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Abstract 

The reducer system is one of the critical core components of the marine 

propulsion system, tasked with adjusting the output speed of steam turbines or gas 

turbines to the optimal speed for propeller propulsion. Its dynamic performance 

is crucial to the overall performance level and the stable, efficient operation of 

the entire marine power system. Compared to traditional two-stage series 

structures, the two-stage parallel compound gear system offers advantages such 

as a higher transmission ratio and a more compact design, which are better suited 

to the spatial constraints of marine installations. However, the transmission 

coupling relationships in compound gear systems are complex, making the 

modeling of flexible large components challenging, with high degrees of freedom 

in the model equations. Moreover, as the compound gear system experiences 

additional motion during the ship voyage, the accuracy of modeling significantly 

influences the analysis of complex movements. Therefore, this paper focuses on 

a two-stage parallel compound gear transimission system used in ships and 

proposes a modeling method suitable for this parallel structure. A mechanical 

model of the ship two-stage parallel compound gear transimission system in the 

non-inertial reference frame of the planet carrier is establishes, and an improved 

numerical solution method is proposed. The study investigates the dynamic and 

static mechanical behaviors and further reveals the nonlinear vibration 

characteristics associated with its motion states. Final ly, dynamic models of the 

two-satge parallel compound gear transimission system under navigation 

conditions in two non-inertial reference frames is constructed and the dynamic 

behavior of the gear system under fundamental ship motion is studied. The main 

research contents are as follows: 

(1) Based on the motion of the carriers and structural characteristics in the 

two-stage gear system, a hybrid modeling strategy, wherein the first planetary 

gear set is modeled using a moving reference frame, while the second stage 

employs a fixed reference frame, is proposed. This approach accounts for 

additional terms that arise during the modeling process, and through the 

combination of moving and fixed coordinate systems, the mechanical model of 

the two-stage parallel compound gear system is established, including quasi-static 

and dynamic model. By introducing the non-inertial reference frame of the carrier, 

factors such as Coriolis and centrifugal accelerations are comprehensively 

considered in this method, effectively addressing the complexities associated with 

modeling the two-stage parallel compound gear system. Compared to traditional 
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unified coordinate system modeling methods, this approach successfully 

overcomes challenges such as extensive transformation matrix calculations, the 

potential loss of additional terms, and difficulties in solving time-varying stiffness 

matrices. 

(2) Based on the quasi-static and dynamic model, the static characteristics, 

including load-sharing properties and global transmission errors, are first 

analyzed. The effects of planet pin position errors and eccentricity errors on load -

sharing properties and global transmission errors are investigated. Furthermore, 

the accuracy of the proposed modeling strategy is preliminarily explored by 

analyzing the axial trajectories of components under eccentric error using the 

static model. Due to the Newmark-beta method isn’t suitable for solving directly 

equations with time-varying stiffness matrix, and the accumulation and accuracy 

are ignored during the solving process. Therefore, a Newmark-beta method is 

improved by proposing a strategy to verify the relative error during the calculation 

process of each loop iteration. By using this method, the dynamic response of the 

system is obtained and the dynamic and static vibration results are compared to 

verify the accuracy of the dynamic model. Finally, the effects of gravity, 

centrifugal force, and various errors on the dynamical characteristics are 

investigated. It is found that the vibration frequency of the output shaft of the 

studied compound gear system is related to the meshing phase and the meshing 

frequency and its harmonic frequency is obtained through the analysis of the 

global transmission error. Compared with the traditional Runge-Kutta method, the 

improved Newmark-beta method is computationally fast and suitable for solving 

the equations of multiple degrees of freedom and time-varying stiffness. The 

dynamic model of the marine gearbox system is able to take into account a variety 

of error factors, which comprehensively verifies the accuracy of the proposed 

dynamic model, as well as demonstrates the ability of the dynamic model to 

accurately capture errors and more accurately reflect the vibration characteristics 

of the actual system. 

(3) Regarding the nonlinear dynamic characteristics of the two-stage parallel 

compound gear train, a pure torsional nonlinear dynamics model of a two-stage 

parallel compound gear system for ships is firstly developed. The bifurcation way 

of this compound gear system, which transforms its state of motion from chaotic 

motion to stable periodic motion with the increase of the meshing damping ratio 

for certain parameters, is revealed as a Hopf bifurcation by the combination of 

bifurcation diagrams, Poincaré maps, phase trajectories, and time history 

diagrams. The influence of the speed and the magnitude of the meshing error on 

its nonlinear characteristics is investigated. Considering the transverse vibration, 

a translational-torsional nonlinear dynamics model is developed to explore the 
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nonlinear characteristics. It is shown that, based on the pure torsional model, it is 

concluded that the period-doubling number of the ultimately stable motion of the 

compound gear train is related to the least common multiple of the internal 

meshing stiffness periods of the two stages. Compared with the pure torsion model, 

the translational-torsion nonlinear dynamics model exhibits more complex motion 

states, but the period-doubling number of the final stable motion is still related to 

the least common multiple of multiple exciations’ cycles.  

(4) Considering the external non-inertial system of the ship hull, combined 

with the ship working environment and motion characteristics, the mathematical 

models of absolute acceleration and absolute velocity of the sun and planet gears 

in two non-inertial systems are derived. The dynamics model of the studied 

compound gear system in the internal and external non-inertial systems is 

established. The effects of the ship rocking motion and pitching motion condi tions 

on the dynamics of the components of the compound gear system during normal 

navigation have been investigated. The study shows that the motion trend of each 

component of the ship matches well with that of the rocking motion, the maximum 

rocking angle of the vibration response of the components also agrees with that 

of the external rocking motion, and the response results prove the correctness of 

the constructed dynamics model. The analysis of the results of the load sharing 

ratio of the first stage shows that under the influence of the ship pitching motion, 

the planet gears exist in disengaged contact, which results in the non-uniformity 

of the load transferred by the planets and affects the reliability of the whole gear 

system. 

In this paper, based on the combination of moving and fixed coordinate 

system modelling method, the dynamics model of two-stage parallel compound 

gear system of ship is proposed, and the research results provide a theoretical 

basis for the design and maintenance of the compound gear system of the ship, 

and it has an important role and significance for promoting the development of 

the two-stage parallel compound marine gear system. 

 

Keywords: Double-helical gear, Planetary gear train, Dynamic modeling, 

Vibration characteristics, Ship motion 
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Chapter 1   General Introduction 

1.1   Research background and significance 

Gear structures have been essential and indispensable components in many 

machines, significantly enhancing productivity since their invention. The 

planetary gear train, also known as the epicyclic gear train, is one such gear 

structure and finds widespread use in various mechanical industries, including 

helicopters, wind turbines[1–3], robot arms[4], and other rotary machinery. As 

shown in Fig.1-1, a basic planetary gear train comprises a sun gear, a ring gear, a 

carrier, and N planet gears. The sun gear, ring gear, and carrier are regarded as the 

central components and can be configured in various combinations of input and 

output members. This configuration allows for the attainment of different 

transmission ratio values and rotation directions for the output members based on 

the kinematic relationships[5]. 

 

Fig.1-1 Basic components of planetary gear train 

Specifically speaking, compared to a pair of gears, the planetary gear train 

transmission offers several advantages. One of the main benefits is power split. 

The input power is theoretically equally distributed among each path of the planet 

gears, reducing the load carried by each planet gear and thereby extending its 

working life. Another significant advantage is its compact layout, i.e., enabling 

the accommodation of more gears within the same space, thus enhancing 

flexibility in the application. Addationally, other advantages include a high 

transmission ratio, smooth operation, efficient power transmission, durability, the 
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capability for compound stages designs, and so on [6]. 

In many industries, planetary gear transmissions utilize either spur or helical 

gears, the former are commonly employed in heavy-load machinery operating at 

low speeds, whereas the latter are easily found in automatic transmission requiring 

low vibration and noise levels. This reference is due to the smoother and quieter 

nature of helical transmissions compared to spur gear transmissions. However, 

helical gear transmissions generate significant axial forces, necessitating the use 

of thrust bearings for offsetting. Consequently, in industries with heavy-load and 

high-speed such as Geared Turbofan Engines (GTF), a double-helical planetary 

gear system is often the preferred choice, as depicted in Fig.1-2. 

 

Fig.1-2 Diagram of GTF. a) Engine (from Internet) and b) Fan drive gear system [7] 

In practical applications, despite the perfection of gear designs and the 

implementation of vibration reduction measures, vibration and noise inevitably 

exist. Currently, the benchmark for high-quality machines is to control vibration 

and noise within specific tolerances. 

Moreover, due to the complexity of planetary gear transmissions and the 

multitude of meshing contacts, accurately obtaining the dynamic behavior of 

planetary gear systems remains a formidable challenge. Factors such as time-

varying meshing stiffness, dynamic positioning, and various errors further 
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complicate this task, especially for configurations with multiple stages and 

complex structures. Many aspects of planetary gear dynamics, especially in terms 

of coupling dynamics, remain inadequately understood. 

Therefore, in this research, the focus is on the compound planetary gear 

system, with the objective of establishing a coupling dynamics model. This model 

incorporates rotor dynamics, gear system dynamics, nonlinear dynamics , and 

other methodologies, while comprehensively considering the working 

environment and nonlinear factors. Investigating the dynamic characteristics of 

the system is deemed essential and meaningful in light of complexities. 

1.2   Literature review 

According to existing research articles, the modeling for gears has developed 

from a linear time-invariant model and a linear time-varying model to a nonlinear 

time-varying model. One of the primary time-varying parameters is the meshing 

stiffness. Thus, research on the meshing stiffness remains hotpot in the literature. 

1.2.1   Solving methods of gear meshing stiffness 

In general, gear meshing stiffness (GMS) represents one kind of stiffness 

excitation, and displacement excitation is another main factor. The variation in 

meshing stiffness depends on the number of teeth pairs engaged in a meshing 

cycle, which is related to the contact ratio. 

1.2.1.1   Spur Gear 

Typically, the contact ratio of spur gears ranges between 1 and 2, i.e., contact 

alternating instantaneously between one and two pairs of teeth . Currently, 

analytical methods, finite element methods(FEM), and hybrid methods are the 

primary approaches for calculating the meshing stiffness of spur gears. 

Kuang and Yang [8] proposed an analytical method, namely Kuang and Yang 

method. Cai and Hayashi [9] proposed another analytical method known as Cai 

and Hayashi method, which calculates the meshing stiffness of a pair of spur gears, 

based on mean stiffness and contact ratio. In recent years, the development of 

analytical methods has been developed rapidly, some authors [10–17] enhanced 

these methods to account for factors such as tip relief, profile modification, actual 

manufacturing, tooth faults (e.g., pitting and wear), friction and so on. 

Since the 21st century, due to the advancements in computer computing 

processing power, the finite element method has been gradually developed. 

Therefore, many researchers have begun using FEM and hybrid method. Cooley 

[18] and others [19–21] have employed FEM to calculate meshing stiffness. 
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For hybrid models, Vedmar and Henriksson [22] proposed a hybrid approach 

in 1998, which combines global linear deformation and local nonlinear 

deformation. Fernandez et al [23] proposed an advanced hybrid method for 

calculating the meshing stiffness of external gears based on the FEM and Hertzian 

contact theory, and verified the model by comparing it to Cai method and Kuang 

method. Subsequently, Iglesias et al [24] expanded this method to calculate the 

meshing stiffness for internal gears, accounting for mesh coupling of gear body 

deformation, and applied it to planetary gear systems. Zheng et al [25] developed 

an analytical-FEM method to incorporate the effect of centrifugal force into the 

calculation of mesh stiffness. 

1.2.1.2   Helical gear 

Unlike spur gears, the engagement and disengagement of teeth in helical 

gears occur gradually, resulting in a smoother transmission compared to spur 

gears. 

Based on three methods used of spur gear, the slice method [26–30] is the 

most commonly used method for calculating the meshing stiffness of helical gear. 

Moreover, several factors [31–33], such as time-varying backlash, root profile, 

and spatial crack, have been taken into account. 

1.2.2   Research status on single-pair gear dynamics systems 

The investigation of gears can be tracted back to the works of Ross [34], 

Bckingham [35] from the 1920s to the 1930s. In the 1950s, Tuplin [36] employed 

mass-spring models to calculate the dynamic load of high-speed gear pairs, and 

tooth dynamic loads was their primary research focus. Subsequently, Gregory et 

al [37] conducted experimental studies to extend the theoretical analysis results 

of spur gear pairs. Since the 1980s, models, incorporating addational components 

such as shafts, rotors, bearings, and squeeze film dampers, appeared [38–40]. 

For a pair of gears, numerous models have been proposed and developed in 

the past decades. Research on gear pair models is mainly divided into transmission 

error or quasi-static models, single and multi-degree of freedom models, and 

linear and nonlinear models. 

1.2.2.1   Transmission error 

Transmission error and related aspects are another area of study for spur, 

helical or double-helical gears. Due to losses in the transmission process, the 

actual position of the output shaft may deviate from the ideal position, resulting 

in transmission error. 
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In 1978, Mark [41] derived a general expression for the static transmission 

error (STE). In 1986, Tavakoli and Houser [42] employed an optimization 

algorithm to study the minimization of STE. Ozguven and Houser [43] studied 

dynamic mesh and tooth load by using loaded STE and dynamic transmission error 

(DTE), analyzed subsequently the influence of mesh stiffness, damping, and error. 

