding of nonlinearity in nonlinear
gear dynamics.

So far, research on gear pairs models has become increasingly sophisticated,
with consideration for a wide range of factors including lubrication, friction,
internal excitation, noise, and rattle prediction. Additionally, there is a growing
interest in gear vibration control and fault diagnosis. Concurrently, numerical
mathematical solving methods have been developed to address the complexities
of differential equations.

1.2.3 Research status on planetary gear system dynamics

Currently, the research on planetary gear is still a focal point, with a plethora
of analytical modeling, numerical analysis, and experimental studies focusing on
both static and dynamic aspects of planetary gear systems, primarily centered
around spur or helical configurations. However, compared to spur and helical
gears, research work on double-helical gears, especially for planetary gear trains,
has been relatively slow. Nonetheless, over the past two decades, planetary gear
sets have found extensive applications across various industries such as
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automotive, aerospace, wind power generation, and marine. Simultaneously,
double-helical gears, also known as herringbone gears, offer distinct advantages
over their spur and helical counterparts. Consequently, in recent years, several
universities and scholars have initiated studies on the dynamic characteristics of
double-helical planetary gear systems.

1.2.3.1 Dynamic modeling methods

Planetary gear models can be categorized based on degrees of freedom (DOF)
into 1-Dimensional models (pure torsional models), 2-Dimensional models
(transversal-torsional models), and 3-Dimensional models (transversal-torsional-
axial models). According to modeling methods, planetary gear models can also be
divided into analytical models (lumped mass method), Finite element models, and
hybrid models. Additionally, planetary gear models can be classified based on
equations as linear time-invariant models, linear time-varying models, and
nonlinear time-varying models. Time-varying parameters consist of meshing
stiffness, damping, contact ratio, and others, while nonlinear parameters include
backlash, lubrication, and more.

According to the research content, the research on planetary gear systems can
be mainly categorized into three categories in terms of vibration characteristics:
free vibration, forced vibration, and vibration control. More specifically.

Cooley and Parker [84] summarize the dynamic research of planetary gear
system in paper that published in past 20 years, as shown in Fig.1-3, which can
be seen from Fig.1-3 that there is an overall upward trend for vibration research
of planetary gear system. In this review paper, mathematical models, most of
which was lumped-parameter models, vibration mode, dynamic force response
including linear and nonlinear equations, mesh phasing, high-speed effect such as
gyroscopic, errors effects and experiment were studied and analyzed.
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Fig.1-3 Histogram of research papers on vibration of planetary gear system
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In the lumped mass model, the gear body is assumed to be rigid, while the
contacting teeth are considered to be flexible, and the entire gear mass is seen as
one single center point. Kahraman [85] could develop the first 3D dynamic model
of a single-stage helical planetary gear train with full DOFs based on the lumped
parameter method, as illustrated in Fig.1-4. In this paper, meshing stiffness was
assumed to be constant, and a linear time-invariant model was presented. A
bending-torsional-axial coupling model of a double-helical gear system with
journal bearings considered was developed by Yin et al [86], and they analyzed
the influence of external excitation and internal parameters on the dynamic
response.

Fig.1-4 Dynamic models of (a) a sun/planet pair, (b) a ring/planet pair, and (c) a

carrier/planet pair.

With the development of computers, FEM offers the advantage of calculation
speed. In FEM, all parts, including gear bodies, contacts, and bearings are defined
to be flexible. Combining the lumped mass method, many finite element models
[87] and hybrid models [88] have been developed. In 2006, Abousleiman and
Velex [89] introduced a hybrid 3D model to analyze the quasi-static and dynamic
behavior of epicyclic gear systems, where deformable rings and carriers were
modeled via using beam elements. This approach served as a reference for
modeling flexible components. The following year, the same authors [90] studied
the quasi-static and dynamic behavior of spur and helical gears with flexible parts,
demonstrating the feasibility of the proposed model and the necessity of
considering flexible components. In 2019, Velex et al [91] explored the influence
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of tooth modifications on dynamic behavior.

Liu et al [92] proposed a dynamic model of a pair of double-helical gears by
using the hybrid-defined user elements, with experimental results matching well
with simulation results in terms of meshing frequencies and vibration responses.

Planetary dynamic models with elasticity components have been considered
by some researchers since 2000. Abousleiman et al [89] presented a hybrid 3D
model to study static and dynamic behavior of planetary/epicyclic gears with
deformable parts such as ring-gears and carriers, demonstrated the potential of the
proposed hybrid model. Kahraman et al [93] studied the effect of flexibility on
the dynamic of planetary gear systems and indicated that it was necessity of
considering deformable body analysis to predict overall planetary gear set modes
with flexible gear rims.

Furthermore, in recent years, an increasing number of scholars have utilized
the elastic-body method to establish dynamic models. Wang et al [94] considered
the flexible pins to research the load-sharing characteristics of herringbone
planetary gear systems in GTF, with results indicating that Montestruc pins
exhibited the best load-sharing performance among the four types of pin models.
Ericson and Parker [95] combined experimental measurements with finite element
simulations to study the importance of mode of the elastic-body, especially for
elastic ring gears, which may lead to excessive noise and other issues. Guan et al
[96] introduced a new multibody dynamic model of planetary gear systems
considering elastic shaft-ring gears and studied the influence of elasticity on the
accuracy of the transmission and vibration intensity of light-weight gears. Ge et
al [97] considered the ring as a flexible part to accurately obtain internal meshing
stiffness.

1.2.3.2 Natural frequencies and mode

Natural frequencies and modes are fundamental characteristics of planetary
gear systems, and research in this area has been extensive.

Some scholars began studying modes with single-stage planetary gear trains.
In 1994, Kahraman [98] proposed torsional models for planetary gear sets and
derived closed-form expressions for natural frequencies and modal shapes [85]
applicable to planetary systems with any number of planets. In 1995, Saada and
Velex [99] proposed a planetary group dynamics model to study the influence of
gear meshing stiffness and support stiffness on the natural frequency of the system.
Subsequently, in 1999, J. Lin and R.G. Parker [100] established a 3DOF
translation-torsion model for spur planetary gear trains and investigated its natural
frequencies and vibration modes. In 2007, Parker et al [101] explored the
structured vibration mode and natural frequency properties of compound
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planetary gears, and results showed that the vibration modes were classified into
rotational, translational, and planet modes and the unique properties of each type.

Multi-stage systems have also been studied. In 2014, Sun et al [102] analyzed
the natural frequency and coupled mode characteristics of multi-stage planetary
gear systems, which developed research of multi-stage planetary gear system in
this area. Rotational, translational, and planet modes were identified as the main
three modes, with coupling observed between planetary stages in each rotational
and translational mode. The following year, the same authors [103] investigated
the sensitivity of natural frequencies and coupled modes to system parameters of
multi-stage planetary gears.

1.2.3.3 Research on load sharing characteristics and mesh phasing

Another research focus is load sharing characteristics, as good load sharing
can evenly distribute stress among planet gears, reduce unwanted vibration and
noise, and prolong the working life of planetary gear systems.

Kahraman et al [104] pioneered the study of load sharing characteristics of
planetary gear systems in 1990s, and numerous model [105 - 112] have since been
developed under a variety of conditions. Singh [113] proposed a generalized
formulation for load sharing behavior in planetary gear trains with any number of
planets.

Iglesias et al [114] studied the influence of error and configuration on load
sharing characteristics, while Sanchez-Espiga et al [115] summarized the
influence rules of common errors (such as tooth thickness and pinhole position
errors) on load sharing ratio based on different mesh phasing. The following year,
the same authors [116] proposed a simple and effective model using virtual tooth
root strain-gauges method to evaluate the effect of mesh phasing on load sharing
ratio. In subsequent work, they [117] expanded this approach by considering the
strain of more components to study load sharing ratio.

In 2021, Ge et al [97] theoretically and experimentally conducted the study
on the load sharing properties of planetary gear systems, with results showing that
the error of load sharing coefficient calculated by theory and experiment was less
than 5%.

Mesh phasing is a crucial factor that significantly influences the dynamic
response of planetary gear trains. It is determined based on the basic parameters
such as the number of teeth on the gears and the number of planet gears. There
are five main mesh phasing relationships: equally spaced in-phase (ESIP), equally
spaced sequentially phased (ESSP), non-equally spaced in-phase (NESIP), non-
equally spaced sequentially phased (NESSP) and non-equally spaced arbitrarily
phase (NESAP) [115].
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The study of mesh phasing was initiated by Kahraman and Parker. Kahraman
[85] investigated the effects of planet mesh phasing on dynamics, while Kahraman
et al [118] provide the first generalized phasing formulation for planetary gear
systems with N planet. Parker and Lin [119] given an analytical calculate formular
for calculating adjacent sun-planet meshing or ring-planet meshing. They also
provide mesh phasing relationships between sun meshes with planet and ring
meshes with same planet, such as S-P1 and R-P1, based on detail mesh processes,
as depicted in Fig.1-5. Subsequently, many researchers referenced these formulas
in their work [119]. In 2011, Guo and Parker [120] developed general analytical
formular for mesh phase relations in compound planetary gear sets based on the
work of Parker and Lin [119]. Canchi and Parker [121] investigated the effect of
mesh phasing and contact ratio on the parametric instabilities of planetary gear
rings. Wang and Parker [122][123] analyzed mesh phasing-based spectra of quasi-
static deformations and studied the impact of planet mesh phasing on the vibration
of planetary gear systems.
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Fig.1-5 Diagram of mesh phasing in a planetary gear system

Despite advancements in manufacturing and processing technology, common
errors remain inevitable in gear systems. Numerous studies [106,124 - 129] have
explored the influence of errors, which include eccentricity error, radius error,
tangential error, and assembly error, on the modeling and dynamics of planetary
gear systems.
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1.2.4 Research status on the double-helical planetary gear train
dynamics

With the development of automatic machining centers and the improvements
in precision, the application of double-helical gears and herringbone gears in
modern industry has become increasingly popular, particularly in large machinery
such as gas turbines and aero engines. Over the past 10 years, significant research
has been conducted on double-helical planetary trains, covering dynamic
modeling, tooth contact analysis, load-sharing characteristics analysis, nonlinear
analysis, and more.

In 2013, Sondkar et al [130][131] employed the Euler beam method and
lumped mass method to develop a linear, time-invariant dynamic model of a single
stage double-helical planetary gear system. They studied the influence of gear
teeth stagger on the dynamic behavior. Tan et al [132] provided a modeling
method for a double-planetary gearbox based on bond graphs.

Sheng et al [133] investigated the vibration modal properties of double-
helical planetary gear trains and obtained three different types of modes: planet
mode (PM), rotational-axial mode (RAM), and planet-translational mode (PTM).
In 2016, Mo et al [134] established an axial-transverse-torsional dynamic model
of double-helical star gear systems with considering machining errors and
assembly errors for GTF aero-engines. They analyzed vibration modes, natural
characteristics, and dynamic responses, noting differences in vibration modes
between the left and right sides in certain orders. K. Khoozani et al [135]
considered gyroscopic effects and studied natural frequencies of double-helical
planetary gear systems.

In 2014, Velex et al [136] studied the effects of planet position errors and
pitch deviations on dynamic tooth loads. Wang et al [137] studied the effect of
transmission error excitation, external load, and clearance on dynamic load
coefficients. Schlecht et al [138] conducted analyses of loaded tooth contact.
Chapron et al [139] examined symmetric linear optimum profile modifications
(PMs) for helical and double-helical gears to minimum dynamic tooth loads, and
analyzed the sensitivity of optimum PMs to speed and load.

In 2015, Leque [140] pioneered the development of a load sharing model for
double-helical epicyclic gear sets, which accounted for various types of
manufacturing errors, both constant and time-varying with respect to gear.
Subsequently, the study of the orbit under all types of error and the effect rule
was conducted. The quasi-static load sharing behavior of double-helical epicyclic
gear sets was theoretically investigated based on the proposed 3D model. In 2021,
Gotz et al [141] from the Technical University of Munich experimentally analyzed
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the load-sharing characteristics of double-helical planetary gearboxes under
variable working speeds (from 0 to 6800rpm) by using the strain-gauge method.
They analyzed the influence of speed on static and dynamic load sharing. Liu et
al [142] studied the dynamic characteristics of a split-torque transmission system
with double-helical gears, they revealed that modification significantly improved
dynamic load characteristics while slightly improving load sharing characteristics.

Lu et al [143] proposed a nonlinear dynamics model of the double-helical
planetary gear train by considering sliding friction, time-varying meshing
stiffness, backlash, axial stagger, and mesh errors. The study investigated the
influence of tooth friction on the periodic vibration and nonlinear vibration.

In 2020, Wang [144] researched the effect of planetary gear/star gear (two
common planetary stage) on the transmission efficiency in the closed differential
double-helical gear train. Hu et al [145] studied load-sharing analysis of the closed
differential planetary transmission gear systems by using theoretical and
experimental methods.

1.2.5 Research status of the marine gear transmission systems

Regarding the marine gear transmission system, multi-stage gear
transmission systems is still main structure. The power on ships is derived from
multiple steam turbines or gas turbines, which is transmitted through one or more
pairs of double helical gears to a large gear, achieving the purpose of speed
reduction. This gear is connected to the propeller, driving the ship navigation.
Fig.1-6 illustrates a 3D schematic of a typical propulsion system for large ships,
which includes high-pressure and low-pressure turbines, with the double-input
single-output double-helical gear transmission system as a critical component of
the propulsion system. Xu et al [146] from Shanghai Jiao Tong University
established a lateral-torsional-axial model of this propulsion system, considering
multiple nonlinear and time-varying factors, based on the principles of gear
transmission and finite-width journal bearing theory. They studied and quantified
the impact of unsymmetrical load parameters on the stability of the entire coupled
system. The results indicate that instability phenomena gradually occur with
increasing excitation frequency, decreasing load ratio between the two inputs, or
decreasing input load values, with more severe vibrations observed in the gear
pairs on the low-load side. Furthermore, the vibration amplitude is related not
only to load parameters but also to the distance between the gear pairs and the
load input. They also concluded that the influence of oil film on system stability
is crucial, especially in unstable states. Their research presents the stability
boundaries of the propulsion system, providing theoretical references for the
optimization and adjustment of load parameters.
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Fig.1-6 Schematic diagram of the power system for a large ship [146]

However, to the author's knowledge, there is currently limited research on
two-stage parallel compound gear systems for marine applications, particularly
regarding a unified and effective dynamic modeling method, the study of
nonlinear motion states, and the development of dynamic models considering the
ship navigation conditions.

1.2.6 A brief analysis of literature review

From the current research status, it is evident that scholars worldwide have
made numerous attempts to study the dynamics of planetary gear reducer systems.
They have established dynamics models of gear systems based on methods such
as finite element method, T-beam element method, and potential energy method.

Gears and rolling bearings commonly form a typical gear system dynamics
model. Scholars from various countries have developed four main dynamic
models of planetary gear reducers, categorized by degrees of freedom as follows:
(1) Pure torsional model (1st model), (2) Transverse-torsional model (2nd model),
(3) Transverse-axial-torsional model (3rd model) or transverse-axial-torsion-
swing model, and (4) Nonlinear model (4th model). Among these, the first three
models are common in practical application.

In terms of time and linearity classification, the gear dynamics model evolves
from (1) the linear time-invariant model to (2) the linear time-invariant model
with rotation effect, and further to (3) the linear time-varying model, and (4) the
nonlinear time-varying model. The time-varying factors mainly consider changes
in time-varying meshing stiffness, as the number of teeth involved in meshing
changes throughout a meshing cycle. However, the main difference between spur
gear and helical gear lies in the range of stiffness change. Nonlinear factors
mainly include backlash and friction, affecting the stiffness and damping of the
entire system.

Various influences, such as gear eccentricity, tooth profile error, meshing
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stiffness in the inertial coordinate system, and the centrifugal force and additional
rotational inertia of planetary gear in the non-inertial coordinate system, are
considered concerning the vibration characteristics of the gear system.
Addationally, measures like gear modification algorithm are proposed to reduce
vibration and noise.

However, to the authors’ knowledge and the aboved reviewed literature, there
are few researches on the complex planetary gear trains, such as the two-stage
closed differential double-helical planetary gear system, particularly regarding
dynamics research. In order to more accurately analyse the dynamic
characteristics of the two-stage parallel compound gear train for marine, reveal
the dynamic behaviour of the whole system, and help to improve the design and
maintenance level of the ship power system, there is an urgent need to increase
the research efforts on the nonlinear dynamic characteristics of two-stage parallel
compoound gear train used in the ship, as well as the overall power system with
regard to the coupling dynamics. According to the references, and combining with
the research object of this topic and the influence of the working environment, the
existing problems and deficiencies in the study of planetary gear systems,
especially in the application of two-stage closed differential double-helical
composund gear systems in power systems of ship, are mainly focused on the
following aspects.

(1) Based on the characteristics of the two classical planetary system
structures (epicycal planetary gear system and star planetary gear system) in the
two-stage parallel compound gear system, there is not uniform modeling method
for this compound gear system. If the modelling method of fixed coordinate
system is directly adopted in this compound gear system structure, the coordinate
transformation matrix needs to be calculated from time to time in the computation
process, resulting in problems such as the slow speed of the computation. The
research on the general modelling method of two-stage parallel compound gear
system is less, and there is an urgent need to propose a mechanical modelling
method applicable to this compound gear system structure, so as to calculate the
vibration response of the whole compound gear system more quickly and
accurately.

(2) Due to the load sharing characteristic and transmission error are the most
basic indexes in evaluating a planetary gear system, and the meshing phase is the
basic condition in a planetary gear system that is determined based on the number
of teeth and planets. However, based on the existing studies, there are few reports
on different meshing phases for two-stage parallel compound gear systems in
terms of the load sharing characteristics, global transmission error, and dynamic
coupling characteristics.
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(3) Due to the operating conditions of this compound gear system in the ship
power system belonging to the characteristics of large transmission torque,
compact layout space and complex transmission paths. The transmission between
the compound gear system is quite complex and it is challenging to reveal its
nonlinear dynamics behaviour. Therefore, it is very meaningful to study the
nonlinear dynamics of this two-stage parallel compound gear system.

(4) When a ship carries out a mission on the sea surface, the working
environment of the sea surface cannot be calm all the time, and by the influence
of the waves, the common motion of the ship includes rocking, pitching, and other
non-inertial system motions belonging to the hull of the ship. Most of the existing
studies assume that the planetary gear system is fixed on the ground or the base
coordinate system is stationary, and the motion of the ship hull on the sea surface
is not taken into account. Although the motion of the ship hull is not like the
aircraft engine that does dive in the air, flip, and other large-scale space motion,
but by the influence of the non-inertial system of the ship hull, the absolute
acceleration of the various parts of the modeling process and the inertial
coordinate system are very different, which will result in the inertial motion of
the ship. There is a big difference between the inertial coordinate system and the
modelling of the hull of ship, which generates additional terms such as Kurtosis
acceleration and implicated acceleration, and the impact on the overall dynamic
response is also fundamentally different.

1.3 Research object

In this thesis, the research object focuses on a double-helical two-stage
compound marine gear reansmission system, also called the closed differential
planetary gear transmission system. It is composed of two stages: the differential
planetary gear train and the closed planetary gear train. The transmission diagram
is depicued in Fig.1-7, where the sun, planet and ring gear in each stage are all
double-helical gears. To clearly distinguish between the parameters of the two
stages, the suffix 1 represents the parameters of the first-stage differential
planetary gear train, and the suffix 2 represents the parameters of the second-stage
closed planetary gear train, unless otherwise specified.

As illustrated in Fig.1-7, S1, P1, C1 and R1 consist of the differential
planetary transmission gear train, while S2, P2 and R2 form the closed planetary
transmission gear train. Consequently, the input power and torque are divided into
two paths. One path is transmitted from the sun in the 1st stage (S1) to the planet
in the 1st stage (P1) and finally output through the carrier in the 1st stage (C1).
The other path is transmitted to the sun in the 2nd stage (S2) through the ring in
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the 1st stage (R1), then output through the ring in the 2nd stage (R2), and
ultimately combined with the output the torque of C1 to the output shaft.
Furthermore, the choice of a double-helical planetary gear train as the
research object is motivated by two main reasons. Firstly, planetary gear trains
can effectively distribute the input power. Secondly, double-helical gears are
capable of counteracting the axial forces generated by the respective helical gear.
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Fig.1-7 Transmission diagram of the closed differential planetary gear system: (a)

Transmission diagram, (b) double-helical, and (c) 3D diagram

1.4 Research outline

In addition to the introduction of Chapter 1, the main contents of this thesis
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are as follows:

Chapter 2 is focused on the development of the mechanical model, including
quasi-static and dynamic model, of a double-helical compound marine gear
transmission set. The results of the quasi-static model are used to verify the
accuracy of the established model, expand the modelling method of this parallel
compound gear system. The dynamics model of this parallel compound gear
system is established by using the finite element method, providing a research
basis for the subsequent analyses.

In Chapter 3 and Chapter 4, based on the quasi-static model, the global
transmission error and the load sharing ratio of the two-stage parallel compound
gear system are calculated. The influence of the pin position error and eccentricity
error on quasi-static characteristics such as the load sharing ratio and global
transmission error are analysed. The important law that the excitation frequency
of the error for the global transfer error is related to the meshing phase is obtained.
In addition, the influence law of eccentricity error on the axial trajectory of each
component in the compound gear system is also explored in detail, and it is
obtained that the shape of the axial trajectory of a gear with eccentricity error is
related to the number of teeth of that gear. Based on the dynamic model, aiming
at the time-varying nonlinear dynamic equations, an improved Newmark-beta
numerical method is proposed to study the dynamic vibration characteristics and
coupling characteristics of the investigated compound gear system.

In Chapter 5, the pure torsional and tramslational-torsional nonlinear
dynamics model containing backlash, time-varying meshing stiffness and meshing
damping are established. Based on the pure torsional nonlinear dynamics model,
the nonlinear characteristics of the compound gear system are analysed in detail.
The influences of factors such as the meshing damping ratio, the input rotational
speed and the magnitude of meshing error on the nonlinear characteristics are
revealed, providing some guidance for the design of this compound gear system
to avoid undesired motion states in operation. Based on the translational-torsional
nonlinear dynamics model, and a detailed analysis is carried out for the emergence
of complex nonlinear dynamics behaviours, and its connection with the pure
torsional model is obtained.

In Chapter 6, Based on the ship motion state during sea voyage, the non-
inertial system on the sea surface is taken into account, and the expressions of
absolute velocity and absolute acceleration of each component in the compound
gear system under the two non-inertial systems, including internal and external
coordinate systems, are derived. Thus, the dynamics of a two-stage parallel
compound marine gear transmission system under two non-inertial coordinate
systems is modelled. The dynamic characteristics of the whole gear system under
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typical motions of the ship (rocking and pitching motions) are analysed and some
conclusions are given.
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Chapter 2 Mechanical Model of the Double-helical
Two-stage Parallel Compound Marine Gear Train

2.1 Preface

Before the dynamic analysis, the most important thing is to establish an
accurate mechanical model. Each double-helical gear (sun, planet and ring)
composed of planetary gear train can be regarded as two helical gears with
opposite helix angle. At the same time, the two planetary gear trains are composed
in parallel, and there are a lot of meshing relations, and some of them are
connected. Here, the connection between the two stages is represented by
torsional stiffness. Center components such as sun, ring and carrier can be
connected to the gearbox structure by torsional spring. If one of the central
components is not fixed, its torsional stiffness value can be regarded as zero.

Therefore, in this chapter, each stage of two-stage compound gear trains was
firstly modeled separately. Then, combining with the lumped mass method and
beam element method. Finally, the static and dynamic models are obtained
according to the connection relation between the two stages.

2.2 Calculation of meshing errors and mesh phasing

In the practical application, due to the existence of manufacturing tolerance
and installation accuracy, the actual center position and ideal center position of
the gear can’t perfectly coincide. Therefore, all kinds of errors must exist in gear
system, which affect the transmission behavior of the gear system.

2.2.1 Calculation of meshing error considering errors

2.2.1.1 Effect of planet pinhole position error on meshing error

Pinhole position error is the difference between actual position of mounting
position of planet gear and ideal mounting position. This kind of error is common
in the assembly of planetary gear system. And pinhole position error can be
divided into two kinds of position error, radial error and tangential error, as shown
in Fig.2-1. The positive value of the radial error is outward along the centerline
of two gears, while the positive value of the tangential error is perpendicular to
the radial direction and consistent with the tangential direction of the rotation of
the sun gear.
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Fig.2-1 Diagram of planet pinhole position error

The equation for the meshing error affected by the planet pinhole position
error that can be obtained by translating that, shown in Fig.2-1, into the direction

normal to the two engagement lines of S-Pi and R-Pi.

e =—€,,; Si n(ﬂ,ppi +ay,
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€

(2-1)
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where, eypi and 4, are the error and initial phase, respectively.

2.2.1.2 Eccentricity error

Eccentricity error is also called run-out error, it is a time-varying error, which
can be decomposed into two components in the coordinate system and represented
as transverse plane translations of the central point of rotation of the gear.
Therefore, the run-out error on the sun gear and planet can be projected into the
normal direction of meshing. Taking the sun-planet (S-Pi) meshing in a planetary
gear train shown in Fig.2-2 as an example, the eccentricity errors of the respective
gears are converted into the mesh error by the formula expressed below.

s (D) =& sinl(@, —a )t + A, +a, —¢,]

(2-2)
espi—pi (t) = _eepi Sin[(a)pi )t + ﬂ’pi + asp]
Similarly, for the ring-planet (R-P1) meshing, the meshing error affected by
the eccentricity error are shown as follows.
erpi—r (t) =€, Sin[(a)r — )t+ﬂ“r _arp _¢pi] (2 3)
erpi—pi (t) = _eepi SiIq[(a)pi )t + ﬂ“pi - arp
where, ecs, ecpi and e.r are magnitude of the run-out error for sun, planet and ring,
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respectively. 4s, 4,; and 4, are initial phase angle of the run-out error for sun, planet
and ring, respectively.

O Ideal rotational centers

O Real rotational centers

Planet gear

Fig.2-2 Diagram of eccentricity error

Here, it is noted that there is a connection between the eccentricity error and
the pinhole position error for same magnitude of same planet. When the rotational
angle is zero, the eccentricity error is pure radial error. In the same way, when the
rotational angle become 90 degrees, it becomes pure tangential error.

2.2.1.3 Indexing error

Gear tooth indexing error is also called as pitch error, as shown in Fig.2-3,
which is the deviation of the actual position (red tooth) from the reference
theoretical position (black tooth) of teeth. This kind of error is one of common
errors because of the precision of the gear manufacturing process. In addition, it
is noted that the sum of error value ¢; (shown in Fig.2-3) should be zero.

Fig.2-3 Diagram of indexing error

Assuming that the tooth shown in Fig.2-3 above is the sun gear, the equation
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for the meshing error obtained by translating its tooth indexing error to the

meshing line is shown as below.
espi—s (t) = efps Cos(asp)Sin(wst) (2'4)

where, ejs is the indexing error, and w; is the rotational speed.

2.2.1.4 Thickness error

Tooth thickness error is the difference between the actual tooth thickness and
the nominal tooth thickness.
d.‘h“!“\?t}, l_1|‘ \ ,”_““,!h“" o

— ¢ x —_“Cth
“lietance O Numpa,
dist er fegy,

R
. ‘,l.(-""‘\

Pitch circle
Base circle

Fig.2-4 Diagram of thickness error

As shown in Fig.2-4, it is noted that a positive value (red line) means that the
teeth are thicker than nominal (black line), while a negative value (blue line)
means that teeth are thinner than nominal. In this thesis, the tooth thickness error
i1s symmetric on both flanks. The sickness error is a special condition of indexing
error.

2.2.2 Mesh phasing

Mesh phasing is a basic characteristic of a planetary gear train, which affects
the lead or delay of the contact between two adjacent planet gears which mesh
with sun or ring. In total, there are three types of conditions, they are in phasing,
sequential phasing and arvitrarily phasing, which depend on its geometry (the
teeth numbers and planet position angle). Moreover, in terms of the assemble
position of the planet gear, there are two types of condition, equally space
assembly (i.e., planets are equally spaced around the center gear) and non-equally
space assembly.

As above mentioned, for a planetary gear train, the combined configuration
conditions are shown in Tab.2-1.
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Tab.2-1 Assembly and Mesh phasing configurations (adapted from [147,148])

Configuration

Mathematical conditions

Equally Spaced In Phasing 2z(i-1) Zy, .
=——"2 ! =integer
(ESIP) N 2r Y
Non-Equally Spaced In Phasing 2z(i-1) Zwy, .
(NESIP) ;t—N Do = integer
Equally Space(dEégcé)l;ential Phasing _ 27[(,11—1) Zy; « integer, ;Z v, =integere

Non-Equally Spaced Sequential Phasing
(NESSP)

Non-Equally Spaced Arbitrarily Phasing
(NESAP)

L27(i-) Zy;

N

;) 27(i-1) erl/ll

N

# integer, ZZ w, =integersz

i=1

# integer, ZZrz//, integerez

where, y; is planet i spacing angle, N is planet numbers and Z, is teeth of ring gear.

2.3 Translational-torsional quasi-static model of the two-stage
parallel compound marine gear transmission system

The two-dimensional quasi-static model of differential stage (the first stage)
planetary gear system is shown in Fig.2-5. Correspondingly, the two-dimensional
quasi-static model of closed stage (the second stage) planetary gear system is
shown in Fig.2-6. The only difference between two stages is whether the carrier
rotates.

As shown in Fig.2-5 and Fig.2-6, the meshing relationship between gears is
equivalent to a spring, and the red straight line in the rectangular diagram on the
right represents the meshing force direction on the normal plane when the single
side helical gear of double-helical gear meshes. At the same time, firstly, the
supporting spring can be used to represent the supporting connection relationship
between the sun gear, ring gear, carrier and their respective main shafts, secondly,
the planet gear and planet carrier. kv, kyi (i = s, 1, ¢) can be used to represent the
stiffness of each supporting spring in the transverse and vertical directions, k¢, kj
is the supporting stiffness in the radial and tangential direction of planet, their
units are N/m. ki (i =s, r, ¢) 1s used to represent the stiffness of each torsion spring
of every component in their rotational direction, and corresponding units are

Nm/rad.
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I

Sun-planet mesh of
single helical gear

Ring-planet mesh of
single helical gear

— Iy
XY,

<
g T

i =

Sun-planet mesh of
single helical gear

Ring-planet mesh of
single helical gear

Fig.2-6 The statics model of the closed planetary gear train

In the compound gear system, the planets of the first stage not only rotates
around its axis, but also rotates with the carrier around the centre of the planetary
gear train, so three types of coordinate systems are established in this thesis.

(1) Fixed coordinate system XOY. The origin point is at the centre of the
whole compound gear system, which is in fact the whole ground coordinate system.
All components of the second stage are modelled in the fixed coordinate system.

(2) Moving coordinate system of carrier xoy. The origin is located at the
centre of the carrier in first stage, rotating with the carrier piece under an angular
velocity w.. Sun, ring and carrier in the first-stage are modelled in this coordinate
system.

(3) Moving coordinate system of planets ozn. The origin is located at the
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centre of the planets in the first stage, the ¢ axis direction is radial direction, and
the 7 axis direction is tangential direction. The planets in first stage is modelled
in this coordinate system.

The angle formed by the meshing plane of a pair of meshing gears (sun-planet
and ring-planet) in a planetary gear system and the Y-axis of the static coordinate
system is shown as Fig.2-7. As diagram shown, y,,; represents the angle formed
between the meshing plane of sun-planet and Y-axis, and w,,; represents the angle
formed between the meshing plane of ring-planet and Y-axis, and the calculation
formula is as follows.

Yy, )
A
n Ring gear
e~
Vo - g
\\
0 0, /
a4
. - / o i
?\ ) ¢,u Planet gear
12, >~
| / X(x‘_ » X, )

Sun gear

Fig.2-7 A diagram of the angle formed by the meshing plane and the Y axis of the static

coordinate system XOY

l//spi = asp _ﬂ“¢pi

(2-5)
eri = arp + ﬂ’¢pi

in which, 4=1 represents the counterclockwise rotation directions of sun gear, A=-
1 represents the clockwise rotation directions of the sun gear. a, is the transverse
pressure angle of sun-planet meshes, a,, is the transverse pressure angle of ring-
planet meshes and ¢,; is the positional angle of the planet i. Here, defines the
initial position of the first planet gear as being on the X-axis, with ¢,;=0. The
formula for the position of the planet gear is shown in the following Eq.(2-6):

272(i-1) )
¢pi - N (2 6)

where, N is the number of the planet gear.
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2.3.1 Static balance equation of sun and planet #i meshing

Firstly, considering the left side helical gear in the double-helical sun gear,
which engages with one side of the double-helical planet gear, as shown Fig.2-8.
A planet i which is located in a positional angle ¢,;, the meshing teeth between
sun and the planet i are seen as the spring shown in Fig.2-8.

']pl

Sun gear

Fig.2-8 The sun gear meshes with the planet gear

When the sun gear s meshes with the planet gear pi (i=1,2,...,N), the 6DOF
static balance equation (force and moment balance) of the sun can be listed, for
the static equilibrium equation of helical gear meshing on the other side, only the
helical angle of the base circle needs to be negative, and other parameters are the
same. Therefore, the static equilibrium equation of the double-helical sun gear
meshing with N double-helical planet gear is shown in Equation (2-7).

ZJ 12. Pk c0s(B))sin(y ;) =0
z _12 P €0S(8)) cos(yr,;) = 0
Z -12. Pk sin(s)) =0

Z, LY FLsin(A))sin(y )Ry, =
Z _lz Pk SIN()) cos(y )Ry =0
Z -12. L Pk COS(BR, =T,

where, f» 1s helix angle of base circle. j=1 is left helical gear, j=2 is right helical

(2-7)
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gear, and it is defined that ﬂb2 = —ﬂ& Ti, is input torque, Ry, 1s radius of base circle.

Fuspi 1s meshing force of single side of double-helical gear meshing, as shown in
Equation (2-8).

I:mspi = kspi x 5

spi (2'8)

in which, ks is meshing stiffness. 0,

i 18 relative meshing displacement between

the helical sun-planet gear pair, which is combined by the displacement of the
gear in six directions projected onto the meshing line. Here, it is defined that the
spring compression should be positive, as shown in Fig.2-7 and Fig.2-8. Then the
calculation formula of the relative meshing displacement of the sun-planet pair is
shown in Formula (2-9).

O = (X siny g + Ky, cosy; + 1, (0, — 0, )R, — & sina, —xmp ; COS
+i - (O — 0. )R,,)IC08 B, +[(x, - O siny + &, - K, -0, COSY )R, (2-9)
—K; Ky L+ (6, - 0, Sinag, + &, K, -6, COSa )R+ i, - 2, ]sin B
Here, Ry, is the radius of the base circle of the planet engaged with the sun.