In 1996, Houser et al [44] compared the predicted DTE and STE with measured 

results to validate the prediction model. Zhang and Fang [45] presented the load 

transmission error of helical gear with modified tooth surfaces  in 1997. Song and 

Singh [46] developed an analytical expression to predict DTE by considering 

friction, results showed that the influence of sliding friction on the DTE of helical 

gears could be ignored compared to spur gears. By considering tip contact that 

can happen when a teeth pair engages, a semi-analytical model and a non-Hertzian 

contact mechanics model were combined by Bruzzone et al [47] to study static 

transmission error. Lee et al [48] proposed an analytical method to calculate the 

TE and analyzed the range of the transmission error caused by various 

uncertainties such as mechanical and thermal deformation. 

In addition, several authors have conducted significant work based on 

transmission errors. Lin et al [49] utilized STE to predict dynamic loading 

responses. In 2006, Velex and Ajmi [50] presented some original formulas 

simulating gear excitations by using simulated or measured transmission errors, 

and validated their effectiveness by comparing results with references. The 

following year, the same authors [51] derived analytical expressions for dynamic 

tooth loads or tooth dynamic factors based on the harmonics of the load quasi-

static transmission error. In 2011, Velex et al [52] also presented approximate 

analytical results for quasi-static transmission errors in spur and helical gears with 

low and high contact ratios. Lin and He [53] proposed an analytical method to 

determine transmission errors in helical gears considering assembly errors, 

machining errors, and tooth modifications. Velex et al [54] presented analytical 

formulas for the optimum combinations of profile relief and lead crown for 

narrow-faced helical gears based on transmission error. 

In recent years, both theoretical and experimental research on double-helical 

gear pairs has been done. In 2015, Kang and Karhaman [55] conducted theoretical 

and experimental studies on the dynamic behavior of double-helical gear pairs. 

They built a double-helical gears test plotform, allowing for the adjustment of left 

and right staggered angles, and implemented a measurement system capable of 

capturing three-dimensional vibration motion and dynamic transmission errors 

under high-speed conditions. The accuracy of the proposed model in predicting 

3D gear vibration was demonstrated through direct comparison with measured 

data. It was shown that the left and right stagger angle is the most critical 
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parameter affecting the dynamic response. In 2021, the same authors [56] 

researched the quasi-static characteristics of double-helical gear pairs under low-

speed conditions. Their focus was on the key design and manufacturing 

parameters related to double-helical gears. They directly compared measured and 

predicted values, including loaded static transmission errors, axial stress, root 

stress, and right-to-left load-sharing factors, to validate quasi-static models. 

Consequently, these two research studies contribute to a deeper understanding of 

the quasi-static behavior of double-helical gear pairs. 

1.2.2.2   Research methods of single-degree-of-freedom and multi-degree-of-fre

edom dynamical systems 

At the beginning, single-mesh gear models with a single degree of freedom 

(pure torsional models) predominated. The simplest model was the pure torsional 

model, which considered only one DOF for each component. However, as the need 

for more accurate actual models, additional factors such as damping and friction 

were incorporated. 

Amabili and Rivola [57] proposed a single-degree-of-freedom (SDOF )model 

with meshing damping, in which the damping was assumed to be proportional to 

mesh stiffness. Li and Kahraman [58] proposed a transient, non-Newtonian, mixed 

electrohydrodynamic lubrication model of spur gear pairs for capturing the 

transient behavior of the contact process from the root to the top of gear teeth. 

The following year, the same authors [59] presented a two-degree-of-freedom 

(2DOF) interface damping model for gear pairs.  

Friction is a common factor considered in the gear dynamic model. Vaishya 

and Singh [60] presented a dynamic model incorporating sliding friction to 

accurately obtain dynamic meshing force among gear teeth. 

Subsequently, models with more DOF were studied. Various studies [61–

66] explored coupling motion among transverse, torsional, and axial, some of 

them also took eccentricity and gyroscopic effect into account. 

1.2.2.3   Research methods of nonlinear dynamical systems 

Nonlinear factors have a significant influence on gear dynamics, particularly 

at high speeds. 

Wang et al [67] conducted a review of basic concepts, mathematical models, 

and solving methods for nonlinear gear-driven systems. They summarized the 

effects of nonlinear factors (such as backlash, time-varying meshing stiffness, and 

vibro-impact) on both linear and nonlinear systems and discussed critical issues 

in further research on the nonlinear vibration. 
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Gill-Jeong et al [68] analyzed the effects of viscosity, film width, and 

backlash on the nonlinear dynamic behavior considering lubrication and sliding 

friction. 

Zhou et al [69] established a nonlinear model considering backlash, 

transmission error, and meshing stiffness. They studied nonlinear dynamic 

response using the Incremental Harmonic Balance Method (IHBM) and observed 

jump discontinuity phenomena caused by backlash. 

Various excitations, including vibro-impacts and periodic excitation [70,71], 

were considered to study nonlinear behavior. 

Bifurcation and chaos are typical nonlinear phenomena. Chang-Jian et al [72] 

established a single-degree-of-freedom spur gear system with and without 

nonlinear suspension, analyzed dynamic orbits of the system using bifurcation 

diagrams and phase diagrams. They demonstrated a diverse range of periodic, sub-

harmonic, and chaotic behaviors. 

Xia et al [73] developed a nonlinear model considering time-varying meshing 

stiffness, gear backlash, static transmission error, and tooth-face friction. They 

researched bifurcations and chaos characteristics of the system under lightly and 

heavily loaded conditions and investigated in detail the parametric effects of 

rotational speed, damping ratio, and gear backlash on the dynamic behaviors. 

Other studies [74–83] have explored errors (eccentricity, pitch deviation), 

multi-meshing, faults (cracks and wear), tooth features, modifications, Hertz 

contacts, and rattle, contributing to the understanding of nonlinearity in nonlinear 

gear dynamics. 

So far, research on gear pairs models has become increasingly sophisticated, 

with consideration for a wide range of factors including lubrication, friction, 

internal excitation, noise, and rattle prediction. Additionally, there is a growing 

interest in gear vibration control and fault diagnosis. Concurrently, numerical 

mathematical solving methods have been developed to address the complexities 

of differential equations. 

1.2.3   Research status on planetary gear system dynamics 

Currently, the research on planetary gear is still a focal point, with a plethora 

of analytical modeling, numerical analysis, and experimental studies focusing on 

both static and dynamic aspects of planetary gear systems, primarily centered 

around spur or helical configurations. However, compared to spur and helical 

gears, research work on double-helical gears, especially for planetary gear trains, 

has been relatively slow. Nonetheless, over the past two decades, planetary gear 

sets have found extensive applications across various industries such as 
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automotive, aerospace, wind power generation, and marine. Simultaneously, 

double-helical gears, also known as herringbone gears, offer distinct advantages 

over their spur and helical counterparts. Consequently, in recent years, several 

universities and scholars have initiated studies on the dynamic characteristics of 

double-helical planetary gear systems. 

1.2.3.1   Dynamic modeling methods 

Planetary gear models can be categorized based on degrees of freedom (DOF) 

into 1-Dimensional models (pure torsional models), 2-Dimensional models 

(transversal-torsional models), and 3-Dimensional models (transversal-torsional-

axial models). According to modeling methods, planetary gear models can also be 

divided into analytical models (lumped mass method), Finite element models, and 

hybrid models. Additionally, planetary gear models can be classified based on 

equations as linear time-invariant models, linear time-varying models, and 

nonlinear time-varying models. Time-varying parameters consist of meshing 

stiffness, damping, contact ratio, and others, while nonlinear parameters include 

backlash, lubrication, and more. 

According to the research content, the research on planetary gear systems can 

be mainly categorized into three categories in terms of vibration characteristics: 

free vibration, forced vibration, and vibration control. More specifically. 

Cooley and Parker [84] summarize the dynamic research of planetary gear 

system in paper that published in past 20 years, as shown in Fig.1-3, which can 

be seen from Fig.1-3 that there is an overall upward trend for vibration research 

of planetary gear system. In this review paper, mathematical models, most of 

which was lumped-parameter models, vibration mode, dynamic force response 

including linear and nonlinear equations, mesh phasing, high-speed effect such as 

gyroscopic, errors effects and experiment were studied and analyzed.  

 

Fig.1-3 Histogram of research papers on vibration of planetary gear system 
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In the lumped mass model, the gear body is assumed to be rigid, while the 

contacting teeth are considered to be flexible, and the entire gear mass is seen as 

one single center point. Kahraman [85] could develop the first 3D dynamic model 

of a single-stage helical planetary gear train with full DOFs based on the lumped 

parameter method, as illustrated in Fig.1-4. In this paper, meshing stiffness was 

assumed to be constant, and a linear time-invariant model was presented. A 

bending-torsional-axial coupling model of a double-helical gear system with 

journal bearings considered was developed by Yin et al [86], and they analyzed 

the influence of external excitation and internal parameters on the dynamic 

response. 

 

Fig.1-4 Dynamic models of (a) a sun/planet pair, (b) a ring/planet pair, and (c) a 

carrier/planet pair. 

With the development of computers, FEM offers the advantage of calculation 

speed. In FEM, all parts, including gear bodies, contacts, and bearings are defined 

to be flexible. Combining the lumped mass method, many finite element models 

[87] and hybrid models [88] have been developed. In 2006, Abousleiman and 

Velex [89] introduced a hybrid 3D model to analyze the quasi-static and dynamic 

behavior of epicyclic gear systems, where deformable rings and carriers were 

modeled via using beam elements. This approach served as a reference for 

modeling flexible components. The following year, the same authors [90] studied 

the quasi-static and dynamic behavior of spur and helical gears with flexible parts, 

demonstrating the feasibility of the proposed model and the necessity of 

considering flexible components. In 2019, Velex et al [91] explored the influence 
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of tooth modifications on dynamic behavior.  

Liu et al [92] proposed a dynamic model of a pair of double-helical gears by 

using the hybrid-defined user elements, with experimental results matching well 

with simulation results in terms of meshing frequencies and vibration responses.  

Planetary dynamic models with elasticity components have been considered 

by some researchers since 2000. Abousleiman et al [89] presented a hybrid 3D 

model to study static and dynamic behavior of planetary/epicyclic gears with 

deformable parts such as ring-gears and carriers, demonstrated the potential of the 

proposed hybrid model. Kahraman et al [93] studied the effect of flexibility on 

the dynamic of planetary gear systems and indicated that it was necessity of 

considering deformable body analysis to predict overall planetary gear set modes 

with flexible gear rims. 

Furthermore, in recent years, an increasing number of scholars have utilized 

the elastic-body method to establish dynamic models. Wang et al [94] considered 

the flexible pins to research the load-sharing characteristics of herringbone 

planetary gear systems in GTF, with results indicating that Montestruc pins 

exhibited the best load-sharing performance among the four types of pin models. 

Ericson and Parker [95] combined experimental measurements with finite element 

simulations to study the importance of mode of the elastic-body, especially for 

elastic ring gears, which may lead to excessive noise and other issues. Guan et al 

[96] introduced a new multibody dynamic model of planetary gear systems 

considering elastic shaft-ring gears and studied the influence of elasticity on the 

accuracy of the transmission and vibration intensity of light-weight gears. Ge et 

al [97] considered the ring as a flexible part to accurately obtain internal meshing 

stiffness. 

1.2.3.2   Natural frequencies and mode 

Natural frequencies and modes are fundamental characteristics of planetary 

gear systems, and research in this area has been extensive. 

Some scholars began studying modes with single-stage planetary gear trains. 

In 1994, Kahraman [98] proposed torsional models for planetary gear sets and 

derived closed-form expressions for natural frequencies and modal shapes [85] 

applicable to planetary systems with any number of planets. In 1995, Saada and 

Velex [99] proposed a planetary group dynamics model to study the influence of 

gear meshing stiffness and support stiffness on the natural frequency of the system. 

Subsequently, in 1999, J. Lin and R.G. Parker [100] established a 3DOF 

translation-torsion model for spur planetary gear trains and investigated its natural 

frequencies and vibration modes. In 2007, Parker et al [101] explored the 

structured vibration mode and natural frequency properties of compound 
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planetary gears, and results showed that the vibration modes were classified into 

rotational, translational, and planet modes and the unique properties of each typ e. 

Multi-stage systems have also been studied. In 2014, Sun et al [102] analyzed 

the natural frequency and coupled mode characteristics of multi-stage planetary 

gear systems, which developed research of multi-stage planetary gear system in 

this area. Rotational, translational, and planet modes were identified as the main 

three modes, with coupling observed between planetary stages in each rotational 

and translational mode. The following year, the same authors [103] investigated 

the sensitivity of natural frequencies and coupled modes to system parameters of 

multi-stage planetary gears. 

1.2.3.3   Research on load sharing characteristics and mesh phasing 

Another research focus is load sharing characteristics, as good load sharing 

can evenly distribute stress among planet gears, reduce unwanted vibration and 

noise, and prolong the working life of planetary gear systems.  

Kahraman et al [104] pioneered the study of load sharing characteristics of 

planetary gear systems in 1990s, and numerous model [105–112] have since been 

developed under a variety of conditions. Singh [113] proposed a generalized 

formulation for load sharing behavior in planetary gear trains with any number of 

planets. 

Iglesias et al [114] studied the influence of error and configuration on load 

sharing characteristics, while Sanchez-Espiga et al [115] summarized the 

influence rules of common errors (such as tooth thickness and pinhole position 

errors) on load sharing ratio based on different mesh phasing. The following year, 

the same authors [116] proposed a simple and effective model using virtual tooth 

root strain-gauges method to evaluate the effect of mesh phasing on load sharing 

ratio. In subsequent work, they [117] expanded this approach by considering the 

strain of more components to study load sharing ratio. 

In 2021, Ge et al [97] theoretically and experimentally conducted the study 

on the load sharing properties of planetary gear systems, with results showing that 

the error of load sharing coefficient calculated by theory and experiment was less 

than 5%. 

Mesh phasing is a crucial factor that significantly influences the dynamic 

response of planetary gear trains. It is determined based on the basic parameters 

such as the number of teeth on the gears and the number of planet gears . There 

are five main mesh phasing relationships: equally spaced in-phase (ESIP), equally 

spaced sequentially phased (ESSP), non-equally spaced in-phase (NESIP), non-

equally spaced sequentially phased (NESSP) and non-equally spaced arbitrarily 

phase (NESAP) [115]. 
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The study of mesh phasing was initiated by Kahraman and Parker. Kahraman 

[85] investigated the effects of planet mesh phasing on dynamics, while Kahraman 

et al [118] provide the first generalized phasing formulation for planetary gear 

systems with N planet. Parker and Lin [119] given an analytical calculate formular 

for calculating adjacent sun-planet meshing or ring-planet meshing. They also 

provide mesh phasing relationships between sun meshes with planet and ring 

meshes with same planet, such as S-P1 and R-P1, based on detail mesh processes, 

as depicted in Fig.1-5. Subsequently, many researchers referenced these formulas 

in their work [119]. In 2011, Guo and Parker [120] developed general analytical 

formular for mesh phase relations in compound planetary gear sets based on the 

work of Parker and Lin [119]. Canchi and Parker [121] investigated the effect of 

mesh phasing and contact ratio on the parametric instabilities of planetary gear 

rings. Wang and Parker [122][123] analyzed mesh phasing-based spectra of quasi-

static deformations and studied the impact of planet mesh phasing on the vibration 

of planetary gear systems. 

 

(a) Mesh phase quantities γsn, γrn and γrs            (b) detail of mesh process 

Fig.1-5 Diagram of mesh phasing in a planetary gear system 

Despite advancements in manufacturing and processing technology, common 

errors remain inevitable in gear systems. Numerous studies [106,124–129] have 

explored the influence of errors, which include eccentricity error, radius error, 

tangential error, and assembly error, on the modeling and dynamics of planetary 

gear systems. 
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1.2.4   Research status on the double-helical planetary gear train 

dynamics 

With the development of automatic machining centers and the improvements 

in precision, the application of double-helical gears and herringbone gears in 

modern industry has become increasingly popular, particularly in large machinery 

such as gas turbines and aero engines. Over the past 10 years, significant research 

has been conducted on double-helical planetary trains, covering dynamic 

modeling, tooth contact analysis, load-sharing characteristics analysis, nonlinear 

analysis, and more. 

In 2013, Sondkar et al [130][131] employed the Euler beam method and 

lumped mass method to develop a linear, time-invariant dynamic model of a single 

stage double-helical planetary gear system. They studied the influence of gear 

teeth stagger on the dynamic behavior. Tan et al [132] provided a modeling 

method for a double-planetary gearbox based on bond graphs. 

Sheng et al [133] investigated the vibration modal properties of double-

helical planetary gear trains and obtained three different types of modes: planet 

mode (PM), rotational-axial mode (RAM), and planet-translational mode (PTM). 

In 2016, Mo et al [134] established an axial-transverse-torsional dynamic model 

of double-helical star gear systems with considering machining errors and 

assembly errors for GTF aero-engines. They analyzed vibration modes, natural 

characteristics, and dynamic responses, noting differences in vibration modes 

between the left and right sides in certain orders. K. Khoozani et al [135] 

considered gyroscopic effects and studied natural frequencies of double-helical 

planetary gear systems. 

In 2014, Velex et al [136] studied the effects of planet position errors and 

pitch deviations on dynamic tooth loads. Wang et al [137] studied the effect of 

transmission error excitation, external load, and clearance on dynamic load 

coefficients. Schlecht et al [138] conducted analyses of loaded tooth contact. 

Chapron et al [139] examined symmetric linear optimum profile modifications 

(PMs) for helical and double-helical gears to minimum dynamic tooth loads, and 

analyzed the sensitivity of optimum PMs to speed and load.  

In 2015, Leque [140] pioneered the development of a load sharing model for 

double-helical epicyclic gear sets, which accounted for various types of 

manufacturing errors, both constant and time-varying with respect to gear. 

Subsequently, the study of the orbit under all types of error and the effect rule 

was conducted. The quasi-static load sharing behavior of double-helical epicyclic 

gear sets was theoretically investigated based on the proposed 3D model. In 2021, 

Götz et al [141] from the Technical University of Munich experimentally analyzed 
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the load-sharing characteristics of double-helical planetary gearboxes under 

variable working speeds (from 0 to 6800rpm) by using the strain-gauge method. 

They analyzed the influence of speed on static and dynamic load sharing. Liu et 

al [142] studied the dynamic characteristics of a split-torque transmission system 

with double-helical gears, they revealed that modification significantly improved 

dynamic load characteristics while slightly improving load sharing characteristics. 

Lu et al [143] proposed a nonlinear dynamics model of the double-helical 

planetary gear train by considering sliding friction, time-varying meshing 

stiffness, backlash, axial stagger, and mesh errors. The study investigated the 

influence of tooth friction on the periodic vibration and nonlinear vibration. 

In 2020, Wang [144] researched the effect of planetary gear/star gear (two 

common planetary stage) on the transmission efficiency in the closed differential 

double-helical gear train. Hu et al [145] studied load-sharing analysis of the closed 

differential planetary transmission gear systems by using theoretical and 

experimental methods. 

1.2.5   Research status of the marine gear transmission systems 

Regarding the marine gear transmission system, multi -stage gear 

transmission systems is still main structure. The power on ships is derived from 

multiple steam turbines or gas turbines, which is transmitted through one or more 

pairs of double helical gears to a large gear, achieving the purpose of speed 

reduction. This gear is connected to the propeller, driving the ship navigation. 

Fig.1-6 illustrates a 3D schematic of a typical propulsion system for large ships, 

which includes high-pressure and low-pressure turbines, with the double-input 

single-output double-helical gear transmission system as a critical component of 

the propulsion system. Xu et al [146] from Shanghai Jiao Tong University 

established a lateral-torsional-axial model of this propulsion system, considering 

multiple nonlinear and time-varying factors, based on the principles of gear 

transmission and finite-width journal bearing theory. They studied and quantified 

the impact of unsymmetrical load parameters on the stability of the entire coupled 

system. The results indicate that instability phenomena gradually occur with 

increasing excitation frequency, decreasing load ratio between the two inputs, or 

decreasing input load values, with more severe vibrations observed in the gear 

pairs on the low-load side. Furthermore, the vibration amplitude is related not 

only to load parameters but also to the distance between the gear pairs and the 

load input. They also concluded that the influence of oil film on system stability 

is crucial, especially in unstable states. Their research presents the stability 

boundaries of the propulsion system, providing theoretical references for the 

optimization and adjustment of load parameters. 
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Fig.1-6 Schematic diagram of the power system for a large ship [146] 

However, to the author's knowledge, there is currently limited research on 

two-stage parallel compound gear systems for marine applications, particularly 

regarding a unified and effective dynamic modeling method, the study of 

nonlinear motion states, and the development of dynamic models considering the 

ship navigation conditions. 

1.2.6   A brief analysis of literature review 

From the current research status, it is evident that scholars worldwide have 

made numerous attempts to study the dynamics of planetary gear reducer systems. 

They have established dynamics models of gear systems based on methods such 

as finite element method, T-beam element method, and potential energy method. 

Gears and rolling bearings commonly form a typical gear system dynamics 

model. Scholars from various countries have developed four main dynamic 

models of planetary gear reducers, categorized by degrees of freedom as follows: 

(1) Pure torsional model (1st model), (2) Transverse-torsional model (2nd model), 

(3) Transverse-axial-torsional model (3rd model) or transverse-axial-torsion-

swing model, and (4) Nonlinear model (4th model). Among these, the first three 

models are common in practical application. 

In terms of time and linearity classification, the gear dynamics model evolves 

from (1) the linear time-invariant model to (2) the linear time-invariant model 

with rotation effect, and further to (3) the linear time-varying model, and (4) the 

nonlinear time-varying model. The time-varying factors mainly consider changes 

in time-varying meshing stiffness, as the number of teeth involved in meshing 

changes throughout a meshing cycle. However, the main difference between spur 

gear and helical gear lies in the range of stiffness change. Nonlinear factors 

mainly include backlash and friction, affecting the stiffness and damping of the 

entire system. 

Various influences, such as gear eccentricity, tooth profile error, meshing 
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stiffness in the inertial coordinate system, and the centrifugal force and additional 

rotational inertia of planetary gear in the non-inertial coordinate system, are 

considered concerning the vibration characteristics of the gear system. 

Addationally, measures like gear modification algorithm are proposed to reduce 

vibration and noise. 

However, to the authors’ knowledge and the aboved reviewed literature, there 

are few researches on the complex planetary gear trains, such as the two-stage 

closed differential double-helical planetary gear system, particularly regarding 

dynamics research. In order to more accurately analyse the dynamic 

characteristics of the two-stage parallel compound gear train for marine, reveal 

the dynamic behaviour of the whole system, and help to improve the design and 

maintenance level of the ship power system, there is an urgent need to increase 

the research efforts on the nonlinear dynamic characteristics of two-stage parallel 

compoound gear train used in the ship, as well as the overall power system with 

regard to the coupling dynamics. According to the references, and combining with 

the research object of this topic and the influence of the working environment, the 

existing problems and deficiencies in the study of planetary gear systems, 

especially in the application of two-stage closed differential double-helical 

composund gear systems in power systems of ship, are mainly focused on the 

following aspects. 

(1) Based on the characteristics of the two classical planetary system 

structures (epicycal planetary gear system and star planetary gear system) in the 

two-stage parallel compound gear system, there is not uniform modeling method 

for this compound gear system. If the modelling method of fixed coordinate 

system is directly adopted in this compound gear system structure, the coordinate 

transformation matrix needs to be calculated from time to time in the computation 

process, resulting in problems such as the slow speed of the computation. The 

research on the general modelling method of two-stage parallel compound gear 

system is less, and there is an urgent need to propose a mechanical modelling 

method applicable to this compound gear system structure, so as to calculate the 

vibration response of the whole compound gear system more quickly and 

accurately. 

(2) Due to the load sharing characteristic and transmission error are the most 

basic indexes in evaluating a planetary gear system, and the meshing phase is the 

basic condition in a planetary gear system that is determined based on the number 

of teeth and planets. However, based on the existing studies, there are few reports 

on different meshing phases for two-stage parallel compound gear systems in 

terms of the load sharing characteristics, global transmission error, and dynamic 

coupling characteristics. 
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(3) Due to the operating conditions of this compound gear system in the ship 

power system belonging to the characteristics of large transmission torque, 

compact layout space and complex transmission paths. The transmission between 

the compound gear system is quite complex and it is challenging to reveal its 

nonlinear dynamics behaviour. Therefore, it is very meaningful to study the 

nonlinear dynamics of this two-stage parallel compound gear system. 

(4) When a ship carries out a mission on the sea surface, the working 

environment of the sea surface cannot be calm all the time, and by the influence 

of the waves, the common motion of the ship includes rocking, pitching, and other 

non-inertial system motions belonging to the hull of the ship. Most of the existing 

studies assume that the planetary gear system is fixed on the ground or the base 

coordinate system is stationary, and the motion of the ship hull on the sea surface 

is not taken into account. Although the motion of the ship hull is not like the 

aircraft engine that does dive in the air, flip, and other large-scale space motion, 

but by the influence of the non-inertial system of the ship hull, the absolute 

acceleration of the various parts of the modeling process and the inertial 

coordinate system are very different, which will result in the inertial motion of 

the ship. There is a big difference between the inertial coordinate system and the 

modelling of the hull of ship, which generates additional terms such as Kurtosis 

acceleration and implicated acceleration, and the impact on the overall dynamic 

response is also fundamentally different. 

1.3   Research object 

In this thesis, the research object focuses on a double-helical two-stage 

compound marine gear reansmission system, also called the closed differential 

planetary gear transmission system. It is composed of two stages: the differential 

planetary gear train and the closed planetary gear train. The transmission diagram 

is depicued in Fig.1-7, where the sun, planet and ring gear in each stage are all 

double-helical gears. To clearly distinguish between the parameters of the two 

stages, the suffix 1 represents the parameters of the first-stage differential 

planetary gear train, and the suffix 2 represents the parameters of the second-stage 

closed planetary gear train, unless otherwise specified. 

As illustrated in Fig.1-7, S1, P1, C1 and R1 consist of the differential 

planetary transmission gear train, while S2, P2 and R2 form the closed planetary 

transmission gear train. Consequently, the input power and torque are divided into 

two paths. One path is transmitted from the sun in the 1st stage (S1) to the planet 

in the 1st stage (P1) and finally output through the carrier in the 1st stage (C1). 