According to Equation (2-9), the projection vector and sub-vector of s-pi
meshing pair can be obtained as follows:

B sweh,, KCWCh,, —kk,SB,, KR SWsh,, kik,RCwsh,, KR CH,, -
Pl =sach, —Kxcach,, kiK,5B,, kRpsasp,, kiR casp,, xRy Ch,
Vo = | spch, Ky -CyCh, —Ky K, S, }
) LKy RySwsh, Kk, R Cysf, kR, Ch,
VcSpi =[ 000O0TO O —KlecCﬁb]

VSPi:_ —Sacp, —K, -Cacf, K K, SBy
b _Kz-RbpSasﬂb KK Rypcasf,  xR,Ch,
(2-10)

where, x; ==l represents the counterclockwise and clockwise directions of the
input torque of sun gear, and x, =+1 represents right-handed or left-handed of
sun gear, and S represents the magnitude of the helical angle of the base circle.
Here, simplified notation is used to represent the following expression:

Sy =siny,, Cy =Cosy,, S =sinc

o CA=C0Sa, SB =sin B, cf, =cos f)

Equations (2-8) and (2-9) are imported into Equation (2-7) and sorted out,
then the force and moment balance equation of equation (2-7) can be expressed in
matrix form as follows:
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Kll
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0

K21
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N
12 13
Z K mspl K mspl
i=1
0 0
2 23
K mspl K mspl
: 0
22
K mspN 0

K13

mspN
0
0

K 2.3

mspN |

q. | [f
. 0
qpl = 0
qu 0

(2-11)

where, the stiffness submatrix, displacement and external force sub-vector in the

equation (2-11) are defined as follows:

Kll
K13
K22

mspi
mspi

mspi

q, =

=k
=k
=k

spi (Vsspi )T Vsspi '
spi\T y\ 7spi

spi (Vs P ) fo) '

spi (V;FI )T Vcspl !
Xs fpi
ys 77Pi
z Z .

° ' q i = "
exs g 95 pi
st 9'7 pi
025 QZpi

=k
=k
=k

KlZ
K21
K23

spi

(Vv
(v

spi

spi

T

n

0

o O O O

/2

(VY VP
spi\T y\ 7spi
p? ) Vsp '

spi\T spi
YTV

p1

2.3.2 Static balance equation of ring and planet #i meshing

(2-12)

The meshing diagram of a ring gear and a planet gear i with positional angle
@pi 1s shown in Fig.2-9. Therefore, the static equilibrium equation of the double-

helical ring gear meshing with N double-helical planet gear is given by.

Fig.2-9 The ring gear meshes with the planet gear
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D s Dy o COS(BD)siN( ) = O
> > P COS(3)) COS(y/ ) = 0
DA P (A =0

> P sin(B))sin(y,, )R, =0
> Foby SIN(BY) COS(1 )Ry, =0
> > i COS(BIR,, =T,

where, Rp- is radius of base circle of ring gear, 7, is torque, w,,; is shown as

(2-13)

equation (2-5). Similarly, Fupi shown (2-13) is meshing force between ring and
planet for single side of double-helical gear.

=K %, (2-14)

mrp| rpi

in which, k,; is meshing stiffness of ring-planet, J,,; is relative meshing
displacement of ring-planet.

The meshing displacement J,,; is combined by the displacement projection
of six directions of the meshing gear pair onto the meshing line. Here, it is
stipulated that the spring should be positive when compressed. Then the
calculation formula of the relative meshing displacement of the ring-planet
meshing pair is shown in Equation (2-15).

O = [(x, -y, cos Wi — % sin Wi TG @, -06,.)R,

+‘§pi Sinarp—l(l'ﬂpi COSOC —K - ( 2pi ezc)Rbp)]COSﬁb (2_15)

+ [(K2 ’ 6)xr Sin l//rpi _Kl ’ KZ ’ eyr cos l//rpi)Rbr + Kl ’ KZ ’ Zr

+(1, i, -0, COSa, — K, 0.5 Sina )Ry — i i, - 2,]sIn B
where, according to the above equation (2-15) and summary, the projection sub-
vector of ring-planet meshing pair can be obtained as follows:

V”"z_ swcp, K, -CCP, —Kl-zcz-sﬂb..}

" |k RySwsp, K-k, R.Cwsp KR.CpH,

V»=[0 0 0 0 0 -xR.ccA] (2-16)
Vrpi:_ —sacp, —Kk,-Cach, K K, SP, }

P Ko Rypsasp, ki -Rycasf,  kRyCh,

here, simplified notation is used to represent the following expression:

Sp =Siny,;, O =C0SY,;, S& =Sina,,, C& =C0Sar,
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Putting equations (2-14) and (2-15) into equation (2-13) and arrange them,
then the force and moment balance equation of equation (2-13) can be expressed

in matrix form as follows:

N _
13 13
Z Kmrpl Z Ko mrpl Kmrpl - K mrpN a: fr
- de 0
0 0 0 ‘e 0
K;Irpl Krznzrpl Kfrpl T 0 .pl :
21 22 23 q 0
L KmrpN I<mrpN 0 - K mrpN | PN

where, the stiffness submatrix, displacement sub-vector and external force sub-
vector are defined as follows:

Kll krpi (Vrrpl) Vrpl KlZ (Vrpl) Vrpi,

rpi ro rpi rpl

Ko =K (V") VI KE =k (V)T VT,

Ko = ke (V) VP, KE =k (V)T VR,
X, i 0
Y, ur 0 (2-18)
4 Z, 0

q, = 9; . Oy = H;’pi o f=l
0, 0, ,i 0
0, 0,5 T./2

2.3.3 Static balance equation between carrier and planet #i

In a planetary gear train, the carrier and planets are connected via bearings,
so the motion displacement of the planetary frame must be considered. Here, its
distance from the z axis of the carrier is the installation distance of the planet gear.
Meanwhile, the compliance of the planetary wheel bearing can be regarded as a
diagonal stiffness matrix, as shown below.

Ko =diag{k, k, Kk, Ky Kk, K] (2-19)

Ui z

Here the supporting stiffness of bearing in in two perpendicular directions
are seen as ks and k,. Therefore, the bearing force is given as the following
equation (2-20). Hence, the static equation of the planet is obtained, which is
equation (2-21).
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Fbigpi = kg(yc sin ¢pi +X. Cos¢pi _gr(iij)

Forsi = K, (Y, COs g —x sing + RO —nlP)
Fopi =k, (2. -2V +R sing,0 —R, cos $0) (2:20)
My = K (0, COS G, —023))
Mbjnpi = ka; (ch Sin¢pi _gf;éi)
Ivlbjzpi = O
2 D - ; ;
zjzl(l:mjrpi sin arp - ijspi sin asp) COS(ﬂbJ) = I:bjgfpi
Zj:l (_ I:mjrpi Cos arp - FrT1Jspi Cos asp) COS(IBbJ) = Fb:7pi
2 ; ; . ; i
P (Fer i ijs i)sm(ﬂ‘) = Fi i
Zj_l p p b bzpl (2_21)

zj=l(|:rnjspi sin asp - I:erpi sin arp)SIn(ﬂbj)Rbp = Mbj.fpi
2 . .
> (Fascosay, +F,

cosa,,)sin(B))R,, =M,

mrpi br pi

2 . ) )
z j=l(Ferpi - ijspi ) COS(ﬂbJ )Rbp =0

Correspondingly, the static equilibrium equation of the carrier is shown as

follows:

Z;ZL(F&}m C0S g — Fyppi SiNg) =0,
Z;ZL(Fbépi sing,; +F,) . cosg,) =0,
Z;ZL Fbipi =0

> > (M cosg, + FLR sing,) =0,
Zj:lZil(Mb{mi sing,, — F,;R, cos¢,,) =0,

2?:12:; Fbjipi R =T,

(2-22)

where, T¢ is the external torque of carrier.

The equations (2-21) and (2-22) are rewritten into a matrix form as follows:

. : . N :
11 (j) 12 ()) 12 (j) 12 ())
chi chl chz chN qc fc(J)
(1)
K2 ) 0 0 A5 0
i 2 (i) q“) =<0 (2-23)
j 2
Ko 0 0 P ]
’ o g 0
22 ()
sym. K2 | (Do
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where, the, displacement and force vector are shown as follows in equation (2-24).

X, S 0
Y. 77pi 0
-] % -| % fo 2-24
QC - HXC ! qpi - egpi ! c 0 ( - )
ch enpi 0
0, Hzpi T./2

It is noted that the stiffness submatrices are given in the followingequation,

and they are all symmetric matrix.

K (LD =k.c’p+k 5%, Ki (1, 2) = k. cosp -k .chsg, K, (1,6) = —k RS9,

cpi cpi cpi

Ko (20 =K (1,2), K (2,2) =k, s°6+k,,¢°6, KL (2,6) =k R cg,
K& (3,3) =k, Ko (3,4) =k,Rs¢, KL, (3,5) = kZ, Co,
Ko (4,3) = K5, (3,4), K (4,4) =k, ¢+ kRS, K (4,5) = =k, R g, ¢4,
K (5:3) = K, (3,5), K (5,4) = ch, (4,5),K¢;(5,5) =k, S ‘p+k,RC°9,
Kt (6,1) =K (1,6), K (6,2) =K (2,6), K, (6,6) =k RCZ.
—k.co  K,S¢ 0 0 0 0
—k.sp  —k,Cp 0 0 0 0
0 0 —kzi 0 0 0
Kei=| 0 0 —kRsp —kcp 0 o) Kai=(Ka),
0 0 k,R.Co 0 —k,s¢ 0
0 kR 0 0 0 0]

KZ =diag{k; k; ki k, Kk, k|

cpi i zi

where, the shorthand form in the matrix is s¢pi=sing,i, cgpi=cosgp:;. The position
angle of the planet can be constant or time-varying, which depends on whether
the planetary gear train is fixed-axis or cyclic.

2.3.4 Quasi-static equation of the overall system

By consolidating the force balance relationships and generalized coordinates
of the individual components, the overall quasi-static equation of the compound

gear system can be obtained.

K =F

overall

(2-25)

overallqoverall
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where, Koverait, Qovera and Foveranr are the overall stiffness matrix, displacement

vector and force vector, respectively.

2.4 Translational-torsional dynamic model of the two-stage
parallel compound marine gear transmission system

The dynamic meshing diagram of double-helical planetary gear train is
shown in Fig.2-10, the meshing relationship between gears is equivalent to a
spring-damper model, where ki, cspi and egpi represent the meshing stiffness,
damping and transmission error of the sun-planet meshing pair, respectively.
Corresponding, ki, crpi and eni represent the meshing stiffness, damping and
transmission error of the ring-planet meshing pair, respectively. S5 represents the
helix angle of the base circle.

Double-helical ring gear

Double-helical sun gear

Fig.2-10 Schematic diagram of meshing of double-helical planetary gear train

The transverse face meshing diagrams of differential and closed stage gear
trains are shown as Fig.2-11 and Fig.2-12, respectively.
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K,

. I
Ko
<

2 e

1 ~

Sun-planet mesh

Ring-planet mesh

Fig.2-12 The dynamics model of the closed planetary gear train

The meaning of the symbols is consistent with static model. Since double-
helical gear are composed of two helical gears with opposite helical angles and
other parameters are completely consistent, only one helical gear of one side (left
side) can be given in the meshing equation here and in the subsequent ones. For
the meshing equation on the other side (right side), only a negative sign can be
added in front of the helical angle.
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2.4.1 Kinematic analysis of different components in the moving
coordinate system

In this subsection, the kinematic relationship of the components of first stage
in the corresponding moving coordinate is analyzed. Fig.2-13 shows the vector
relations between the displacements of the central components (sun gear, planet
carrier and ring gear) and the planet gear in two coordinate systems, where the
moving coordinate system is o-xcy.zc, the planet coordinate system is 0,-&p1pzp,
and the unit vectors of the coordinate systems are i, j, k. The coordinate oc-xc¢yeze
is parallel to os-xsyszs. Each coordinate system rotates around the o point, and the
rotational angular velocity of the carrier is w..

(a) (b)
v

¢ \ @, \| 0}

Fig.2-13 Displacement vectors for components: (a) sun and (b) planet

As depicted in Fig.2-13, assuming that the node of the sun in its own

coordinate system is Mjy, the displacement vector is rs, and the vector of the 0O

point with respect to the 0 point is r, then the displacement vector of the point
M in the moving coordinate is rms=rs+r. Thus, the displacement, velocity and
acceleration of the node M, with respect to the moving coordinate system (o-

xcyeze) can be relative displacement, relative velocity and relative acceleration,
denoted as.

r, =Xl + Y], + .k,
v, =X+ Y ) + 2K, (2-26)

a, =X, + V. J, + Z.K,
where, i, js and ks are the unit vector of the coordinate, respectively. The
scalars, such as X, Y., Z,, X, Y, Z;, X;, ¥, and Z_, in front of the unit vector

are the vibration response value.
Thus, the vector ry takes two derivatives, respectively, for time t to obtain the
vector expressions for the absolute acceleration of the node M are given as
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follows:
a, =a,+ 20XV, +OxI,+ox(wxr,) (2-27)
Then, based on the vector product algorithm, the absolute acceleration of the

sun is decomposed into two translation directions, which is given as:

" . . 2
A, =X _chys — WY — O X

. o ) (2-28)
a, =Y+ 20X + O X, — Y

In the same way, the absolute acceleration of the planet is decomposed into
two translation directions, which is given as:

.. . . ) )
apx = gp _chnp _a)cnp — é:p ™ (2_29)
a, =1, +20.&,+ &L, —a)cznp +ayr,

where, w. is the rotational angular velocity magnitude of the carrier in the first
stage, and r. is the distance from central point to planet pin. x,, ys, &, and 5, are
the vibration response displacement in their own coordinate, respectively. The

item of a)czrc and o, is the item related to the inertial force, which mainly

depends on the angular velocity and acceleration of the carrier.
2.4.2 Dynamic model of sun and planet #i meshing

The meshing diagram of unilateral helical sun and planet is illustrated in
Fig.2-14, the teeth in contact are equivalent to a spring damping unit.

n,

7]

Planet gear i

Fig.2-14 Diagram of sun-planet i meshing
As shown in Fig.2-14, the contact transmission of the teeth is represented by
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the meshing stiffness sy, meshing damping c,p; and transmission error espi. As
mentioned above, the components of the first-stage gear system are modeled in
the moving coordinate system, with the formulas for acceleration and velocity as
described in the previous section. Unlike most literature, the axial angular
displacements (6zs, 0:r, O:¢, O-pi) of the components in the first stage are not defined
in the moving coordinate system but rather in the fixed coordinate system,
highlighting a key distinction in this modeling approach. Taking the example of
the sun-planet gear mesh (S-Pi) shown in Fig.2-14, the meshing displacement and
meshing velocity are expressed as follows:

§spi = [(Xs Sin V/spi + ys Cos l//spi + (ezs - 920) Rbs
_gpi sin asp - npi C0s asp + (ezpi - ezc) Rbp )] cos ﬂb
+[(Hxs sin l//spi + eys Cos l//spi ) Rbs -z
+(0-
5spi = [((Xs - ys)Sin l//spi + (ys + a)cxs) Cos l//spi + (ezs - gzc)Rbs
_(é:pi - a)cnpi ) Sin asp - (ﬁpi + a)cé:pi ) Cos asp + (ezpi - ezc) Rbp )] Cos le
+[(0.xs sin l//spi + 0.ys Cos Wspi ) Rbs -1
+(6.

S

s Sina, +6, cosay )Ry, +2,1sin B, —e.; (1)

(2-30)

S

sinag, +0, cosa )R, +2;]sin B, —¢€_,(t)

In dynamics, the meshing displacement consists of the projection of the
displacements in various directions of the meshing gear pair onto the meshing
direction, along with the transmission error. Therefore, based on equation (2-30),
the projection vector for the S-Pi meshing pair in the dynamic modeling is given

by:
Vsspi swch, cych, —sB, RySwspf, RyCysp, Rbscﬂb]
VA=[0 00 0 0 —RcA]
V;?‘:[—Sacﬂb —cach, sB, Rysaspf, R,casp, Rbpcﬁb] (2-31)
AVP =[ ocpch, -osycB, 0 0 0 0]
AV? =] -wogcach, osacf, 0 0 0 0]

-
-

Based on equation (2-31), it is noted that, unlike in reference [149] , there is

an additional projection vector related to the carrier pri , as well as extra
projection vectors AV:pi,AVSfi arising from the velocity terms. Furthermore,
during the calculation, the extra projection vectors such as AV:pi,AV;fi is similar

to that of the projection vectors VSSpi,V;f’i. Therefore, for brevity, the detailed
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computation process is not provided here.
Therefore, the matrix form of the dynamic equation for the S-Pi is presented

as follows:

YRR RO wel BN bl R
% il esoje0 oo [

Kll Klz K13
Ksmsh(t) kSpl(t)l:KZT Kzgl KZ’;}

spi spi spi

(2-32)

Cll ClZ Cl3
Csmsh(t) Cspl(t){czg' ngl CZZI:I

spi spi spi
where, My, M,;,——the mass matrix of sun and planet;

0,,4, —The acceleration vector of sun and planet;
0s,9.,4,; —The velocity vector of sun, carrrier and planet;

qs,> qc, qpi——The displacement vector of sun, carrier and planet;
Kpi(t), Cspi(t)——Time-varying stiffness and damping matrix of S-Pi;
fsSpi ,f;f’i ——The column vector of the meshing error force on sun and planet;

kspi(t),cspi(t)-—Time-varying stiffness and damping of S-Pi.

In this case, the overall format of the meshing stiffness matrix and the
meshing damping matrix is a 2 x 3 format, and the sub-matrices at each position
are 6 x 6 matrices. The form of the sub-matrix in them is the same, the
difference is that the front of the matrix is multiplied by the meshing stiffness
and the meshing damping, respectively. In order to avoid redundancy, the
following formulas will only give the form of the sub-matrix calculation in the
matrix of meshing stiffness, and will not describe too much for the matrix of
meshing damping.

KB = (VPP KE (VL RS ST VE
K2 = (VS”') VI K2 = (VSp') Ve KE = (VSp') VSp'. ( )

spi spi spi

according to Equation, the extra sub-matrices of the meshing stiffness of the S-Pi
meshing pair are the sub-matrices at positions 12 and 22 of the Meshing stiffness
matrix Kspi, which are the key to removing the effect of the rotation of the carrier
for first stage. Furthermore, the remaining sub-matrices and sub-vectors are

shown below. It is worthwhile to note here that the additional acceleration terms
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and velocities caused by the presence of the carrier moving coordinate system in
the first stage need to be additionally assigned to the respective meshing stiffness

and engagement damping matrices.
Additionally, the submatrix and subvector are given.
M, =Diag[m; m, m, I, I, JJ],

Mpi:Diag[mpi My My Ipi Ipi in]’

f={0 0 000 T,/2),

f:ipf (t) - (kSpi (t)eSPi (t) + CsF'i (t)éspi (t))(vsspi )T )
f;?' (t)= (kspi (t)espi )+ Copi (t)éspi (t))(vsfn )T .

2.4.3 Dynamic model of ring and planet #i meshing

The meshing diagram of unilateral helical sun and planet is shown in Fig.2-15,
the teeth in contact are equivalent to a spring damping unit. As shown in Fig.2-15,
the blue lines in planet and ring present the helix direction of the helical gear. The
contact transmission of the teeth is represented by the meshing stiffness ki,
meshing damping c¢,»; and transmission error epi.

ol (% \
L \ p \
_ L" (},”,, . <‘ (}_'/u “g/” “\
e = Q} ‘ ‘ ‘
/ \~ \ \ \
/ "/\ B\/ \ "\ \
Planet gear i / \\/\ > D ! ‘
Vv ( [ AV 24 | \y= | | “
Y, 1 [ (M ] N2 Y ‘ ‘
\\(\ (*
> oy RO
~x_/]
.
i “‘ i “‘

Ring gear

Fig.2-15 Diagram of ring-planet i meshing

In the same way, the dynamic balanced equations in matrix form of R-Pi
meshing of single helical gear are derived as follows:

[ A S R e e
0 M t rpi c rpi c = rPi -
3 4, () a0 o

_4] -
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where, M,, M,,——the mass matrix of ring and planet;
0,,4, —The acceleration vector of ring and planet;
Q,,4.,4,; —The velocity vector of ring, carrrier and planet;
qr, e, qpi——The displacement vector of ring, carrier and planet;
K,»i(t), Crpi(t)—Time-varying stiffness and damping matrix of R-Pi;
frrpi ,f;fi——The column vector of the meshing error force on ring and planet;
Kipi (1), Cpi (1) —Time-varying stiffness and damping of R-Pi.
The mass matrix and the external force are shown in the following equations.
M, =Diag[m, m, m I 1. J]
frfpi (t) = (krpi (t)erpi (t) + Crpi (t)érpi (t))(vrrpi )T ’
rpi 3 rpiyT
fp? (t) = (krpi (t)erpi (t) + Crpi (t)erpi (t))(vpf) ) '

2.4.4 Dynamic model of carrier and planet #i

The meshing diagram of unilateral helical sun and planet is depicted in
Fig.2-16, the teeth in contact are equivalent to a spring damping unit. As shown
in Fig.2-16, the supporting relationship is represented by the supporting stiffness
kepi and supporting damping ccpi.

i

Pt Planet gear i

Carrier

Fig.2-16 Supporting diagram of carrier and planet i

According to static model of carrier and planet, the dynamic balanced
equations in matrix form of c-pi of single helical gear are derived as follows:
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M 0 [[g.(t) q.(t) q.(t) f
c c ) c . ¢ — ¢ 2-35
[ 0 Mpinpmt)}*C“" {qma)}”(“" {qma)} {o} (239

where, K.,i——Supporting stiffness matrix;
Cepi——Supporting damping matrix;
M.——Mass matrix of carrier;
f.——The torque vector of carrier,

The calculation of the support stiffness matrix is derived from the static
model. The support damping matrix has a similar form to the support stiffness
matrix, with the stiffness values of the bearings replaced by damping values. The
mass matrix and the torque vector are as follows:

M, =Diag[m, m, m 2 I, I, J.],

c c

f={0 00 00T}

2.4.5 Dynamic model of bearing

In this study, the bearing is rolling bearing and the schematic diagram is
shown in Fig.2-17. As shown in Fig.2-17, the rolling bearing is composed of three
parts, one inner ring, one outer ring and N rolling elements. The bearing is used
to support the shafts, sun, carrier, ring and so on to insure normal work of the
mechanical system.

Yll

w®,

Rolling element

Inner ring

P
bt Outer ring dy)

Fig.2-17 Schematic diagram of the rolling bearing

For instance, the supporting matrix of the sun, planet and ring is shown as:
Ky =diaglky, Ky Ky Ky Ky O} (2-36)

where, i presents the sun, carrier and ring, respectively.

Therefore, the motion equation in matrix form for bearing node j can be
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expressed as below equation.
My, X, +Cy X + Ky Xy =0 (2-37)

in which, Mj; and X,; represent the mass matrix and displacement column vector

for the bearing node j, respectively.
2.4.6 Dynamic model of the beam element

The above three subsections only given the dynamic model of one side of
double-helical gears. But for an actual double-helical gear, it is one piece (sun
and planet) or rigidly connected by two helical gears (ring). Here, Timoshenko
beam element is used to connect both sides by referring to Ajmi and Velex’s
work[150]. As illustrated in Fig.2-18 to explain the nodes and beam elements, for
two sides of double-helical gears, nodes 2 and 6 (for middle positions of two sides)
are defined as mesh nodes (red nodes), which mesh with mesh nodes of other
gears, and every element consist of two nodes. Node 4 (the middle node of a
double-helical gear) is used to connect another support structure (bearing or spline
support).

(a)

< = Liriel |
VWS =y T ! L axis
/ node 2 i i node 6

double-helical sun or planet beam element 3 beam element 4

node 2 node 6

b

—o—o -

| I_Y_'—|1
| |
I

|
|
|

beam element 3 beam element 4

double-helical ring axis

Fig.2-18 Diagram of nodes of double-helical gears

Therefore, the dynamic equation in matrix form is given as follow:
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Mbeamqbeam (t) + QGbeamqbeam (t) + Kbeamqbeam (t) = O (2'3 8)

where, in the equation (2-38), M ....» Grean> Kieam a0d Q.nn represent the mass

matrix, gyroscope matrix, stiffness matrix and displacement vector of the beam

element, respectively.

In addition, according to the finite element assembly principle, for instance,
the assembly stiffness matrix (or mass matrix) of adjacent elements i and i+1 is
shown as below.

K K:? 0
Ki(i+l) = Ki22 + Ki141-1 Ki142-1 (2-39)
sym. K

where, the sub-matrices of ith Timoshenko beam element in Equation (2-39) are
given in Appendix.

2.4.7 Dynamic model of the overall system

The above sub-system matrices shown in Eq. (2-32), (2-34) and (2-35) are
assembled based on assemble method defined by Eq. (2-39) to obtain the overall
dynamic equations of a double-helical planetary gear train consisting of N planets.
As shown in Fig.2-19, for the sake of simplicity, only one side of the double-
helical gear meshing (red node) is shown here.

Cl ! ®  Mesh element node

1 20 21 23 44 45 46 47

Fig.2-19 The node diagram of the overall system
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According to the above equations, the overall dynamic equation in matrix
form of the studied planetary gear system is shown as follows.

l\/Ioverallqoverall + Coverallqoverall + Koverallqoverall = I:overall (2'40)
in which, M

matrix, respectively. K ., and C,.., have similar form, they are obtained based

overall > Koverat @a0d C ..y are the overall mass, stiffness and damping

on the finite assemble method, for instance, the assemble diagram of the overall

stiffness matrix is shown as the Fig.2-20.
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Fig.2-20 The diagram of overall assembly matrice

Additionally, the specific forms of the damping matrix, stiffness matrices and

Force are shown below:

Ksys = KB + Kb + Km + a)czKCentrifugal + KCorioIis
Csys = CR + Cb + Cm + 2a)cGCoriolis + z a)iGdi (2'41)
i=shaft

Foe=F +F, +F +F,

where F7/F¢/F./Fn. denote the torque term, the gravity term, the centrifugal force
term (for the first-stage planet gear), and the meshing excitation term, respectively.
K3/Ko/Kn/Kcentrifugat/ Kcorioiis denote the beam element stiffness matrix, the

bearing support stiffness matrix, the meshing stiffness matrix, the stiffness matrix

- 46 -



Chapter 2 Mechanical Model of the Double-helical Two-stage Parallel Compound Marine Gear Train

resulting from the centrifugal acceleration term, and the stiffness matrix generated
by the Koehler effect of the velocity term correction term, respectively. In contrast
to the stiffness matrix, Cp/Cn/Ccoriolis denote the bearing support damping matrix,
the meshing damping matrix, the damping matrix resulting from the Coefficients
acceleration term. Furthermore, Cr denotes the Rayleigh damping matrix of the
whole system, which is usually related to the system mass matrix and the system

stiffness matrix, and is calculated by the formula shown below:
Cr= onsyS +ﬂKsys
a=2¢ o, -4 @)l (U’ -1 o) (2-42)
B =20, - s0) ! (0, - o)
where « and g are the scaling factors corresponding to the front of the mass and
stiffness matrices. w; and w; are the first and second order natural frequency
values of the system. & and & are the damping ratio coefficients, which in this
paper take the value of 0.07.

In addition, the gyro matrix Gg; for the concentrated mass points such as the
sun gear, the planet gear and the ring gear is shown below.

0 00 O 0 O
0 00 O 0 O
0 00 O 0 O
Gy = (2-43)
000 0 J, O
000 -J, 0 O
000 0 0 O]

where the gyro matrix is an anti-symmetric matrix, J, is the polar moment of
inertia, and it should be noted that it is preceded by a multiplication by the angular
velocity of the axis represented by the node.

2.5 Brief summary

This chapter presents the mechanical models, quasi-static and dynamic model,
for a two-stage parallel compound gear system based on common error types in
gear transmission and the calculation formulas for the meshing phases in planetary
gear systems. The main contents are as follows:

(1) A unified and concise modeling method suitable for the two-stage parallel
compound gear system is proposed, based on the structural characteristics of
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different gear trains. Unlike previous literature, this method combines fixed and
moving coordinate systems and introduces a formula for calculating the meshing
displacement of differential gear systems. This approach simplifies the modeling
process by avoiding the complexities associated with coordinate transformations,
establishing a static model, which provides a reference for modeling the dynamic
model.

(2) Based on the moving coordinate systems, in order to address the
incompleteness of dynamic equations arising from neglecting coupling and
Coriolis accelerations due to the rotation of the carrier, complete formulas for the
absolute acceleration of various components in the first-stage gear system are
derived. According to the modeling process of static model and incorporates
additional projection vectors generated by velocity terms, thereby the lumped
mass dynamic model of the compound gear system in the moving coordinate
system of the first-stage is developed. By employing the finite element method
and node position diagrams, the flexibility of the shafts is taken into account,
leading to the establishment of a comprehensive dynamic model for the entire
two-stage parallel compound gear system.
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Chapter 3 Study on the Static Characteristics of
the Double-helical Two-Stage Parallel Compound
Marine Gear Transmission System

3.1 Preface

Based on the translational-torsional static model, this chapter primarily
analyzes its static characteristics. Formulas for calculating the load sharing ratio
(LSR) and global transmission error (GTE) are provided. The effects of planet
pinhole position error and eccentricity errors on LSR and GTE are examined.
Additionally, the influence of different configurations of the sun (fixed vs.
floating) on the LSR is explored. Finally, the influence of eccentricity errors on
the orbit is investigated, the conclusion that the shape of the axis trajectory is
related to the number of teeth of gears with eccentricity errors is obtained.

3.2 Study on load sharing ratio and transmission error

In quasi-static, load sharing ratio (LSR) and global transmission error (GTE)
from input to output element are basic characteristics. In this section, the content
of a two-stage double helical differential closed planetary gear train is presented.
Different errors, such as planet positioning error or eccentricity, were considered
and the influence of the errors on the LSR and GTE was analysed. A two-stage
double-helical planetary gear train for ships is studied in the following, with its
basic gear parameters and phase relationship of every stage shown in Tab.3-1. The
input speed is 600rpm and the input torque is S000N.m.

Tab.3-1 Parameters of the two-stage double-helical planetary gear train studied

Stage First Stage Second Stage
Element Sun Planet Ring Sun Planet Ring
Teeth number, Z 41 88 217 85 60 205
Normal module, m, (mm) 6
Normal pressure angle, a, (°) 20
Helix angle, § (°) 25
Number of planets (&) 3 5
Planets spacing angle (°) 120 72
Mesh Phasing condition ESSP ESIP
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For every planet in a planetary gear system, it bears the contact force from
sun and ring, and the torque generated by these contact forces must be equal. So
once the balance of every element is reached, the input torque will be split into
every planet gear. The LSR of planet i is obtained as follows:

LSR =F /(3 F) 3-1)

where F; is contact force in planet i, and the ideal value of LSR; is 1/N, which
depends on the number of planet gear.

The transmission error is the difference between the ideal angular position
and real angular position.

TEi = ereal _gideal (3_2)
Therefor, for GTE, the transmision error is shown.
GTE=6,,-6,/TR (3-3)

where TR is the transmission ratio from input element to output element, as shown

in following equation. TR=1+(Z"/Z})+(Z' 1 Z})x (27 1Z?2)

3.2.1 Load sharing ratio and transmission error analysis without error
in fixed sun configuration

3.2.1.1 Load sharing ratio results

The mesh phasing in first stage is ESSP, the ideal mean LSR is 1/3, and the
phase difference is 2n/3. The mesh phasing in second stage is ESIP, the ideal LSR
is 1/5, and the phase difference is 0. The LSR result of 1st stage without any error
of overall system are presented in Fig.3-1. For 2nd stage, the LSR result is perfect
and equal 0.2 because of mesh phasing, this result it is not shown in the figure.

3-Planet ESSP Transmission: Load Sharing Ratio

0.345 -
Ideal
034} /
03351 \/‘\ / \/\ / i
(=1

VAR [\

e~

0.315
0
Mesh Cycle

Fig.3-1 LSR results of 1st stage without errors
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As shown in Fig.3-1, the calculated LSR value fluctuates due to the variation
of the gear stiffness and the different force balance this produces between the
different gears. In addition, the LSR result in the first stage has the same phase
difference as that exhibited by the planet meshes.

3.2.1.2 Transmission error results

For two stages, there are two mesh frequencies and their formulas are shown
as follows:

fo=(f=1)xZ, o =(f)xZ (3-4)

Fig.3-2 shows the transmission error result in the time domain of output
element within 1 cycle and its frequency spectrum in the frequency domain
without any error. The mesh frequency in 2nd stage and its first 6th harmonics
have a bigger influence on the output element than the mesh frequency in the first
stage. The literature [151] shows that for one stage planetary gear system, in terms
of the overall transmission error, the nominal IP gear set shows all harmonics of
gear mesh frequency, and the SP gear set shows only the multiples of number of
planet gear. Compared to that, the excitation frequency of output element can be

seen as a superposition of excitation frequency in each stage, with different mesh
phasing (SP and IP).
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Fig.3-2 The transmission error results of output element in fixed sun configuration

3.2.2 Load sharing ratio and transmission error analysis considering
error in fixed sun configuration

In order to study the influence of the same error value on the LSR, a K factor
is defined as the ratio of the actual load carried and the ideal load carried by this
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planet to its nominal sharing value:
K, =LSR, /(1/N) (3-5)

K>1 indicates that planet i carries more load than the ideal load. On the other
hand, in order to clearly show the effect on the planet load sharing, only errors on
planet #1 will be considered in the analysis, so that the cause of the loading or
unloading of the different paths can be more easily interpreted.

3.2.2.1 Influence of the planet pinhole positional error on load sharing ratio and

global transmission error

First, as reported in the scientific literature, the radial component of the
planetary position error has a negligible influence on the load sharing of planetary
transmissions when the pressure angles of the sun-planet and planet-ring contacts
are equal. In the case where the pressure angles are not equal, Iglesias et al. [114]
conclude that, although not negligible, the radial component of the error has a
much smaller impact on the LSR than the tangential component. In the present
work, because the pressure angles coincide, only the tangential component of the
positioning error on the load distribution is studied.

Tab.3-2 shows the five case studies used, with different error values, where
it can be seen that both the LSR and the relative LSR decrease as the error value
increases, leading to a worse distribution of the load and therefore a worse
transmission performance.

Tab.3-2 LSR value with different tangential error value in planet

1st stage 2nd stage
Error et 0 .
Configuration ~ (um) LSR.(%) _ Ka LSR1(%) _ Ki
max min max min

5 28.91 26.54 0.8318 22.16 22.08 1.106
10 23.25 21.11 0.6654 24.31 24.16 1.212
15 17.60 15.67 0.4991 26.47 26.24 1.318
20 11.95 10.23 0.3327 28.63 28.32 1.423
30 0.0064 0 0.0002 32.94 32.48 1.647

o A W N -

In order to clearly demonstrate the loading situation of each planet over time,
Fig.3-3 shows the load distribution when a tangential error of 30 and 10
micrometres respectively is applied to planet # 1 of each stage. In the first case
(stage 1) it can be seen that planet 1 is almost totally unloaded, while in the second
figure (stage 2) the error leads to an overloading of planet 1. From a durability
point of view, it should be noted that errors that advance the loading of the planet
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are more dangerous, since the increase in stresses is higher in the defective planet
that individually absorbs the excess load imbalance. When the planet suffers a
discharge, it is the rest of the planets that must absorb the imbalance, distributing
it over a larger number of gears and not generating such high stresses.