The other path is transmitted to the sun in the 2nd stage (S2) through the ring in 
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the 1st stage (R1), then output through the ring in the 2nd stage (R2), and 

ultimately combined with the output the torque of C1 to the output shaft. 

Furthermore, the choice of a double-helical planetary gear train as the 

research object is motivated by two main reasons. Firstly, planetary gear trains 

can effectively distribute the input power. Secondly, double-helical gears are 

capable of counteracting the axial forces generated by the respective helical gear. 

 

 
Fig.1-7 Transmission diagram of the closed differential planetary gear system：(a) 

Transmission diagram, (b) double-helical, and (c) 3D diagram 

 

1.4   Research outline 

In addition to the introduction of Chapter 1, the main contents of this thesis 
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are as follows: 

Chapter 2 is focused on the development of the mechanical model, including 

quasi-static and dynamic model, of a double-helical compound marine gear 

transmission set. The results of the quasi-static model are used to verify the 

accuracy of the established model, expand the modelling method of this parallel 

compound gear system. The dynamics model of this parallel compound gear 

system is established by using the finite element method, providing a research 

basis for the subsequent analyses. 

In Chapter 3 and Chapter 4, based on the quasi-static model, the global 

transmission error and the load sharing ratio of the two-stage parallel compound 

gear system are calculated. The influence of the pin position error and eccentricity 

error on quasi-static characteristics such as the load sharing ratio and global 

transmission error are analysed. The important law that the excitation frequency 

of the error for the global transfer error is related to the meshing phase is obtained. 

In addition, the influence law of eccentricity error on the axial trajectory of each 

component in the compound gear system is also explored in detail, and it is 

obtained that the shape of the axial trajectory of a gear with eccentricity error is 

related to the number of teeth of that gear. Based on the dynamic model,  aiming 

at the time-varying nonlinear dynamic equations, an improved Newmark-beta 

numerical method is proposed to study the dynamic vibration characteristics and 

coupling characteristics of the investigated compound gear system. 

In Chapter 5 ， the pure torsional and tramslational-torsional nonlinear 

dynamics model containing backlash, time-varying meshing stiffness and meshing 

damping are established. Based on the pure torsional nonlinear dynamics model, 

the nonlinear characteristics of the compound gear system are analysed in detail. 

The influences of factors such as the meshing damping ratio, the input rotational 

speed and the magnitude of meshing error on the nonlinear characteristics are 

revealed, providing some guidance for the design of this compound gear system 

to avoid undesired motion states in operation. Based on the translational-torsional 

nonlinear dynamics model, and a detailed analysis is carried out for the emergence 

of complex nonlinear dynamics behaviours, and its connection with the pure 

torsional model is obtained. 

In Chapter 6, Based on the ship motion state during sea voyage, the non-

inertial system on the sea surface is taken into account, and the expressions of 

absolute velocity and absolute acceleration of each component in the compound 

gear system under the two non-inertial systems, including internal and external 

coordinate systems, are derived. Thus, the dynamics of a two-stage parallel 

compound marine gear transmission system under two non-inertial coordinate 

systems is modelled. The dynamic characteristics of the whole gear system under 
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typical motions of the ship (rocking and pitching motions) are analysed and some 

conclusions are given. 
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Chapter 2   Mechanical Model of the Double-helical 

Two-stage Parallel Compound Marine Gear Train 

2.1   Preface  

Before the dynamic analysis, the most important thing is to establish an 

accurate mechanical model. Each double-helical gear (sun, planet and ring) 

composed of planetary gear train can be regarded as two helical gears with 

opposite helix angle. At the same time, the two planetary gear trains are composed 

in parallel, and there are a lot of meshing relations, and some of them are 

connected. Here, the connection between the two stages is represented by 

torsional stiffness. Center components such as sun, ring and carrier can be 

connected to the gearbox structure by torsional spring. If one of the central 

components is not fixed, its torsional stiffness value can be regarded as zero.  

Therefore, in this chapter, each stage of two-stage compound gear trains was 

firstly modeled separately. Then, combining with the lumped mass method and 

beam element method. Finally, the static and dynamic models are obtained 

according to the connection relation between the two stages.  

2.2   Calculation of meshing errors and mesh phasing  

In the practical application, due to the existence of manufacturing tolerance 

and installation accuracy, the actual center position and ideal center position of 

the gear can’t perfectly coincide. Therefore, all kinds of errors must exist in gear 

system, which affect the transmission behavior of the gear system. 

2.2.1   Calculation of meshing error considering errors 

2.2.1.1   Effect of planet pinhole position error on meshing error  

Pinhole position error is the difference between actual position of mounting 

position of planet gear and ideal mounting position. This kind of error is common 

in the assembly of planetary gear system. And pinhole position error can be 

divided into two kinds of position error, radial error and tangential error, as shown 

in Fig.2-1. The positive value of the radial error is outward along the centerline 

of two gears, while the positive value of the tangential error is perpendicular to 

the radial direction and consistent with the tangential direction of the rotation of 

the sun gear. 
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Fig.2-1 Diagram of planet pinhole position error 

The equation for the meshing error affected by the planet pinhole position 

error that can be obtained by translating that, shown in Fig.2-1, into the direction 

normal to the two engagement lines of S-Pi and R-Pi. 
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where, eppi and λppi are the error and initial phase, respectively. 

2.2.1.2   Eccentricity error 

Eccentricity error is also called run-out error, it is a time-varying error, which 

can be decomposed into two components in the coordinate system and represented 

as transverse plane translations of the central point of rotation of the gear. 

Therefore, the run-out error on the sun gear and planet can be projected into the 

normal direction of meshing. Taking the sun-planet (S-Pi) meshing in a planetary 

gear train shown in Fig.2-2 as an example, the eccentricity errors of the respective 

gears are converted into the mesh error by the formula expressed below. 
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Similarly, for the ring-planet (R-Pi) meshing, the meshing error affected by 

the eccentricity error are shown as follows. 
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where, ees, eepi and eer are magnitude of the run-out error for sun, planet and ring, 
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respectively. λs, λpi and λr are initial phase angle of the run-out error for sun, planet 

and ring, respectively.  

 

Fig.2-2 Diagram of eccentricity error 

Here, it is noted that there is a connection between the eccentricity error and 

the pinhole position error for same magnitude of same planet . When the rotational 

angle is zero, the eccentricity error is pure radial error. In the same way, when the 

rotational angle become 90 degrees, it becomes pure tangential error.  

2.2.1.3   Indexing error 

Gear tooth indexing error is also called as pitch error, as shown in Fig.2-3, 

which is the deviation of the actual position (red tooth) from the reference 

theoretical position (black tooth) of teeth. This kind of error is one of common 

errors because of the precision of the gear manufacturing process. In addition, it 

is noted that the sum of error value εi (shown in Fig.2-3) should be zero. 

 

Fig.2-3 Diagram of indexing error 

Assuming that the tooth shown in Fig.2-3 above is the sun gear, the equation 
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for the meshing error obtained by translating its tooth indexing error to the 

meshing line is shown as below. 

 ( ) cos( )sin( )spi s fps sp se t e t − =  (2-4) 

where, efps is the indexing error, and ωs is the rotational speed. 

2.2.1.4   Thickness error 

Tooth thickness error is the difference between the actual tooth thickness and 

the nominal tooth thickness. 

 

Fig.2-4 Diagram of thickness error 

As shown in Fig.2-4, it is noted that a positive value (red line) means that the 

teeth are thicker than nominal (black line), while a negative value (blue line) 

means that teeth are thinner than nominal. In this thesis, the tooth thickness error 

is symmetric on both flanks. The sickness error is a special condition of indexing 

error. 

2.2.2   Mesh phasing 

Mesh phasing is a basic characteristic of a planetary gear train, which affects 

the lead or delay of the contact between two adjacent planet gears which mesh 

with sun or ring. In total, there are three types of conditions, they are in phasing, 

sequential phasing and arvitrarily phasing, which depend on its geometry (the 

teeth numbers and planet position angle). Moreover, in terms of the assemble 

position of the planet gear, there are two types of condition, equally space 

assembly (i.e., planets are equally spaced around the center gear) and non-equally 

space assembly. 

As above mentioned, for a planetary gear train, the combined configuration 

conditions are shown in Tab.2-1. 
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Tab.2-1 Assembly and Mesh phasing configurations (adapted from [147,148]) 

Configuration  Mathematical conditions 

Equally Spaced In Phasing 

(ESIP) 

2 ( 1)
,  integer

2

r i

i

Zi

N






−
= =  

Non-Equally Spaced In Phasing 

(NESIP) 

2 ( 1)
,  integer

2

r i

i

Zi

N






−
 =  

Equally Spaced Sequential Phasing 

(ESSP) 
i 1

2 ( 1)
,  integer, =integer

2

N
r i

i r i

Zi
Z

N


  

 =

−
=    

Non-Equally Spaced Sequential Phasing 

(NESSP) i 1

2 ( 1)
,  integer, =integer

2

N
r i

i r i

Zi
Z

N


  

 =

−
    

Non-Equally Spaced Arbitrarily Phasing 

(NESAP) 
i 1

2 ( 1)
,  integer, integer

2

N
r i

i r i

Zi
Z

N


  

 =

−
    

 

where, ψi is planet i spacing angle, N is planet numbers and Zr is teeth of ring gear. 

 

2.3   Translational-torsional quasi-static model of the two-stage 

parallel compound marine gear transmission system 

The two-dimensional quasi-static model of differential stage (the first stage) 

planetary gear system is shown in Fig.2-5. Correspondingly, the two-dimensional 

quasi-static model of closed stage (the second stage) planetary gear system is 

shown in Fig.2-6. The only difference between two stages is whether the carrier 

rotates. 

As shown in Fig.2-5 and Fig.2-6, the meshing relationship between gears is 

equivalent to a spring, and the red straight line in the rectangular diagram on the 

right represents the meshing force direction on the normal plane when the single 

side helical gear of double-helical gear meshes. At the same time, firstly, the 

supporting spring can be used to represent the supporting connection relationship 

between the sun gear, ring gear, carrier and their respective main shafts, secondly, 

the planet gear and planet carrier. kxi, kyi (i = s, r, c) can be used to represent the 

stiffness of each supporting spring in the transverse and vertical directions , kξ, kη 

is the supporting stiffness in the radial and tangential direction of planet, their 

units are N/m. kti (i = s, r, c) is used to represent the stiffness of each torsion spring 

of every component in their rotational direction, and corresponding units are 

Nm/rad.  
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Fig.2-5 The statics model of the differential planetary gear train 

 

Fig.2-6 The statics model of the closed planetary gear train 

In the compound gear system, the planets of the first stage not only rotates 

around its axis, but also rotates with the carrier around the centre of the planetary 

gear train, so three types of coordinate systems are established in this thesis. 

(1) Fixed coordinate system XOY. The origin point is at the centre of the 

whole compound gear system, which is in fact the whole ground coordinate system. 

All components of the second stage are modelled in the fixed coordinate system.  

(2) Moving coordinate system of carrier xoy. The origin is located at the 

centre of the carrier in first stage, rotating with the carrier piece under an angular 

velocity ωc. Sun, ring and carrier in the first-stage are modelled in this coordinate 

system. 

(3) Moving coordinate system of planets ξoη. The origin is located at the 
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centre of the planets in the first stage, the ξ axis direction is radial direction, and 

the η axis direction is tangential direction. The planets in first stage is modelled 

in this coordinate system. 

The angle formed by the meshing plane of a pair of meshing gears (sun-planet 

and ring-planet) in a planetary gear system and the Y-axis of the static coordinate 

system is shown as Fig.2-7. As diagram shown, ψspi represents the angle formed 

between the meshing plane of sun-planet and Y-axis, and ψrpi represents the angle 

formed between the meshing plane of ring-planet and Y-axis, and the calculation 

formula is as follows. 

 

Fig.2-7 A diagram of the angle formed by the meshing plane and the Y axis of the static 

coordinate system XOY 

 
spi sp pi

rpi rp pi

  

  

= −

= +
 (2-5) 

in which, λ=1 represents the counterclockwise rotation directions of sun gear, λ=-

1 represents the clockwise rotation directions of the sun gear. αsp is the transverse 

pressure angle of sun-planet meshes, αrp is the transverse pressure angle of ring-

planet meshes and ϕpi is the positional angle of the planet i. Here, defines the 

initial position of the first planet gear as being on the X-axis, with ϕp1=0. The 

formula for the position of the planet gear is shown in the following Eq.(2-6): 

 
2 ( 1)

pi

i

N




−
=  (2-6) 

where, N is the number of the planet gear. 
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2.3.1   Static balance equation of sun and planet #i meshing 

Firstly, considering the left side helical gear in the double-helical sun gear, 

which engages with one side of the double-helical planet gear, as shown Fig.2-8. 

A planet i which is located in a positional angle  ϕpi, the meshing teeth between 

sun and the planet i are seen as the spring shown in Fig.2-8. 

 

 

Fig.2-8 The sun gear meshes with the planet gear 

When the sun gear s meshes with the planet gear pi (i=1,2,...,N), the 6DOF 

static balance equation (force and moment balance) of the sun can be listed, for 

the static equilibrium equation of helical gear meshing on the other side, only the 

helical angle of the base circle needs to be negative, and other parameters are  the 

same. Therefore, the static equilibrium equation of the double-helical sun gear 

meshing with N double-helical planet gear is shown in Equation (2-7). 

 

2

1 1

2

1 1

2

1 1

2

1 1

2

1 1

1

cos( )sin( ) 0

cos( )cos( ) 0

sin( ) 0

sin( )sin( ) 0

sin( ) cos( ) 0

cos( )

N j j

mspi b spij i

N j j

mspi b spij i

N j j

mspi bj i

N j j

mspi b spi bsj i

N j j

mspi b spi bsj i

N j j

mspi b bs inj i

F

F

F

F R

F R

F R T

 

 



 

 



= =

= =

= =

= =

= =

= =

=

=

=

=

=

=

 

 

 

 

 


2

1















 (2-7) 

where, βb is helix angle of base circle. j=1 is left helical gear, j=2 is right helical 
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gear, and it is defined that 
2 1

b b = − . Tin is input torque, Rbs is radius of base circle. 

Fmspi is meshing force of single side of double-helical gear meshing, as shown in 

Equation (2-8). 

 mspi spi spiF k =   (2-8) 

in which, kspi is meshing stiffness. spi  is relative meshing displacement between 

the helical sun-planet gear pair, which is combined by the displacement of the 

gear in six directions projected onto the meshing line.  Here, it is defined that the 

spring compression should be positive, as shown in Fig.2-7 and Fig.2-8. Then the 

calculation formula of the relative meshing displacement of the sun-planet pair is 

shown in Formula (2-9). 

 

1 1 1

1 2 1 2

1 2 2 1 2 1 2

[( sin cos ( ) sin cos

( ) )]cos [( sin cos )

( sin cos ) ]sin

spi s spi s spi zs zc bs pi sp pi sp

zpi zc bp b xs spi ys spi bs

s pi sp pi sp bp pi b

x y R

R R

z R z 

          

          

           

= + + − − −

+  − +  +  

−   +  +   +  

 (2-9) 

Here, Rbp is the radius of the base circle of the planet engaged with the sun. 

According to Equation (2-9), the projection vector and sub-vector of s-pi 

meshing pair can be obtained as follows: 

 

1 1 2 2 1 2 1

1 1 2 2 1 2 1

1 1 2

2 1 2 1

,  ,  ,  ,  ,  ,

,  ,  ,  ,  ,  

...

b b b bs b bs b bs b

spi

b b b bp b bp b bp b

b b bspi

s

bs b bs b bs b

s c c c s R s s R c s R c

s c c c s R s s R c s R c

s c c c s

R s s R c s R c

                

                

       

        

− 
=  

− − 

 −  
=

  

V

V

 1

1 1 2

2 1 2 1

  0 0 0 0 0

...

spi

c bc b

b b bspi

pi

bp b bp b bp b

R c

s c c c s

R s s R c s R c

 

       

        


 
 

= −

− −    
=  

   

V

V

 (2-10) 

where, 1 1 =   represents the counterclockwise and clockwise directions of the 

input torque of sun gear, and 2 1 =   represents right-handed or left-handed of 

sun gear, and βb represents the magnitude of the helical angle of the base circle. 

Here, simplified notation is used to represent the following expression:  

sin ,  cos ,  sin ,  cos ,  sin ,  cosj j

spi spi sp sp b b b bs c s c s c           = = = = = =  

Equations (2-8) and (2-9) are imported into Equation (2-7) and sorted out, 

then the force and moment balance equation of equation (2-7) can be expressed in 

matrix form as follows: 
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11 12 13 13

1 1

1 1

21 22 23 1
1 1 1

21 22 23

N N

smspi msp msp mspN s
i i

c

p
msp msp msp

pN
mspN mspN mspN

= =

                    
=     

     
     
         

  qK K K K f

q 0
0 0 0 0

q 0
K K K 0

0
0qK K 0 K

 (2-11) 

where, the stiffness submatrix, displacement and external force sub-vector in the 

equation (2-11) are defined as follows: 

 

11 12

13 21

22 23

( ) ,   ( ) ,   

( ) ,   ( ) ,   

( ) ,   ( ) .

 

spi T spi spi T spi

mspi spi s s mspi spi s c

spi T spi spi T spi

mspi spi s pi mspi spi pi s

spi T spi spi T spi

mspi spi pi c mspi spi pi pi

s

s

s

s

xs

ys

zs

k k

k k

k k

x

y

z







= =

= =

= =






= 






K V V K V V

K V V K V V

K V V K V V

q

0

0

0
,     ,     .   

0

0

/ 2

pi

pi

pi

pi s

pi

pi

inzpi

z

T















   
   
   
   

=   =  
   
   
      

   

q f

 (2-12) 

2.3.2   Static balance equation of ring and planet #i meshing 

The meshing diagram of a ring gear and a planet gear i with positional angle 

ϕpi is shown in Fig.2-9. Therefore, the static equilibrium equation of the double-

helical ring gear meshing with N double-helical planet gear is given by. 

 

Fig.2-9 The ring gear meshes with the planet gear 
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 (2-13) 

where, Rbr is radius of base circle of ring gear, Tr is torque, ψrpi is shown as 

equation (2-5). Similarly, Fmrpi shown (2-13) is meshing force between ring and 

planet for single side of double-helical gear.  

 mrpi rpi rpiF k =   (2-14) 

in which, krpi is meshing stiffness of ring-planet, δrpi is relative meshing 

displacement of ring-planet. 

The meshing displacement δrpi is combined by the displacement projection 

of six directions of the meshing gear pair onto the meshing line. Here, it is 

stipulated that the spring should be positive when compressed. Then the 

calculation formula of the relative meshing displacement of the ring-planet 

meshing pair is shown in Equation (2-15). 
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2 1 2 1 2

1 2 2

[( cos sin ( )

         sin cos ( ) )]cos

         [( sin cos )

         ( cos sin )
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+   −  1 2 ]sin
bp piz  −  

 (2-15) 

where, according to the above equation (2-15) and summary, the projection sub-

vector of ring-planet meshing pair can be obtained as follows: 

  
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 (2-16) 

here, simplified notation is used to represent the following expression: 

sin ,  cos ,  sin ,  cosrpi rpi rp rps c s c       = = = =  
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Putting equations (2-14) and (2-15) into equation (2-13) and arrange them, 

then the force and moment balance equation of equation (2-13) can be expressed 

in matrix form as follows: 
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N N
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 (2-17) 

where, the stiffness submatrix, displacement sub-vector and external force sub-

vector are defined as follows: 
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 (2-18) 

 

2.3.3   Static balance equation between carrier and planet #i 

In a planetary gear train, the carrier and planets are connected via bearings, 

so the motion displacement of the planetary frame must be considered.  Here, its 

distance from the z axis of the carrier is the installation distance of the planet gear. 

Meanwhile, the compliance of the planetary wheel bearing can be regarded as a 

diagonal stiffness matrix, as shown below. 

  bpi z zK diag k k k k k k    =  (2-19) 

Here the supporting stiffness of bearing in in two perpendicular directions 

are seen as kξ and kη. Therefore, the bearing force is given as the following 

equation (2-20). Hence, the static equation of the planet is obtained, which is 

equation (2-21). 
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Correspondingly, the static equilibrium equation of the carrier is shown as 

follows: 
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 (2-22) 

where, Tc is the external torque of carrier. 

The equations (2-21) and (2-22) are rewritten into a matrix form as follows: 
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where, the, displacement and force vector are shown as follows in equation (2-24).  
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It is noted that the stiffness submatrices are given in the followingequation, 

and they are all symmetric matrix. 
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where, the shorthand form in the matrix is sϕpi=sinϕpi, cϕpi=cosϕpi. The position 

angle of the planet can be constant or time-varying, which depends on whether 

the planetary gear train is fixed-axis or cyclic. 

2.3.4   Quasi-static equation of the overall system 

By consolidating the force balance relationships and generalized coordinates 

of the individual components, the overall quasi-static equation of the compound 

gear system can be obtained. 

 overall overall overall=K q F  (2-25) 
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where, Koverall, qoverall and Foverall are the overall stiffness matrix, displacement 

vector and force vector, respectively. 

2.4   Translational-torsional dynamic model of the two-stage 

parallel compound marine gear transmission system 

The dynamic meshing diagram of double-helical planetary gear train is 

shown in Fig.2-10, the meshing relationship between gears is equivalent to a 

spring-damper model, where kspi, cspi and espi represent the meshing stiffness, 

damping and transmission error of the sun-planet meshing pair, respectively. 

Corresponding, krpi, crpi and erpi represent the meshing stiffness, damping and 

transmission error of the ring-planet meshing pair, respectively. βb represents the 

helix angle of the base circle. 

 

Fig.2-10 Schematic diagram of meshing of double-helical planetary gear train 

The transverse face meshing diagrams of differential and closed stage gear 

trains are shown as Fig.2-11 and Fig.2-12, respectively. 
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Fig.2-11 The dynamics model of the differential planetary gear train 

 

Fig.2-12 The dynamics model of the closed planetary gear train  

The meaning of the symbols is consistent with static model. Since double-

helical gear are composed of two helical gears with opposite helical angles and 

other parameters are completely consistent, only one helical gear of one side (left 

side) can be given in the meshing equation here and in the subsequent ones. For 

the meshing equation on the other side (right side), only a negative sign can be 

added in front of the helical angle. 
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2.4.1   Kinematic analysis of different components in the moving 

coordinate system 

In this subsection, the kinematic relationship of the components of first stage 

in the corresponding moving coordinate is analyzed. Fig.2-13 shows the vector 

relations between the displacements of the central components (sun gear, planet 

carrier and ring gear) and the planet gear in two coordinate systems, where the 

moving coordinate system is o-xcyczc, the planet coordinate system is op-ξpηpzp, 

and the unit vectors of the coordinate systems are i, j, k. The coordinate oc-xcyczc 

is parallel to os-xsyszs. Each coordinate system rotates around the o  point, and the 

rotational angular velocity of the carrier is ωc. 

 
Fig.2-13 Displacement vectors for components: (a) sun and (b) planet  

As depicted in Fig.2-13, assuming that the node of the sun in its own 

coordinate system is Ms, the displacement vector is rs, and the vector of the so  

point with respect to the o  point is r , then the displacement vector of the point 

Ms in the moving coordinate is rms=rs+r. Thus, the displacement, velocity and 

acceleration of the node sM   with respect to the moving coordinate system (o-

xcyczc) can be relative displacement, relative velocity and relative acceleration, 

denoted as. 

 

s s s

s s s

s s s

x y z

x y z

x y z

= + +

= + +

= + +

sr s s s

s s s s

s s s s

i j k

v i j k

a i j k

 (2-26) 

where, is, js and ks are the unit vector of the coordinate, respectively. The 

scalars, such as sx , sy , sz , sx , sy , sz , sx , sy  and sz , in front of the unit vector 

are the vibration response value. 

Thus, the vector rs takes two derivatives, respectively, for time t to obtain the 

vector expressions for the absolute acceleration of the node Ms are given as 



Doctoral Dissertation 

 - 38 - 

follows: 

 2 ( )= +  +  +  is s s s sa a ω v ω r ω ω r  (2-27) 

Then, based on the vector product algorithm, the absolute acceleration of the 

sun is decomposed into two translation directions, which is given as: 

 

2

2

2

2

sx s c s c s c s

sy s c s c s c s

a x y y x

a y x x y

  

  

= − − −

= + + −
 (2-28) 

In the same way, the absolute acceleration of the planet is decomposed into 

two translation directions, which is given as:  

 

2 2

2

2

2

px p c p c p c p c bc

py p c p c p c p c bc

a r
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     

       

= − − − −

= + + − +
 (2-29) 

where, ωc is the rotational angular velocity magnitude of the carrier in the first 

stage, and rc is the distance from central point to planet pin.  xs, ys, ξp and ηp are 

the vibration response displacement in their own coordinate, respectively. The 

item of 
2

c cr   and c cr   is the item related to the inertial force, which mainly 

depends on the angular velocity and acceleration of the carrier. 

2.4.2   Dynamic model of sun and planet #i meshing 

The meshing diagram of unilateral helical sun and planet is illustrated in 

Fig.2-14, the teeth in contact are equivalent to a spring damping unit .  

 

Fig.2-14 Diagram of sun-planet i meshing 

As shown in Fig.2-14, the contact transmission of the teeth is represented by 
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the meshing stiffness kspi, meshing damping cspi and transmission error espi. As 

mentioned above, the components of the first-stage gear system are modeled in 

the moving coordinate system, with the formulas for acceleration and velocity as 

described in the previous section. Unlike most literature, the axial angular 

displacements (θzs, θzr, θzc, θzpi) of the components in the first stage are not defined 

in the moving coordinate system but rather in the fixed coordinate system, 

highlighting a key distinction in this modeling approach. Taking the example of 

the sun-planet gear mesh (S-Pi) shown in Fig.2-14, the meshing displacement and 

meshing velocity are expressed as follows: 
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 (2-30) 

In dynamics, the meshing displacement consists of the projection of the 

displacements in various directions of the meshing gear pair onto the meshing 

direction, along with the transmission error. Therefore, based on equation (2-30), 

the projection vector for the S-Pi meshing pair in the dynamic modeling is given 

by: 
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 (2-31) 

Based on equation (2-31), it is noted that, unlike in reference [149] , there is 

an additional projection vector related to the carrier
spi

cV  , as well as extra 

projection vectors ,spi spi

s pi V V   arising from the velocity terms. Furthermore, 

during the calculation, the extra projection vectors such as ,spi spi

s pi V V  is similar 

to that of the projection vectors ,spi spi

s piV V  . Therefore, for brevity, the detailed 
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computation process is not provided here. 