3-Planet ESSP Transmission: Load Sharing Ratio

0.6 025 5-Planet ESIP Transmission: Load Sharing Ratio
Lt e e e e )
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Mesh Cycle Mesh Cycle
(a) 30um e; on planet of 1st stage (b) 10pum ¢, on planet of 2nd stage

Fig.3-3 The LSR results with tangential error on planet #1 in every stage

Corresponding to the case shown in Fig.3-3 (a), Fig.3-4 shows the results in
time and frequency of the TE with 30pum tangential error on planet #1 in the 1st
stage. Compared with the case shown in Fig.3-2, it can be seen that the main
excitation frequency does not change, which means that the main excitation
frequency of the output element is still the meshing frequency of each stage, but
the residual multiples of the meshing frequencies of the 1st stage appear, as shown
in Fig.3-4 (b).
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Fig.3-4 The overall transmission error with 30um tangential error on planet #1 in 1st stage
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On the other hand, and in correspondence with the case shown in Fig.3-3 (b),
when the tangential error of 10um is considered only in the 2nd stage planet, the
TE time and frequency results are shown in Fig.3-5. As shown in Fig.3-5 (b), the
TE main excitation frequency does not change, and it can be seen how the
tangential error introduced in the 2nd stage planet does not substantially modify
the signal.

03 Overzljll TE .
I
o4 09 -
0s8f 0.08
= = o
g 9 £07 2f; 006 | |
= = 12f2 202
S 506
E o6t - g2 3f 0.04
m with error 5 142 17f
£ - - - --without error 5 051 2
Z L = 1fr 002 ¥ \
3 9 , . ; 4 i Zo4t ‘ I v v Y
E n H " n g 2
z ""“‘l "l N W W'y Z203 6 0 L T L]
g 98p S \ | 5] 1200 1400 1600 1800 2000 2200 2400
- I \ 1 ! i ! J \ B | = vy Y N
! | . . . " ' ' K ' 02F 8f:
i W o T B Y,/ L
99 s n W Y T N HE
R NN
100 H . . . . 0 ; :
0 1 2 3 4 5 0 500 1000 1500 2000 2500
Mesh Cycle of 2nd Stage Frequency (Hz)
(a) Time-domain (b) Frequency domain

Fig.3-5 The overall transmission error with 10pum tangential error on planet #1 in 2nd stage

Comparing Fig.3-4 and Fig.3-5, in terms of GTE, for the sequential mesh
phase stage, the tangential error activates some new frequencies. On the other
hand, for the stage with the contacts in phase, the tangential error does not produce
any new frequencies.

3.2.2.2 Influence of the planet eccentricity error on load sharing ratio and globa

| transmission error

Secondly, the eccentricity error on planet 1 of each stage is chosen as an
example to study the influence of the eccentricity error on the global TE. Tab.3-2
shows the LSR and its relative value with eccentricity error at planet 1 of each
stage.

Tab.3-3 Error configuration for run out error in planet gear

c 1st stage 2nd stage
Config;[ﬁ;tion e(rkl:rr]roll;t LSR1(%) . max(K1) LSR(%) . max (Ki)
max min max min
5 40.21  26.55  1.206 22.15 17.85 1.108
10 4586 21.11  1.376 24.31 15.69 1.216
15 51.51  15.67 1.545 26.46 13.54 1.323
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4 20 57.16 10.23 1.715 28.62 11.38 1.431
30 68.47 0 2.054 32.93 07.07 1.647
50 91.16 0 2.735 41.55 0 2.077

In order to visualize the LSR changes, Fig.3-6 shows the shape of LSR, and
Fig.3-6 (a) and (b) are the LSR results of two stages, respectively. In this figure,
it can be seen how the eccentricity error corresponds to a projection of the error
value in its radial and tangency components. The harmonic wave reaches its
maximum when the projection is carried out on the tangential component, which
has the greatest influence on the load distribution, and its minimum when the
projection is carried out on the radial component, whose effect on the load
distribution of a transmission as the one studied (same pressure angles) is zero.

3-Planet ESSP Transmission: Load Sharing Ratio

0.45 5-Planet ESIP Transmission: Load Sharing Ratio
Pl
0.6} 0.4 P2|q
P3
0.35 — P4/
0.5 P5
0.3
0.4
o o 0.25
2 2
- 0.3 = 02
0.15 F2P5
0.2
0.1
0.1
0.05
0 . . i ; i 0 . ‘ . . 4
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Mesh Cycle Mesh Cycle
(a) 30um error on planet #1 of 1st stage (b) 50pm error on planet #1 of 2nd stage

Fig.3-6 The LSR results with eccentricity error on planet in every stage

For 1st stage, corresponding to Fig.3-6 (a), Fig.3-7 shows the time and
corresponding frequency result of overall TE. As shown in Fig.3-7 (a), 1 repeat
cycle equal 24.37 times of mesh cycle of 2nd stage and there must is error
frequency. Corresponding, not only are the error frequency (f.) appearing, but

some new major excitation frequencies such as fr—f, fl+f,2f —f 2f +f

are also appearing. These new frequencies appear around the meshing frequency
of Ist stage. Except the influence of error, only the 1th meshing frequency of 2nd
stage decrease a little value, and there is almost no change for the other frequency.
Therefore, in terms of the global TE, the frequency of runout error of planet in 1st
stage has a bigger effect than other primary frequencies.
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Fig.3-8 The overall transmission error with 50pum eccentricity error on planet #1 in 2nd

stage

According to the case shown in Fig.3-6 (b), for an eccentricity error of 50um
in the 2nd stage, the time record and frequency content of the global TE are shown
in Fig.3-8. As shown in Fig.3-8 (b), the eccentricity error frequency (fe) coincides
with the rotation frequency of the 2nd stage planet, as the planet holder is fixed.
On the other hand, in the spectral content the only variation is in the error
frequency, while all other frequencies remain unchanged.

As shown in Fig.3-7 and Fig.3-8, for the planetary stages with different
meshing phases, by comparing the frequency spectrum, it can be known that the
eccentricity error of the planet gear has a greater impact on the overall TE, because
error of planet activates its own rotation frequency in this model.

3.2.3 Influence of different supporting configuration of sun on load
sharing ratio

One way to improve the load sharing behaviour of planetary drives is to
increase the flexibility or buoyancy of the central elements (sun, planet carrier or
corona). In this study, the buoyancy of the sun has been established to assess the
influence of this configuration on the load sharing.

For the first stage, with sequential phase shift, the improvement in the LSR
value with floating versus fixed sun can be seen in Fig.3-9a). In Fig.3-9b), for the
second stage, it can be seen how the change from fixed to floating configuration
causes a homogenisation of the LSR, decreasing notably the impact of the
introduced eccentricity error.
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Fig.3-9 The LSR of the transmission with floating sun configuration

For the in-phase transmission of the 2nd stage, the load sharing on each
planet is the same, since there are no errors or transmission paths with different
stiffness. In order to evaluate the benefit of the configuration change, Fig.3-9b)
shows the LSR of planet 1 when considering an error of 10pum of eccentricity in
the sun, both for fixed and floating configuration. As can be seen in the figure,
the fixed configuration shows that each planet can transmit at certain times up to
23% of the load under the fixed sun configuration, but under the floating
configuration the maximum load is 20.45%. It can therefore be concluded that the
floating configuration can improve the load sharing characteristics of the
planetary drive whether under in-phase or out-of-phase meshing conditions.

3.3 Study on eccentricity error

Eccentricity error is a common error arising from various factors, including
manufacturing defects, assembly inaccuracies, and improper pin hole arrangement
during gear installation. This subsection primarily investigates the impact of
eccentricity error on the axis trajectory, utilizing the quasi-static model
established in the previous chapter to investigate its effects on certain time-
varying parameters and the trajectory.

3.3.1 Analysis of system states considering eccentricity error

3.3.1.1 Calculation of time-varying meshing stiffness considering eccentricity

error

To describe the effect of the eccentricity error, an example meshing pair
diagram of sun and planet is shown in Fig.2-2. Due to the existence of eccentricity

-58 -



Chapter 3 Study on the Static Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear
Transmission System

distances ey and e,, the actual centers of rotation (see Fig.2-2) are time-varying,
and the gear center distance O,(#)O,(¢) and the transverse working pressure angle
awt are also time-varying. Therefore, the meshing process becomes a dynamic
process, and the parameters related to the gear centre distance are all time-varying
parameters. A modelling method considering the eccentricity error is introduced.
As shown in Fig.2-2, the actual gear centre distance during the meshing
process varies with time because of the eccentricity, and it is given as follows:

N A 2
[O,0, +e, cos(at+ 4 ) —e, cos(w,t +4,)]

QWO =4 re sin(t+2) —e, sin(w,t+2,)f°

(3-6)

where es, ep, s, 4p, ws and w, are the amplitudes, initial phase angles and angular
speeds of the eccentricity error of the sun and planet, respectively.
Then, the time-varying transverse working pressure angle is obtained as:

o, (t) =cos[(R, + Ry, ) / O, (t)O, (1)] (3-7)

where Rps and Ry, are the radius of the base circles, respectively.

Next, the contact ratios, including the transverse contact ratio and overlap
ratio are also obtained as shown the equation (3-8), and the transverse ratio
becomes time-varying.

1
g, ()= E[Zs (tana,, —tana,, (1)) + Z  (tan o, —tan o, (1))],

Bsin g
zm,

£, : (3-8)

e=¢,(t)+¢,
where aas, Zs, aap and Z, correspond to the tip circle pressure angle and tooth
number of the sun and planet, respectively. m,, B and f are the normal module,
width and helix angle, respectively.

The variation in contact ratios caused by the eccentricity error could result
in a change in the number of teeth meshing pairs during the meshing process;
therefore, the meshing stiffness could be impacted. Based on Maatar's work [152],
the calculation equation of the time-varying meshing stiffness under considering
the eccentricity error and associated factors is improved in this study. Therefore,
the mesh stiffness of a double-helical gear can be regarded as the sum of the mesh
stiffness of two individual helical gears, which is given by the following method

First, the calculation equation of the instantaneous average meshing stiffness
is shown below.

(t)=2BC, (t) (3-9)

kmean
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where B is the gear tooth width, and C, is the meshing stiffness per helical gear
width, which is mainly affected by the time-varying transverse contact ratio
shown in Equation (3-8) and is calculated by the following equation.

C,(t) =(0.75¢,(t) +0.25)x(0.8cos 5/ q) (3-10)
Based on ISO6336-1-2019, ¢ is obtained by.
q=0.047234+ 21001 025781 4 6aey 011654

nl n2 nl

~0.00193x, —0.241882)(—2+O.00529xf +0.00182x2

n2

(3-11)

where X; and X, are the modification coefficients of a pair of meshing gears,
respectively. Z, is the equivalent tooth, which can be calculated by the formula
Z,=21cos’B.

Then, the length of the instantaneous time-varying meshing line for the s-pi

meshing pair and the r-pi meshing pair are calculated according to following
equations based on the contact ratio.

I‘spi (T) = Lmsp (1+ i (Ak COS(ZE(T - (Dspi )) + Bk Sin(Zﬂ-(f - wspi ))))
“ (3-12)
I‘rpi (T) = I-mrp (1+ Z (Ak COS(Zﬂ-(T = Prpi ~ Pt )) + Bk Sin(Zﬂ-(T = Prpi — ¢sr)))

where 7 is dimensionless time, t=t/Tm, and T is the meshing time. Ak, Br and L
are calculated by

A )= [cos(27ke, (1)) +cos(2nke ;) —cos(27k (e, (t) +£5)) —1]

27r2k25a Dy

B, (t) = [sin(27ke, (1)) +sin(27ke ;) —sin(27k(z, (t) +£,))] (3-13)

27r2k2$(Z (Ve
Ly (t) =bxe, (t)/ cos(,)
in which, f5 is the base circle pressure angle of the helical gear.

In addition, @, and @, are the mesh phasing of two adjacent meshes, for

instance s-pI and s-p2. Furthmore, the @,; and @, is related to the teeth number

and planet number in a plenatary gear train, which are expressed as follows, and
the detailed calculation equations are described in the literatures [115,153].

Zs¢pi Zr¢pi
27 2

Pspi = —dec(x (=), @i = dec(r (7). (3-14)
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where, dec() indicates the fractional part of the result of the bracket, and k=11
represents the counterclockwise and clockwise directions of the input torque of
the sun gear.

The ¢, is the meshing phase difference between the same planet gear mesh
with the sun and the ring. Fig.3-10 is the meshing process diagram, A is the start
point and B is end point for sun-planet meshing, and C is the start point and D is
end point for ring-planet meshing.

Fig.3-10 Schematic of the meshing phase difference ¢,

The tooth pitch is the distance rotated during one meshing cycle, as shown in
Fig.3-10, the same tooth (blue line) of the planet gear starts from contact the sun
gear to ends meshing with the ring gear, i.e., the distance from point A to point D,
this distance should be compared with the tooth pitch to get how many times it is
the tooth pitch. Therefore, according to the Fig.3-10 the calculation equation of
the meshing phase difference between external and internal meshing pairs is
shown as Equation (3-15) in this way, and more detail can be found in detail in
the literature [153].

%:deC(ABJrIZCJrCD) (3-15)
bt

where p, is the tooth pitch of the base circle.

Therefore, the time-varying meshing stiffness is derived by.

kspi (T) = I(mean I-spi (T)v

Kpi (7) = Kingan L (7)- (3-16)
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3.3.1.2 Kinematic relationship analysis of compound gear train considering ecc

entricity error

During the installation and manufacturing of planetary gear systems, various
errors inevitably occur, which can be classified into time-invariant errors and
time-varying errors. Considering the run-out in the case of time-varying errors
(errors that change values and direction depending upon the rotational position of
the gears, such as eccentricity and run-out), the analysis must be performed at a
predetermined number of carrier rotational rounds nc;0. In other words, the carrier
must rotate in integer rounds and carry planets to return the initial position. For
instance, if the run-out error is only on planet #1 in an epicyclic planetary gear
train, the carrier must rotate into an integer round and planet #1 with respect to
the carrier must also rotate into an integer round. Therefore, based on the
kinematic conditions of the studied compound planetary gear train, rotation
relationship equations are shown as follows.

Nsyer 251 =Npyer ZPl
NRuca ZRl =Npyca 'ZP1
Nruc1 = Nruo T Norca (3-17)

n n

rRro — s2/0

Ns210 'Zsz =Nea0 'ZRz

Based on Equation (3-17), considering run-outs on all the members (sun,
planet and ring) in the 1st stage, the number of rotational rounds for carrier in the
Ist stage rotations required to fully capture the effects of eccentricity errors is
derived as

'z Z
n. ——|%ZpP_%s2 y|q
Cc1/0 _ZRl (ZR2 +ZSZ ):| P1/C1

I Z
N ——| (—%s2_y|.q 3-18
Cc1/0 _(ZRZ N ZSZ ):| R1/C1 ( )

Neyo = {ﬁ (i)} Nsycy
ZRl ZR2+ZSZ

According to Equation (3-18), if the eccentricity error is on planet #1 in the

Ist stage, the carrier in the Ist stage must rotate Z,, xZg, rounds, and planet #1

with respect to the carrier simultaneously rotates Zp, x(Zg, +Zs,) rounds. If the

the eccentricity error is on sun in the 1st stage, the carrier in the Ist stage must
rotate Zg, xZg, rounds, and sun with respect to the carrier simultaneously rotates
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Zq x(Zg, +Zg,) rounds. If there are errors on both meshing gears, the rotational
rounds should be the least common multiple of the result for each condition.
Furthermore, the rotation count of the input sun gear can be derived based on the

relationship between the number of revolutions of the carrier and the transmission
ratio.

3.3.2 Analysis of meshing parameters in compound Gear train
considering eccentricity error

Some paremeters and meshing stiffness with the eccentricity error was
presented in 3.3.1.1 subsection, so it is necessary to analyse these parameters. In
this subsection, the center idstance, meshing angle and the contact ratio with
eccentricity error are compared to that without error, and so does the meshing
stiffness. Furthmore, the predetermined number of carrier rotational rounds with
eccentricity error is also given in this section.

The meshing stiffnesses of planetary gear train without and with eccentricity
error are compared and analyzed to study the effect of eccentricity error on

meshing stiffness in this section. In general, the meshing stiffnesses Kg; and krpi

Spi
are described in detail in the literatures [152][153], but the eccentricity error
affecting the shape of the meshing stiffness is not included. Therefore, if the
meshing stiffness where the effect of eccentricity error is considered, the wave of
the meshing stiffness is influenced not only by the meshing frequency but also by
the frequency of eccentricity error.

The basic and design parameters of the planetary gear train, eccentricity error
and bearings are shown in Tab.3-4 to Tab.3-6. According to the mesh phasing
equations shown in the literature [115] and Tab.3-4, the mesh phasing
relationships for the two stages are equally spaced sequential phasing (ESSP) and
equally spaced in phasing (ESIP), respectively. Moreover, because the basic
parameters of all planets in each stage shown in Tab.3-4 are absolutely same in
the study, the eccentricity error of the planets is considered only on one planet,
i.e., planet #1 in each stage, and the remaining planets are perfect. On the other
hand, in this simulation case the equivalent radius of pitch circle (R.) shown in

Fig.2-9 is about 422mm.
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Tab.3-4 Basic design parameters of the compound gear train

Stage First Stage Second Stage
Element Sun Planet Ring Sun  Planet Ring
Teeth number, Z 40 80 200 80 60 200
Width, B (mm) 65 65 65 70 70 70
Radius of pitch circle, R; (mm) 132.41 287.98 711.68 281.36 188.68 662.02
Ideal transverse contact ratio, &, (-) 1.3045-1.4116 1.3253-1.3934
Ideal overlap ratio, &g (-) 1.4573-1.4573 1.5694-1.5694
Ideal overall contact ratio, &, (-) 2.7618-2.8690 2.8948-2.9629
Normal module, m, (mm) 6
Normal pressure angle, a, (°) 20
Helix angle, g (°) 25
Helix angle of base circle, S5 (°) 23.40
Normal addendum coefficient, /g, (-) 1
Normal tip clearance coefficient, ¢, (-) 0.25
Total transmission ratio, i (-) 18.5
Number of planets (N) 3 5
Planets spacing angle (°) 120 72
Mesh phasing condition ESSP ESIP

Tab.3-5 The values of the error and other parameters

Stage First Stage Second Stage
Element Sun Planet Ring Sun Planet Ring
Eccentricity error amplitude, e.; 5 5 5 5 5 5
(um)
Initial phase of the error, 4; (°) 0 180 0 0 180 0

Rotational angular speed, f; (rad/s) 62.83 30.67 7.77 7.77 11.59 3.30

Tab.3-6 The bearing stiffness values used in the studied model

Stage First Stage Second Stage

Element Sun Planet Ring  Carrier Sun Planet Ring  Carrier
Kpx (N/m)  1.0e10 1.1ell 1.1ell 1.1lell 1.1el0 2.2ell 1.5el1 1.0el2
Kpy (N/m)  1.0el0 1.1ell 1.lell 1.lell 1.lel0 2.2ell 1.5ell 1.0el2
Ky (Nm/rad) 0 0 0 0 0 0 0 1.0e13
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According to Tab.3-4 and Tab.2-1, the specific mesh phasing value shown in
equations (3-14) and (3-15) in this case is calculated in Tab.3-7, it is seen that the
calculation results are also agreement with the mesh phasing relationship in two
stages (ESSP and ESIP).

Tab.3-7 The mesh phasing value of the studied planetary gear train

Stage First Stage (N=3) Second Stage (N=5)

Sun-planet ( ¢spi ,i=1,...,N) 0 0.333 0.667 0 0 0 0 0
Ring-planet ( (Drpi ,i=1,..,N) 0 -0.667 -0.333 O 0 0 0 0

Sun-planet $i$ -ring (@) 7.013e-4 3.679¢-4

Firstly, as mentioned above, several parameters (such as the center distance,
meshing angle and contact ratio) of two meshing gears for the first stage during
the meshing process in this proposed model are time-varying. For instance, the
centre distance, meshing angle and contact ratio of sun-planet #1 under different
combinations of gear errors can be seen in Fig.3-11. Compared with the constant
center distance, it is drawn from Fig.3-11 (a) that the constant center distance in
the previous model is approximately 422.042 mm, while the time-varying center
distance for the modified model fluctuates from 422.032 mm to 422.205 mm under
the same small error amplitude such as 5 microns. Furthermore, the meshing angle
(also called the working pressure angle) and contact ratio vary with time (see
Fig.3-11 (b) and (c¢)) because of the time-varying center distance. By comparing
the results shown in Fig.3-11, it can be found that these meshing parameters are
affected by eccentricity error configurations such as single gear error and double
gear errors.

Secondly, the meshing stiffness of the sun and planet #1 (S-P1) in the Ist
stage are taken as an example to show the influence of eccentricity error, and the
eccentricity error is in planet #1. Therefore, a comparison of the meshing stiffness
results without and with the eccentricity error in this subsection is shown in
Fig.3-12, and an enlarged shape of the meshing stiffness for a perfect meshing
pair (red line in Fig.3-12) can be seen in Fig.3-13, which is a detailed supplement
to Fig.3-12.
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Fig.3-11 Some parameters in the improved model under different eccentricity error
configuration: blue line represents error on only sun, red line represents error on only
planet #1, pink line represents error both on sun and planet #1 and the black line is the

constant center distance without error
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Fig.3-12 Meshing stiffness for a helical gear pair in the 1st stage without and with

eccentricity error only on planet #1: (a) external meshing pair of sun-planet #1 and (b)

internal meshing pair of sun-planet #1

Finally, as shown in Fig.3-13, there are two fluctuation periods, namely, the

short-term period and the long-term period. The former is the gear meshing period,

and the latter is the rotational period of the shaft, i.e., the eccentricity error period.

It is seen from Fig.3-13 that two pairs of teeth and three pairs of teeth alternately

contact each other because the contact ratio is between 2 and 3. In addition, it is

worth mentioning that the size of the contact ratio shown in Fig.3-11 (c) also

affects the contact region of 3 pairs of teeth or 2 pairs of teeth (region between
the blue dashed lines shown in Fig.3-13).
Therefore, for the meshing gear pair with geometric eccentricity, the mesh

stiffness is definitely affected, which verifies the validity of the proposed meshing

stiffness in this subsection.
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Fig.3-13 Detailed meshing stiffness for helical gear pair in 1st stage without eccentricity
error: (a) external meshing pair of sun-planet #1 and (b) internal meshing pair of sun-

planet #1

3.3.3 Influence of eccentricity error on orbit

As shown in Tab.3-4, the mesh phasing of the two stages is ESSP and ESIP,
respectively. Based on gear parameters, the influence of eccentricity error on the
orbit (also called transverse displacement) is investigated in this section. In
general, a planetary gear system includes three central components (a sun, a ring
and a carrier) and N planet. Moreover, sun gear which represents central
components, and planets are chosen to study the influence of eccentricity error on
orbit in this study.

3.3.3.1 Orbits without considering eccentricity error

First, the simulation results of the components need to be shown and analyzed
to verify the accuracy of the established model. For this purpose, Fig.3-14 (a) and
(b) show the floating trajectories without any error in the moving coordinate of
the sun gear in the 1st stage and the corresponding force analysis for and proposed
model, respectively. In order to verify whether the calculation contact force value
shown in Fig.3-14 (b) in this studied model is equal to the nominal ones, every
contact force value of the three planets (blue line) shown in Fig.3-14 (b) is
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calculated and its mean value equals to one-third of the contact force calculated
from the input torque divide by the radius of base circle. Furthermore, although
the transmission is complex, the torque assumed by each stage is in accordance
with the transmission ratio. In this case, the input torque of the second stage is the
torque assumed by the ring gear in Ist stage, i.e., the input torque of the second
stage equals the input torque multiple of the transmission ratio Zri/Zsi from the
sun in 1st stage to the ring gear in 1st stage, which is shown as follows:

Tir?put :Tinput X(i_:i) (3_19)

Fig.3-14 (c) and (d) are the trajectories without any error under 10 mesh
cycles in terms of the global coordinate and partial detailed drawing. It can be
drawn from the Fig.3-14 (a) that the orbit of the sun gear in moving coordinate
(MC) approximates a triangle and the three branches are the same, which well
matches the results in a star planetary gear system. By analyzing the modelling
method, one reason is that the reference coordinate of 1 stage is the moving
coordinate that is attached to the carrier in Ist stage. Hence, the epicyclic
planetary gear train becomes a star planetary gear system. Another reason is that
the mesh phasing of 1st stage is the sequential phase, and the force wave from
each planet is absolutely the same except for a forward or a backward phase.
Therefore, three forces from each planet cannot form an equilateral triangle at the
one time, and an additional resultant force always appears shown as a red arrow
in Fig.3-14 (b). In addition, the planets are evenly distributed through the force
diagram shown in Fig.3-14 (b), and the gear parameters shown in Tab.3-4.
Moreover, it also can be concluded from Fig.3-14 (c) and (d) that the trajectory
of the global coordinate rotates by an angle after one mesh cycle, and the orbit of
the sun in global coordinate is predicted to a ring shape until the sun rotates a
certain number of rounds so that the orbit of one mesh cycle coincides with the
orbit of the first mesh cycle in accordance with this trend, as shown in Fig.3-14(e)
and (f).

Likewise, for the 2nd stage, the orbit in global coordinate (GC) and force
analysis diagram are seen in Fig.3-15. It is clearly shown from Fig.3-15 (a) that
the orbit of the sun in the 2nd stage is fixed due to the displacement response
could be seen zero, and Fig.3-15 (b) presents an equilateral pentagon composed
of five equal forces (Fip1, Fisp2, Fisp3, Fspa and Fsps shown in the figure) from each
planet appears because of equally spaced in phase. Compared to the mesh phasing,
and planet gear distribution conditions of the two stages, as shown in Fig.3-14 (b)
and Fig.3-15 (b), how is the orbit of the sun gear (which presents the central gears)
formed with two kinds of common mesh phasing in this subsection is explained
in detail.
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Fig.3-14 Sun gear in the 1st stage without eccentricity error: (a) orbit in moving coordinate
under one mesh cycle, (b) force analysis diagram, (c) orbit in global coordinate under ten
mesh cycles, (d) partial enlarged drawing of figure (c), (e) orbit in global coordinate under

sun rotates for N rounds, and (f) partial enlarged drawing of figure (e)
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On the other hand, five contact forces of the sun-planet in the 2nd stage from
this model (blue line in Fig.3-15 (b)) multiply by the base circle of sun in 2nd
stage equal the input torque of second stage shown in the equation (3-19).
Combining Fig.3-14 (b), Fig.3-15 (b) and equation (3-19), it is indicated that the
calculation value from this model is equal to the nominal ones.

(a) (b)
%107 5-Planet ESIP Transmission: Sun Orbit in GC

Y Displacement (zzm)

|
5]
'

X Displacement (zzm) %107

Fig.3-15 Sun gear in the 2nd stage without eccentricity error: (a) orbit in global coordinate
and (b) force analysis diagram
Regarding to the orbits of the planet in two stages, Fig.3-16 (a) and Fig.3-17

(a) show the response, respectively. Correspondingly, the force analysis diagrams
can be also seen in Fig.3-16 (b) and Fig.3-17 (b), respectively.
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Fig.3-16 Planet gear in the 1st stage without eccentricity error: (a) orbit in moving

coordinate and (b) force analysis diagram
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Fig.3-17 Planet gear in the 2nd stage without eccentricity error: (a) orbit in moving

coordinate and (b) force analysis diagram

Taking Fig.3-16 (b) as an example, the reference coordinate of the planet is
always the radial and tangential direction although its coordinate moves with the
carrier (also see Fig.2-5 and Fig.2-6). Because the rotation direction of sun is
counter clock wise, so the combined force (blue arrow) of the planet from the sun
and ring is the same as that in the tangential positive direction as shown in
Fig.3-16 (b). Therefore, the Y displacement for the orbit of each planet in the 1st
stage (see Fig.3-16 (a)) is positive, and the X displacement is approximately 0. In
the same way, because the combined force direction of the planets in the 2nd stage
1s opposite to the positive direction shown in Fig.3-17 (b), the Y displacement at
the equilibrium position should be negative, which coincides with the results
shown in Fig.3-17 (a).

3.3.3.2 Orbit considering eccentricity error

(1) Analysis of orbit of the sun considering eccentricity error

Based on the parameters in Tab.3-4, when the error is only on the sun in the
Ist stage, the displacement response of the sun gear in MC is shown in Fig.3-18
(a), the corresponding orbit in GC is shown in Fig.3-18 (b), and Fig.3-18 (¢) is an
enlarged version of Fig.3-18 (b). As shown in Fig.3-18 (a), IP is the initial point,
No.1 presents the first loop, and No.40 presents the last loop, which returns the
IP, thus, there are 40 loops in total and each loop shape is from the shape without
error shown as Fig.3-14 (a). At the same time, one mesh cycle time is the time
between two adjacent loops shown in the Fig.3-18 (a). The reason why there are
40 loops in MC is that the number of sun gear is 40, and 40 teeth must fully
complete contact because of eccentricity error. Compared to the orbit in the MC,
the orbit in Fig.3-18 (b) and (c) is complex and it is drawn that the orbit in MC
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could more simply explain the phenomenon (teeth number loop), however, the
MC is a reference coordinate, and the orbit in the GC is realistic and has a certain
periodicity, as shown in Fig.3-18 (c).
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Fig.3-18 Orbit of the sun gear with eccentricity error in 1st stage: (a) moving coordinate,

(b) global coordinate and, (c) enlarged version of (b)

Correspondingly, the orbit of the planets in 1st stage which mesh to sun gear
with an error is shown in Fig.3-19. Orbit in MC (Fig.3-19 (a)) is not very clear,
so the orbit in GC (Fig.3-19 (b), (¢) and (d)) is marked to study results of the
planet, which is different from the results shown in Fig.3-18 (a). It is shown from
Fig.3-19 (b) and (c) that orbit of planets are same, and there is only a delay and
advance phase which is same to the mesh phasing. Hence it can be conclused from
Fig.3-19 (b) and (c) that the eccentricity error does not affect the mesh phasing
(ESSP), and there are also 40 loops in Fig.3-19 (d), which matches well with
Fig.3-18 (a).
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Fig.3-19 Orbit of planet meshes with the sun gear with eccentricity error: (a) MC, (b) GC,

(c) enlarged version of (b), and (d) orbit of planet #1 when the sun rotates one round
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Fig.3-20 Orbit of the sun with eccentricity error in the 2nd stage: (a) orbit of sun in global

coordinate, and (b) orbit of planets in global coordinate

-4 -



Chapter 3 Study on the Static Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear
Transmission System

It is concluded from this studied case that the orbit of the sun includes N loops,
and these loops are related to the number of teeth of the sun despite whether the

mesh phasing is sequential phase or in phase.

(2) Analysis of orbit of the planet #1 considering eccentricity error

In this subsection, the eccentricity error is only on planet #1 in each stage is
investigated. For the first stage, Fig.3-21 is the orbit of the planet #1. The
fluctuation (blue line) of the orbit in the MC is much greater than that without
error because of the large fluctuation of meshing stiffness. Fig.3-21 (b) shows 35
rounds, and Fig.3-21 (c¢) shows 80 loops during 1 round, which is in good
agreement with the calculation results. On the one hand, it verifies the model.
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Fig.3-21 Orbit of planet #1 gear in the 1st stage: (a) orbit in moving coordinate without

and with eccentricity error, (b) orbit in global coordinate with eccentricity error and (c)
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orbit in global coordinate with eccentricity error when the planet #1 rotates 1 round

Correspondingly, Fig.3-22 is the orbit of the sun gear which meshes with
planet #1 gear with the single eccentricity error in the Ist stage.
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Fig.3-22 Orbit of the corresponding sun gear which meshes with planet #1 gear with
eccentricity error in the 1st stage:(a) orbit in moving coordinate, and (b) orbit in global
coordinate

For the 2nd stage, the condition of Fig.3-23 (a) is similar to those in Fig.3-21
(a). Moreover, combining Fig.3-22 (a) and Fig.3-23 (b), the sharp angles formed
by the trend line of the orbit and the horizontal coordinate (X axis) are 68.06

degrees and 68.12 degrees, respectively. The force direction of Fsp1 (compression
direction of the spring shown in Fig.2-5 and Fig.2-6) in two stages is theoretically
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at an angle of 90- @, from the position direction of the X axis in global reference,

which equals 68.1198 degrees. Therefore, the angles match well with the
theoretical angle. On the other hand, the above result verifies the accuracy of the

model.
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Fig.3-23 Orbit of planet #1 gear with eccentricity error in the 2nd stage: (a) orbit in

moving coordinate, and (b) orbit in global coordinate

(3) Analysis of orbit of the sun and planet #1 considering eccentricity error

For the 1st stage with the mesh phasing of the ESSP, when there are
eccentricities on both the sun and planet #1, the center trajectory results of the
sun gear and planet #1 in MC and GC are shown in Fig.3-24 and Fig.3-25,
respectively.

It is observed from the orbit in MC that there are 80 loops in total, and by
combining the conditions of the single error shown in Fig.3-18 (a) and Fig.3-22
(a), it also can be drawn that in both error cases, the part of the reason for orbit
orbital shape in the MC is thatpartly affected by the direction of the force Fip1,
which is also observed from Fig.3-19 (b), Fig.3-22 (a) and Fig.3-25 (b). Therfore,
influenting factors for the orbit of sun gear shown in Fig.3-24 are the teeth number
and the derection of the meshing force with planet #1. Furthermore, the beautiful
orbit in GC shown in Fig.3-24 (b) is a combination of the Fig.3-24 (a) rotate a
certain small angle each time. According to Equation (3-18), the loop number is
the product of the meshing period and the least common multiple of the tooth
number of the two meshing gears. The least common multiple of the tooth number
of sun and planet #1 is 80, so there are 80 loops for the orbit in the MC of the sun
gear when the [P returns to itself for the first time, as shown in Fig.3-24 (a).
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Fig.3-24 (b) shows a complex drawing, but there are 70 rounds when the IP returns
to itself for the first time; that is, because the sun with respect to carrier needs
rotates 70 rounds. Similarly, the planet with respect to carrier needs rotates 35
rounds, as shown in Fig.3-25.
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Fig.3-24 Orbit of the sun gear with eccentricity error on both the sun and planet #1 gear in

the 1st stage (a) orbit in moving coordinate, and (b) orbit in global coordinate

In addition, comparing to Fig.3-19 (b) and (c), it is observed from Fig.3-25
(b) that shape of the orbit is a little skewed, which corresponds the conclusion in
Fig.3-24 (a), and it is again proved that the orbit is partly affected by the meshing
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force.
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Fig.3-25 Orbit of the planet #1 gear with eccentricity error on both sun and planet #1 gear

in the 1st stage (a) orbit in moving coordinate, and (b) orbit in global coordinate

For the 2nd stage with the ESIP, when there are eccentricity errors on both
the sun and the planet #1, the center trajectory of the sun is shown in Fig.3-26. It
is drawn from Fig.3-26 that the ornit of the sun is composed of 240 loops in total,
counting clockwise from the IP to the number of rounds returned to the IP for the
first time, and because the least common multiple of 80 (sun teeth number) and
60 (planet #1 teeth number) is 240. Hence for the same reason, the conclusion in
the 2nd stage is the same as that in the 1st stage. Furthermore, the shape of orbit
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for sun in 2nd stage is both affected by the results in Fig.3-20(a) and Fig.3-23(b),
this conclusion is also same as that in 1st stage.
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Fig.3-26 Orbit of the sun gear with eccentricity error on both the sun and planet #1 gear in

the 2nd stage

3.4 Brief summary

In this chapter, the transmission behavior of a two stages compound gear
trains with double-helical gears has been studied in depth. As a fundamental
novelty of the study, special attention has been paid to the meshing phase shift
between each of the sun-planet and planet-ring contacts, which in the example
transmission used presented two types: sequentially phased for the first stage and
in phase for the second stage. These meshing phase conditions, as has been
demonstrated, strongly determine the load sharing and vibration characteristics of
the transmission, as they have a strong impact on the transmission error.

Firstly, the static characteristics of the transmission, including the load
sharing ratio and the transmission error, were analyzed. The influence of different
errors on the load sharing ratio and transmission error was then studied. The main
conclusions of the study are as follows:

(1) It is shown that the load sharing ratio is strongly conditioned by the phase
configuration of the gears, especially with sequentially out-of-phase transmission.
The frequency domain results also show that the excitation frequency of the output
component is the joint action of the excitation frequency of each stage.

(2) The tangential error at different mesh phase shift conditions will produce
different effects on the global TE: sequential phase shifts change the frequency
content, while an in-phase configuration does not activate any new frequencies.
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(3) For the stage with sequential phase shift, the eccentricity error generates
new excitation frequencies. For the in-phase stage there is a relevant change that
coincides with the error frequency, but the eccentricity error in the planetary gears
does not generate new excitation frequencies.

(4) Compared to the fixed sun configuration, the floating sun configuration
improves the load sharing, more markedly in the case of sequentially phased
configurations, but also absorbing the effect of possible errors when the
transmission is in phase.

Secondly, the influences of eccentricity error on the contact ratio, meshing
stiffness, orbit, etc., are discussed and analyzed. The main conclusions are given
as follows:

(1) Parameters, including the center distance, working pressure angle, contact
ratio and meshing stiffness wave, are strongly affected by the eccentricity error.
The frequency of meshing stiffness considering eccentricity error is composed of
the meshing frequency (short-term frequency) and rotating frequency (long-term
frequency).

(2) The orbit shape of one gear with eccentricity error is related to its tooth
number, and each loop is based mainly on the orbit shape without error, especially
for the case of the ESSP.

(3) The orbit shape of two meshing gears with both eccentricities is greatly
affected by the least common multiple (LCM) of two teeth number, regardless of
the mesh phasing. Moreover, the orbits of two meshing pairs in MC or GC are
also influenced partly by the direction of the meshing force.
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Chapter 4 Study on the Dynamic Characteristics
of the Double-helical Two-Stage Parallel
Compound Marine Gear Transmission System

4.1 Preface

The previous chapter examined the static characteristics of the two-stage
parallel compound gear system, validating the modeling strategy. In contrast to
the static model, the dynamic model incorporates additional inertia terms,
particularly concerning absolute acceleration. In order to address the time-varying
characteristics of the overall stiffness matrix in the established dynamic model,
this chapter introduces an improved Newmark-f numerical method suitable for
solving time-varying stiffness matrices and large degree-of-freedom equations.
The dynamic model is further validated through comparisons of dynamic and
static vibration responses, investigating the effects of gravity, centrifugal forces,
and providing theoretical explanations. Additionally, the coupling relationship
between the two-stage gear systems is analyzed.

4.2 Improved Newmark-f numerical solution method

Regarding to the dynamic equation of the whole compound gear system
shown in Equation (2-40), the key question is how to get the solution fast and
accurately. Due to the meshing force in the dynamic model of this paper is a
nonlinear force, the meshing stiffness matrix and the meshing damping matrix are
also time-varying. Based on the above form of the meshing force, the Newmark-
B method is not suitable for directly adopting the Newmark-£ solution method
because it is appropriate to the dynamic equation of a fixed stiffness and less
suitable for the nonlinear time-varying engagement stiffness. Therefore, for this
reason, the method is improved to used to be suitable for solving the time-varying
nonlinear meshing force dynamics equation.

Assuming that the time step in the solution process is dt, the basic principle
of the Newmark-£ method is to divide the effective load by the effective stiffness,
so that the displacement at the time moment t+dt can be expressed as:

Kelea = Foa (4-1)
where K. represents the equivalent stiffness matrix and F_, represents the

external force at the moment of t+dt. The acceleration and velocity at the moment
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of t+dt can be calculated from the displacement at the moment of t+dt as well as
the acceleration and velocity at the moment of t. The method can be used to
calculate the acceleration and velocity at the moment of t+dt. However, in this
method, there is not a relative error accuracy as in the Runge-Kutta method, which
is not directly usable for the dynamic model of this paper due to the presence of
nonlinear meshing forces. For this reason, the Newmark-£ method is improved in
this section, and the relative error ¢ is set in order to eliminate the accumulation
of errors in the original method as well as to improve the accuracy of the solution.
Fig.4-1 shows the main computational flow of this improved numerical solution
method.

Start

v

F,=1(q; v;, a)-
q;,= F;/ K. -—
a;=a(q;, q;,, v;, a;)-
=V, a;, a;,).
‘L Updating
iteration
>
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Fig.4-1 The flowchart of the improved Newmark-f method

-84 -



Chapter 4 Study on the Dynamic Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear
Transmission System

As shown in Fig.4-1, the initial displacement go and initial velocity vo are
first given, and the initial acceleration ao is calculated according to the equation.
starting from the second time step, the displacement g calculated at each step is
first compared with the displacement at the previous moment, and if the difference
is less than or equal to the relative error e, the calculation of the next time step is
carried out; if it does not meet the relative error e, the calculated displacement,
velocity, and acceleration will be used as the initial values. Re-effective external
force, re-calculate the iteration, get the new displacement, velocity, acceleration
until it meets the relative error, end the iteration process or reach the maximum
number of iterations.

4.3 Analysis of dynamic vibration response results

In this subsection, based on the dynamic equations and the improved
Newmark-beta numerical method, the accuracy of the established dynamic model
is validated by comparing dynamic vibration response results with static results.
The fundamental parameters of the gears remain consistent with those in the static
study, while other parameters, such as gear mass and moment of inertia, are
presented in the following table.

Tab. 4-1 Basic parameters of gear in the compound gear train

Stage First stage Second stage
Component Sun Planet Ring Sun Planet Ring
Mass, m (kg) 127 421 333.4 501.5 293 393

Mement of inertia, J (kg.m?) 23.798 25.8 225.0 40.687  8.398 224.5

4.3.1 Comparison of sun orbit between dynamic model and quasi-
static model

The transmission effect of a planet gear system can be expressed by the axial
trajectory, and at the same time the axial trajectory influences the motion state
between each meshing pair. Therefore, the orbit is firstly analyzed in this
subsection to verify the accuracy of the dynamic modeling method of this two-
stage parallel compound planetary gear system. In the modeling process, the
coordinate system of the planet gear in each planetary gear system is selected as
radial-tangential coordinate system, so the axial trajectories of the sun
(representing the central component) and the planet in each stage are selected for
comparative analysis. Fig.4-2 shows the axial trajectory of the sun in the first
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stage, where Fig.4-2 (a) and (b) correspond to the vibration response results of
the quasi-static and dynamic models, respectively.

From the modeling process of the dynamics, it can be seen that the first stage
is modeled using a moving coordinate system, and the second stage is a global
coordinate system. As a consequence, this means that the first stage becomes a
fixed-axis planetary gear system, so that position of each planet with respect to
the sun is fixed. Therefore, at the same time, the first stage is in a sequential phase
so that at every moment of time, combined force of sun about the planets has an
additional force, thus causing the trajectory of the sun not to be fixed but to have
a trajectory radius. Meanwhile the orbit diagram of sun illustrated in Fig.4-2 (b)
show that the result is in a fixed-axis gear system, although it is not as precise as
the quasi-static result of a triangle as shown in Fig.4-2 (a), whose reason is the
complexity of the dynamic model compared to the static model. However, it is
still a good indication that the vibration response of the sun derived from the
dynamic model is correct.

(a) (b)
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Fig.4-2 Orbit of sun in first stage: (a) results of quasi-static model [154], (b) results of

dynamic model

Similarly, Fig.4-3 illustrates the comparison of vibration responses of the sun
gear in second stage between the dynamic and static models. The results indicate
that the sun gear in second stage remains fixed, primarily due to its in-phase
engagement, resulting in zero resultant force at all times. Based on Fig.4-2 and
Fig.4-3, the consistent results from both dynamic and static models provide
preliminary evidence for the accuracy of the dynamic model.
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Fig.4-3 Orbit of sun in second stage: (a) result of quasi-static model [154], (b) results of

dynamic model

4.3.2 Comparison of planets orbit between dynamic model and quasi-
static model

Due to the direction of rotational speed input to the sun in first stage is anti-
clockwise, as well as based on the schematic shown in Fig.2-11, it can be seen
that the tangential direction of the planet in the first stage is the same as the
direction of the combined force coming from the sun and ring, and so the
tangential displacement of the planet should be positive.

Fig.4-4 (a) and (b) are the vibration response diagrams of the planets in the
first stage calculated by the static and dynamic models, respectively. From Fig.4-4
(a) and (b), it can be seen initially that the results of the tangential displacements
of the individual planet are positive and consistent with direction of the combined
force. The results of the vibration displacements of each planet are consistent in
the moving coordinate system, which are consistent to the force analysis.
Meanwhile the results calculated by the dynamic model in Fig.4-4 (b) show that
the dynamic equilibrium point of the planets in the tangential direction is larger
than the static equilibrium point in Fig.4-4 (a), which is because there are more
forces to be taken into account in the dynamics (similar to inertial forces in the
form of ma) than in the statics.

Therefore, although the results of the tangential displacement vibration
response calculated by the dynamics model are greater than those of the statics,
the accuracy of the dynamics model calculations is illustrated by combining the
axial trajectory plots in Fig.4-4 (a) and (b). Fig.4-4 (c) demonstrates the axial
trajectory results of Fig.4-4 (b) transformed into the axial trajectory results in the
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fixed coordinate system XOY. Since the meshing phases of the first-stage is
sequential phases, which can be seen from Fig.4-4 (c), the vibration response of
the planet conforms to the meshing phases. It is concluded that the axial trajectory

results calculated by the dynamic model for the first-stage planets are relatively
correct.
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Fig.4-4 Orbit of planet in first stage: (a) quasi-static model results [154], (b) dynamic

model results in moving coordinate and (c¢) dynamic model results in global coordinate

In the same way as the first stage, Fig.4-5 (a) and (b) shows the comparative
results of the transverse vibration displacements in the radial-tangential
coordinate system of the planet in the second stage. As shown in Fig.4-5 (a) and
(b), it can be seen that the values of tangential displacements of the planets
calculated by the dynamic and static model are all negative, the displacements
magnitude of each planet is basically the same. The difference of the
displacements is that the values of the dynamic tangential displacements are larger
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than those of the static ones, which is same as that in first stage. Analyzing the
cause, it can be seen that the input direction of the second stage is clockwise, as
shown in Fig.4-5 (d). Furthermore, the combined direction of the meshing force
from the sun and the ring is opposite to the positive direction of its tangential
coordinate system. Hence, the results of the tangential displacements shown in
Fig.4-5 (a) and (b) are consistent with the analysis of the forces.

Therefore, according to the comparative analysis of the basic axial trajectory
diagrams of the sun and planets in two-stage from Fig.4-2 to Fig.4-5, it can be
seen that the results of the dynamic and static calculations show a consistent trend
which demonstrates that the consideration of the various additional forces in the
dynamic modeling process is adequate. In addition, the proposed modeling
methodology on this studied two-stage parallel compound planetary gear system
fits with the expected performance accurately.
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Fig.4-5 Orbit of planet in second stage: (a) quasi-static model results [154], (b) dynamic
model results in radius-tangential coordinate, (b) dynamic model results in horizontal-

vertical coordinate, (d) force analysis diagram of planets in horizontal-vertical coordinate
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4.3.3 Comparison of the load sharing ratio between dynamic model
and quasi-static model

In the previous subsection, the basic vibration response results in the
dynamic model were analyzed and compared, and basic consistent conclusions
were obtained. In the planet gear system, another important parameter is the
meshing force. In the dynamic model studied in this paper, the dynamic meshing
force is not only affected by the vibration displacement, but also by the vibration
velocity. Therefore, the next step is to calculate the magnitude of the load sharing
ratio (LSR) based on the meshing force, and to validate the dynamic model by
looking at LSR of the dynamic model.

Fig.4-6 shows the LSR of individual planet gear in first stage calculated by
the quasi-static and dynamic models. By comparing Fig.4-6 (a) and (b), it is found
that the LSR calculated by the two models are in accordance with the sequential
phasing due to the existence of the sequential phasing in the first stage. Secondly,
the magnitude of variation of LSR calculated by the dynamic model shown in
Fig.4-6 (b) is larger than that in the static results. This is also due to the fact that
there are more forces in the dynamic model than in the static one, and the dynamic
results are more in line with the load conditions of the actual equipment operation.
Thus, the accuracy of the dynamic model is once again demonstrated by the
comparison of the meshing force results.
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Fig.4-6 Load sharing ratio of first stage: (a) quasi-static model results [155], and (b)

dynamic model results

4.3.4 Vibration angular displacement in dynamic model

In this subsection, the axial torsional vibration angular displacements of the
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two-stage were analyzed by stipulating that the counterclockwise direction is
defined as positive (manifested as positive vibration angular displacement values),
while the clockwise direction is defined as negative (manifested as negative
vibration angular displacement values), and that the input direction of sun gear in
first-stage is counterclockwise.

Fig.4-7 shows the vibration angular displacements of the sun, planet and ring
in the first stage. As can be seen from the Fig.4-7, the directions of their vibration
angular displacements are all in accordance with the direction of rotation,
indicating the reliability of the results calculated by the dynamic model.

Similarly, the results of the vibration angular displacements of each
component of the second stage are shown in Fig.4-8. Due to the direction of sun
of the second stage is clockwise, which is same as the ring in first stage, so it does
not give. Correspondingly, the vibration angular displacements of the planet and
ring exhibits a positive value. Fig.4-8 illustrates that the calculations for the
second stage are also correct.
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Fig.4-7 Vibration angular displacement results in first stage: (a) sun, (b) planet, (c¢) ring
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Fig.4-8 Vibration angular displacement results in second stage: (a) planet, (b) ring

Through the analysis results of transverse vibration displacement and
torsional vibration angular displacement, we conclude that the established
dynamic model of the two-stage parallel compound planetary gear system
accurately reflects the vibration behaviour of each component in the two stages,
so the model can effectively capture the angular displacement characteristics of
each component due to rotation. The successful construction of this accurate
dynamic model provides a reliable model basis for further gear dynamic analysis.

4.4 Influence of the gravity force and centrifugal force on
dynamic vibration characteristics

From the analysis of the modelling process in Chapter 2 , it can be seen that
the external force terms of the whole two-stage parallel compound system mainly
come from torque, gravity (which contains time-varying and time-invariant terms),
centrifugal force (mainly for the first stage of the planet), etc. Different forces
determine different vibration response results, and the influence on the vibration
response can not be ignored, so the following is a comparative analysis of the
contribution of the influence of the different forces on the vibration characteristics
(orbit trajectory). The following comparative analysis investigates the influence
law of different forces on the axial trajectory. Here the benchmark axis trajectory,
is the external force term only exists in the case of torque.

4.4.1 Influence of the gravity force on dynamic vibration
characteristics

Since the object of this study is a large marine transmission system, involving
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a great mass and inertia, the gravity item can not be ignored obtaining an
appreciable value. For second stage, gravity item is a constant item. However, for
the first stage, gravity needs to be projected onto the moving coordinate, thus
turning the time-invariant gravity item G into a time-varying gravity item G(t).
The gravity term can be expressed in two stages as:

G (t) =—m;gsin(ewt)
GP(t)=-m,g cos(w,t)’
G(l)

pix

G (3]

piy

{G@ =0

jx

2 _ ’
Gy =-m;g

() =—m,gsin(ot+27(i-1)/n))

(t) =-m g cos(a,t +27(i 1) /n))’
(4-2)

G& =—m gsin(2z(i—-1)/n,)

pix
G® =-m gcos(2z(i-1)/n,)

where superscripts 1, 2 represent the first and second stage, respectively, j

represents components other than planets, and n, represents the number of planets.
Based on the above equations, the orbits (axial trajectories) of the

components in the second stage system are analyzed firstly. Fig.4-9 is a schematic

diagram of the transverse vibration response of the planets in the second stage

when gravity is considered.
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Fig.4-9 The planets in second stage under considering gravity: (a) orbit diagram, and (b)

force analysis diagram

Fig.4-9 (a) is the trajectory diagram in the radial tangential coordinate system,
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where it can be seen from Fig.4-9 (a) that the black trajectory describes the
movement of the five planets when gravity is not taken into account, and each of
them exhibiting an analogous. The other five colors correspond to the trajectories
of the five planets when gravity is taken into account, respectively. From Fig.4-9
(a), it can initially be seen that the presence of gravity makes the axial trajectory
of each planet change greatly. Taking the Planet #1 as an example, the trajectory
of Planet #1 along the direction of gravity has decreased by half the distance of
the original trajectory length. The decrease ratio reaches about 50%, which
illustrates that gravity has a great influence on the trajectory of planets. In
addition, the trajectories of the remaining four planets are distributed on both
sides of Planet #1, showing a symmetrical trend.

Fig.4-9 (b) corresponds to the force analysis diagram of each planet when
gravity is considered, where the grey part is the sign of gravity. For the Planet #2
and Planet #5 combinations, by analyzing the magnitude of the angle between the
direction of gravity and their radial, the angle of their acute angle with the gravity
is 18". However, the component of gravity in their radial direction is that one along
the positive direction, and the other one along the opposite direction. As a
consequence, it is indicated that the component of gravity in magnitude are equal
in their radial direction, but the directions are opposite. Similarly, for the
combination of Planet #3 and Planet #4, the angle is 72", the conclusion is same.
Therefore, the orbits of Planet #2 and Planet #5, and Planet #3 and Planet #4 in
Fig.4-9 (a) show a symmetric distribution (in the radial direction) on both sides
of Planet #1.
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Fig.4-10 Orbit diagrams in second stage under considering gravity: (a) sun, and (b) ring

Correspondingly, Fig.4-10 is the diagrams of the axial trajectories of the sun
and ring when gravity is taken into account, and the change in the trajectories of
the individual planets due to the presence of gravity causes the force for the
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central gear at each moment to no longer be a force of equal magnitude, and
therefore the central gear is no longer fixed. Therefore, the trajectories of the
central gears are mainly affected by the direction of the trajectories of the five
planets, with Fig.4-9 (b) and Fig.4-10 it can be seen that the sun is mainly affected
by the trajectory of the planet #4, and the ring is mainly affected by the trajectory
of the planet #3. But the presence of gravity all makes the displacement of each
central gear in the Y-direction decreased, which matches well with the direction
of gravity. For the components of the first stage, gravity becomes a time-varying
excitation with the carrier rotation speed w. as the variable. Accordingly, Fig.4-11
shows the axial trajectories of the sun and the planets in the first stage when
gravity is considered.

Compared with Fig.4-2 (b), the radius of the axial trajectory of the sun in the
moving coordinate system grows from about 0.3um to 17um, which is about more
than 50 times larger. Moreover, based on the fact that the period of time-varying
gravity is 2pi/(@,), it is known that one period of the gravity cycle is 750 times

the meshing period of the first-stage, therefore the axial trajectory in the gravity
case should be obtained by rotating the axial trajectory along a certain central
point in one meshing cycle shown in Fig.4-2 (b), which can be verified in the
trajectory diagram of the sun shown in Fig.4-11 (a) as well as in the enlarge
diagram shown in Fig.4-11 (a), whose trajectory consists precisely of 700 circles,
indicating that from Fig.4-11 (a) it can be concluded that the results of the
vibration response computed by this dynamical model are fully in accordance with
those obtained from the kinematic theory.

The axial trajectory of planets in first stage is shown in Fig.4-11 (b). In this
graph, it can be observed that the trajectory radius exhibits a value around 40 pm.
It is worth highlighting the difference in this value when the gravity is taken into
account respect when it is not. the maximum trajectory radius when gravity is not
taken into account just reaches 1 um, as displayed in Fig.4-4 (b), reflecting the
significant increase of this value. On the other hand, it can be seen from Fig.4-11
(b) that the coordinates of the centre of the planet trajectory, which are (0,60.3),
demonstrate the model accuracy as this value coincides with the centre of the
trajectory when gravity is not taken into account (Fig.4-4 (b)). The gravity item
is a periodic function in the moving coordinate system. Therefore, the effect of
gravity is not directly visible from the axial trajectories in the dynamic coordinate
system illustrated in Fig.4-11 (a) and (b). Furthermore, Fig.4-11 (c¢) and (d) show
the results of the vibration response of the sun and planets on the global coordinate
system (XOY), respectively. It can be seen from Fig.4-11 (c) and (d) that those
trajectories are located in the negative Y-axis, asserting the validity of the gravity
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effect on the vibration response in this model.

First Stage: Sun Orbit in MC _ First Stage: Planet Orbit in MC

100
’g 10 Enlarge ’g 30 ? —=P3
S = Enlarge
g = j ‘
[ [}
g 0 | g 60 |
2 k)
%) & ;
> -10 S 40 q
700 circles T —— .
-20 : - : 20 .
-20 -10 0 10 20 -50 0 50
X Displacement (zzm) X Displacement (pm)
(c) (d) . .
First Stage: Sun Orbit in GC 40 First Stage: Planet Orbit in GC
-15.4 2-2et: L ' v '
o [——P1
-15.5 | 20 WP
) = ,:""A'v P3
=) E V 4 A Y
2-156] S 0/ \
5 g ol
2 -157 2 20
: g |
8-15.8 8 40|
% %
a -15.9 a -60r "
b >
-16 | -80
-16.1" ‘ ; ‘ -100 - . ,
-6 -5.8 -5.6 -5.4 -5.2 -50 0 50
X Displacement (zum) X Displacement (pm)

Fig.4-11 The trajectories of the components in the first stage: (a) sun in moving coordinate
system, (b) planet in moving coordinate system, (c) sun in global coordinate system, (d)

planet in the global coordinate system

Secondly, the presence of gravity has a significant effect on the vibration
response displacement, which in turn affects the meshing displacement and hence
the engagement force. Therefore, it is necessary to analyze the effect of the
presence of gravity on the engagement force. The effect of gravity is illustrated
using the load sharing ratio (LSR). The LSR of each planet in the first stage under
the influence of gravity is shown in Fig.4-12 (a). Fig.4-12 (b) is a partial
enlargement of Fig.4-12 (a), reflecting the effect of meshing phases. From
Fig.4-12 (a) and (b), comparing to the case when the gravity force is not taken
into account, it can be seen that the variation of LSR is very significant, and the
variation of the load borne by each planet varies from 30.5%-36.5% to 23.9%-
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44.7%. The maximum LSR variation rate reaches 22.466%. As can be seen in
Fig.4-12 (a) and (b), the LSR by the individual planet comprise two cycles, and
excepting the short cycle with the meshing cycle, it exists a long cycle with 700
times the meshing cycle, which corresponds to the 700 circles on in Fig.4-11 (a).
Fig.4-12 (c) shows the force analysis diagram. It can be observed that the direction
of gravity in the static coordinate system is always in the negative direction of the
Y-axis. However, in the moving coordinate system, the gravity force has the same
effect on each meshing force. Thus, for each planet, gravity becomes an excitation
that affects the magnitude of the engagement force. The excitation period is the
rotation period of the carrier, which corresponds exactly to the long period of 700
times the engagement period in LSR. Therefore, this is the cause of cyclic
variation of the LSR displayed in Fig.4-12 (a).
(a)
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Fig.4-12 The load sharing ratio characteristics in first stage under considering gravity: (a)
LSR, and (b) enlarge drawing of (a), and (c) force analysis diagram.

According to the results of this subsection, it can be concluded that the
constant gravity in the static coordinate system has a non-negligible effect on the
vibration response of the components in this parallel compound gear system. In
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particular, it has a very interesting effect on the uniform load transmission
characteristics of the first stage.

4.4.2 Influence of the centrifugal force on dynamic vibration
characteristics

The centrifugal force exists only in the first stage, so it only has a direct
effect on the axial trajectory of the planets, which may lead to affect the axial
trajectory of the sun and ring. This subsection analyses the axial trajectory of the
planet first in stage to verify the accuracy of the dynamics model.

Fig.4-13 (a) shows the axial trajectory of the planet in the first stage at 2400
rpm, 2700 rpm, 3000 rpm, 3300 rpm and 3600 rpm. It can be observed a trend
between the rotational speed and radius displacement of the central point for
planet trajectory. An increment in the rotational speed supposes a gradual shift of
the planet of the planet trajectory in the radius direction as a result of the gradual
increase in the centrifugal force direction. Fig.4-13 (b) shows the change rule of
trend of the midpoint of the trajectory in the radial direction with the increase of
rotational speed, from which it can be seen that the rate of change of the central
point shows an upward trend with the proportional increase of rotational speed.
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Fig.4-13 Planet in first stage: (a) trajectory at different speeds, (b) radial displacement
centre versus speed

Nextly, the influence of on the load sharing ratio is presented, and Fig.4-14
is the results diagrams. Fig.4-14 (a) shows a schematic diagram of the LSR of the
first-stage when the centrifugal force is considered, while Fig.4-14 (b) shows a
schematic diagram considering the centrifugal force with respect to the direction
of the meshing line. From Fig.4-14 (a), the LSR barely changed comparing to the
case when the centrifugal force is not considered. As shown in Fig.4-14 (b), the
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direction of the meshing force is constant with the positional direction angle with
respect to the x-axis on the moving coordinate system. The centrifugal force
always points outward along the radial direction, the angle « between the
centrifugal force and the direction of the meshing line is always kept fixed, so the
effect of the meshing force is the same for each S-Pi meshing force. Regarding
LSR, centrifugal force has no effect on the LSR. Although, the centrifugal force
has no effect on the LSR, it does have an effect on the meshing force shown in
Fig.4-14 (b). Fig.4-14 (¢) and (d) are meshing force of S-P meshing considering
2400 rpm and 3600 rpm, respectively. It is concluded that the high speed causes
a decrease of meshing force of S-P, which may cause an increase of meshing force
of R-P, resulting in an unexpected working condition.
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Fig.4-14 Transmission characteristics of the first stage considering centrifugal force: (a)
LSR, (b) force analysis diagram, (c) (d) meshing force under 2400rpm and 3600 rpm

4.5 Analysis of coupling relationship between two stages

Based on the transmission structure diagram of the two-stage parallel
compound gear system, the transmission between the two stages is relatively
complex, existing a coupling relationship. This subsection, therefore, focuses on
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investigating the coupling between the two stages by analyzing the frequency
components. Moreover, the transmission error is only taken into account in this
study case, and so do the excitation of gravity and centrifugal force.

Fig.4-15 shows the waterfall spectrum of the transverse vibration
displacement of the planets in a two-stage. It can be seen that for the first stage

the main excitation frequency is its own meshing frequency f ., but there are also

ml >
meshing frequencies f,, of the second stage and their multiplicative frequencies,
and 1.5f ,.

However, for the second stage, the meshing frequency f,_, of the second stage

and their amplitudes are quite large, especially for 0.5f ,, f_,,
and its harmonics are the main frequencies. Although the meshing frequency f

of the first stage is also present in the second stage, the amplitude of the vibration
acceleration is very low compared to that of f_,, but it also indicates the presence

of the meshing frequency f,, of the first stage in the second stage.
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Fig.4-15 The spectrum waterfall of planets in both stage: (a) first stage, and (b) second
stage
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The coupling relationship between the two stages is illustrated by the
Fig.4-15 diagram, in which a rich frequency content in the first stage (high speed
stage) compared to the second stage is highlighted. In addition, the meshing
frequency of the second stage has a greater influence on the vibration of the first
stage. On the contrary the meshing frequency of the first stage has a relatively
low influence on the vibration of the second stage. Therefore, in this study case,
it is showed that the vibration of the differential stage (high-speed stage) should
be focussed on in comparison to the second stage, even the second stage carries
more torque.

4.5.1 Influence of indexing error on the coupling relationship

In order to study the ability of the established dynamic model to represent
the error, in this subsection, the spectrum under a certain speed considering errors
is analyzed in detail.
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Fig.4-16 Spectrum of planet in first stage under indexing error: (a) 0-3000Hz, (b) 0-50Hz,
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Fig.4-16 and Fig.4-17 show the two-dimensional spectrum diagrams of the
transverse vibration acceleration of the planet, when the pitch error is considered,
in each stage within 0 to 3000 Hz at 3600 rpm operating condition, respectively.
The local detailed diagram is also included. The error frequency of each
component can be identified from both Fig.4-16 (b) and Fig.4-17 (b).
Correspondingly, the obvious modulation phenomenon, even if the amplitude is
very small, can be observed from both sides of the main excitation frequency of
the examples of Fig.4-16 (c¢) and Fig.4-17 (¢).
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Fig.4-17 The spectrum of planet in second stage under indexing error: (a) 0-3000Hz, (b) 0-
50Hz, (c) 2550-2650Hz

4.5.2 Influence of run-out error on the coupling relationship

Another time-varying error (run out error) is considered in the dynamic
model of the two-stage parallel compound gear train to study the influence of
eccentricity error. With the consideration of eccentricity error, Fig.4-18 (a) and
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Fig.4-19 (a) are the spectral plots of the planet in the two-stage, and Fig.4-18 (b)(c)
and Fig.4-19 (b)(c) are the local detail plots, respectively. It can be seen from the

spectral plots that among the excitation frequencies of the first-stage, the

frequencies related to the meshing frequency of the second-stage, such as fn2/2,

fm2s 3fm2/2, 2fm> and etc., has a significant influence. On the other hand,

compared with the case of the existence of the pitch error, the amplitude of the

vibration acceleration at these frequencies in the presence of the eccentricity error

is generally a little bit larger than that at the case of the indexing error.
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Fig.4-18 The spectrum of planet in first stage under run out error: (a) 0-3000Hz, (b) 0-
60Hz, (c) 2540-2660Hz
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Fig.4-19 The spectrum of planet in second stage under run out error: (a) 0-3000Hz, (b) 0-
60Hz, (c) 2540-2660Hz

In conclusion, the proposed dynamic model can easily capture the error
frequency even if the error amplitude is relatively small according to the analysis
from Fig.4-16 to Fig.4-19.

4.6 Brief summary

In this chapter, aiming to the dynamic characteristics of the two-stages
parallel compound planetary gear system is studied based on the established
dynamic model in Chapter 2. Firstly, an improved Newmark-£ method is proposed
to solve the time-varying nonlinear equation. Next, the dynamic model was
verified by comparing the vibration results with that of quasi-static model, also
torsional vibration displacement direction matched well to the direction of
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components. The dynamic response and the influence of main excitation were
discussed, and the main conclusion are shown as follow:

(1) For second stage, the presence of constant gravity item causes the
vibration displacement to move to the direction of gravity. For first stage, the
time-varying gravity has an interesting influence on the load sharing ratio of the
first stage, and the long cycle time of LSR has a good agreement with the rotation
cycle of gravity. Furthermore, when gravity is considered, the orbit of sun
includes 700 circles, coinciding with the number of mesh cycle of LSR, which is
also 700. Therefore, the study of gravity effects proved the accuracy of the
established dynamic model.

(2) For first stage, the study of centrifugal force shows that it does not have
a significant impact to LSR due to the angle formed by direction of centrifugal
force and the fact that meshing line direction is always same for each planet. In
addition, the simulation results of LSR corresponds with theoretical analysis.

(3) In this study case, the coupling relationship exists two stages, comparing
to the second stage, the high-speed stage, i.e. first stage, has a abundant frequency
component. The influence of meshing frequency and its harmonics frequencies,
such as 0.5f f.,,and 1.5f

first stage. Furthermore, the established dynamic model can observe the

of second stage affect strongly the vibration the

m2 > m2» m2

modulation phenomenon when the error exists.
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Chapter 5 Nonlinear Dynamic Model and Analysis
of the Double-helical Two-stage Parallel Compound
Marine Gear Transmission System

5.1 Preface

In this chapter, a pure torsional nonlinear model of a two-stage parallel
conforming wheel system is firstly established by considering the time-varying
meshing stiffness, damping and meshing error excitation, and the effects of the
bifurcation parameters such as the damping ratio coefficient on the nonlinear
characteristics are analysed, and the key conclusion that the stable response state
of the system is related to the least common multiple of the excitation period of
the two-stage wheel system is obtained. Then, based on the pure torsional model,
the translational-torsional coupled nonlinear model is extended and the its
nonlinear characteristics are investigated. The reason of motion state of
translational-torsional and its relationship with pure torsional nonlinear model are
revealed.

5.2 Pure torsional nonlinear dynamic model

In this subsection, a torsional dynamic model of a two-stage double-helical
planetary gear train is developed, and the vibration characteristics and coupling
relationship are studied. Firstly, a purely torsional model was established based
on the structure diagram and different mesh phasing. Then, the runout error is
taken into account. Finally, according to frequency spectrum analysis, the
coupling relationship of two stages is studied. It is shown that the runout error of
the planet in different stages has a different impact on the torsional vibration of
transmission error. It also shows that the coupling relationship exists and affects
each other between the two stages, and the excitation frequency for the output
element of two stages can be composed of a series of the mesh frequencies of each
stage, the meshing frequency of high stage (1st stage) is dominated in two stages.

5.2.1 Pure torsional modeling

The dynamic model schematic of the studied compound double-helical
planetary gear system is shown in Fig.5-1. The model is obtained based on the
following several assumptions:
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1). Each gear body is assumed to be rigid, and the flexibilities of the teeth of
each gear are replaced by a spring-damper unit along the meshing line.

2). Each component is assumed to move in the torsional direction, i.e., they
only have 1 degree of freedom.

3). Each planet gear is absolutely same and assigned around the sun gear.

Fig.5-1 Pure torsional model

5.2.2 Relative displacements

Here, defining angular displacement 0z({") (i=s,rncandpn(n=1,2, ..., N),

m=1 and 2) as the only motion of each component in each stage, which is obtained
in a global coordinate system. It is noted that the upper right number 1 is stage 1,
number 2 is stage 2 and it is assumed that counter clockwise direction is positive.
Therefore, for the mesh between sun or ring and each planet 7 in the first stage,
the equivalent meshing displacements in their contact direction are defined as
shown in Equation (5-1).

oW = (Rél)e(l) + Rél)e(l) _ Rél)g(l)) COS(,Bél)) —e® (t)

spi S ~'zs pi 7 zpi c “zC spi

59 =(RO6Y —RUOY —ROOY) cos(A) —e (1) (5-1)

rpi r Y pi 7 zpi c zc
where, Rpi (i = s, v, cand p, (n = 1, 2, ..., N)), p» and eyp; are the radius of base
circle, helix angle of base circle and transmission error and, respectively.
In same way, the equivalent meshing displacements in their contact direction
of second stage are defined as shown in Equation (5-2).

52 = (-RPOP ~RAGD) cos(A%) e ()

spi bpi ~ zpi spi

5 = RO + RO cos( A7)~ 0)

rpi rpi

(5-2)
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Moreover, defining the relative angular displacements between connected
members in two stages as 0o and 00, which are shown in Equation (5-3). It

should be pointed out that a torsional spring is used to connect two members.