Therefore, the matrix form of the dynamic equation for the S-Pi is presented 

as follows: 
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where, Ms, Mpi--the mass matrix of sun and planet； 

,s piq q --The acceleration vector of sun and planet； 

, , is c pq q q --The velocity vector of sun, carrrier and planet； 

qs, qc, qpi--The displacement vector of sun, carrier and planet； 

Kspi(t), Cspi(t)--Time-varying stiffness and damping matrix of S-Pi； 

,spi spi

pisf f --The column vector of the meshing error force on sun and planet; 

kspi(t),cspi(t)--Time-varying stiffness and damping of S-Pi. 

In this case, the overall format of the meshing stiffness matrix and the 

meshing damping matrix is a 2 × 3 format, and the sub-matrices at each position 

are 6 × 6 matrices. The form of the sub-matrix in them is the same, the 

difference is that the front of the matrix is multiplied by the meshing stiffness 

and the meshing damping, respectively. In order to avoid redundancy, the 

following formulas will only give the form of the sub-matrix calculation in the 

matrix of meshing stiffness, and will not describe too much for the matrix of 

meshing damping. 
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= = =

= = =
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 (2-33) 

according to Equation, the extra sub-matrices of the meshing stiffness of the S-Pi 

meshing pair are the sub-matrices at positions 12 and 22 of the Meshing stiffness 

matrix Kspi, which are the key to removing the effect of the rotation of the carrier 

for first stage. Furthermore, the remaining sub-matrices and sub-vectors are 

shown below. It is worthwhile to note here that the additional acceleration terms 
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and velocities caused by the presence of the carrier moving coordinate system in 

the first stage need to be additionally assigned to the respective meshing stiffness 

and engagement damping matrices. 

Additionally, the submatrix and subvector are given. 

 
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2.4.3   Dynamic model of ring and planet #i meshing 

The meshing diagram of unilateral helical sun and planet is shown in Fig.2-15, 

the teeth in contact are equivalent to a spring damping unit . As shown in Fig.2-15, 

the blue lines in planet and ring present the helix direction of the helical gear. The 

contact transmission of the teeth is represented by the meshing stiffness krpi, 

meshing damping crpi and transmission error erpi. 

 

Fig.2-15 Diagram of ring-planet i meshing 

In the same way, the dynamic balanced equations in matrix form of R-Pi 

meshing of single helical gear are derived as follows:  
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where, Mr, Mpi--the mass matrix of ring and planet； 

,r piq q --The acceleration vector of ring and planet； 

, , ir c pq q q --The velocity vector of ring, carrrier and planet； 

qr, qc, qpi--The displacement vector of ring, carrier and planet； 

Krpi(t), Crpi(t)—Time-varying stiffness and damping matrix of R-Pi； 

,rpi rpi

r pif f --The column vector of the meshing error force on ring and planet ; 

( )rpik t , ( )rpic t --Time-varying stiffness and damping of R-Pi. 

The mass matrix and the external force are shown in the following equations. 

[ ],

( ) ( ( ) ( ) ( ) ( ))( ) ,

( ) ( ( ) ( ) ( ) ( ))( ) .

r r r r r r r

rpi rpi T

r rpi rpi rpi rpi r

rpi rpi T

pi rpi rpi rpi rpi pi

Diag m m m I I J

t k t e t c t e t

t k t e t c t e t

=

= +

= +

M

f V

f V

 

2.4.4   Dynamic model of carrier and planet #i 

The meshing diagram of unilateral helical sun and planet is depicted in 

Fig.2-16, the teeth in contact are equivalent to a spring damping unit . As shown 

in Fig.2-16, the supporting relationship is represented by the supporting stiffness 

kcpi and supporting damping ccpi. 

 

Fig.2-16 Supporting diagram of carrier and planet i 

According to static model of carrier and planet, the dynamic balanced 

equations in matrix form of c-pi of single helical gear are derived as follows:  
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where, Kcpi--Supporting stiffness matrix； 

Ccpi--Supporting damping matrix； 

Mc--Mass matrix of carrier； 

fc--The torque vector of carrier。 

The calculation of the support stiffness matrix is derived from the static 

model. The support damping matrix has a similar form to the support stiffness 

matrix, with the stiffness values of the bearings replaced by damping values. The 

mass matrix and the torque vector are as follows: 
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0 0 0 0 0

c c c c c c

T

c out

Diag m m m I I J

T

=

=

M

f
 

2.4.5   Dynamic model of bearing 

In this study, the bearing is rolling bearing and the schematic diagram is 

shown in Fig.2-17. As shown in Fig.2-17, the rolling bearing is composed of three 

parts, one inner ring, one outer ring and N rolling elements. The bearing is used 

to support the shafts, sun, carrier, ring and so on to insure normal work of the 

mechanical system. 

 

Fig.2-17 Schematic diagram of the rolling bearing 

For instance, the supporting matrix of the sun, planet and ring is shown as: 

 { 0}bi bx by bz x ydiag k k k k k =K  (2-36) 

where, i presents the sun, carrier and ring, respectively. 

Therefore, the motion equation in matrix form for bearing node j can be 
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expressed as below equation. 

 bj bj bj bj bj bj+ + =M X C X K X 0  (2-37) 

in which, Mbj and Xbj represent the mass matrix and displacement column vector 

for the bearing node j, respectively. 

2.4.6   Dynamic model of the beam element 

The above three subsections only given the dynamic model of one side of 

double-helical gears. But for an actual double-helical gear, it is one piece (sun 

and planet) or rigidly connected by two helical gears (ring). Here, Timoshenko 

beam element is used to connect both sides by referring to Ajmi and Velex’s 

work[150]. As illustrated in Fig.2-18 to explain the nodes and beam elements, for 

two sides of double-helical gears, nodes 2 and 6 (for middle positions of two sides) 

are defined as mesh nodes (red nodes), which mesh with mesh nodes of other 

gears, and every element consist of two nodes. Node 4 (the middle node of a 

double-helical gear) is used to connect another support structure (bearing or spline 

support). 

 

Fig.2-18 Diagram of nodes of double-helical gears 

Therefore, the dynamic equation in matrix form is given as follow:  
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 ( ) ( ) ( )beam beam beam beam beam beamt t t+ + =M q G q K q 0  (2-38) 

where, in the equation (2-38), beamM  , beamG  , beamK   and beamq   represent the mass 

matrix, gyroscope matrix, stiffness matrix and displacement vector of the beam 

element, respectively. 

In addition, according to the finite element assembly principle, for instance, 

the assembly stiffness matrix (or mass matrix) of adjacent elements i and i+1 is 

shown as below. 

 

11 12

22 11 12

( 1) 1 1

22

1.

i i

i i i i i

isym

+ + +

+

 
 

= + 
 
 

K K 0

K K K K

K

 (2-39) 

where, the sub-matrices of ith Timoshenko beam element in Equation (2-39) are 

given in Appendix. 

2.4.7   Dynamic model of the overall system 

The above sub-system matrices shown in Eq. (2-32), (2-34) and (2-35) are 

assembled based on assemble method defined by Eq. (2-39) to obtain the overall 

dynamic equations of a double-helical planetary gear train consisting of N planets. 

As shown in Fig.2-19, for the sake of simplicity, only one side of the double-

helical gear meshing (red node) is shown here.  

 

 

Fig.2-19 The node diagram of the overall system 
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According to the above equations, the overall dynamic equation in matrix 

form of the studied planetary gear system is shown as follows.  

 overall overall overall overall overall overall overall+ + =M q C q K q F  (2-40) 

in which, overallM , overallK  and overallC  are the overall mass, stiffness and damping 

matrix, respectively. overallK  and overallC  have similar form, they are obtained based 

on the finite assemble method, for instance, the assemble diagram of the overall 

stiffness matrix is shown as the Fig.2-20. 

 

Fig.2-20 The diagram of overall assembly matrice 

Additionally, the specific forms of the damping matrix, stiffness matrices and 

Force are shown below: 

 

2

 2

sys B b m c

n

sys R b m c i di

i shaft

sys T g c m

i

e

Centrifugal Coriol s

Coriolis



 
=

= + + + +

= + + + +

= + + +



K K K K K K

C C C C G G

F F F F F

 (2-41) 

where FT/Fg/Fc/Fme denote the torque term, the gravity term, the centrifugal force 

term (for the first-stage planet gear), and the meshing excitation term, respectively. 

KB/Kb/Km/KCentrifugal/KCoriolis denote the beam element stiffness matrix, the 

bearing support stiffness matrix, the meshing stiffness matrix, the stiffness matrix 
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resulting from the centrifugal acceleration term, and the stiffness matrix generated 

by the Koehler effect of the velocity term correction term, respectively. In contrast 

to the stiffness matrix, Cb/Cm/CCoriolis denote the bearing support damping matrix, 

the meshing damping matrix, the damping matrix resulting from the Coefficients 

acceleration term. Furthermore, CR denotes the Rayleigh damping matrix of the 

whole system, which is usually related to the system mass matrix and the system 

stiffness matrix, and is calculated by the formula shown below:  

 2 2

2 2 1 1 2 1

2 2

2 2 1 1 2 1

2( / / ) / (1/ 1/ )

2( ) / ( )

R sys sys 

      

      

= +

= − −

= − −

C M K

 (2-42) 

where α and β are the scaling factors corresponding to the front of the mass and 

stiffness matrices. ω1 and ω2 are the first and second order natural frequency 

values of the system. ξ1 and ξ2 are the damping ratio coefficients, which in this 

paper take the value of 0.07. 

In addition, the gyro matrix Gdi for the concentrated mass points such as the 

sun gear, the planet gear and the ring gear is shown below.  

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

di

pi

pi

J

J

 
 
 
 

=  
 
 −
 
 

G  (2-43) 

where the gyro matrix is an anti-symmetric matrix, Jp is the polar moment of 

inertia, and it should be noted that it is preceded by a multiplication by the angular 

velocity of the axis represented by the node. 

2.5   Brief summary 

This chapter presents the mechanical models, quasi-static and dynamic model, 

for a two-stage parallel compound gear system based on common error types in 

gear transmission and the calculation formulas for the meshing phases in planetary 

gear systems. The main contents are as follows: 

(1) A unified and concise modeling method suitable for the two-stage parallel 

compound gear system is proposed, based on the structural characteristics of 
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different gear trains. Unlike previous literature, this method combines fixed and 

moving coordinate systems and introduces a formula for calculating the meshing 

displacement of differential gear systems. This approach simplifies the modeling 

process by avoiding the complexities associated with coordinate transformations, 

establishing a static model, which provides  a reference for modeling the dynamic 

model. 

(2) Based on the moving coordinate systems, in order to address the 

incompleteness of dynamic equations arising from neglecting coupling and 

Coriolis accelerations due to the rotation of the carrier, complete formulas for the 

absolute acceleration of various components in the first -stage gear system are 

derived. According to the modeling process of static model and incorporates 

additional projection vectors generated by velocity terms, thereby the lumped 

mass dynamic model of the compound gear system in the moving coordinate 

system of the first-stage is developed. By employing the finite element method 

and node position diagrams, the flexibility of the shafts is taken into account, 

leading to the establishment of a comprehensive dynamic model for the entire 

two-stage parallel compound gear system. 
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Chapter 3   Study on the Static Characteristics of 

the Double-helical Two-Stage Parallel Compound 

Marine Gear Transmission System 

3.1   Preface  

Based on the translational-torsional static model, this chapter primarily 

analyzes its static characteristics. Formulas for calculating the load sharing ratio 

(LSR) and global transmission error (GTE) are provided. The effects of planet 

pinhole position error and eccentricity errors on LSR and GTE are examined. 

Additionally, the influence of different configurations of the sun (fixed vs. 

floating) on the LSR is explored. Finally, the influence of eccentricity errors on 

the orbit is investigated, the conclusion that the shape of the axis trajectory is 

related to the number of teeth of gears with eccentricity  errors is obtained. 

3.2   Study on load sharing ratio and transmission error 

In quasi-static, load sharing ratio (LSR) and global transmission error (GTE) 

from input to output element are basic characteristics. In this section, the content 

of a two-stage double helical differential closed planetary gear train is presented. 

Different errors, such as planet positioning error or eccentricity, were considered 

and the influence of the errors on the LSR and GTE was analysed. A two-stage 

double-helical planetary gear train for ships is studied in the following, with its 

basic gear parameters and phase relationship of every stage shown in Tab.3-1. The 

input speed is 600rpm and the input torque is 5000N.m. 

Tab.3-1 Parameters of the two-stage double-helical planetary gear train studied 

Stage First Stage Second Stage 

Element Sun Planet Ring Sun Planet Ring 

Teeth number, Z 41 88 217 85 60 205 

Normal module, mn (mm) 6 

Normal pressure angle, αn (°) 20 

Helix angle, β (°) 25 

Number of planets (N) 3 5 

Planets spacing angle (°) 120 72 

Mesh Phasing condition ESSP ESIP 
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For every planet in a planetary gear system, it bears the contact force from 

sun and ring, and the torque generated by these contact forces must be equal. So 

once the balance of every element is reached, the input torque will be split into 

every planet gear. The LSR of planet i is obtained as follows: 

 
1

/ ( )
N

i i jj
LSR F F

=
=   (3-1) 

where Fi is contact force in planet i, and the ideal value of LSRi is 1/N, which 

depends on the number of planet gear. 

The transmission error is the difference between the ideal angular position 

and real angular position. 

 i real idealTE  = −  (3-2) 

Therefor, for GTE, the transmision error is shown. 

 /real inGTE TR = −  (3-3) 

where TR is the transmission ratio from input element to output element , as shown 

in following equation. 
1 1 1 1 2 2

r r r1 ( / ) ( / ) ( / )s s sTR Z Z Z Z Z Z= + +   

3.2.1   Load sharing ratio and transmission error analysis without error 

in fixed sun configuration 

3.2.1.1   Load sharing ratio results 

The mesh phasing in first stage is ESSP, the ideal mean LSR is 1/3, and the 

phase difference is 2π/3. The mesh phasing in second stage is ESIP, the ideal LSR 

is 1/5, and the phase difference is 0. The LSR result of 1st stage without any error 

of overall system are presented in Fig.3-1. For 2nd stage, the LSR result is perfect 

and equal 0.2 because of mesh phasing, this result it is not shown in the figure.  

 

Fig.3-1 LSR results of 1st stage without errors 
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As shown in Fig.3-1, the calculated LSR value fluctuates due to the variation 

of the gear stiffness and the different force balance this produces between the 

different gears. In addition, the LSR result in the first stage has the same phase 

difference as that exhibited by the planet meshes.  

3.2.1.2   Transmission error results 

For two stages, there are two mesh frequencies and their formulas are shown 

as follows: 

 
1 1 1 1 2 2 2( ) ,       ( )m s c s m s sf f f Z f f Z= −  =   (3-4) 

Fig.3-2 shows the transmission error result in the time domain of output 

element within 1 cycle and its frequency spectrum in the frequency domain 

without any error. The mesh frequency in 2nd stage and its first 6th harmonics 

have a bigger influence on the output element than the mesh frequency in the first 

stage. The literature [151] shows that for one stage planetary gear system, in terms 

of the overall transmission error, the nominal IP gear set shows all harmonics of 

gear mesh frequency, and the SP gear set shows only the multiples of number of 

planet gear. Compared to that, the excitation frequency of output element can be 

seen as a superposition of excitation frequency in each stage, with different mesh 

phasing (SP and IP). 

  

(a) Time-domain                                      (b) Frequency domain 

Fig.3-2 The transmission error results of output element in fixed sun configuration  

3.2.2   Load sharing ratio and transmission error analysis considering 

error in fixed sun configuration 

In order to study the influence of the same error value on the LSR, a K factor 

is defined as the ratio of the actual load carried and the ideal load carried by this 
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planet to its nominal sharing value: 

 i i / (1/ )K LSR N=  (3-5) 

Ki>1 indicates that planet i carries more load than the ideal load. On the other 

hand, in order to clearly show the effect on the planet load sharing, only errors on 

planet #1 will be considered in the analysis, so that the cause of the loading or 

unloading of the different paths can be more easily interpreted.  

3.2.2.1   Influence of the planet pinhole positional error on load sharing ratio and

 global transmission error 

First, as reported in the scientific literature, the radial component of the 

planetary position error has a negligible influence on the load sharing of planetary 

transmissions when the pressure angles of the sun-planet and planet-ring contacts 

are equal. In the case where the pressure angles are not equal, Iglesias et al. [114] 

conclude that, although not negligible, the radial component of the error has a 

much smaller impact on the LSR than the tangential component. In the present 

work, because the pressure angles coincide, only the tangential component of the 

positioning error on the load distribution is studied. 

Tab.3-2 shows the five case studies used, with different error values, where 

it can be seen that both the LSR and the relative LSR decrease as the error value 

increases, leading to a worse distribution of the load and therefore a worse 

transmission performance. 

Tab.3-2 LSR value with different tangential error value in planet  

Error 

Configuration 

et 

(μm) 

1st stage  2nd stage 

LSR1(%) K1 LSR1(%) K1 

max min  max min  

1 5 28.91 26.54 0.8318 22.16 22.08 1.106 

2 10 23.25 21.11 0.6654 24.31 24.16 1.212 

3 15 17.60 15.67 0.4991 26.47 26.24 1.318 

4 20 11.95 10.23 0.3327 28.63 28.32 1.423 

5 30 0.0064 0 0.0002 32.94 32.48 1.647 

 

In order to clearly demonstrate the loading situation of each planet over time, 

Fig.3-3 shows the load distribution when a tangential error of 30 and 10 

micrometres respectively is applied to planet # 1 of each stage. In the first case 

(stage 1) it can be seen that planet 1 is almost totally unloaded, while in the second 

figure (stage 2) the error leads to an overloading of planet 1. From a durability 

point of view, it should be noted that errors that advance the loading of the planet 
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are more dangerous, since the increase in stresses is higher in the defective planet 

that individually absorbs the excess load imbalance. When the planet suffers a 

discharge, it is the rest of the planets that must absorb the imbalance, distributing 

it over a larger number of gears and not generating such high stresses. 

  

(a) 30μm et on planet of 1st stage                (b) 10μm et on planet of 2nd stage 

Fig.3-3 The LSR results with tangential error on planet #1 in every stage  

Corresponding to the case shown in Fig.3-3 (a), Fig.3-4 shows the results in 

time and frequency of the TE with 30μm tangential error on planet #1 in the 1st 

stage. Compared with the case shown in Fig.3-2, it can be seen that the main 

excitation frequency does not change, which means that the main excitation 

frequency of the output element is still the meshing frequency of each stage, but 

the residual multiples of the meshing frequencies of the 1st stage appear, as shown 

in Fig.3-4 (b). 

  

(a) Time-domain                                        (b) Frequency domain 

Fig.3-4 The overall transmission error with 30μm tangential error on planet #1 in 1st stage 
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On the other hand, and in correspondence with the case shown in Fig.3-3 (b), 

when the tangential error of 10μm is considered only in the 2nd stage planet, the 

TE time and frequency results are shown in Fig.3-5. As shown in Fig.3-5 (b), the 

TE main excitation frequency does not change, and it can be seen how the 

tangential error introduced in the 2nd stage planet does not substantially modify 

the signal. 

  

(a) Time-domain                                     (b) Frequency domain 

Fig.3-5 The overall transmission error with 10μm tangential error on planet #1 in 2nd stage 

Comparing Fig.3-4 and Fig.3-5, in terms of GTE, for the sequential mesh 

phase stage, the tangential error activates some new frequencies. On the other 

hand, for the stage with the contacts in phase, the tangential error does not produce 

any new frequencies. 

3.2.2.2   Influence of the planet eccentricity error on load sharing ratio and globa

l transmission error 

Secondly, the eccentricity error on planet 1 of each stage is chosen as an 

example to study the influence of the eccentricity error on the global TE. Tab.3-2 

shows the LSR and its relative value with eccentricity error at planet 1 of each 

stage.  

Tab.3-3 Error configuration for run out error in planet gear  

Error 

Configuration 

erunout 

(μm) 

1st stage  2nd stage 

LSR1(%) 
max(K1) 

LSR1(%) 
max (K1) 

max min max min 

1 5 40.21 26.55 1.206 22.15 17.85 1.108 

2 10 45.86 21.11 1.376 24.31 15.69 1.216 

3 15 51.51 15.67 1.545 26.46 13.54 1.323 
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4 20 57.16 10.23 1.715 28.62 11.38 1.431 

5 30 68.47 0 2.054 32.93 07.07 1.647 

6 50 91.16 0 2.735 41.55 0 2.077 

 

In order to visualize the LSR changes, Fig.3-6 shows the shape of LSR, and 

Fig.3-6 (a) and (b) are the LSR results of two stages, respectively. In this figure, 

it can be seen how the eccentricity error corresponds to a projection of the error 

value in its radial and tangency components. The harmonic wave reaches its 

maximum when the projection is carried out on the tangential component, which 

has the greatest influence on the load distribution, and its minimum when the 

projection is carried out on the radial component, whose effect on the load 

distribution of a transmission as the one studied (same pressure angles) is zero.  

  

(a) 30μm error on planet #1 of 1st stage          (b) 50μm error on planet #1 of 2nd stage 

Fig.3-6 The LSR results with eccentricity error on planet in every stage  

For 1st stage, corresponding to Fig.3-6 (a), Fig.3-7 shows the time and 

corresponding frequency result of overall TE. As shown in Fig.3-7 (a), 1 repeat 

cycle equal 24.37 times of mesh cycle of 2nd stage and there must is error 

frequency. Corresponding, not only are the error frequency ( fe) appearing, but 

some new major excitation frequencies such as 
1 1 1 1, ,2 ,2m e m e m e m ef f f f f f f f− + − +  

are also appearing. These new frequencies appear around the meshing frequency 

of 1st stage. Except the influence of error, only the 1th meshing frequency of 2nd 

stage decrease a little value, and there is almost no change for the other frequency. 

Therefore, in terms of the global TE, the frequency of runout error of planet in 1st 

stage has a bigger effect than other primary frequencies.  
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(a) Time-domain 

 

 
(b) Frequency domain 

Fig.3-7 The overall transmission error with 30μm eccentricity error on planet #1 in 1st stage 

 

(a) Time-domain 



Chapter 3  Study on the Static Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear 

Transmission System 

 - 57 - 

 

(b) Frequency domain 

Fig.3-8 The overall transmission error with 50μm eccentricity error on planet #1 in 2nd 

stage 

According to the case shown in Fig.3-6 (b), for an eccentricity error of 50μm 

in the 2nd stage, the time record and frequency content of the global TE are shown 

in Fig.3-8. As shown in Fig.3-8 (b), the eccentricity error frequency (fe) coincides 

with the rotation frequency of the 2nd stage planet, as the planet holder is fixed. 

On the other hand, in the spectral content the only variation is in the error 

frequency, while all other frequencies remain unchanged.  

As shown in Fig.3-7 and Fig.3-8, for the planetary stages with different 

meshing phases, by comparing the frequency spectrum, it can be known that the 

eccentricity error of the planet gear has a greater impact on the overall TE, because 

error of planet activates its own rotation frequency in this model.  

 

3.2.3   Influence of different supporting configuration of sun on load 

sharing ratio 

One way to improve the load sharing behaviour of planetary drives is to 

increase the flexibility or buoyancy of the central elements (sun, planet carrier or 

corona). In this study, the buoyancy of the sun has been established to assess the 

influence of this configuration on the load sharing.  

For the first stage, with sequential phase shift, the improvement in the LSR 

value with floating versus fixed sun can be seen in Fig.3-9a). In Fig.3-9b), for the 

second stage, it can be seen how the change from fixed to floating configuration 

causes a homogenisation of the LSR, decreasing notably the impact of the 

introduced eccentricity error. 
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                       (a) 1st stage                        (b) 2nd stage under 10μm runout error in sun 

Fig.3-9 The LSR of the transmission with floating sun configuration  

For the in-phase transmission of the 2nd stage, the load sharing on each 

planet is the same, since there are no errors or transmission paths with different 

stiffness. In order to evaluate the benefit of the configuration change, Fig.3-9b) 

shows the LSR of planet 1 when considering an error of 10μm of eccentricity in 

the sun, both for fixed and floating configuration. As can be seen in the figure, 

the fixed configuration shows that each planet can transmit at certain times up to 

23% of the load under the fixed sun configuration, but under the floating 

configuration the maximum load is 20.45%. It can therefore be concluded that the 

floating configuration can improve the load sharing characteristics of the 

planetary drive whether under in-phase or out-of-phase meshing conditions. 

3.3   Study on eccentricity error 

Eccentricity error is a common error arising from various factors, including 

manufacturing defects, assembly inaccuracies, and improper pin hole arrangement 

during gear installation. This subsection primarily investigates the impact of 

eccentricity error on the axis trajectory, utilizing the quasi -static model 

established in the previous chapter to investigate its effects on certain time-

varying parameters and the trajectory. 

3.3.1   Analysis of system states considering eccentricity error 

3.3.1.1   Calculation of time-varying meshing stiffness considering eccentricity 

error 

To describe the effect of the eccentricity error, an example meshing pair 

diagram of sun and planet is shown in Fig.2-2. Due to the existence of eccentricity 
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distances es and ep, the actual centers of rotation (see Fig.2-2) are time-varying, 

and the gear center distance Os(t)Op(t) and the transverse working pressure angle 

αwt are also time-varying. Therefore, the meshing process becomes a dynamic 

process, and the parameters related to the gear centre distance are all time-varying 

parameters. A modelling method considering the eccentricity error is introduced. 

As shown in Fig.2-2, the actual gear centre distance during the meshing 

process varies with time because of the eccentricity, and it is given as follows:  

 

2

2
2

[ cos( ) cos( )]
( ) ( )

[ sin( ) sin( )]

s p s s s p p p

s p

s s s p p p

O O e t e t
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e t e t

   

   

+ + − +
=

+ + − +
 (3-6) 

where es, ep, λs, λp, ωs and ωp are the amplitudes, initial phase angles and angular 

speeds of the eccentricity error of the sun and planet, respectively.  

Then, the time-varying transverse working pressure angle is obtained as:  

 
1( ) cos [( ) / ( ) ( )]wt bs bp s pt R R O t O t −= +  (3-7) 

where Rbs and Rbp are the radius of the base circles, respectively.  