(12) _ o0 (2) 12) _ o) (2)
5rs —er —0 5cr _gzc _ezr (5-3)

5.2.3 Equations of motion

According to Lagrange equation [156][157], the equations of motion of two
stages can be derived, are shown in Equation (5-4).

n
1900+ (K68 + OISR cos(A) T,
i=1

Spi — spi Spi 7 spi

I09D 1 (KOSW 1 cBED KOO _cO5OYRO cag 50y

zpi ' zpi Spi ~ spi Spi ~ spi rpi rpi rpi ~rpi bpi

rpi ~rpi rpi ~rpi

n
1 1 1 1 1) o1 1 1 1,2 1,2
2969+ (K62 + SR cos(62) + KEISED =0
i=1

n

J00D -3 (k95D +cDSD + k5D + cOSDRY cos(AV) +kEP5ED =0 (5-4)

ce~'zc spi 7 spi spi ~ spi rpi ~rpi rpi~ rpi r
i=1

n
2 2 2 2 2) o2 2 2 1.2 12
00 325 +CLIIRD c0s(A7) -5 =0
i=1

spi ~ spi spi ~spi

129D (KOO 45D kB 5O _c@5@VRD cog(52) =0

zpi “zpi spi ~spi spi ~spi rpi “rpi rpi “rpi bpi
n
(2) n(2) (2) (2) (2) s(2\p(©) (2) 12) s1.2) _
‘]zr ezr _Z(krpi 5rpi +Crpi 5rpi )Rbr COS(ﬁb )_kcr 5cr - _Tout

i=1
in which, J; is moment of inertia of each part except the carrier in 1st stage, and
J-ce represents equivalent moment of inertia of the carrier in Ist stage, which is
different with moment of inertia of the carrier, is shown as Jece=Jc+n Xmp; XR:°.
kjpi and cjp; are the meshing stiffness and corresponding meshing damping. It is
assumed that each pair of gears (S-Pi and R-Pi) is meshing at the initial moment,
but as the gear rotates, the mesh may separate, so the mesh displacement is a
piecewise function as follows
Opir O >0
S =10, else ,j=sorr (5-5)
O th, 6, <-b

5.2.4 Torsional results and discuss

For the simulation study, the two-stage planetary gear train with the basic
parameters is studied. Tab.5-1 lists the basic parameters of whole system.
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Tab.5-1 Parameters of the two-stage double-helical planetary gear train studied

Stage First Stage Second Stage
Element Sun Planet Ring Sun Planet Ring
Teeth number 38 76 190 80 55 190
Normal module (mm) 6
Normal pressure angle (9 20
Helix angle (9 25
Number of planets (N) 3 5
Planets spacing angle (9 120 72
Mesh phasing ESSP ESIP

The different stages have different mesh frequencies, but there is a
relationship between two stages, whichis f;, =y f, and w=3.375 depends on teeth
number.

5.2.4.1 Stability time-domain response analysis

The Newmark-f method is adapted to solve the dynamic equations, shown in
Equation (5-4). In order to obtain a stable solution, the results of the first 8
seconds are removed.

In Ist stage, the time-domain stationary response curves of each element (sun,
planet, ring) without any meshing error, are shown in Fig.5-2 - Fig.5-4 under a
constant 1200 rpm input speed and a constant 72400 Nm load torque. Here, the
result of the angular displacement is a linear curve with respect to time, the slope
of the angular displacement is velocity, and the only difference is the positive or
negative values. Therefore, taking the angular velocity (negative value) of the
planet as an example, i.e., its rotation direction (clockwise) is opposite to the
definition of the positive direction. Moreover, the angular displacement of the part
rotating in the positive direction increases linearly and vice versa.

As shown in Fig.5-2 - Fig.5-4, the angular speed of the sun is more stable
and less fluctuating, the ideal angular speed is 125.66 rad/s and angular
acceleration is between -40 rad/s’> and 40 rad/s’>. Angular velocity of planet
fluctuates between -52.2 rad/s and -52.4 rad/s, and the ideal angular speed is -
52.28 rad/s. Angular velocity of ring fluctuates between -16.75 rad/s and -16.66
rad/s, and the ideal angular speed is -16.39 rad/s, therefore, the angular speed
agrees well with ideal value. Moreover, the acceleration fluctuation of the planet
gear is more severe than that of the sun and the ring gear.
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Fig.5-4 Stationary response of ring gear in 1st stage: (a) angular velocity, (b) angular

acceleration

Similarly, in 2nd stage, the time-domain stationary response curves are
shown in Fig.5-5 to Fig.5-7. As shown in Fig.5-5 to Fig.5-7, it can be known that
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the direction of the angular displacement and magnitude of average angular
velocity for each component corresponds to the theoretical rotation direction and
theoretical value.
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Fig.5-5 Stationary response of sun in 2nd stage: (a) angular velocity, (b) angular
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According to the curves of the angular displacement and the calculated
velocity value, as shown in the above Figures, it is noted that the mean calculated
velocity values agree well with ideal angular velocity value.

5.2.4.2 Frequency-domain Analysis

It 1s critical to study coupling properties of the two-stage due to the structure
diagram, shown in
Fig.1-7. In order to study the coupling characteristics, the acceleration of the
planet in each stage is chosen to study the coupling characteristics. The reason is
that the planet meshes with both the sun and the ring simultaneously, which causes
the excitation of the planet to be complicated and it could reflect the main
excitation frequency of each stage.

Without error

Fig.5-8 is the acceleration in the frequency domain under input speed
1200rpm. It is observed from Fig.5-8(a) that meshing frequency and its frequency
multiplication, such as f ;, and 2f ;,, is the main excitation frequency. Moreover,
the meshing frequency of the 2nd stage also appears. Excepting that, the
modulations of f ; and f 2, also become the main excitation frequencies,
particularly the peak at f , + f 2.

As shown in Fig.5-8(b), there is some different situation. Although main
excitation frequencies include it own meshing frequency and harmonic
frequencies, it is clear that frequencies related to meshing frequency of the 1st
stage, not only appear but also are the dominant frequency such as 2f ;,, which is
similar to Fig.5-8(a). Overall, influence of the other frequencies which is related
to 2f ,,, cannot be ignored.
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Fig.5-8 Angular acceleration frequency spectrum of planet in each stage: (a) 1st stage, (b)
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Run out error

Next, the influence of run out error on the coupling is studied. As shown in
Fig.5-9(a), sideband effects appear on either side of the location corresponding to
the meshing frequency in angular acceleration frequency spectrum of the planet
in 1st stage. Also, the same phenomenon occurs in the 2nd stage, shown in
Fig.5-9(b), because the ring gear of the 1st stage is the input of the 2nd stage. The
runout error of the planet in Ist stage excites some frequencies of 2nd stage,

Doctoral Dissertation

although its magnitude is small.
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Fig.5-9 Angular acceleration frequency spectrum of planet #1 in 1st stage with runout

When the runout error is in planet of 2nd stage, the corresponding figure is
given in Fig.5-10. The exciting frequency almost does not change. Comparing
with the results of Fig.5-8, the runout error of the planet in the 2nd stage does not
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Fig.5-10 Acceleration frequency spectrum of planet #1 in 2nd stage with runout error: (a)

1st stage, (b) 2nd stage
5.2.5 Dimensionless equations of motion

Banse on the Equation (5-4), the general displacement is introduced in this
subsection to study the nonlinear dynamic characteristics of the established model,
and the general displacement is meshing displacement and relative displacement
shown as follows:

5(1) 5(1) 5(1) 5(1) 5(1) 5(1) 5(2) 5(2) 5(2) 5(2)

_ spl? ¥sp2? ~sp3? Frpl? Yrp2? Yrp3? Yspl ! Ysp2? Ysp3? Fspd? (5—6)
2 (2 (2 (2 (2 (2 $12) ¢(12)
5sp5 ! 5rp1 ! 5rp2 ! 5rp3 ! 5rp4’ 5rp5 ! 5rs ! 5cr

Therefore, the new equation of motion is rewritten as follows bansed on the
meshing displacement, relative displacement formulars and Equation (5-4):

5 o0 (B (o + ) 3 (K008 268
1 @) @) @) @) @) @) @) s@)
+ M o) (kspi (t)gspi + Cspié‘spi - krpi (t)é‘rpi - Crpiérpi)
1pe m 1 1)
o S OO ¢ CSDR-cos B L KoL
_ T, 1 RS cos(5”) _e9(t)
wy %
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S + 08 (B){( )Z(kfé? (155 + o)

|V| (1) |V| (l)

@ @ @ s@ @ @ @ s@
) (kspl (t)55p| + CSpI5SpI kl‘pl (t)5rp| Crplé‘rpl )

|v| <1
(5-8)

b S (05 + S+ oY) K25

spi spi “spi
ce i=1 re

1 12) 542) o
M (1) K 5 ) - erp| (t)

59 4 cos (ﬁéZ) H—s (2) Z (k(2) (t)5(2) +c®s50 )+ (k(Z_) (t)5(2) +c®s50

spi Spi spi Spi ~spi M (2) spi spi spi “spi
se i=1 pe ( 5. 9)
k® (t)5(2) c®s5@ )}+ COS(ﬂ 2)) (l 2)5(1 2) — _g@) (t)

rp| rpi I’pl rpi (2) spi
se

59 +c08' (A W 3 (K252 +c25) - GO

rpi rpi rpi rpi “rpi
re i=1 pe

+C(2)5(Z) k® (t)5(2) C(2)5(Z) )}+ COS(ﬂ 2))

spi “spi rpi rpi rpi “rpi

K (5-10
T('? /R® cos(ﬁ(z’) 5@
M D) rpl

re

(t)

582 + cos(BY) —— (1) > (KO 1)52 +cO52)

rpi rpi rpi “rpi
re i=1

+cos(4?) (2) Z(k(z) ()62 +c262) (5-11)

spi spi spi < spi

se i=1

1
M (1) |\/| (2)

+( )K(1’2)5(1’2) =0

5(1,2) COS(ﬂél)) ( ; z (k(l) (t)5(l) + C(1)5(1) + k(l) (t)§(1) + C(1)5(1))
cr 1

spi spi spi “spi rpi rpi rpi “rpi
ce i=1

+c0s(A?) — (2) 3 K206 +c252) (5-12)
re i=1

(2) (2)

At L ykeasen _To /Ry
() (2) cr (2)
Mce M Mre

re

in which, Mo, M;.=J.j/(Ryj)?, (j=s.7,¢,p). cspi and c,p; are the meshing damping for

the sun or ring mesh with the planet i, respectively.

Normally, the Equations (5-7)-(5-12) could be simplified into dimensionless

Equations (5-13)-(5-18) in order to eliminate the effect between different orders

of magnitude in the process of solving through introducing the dimensionless time
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parameter 7 =m,t and dimensionless displacement parameter b,. The frequency

shown in the dimensionless time parameter is given as @, = Jkspm /(m,,) , in which
— MO DOpg @ Op @ Op @ Opg @

m, =MIMIMZ T (MPM + MM +M M) .
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It should be noted that the dimensionless parameters including displacement,
velocity, acceleration and other relative parameters such as stiffness, damping,
frequency used in Equations (5-13)-(5-18) are defined as Equation (5-19).

= vl vl 2
)_( =X /b, X =X/(bay), X =X/(b.w), (5-19)
b

=b/b, Kk =k/a?,C=cla,.

5.3 Nonlinear dynamic characteristics analysis of the pure
torsional model

5.3.1 Contact separation specification

Tooth contact separation is easily affected by the backlash and meshing
displacement, causing multi-meshing states, which will result in the dynamic
instability of the gear system. Therefore, the teeth contact separation specification
is explained by using a time-domain diagram between the meshing displacement
and backlash, as shown in the Fig.5-11. It is shown from Fig.5-11 that the meshing
displacement § is horizontal axis, and two vertical dotted lines named as b =0
and b = -1 divide the horizontal axis into three parts. Moreover, if the meshing
displacement is greater than 0, the drive-contact exist. if the meshing
displacement is less than 0, but greater than backlash value, the tooth doesn't
contact. Then, if it is the rest of the case, causing the drive-contact. Therefore,
there are in total three meshing states such as drive side contact, contact separation
and the back side contact, which are shown in meshing state diagram and marked
as DC region, CS region and BC region in Fig.5-11, respectively. In addition, the
red circle, green circle and blue circle marked as 1, 2 and 3 presents that the
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system undergoes one, two and three states, respectively.

|
Back-contact | Contact separation | Drive-contact region,

[
[
region, marker | region, marker as | marker as “DC region
|
[
[

as “BC region” | “CS region” M—\
—

|

N

Drive gear !
2 |1

|

Qq|'

Dimensionless

|
|
|
|
| -3 [
| backlash, p |
| [

I

< L
5 =-1 5=0

Fig.5-11 The diagram of the tooth separation based on the meshing displacement and
backlash

Based on the comparison of the meshing displacement and backlash shown
in Fig.5-11, the contact separation state of the meshing teeth under certain
parameter value can be clearly judged.

In the following study case, the ordinary differential equations, shown as
Equations (5-13)-(5-18), were solved by the fourth-order Runge—Kutta method.
The result data corresponding to the first 500 response periods are removed in
order to move out the transient results influence and capture the data
corresponding to the steady response. Moreover, the influence laws of parameters
on the dynamic response were revealed by means of bifurcation diagrams, time-
history diagrams, Poincaré maps, and phase orbit diagrams in order to get an
initial understanding of the non-linear dynamic behavior according to the basic
equations.

The gear basic parameters are listed in Tab.5-2, the other parameters such as
normal module, normal pressure angle and et al are same as the parameters in
Tab.5-1. The calculated mesh phasing values used in meshing stiffness and
damping are shown in Table. Moreover, some stiffness values are given in Table.

Fig.5-12 presents the meshing stiffness of external and internal meshing gear
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pairs, it can be seen that stiffness value of internal meshing pairs is larger than
that of external meshing in a meshing period, and reason is that the overall contact

ratio €, for internal gear pairs is large, which corresponds to the calculated results

shown in Tab.5-2. It is shown from Fig.5-12(c¢) that the two meshing periods has

a certain relationship, T, = AT _;,A=3.5 based on the transmission relationship,

which corresponds to the teeth number given in Tab.5-2, in this study case. The
relationship shown in Fig.5-12(c) will also be discussed in the following content.

Tab.5-2 Basic design parameters of the compound planetary gear train

Stage First stage Second stage
Component S P R S P R
Teeth, Z 40 80 200 80 60 200
Radius of pitch circle, R; (mm) 165.5 248.3 662.0 264.8 198.6 662.0
Transverse contact ratio, ¢, (-) 1.4882-1.5884 1.4938-1.5282
Overlap ratio, ¢5 (-) 1.3452-1.3452 1.5694-1.5694
Overall contact ratio, &y (-) 2.8335-2.9336 3.0632-3.1276
Overall transmission ratio, i (-) 15
Dimensionless displacement, b¢ (um) 5

Tab.5-3 The mesh phasing values of the two stages

Stage First stage Second stage
Sun-planet (@spi) 0 1/3  2/3 0O 0 0 0 O
Ring-planet (¢rpi) 0 -2/3 -1/73 0 0 0 0 O

Sun-planet i-ring (@sr) 0 0

Tab.5-4 The values of some stiffness

Parameter name Value Parameter name Value
Kiopi » (N/m) 2.28x10° Kapi + (N/MD 2.57x10°
k<&, (N/m) 2.68x10° ke (N/mD 2.93x10°

K& (N.m/rad) 1.0x10" K& (N.m/rad) 1.0x10%
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Fig.5-12 Meshing stiffness of (a) the external meshing gear pairs in first stage, (b) the
internal meshing gear pairs in first stage, (c) the compared results for the meshing periods

relationship in two stages

5.3.2 Influence of the damping ratio coefficient on the dynamic
response

The bifurcation diagram is a diagram that allows researchers to visually view
the vibration responses of a transmission system as the variation of the bifurcation
factors such as speed, damping ratio coefficient. The damping ratio is a critical
parameter to adjust the damping of the whole system, and it is crucial to analyze

the impact of damping ratio on the dynamic response.
Fig.5-13 is the bifurcation diagram of the dimensionless displacement grél,)
of the two-stage compound planetary gear system, and the damping ratio & is the

bifurcation parameter under the dimensionless excitation frequency of Q(n? =3.96,
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dimensionless backlash of b =1, and the initial conditions of &% =0, é_'rg) =0. It
can be seen from the Fig.5-13 that different vibration response condition including
different motions changes with the damping ratio changes. Moreover, it is also
concluded that the studied compound planetary gear train has an abundant
nonlinear dynamic behavior because of the exist of the nonlinear factors such as
meshing stiffness, meshing damping, and backlash. The bifurcation characteristics
of other dimensionless meshing displacements have been obtained in the same

way, and they have same variation tendency as the é_'rf)li), and these plots are not

presented for brevity.

Bifurcation Diagram
T I

State A: Chaos Motion Path 7
State B: Quasi-Periodic Motion
State C: 7T-Periodic Motion

| b 1

003 0.05 0.07 0.09 0.11 0.13 0.15 0.17

Fig.5-13 Bifurcation diagram for Sr(pli) versus & =[0.026,0.175] under 350 steady state

periods. (To clearly distinguish references to color in this figure, the reader is referred to

the online version of this article)

Generally speaking, it is drawn that the bifurcation diagram can be divided
into two kinds of state motion, periodic and non-periodic motion. Fig.5-13 mainly
includes three regions marked by A, B and C by means of the state motion, which
are chaos, quasi-periodic and 7T-periodic motion, respectively. From the Fig.5-13,
it is very clear that there are 7 routes that gradually transition from chaos to stable
periodic motion, and various law of each route is same, the reason why 7 routes
appear will be explained in the following content.

Next, the specific vibration response and influence law of damping ratio
coefficient on vibration response are analyzed and discussed based on the Fig.5-13.
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The system presented a chaotic motion shown in Fig.5-13 when the damping
coefficient at low values,i.e., £<0.038. Specifically, for instance, when &=0.026,

the whole system presented a chaos motion, marked as stage A in Fig.5-13, and
the nonlinear characteristic diagrams such as Poincaré map, Phase trajectory and
time history are shown in Fig.5-14. Fig.5-14(a) shows that the distribution of the
points is haphazard, which illustrates a chaos motion. The phase trajectory in the
phase trajectory shown in Fig.5-14(b) is disordered and fills the whole phase space,
and it can be seen that the system experiences two meshing state shown as DC
and CS region marked in Fig.5-14(b), including tooth contact separation, but the
contact separation part is small. The phase trajectory in is disordered and fills the
whole phase space. Correspondingly, Fig.5-14(c) shows that the curve is a very
irregular fluctuation from one cycle to another cycle.

(a) _ Poincaré Map ) Phase Trajectory

(1)
rpi
(39

I
\
|
|
\
1} ‘
0r ‘

5
1310 1330 1350 1370 1390
T

Fig.5-14 The chaotic motion at &=0.026: (a) the Poincaré map diagram, (b) the phase
trajectory diagram, (c) the time history diagram.

The unstable quasi-periodic motion gradually changes to a stable quasi-
periodic motion as the ¢ increase between 0.039 and 0.125, i.e., £ [0.039,0.125],
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which is marked by B in Fig.5-13. The evolution of the entire process will be
shown as the Fig.5-15 - Fig.5-17. It is seen from the Poincaré map shown in
Fig.5-15(a) to Fig.5-17(a) that 7 relatively regular circles gradually form as the
damping ratio coefficient ¢ increases, and the dynamic behavior of the compound
planetary gear system exhibits an obvious quasi-periodic motion. Moreover,
although the vibration response results shown in Fig.5-15(c) to Fig.5-17(c) do not
look exactly same, it can be drawn that them repeat themselves through every 14
waveforms, which is associated with 7 circles in Poincaré map. It also showed
from time history diagram that the vibration response is complex.
Correspondingly, Fig.5-15 (b) to Fig.5-17 (b) show that the phase diagram is
getting clearer, and the tooth contact separation part (BC region showed as
Fig.5-15 (b) to Fig.5-17 (b)) gradually become smaller and finally is zero, which
shows that the meshing state of the system gradually becomes completely drive-
side contact as the damping ratio coefficient & further increases.

(a) 25 Poincaré Map o (b)

-3.5¢

(1)
rpi

-

451t
5.5+
0.5 1.5 235 3.5
=(1)
()rpi
(c) . Time History
4 H
3
- |
|
0 'l Repeat

1310 1330 1350 1370 1390
T

Fig.5-15 The chaotic motion at £ =0.040: (a) the Poincaré map diagram, (b) the phase

trajectory diagram, (c) the time history diagram.
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(a) Poincaré Map (b) : Phase Trajectory
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Fig.5-16 The chaotic motion at £=0.051: (a) the Poincaré map diagram, (b) the phase

trajectory diagram, (c) the time history diagram.
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Fig.5-17 The chaotic motion at £=0.076: (a) the Poincaré map diagram, (b) the phase

trajectory diagram, (c) the time history diagram.
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Sequentially, when the damping ratio coefficient ¢ further continues to
increase, the quasi-periodic motion becomes more and more obvious. For example,
the numerical results are shown in Fig.5-18 when the damping ratio is 0.090, the
time history diagram shown in Fig.5-18(c) showed that motion is an obvious
quasi-periodic motion due to similar 7 times regular fluctuation but have
differences between two adjacent repeat cycle. Comparing to the Fig.5-17(b),
Fig.5-18(b) are similar to 7T-periodic motion, and every cycle is composed of
many single circles. Moreover, it should be noted that the DC region only appears
in Fig.5-17(b) and Figure Fig.5-18(b) proving that there is only one meshing state
in the system, that is the drive-contact meshing state. It could be seen that
Fig.5-18(a) includes seven sets of points, each set is composed of a finite number
of points, as shown the detailed figure in Fig.5-18(a), which proved the quasi-
periodic motion.

(a) . Poincaré Map b Phase Trajectory
3] P
3.5} /_5 i )
~ 'n o4 %
= & lo
- 4 . oo @ﬁ g B
[¢)
| |
4.5 - o
28 29 3
¢
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o @ (
: 6L
1.5 2 2:5 3 3.5 0.5 1.5 2.5 3.5 4.5
)'(11 ;11)
rp (I'[II
©) 45 ~ Time History
53]
S H H
1.5 U
< >
0.5
1 Repeat

1310 1320 1330 1340 1350
T

Fig.5-18 The chaotic motion at &=0.090: (a) the Poincaré map diagram, (b) the phase

trajectory diagram, (c) the time history diagram.
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Finally, for the damping ratio coefficient £>0.125, The system starts to

experience a stable state, i.e., 7T-periodic motion, as marked by C in Fig.5-13
until the damping ratio coefficient reaches 0.175. An exampled result is shown in
Fig.5-19, in which the damping ratio coefficient is 0.151. As appeared in
Fig.5-19(a) and Fig.5-19(b), there are 7 discrete points in the Poincaré map, and
also 7 circles in the phase space. Moreover, the time history diagram indicates
that the vibration response repeats itself every 7 periods, and the response result
is almost same.

@ . poincaeMap  ® Phase Trajectory.
‘ o " DC
3.5 4
o 5l
4 o)
g B ?,}‘ 0]
-4.5¢
o 2
o
St Al
o -4
5.5 -6 ‘
1 1.5 2 25 3 35 0.5 1.5 2.5 3.5 4.5
(1) (1)
()I'Ill or'[:l
©) 45 ~ Time History
3.5
i 5 H N h H u
1.5¢
<« >
0.5}
1 Repeat

1310 1320 1330 1340 1350
T

Fig.5-19 The chaotic motion at £=0.151: (a) the Poincaré map diagram, (b) the phase

trajectory diagram, (c) the time history diagram.

It is found from the above bifurcation and corresponding diagrams that the
final stable state motion is 7T-periodic motion, which corresponds to the seven
paths shown in Fig.5-13, and the single periodic motion or 2T-periodic motion
doesn't appear. At the same time, the quasi-periodic motion also is related to the
7T-periodic motion, in other word, the 7T-periodic motion is the most basic
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motion state for the other motions.
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versus ¢: (a) ¢=0.025, (b) £&=0.039, (c) £&=0.060,

(d) &=0.081, (&) &=0.093, (f) &=0.130.
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The reason can be explained by using the meshing stiffness of two stages
shown in Fig.5-12(c), because the excitation of the studied compound planetary
gear system has two, and the meshing cycle of 2nd stage is 3.5 times of that of Ist
stage, which means these two excitations want to return the same phase for the
first time, the system must round 7 mesh cycles of the 1st stage, i.e., the lease
common multiple(LCM) 7 = LCM(1,3.5). Therefore, the final basic stable motion
is 7T-periodic motion, which is associated with the LCM(1,3.5). This
understanding is important to the nonlinear behavior for the compound planetary
gear system, and it could provide a basic understanding and guidance for the
complex structural planetary gear system. Furthermore, by means of bifurcation,
there are two main kinds of bifurcation ways, Doubling-Periodic and Hopf
bifurcation. Fig.5-13 showed that the system experienced chaos, quasi-periodic
and 7T-periodic motion, and Fig.5-20 presented the detailed Hopf bifurcation
process from chaos to 7T-periodic motion through Poincaré map, and the Poincaré
map of one path is only showed for brief. It is found from Fig.5-20 (a)-(c) that
disorder unstable points became to a stable circle, which means that quasi-
periodic motion forms. As the ¢ increases, the stable circle broken, and gradually
diverges inward, but it is still quasi-periodic motion only the ring became smaller
shown as in Fig.5-20(d)-(e) until finally all the points come together, and then
single periodic motion (i.e., 7T-periodic motion) is obtained.

Finally, it also could be drawn that the damping ratio coefficient ¢ has an
important influence on the nonlinear characteristics of the studied two stages
compound planetary gear system.

5.3.3 Influence of damping ratio coefficient and input speed on the
dynamic response

Compared to the common parameter, rotational speed, the value of the
damping ratio coefficient ¢ is fixed before designing a planetary gear system due
to the gearbox structure. Combining the conclusion of damping ratio coefficient,

and in order to choose the proper parameters of QS‘) and ¢, the influence of speed
® . . .. . . . ..
Q' and damping ratio coefficient ¢ on the nonlinear dynamics is here jointly

studied in this subsection. Fig.5-21 presents the corresponding three bifurcation
diagrams with ¢=0.075, 0.100 and 0.125, respectively.
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Fig.5-21 Bifurcation diagram for 5,%,) versus speed Q@ with different &: (a) £&=0.075, (b)

¢=0.100, (c) £=0.125.
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By comparing Fig.5-21 (a)—(c), the results present that the stability of the
studied two-stage compound planetary gear train exhibits an increasingly stable
motion trend as the ¢ increases. Specifically, when ¢ increase from 0.075 to 0.1,
the non-periodic motion (chaos or quasi-periodic motion) shown in Fig.5-21 (a)
transfers to quasi-periodic motion in Fig.5-21 (b), and the bifurcation point
between 7T-periodic motion and quasi-periodic motion also move from 2276rpm
to 2343rpm, which increases the periodic region. If the ¢ continues to change to
0.125, the whole dynamic response area completely becomes 7T-periodic motion
(stable motion). In other words, unstable non-periodic motion disappears and
more expected stable periodic motion appears. Moreover, Fig.5-21 also indicated
that the maximum response amplitude ranges from [-3.86,6.6] to [-2.43,5.62] and
finally to [-1.21,5] as ¢ increases. Hence, it can be revealed that the nonlinear
behavior of the studied compound planetary gear system is highly sensitive to the
damping ratio coefficient &, and a higher value of damping ratio coefficient £ on
suppressing non-periodic motion and improving periodic motion is very useful. It
is demonstrated that proper ¢ can let the gear system have an expected narrow
interval of the chaos motion, causing enhancing reliability and extending life time.

5.3.4 Influence of the meshing error amplitude on the dynamic
response

Because the meshing error is composed of a series of errors, and the
amplitude could be changed due to differences in manufacturing and assembly
conditions. Fig.5-22 (a) is the bifurcation of the dimensionless displacement
versus the meshing error amplitude, and Fig.5-22 (b) is the detailed drawing of
the one path shown in Fig.5-22 (a).

It is seen that there are three motion states marked as A, B and C as the
variation of the E, which are 7T-periodic motion, 14T-periodic motion and quasi-
periodic motion, respectively. The bifurcation way between state A and B is the
doubling-periodic bifurcation, which is different to Hopf bifurcation.

It 1s also concluded from this study case that the motion starts to becomes
non-periodic motion after E reaches 2.5, the reason is that some teeth start to
disengage as E increases, causing the motion state to become complicated than
steady periodic motion. Corresponding to Fig.5-22 (a), Poincaré map diagram and
phase diagram representing the three motion states are shown in the Fig.5-23,
respectively.
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According to the results in Fig.5-22 and Fig.5-23, 7T-periodic, 14T-periodic
and quasi-periodic motion are proved clearly. Furthermore, it is drawn from phase
trajectory that the three meshing state shown as blue circle in Fig.5-11 when
meshing error amplitude is greater than 1.2, and the DC region become smaller as
the meshing error amplitude increases, indicating that the processing accuracy
should be improved as far as possible to avoid tooth contact separation and so on.
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Fig.5-22 Bifurcation diagram for gr%i) versus meshing error amplitude E
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Fig.5-23 Poincaré¢ map diagram and phase diagram for three states shown in Fig.5-22:

(a)(b) E=1.2, (c)(d) E=19, (e)(f) E=25
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5.4 Translational-torsional nonlinear dynamic model

Based on the schematic diagrams of the dynamics models in Fig.2-11,
Fig.2-12 and the pure torsion model in the previous subsection, this subsection
develops a translational-torsional coupled multi-degree-of-freedom nonlinear
dynamics model for this compound planetary gear system and analyses its
nonlinear dynamics properties.

5.4.1 Relative displacement

In this study, the choice of coordinate system in the two-stage planetary gear
system is still referred to the moving coordinate of first stage and fixed coordinate
of the second level. Each component is modelled by considering three degrees of
freedom, i.e., two lateral and one rotational degrees of freedom. The relative
displacements of the interconnected components are still presented by a torsional
stiffness, and the meshing displacements for S-P and R-P of the two stages are
calculated as follows:

O — (x® giny® 4+ y® M _ W gin 4O _ O &)
Ogi = (X7 siny ol +y o cosy o — & sinag’ —n7 cosag,

1) n(@) @) n) @) @) @) @)
+Rbs 925 + I:\)bpiezpi - Rbc Hzc )COS ﬂb - espi (t)

@ — (y® @ @ gj @) @ g @ @ @
i = ¥y COSY i = X7 SNy + & SNy’ — 17,57 COS g

Wp0) _pOp® _ pO M) ® _ a0
+Rbr ezr - Rbpiezpi - Rbc 020 )COS ﬁb - erpi (t) (5 20)
@ _ (v@ cin, @ _ y©@ @ _ £ )
é‘spi _(Xs SInWspi - ys COS‘r//spi _épi

(2) p(2) (2) n(2) (2) (2)
_Rbs st - Rbpi ezpi )COS ﬂb - espi (t)

in @ 4, )
sinag,’ +17,; cosag,

51 =(-y!? cosy

rpi r

@ _ @ giny® + £@sin @ 4 5@ 2)
o — X SNyl + &0 sina Y+ cosa,

(2) o(2) (2) o(2) (2) (2)
_Rbr ezr + Rbpi ezpi )COSﬁb _erpi (t)

where the formulae for the angles, etc. shown in Equation (5-20) are as defined in
Chapter 2.

The relative displacements of the carrier with its pin on the planet i in the
radial and tangential directions of the planet gear are:

1 _ 2@ @ () @ ejn 4D

§cpix - gpi —X;~ C0S ¢pi —Y:. sin ¢pi (5 ) 1)
o _ 0 @ ojn 4D @ ()

5cpiy - npi +X;7sIn ¢pi — Y. COS ¢pi

where R. is the distance from the centre of the planet carrier pin to the centre of
the planet carrier.
Also, the relative angular displacements between the connecting parts in the
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two stages system are shown below:

€2) _ @ () (2) (2)
5cr =U; /Rbc —Ur /Rbr

1,2 1 1 2 2 (5-22)
59 2y [RY 1R,

5.4.2 Equation of motion

The translational-torsional coupled dynamics model of this studied gear
system is established based on the force equilibrium relationship. The general
displacement vectors of the system are shown below:

T
@O O O @O O O @ O O @ @ @
Xs ’ys ’us ’Xr ’yr ’ur ’Xc ’yc ’uc ’Xpi 'ypi 'upi ! (5_23)

a= 2 @ 1D (2 2 (D @) (2 (D
Xs ’ys ’us ’Xr ’yr 'ur ’Xpi’ypi ’upi

Finally, the set of dynamic equations for the whole system is shown below:
(1) Sun gear in first stage:

@ (@ @)y, @ M2, "EO _E®
m; (Xs _Za)c — @O X )+ Zizl I:spi a; + Fbsx =F

s gsx
@) (@) (1) (@) 1)2,,@) n @) _g®
mg (ys + 20)0 Xg" =@ Y ) + Zi:l I:spi a; + I:bsy - ngy (5'24)

n

M, +a, ) Fg) = (T, /Ry
(2) Ring gear in first stage:

@) O [EVRRAEN] 2,0 n (6] D _ 0
m? (XY - 20" yP — oP?x )—Z F, +FY =F

j=1  rpi brx bgx
® (O @) (D) M2y, " EFO O _g®
mr (yr + ch Xr - a)c yr ) + Zizl I:rpi a9i + I:bry - I:bgy (5'25)
(ONLE " e OyK @2) §2) _
Mre ur +a32i=1 I:rpi +(1/ I:ebr )Krs 5rs =0

(3) Planet gear in first stage:

(g6t (1) 5 (1) 12 £(1 () () O _E® )
Irnpi (gpi - 2a)c 77pi — gpi )+ (_aA I:spi + 3 I:rpi )+ I:bpx - I:gpix + I:cpi
@) (@ @ £D 02,,@) () (4] O _ O
my; (rypi + 2w, §pi -, npi)+(—aF -aF)+F . =F

5" spi 77 rpi bpy gpiy
@@ ()] Oy —
M pieupi +a3(Fspi - I:rpi ) =0

(5-26)

(4) Carrier in first stage:

@) (@) @)@ 1)2,,(1) n @ (Y] M e 4@ O _g®
m; (Xc —2600 Yo' —aTX )+Zi=1(_|:bpx C¢pi + Fbpy S¢pi )+ Fbcx - Fgcx

mc(l)(yc(l) + za)c(l))'(él) _a)(l)Zyc(l)) +Zin:1(_|:(l) S¢S) =) C¢(@)) +FO _fF® (5_27)

c bpx bpy pi bey gey
[ENEHEN] (€] ()] n @) (€] (12) ¢(1,2) _
MOi® —(R® /RE )ZHF +@/ ROKED502 =0

bpy

(5) Sun gear in second stage:
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mOX® + 3" F@a, +F@ =0

1 spi bsx
m@y® -3" FPa, +F? =F® (5-28)
M0 —a, 3" FLD - (1 ROIKE5E =0
(6) Ring gear in second stage:
mOx® 3" F@a +FQ =0
Y RS - (529
MU —a, " Fd — (U RPIKTDSL? = (T I RY)
(7) Planet gear in second stage:
MOED +(-aF ) +asF )+ R = FL
m%gj) +(+a, R +a,F)+ RS =F& (5-30)
M2 +a, (R - F2) =0

where, in the above equation, the expressions for the engagement force and other
symbols are shown below:

FO — k0500 4 o050

Jpi Jpr = Jpi Jpr— jpi
® _ 1050 @ @
I:bpn k 5cp|n C 5cp|n
k) _ | @O pnpk) (k) 3 (k)
Fn =Ky N} +C,7n;

, J=sorrorc, k=1or 2, n=xory),

Fg(Jlx) = m(l)g -sm(a)c(l)t)

W _ _m® @

F, =-m;’g-cos(w;t)
@ _ _m®

Fo =—-Mm”g

FO — —m}l)g sin(@®t + 22 (i-1) / n,),

gpix

Foy =—mig-cos(wt+27(i—1)/n,),

Foo =—mPg-sin(g?), & =—mPg-cos(gy), FS =mIRP M2,
sgl) =singl, cgl =cosgl,a; =cos(B)sinyl) a, =cos(B”)cosy ),
a, =cos(A),a, =cos(B)sinal), a; = cos(Y) cosal),

a, =cos(A)sina),a, =cos(B") cos ), a, =cos(BY)siny ),

Qg = cos(B")cos l//r(rlJ? 1 o = COS(,Bb(Z)) sin l//s(si) 18y = COS(ﬁtEZ)) cos Ws(si) ,
a, =cos(57),a, = cos(S?)sinaly, a, =cos(S")cosal?,

2 H 2 2
8, = cos(A”)sina a, = cos(A) cosar?,

2 . 2 2 2
a, = cos(ﬂé Nsin l//r(pi) y Qg = Cos(ﬂb( ") cos V’r(pi)'
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5.4.3 Dimensionless equations of motion

Due to the presence of relative displacements in the above modelling process,
the equations of motion for each of the above components are semi-positive
definite, so some torsional relative displacements are first defined based on the
pure torsional dynamics model and these torsional displacement variables are
defined as follows:

U8 =P 1l —u?)cos 0 el
U o _ U @ —-U @ _e(l) _e(l)

rpi src spi spi rpi

U8 =u® +uf —2uf)cos g

src

U2 = (U u)cos A7 —ef2 s
UG =P U -6 -l
U2 = (U -u)cos 5
LB =y~ (RY 1R

L2 _ @ ) (2)y,,(2)
Ucr =U; _(Rbc /Rbr )us

Therefore, the above relative torsional displacements are introduced into the
generalised coordinates of equation (5-23), along with the displacement scale
parameter b, and the time parameter 7=wat, both of which are defined in the same
way as in the purely torsional nonlinear model, thus transforming the generalised
coordinates dimensionlessly, and hence the new generalised displacement vector
obtained is shown below:

__{ﬂ%wawawazaﬁaﬁﬁﬂﬁagﬂﬁ, }T 532
KS(Z)fys(Z)’Xr(Z)!_r(Z)'Ep(iZ)!ﬁ(Z) u® y® Ur(su)’ljc(il)

pi L spi 1 sr
Based on the new generalised coordinates and the set of kinetic equations for
each component, the dimensionless form of the kinetic equations for the new
translational-torsional model is shown below:
(1) Dimensionless equations for the sun in first stage in the support direction:

—_ = — n —
Xs(l) =20 @ + ch 2Xs(l) _ Zi:l a, E @

cdJs Spi—s

O L F o
-Fs + ng sin(Q,7)
(1) (1) 25:(1) " EW (5-33)
s :_ZQCdXs +ch Yo'~ izlaZiFspi—s
A
—FbHy + ng -€0S(Q47)

(2) Dimensionless equations for the ring in first stage in the support direction:
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(1) 2ch yr(l) + Qsd @ + Z a8| rE)ll) r Fb(rl) rx + F Sin(ch 2-)
(5-34)
¥ =20 x® + Q2 y® — Zi:1a9, R, — R, +F,-cos(Qy7)

cd “r rpi—r br-ry

(3) Dimensionless equations for the planet in first stage in the support direction:

éz(l) —ZQdT](l)+QZ f(l)-i-a |:(l) _a F(l) _|:(1)

spie 6 rpi- bp— px
+FE) -sin(Qyz +¢0) + FY 5.35)
0 =20, ED 040 +aFll, v R, R,
+FE) - cos(Qy7 +45)

(4) Dimensionless equations for the carrier in first stage in the support direction:

v _ @ 2 (1) - 1) (1) - (1) (3]
Xc 2gzcd y + ch Xc + Z (Fcp cx Fcp —cy S¢
= @) EQ  qj
—Flo + Fy -sin(Q,7)
v _ v @ 2 g c @) (1) C @) (1)
W =-20,%0+ QLYY+ (F +F V)

cp— oS cp— cy
=@ _(1)
Fbc cy Fgc ’COS(ch T)

(5-36)

(5) Dimensionless equations for relative torsional displacements in the first stage:

UD =(a,/MO)T, /RY)~ (a2 /M) FO (a2 /MD)(FY -FY)
~(a,/MPYRPIRY)Y " Y +(@1/RY*) (8, / MP)K UG
-5 (1)
UY =(a,/MO)T, /RY)~ (/M) FO a2/ M)} " FY
~(/RP*)(a, / MPD)KEU LD - (28, IMPYRP IR RY
+(1/RY?)(2a,/ MEYKEAU G

(5-37)

(6) Dimensionless equations for the sun in second stage in the support direction:
v _ n - (2) - (2)
X = _Zi:]_alm I:Spl - Fbs X
v _ n C (2) - (2) (2
Yo = Zi:lam FSpI s Fbs sy + F

(7) Dimensionless equations for the planet in second stage in the support direction:

(5-38)

5(2) F(Z) a15|:(2) —k [ (2 |:(2) sm(¢(2’)

Spi— rpi bp— px gpi (5 _3 9)
=) _ (2) c (2) I (2) - (2) (2)
Mi” = —a, Fspl alGFrpl _kbp py + ng| COS(¢pi )

(8) Dimensionless equations for the ring in second stage in the support direction:
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¥ _— § m E(2) (2

X = i=1 Ayi I:rpi—r - I:br—rx

v — 2 m - (2 - (2 =@
r i:la18i F -F + I:gr

rpi—r br—ry

(5-40)

(9) Dimensionless equations for relative torsional displacements in the second
stage:

U =@, I MO)Y P - RD T RY) @y, I MP)KEAT
+a, MR - R -850 (2)

U =—(a, IMD) Y R —@WRZIRY) (8, IMP)KLPUL? (5-41)

m

~(@, M) P =@, M)W RY T RDIKGPU &
~(8, M) (T I RY)

(10) Dimensionless equations for the relative torsional displacements of the
connected parts in the two stages:

m

UL =—(a, /MDY ) -/ RP)A/ MK L

rs

~(RY 1RO (@, IME) Y B — (U RE?)A/ ME)KEAT LD

se j=1 spi
U%? =W MP)YRY IR R - (LRI MO)KEATE?  (5-42)
~(RY 1R @, I M) B~/ RP)AMP)KEPO LY
~(Re TR M) (T [ REY)
Some of the simplified formulas in Eqs.(5-33)-(5-42) above and the
dimensionless physical quantities used in this subsection are defined below:

ut

_ . o e k) : cl
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(i) (i)
If(ll)l :_(Ii)lr—]I(J)_l_C(IJ)Ir—']I(i) E(IJ)I — kbI Eb(lj)l — Cpl
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where the parameters in the upper are labelled j=1,2. The remaining letters stand
for I =s,r,p,c,n=X,y.

5.5 Nonlinear dynamics characteristics analysis of the
translational-torsional model

The nonlinear dynamic behaviour of the model can be obtained by
concentrating on the transverse and torsional displacements of the two-stage
parallel compound gear system, and the dimensionless ordinary differential
equations are solved by the numerical method, and the basic parameters of the
gears as well as the other parameters in the case of the present study are still as
shown in Tab.5-2 to Tab.5-4, again in order to eliminate the effect of transient
response, the results within the first 300 response cycles were removed. By
analysing the transverse response results, the meshing displacements on the
meshing line and the meshing forces, the influence of various factors on the
dynamic response of the system is investigated.

5.5.1 Influence of the damping ratio coefficient on the dynamic
response

The analysis of Fig.5-13 in Section 5.3 reveals that the motion state of the
entire two-stage parallel compound gear system changes with increasing damping
ratio coefficient, transitioning from unstable chaotic motion to stable 7T periodic
motion. Notably, the quasi-periodic motion is also based on the 7T periodic
motion as its foundation. Furthermore, analysis indicates that the fundamental
motion is the 7T periodic motion. In the case of the translational-torsional model,
which incorporates equations in the lateral direction and additional excitations,
the vibration state of the entire system is expected to differ. However, it is
assumed that the motion state of system may still relate to that of the pure torsional
model.
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In this subsection, the damping ratio coefficient is selected as the bifurcation
parameter, while the other parameters remain consistent with those of the pure
torsional model. To differentiate from Fig.5-13 and for clarity, two ranges of the
meshing damping ratio coefficient are chosen: 0.119-0.124 and 0.166-0.174,
corresponding to portions of Stage B (quasi-periodic motion) and Stage C (7T
periodic motion) in Fig.5-13. It is evident that the motion state in the 0.119-0.124
range approaches 7T periodic motion, while the motion state in the 0.166-0.174
range represents 7T periodic motion. Fig.5-24 depicts the bifurcation diagram of
the dimensionless relative torsional displacement Usy,;. The results indicate that,
with increasing damping ratios, the motion state of the relative torsional
displacement of system does not exhibit any significant changes, remaining in the
quasi-periodic state, even when the meshing ratio spans a wide range. Compared
to the results shown in Fig.5-13, the increase in meshing damping ratio coefficient
does not lead to a more stable motion state, suggesting that in this study case, the
increase in meshing damping ratio has little effect on the motion state of the two-
stage compound gear system, indicating that the damping ratio does not improve
the dynamic behavior of system.

(a) (b)

Bifurcation Diagram Bifurcation Diagram
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13 3

Fig.5-24 Bifurcation plots of dimensionless relative torsional displacements with different

ranges of meshing damping ratios coefficient: (a) 0.119-0.124, (b) 0.166-0.174

To validate the motion state depicted in Fig.5-24, the maximum damping
ratio coefficient 0.170 is selected while keeping other parameters constant. The
corresponding Poincaré map and phase trajectory are shown in Fig.5-25. In
Fig.5-25 (a), the Poincaré map clearly indicates a dense distribution of points
without any discernible pattern. Correspondingly, Fig.5-25 (b) illustrates the
phase trajectory, which is characterized by complex lines in the phase space,
further confirming that the motion state of the relative torsional displacement is
indeed quasi-periodic motion.
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Fig.5-25 Meshing damping ratio coefficient of 0.170 in the case of (a) Poincaré map

diagram, (b) phase-trajectory diagram

To verify whether the motion states of lateral vibration displacement x,!) and
torsional vibration displacement differ, bifurcation diagrams for two ranges of
meshing damping ratio coefficients are presented in Fig.5-26 (a) and (b). Similar
to the results for relative torsional displacement, these bifurcation diagrams
indicate that the motion state remains quasi-periodic, suggesting that both lateral
vibration and relative torsion exhibit the same dynamic motion state.

(a) (b)

Bifurcation Diagram Bifurcation Diagram
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Fig.5-26 Bifurcation plots of dimensionless transverse vibration displacements with

different ranges of meshing damping ratios coefficient: (a) 0.119-0.124, (b) 0.166-0.174

5.5.2 Influence of the speed on the dynamic response

Similarly, when the dimensionless rotational speed ranges from 1.2 to 3.5,
the corresponding bifurcation diagram is shown in Fig.5-27. At a meshing
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damping ratio of 0.17, the diagram reveals that even at the maximum damping
ratio coefficient, as the rotational speed increases, results of the dimensionless
lateral vibration displacement and relative torsional displacement does not change.
Furthermore, there is no stable multi-periodic motion as observed. Therefore,
similar to the meshing damping ratio coefficient, the rotational speed does not
change the motion state of system.
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Fig.5-27 Bifurcation plots of dimensionless vibration displacements versus rotational

speed: (a) transverse displacement, (b) relative torsional displacement

5.5.3 Analysis of the motion states in the translational-torsional
coupled nonlinear model.

Based on the analyses in the previous two sections, it is evident that
variations in the meshing damping ratio coefficient and rotational speed within
reasonable limits do not significantly change the motion states of lateral and
torsional vibrations displacement, which remain quasi-periodic, as demonstrated
by bifurcation diagrams, Poincaré maps, and phase diagrams. This subsection
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analyzes the underlying reasons for this phenomenon.

Compared to pure torsion nonlinear dynamic, the translational-torsional
nonlinear dynamic model encompasses a more comprehensive consideration, with
the key difference in the external force being that the constant gravitational term
in the first stage becomes a time-varying excitation. Furthermore, the nonlinear
analysis of the pure torsional model indicates that the stable motion ultimately
manifests as a 7T periodic motion. This is attributed to the least common multiple
of the two internal meshing stiffnesses' periods being seven, meaning that after
seven cycles of the first-stage meshing period, the excitation of system returns to
its initial position, initiating the subsequent repeating cycle. Therefore, it is
inferred that the fundamental motion state in the translational-torsional model is
still related to the 7T periodic motion observed in the pure torsional model.

To validate this hypothesis, the improved Newmark-beta method proposed in
Chapter 4 is employed for re-solving the translational-torsional nonlinear model,
as the built-in Runge-Kutta method in MATLAB is resource-intensive and slow,
leading to computational limitations. In this analysis, factors such as gravity, gear
backlash, and transmission errors are considered, with the primary parameters set
to a rotational speed of 3000 rpm and a meshing damping ratio of 0.17 to compute
the nonlinear dynamic response.

Fig.5-28 illustrates the phase trajectory and Poincaré map for one repeating
cycle under these conditions. The Poincaré map indicates a discernible pattern,
with the points roughly segmented into seven regions, each containing around 100
points, suggesting that the lateral vibration displacement of system exhibits
approximately 700 periodic motion state. Additionally, while the trajectory lines
in the phase plot are numerous, they display a recognizable periodic shape.

() (b)

Phase Trajectory Diagram _ Poincare Map
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Fig.5-28 Transverse vibration of sun at 3000 rpm during one repetition cycle: (a) phase
trajectory, (b) Poincare map diagram
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Additionally, the phase trajectory and Poincaré map of the planet gear
meshing with the sun are presented in Fig.5-29. Both the phase trajectory and
Poincaré mapping clearly indicate that the motion state corresponds to a certain
multiple time periodic motion, verifying the findings from Fig.5-28.

(a) Phase Diagram (b) __Poincare Map
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Fig.5-29 Transverse vibration of planet at 3000 rpm during one repetition cycle: (a) phase
trajectory, (b) Poincare map diagram

Corresponding to Fig.5-28 and Fig.5-29, the time history of the lateral
vibration of sun gear under the 3000rpm condition is shown in Fig.5-30. From the
waveform in Fig.5-30 (a), it can be preliminarily inferred that the lateral vibration
state exhibits a long-period behavior resembling a sine wave before repeating.
Fig.5-30 (b) and (c) reveal that the displacement values at the beginning point and
end point of one long period are 0.00649419mm and 0.0065035mm, respectively,
yielding a discrepancy of only 0.1434%. This confirms the computational
accuracy of the improved Newmark-beta method and validates that the selected
results indeed represent one complete repeating cycle. Furthermore, the enlarged
view in Fig.5-30 (a) reveals the presence of a small cycle within the time history,
which comprises seven peaks, as indicated by the black numbers (0-6) in the
enlarged graph. This indicates that within one small cycle, there are seven
excitation frequencies. After completing a small cycle, the peak at point 7 resets
to point 0, initiating the next small cycle. Starting from the marked point #1 in
Fig.5-30 (a), it is observed that the time history contains a total of 100 small
cycles. Therefore, it can be concluded that the lateral vibration response of the
composite planetary gear system experiences 700 distinct motion states within
one complete cyclic period.

Moreover, it is known that the period of the first stage time-varying gravity
is equal to the time taken for the carrier to complete one rotation, given by #.=1/f..
The meshing period of the first stage gear system is ¢,=1/f»=1/(fs-f:). Hence, the
gravitational period is an integer multiple of the meshing period, which is given
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te/tm=i X Z;=18.5X40=700. The least common multiple of 700 and 7, as analyzed
in the pure torsional nonlinear model, is still 700. This indicates that in the first

stage gear system, the periods of the two meshing stiffnesses and the time-varying
gravity item return to their initial positions simultaneously after 700 meshing
cycles. This corresponds perfectly to the 700 peaks observed in the time history
shown in Fig.5-30, elucidating that the fundamental motion in translational-
torsional nonlinear dynamics is a 700T periodic motion, with all other motion
states based on this foundation. Consequently, the most fundamental motion state
can be classified as quasi-periodic, providing an explanation for the quasi-
periodic or chaotic behaviors observed in the previous analyses. Thus, the analysis
results in this subsection validate the relationship between the translational-
torsional model and the pure torsional model, confirming the correctness of the

hypothesis.
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Fig.5-30 Transverse vibration displacements of the sun at 3000 rpm for one repetition
cycle: (a) time history plot, (b) results at the initial point, and (¢) results at the end point.
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5.6 Brief summary

This chapter establishes the nonlinear dynamic model for a two-stage parallel
compound gear system applied in ships, incorporating both a pure torsional model
and a translational-torsional coupling model. It explores the nonlinear
characteristics of this compound gear system and investigates the effects of
various key parameters (such as meshing damping ratio, rotational speed, and
meshing error amplitude) on its nonlinear motion states, leading to significant
conclusions related to the parallel structure of the system. The specific findings
are as follows:

(1) For the pure torsional nonlinear dynamic model, as the meshing damping
ratio increases within a reasonable range (0.03-0.17), the entire compound gear
system exhibits a rich variety of motion states, with the behavior of system being
highly sensitive to the damping ratio. Analysis of bifurcation diagrams indicates
a transition from chaotic motion to quasi-periodic motion, and finally to stable 7-
fold periodic motion. Poincaré maps, phase trajectories, and time histories
confirm each state, revealing that the ultimate stable motion state of 7T periodic
motion is linked to the least common multiple of the meshing stiffness excitations
in the two-stage gear system.

(2) In a low rotational speed range, the system demonstrates stable 7T
periodic motion. Conversely, in a high rotational speed range, the system exhibits
quasi-periodic or chaotic motion, indicating that higher speeds can induce
instability. Additionally, as the meshing damping ratio increases from 0.075 to 0.1
to 0.125, chaotic motion in the high-speed range gradually transitions to quasi-
periodic motion and ultimately to 7T periodic motion. Simultaneously, the
amplitude range of the vibration response of the system decreases, further
emphasizing that a higher meshing damping ratio enhances the stability of the
motion state of system.

(3) When the damping ratio and input speed are considered as bifurcation
parameters, Poincaré maps reveal that the transition from instability to stability
occurs via Hopf bifurcation. Additionally, when meshing error amplitude is
treated as a bifurcation parameter, both Hopf bifurcation and doubling periodic
bifurcation are observed. The nonlinear dynamic response transfers to
increasingly stable periodic motion with increasing damping ratio coefficient and
input speed. However, the opposite effect is noted for increasing meshing error
amplitude, which leads to unstable motion states.

(4) For the translational-torsional nonlinear model, changes in the damping
ratio and rotational speed have minimal impact on the motion states of lateral
vibration and relative torsional displacement, both of which exhibit quasi-periodic
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motion. Compared to the stable 7T periodic motion of the pure torsional model,
the fundamental motion state of the translational-torsional model is 700T periodic.
This arises from the influence of time-varying gravity item, which introduces a
gravitational term alongside the two meshing stiffnesses, with their least common
multiple being 700. The analysis of the 7T periodic motion in the pure torsional
model and the 700T periodic motion in the translational-torsional model
illustrates the connection between the two models. It also demonstrates that the
nonlinear study of the two-stage parallel compound gear system, starting from the
pure torsional model and gradually exploring the translational-torsional model,
validates the correctness of the approach. The comprehensive findings from both
models effectively explain the complexity of the nonlinear dynamic behavior of
the studied compound gear system.
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Chapter 6 Analysis of the Dynamic Characteristics
of the Double-helical Two-Stage Parallel Compound
Marine Gear Transmission System Under
Navigational Conditions

6.1 Preface

In the previous sections, this study employed a moving modeling approach,
derived the absolute acceleration of the components in a two-stage parallel
compound gear system within a fixed coordinate frame. Quasi-static and dynamic
models were developed to analyze their mechanical characteristics. Additionally,
both pure torsional and translational-torsional nonlinear models were established
to investigate how key parameters influence the nonlinear characteristics of the
compound gear system. However, when a ship moves on the sea surface, the gear
transmission system undergoes spatial motion relative to the aforementioned fixed
coordinate system. This results in the planetary gear transmission being affected
by external non-inertial frames. Notably, previous literature on the dynamics of
ship power systems under non-inertial frames is limited, highlighting the
necessity for such research. Thus, in this chapter, considering that the sea surface
is not always fixed during maritime operation, aiming to comprehensively analyze
the dynamic characteristics of ships in wave environments by accounting for the
motion of the marine itself. A dynamic model of the two-stage parallel compound
gear system within an external non-inertial coordinate system is establish in this
chapter. The dynamics of the power system of ship under these conditions are
analyzed. The study of this chapter broadens the research scope of dynamic
characteristics in operational states and enriches the content related to ship
dynamics, ultimately providing guidance for the design of ship power systems.

6.2 Special ship motions in navigational states

6.2.1 Rocking motion

Due to the influence of factors such as waves and wind, ships experience
rocking motion while operating at sea. Mechanical equipment like gear system,
fixed to the hull, also undergoes this rocking motion, generating dynamic forces
that significantly impact ship systems. Such motion must be considered when
designing and analyzing the dynamic behavior of these mechanical components
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to ensure their performance and reliability. Therefore, this subsection will analyze
the dynamic characteristics of the entire compound gear system during the rocking
motion of ship.

In this subsection, the rocking motion studied primarily refers to the lateral
rocking of ship about the forward axis (z-axis), which is shown as Fig.6-1. While
examining the rocking of hull, the rocking postion of ship must be considered,
with its angular displacement, angular velocity, and angular acceleration
represented by harmonic motion functions. In general, rocking is defined as the
periodic angular displacement motion of the ship around its longitudinal axis, with
a specified roll angle of £45 degrees and a period ranging from 3 to 14 seconds.
Additionally, to describe the motion characteristics of a ship undergoing rocking
motion, the following equations are given.

0,, = A, sin(Q,t),
0, = Ay Q,, COS(Q,t), (6-1)
b, =—A, Q.7 siN(Q,t).
where, 6,,0,,0, are the angle displacement, velocity and acceleration,
respectively. A:» is the max rocking angle. Q,, is the angle velocity of the rocking

motion, which is related to the period time of rocking motion, Q, =27/T, .

Y Vb

Y|
Ny . z, 8 Xp
Saygy Q,

10 7 b
5
/01}6. .
C‘{job Front View

Fig.6-1 Rocking motion of ship

6.2.2 Picthing motion

Another form of motion closely related to ship navigation is pitch motion,
caused by vertical wave profiles along the forward direction of ship, resulting in
a fore-and-aft oscillation. As illustrated in Fig.6-2, the pitch motion (longitudinal
oscillation) studied in this subsection primarily refers to the periodic angular
displacement about the transverse axis (x-axis). In analyzing the pitch motion of
ship, the harmonic motion functions are used to describe the angular displacement,
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angular velocity, and angular acceleration. This approach effectively simplifies
the analysis, enabling researchers to assess the impact of hull motion on
mechanical equipment fixed to it more easily.

Side View

Fig.6-2 Pitching motion of ship

The pitch angle of the ship is £10 degrees, with a pitch period ranging from
4 to 10 seconds. Therefore, based on these standards, the motion characteristics
of the ship during pitch motion can be expressed by the following equations.

O = A SIN(Q1),
O, = ApQy, COS(Q,1), (6-2)
0 = = A Q.7 SIN(Q,,1).
where, be,éxb,éxb are the angle displacement, velocity and acceleration,
respectively. A, 1s the max picthing angle. Q, 1is the angle velocity of the

picthing motion, which is related to the period time of picthing motion,
Q,=271T,.

6.3 Dynamics model of the two-stage parallel compound marine
gear transmission system in non-inertial reference frame

When the planetary gear system is fixed to a stationary base, the planet gears
not only rotate about their own axes but also revolve with the carrier. In this
momemt, the planets exist within a non-inertial frame of reference frame
associated with the carrier. To differentiate the non-inertial frame resulting from
the motion of the ship (basic coordinate system), this study designates the moving
coordinate system of the carrier as the internal non-inertial frame of the gear

Ve

system, denoted by the subscript 'i'. Conversely, the coordinate system that

accounts for the basic motion of the hull of ship is referred to as the external non-
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inertial frame of the gear system, denoted by the subscript 'e'.
6.3.1 Kinematic analysis of components in two non-inertial frames

As described in Section 2.4.1 of Chapter Two, the planetary gear system
inherently operates within a non-inertial frame (internal non-inertial frame),
specifically the moving coordinate system of the carrier. This section considers
the motion of the ship hull, introducing an additional external non-inertial frame.
To facilitate modeling, the author has derived formulas for the absolute
acceleration of various components within the internal non-inertial frame in
Chapter Two. Therefore, before establishing the dynamic equations in this section,
it is essential to derive the absolute absolute acceleration formulas for different
components in both non-inertial frames.

Fig.6-3 illustrates the displacement vectors of the sun gear and planet gears
in the two non-inertial frames. As shown in Fig.6-3, there are multi coordinate
systems. Firstly, the coordinate system o.-xcyczc represents the moving coordinate
system of the carrier (internal non-inertial frame), and the coordinate systems of
sun and planets parallele to this coordinate system or at an angle with this
coordinate system. While os-xpysz» denotes the coordinate system of the base
movement (external non-inertial frame). The fixed coordinate system O—XYZ
corresponds to the ground (inertial frame of the Earth). Aparting from the angular
velocity vector o, of inernal non-inertial frame, the rotational angular velocity

vector of the base coordinate system corresponding to the carrier moving
coordinate system represented as €.

Fig.6-3 Displacement vectors for components in two non-inertial coordinates: (a) sun and
(b) planet

- 154 -



Chapter 6 Analysis of the Dynamic Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear
Transmission System Under Navigational Conditions

In Fig.6-3 (a), the vector of the origin o, of the ship coordinate system in the
fixed coordinate system is denoted as ro. The vector of the origin o. of the carrier
moving coordinate system in the ship coordinate system is represented as rp. The
vector of the sun gear node M in the carrier moving coordinate system is given
by rct+rs, while the vector of the sun gear node M, in the fixed coordinate system
is indicated as rus. The relationships between these displacement vectors are as
follows:

Mys =P + 1, +1+T,
=X -1+Y, - J+2Z,-K

rbsz'ib+yb'jb+zb'kb (6-3)
r.=0

ro=X0.+Y, ). +2,-K,

where, In the equations, x», y», z» are constants, while xo, yo, zo, x5, Vs, Zs are time-
varying variables representing the displacement responses in their respective
coordinate systems. i, j, k are constants unit vectors, and is, j», ks, ic, je, ke are
time-varying unit vectors. Meanwhile, the derivatives of the unit vectors in the
external non-initial coordinate system and the internal non-initial coordinate
system with respect to time are expressed as follows.

% .Qx'b,djb =0Qx Jb,dk =02xk,

dt dt dt (6-4
di dk, )
d—tC:(QJr )><| —(.Q+ )X Jo,—2 m ¢ =(2+aw,)xk,

Following the same calculation process as in Chapter Two, taking the one
time and two times derivatives of the displacement vector ryus with respect to time,
respectively. The expressions for the absolute velocity and absolute acceleration
of the node in the static coordinate system O—XYZ, presented as follows.

Vo =[vy +2xr, +2x(r,+1r)]+[v, + o, x(r,+1,)]
= Ves +Vis
a, =[a, +0Qx r,+2x(2xr,)
+ 22XV, +2x(r, +1)+2x(2x(r,+1,)) (6-5)
+a, x(2x(r,+1,))+2x (0, x(r,+1,))]
+[a, + 20, xV,+ @, x (I, + 1)+ o, x (o, x (I, +1,))]
= aes + ais
in this equation, the subscript 'a' denotes absolute acceleration. The first eight
terms represent the derived absolute acceleration components due to the external
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non-inertial system, denoted as a.s. The subsequent four terms reflect the absolute
acceleration formula only present in the internal non-inertial system, denoted as
ais. Thus, the absolute acceleration in both non-inertial coordinate systems can be
viewed as the sum of the derived acceleration components a.s asised from external
non-inertial coordinate system and the derived acceleration components a;s asised
from external non-inertial coordinate system.

Similarly, as illustrated in Fig.6-3 (b), the expressions for the absolute
velocity and acceleration of the planets node in the fixed coordinate system
O—XYZ are presented as follows:

Vo = [Vo + @ x1 + 2% (1 +1)]+[v, + o x (1, +1))]
= Vep + Vip
a,, =[a, + @x1, + @x(2x1)+2x(r,+1,)+ 2x(2x(r, +1))) 6-6)
+22xV, + o x(2x(r, +1,))+2x (o, x(r,+1,))]
+[a, + 20, xv, + o, x(r, + 1)+ o, x (o, x(r,+1,))]

=a,, +a,

It is noted that the r, #0 for planet.

In summary, based on equations (6-5) and (6-6) from this section, it is
evident that the composition of absolute acceleration in the fixed coordinate
system is more complex in the presence of external non-inertial systems compared
to the case where only internal non-inertial systems exist. Consequently, the
absolute acceleration in these two non-inertial coordinate systems must exhibit
significant differences.

6.3.2 Dynamic model of the two-stage parallel compound marine gear
transmission system in two non-inertial frames

The entire two-stage parallel compound gear system, assembled through
coupling in the generalized coordinate system, forms a complete set of dynamic
equations for the gear transmission system. Therefore, the matrix form of the
dynamic equations for this compound gear train under both internal and external
non-inertial systems is presented as follows.

M- A 1) +C(t)-Q(t) + K (t)-Q(t) =T +G(t) + F,, (t) (6-7)

Based on Section 6.3.1, kinematic analysis indicates that the absolute
acceleration vectors of the components of the compound planetary gear system
differ significantly when the ship is moving at constant velocity, or performing
basic spatial maneuvers. During these fundamental movements, the components
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are influenced by both internal and external non-inertial systems. An example of
the absolute acceleration vector A4(¢) in the equation (6-7) is presented as follows.

A (t)=[a, +a,, a, +a,,a, +a,,6,,6,,0

esx ! Tisy esy ! sz esz ) Ysx? sy Ysz 1ttt

a_ +a,.,a +a,.,a_+a,,0 .0 .0

erx ! ~iry ery ! ~irz erz? U rx?! Yry? Yzttt

a, +a,,a, +a,,a,+a,,0, .6 .60

ecx ! licy ecy ! ~licz ecz? cx ! Yey? ezttt

v e .
Qi+ Bpr iy F By » Ay 8 pr , pr , epz .

(6-8)

Here, the a;,a, represent the components of the absolute acceleration of the

j component node in the internal and external non-inertial systems along the &
direction.

Due to the composition of multiple terms in the absolute acceleration Aa(t)
within the two non-inertial coordinate systems, dynamic analysis requires
decomposing the absolute acceleration vector into fundamental acceleration terms
Q(t) in local coordinate systems and additional terms A(t) from the non-inertial
systems. Some components related to displacement or velocity from the additional
terms are incorporated into the overall stiffness and damping matrices. The
remaining excitation component A'(t) is then moved to the right side of the
equation, reformulating the dynamic equations. Consequently, equation (6-7) can
be derived into equation (6-9) as follows

M-Q(t) +C(t)-Q(t) + K(t)- Q) =T +G(t) + F,. (1) —M - A (1) (6-9)

6.4 Dynamic characteristics analysis of compound marine gear
transmission system considering ship rocking motion

6.4.1 Calculation of generalized acceleration considering ship
rocking motion

For the additional generalized vector during ship rocking motion, the
rotational angular velocity Q of the ship own coordinate system is first analyzed.
According to Equation (6-1), the angular velocity vector ©Q of the body-fixed

coordinate system (0»-x5y5z») shown in Fig.6-3 can be expressed as follows
Q=Q, -k, (6-10)

Based on the principles of rocking motion and motion analysis, the
relationships between the unit vectors of the various coordinate systems are as

follows.
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I =c0s8, -i,—sind, - |, I, =c0sd, i, —sind, - |,
j=sing, -i, +cosé, -j, , 4]J,=sinb.-i.+cosb,-].,
k =k, k, =K,

Iy =cos(d; +4,) -1, —sin(6, +4,)- J, (6-11)

Jo =sin(6, +¢,) i, +cos(6, +4,)- ],
k, =K,

Therefore, based on the analysis of absolute acceleration of components in
both non-inertial reference frames outlined in section 5.3.1, the components of
absolute velocity and absolute acceleration of each component in their respective
local coordinate systems under the influence of both non-inertial frames are
derived. The following formulas sequentially provide the calculations for the
second-stage sun gear node and planet gear node. Notably, since the second-stage
gear system does not have an internal non-inertial frame, it is only affected by the
rocking motion of the ship, thus influenced solely by the external non-inertial
frame

Veoas = (X = Yo)io + (Vs + €2, X )i + 2K,
Ag-as = (X —2Q,, Y, _sz Ys _szzxs)ic (6-12)
+ (Y, +2Q, % +Q X —Q, y.) ], +Zk,

VGZ—ap = (gp _szyp)ip + (77p +sz (Xp + rC))jp + Z'sks
a‘GZ—ap = (é:p - 2glzbﬁp _sznp _szz (gp + rc))ip (6_13)
+ (np + 2gzzbg.p +sz (gp + rc) _szznp) jp + Zpkp
In contrast to the second stage, the sun, carrier, ring, and planes in first stage
are influenced by both non-inertial reference frames, resulting in significantly
different expressions, as shown below.
VGl—as = (Xs _(sz +a)c)ys) ’ ic + (ys + (sz + a)c)xs) ’ jc + (Zs + Zb) ’ kc
aGl—as = (Xs - 2(600 +sz)Ys - (sz + a)c)zxs) ' ic (6'14)
+(§, +2(m, + Q)% —(Q, + @) Y,) j. + 2, -k,
VGl—ap = (gp —(C()C +sz)77p)ip + (77,; + (a)c +sz)(§p + rc)) jp + (Zp + Z.b)kp
a‘Gl—ap = (é:p - 2((00 + sz)ﬁp - (a)c +sz)2(§p + rc)) : ip (6_15)
+(ﬁp + 2((00 +sz)§p - (a)c +sz)277p) ’ jp + Zp : kp
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Additionally, due to the presence of multiple coordinate systems in the
dynamics equations and the continuously varying rotation angle of the carrier, the
expressions for the components of gravitational force in each component local

coordinate system are represented as follows.

Gy =My Q- (=8I0, +6,) -1, ~c08(6,, +6,)- | +0-K,)
Geyp = Mg; 0+ (=SiN(0,, +6, +@,) i, —cos(6,, + 6, +8,)- j, +0-K.) 6.16)
{GGZj =My g-(=sin(@,)-i. —cos(d,)- j. +0-k.)

Ggpp = Mg 9 - (=siN(G,, +,)-i, —cos(6,, +4,)- J. +0-k,)

in while, the subscript p denotes the planets in the planetary gear system, while
the subscript j represents other components within the system. Furthermore, the
digits 1 and 2 correspond to the first stage and second stage for the compound

gear system, respectively.

6.4.2 Influence of ship rocking motion on the vibrational response of
central components

Under ship rocking motion, the entire compound planetary gear system is
influenced by multiple non-inertial reference frames, in contrast to a single
intrinsic non-inertial frame. In this study, the chosen rocking period is 4 seconds,
with a maximum rocking angle of 45°. Fig.6-4 illustrates the corresponding
angular displacement results for the selected sway parameters

50 Rocking Motion

(°)

Angular Displacement

Time (s)

Fig.6-4 Sketch diagram of swinging motion

Utilizing the improved Newmark-beta method proposed in Chapter 4 to solve
the dynamic equations of the entire compound gear system under two non-inertial

reference frames, the vibrational displacement, velocity, and acceleration for each
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node are obtained. Accordingly, Fig.6-5 presents the lateral dynamic response of
the carrier (representing the central component) in the first stage over one rocking

period (4 seconds).
0

-10

Y Displacement (pm)
S

-60 ' - .
-50 -25 0 25 50

X Displacement (pm)

Fig.6-5 Orbit of carrier in the first stage

The axis trajectory shown in Fig.6-5 indicates that the central component
undergoes lateral rocking motion in the XOY plane, following the rocking of the
ship hull, as indicated by the dashed arrows. This phenomenon preliminarily
suggests that the dynamic response of the derived equations aligns with the
direction and trend of external forces on the ship. Further analysis of the data in
Fig.6-5 reveals that the distance from the swing center to the midpoint of the
vibrational response path (illustrated by the red dashed lines and annotations)
indicates that the maximum lateral displacement of the carrier in first-stage during
the rocking is 37.040 microns, while the maximum vertical displacement is 39.688
microns. These two distances are approximately equal, and simulations based on
these values yield a swing angle of approximately 46.977°. This closely aligns
with the theoretical swing angle of 45°, confirming the accuracy of the dynamic
models established in this chapter under multiple non-inertial coordinate frames.

Fig.6-6 illustrates the lateral axis trajectory response of the sun in second
stage over one sway cycle, along with a schematic analysis. Since the second stage
lacks a moving coordinate system for the carrier, it is not affected by the non-
inertial frame of the carrier in that stage. Consequently, the vibrational response
occurs directly within the coordinate system of the ship hull sway, eliminating the

need for coordinate transformations as required for the first-stage components.
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Fig.6-6 The transverse vibration displacement of sun in second stage

Fig.6-6 (a) also clearly shows that the trajectory of the sun moves
periodically around point O. Fig.6-6 (b) provides a magnified view of this
trajectory for a more detailed analysis. Fig.6-6 (c) illustrates the axis trajectory of
the sun under the influence of gravity, without considering the swing motion. The
trajectory shown in Fig.6-6 (c) effectively explains the vibrational response
depicted in Fig.6-6 (b) and indirectly validates the observations in Fig.6-6 (a).
Based on the trajectory analysis in Fig.6-6 (a), (b), and (c), it can be accurately
predicted that the trajectory of central components, such as the ring, in the second-
stage gear system under sway motion.

Corresponding to the sun gear in Fig.6-6, Fig.6-7 illustrates the axis

trajectory of the ring in the second stage, both considering and neglecting sway
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motion. Similar to Fig.6-6 (a), Fig.6-7 (a) clearly depicts the sway motion and the
sway center point O. Fig.6-7 (b) provides a magnified view of Figure 6-5(a), while
Fig.6-7 (c) shows the axis trajectory of the ring without considering sway motion.
The trajectory displayed in Fig.6-7 (b) indicates that the ring path is composed of
multiple segments similar to those in Fig.6-7 (c). Therefore, Fig.6-7 (b) and (c)

indirectly validate the observed axis trajectory of the ring under sway motion.
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Fig.6-7 The transverse vibration displacement of ring in second stage

Moreover, an interesting phenomenon can be observed in Fig.6-6 (a) and
Fig.6-7 (a), their axis trajectories are not symmetrically aligned about the vertical
line X=0. This asymmetry can be explained by the trajectories illustrated in
Fig.6-6 (c) and Fig.6-7 (c).

Therefore, the analysis of the vibrational response of the central components
reveals that their motion trends in the fixed coordinate system are consistent with

sway motion, highlighting the influence of ship rocking motion.
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6.4.3 Influence of ship rocking motion on the vibration response of
planets

Considering rocking motion, the first-stage planet gear not only follows the
revolution of the carrier but also the motion of the ship hull. Consequently, under
the influence of two angular velocities, the centrifugal force on the planet gear
differs from that under a single angular velocity. In this study, the rocking motion
angular velocity is 1.5708 rad/s, while the input speed of the compound gear
system is 3300 rpm, resulting in a carrier angular velocity of 18.8496 rad/s. Based
on equation (6-15), the centrifugal force formula for the first-stage planet gear
can be expanded to m,r.(Qpt+we)?, which includes the effects of rocking motion.
Although the rocking angular velocity Q.»? is relatively small compared to the
carrier angular velocity w.?, an additional term 2Q.,m. also exists. Therefore, it is
essential to investigate the impact of rocking motion on the vibration response of
the first-stage planet gear in the radial coordinate direction. Figure 6-6 illustrates
a comparative schematic of the axis trajectory of the first-stage planet gear in the

inertial reference frame, both with and without considering rocking motion.

First Stage: Planet Orbit in MC
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Rocking ;
-
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Fig.6-8 Comparison of the orbit of planets in first stage without and with consideration of
the rocking motion

The results show that, after accounting for ship rocking motion, the midpoint
of the radial displacement of the first-stage planet gear increases from 29.2481
microns to 34.9751 microns, resulting in a radial shift of 5.73 microns,

approximately 19.58% greater than the original trajectory midpoint.

- 163 -



Doctoral Dissertation

Rocking motion affects the components of the second stage system by
transforming their movement into one influenced by an external non-inertial
frame. As a result, the motion of the planets is described in a moving coordinate
system, leading to the generation of an additional centrifugal force. Fig.6-9
illustrates a comparative schematic of the axis trajectory of the planets in second
stage in the radial-tangential moving coordinate system, both with and without

considering rocking motion

90 Second Stage: Planet Orbit

—NoRockingMotion

-100 | RockingMotion

-110 |

-120 |

-130 |

-140 |
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-150 |
-160 : : : :
-2 -1 0 1 2 3
X Displacement (pzm)
Fig.6-9 Comparison of the orbit of planets in second stage without and with consideration
of the rocking motion

Fig.6-9 indicates that, compared to the axis trajectory without considering
rocking motion (blue part), the presence of rocking motion significantly increases
the trajectory range of the planet gear of second-stage in the radial direction (red
part) by approximately 2-3 times. However, with a rocking angular velocity of
only 1.5708 rad/s, the impact of centrifugal force on the trajectory remains limited.
Therefore, it can be inferred that the observed changes in the trajectory are

primarily due to the effects of rocking motion itself.

6.4.4 Influence of ship rocking motion on the motion state of the
compound gear train

Building on the research from Chapters 4 and 5, the nonlinear dynamic
behavior of the compound gear system used in ship within a internial non-inertial
conditions has been established, detailing the fundamental cause of the 700T

periodic motion. This chapter also analyze the motion state of the entire compound
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gear system under the influence of rocking motion, which significantly changes
the form of the dynamic equations. Fig.6-10 presents the phase trajectory and
Poincaré map of the sun gear in first stage, demonstrating that the entire gear

system exhibits a chaotic motion state under the influence of rocking motion.

0
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X Velocity (mm/s)

=20 ¢

-30

-0.02  -0.01 0 0.01 0.02
X Displacement (mm) X Displacement (mm)

-0.02 -0.01 0 0.01 0.02

Fig.6-10 Transverse vibration of sun in first stage during one rocking cycle: (a) phase
trajectory, (b) Poincare map diagram

Corresponding to the phase trajectory and Poincaré map, the variation of
lateral displacement of the sun gear in first stage versus time is illustrated in
Fig.6-11. Fig.6-11 (a) presents the complete time history over one rocking cycle,
while Fig.6-11 (b) and (c¢) provide supplementary information. Based on Fig.6-10,
Fig.6-11 (a), and Fig.6-11 (b), it is evident that the system is currently in a chaotic
motion state. Furthermore, Fig.6-11 (c) highlights the numerous peaks within a
repeating time, displaying no discernible pattern, thereby reinforcing the
conclusion of chaotic behavior.

Therefore, this subsection concludes that the presence of rocking motion has
transformed the fundamental 700T periodic motion of the compound gear system
into a chaotic state. Although the motion is now chaotic, the range of displacement
amplitude remains largely unchanged compared to the results in Chapter 4; it

simply indicates that the motion has become more complex.
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Fig.6-11 Transverse vibration displacements of the sun in first stage for one swinging
cycle: (a) time history diagram, (b) local time history maps, (c) time history diagram over

a short period of time

6.5 Dynamic characteristics analysis of compound marine gear
transmission system considering ship pitching motion

6.5.1 Calculation of generalized acceleration considering ship
pitching motion

For the pitch motion, the angular velocity vector € of the hull coordinate
system (0p-xpy5zp) in Fig.6-2 can be expressed using the following formula.
2=Q, i, (6-17)
According to the principles of pitching motion, the relationships between the
unit vectors of various coordinate systems are as follows:
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=i,

j=cosé,
k=sing,,
I, =C0S 6,
J, =siné,

-y —sin G, -k,
- J, +cosd,, -k,
-i,—=sinég, - j.

-1, +c0s 6, - . (6-18)

k, =K,
i, =cos(6, +¢,)-i, —sin(6, +¢,)- i,
Jo =sin(6, +¢,)-1,+cos(0, +4,) |,
Ky =K,

Therefore, based on the analysis of the absolute acceleration of components
in both internal and external non-inertial frames in section 6.3.1, expressions for
the absolute velocity and acceleration of components within the compound gear
system under the influence of both non-inertial frames have been derived.
Utilizing the relationship equations between coordinate systems (6-18), the
computational formulas for the second-stage and first-stage sun gear nodes
(representing the central gear) and the planet gear nodes in their respective
coordinate systems are presented as follows:
=X+ (Y, Q2 —Q, (2,0 +2,)+2,8IN6,,) ],
+(2,+Q,, Y, +12,c086,) K,

VGZ-as

. L Ly (6-19)
R (ys _Qxb(zs + ZSO) _Qxbzys _ZQxbzs) e

+Z,+Q Y, — Q2 (2, + 2, +2,)+2Q,V,) K,

Vea.ep = (X, +2,8IN(4,)siN G, —Q, sin(p,)(z, +2,)) -1,

+(y, +2,cos(g,)sin6,, —Q,, cos(é,)(z, +2,))- ],

+(z'p +2,c086,, +Q,, sin ¢p(xp +r)+Q, cos¢pyp) . kp
Agp.ep = (Xp _Qxbzp sin ¢p _Qxb2 (Xp + rc)Sin2 ¢p

—Q, %y, sing cosg, —2Q, 7 sing )i, (6-20)
(Y, — 2, COSP, — Q% (X, +1,)sin g, COS ¢,
—Q,,%y,c0s* ¢ —2Q, 7 €0, |,

+H(Z,Qy, SING, (X, +1,)—Q, COSB Y,

-0, % (2, +2,)+2Q,, (X, sing, +y,cosg )k,

- 167 -



Doctoral Dissertation

Voras = (X, — @Y, +2,8iN0,, sin@, —Q, (2, +Z,+2,,)sIn6,) i,
+(y, + o X, +2,8in0,, cosb, —Q,, (2, + 2, + 2,,) C0Sb,) - ],
+(2,+Q,, (x,Sind, +y, cosb.)+ 7z, cosb,, ) k.

gy = (X =20V, — @Y, — 0%, — (2, +2,,)SIN O,

—-Q, *sing (x,sin g, +y, cos6,)

-2Q,2.5iN6, +Q o, (2, + 2,,) C0Sb,) -1, (6-21)
+(§, + 20.%, + d X, — o]y, —Q,, (2, +2,,) COS b,

-Q ?cosd, (x,sind. +y, cosb,)

-2Q 7. c086. —Q 0. (2, +2,,)sSIiN6,)- |,

+(Z,+Q,, (X, SING, +y, c0s0.)—Q, % (2, + 2,5 +2,)

+2Q (X sin@ +y, cosb,)+Q,, o, (X cosO, —y,sinb.))-K,

Vor.ap = (X, —@.Y, +2,5ING,, sin(0, +¢,) —Q,, sin(6, + @, )(z, +2,)) 1,
+(Y, + o (X, +1,)+2,sin 6, cos(0, +¢,)
—Q,, c0s(6, + P, )(2, +2,))- 1,
+(z‘p +12,c0s6, +Q,, sin(6, +¢p)(xp +r)
+Q,, cos(0, +4,)Y,) K,
Ag1.qp = (&, =207, ~ W), — @,
—Q2(X, +1,)sin%(6, + ¢,) — 2, 8IN(6, + ;)
—Q,,%y, sin(6, +4,)cos(b, + ¢,)
—2Q,,2, sin(é, +¢p) +Qu0.2, cos(6, +¢p)) . ip
+(7j, + chfp —win, — o,
—Q, 2(X, +1,)sin(d, +@,) cos(6, + 4, ) — 2,2, €OS(6, + )
—Q,%y, cos’ (6, +¢,)
—2Q,,2,c08(8, +4,) — Q0.2 8IN(0, +4,))- ],
H(Z, — Q2 (2, +2,) + Qyp sIND, + ¢, ) (X, +T,)
-Q,, cos(6, +¢,)Y, (6-22)
+2Q,, (X, sin(0, +¢,) + Y, cos(6, +4,)) —Q,,@.Y, Sin(0, +¢,)
+Q,,0, (X, +1.)cos(6, +¢,)) K,

Additionally, given the presence of multiple coordinate systems in the

dynamic equations and the continuously varying rotation angle of the planet frame,
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the expressions for the gravitational components of each component along the

axes of its own coordinate system are represented as follows

Ggy =Mg; g -C0s 6, - (=sin(B,) i, —cos(8,)- j, +0-k,)
GGlp = mGpg Cosexb (_Sln(gc +¢p) : ic _COS(HC +¢p) : jc +0 kc) (6 23)
{Gsz B mng .COSHXb (O ic -1 jc +0- kc)

Gg,p =Mg,g-C0SG,, - (=sin(g,) i, —cos(d,)- j, +0-Kk,)

6.5.2 Vibration response analysis of components considering ship
pitching motion

The rocking motion of ship is characterized by the alignment of the rocking
plane parallel to the ship own XOY coordinate plane, with an angle of 0°. In
contrast, during pitching motion, the pitching plane is perpendicular to the ship
XOY coordinate plane, resulting in a 90° angle. Consequently, the pitching plane
is also at a 90° angle to the XOY plane of the compound planetary gear system.
Although the coordinate systems of the compound gear system and the ship are
parallel, there is a specific distance along the Z-axis between them, as indicated
by z» in the equations. Furthermore, a comparison of the absolute acceleration
formulas for both motions reveals that the pitching motion has more influencing
terms on the coordinate system of the planetary gear system. This section first
analyzes the dynamic response of the model during pitching to validate the
accuracy of the dynamic model. Fig.6-12 illustrates the lateral vibration response
of sun gear and planet gear #1 in their own moving coordinate system (MC) for
the first stage. Fig.6-12 (a) illustrates that the trajectory of the sun gear under
pitching motion differs from that in Chapter 3, which did not consider pitching.
The presence of pitching results in a triangular shape formed by three branches in
the trajectory of the sun gear. Analysis indicates that in the moving coordinate
system of the compound gear system, regardless of changes in the external non-
inertial frame, the first stage can always be viewed as a fixed-axis gear system.
Since the first stage system comprises three planet gears with sequential phasing,
the trajectory in the moving coordinate system displays a triangular shape. This
further supports the accuracy of the dynamic model established under two non-

inertial frames, demonstrating that all terms related to pitching motion in
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equations (6-19) to (6-22) were fully considered without omitting any terms from
the absolute acceleration. Fig.6-12 (b) shows a similar triangular trajectory for

the planet gears that mesh with the sun gear.
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Fig.6-12 The transverse vibration response of components in first stage considering
pitching motion: (a) sun, (b) planet #1

Additionally, the lateral vibration response of other components of the first-
stage gear system, such as the carrier and the ring, is depicted in Fig.6-13. The
axial trajectory shapes presented in Fig.6-13 also corroborate the triangular
conclusion. Together with the results from Fig.6-12 for the sun and planets, this
indicates that although the plane of the pitching motion is not the same as that of
the axial trajectory, unlike rocking motion, the pitching motion of the ship hull
still significantly influences the axial trajectories of the components in the first

stage.
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Fig.6-13 The transverse vibration response of components in first stage considering
pitching motion: (a) carrier, (b) ring
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6.5.3 Influence of picthing motion on the meshing characteristics

According to Section 6.5.2, although the pitching plane is at a 90° angle to
the cross-section (XOY) of the compound gear system, the system position behind
the ship, which closes to the propeller, indicating that under pitching motion, the
XOY plane of the compound gear system is not always vertical, it may also rock
with hull. This can potentially affect the meshing between gears. Therefore,
analyzing the meshing characteristics of the gear system under pitching motion is
essential. This section primarily focuses on the variation of the meshing forces.
As the load sharing ratio carried by each planet gear reflects the changes in
meshing force, the load-sharing ratios (LSR) of each planet gear within the system
is analyzed.

Considering the pitching motion of ship and the reasonable eccentricity
errors in the components of the compound gear system, Fig.6-14 presents the load

sharing ratios (LSR) of the first stage.

1
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Fig.6-14 Sequential phase transmission of the first stage: LSR of planets

It is seen that, for planet gear #1, there are periods where it fully carries the
transmitted load, as indicated by LSR=1, while during other intervals, it transfers
no load (LSR=0). Throughout the remaining periods, the LSR for planet gear #1
varies between 0 and 1. This phenomenon is similarly observed in the other two
planet gears, indicating that the load-bearing occurs in a rotating time among the
three gears. Consequently, when one planet gear fully supports the load, the other

two are disengaged, suggesting that the pitching motion negatively impacts the
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meshing between the gears. The significant variation in load carried by the gears
is detrimental to their lifespan, ultimately affecting the operational reliability of

the entire compound gear system.

100 200 300 400 500 600
Mesh Cycle

Fig.6-15 In phase transmission of the second stage: LSR of planets

Fig.6-15 illustrates the load sharing ratios (LSR) of the second stage.
Although the LSR in the second stage exhibits less variation compared to the first
stage, the meshing phase aligns with that of the first stage. The load sharing ratio
of each planet gear deviates from the ideal value of 0.2, indicating changes in the
loading conditions for each gear

Based on the analysis of the load sharing ratios for each stage of the gear
system, it can be concluded that the pitching motion significantly affects the
meshing characteristics of the first stage gear system more than the second stage.
Severe pitching motions can lead to disengagement of gears within the differential
gear system. To enhance the lifespan of the entire compound gear system, it is
recommended that ships sould avoid significant vertical pitching motions during

missions.
6.6 Brief summary

In this chapter, the formulas for the absolute accelerations of various
components in a two-stage parallel compound gear system are derived, taking into
account the external non-inertial reference frame. A dynamic model for the marine
two-stage parallel compound gear system during navigation is established, and its
dynamic characteristics under marine rocking and pitching motions are analyzed.
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The main conclusions are as follows:

(1) The absolute acceleration formulas indicate that the components of the
compound gear system are influenced not only by the speed (w.) of carrier but
also by the motion speed () of ship, including coupling terms between Q and wc.

(2) The analysis of the lateral vibration response in the ship coordinate
system shows that the motion trend of the central gear aligns with the rocking
motion of ship. Because the angular velocities of the rocking motion and the
carrier rotation being in the same plane, which verifies the validity of the
established dynamic model of the entire compound gear system under rocking
conditions.

(3) During rocking motion, although the angular velocity of rocking (1.5708
rad/s) is significantly lower than that of the carrier (18.8496 rad/s) under normal
conditions, the midpoint of the planet gear in first stage increases by 19.58%
radially, indicating a significant impact of rocking on the dynamic response of the
compound gear train.

(4) Following the consideration of pitching motion, despite the introduction
of additional variables in the absolute acceleration expression, the axial trajectory
results of the components in first stage still align with the characteristics of fixed-
axis gear systems, confirming the accuracy of the dynamic model under pitching
motions. Furthermore, the analysis of load sharing ratios in both stages reveals
that pitching motion can lead to disengagement of gears in the first stage at certain
moments, negatively affecting the operational lifespan of the entire compound
gear system.
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Conclusions

In this paper, a two-stage parallel compound gear transmission system for
ships is taken as the research object, and the modelling methods of the two-stage
parallel compound gear system in fixed and moving coordinate systems are
proposed, respectively. The equations for absolute acceleration in the fixed
coordinate system are derived. The dynamic and static models of the two-stage
parallel compound marine gear transmission system considering the flexible
deformation of double-helical gears are developed. Furthermore, an improved
Newmark-beta numerical calculation method is proposed. The accuracy of the
established modeling method is verified by comparative analysis of the dynamic
and static models, and the vibration response behaviour of the two-stage parallel
compound gear system is investigated using this method. The pure torsional and
translational-torsional nonlinear dynamic model of the two-stage parallel
compound marine gear transmission system are developed and its dynamic
characteristics are revealed. Finally, the dynamic model of the compound marine
gear system under the external non-inertial coordinate system of the ship hull is
established, and the impact rule of the dynamic characteristics of the compoound
gear system is analysed under the rocking and pitching motions of the ship. The
conclusions obtained in this paper are as follows:

(I) A dynamic and static modelling method for a two-stage parallel
compound gear system for ships is proposed. Based on the combined use of fixed
and moving coordinate systems, a projection vector about the vibration
displacement of the carrier to the S-Pi and R-Pi meshing equations for the first-
stage is introduced in this method. Thus, the problem of inaccurate dynamical
equations caused by the absence of key acceleration terms such as implicated
acceleration and Koch acceleration due to the rotation of the carrier is avoided.
The forms of absolute velocity and absolute acceleration of different components
in the first-stage under the moving coordinate system are derived. The lumped
mass model under the moving coordinate system of the carrier in first stage is
established. At the same time, considering the flexibility of the shaft, the overall
dynamic model of the whole two-stage parallel compound gear system is obtained.

(2) The influence laws of different error types on the load sharing ratio and
global transmission error of the two-stage parallel compound gear system are
revealed. The results show that the load sharing ratio of the gear train is affected
by the meshing phase configuration, especially the fluctuation range of the load
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change of the sequential phase configuration is larger than that of the in-phase
configuration. The excitation frequency of the output shaft of the two-stage
parallel compound gear system shows the coupling effect of the meshing
frequencies of each stage. The tangential error under different meshing phase
conditions affects the global transmission error differently, i.e., the sequential
phase introduces additional excitation frequencies generated by the eccentricity
error, whereas the in-phase does not activate any new frequency components. The
floating configuration of sun improves the load distribution of the system in both
mesh phasing configurations compared to the fixed configuration, which is more
significant in the sequential phase configuration.

(3) For the meshing time-varying stiffness matrix equation of the gear system,
an improved Newmark-beta method suitable for this type of equation is proposed.
The method adds a judgement on the relative error of the iteration results of
adjacent time steps to avoid the influence of error accumulation on the process of
solving the system dynamics equations. The vibration response of the system
under the dynamics model was calculated using this method, and the dynamic and
static results were compared to verify the accuracy of the modelling method
proposed in this paper. The effects of gravity and centrifugal force on the
transverse vibration response are further investigated. The results show that
gravity and centrifugal force have important effects on the axial trajectory, in
which the trajectory of the planets in first-stage changes significantly at high
speed. The acceleration spectrograms of the planets in the two-stage show a strong
coupling relationship. The rotational frequencies associated with time-varying
errors (indexing error and eccentricity error) all appear on both sides of the
meshing frequency, i.e., a frequency modulation phenomenon occurs.

(4) Pure torsional and translational-torsional nonlinear dynamics models of
the studied two-stage parallel compound gear system, which takes into account
the segmental nonlinearity of the meshing displacements, are established. Based
on the pure torsion model, the influence laws of each key parameter (meshing
damping ratio, rotational speed, and magnitude of meshing error) on the nonlinear
motion state of the compound gear system are investigated. The results show that
under the condition of constant rotational speed, with the gradual increase of the
meshing damping ratio in the range of 0.03-0.17, the compound gear system is
first in the state of chaotic motion, and then enters into a longer period of quasi-
periodic motion, and finally the system falls into a stable motion of 7 times
periodic motion, and the Poincaré map, phase trajectory map, and time history
diagrams that are consistent with the motion state are all observed under different
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meshing damping ratio. When the damping ratio coefficient, input speed and
torque are used as bifurcation parameters, the bifurcation of the system from
unsteady state to stable state is Hopf bifurcation. When the meshing error is used
as the bifurcation parameter, the multiply-periodic bifurcation appears in addition
to the Hopf bifurcation. Unlike the law of the influence of the magnitude of the
meshing error on the nonlinear dynamic response of the system, the system
gradually transforms into a stable multiply-periodic motion as the damping ratio
coefficients, input speed and torque increase.

(5) The nonlinear vibration characteristics of the translational-torsional
model are further investigated, and the results show that the motion states of both
transverse vibration and relative torsional displacement are quasi-periodic
motions and do not change significantly with the changes of damping ratio
coefficients and rotational speed. Compared with the 7T periodic steady motion
of the pure torsion model, the basic motion state of the translation-torsion model
system is 700T periodic motion, which is the least common multiple of the
meshing stiffness period of the two-stage and the period of the gravity term. It
also shows that for the nonlinear study of complex structures, the strategy of
starting from a pure torsion model and gradually exploring to a translational -
torsion model is more detailed and perfect in explaining the arising complexity
phenomena.

(6) Considering the external non-inertial system, a dynamics model of the
two-stage parallel compound marine gear transmission system is established. On
the basis of the internal moving coordinate system of carrier, the model couples
the overall motion of the ship, the dynamic behaviour of the two-stage compound
marine gear transmission system during operation condition of ship is analyzed.
when the ship is in the rocking and pitching motion, the dynamic characteristics
of the whole compound gear system are obtained. The results of the study show
that the form of absolute acceleration of the two-stage parallel compound gear
system for ships under the non-inertial system shows obvious changes, and the
acceleration terms under the influence of the extrinsic non-inertial system are
significantly more than those under the internal non-inertial system. It indicates
that the single external excitation applied to the compound gear system is not
sufficient to establish an accurate dynamic model when the motion of the external
non-inertial system is considered. The presence of the rocking motion of ship
expands the radial vibration response range of the planets, leading to a change in
the state of motion of this marine compound gear system from 700T periodic
motion to chaotic motion. The study results of the pitching motion suggest that
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ships should try to avoid severe waves in the forward direction to avoid

disengagement of gears in high-speed stage.

-178 -



[1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

References

References

F. Viadero, A. Fernéndez, M. Iglesias, A. De-Juan, E. Liafb, M.A. Serna, Non-
stationary dynamic analysis of a wind turbine power drivetrain: Offshore
considerations, Applied Acoustics 77 (2014) 204-211.
https://doi.org/10.1016/j.apacoust.2013.10.006.

R. Chen, D. Qin, Y. Yi, C. Liu, J. Shi, Dynamic characteristics of electromechanical
coupling of wind turbine drive system under multi-source excitation, Wind Energy
25 (2022) 391-418. https://doi.org/https://doi.org/10.1002/we.2678.

Y. Nie, F. Li, L. Wang, J. Li, M. Sun, M. Wang, J. Li, A mathematical model of
vibration signal for multistage wind turbine gearboxes with transmission path effect
analysis, Mechanism  and Machine  Theory 167  (2022) 104428.
https://doi.org/10.1016/J. MECHMACHTHEORY.2021.104428.

Y.H. Xie, L.X. Xu, Y.Q. Deng, A dynamic approach for evaluating the moment
rigidity and rotation precision of a bearing-planetary frame rotor system used in RV
reducer, Mechanism and Machine  Theory 173 (2022) 104851.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2022.104851.

M. Cammalleri, A. Castellano, Analysis of hybrid vehicle transmissions with any
number of modes and planetary gearing: kinematics, power flows, mechanical power
losses, Mechanism and Machine Theory 162 (2021).
https://doi.org/10.1016/j.mechmachtheory.2021.104350.

A. Kahraman, Free torsional vibration characteristics of compound planetary gear
sets, Mechanism and Machine Theory 36 (2001) 953-971.
https://doi.org/10.1016/S0094-114X(01)00033-7.

S. Wang, R. Zhu, Nonlinear dynamic analysis of GTF gearbox under friction
excitation with vibration characteristics recognition and control in frequency domain,
Mechanical  Systems and  Signal Processing 151  (2021) 107373.
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107373.

J.H. Kuang, Y.T. Yang, An Estimate of Mesh Stiffness and Load Sharing Ratio of a
Spur Gear Pair, (1992) 1-9. https://doi.org/10.1115/DETC1992-0001.

Y. Cai, T. Hayashi, The Linear Approximated Equation of Vibration of a Pair of Spur
Gears (Theory and Experiment), Journal of Mechanical Design 116 (1994) 558-564.

-179 -



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Doctoral Dissertation

https://doi.org/10.1115/1.2919414.

X. Liang, H. Zhang, L. Liu, M.J. Zuo, The influence of tooth pitting on the mesh
stiffness of a pair of external spur gears, Mechanism and Machine Theory 106 (2016)
1-15. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2016.08.005.

H. Ma, J. Zeng, R. Feng, X. Pang, B. Wen, An improved analytical method for mesh
stiffness calculation of spur gears with tip relief, Mechanism and Machine Theory 98
(2016) 64-80. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2015.11.017.
M.B. S&nchez, M. Pleguezuelos, J.l. Pedrero, Approximate equations for the meshing
stiffness and the load sharing ratio of spur gears including hertzian effects,
Mechanism and Machine Theory 109 (2017) 231-249.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2016.11.014.

Z. Li, C. Zhu, H. Liu, Z. Gu, Mesh stiffness and nonlinear dynamic response of a spur
gear pair considering tribo-dynamic effect, Mechanism and Machine Theory 153
(2020) 103989.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103989.

Z. Zhao, H. Han, P. Wang, H. Ma, S. Zhang, Y. Yang, An improved model for
meshing characteristics analysis of spur gears considering fractal surface contact and
friction, Mechanism and Machine  Theory 158 (2021) 104219.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.104219.

W. Chen, Y. Lei, Y. Fu, L. Hou, A study of effects of tooth surface wear on time-
varying mesh stiffness of external spur gear considering wear evolution process,
Mechanism and Machine Theory 155 (2021) 104055.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.104055.

M. Pleguezuelos, M.B. Sénchez, J.I. Pedrero, Analytical model for meshing stiffness,
load sharing, and transmission error for spur gears with profile modification under
non-nominal load conditions, Applied Mathematical Modelling 97 (2021) 344-365.
https://doi.org/https://doi.org/10.1016/j.apm.2021.03.051.

Z. Sun, S. Chen, Z. Hu, X. Tao, Improved mesh stiffness calculation model of
comprehensive modification gears considering actual manufacturing, Mechanism and
Machine Theory 167 (2022) 104470.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104470.

C.G. Cooley, C. Liu, X. Dai, R.G. Parker, Gear tooth mesh stiffness: A comparison
of calculation approaches, Mechanism and Machine Theory 105 (2016) 540-553.

- 180 -



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

References

https://doi.org/10.1016/j.mechmachtheory.2016.07.021.

T. Kiekbusch, D. Sappok, B. Sauer, I. Howard, Calculation of the combined torsional
mesh stiffness of spur gears with two- and three-dimensional parametrical FE models,
Strojniski  Vestnik/Journal of Mechanical Engineering 57 (2011) 810-818.
https://doi.org/10.5545/sv-jme.2010.248.

H. Jerrar, A. ElI Marjani, E. Boudi, Calculation Model of Gear Meshing Stiffness
Using FEM, International Review on Modelling and Simulations (IREMOS) 8 (2015)
477. https://doi.org/10.15866/iremos.v8i4.6492.

J. Zhan, M. Fard, R. Jazar, A CAD-FEM-QSA integration technique for determining
the time-varying meshing stiffness of gear pairs, Measurement: Journal of the
International Measurement Confederation 100 (2017) 139-149.
https://doi.org/10.1016/j.measurement.2016.12.056.

L. Vedmar, B. Henriksson, A General Approach for Determining Dynamic Forces in
Spur  Gears, Journal of Mechanical Design 120 (1998) 593-598.
https://doi.org/10.1115/1.2829320.

A. Fernandez del Rincon, F. Viadero, M. Iglesias, P. Garc®h, A. de-Juan, R.
Sancibrian, A model for the study of meshing stiffness in spur gear transmissions,
Mechanism and Machine Theory 61 (2013) 30-58.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2012.10.008.

M. Iglesias, A. Fernandez del Rincon, A. de-Juan, A. Diez-lbarbia, P. Garcia, F.
Viadero, Advanced model for the calculation of meshing forces in spur gear planetary
transmissions, Meccanica 50 (2015) 1869-1894. https://doi.org/10.1007/s11012-015-
0130-3.

X. Zheng, W. Luo, Y. Hu, Z. He, S. Wang, Study on the mesh stiffness and nonlinear
dynamics accounting for centrifugal effect of high-speed spur gears, Mechanism and
Machine Theory 170 (2022) 104686.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104686.

Z. Wan, H. Cao, Y. Zi, W. He, Y. Chen, Mesh stiffness calculation using an
accumulated integral potential energy method and dynamic analysis of helical gears,
Mechanism and Machine Theory 92 (2015) 447-463.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2015.06.011.

M. Rezaei, M. Poursina, S.H. Jazi, F.H. Aboutalebi, Calculation of time dependent

mesh stiffness of helical planetary gear system using analytical approach, Journal of

- 181 -



[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]

Doctoral Dissertation

Mechanical Science and Technology 32 (2018) 3537-3545.
https://doi.org/10.1007/s12206-018-0704-9.

M. Feng, H. Ma, Z. Li, Q. Wang, B. Wen, An improved analytical method for
calculating time-varying mesh stiffness of helical gears, Meccanica 53 (2018) 1131
1145. https://doi.org/10.1007/s11012-017-0746-6.

Q. Wang, B. Zhao, Y. Fu, X. Kong, H. Ma, An improved time-varying mesh stiffness
model for helical gear pairs considering axial mesh force component, Mechanical
Systems and Signal Processing 106 (2018) 413-429.
https://doi.org/https://doi.org/10.1016/j.ymssp.2018.01.012.

C. Zhang, H. Dong, D. Wang, B. Dong, A new effective mesh stiffness calculation
method with accurate contact deformation model for spur and helical gear pairs,
Mechanism and Machine Theory 171 (2022) 104762.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2022.104762.

W.-J. Chung, J.-H. Park, H.-G. Yoo, Y.-J. Park, S. Kim, J. Sohn, G. Lee, Improved
analytical model for calculating mesh stiffness and transmission error of helical gears
considering trochoidal root profile, Mechanism and Machine Theory 163 (2021)
104386. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104386.

H. Yang, W. Shi, Z. Chen, N. Guo, An improved analytical method for mesh stiffness
calculation of helical gear pair considering time-varying backlash, Mechanical
Systems and Signal Processing 170 (2022) 108882.
https://doi.org/https://doi.org/10.1016/j.ymssp.2022.108882.

S. Wang, R. Zhu, An improved mesh stiffness calculation model for cracked helical
gear pair with spatial crack propagation path, Mechanical Systems and Signal
Processing 172 (2022) 108989.
https://doi.org/https://doi.org/10.1016/j.ymssp.2022.108989.

A.A. Ross, High speed gears, American Gear Manufacturers Association Paper (1927).
E. Bckingham, Dynamic loads on gear teeth, American Society of Mechanical
Engineers Special Research Publication, 1931.

W.A. Tuplin, Dynamic Loads on Gear Teeth, Machine Design 25 (1953).

R.W. Gregory, S.L. Harris, G. R. G. Munro, Dynamic Behaviour of Spur Gears,
Proceedings of the Institution of Mechanical Engineers 178 (1963) 207-218.
https://doi.org/10.1177/002034836317800130.

H.N. Ozgiven, A non-linear mathematical model for dynamic analysis of spur gears

- 182 -



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

References

including shaft and bearing dynamics, Journal of Sound and Vibration 145 (1991)
239-260. https://doi.org/10.1016/0022-460X(91)90590-G.

A. Kahraman, H. Nevzatozguven, D.R. Houser, J.J. Zakrajsek, Dynamic analysis of
geared rotors by finite elements, Journal of Mechanical Design, Transactions of the
ASME 114 (1992) 507-514. https://doi.org/10.1115/1.2926579.

C.-S. Chen, S. Natsiavas, H.D. Nelson, Coupled Lateral-Torsional Vibration of a
Gear-Pair System Supported by a Squeeze Film Damper, Journal of Vibration and
Acoustics 120 (1998) 860—-867. https://doi.org/10.1115/1.2893912.

W.D. MARK, ANALYSIS OF VIBRATORY EXCITATION OF GEAR SYSTEMS -
BASIC THEORY, JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 63
(1978) 1408-1430.

M.S. TAVAKOLI, D.R. HOUSER, OPTIMUM PROFILE MODIFICATIONS FOR
THE MINIMIZATION OF STATIC TRANSMISSION ERRORS OF SPUR GEARS,
JOURNAL OF MECHANISMS TRANSMISSIONS AND AUTOMATION IN
DESIGN-TRANSACTIONS OF THE ASME 108 (1986) 86-95.
https://doi.org/10.1115/1.3260791.

H.N. OZGUVEN, D.R. HOUSER, DYNAMIC ANALYSIS OF HIGH-SPEED
GEARS BY USING LOADED STATIC TRANSMISSION ERROR, JOURNAL OF
SOUND AND VIBRATION 125 (1988) 71-83. https://doi.org/10.1016/0022-
460X(88)90416-6.

D.R. Houser, V.M. Bolze, J.M. Graber, A comparison of predicted end measured
dynamic and static transmission error for spur and helical gear sets, in:
PROCEEDINGS OF THE 14TH INTERNATIONAL MODAL ANALYSIS
CONFERENCE, VOLS I \& 11, 1996: pp. 1057-1062.

Y. Zhang, Z. Fang, Analysis of transmission errors under load of helical gears with
modified tooth surfaces, JOURNAL OF MECHANICAL DESIGN 119 (1997) 120-
126. https://doi.org/10.1115/1.2828773.

S. He, R. Singh, Dynamic transmission error prediction of helical gear pair under
sliding friction using Floquet theory, JOURNAL OF MECHANICAL DESIGN 130
(2008). https://doi.org/10.1115/1.2890115.

F. Bruzzone, T. Maggi, C. Marcellini, C. Rosso, 2D nonlinear and non-Hertzian gear
teeth deflection model for static transmission error calculation, Mechanism and

Machine Theory 166 (2021) 104471.

- 183 -



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Doctoral Dissertation

https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104471.

J.-H. Lee, H.-S. Choi, J.-H. Sohn, G.-H. Lee, D.-l. Park, J.-G. Kim, Statistical
analysis for transmission error of gear system with mechanical and thermal
deformation uncertainties, Applied Sciences 11 (2021) 6582.

H.H. LIN, D.P. TOWNSEND, F.B. OSWALD, PREDICTION OF GEAR DYNAMICS
USING FAST FOURIER-TRANSFORM OF STATIC TRANSMISSION ERROR,
MECHANICS OF STRUCTURES AND MACHINES 21 (1993) 237-260.
https://doi.org/10.1080/08905459308905188.

P. Velex, M. Ajmi, On the modelling of excitations in geared systems by transmission
errors, JOURNAL OF SOUND AND VIBRATION 290 (2006) 882-909.
https://doi.org/10.1016/j.jsv.2005.04.033.

P. Velex, M. Ajmi, Dynamic tooth loads and quasi-static transmission errors in helical
gears - Approximate dynamic factor formulae, MECHANISM AND MACHINE
THEORY 42 (2007) 1512-1526.
https://doi.org/10.1016/j.mechmachtheory.2006.12.009.

P. Velex, J. Bruyere, D.R. Houser, Some Analytical Results on Transmission Errors
in Narrow-Faced Spur and Helical Gears: Influence of Profile Modifications,
JOURNAL OF MECHANICAL DESIGN 133 (2011).
https://doi.org/10.1115/1.4003578.

T. Lin, Z. He, Analytical method for coupled transmission error of helical gear system
with machining errors, assembly errors and tooth modifications, MECHANICAL
SYSTEMS AND SIGNAL PROCESSING 91 (2017) 167-182.
https://doi.org/10.1016/j.ymssp.2017.01.005.

J. Bruyere, P. Velex, B. Guilbert, D.R. Houser, An analytical study on the
combination of profile relief and lead crown minimizing transmission error in narrow -
faced helical gears, MECHANISM AND MACHINE THEORY 136 (2019) 224-243.
https://doi.org/10.1016/j.mechmachtheory.2019.03.005.

M.R. Kang, A. Kahraman, An experimental and theoretical study of the dynamic
behavior of double-helical gear sets, JOURNAL OF SOUND AND VIBRATION 350
(2015) 11-29. https://doi.org/10.1016/j.jsv.2015.04.008.

M.R. Kang, A. Kahraman, An Experimental and Theoretical Study of Quasi-Static
Behavior of Double-Helical Gear Sets, JOURNAL OF MECHANICAL DESIGN 143
(2021). https://doi.org/10.1115/1.4047906.

- 184 -



[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

References

M. Amabili, A. Rivola, Dynamic analysis of spur gear pairs: Steady-state response
and stability of the SDOF model with time-varying meshing damping,
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 11 (1997) 375-390.
https://doi.org/10.1006/mssp.1996.0072.

S. Li, A. Kahraman, A transient mixed elastohydrodynamic lubrication model for spur
gear pairs, Journal of Tribology 132 (2010) 1-9. https://doi.org/10.1115/1.4000270.
S. Li, A. Kahraman, A spur gear mesh interface damping model based on
elastohydrodynamic contact behaviour, International Journal of Powertrains 1 (2011)
4. https://doi.org/10.1504/ijpt.2011.041907.

M. VAISHYA, R. SINGH, ANALYSIS OF PERIODICALLY VARYING GEAR
MESH SYSTEMS WITH COULOMB FRICTION USING FLOQUET THEORY,
Journal of Sound and Vibration 243 (2001) 525-545,
https://doi.org/https://doi.org/10.1006/jsvi.2000.3419.

S.H. Choi, J. Glienicke, D.C. Han, K. Urlichs, Dynamic gear loads due to coupled
lateral, torsional and axial vibrations in a helical geared system, JOURNAL OF
VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME 121 (1999)
141-148. https://doi.org/10.1115/1.2893956.

M. Li, L. Yu, Analysis of the coupled lateral torsional vibration of a rotor-bearing
system with a misaligned gear coupling, JOURNAL OF SOUND AND VIBRATION
243 (2001) 283-300. https://doi.org/10.1006/jsvi.2000.3412.

C. Li, S. Zhou, J. Liu, Numerical Simulation of a Bending-Torsion Coupling Gear
Transmission System, in: M. Sun, Y. Zhang (Eds.), RENEWABLE ENERGY AND
ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014: pp. 3403-3407.
https://doi.org/10.4028/www.scientific.net/AMM.448-453.3403.

Z. Ren, J. Li, K. Wang, S. Zhou, Nonlinear dynamic analysis of a coupled lateral-
torsional spur gear with eccentricity, JOURNAL OF VIBROENGINEERING 18
(2016) 4776-4791. https://doi.org/10.21595/jve.2016.17067.

S. Zhou, Z. Ren, G. Song, B. Wen, Dynamic Characteristics Analysis of the Coupled
Lateral-Torsional Vibration with Spur Gear System, INTERNATIONAL JOURNAL
OF ROTATING MACHINERY 2015 (2015). https://doi.org/10.1155/2015/371408.
Z. Hu, J. Tang, S. Chen, Analysis of coupled lateral-torsional vibration response of a
geared shaft rotor system with and without gyroscopic effect, PROCEEDINGS OF
THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF

- 185 -



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Doctoral Dissertation

MECHANICAL ENGINEERING SCIENCE 232  (2018)  4550-4563.
https://doi.org/10.1177/0954406217753457.

J. Wang, R. Li, X. Peng, Survey of nonlinear vibration of gear transmission systems,
Applied Mechanics Reviews 56 (2003) 309-329. https://doi.org/10.1115/1.1555660.
C. Gill-Jeong, Analysis of the nonlinear behavior of gear pairs considering
hydrodynamic lubrication and sliding friction, JOURNAL OF MECHANICAL
SCIENCE AND TECHNOLOGY 23 (2009) 2125-2137.
https://doi.org/10.1007/s12206-009-0623-X.

S. Zhou, J. Liu, C. Li, B. Wen, Nonlinear behavior of a spur gear pair transmission
system with backlash, JOURNAL OF VIBROENGINEERING 16 (2014) 3850-3861.
G.J. Cheon, Effects of a one-way clutch on the nonlinear dynamic behavior of spur
gear pairs under periodic excitation, Journal of Mechanical Science and Technology
20 (2006) 941-949. https://doi.org/10.1007/BF02915993.

J.-Y. Yoon, I. Lee, Nonlinear Analysis of Vibro-Impacts for Unloaded Gear Pairs
With Various Excitations and System Parameters, JOURNAL OF VIBRATION AND
ACOUSTICS-TRANSACTIONS OF THE ASME 136 (2014).
https://doi.org/10.1115/1.4026927.

C.-W. Chang-Jian, S.-M. Chang, Bifurcation and chaos analysis of spur gear pair with
and without nonlinear suspension, NONLINEAR ANALYSIS-REAL WORLD
APPLICATIONS 12 (2011) 979-989. https://doi.org/10.1016/j.nonrwa.2010.08.021.
Y. Xia, Y. Wan, Z. Liu, Bifurcation and chaos analysis for a spur gear pair system
with friction, JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL
SCIENCES AND ENGINEERING 40 (2018). https://doi.org/10.1007/s40430-018-
1443-7.

S. Yang, Y. Shen, Nonlinear dynamics of a spur gear pair with slight wear fault, in:
H.Y. Hu, E. Kreuzer (Eds.), IUTAM SYMPOSIUM ON DYNAMICS AND
CONTROL OF NONLINEAR SYSTEMS WITH UNCERTAINTY, 2007: p. 177+.
https://doi.org/10.1007/978-1-4020-6332-9\_18.

T. Eritenel, R.G. Parker, COMPUTATIONAL NONLINEAR VIBRATION
ANALYSIS OF GEAR PAIRS USING A THREE-DIMENSIONAL MODEL, in:
DETC2009: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN
ENGINEERING TECHNICAL CONFERENCES/COMPUTERS AND
INFORMATION IN ENGINEERING CONFERENCE, 2010: pp. 149-165.

- 186 -



[76]

[77]

[78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

References

J. Wei, A. Zhang, G. Wang, D. Qin, T.C. Lim, Y. Wang, T. Lin, A study of nonlinear
excitation modeling of helical gears with Modification: Theoretical analysis and
experiments, MECHANISM AND MACHINE THEORY 128 (2018) 314-335.
https://doi.org/10.1016/j.mechmachtheory.2018.06.005.

Q. Chen, Y. Wang, W. Tian, Y. Wu, Y. Chen, An improved nonlinear dynamic model
of gear pair with tooth surface microscopic features, NONLINEAR DYNAMICS 96
(2019) 1615-1634. https://doi.org/10.1007/s11071-019-04874-1.

M. Molaie, F.S. Samani, H. Motahar, Nonlinear vibration of crowned gear pairs
considering the effect of Hertzian contact stiffness, SN APPLIED SCIENCES 1
(2019). https://doi.org/10.1007/s42452-019-0439-y.

Z. Geng, K. Xiao, J. Wang, J. Li, Nonlinear Dynamic Analysis of a Rigid-Flexible
Gear Transmission Considering Geometric Eccentricities, JOURNAL OF
COMPUTATIONAL AND NONLINEAR DYNAMICS 15 (2020).
https://doi.org/10.1115/1.4047336.

P. Liu, L. Zhu, X. Gou, J. Shi, G. Jin, Modeling and analyzing of nonlinear dynamics
for spur gear pair with pitch deviation under multi-state meshing, MECHANISM
AND MACHINE THEORY 163 (2021).
https://doi.org/10.1016/j.mechmachtheory.2021.104378.

R. Xu, J. Zhang, J. Wang, R. Li, Research on nonlinear dynamic model and
characteristics of a spur gear pair considering the meshing state of multiple pairs of
teeth, JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND
MANUFACTURING 15 (2021). https://doi.org/10.1299/jamdsm.2021jamdsm0068.
N. Gao, S. Wang, M.A.U.R. Bajwa, Nonlinear dynamics of a spur gear pair with tooth
root crack based on an amplitude modulation function, ENGINEERING
COMPUTATIONS 39 (2022) 1575-1596. https://doi.org/10.1108/EC-06-2020-0334.
A. Donmez, A. Kahraman, Characterization of Nonlinear Rattling Behavior of a Gear
Pair Through a Validated Torsional Model, JOURNAL OF COMPUTATIONAL AND
NONLINEAR DYNAMICS 17 (2022). https://doi.org/10.1115/1.4053367.

C.G. Cooley, R.G. Parker, A Review of Planetary and Epicyclic Gear Dynamics and
Vibrations Research, Applied Mechanics Reviews 66 (2014).
https://doi.org/10.1115/1.4027812.

A. Kahraman, Planetary gear train dynamics, Journal of Mechanical Design,

Transactions of the ASME 116 (1994) 713-720. https://doi.org/10.1115/1.2919441.

- 187 -



(86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Doctoral Dissertation

M. Yin, G. Chen, H. Su, Theoretical and experimental studies on dynamics of double-
helical gear system supported by journal bearings, Advances in Mechanical
Engineering 8 (2016) 1-13. https://doi.org/10.1177/1687814016646977.

C.G. Cooley, R.G. Parker, S.M. Vijayakar, A frequency domain finite element
approach for three-dimensional gear dynamics, Journal of Vibration and Acoustics,
Transactions of the ASME 133 (2011). https://doi.org/10.1115/1.4003399.

R.G. Parker, V. Agashe, S.M. Vijayakar, Dynamic response of a planetary gear
system using a finite element/contact mechanics model, Journal of Mechanical Design,
Transactions of the ASME 122 (2000) 304-310. https://doi.org/10.1115/1.1286189.
V. Abousleiman, P. Velex, A hybrid 3D finite element/lumped parameter model for
quasi-static and dynamic analyses of planetary/epicyclic gear sets, Mechanism and
Machine Theory 41 (2006) 725-748.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2005.09.005.

V. Abousleiman, P. Velex, S. Becquerelle, Modeling of spur and helical gear
planetary drives with flexible ring gears and planet carriers, Journal of Mechanical
Design, Transactions of the ASME 129 (2007) 95-106.
https://doi.org/10.1115/1.2359468.

S. Portron, P. Velex, V. Abousleiman, A hybrid model to study the effect of tooth
lead modifications on the dynamic behavior of double helical planetary gears,
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 233 (2019) 7224-7235.
https://doi.org/10.1177/0954406219846156.

C. Liu, Z. Fang, F. Wang, An improved model for dynamic analysis of a double-
helical gear reduction unit by hybrid user-defined elements: Experimental and
numerical validation, Mechanism and Machine Theory 127 (2018) 96-111.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2018.04.022.

A. Kahraman, A.A. Kharazi, M. Umrani, A deformable body dynamic analysis of
planetary gears with thin rims, Journal of Sound and Vibration 262 (2003) 752-768.
https://doi.org/10.1016/S0022-460X(03)00122-6.

C. Wang, J. Wei, Z. Wu, L. Lu, H. Gao, Load Sharing Performance of Herringbone
Planetary Gear System with Flexible Pin, International Journal of Precision
Engineering and Manufacturing 20 (2019) 2155-2169.
https://doi.org/10.1007/s12541-019-00236-4.

- 188 -



[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

References

T.M. Ericson, R.G. Parker, Experimental measurement and finite element simulation
of elastic-body vibration in planetary gears, Mechanism and Machine Theory 160
(2021) 104264.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104264.

X. Guan, J. Tang, Z. Hu, Q. Wang, X. Kong, A new dynamic model of light-weight
spur gear transmission system considering the elasticity of the shaft and gear body,
Mechanism and Machine Theory 170 (2022) 104689.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104689.

H. Ge, Y. Shen, Y. Zhu, Y. Xiong, B. Yuan, Z. Fang, Simulation and experimental
test of load-sharing behavior of planetary gear train with flexible ring gear, Journal
of  Mechanical Science and  Technology 35 (2021) 4875-4888.
https://doi.org/10.1007/s12206-021-1006-1.

A. Kahraman, Natural Modes of Planetary Gear Trains, Journal of Sound and
Vibration 173 (1994) 125-130. https://doi.org/10.1006/jsvi.1994.1222.

A. Saada, P. Velex, An Extended Model for the Analysis of the Dynamic Behavior of
Planetary Trains, Journal of Mechanical Design 117 (1995) 241-247.
https://doi.org/10.1115/1.2826129.

J. Lin, R.G. Parker, Analytical characterization of the unique properties of planetary
gear free vibration, Journal of Vibration and Acoustics, Transactions of the ASME
121 (1999) 316-321. https://doi.org/10.1115/1.2893982.

D.R. Kiracofe, R.G. Parker, Structured vibration modes of general compound
planetary gear systems, Journal of Vibration and Acoustics, Transactions of the
ASME 129 (2007) 1-16. https://doi.org/10.1115/1.2345680.

W. Sun, X. Ding, J. Wei, X. Hu, Q. Wang, An analyzing method of coupled modes in
multi-stage planetary gear system, International Journal of Precision Engineering and
Manufacturing 15 (2014) 2357-2366. https://doi.org/10.1007/s12541-014-0601-9.
W. Sun, X. Ding, J. Wei, A. Zhang, A method for analyzing sensitivity of multi-stage
planetary gear coupled modes to modal parameters, Journal of Vibroengineering 17
(2015) 3133-3146.

A. Kahraman, Load sharing characteristics of planetary transmissions, Mechanism
and Machine Theory 29 (1994) 1151-1165. https://doi.org/10.1016/0094-
114X (94)90006-X.

A. Kahraman, Static load sharing characteristics of transmission planetary gear sets:

- 189 -



[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Doctoral Dissertation

Model and experiment, SAE Technical Papers (1999). https://doi.org/10.4271/1999-
01-1050.

A. Bodas, A. Kahraman, Influence of carrier and gear manufacturing errors on the
static load sharing behavior of planetary gear sets, JSME International Journal, Series
C: Mechanical Systems, Machine Elements and Manufacturing 47 (2004) 908-915.
https://doi.org/10.1299/jsmec.47.908.

H. Ligata, A. Kahraman, A. Singh, A closed-form planet load sharing formulation for
planetary gear sets using a translational analogy, Journal of Mechanical Design,
Transactions of the ASME 131 (2009) 0210071-0210077.
https://doi.org/10.1115/1.3042160.

B. Boguski, A. Kahraman, T. Nishino, A new method to measure planet load sharing
and sun gear radial orbit of planetary gear sets, Proceedings of the ASME Design
Engineering Technical Conference 8 (2011) 169-180.
https://doi.org/10.1115/DETC2011-47196.

N.D. Leque, A. Kahraman, A three-dimensional load sharing model of planetary gear
sets having manufacturing errors, Proceedings of the ASME Design Engineering
Technical Conference (2015). https://doi.org/10.1115/DETC201547470.

M. Benatar, D. Talbot, A. Kahraman, An experimental investigation of the load
distribution of splined joints under gear loading conditions, Journal of Advanced
Mechanical Design, Systems and Manufacturing 11 (2017).
https://doi.org/10.1299/jamdsm.2017jamdsm0084.

Y. Hu, D. Talbot, A. Kahraman, A Load Distribution Model for Planetary Gear Sets,
Journal of Mechanical Design 5 (2017). https://doi.org/10.1115/detc2017-68354.

Y. Hu, D. Talbot, A. Kahraman, A Gear Load Distribution Model for a Planetary Gear
Set with a Flexible Ring Gear Having External Splines, Journal of Mechanical Design,
Transactions of the ASME 141 (2019). https://doi.org/10.1115/1.4041583.

A. Singh, Load sharing behavior in epicyclic gears: Physical explanation and
generalized formulation, Mechanism and Machine Theory 45 (2010) 511-530.
https://doi.org/10.1016/j.mechmachtheory.2009.10.009.

M. Iglesias, A. Fernandez del Rincon, A. de-Juan, P. Garcia, A. Diez-lbarbia, F.
Viadero, Planetary transmission load sharing: Manufacturing errors and system
configuration study, Mechanism and Machine Theory 111 (2017) 21-38.
https://doi.org/10.1016/j.mechmachtheory.2016.12.010.

- 190 -



[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

References

J. Sanchez-Espiga, A. Fernandez-del-Rincon, M. Iglesias, F. Viadero, Influence of
errors in planetary transmissions load sharing under different mesh phasing,
Mechanism and Machine Theory 153 (2020).
https://doi.org/10.1016/j.mechmachtheory.2020.104012.

J. Sanchez-Espiga, A. Fernandez-del-Rincon, M. Iglesias, F. Viadero, Planetary gear
transmissions load sharing measurement from tooth root strains: Numerical
evaluation of mesh phasing influence, Mechanism and Machine Theory 163 (2021).
https://doi.org/10.1016/j.mechmachtheory.2021.104370.

J. Sanchez-Espiga, A. Fernandez-del-Rincon, M. lIglesias, F. Viadero, Numerical
evaluation of the accuracy in the load sharing calculation using strain gauges: Sun
and ring gear tooth root, Mechanism and Machine Theory 175 (2022).
https://doi.org/10.1016/j.mechmachtheory.2022.104923.

A. Kahraman, G.W. Blankenship, Planet Mesh Phasing in Epicyclic Gear Sets,
International Gearing Conference (1994) 99-104.

R.G. Parker, J. Lin, Mesh Phasing Relationships in Planetary and Epicyclic Gears,
Proceedings of the ASME Design Engineering Technical Conference 4 A (2003) 525—
534. https://doi.org/10.1115/detc2003/ptg-48067.

Y. Guo, R.G. Parker, Analytical determination of mesh phase relations in general
compound planetary gears, Mechanism and Machine Theory 46 (2011) 1869-1887.
https://doi.org/10.1016/j.mechmachtheory.2011.07.010.

S.V. Canchi, R.G. Parker, Effect of ring-planet mesh phasing and contact ratio on the
parametric instabilities of a planetary gear ring, Journal of Mechanical Design,
Transactions of the ASME 130 (2008). https://doi.org/10.1115/1.2803716.

C. Wang, R.G. Parker, Dynamic modeling and mesh phasing-based spectral analysis
of quasi-static deformations of spinning planetary gears with a deformable ring,
Mechanical Systems and Signal Processing 136 (2020).
https://doi.org/10.1016/j.ymssp.2019.106497.

C. Wang, B. Dong, R.G. Parker, Impact of planet mesh phasing on the vibration of
three-dimensional planetary/epicyclic gears, Mechanism and Machine Theory 164
(2021). https://doi.org/10.1016/j.mechmachtheory.2021.104422.

X. Gu, P. Velex, On the dynamic simulation of eccentricity errors in planetary gears,
Mechanism and Machine Theory 61 (2013) 14-29.
https://doi.org/10.1016/j.mechmachtheory.2012.10.003.

- 191 -



[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Doctoral Dissertation

F. Ren, A. Li, G. Shi, X. Wu, N. Wang, The effects of the planet-gear manufacturing
eccentric errors on the dynamic properties for herringbone planetary gears, Applied
Sciences (Switzerland) 10 (2020). https://doi.org/10.3390/app10031060.

Z. Cao, Y. Shao, M. Rao, W. Yu, Effects of the gear eccentricities on the dynamic
performance of a planetary gear set, Nonlinear Dynamics 91 (2018) 1-15.
https://doi.org/10.1007/s11071-017-3738-0.

H. Dong, C. Zhang, S. Bai, D. Wang, Modeling, Analysis and Testing of Load
Distribution for Planetary Gear Trains with 3D Carrier Pinhole Position Errors,
International Journal of Precision Engineering and Manufacturing 20 (2019) 1381-
1394. https://doi.org/10.1007/s12541-019-00166-1.

W. Liu, J. Li, Y. Kang, Y. Liu, X. Xu, P. Dong, Load Sharing Behavior of Double-
Pinion Planetary Gear Sets Considering Manufacturing Errors, IOP Conference Series:
Materials Science and Engineering 677 (2019). https://doi.org/10.1088/1757-
899X/677/5/052068.

Z. Xu, W. Yu, Y. Shao, X. Yang, C. Nie, D. Peng, Dynamic modeling of the planetary
gear set considering the effects of positioning errors on the mesh position and the
corner contact, Nonlinear Dynamics (2022). https://doi.org/10.1007/s11071-022-
07570-9.

P. Sondkar, A. Kahraman, A dynamic model of a double-helical planetary gear set,
Mechanism and Machine Theory 70 (2013) 157-174.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2013.07.005.

Sondkar Prashant, Dynamic Modeling of Double-Helical Planetary Gear Sets, The
Ohio State University, 2012.

W. Tan, J. Wu, D. Ni, H. Yan, E. Xiang, S. Liu, Dynamic Modeling and Simulation
of Double-Planetary Gearbox Based on Bond Graph, Mathematical Problems in
Engineering 2021 (2021). https://doi.org/10.1155/2021/3964808.

Z. Sheng, J. Tang, S. Chen, Z. Hu, Modal Analysis of Double-Helical Planetary Gears
with Numerical and Analytical Approach, Journal of Dynamic Systems, Measurement
and Control, Transactions of the ASME 137 (2015).
https://doi.org/10.1115/1.4028788.

S. Mo, Y. Zhang, Q. Wu, H. Houjoh, S. Matsumura, Research on natural
characteristics of double-helical star gearing system for GTF aero-engine, Mechanism

and Machine Theory 106 (2016) 166-189.

-192 -



[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

References

https://doi.org/10.1016/j.mechmachtheory.2016.09.001.

M. K Khoozani, M. Poursina, A. P Anaraki, Study of gyroscopic effects on the
dynamics and vibrations of double-helical planetary gear set, Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 232
(2017) 199-223. https://doi.org/10.1177/1464419317725947.

M. Chapron, X. Gu, P. Velex, S. Becquerelle, A simplified 3D dynamic model of
helical and double-helical planetary gears to study the influence of some usual
position and geometrical errors, in: International Gear Conference 2014: 26th—28th
August 2014, Lyon, Elsevier, 2014: pp. 879-888.
https://doi.org/10.1533/9781782421955.879.

S. Wang, C. Zhang, F. Wang, The analysis of dynamic load coefficients of double-
helical planetary gear sets, in: P. Velex (Ed.), International Gear Conference 2014:
26th-28th August 2014, Lyon, 2014. pp. 889-895.
https://doi.org/10.1533/9781782421955.889.

B. Schlecht, T. Schulze, K. Riedel, Tooth contact analysis under load on double
helical-geared planetary gearboxes, in: VDI Berichte, 2017: pp. 1596-1609.
https://doi.org/10.51202/9783181022948-83.

M. Chapron, P. Velex, J. Bruyé&e, S. Becquerelle, Optimization of profile
modifications with regard to dynamic tooth loads in single and double-helical
planetary gears with flexible ring-gears, Journal of Mechanical Design, Transactions
of the ASME 138 (2016). https://doi.org/10.1115/1.4031939.

N.D. Leque, Development of Load Sharing Models for Double-Helical Epicyclic Gear
Sets Dissertation, The Ohio State University, 2015.

J. Goetz, F. Siglmueller, M. Fuerst, M. Otto, K. Stahl, Experimental investigation of
the dynamic load sharing of planetary gearboxes, FORSCHUNG IM
INGENIEURWESEN-ENGINEERING RESEARCH (2021).
https://doi.org/10.1007/s10010-021-00507-5.

X. Liu, Z. Fang, H. Jia, N. Zhao, Y. Shen, H. Guo, X. Zhang, Investigation of Load
Sharing and Dynamic Load Characteristics of a Split Torque Transmission System
with Double-Helical Gear Modification, Shock and Vibration 2021 (2021).
https://doi.org/10.1155/2021/9912148.

F. Lu, R. Zhu, H. Wang, H. Bao, M. Li, Dynamic characteristics of double helical

planetary gear train with tooth friction, in: Proceedings of the ASME Design

-193 -



[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Doctoral Dissertation

Engineering Technical Conference, 2015. https://doi.org/10.1115/DETC201548022.
C. Wang, The effect of planetary gear/star gear on the transmission efficiency of
closed differential double helical gear train, Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (2020)
4215-4223. https://doi.org/10.1177/0954406220921205.

C. Hu, G. Geng, P.D. Spanos, Stochastic dynamic load-sharing analysis of the closed
differential planetary transmission gear system by the Monte Carlo method,
Mechanism and Machine Theory 165 (2021) 104420.
https://doi.org/10.1016/j.mechmachtheory.2021.104420.

J. Xu, C. Jiao, D. Zou, N. Ta, Z. Rao, Dynamic Stability Research on the Double-
Cylinder Turbines Marine Propulsion System With Unsymmetrical Load, Journal of
Computational and Nonlinear Dynamics 16 (2021).
https://doi.org/10.1115/1.4051995.

M. Inalpolat, A. Kahraman, A theoretical and experimental investigation of
modulation sidebands of planetary gear sets, Journal of Sound and Vibration 323
(2009) 677-696. https://doi.org/10.1016/j.jsv.2009.01.004.

D. Peng, W.A. Smith, R.B. Randall, Z. Peng, Use of mesh phasing to locate faulty
planet gears, Mechanical Systems and Signal Processing 116 (2019) 12-24.
https://doi.org/10.1016/j.ymssp.2018.06.035.

J. Wei, A. Zhang, D. Qin, T.C. Lim, R. Shu, X. Lin, F. Meng, A coupling dynamics
analysis method for a multistage planetary gear system, Mechanism and Machine
Theory 110 (2017) 27-49.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2016.12.007.

M. AJMI, P. VELEX, GDN-24 A MODEL FOR SIMULATING THE QUASI-STATIC
AND DYNAMIC BEHAVIOUR OF DOUBLE HELICAL GEARS(GEAR
DYNAMICS AND NOISE), The Proceedings of the JSME International Conference
on  Motion and  Power  Transmissions 1.01.202  (2001) 132-137.
https://doi.org/10.1299/jsmeimpt.1.01.202.132.

Y. Hu, L. Ryali, D. Talbot, A. Kahraman, A theoretical study of the overall
transmission error in planetary gear sets, in: Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019: pp.
7200-7211. https://doi.org/10.1177/0954406219830436.

M. Maatar, P. Velex, An analytical expression for the time-varying contact length in

-194 -



[153]

[154]

[155]

[156]

[157]

References

perfect cylindrical gears: Some possible applications in gear dynamics, Journal of
Mechanical Design, Transactions of the ASME 118 (1996) 586-589.
https://doi.org/10.1115/1.2826933.

R.G. Parker, J. Lin, Mesh Phasing Relationships in Planetary and Epicyclic Gears ,
Journal of Mechanical Design 126 (2004) 365-370.
https://doi.org/10.1115/1.1667892.

G. Huo, M. Iglesias-Santamaria, X. Zhang, J. Sanchez-Espiga, E. Caso-Fernandez, Y.
Jiao, F. Viadero-Rueda, Influence of eccentricity error on the orbit of a two-stage
double-helical compound planetary gear train with different mesh phasing
configurations, Mechanism and Machine Theory 196 (2024) 105634.
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2024.105634.

G. Huo, J. Sanchez-Espiga, M.l. Santamaria, A. Fernandez-Del-Rincon, Y. Jiao, F.
Viadero-Rueda, Influence of Manufacturing Errors on the Behaviour of a Two-Stage
Planetary Gear Train, Dyna (Spain) 98 (2023) 384-390.
https://doi.org/10.6036/10879.

S. Li, Q. Wu, Z. Zhang, Bifurcation and chaos analysis of multistage planetary gear
train, Nonlinear Dynamics 75 (2014) 217-233. https://doi.org/10.1007/s11071-013-
1060-z.

Q. Zhang, X. Wang, S. Wu, S. Cheng, F. Xie, Nonlinear characteristics of a multi-
degree-of-freedom wind turbine’s gear transmission system involving friction,
Nonlinear Dynamics 107 (2022) 3313-3338. https://doi.org/10.1007/s11071-021-
07092-w.

-195 -



Doctoral Dissertation

- 196 -



Appendix

Appendix

A.1 Timoshenko Beam Element Matrices

Considering Timoshenko beam with 12-DOF as a connecting structure due
to shear deformation, as shown in Fig.Al, nodes j and j+1 make up an element, |
is length of the element. Therefore, the displacement vector of the element is
shown as follows.

Fig.A1 A Timoshenko beam element

q(e):[xj Yy z; 6, 6, 6, X Yin Zya 6, 6, QZM]

where, X;, Y, Zj, Xj,4, Yju, Zj, are translation displacement of two nodes j and

j+1 along the x, y, and z axes, separately. ij, Hyj, sz , me’ ‘9yj+1’ QZM are angular

displacement of two nodes j and j+1 rotated about the x, y, and z axes, respectively.
The free vibration equation of Timoshenko beam element is obtained.

M® {q-(e)} +(QG(6)){q(e)}+ K® {q(e)} -0

in which, Q is the rotational speed, M(e),G(e),K(E) are mass, stiffness and

gyroscopic matrix, respectively.

A.1.1 Element Mass Matrix

Timoshenko beam element mass matrix is given as follows:
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where, A is shaft cross sectional area, E is young’s modulus, G is shear modulus,
| is the area moment of inertia, J is polar moment of inertia moment of inertia, |

is length of element, rq is the radius of gyration, @ is transverse shear parameter.
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K' is shape factor, relating to shape of cross section, which is given as.

6(1+ 1)/ (7+61), circular section
6@+ p)(@+m?)? /{(7 +6.)(1+m*)? +(20 +12,u)m2}, hollow circular section
- 10(1+p)/(12+11 ), rectangular section
2(1+ ) 1 (4+3p), thin-walled tube section

where, u is Poisson’s Ratio, m=r/R, r and R are radius of section.

A.1.2 Element Stiffness Matrix

Timoshenko beam element stiffness matrix is obtained as sum of three
matrices, which is given as follows:

a
0 a
0 O ¥ sym
0 -b 0 C
b 0 0 0 c
0O O 0 0 O E
K® — |
-a 0 0 0 -b 0 a
0 -a 0 b 0 0 0 a
0 O —¥ 0 O 0 0 O ¥
0 -b 0 d O 0 0O b 0 ¢
b 0 0 d 0 b 0 0 0 c
0 O 0 0 O —? 0O 0 0 0O ?
in which, the letters are defined as
a- 12El _ 6EI _(4+(D)EI _(2—CD)EI
I3(1+CD)' I2(1+(D)’ [(1+ D) ' [(1+ D)

A.1.3 Element Gyroscopic Matrix

Timoshenko beam element gyroscopic matrix is given as follows:
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