Next, the contact ratios, including the transverse contact ratio and overlap 

ratio are also obtained as shown the equation (3-8), and the transverse ratio 

becomes time-varying. 
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，  (3-8) 

where αats, Zs, αatp and Zp correspond to the tip circle pressure angle and tooth 

number of the sun and planet, respectively. mn, B and β are the normal module, 

width and helix angle, respectively. 

The variation in contact ratios caused by the eccentricity error could result 

in a change in the number of teeth meshing pairs during the meshing process; 

therefore, the meshing stiffness could be impacted. Based on Maatar's work  [152], 

the calculation equation of the time-varying meshing stiffness under considering 

the eccentricity error and associated factors is improved in this study. Therefore, 

the mesh stiffness of a double-helical gear can be regarded as the sum of the mesh 

stiffness of two individual helical gears, which is given by the following method  

First, the calculation equation of the instantaneous average meshing stiffness 

is shown below. 

 ( ) 2 ( )meank t BC t=  (3-9) 
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where B is the gear tooth width, and Cγ is the meshing stiffness per helical gear 

width, which is mainly affected by the time-varying transverse contact ratio 

shown in Equation (3-8) and is calculated by the following equation. 

 ( ) (0.75 ( ) 0.25) (0.8cos / )C t t q  = +   (3-10) 

Based on ISO6336-1-2019, q is obtained by. 
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 (3-11) 

where 1x   and 2x   are the modification coefficients of a pair of meshing gears, 

respectively. Zn is the equivalent tooth, which can be calculated by the formula

3/ cosnZ Z = . 

Then, the length of the instantaneous time-varying meshing line for the s-pi 

meshing pair and the r-pi meshing pair are calculated according to following 

equations based on the contact ratio. 
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where τ is dimensionless time, τ=t/Tm, and Tm is the meshing time. Ak, Bk and Lm 

are calculated by 
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in which, βb is the base circle pressure angle of the helical gear.  

In addition, spi  and rpi  are the mesh phasing of two adjacent meshes, for 

instance s-p1 and s-p2. Furthmore, the spi  and rpi  is related to the teeth number 

and planet number in a plenatary gear train, which are expressed as follows, and 

the detailed calculation equations are described in the literatures  [115,153]. 

 1 1( ( )),  ( ( )).
2 2

s pi r pi
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Z Z
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 
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where, dec() indicates the fractional part of the result of the bracket, and κ1=±1 

represents the counterclockwise and clockwise directions of the input torque of 

the sun gear.  

The sr  is the meshing phase difference between the same planet gear mesh 

with the sun and the ring. Fig.3-10 is the meshing process diagram, A is the start 

point and B is end point for sun-planet meshing, and C is the start point and D is 

end point for ring-planet meshing. 

 

Fig.3-10 Schematic of the meshing phase difference sr  

The tooth pitch is the distance rotated during one meshing cycle, as shown in 

Fig.3-10, the same tooth (blue line) of the planet gear starts from contact the sun 

gear to ends meshing with the ring gear, i.e., the distance from point A to point D, 

this distance should be compared with the tooth pitch to get how many times it is 

the tooth pitch. Therefore, according to the Fig.3-10 the calculation equation of 

the meshing phase difference between external and internal meshing pairs is 

shown as Equation (3-15) in this way, and more detail can be found in detail in 

the literature [153]. 

 ( )sr

bt

AB BC CD
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p


+ +
=  (3-15) 

where btp  is the tooth pitch of the base circle. 

Therefore, the time-varying meshing stiffness is derived by. 

 
( ) ( ),

( ) ( ).

spi mean spi

rpi mean rpi

k k L

k k L

 

 

=

=
 (3-16) 



Doctoral Dissertation 

 - 62 - 

3.3.1.2   Kinematic relationship analysis of compound gear train considering ecc

entricity error 

During the installation and manufacturing of planetary gear systems, various 

errors inevitably occur, which can be classified into time-invariant errors and 

time-varying errors. Considering the run-out in the case of time-varying errors 

(errors that change values and direction depending upon the rotational position of 

the gears, such as eccentricity and run-out), the analysis must be performed at a 

predetermined number of carrier rotational rounds nC1/0. In other words, the carrier 

must rotate in integer rounds and carry planets to return the initial position. For 

instance, if the run-out error is only on planet #1 in an epicyclic planetary gear 

train, the carrier must rotate into an integer round and planet #1 with respect to 

the carrier must also rotate into an integer round. Therefore, based on the 

kinematic conditions of the studied compound planetary gear train, rotation 

relationship equations are shown as follows. 
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Based on Equation (3-17), considering run-outs on all the members (sun, 

planet and ring) in the 1st stage, the number of rotational rounds for carrier in the 

1st stage rotations required to fully capture the effects of eccentricity e rrors is 

derived as 
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 (3-18) 

According to Equation (3-18), if the eccentricity error is on planet #1 in the 

1st stage, the carrier in the 1st stage must rotate 1 2P SZ Z  rounds, and planet #1 

with respect to the carrier simultaneously rotates 1 2 2( )R R SZ Z Z +  rounds. If the 

the eccentricity error is on sun in the 1st stage, the carrier in the 1st stage must 

rotate 1 2S SZ Z  rounds, and sun with respect to the carrier simultaneously rotates 
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1 2 2( )R R SZ Z Z +  rounds. If there are errors on both meshing gears, the rotational 

rounds should be the least common multiple of the result for each condition.  

Furthermore, the rotation count of the input sun gear can be derived based on the 

relationship between the number of revolutions of the carrier and the transmission 

ratio. 

 

3.3.2   Analysis of meshing parameters in compound Gear train 

considering eccentricity error 

Some paremeters and meshing stiffness with the eccentricity error was 

presented in 3.3.1.1 subsection, so it is necessary to analyse these parameters. In 

this subsection, the center idstance, meshing angle and the contact ratio with 

eccentricity error are compared to that without error, and so does the meshing 

stiffness. Furthmore, the predetermined number of carrier rotational rounds with 

eccentricity error is also given in this section.  

The meshing stiffnesses of planetary gear train without and with eccentricity 

error are compared and analyzed to study the effect of eccentricity error on 

meshing stiffness in this section. In general, the meshing stiffnesses spik  and rpik  

are described in detail in the literatures [152][153], but the eccentricity error 

affecting the shape of the meshing stiffness is not included. Therefore, if the 

meshing stiffness where the effect of eccentricity error is considered, the wave of 

the meshing stiffness is influenced not only by the meshing frequency but also by 

the frequency of eccentricity error. 

The basic and design parameters of the planetary gear train, eccentricity error 

and bearings are shown in Tab.3-4 to Tab.3-6. According to the mesh phasing 

equations shown in the literature [115] and Tab.3-4, the mesh phasing 

relationships for the two stages are equally spaced sequential phasing (ESSP) and 

equally spaced in phasing (ESIP), respectively. Moreover, because the basic 

parameters of all planets in each stage shown in Tab.3-4 are absolutely same in 

the study, the eccentricity error of the planets is considered only on one planet, 

i.e., planet #1 in each stage, and the remaining planets are perfect. On the other 

hand, in this simulation case the equivalent radius of pitch circle (Rc) shown in 

Fig.2-9 is about 422mm.  
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Tab.3-4 Basic design parameters of the compound gear train  

Stage First Stage Second Stage 

Element Sun Planet Ring Sun Planet Ring 

Teeth number, Z 40 80 200 80 60 200 

Width, B (mm) 65 65 65 70 70 70 

Radius of pitch circle, Ri (mm) 132.41 287.98 711.68 281.36 188.68 662.02 

Ideal transverse contact ratio, εα (-) 1.3045-1.4116 1.3253-1.3934 

Ideal overlap ratio,  εβ (-) 1.4573-1.4573 1.5694-1.5694 

Ideal overall contact ratio, εγ (-) 2.7618-2.8690 2.8948-2.9629 

Normal module, mn (mm) 6 

Normal pressure angle, αn (°) 20 

Helix angle, β (°) 25 

Helix angle of base circle, βb (°) 23.40 

Normal addendum coefficient, han (-) 1 

Normal tip clearance coefficient, cn (-) 0.25 

Total transmission ratio, i (-) 18.5 

Number of planets (N) 3 5 

Planets spacing angle (°) 120 72 

Mesh phasing condition ESSP ESIP 

Tab.3-5 The values of the error and other parameters 

Stage First Stage Second Stage 

Element Sun Planet Ring Sun Planet Ring 

Eccentricity error amplitude, eei 

(μm) 
5 5 5 5 5 5 

Initial phase of the error, λi (°) 0 180 0 0 180 0 

Rotational angular speed, fi (rad/s) 62.83 30.67 7.77 7.77 11.59 3.30 

Tab.3-6 The bearing stiffness values used in the studied model  

Stage First Stage Second Stage 

Element Sun Planet Ring Carrier Sun Planet Ring Carrier 

Kbx (N/m) 1.0e10 1.1e11 1.1e11 1.1e11 1.1e10 2.2e11 1.5e11 1.0e12 

Kby (N/m) 1.0e10 1.1e11 1.1e11 1.1e11 1.1e10 2.2e11 1.5e11 1.0e12 

Kbt (Nm/rad) 0 0 0 0 0 0 0 1.0e13 
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According to Tab.3-4 and Tab.2-1, the specific mesh phasing value shown in 

equations (3-14) and (3-15) in this case is calculated in Tab.3-7, it is seen that the 

calculation results are also agreement with the mesh phasing relationship in two 

stages (ESSP and ESIP). 

 

Tab.3-7 The mesh phasing value of the studied planetary gear train  

Stage First Stage (N=3) Second Stage (N=5) 

Sun-planet ( spi ,i=1,...,N) 0 0.333 0.667 0 0 0 0 0 

Ring-planet ( rpi ,i=1,...,N) 0 -0.667 -0.333 0 0 0 0 0 

Sun-planet $i$ -ring ( sr ) 7.013e-4 3.679e-4 

 

Firstly, as mentioned above, several parameters (such as the center distance, 

meshing angle and contact ratio) of two meshing gears for the first stage during 

the meshing process in this proposed model are time-varying. For instance, the 

centre distance, meshing angle and contact ratio of sun-planet #1 under different 

combinations of gear errors can be seen in Fig.3-11. Compared with the constant 

center distance, it is drawn from Fig.3-11 (a) that the constant center distance in 

the previous model is approximately 422.042 mm, while the time-varying center 

distance for the modified model fluctuates from 422.032 mm to 422.205 mm under 

the same small error amplitude such as 5 microns. Furthermore, the meshing angle 

(also called the working pressure angle) and contact ratio vary with time (see 

Fig.3-11 (b) and (c)) because of the time-varying center distance. By comparing 

the results shown in Fig.3-11, it can be found that these meshing parameters are 

affected by eccentricity error configurations such as single gear error and double 

gear errors.  

Secondly, the meshing stiffness of the sun and planet #1 (S-P1) in the 1st 

stage are taken as an example to show the influence of eccentricity error, and the 

eccentricity error is in planet #1. Therefore, a comparison of the meshing stiffness 

results without and with the eccentricity error in this subsection is shown in 

Fig.3-12, and an enlarged shape of the meshing stiffness for a perfect meshing 

pair (red line in Fig.3-12) can be seen in Fig.3-13, which is a detailed supplement 

to Fig.3-12. 
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Fig.3-11 Some parameters in the improved model under different eccentricity error 

configuration: blue line represents error on only sun, red line represents error on only 

planet #1, pink line represents error both on sun and planet #1  and the black line is the 

constant center distance without error 
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Fig.3-12 Meshing stiffness for a helical gear pair in the 1st stage without and with 

eccentricity error only on planet #1: (a) external meshing pair of sun-planet #1 and (b) 

internal meshing pair of sun-planet #1 

Finally, as shown in Fig.3-13, there are two fluctuation periods, namely, the 

short-term period and the long-term period. The former is the gear meshing period, 

and the latter is the rotational period of the shaft, i.e., the eccentricity error period. 

It is seen from Fig.3-13 that two pairs of teeth and three pairs of teeth alternately 

contact each other because the contact ratio is between 2 and 3. In addition, it is 

worth mentioning that the size of the contact ratio shown in Fig.3-11 (c) also 

affects the contact region of 3 pairs of teeth or 2 pairs of teeth (region between 

the blue dashed lines shown in Fig.3-13). 

Therefore, for the meshing gear pair with geometric eccentricity, the mesh 

stiffness is definitely affected, which verifies the validity of the proposed meshing 

stiffness in this subsection. 
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Fig.3-13 Detailed meshing stiffness for helical gear pair in 1st stage without eccentricity 

error: (a) external meshing pair of sun-planet #1 and (b) internal meshing pair of sun-

planet #1 

3.3.3   Influence of eccentricity error on orbit 

As shown in Tab.3-4, the mesh phasing of the two stages is ESSP and ESIP, 

respectively. Based on gear parameters, the influence of eccentricity error on the 

orbit (also called transverse displacement) is investigated in this section. In 

general, a planetary gear system includes three central components (a sun, a ring 

and a carrier) and N planet. Moreover, sun gear which represents central 

components, and planets are chosen to study the influence of eccentricity e rror on 

orbit in this study. 

3.3.3.1   Orbits without considering eccentricity error 

First, the simulation results of the components need to be shown and analyzed 

to verify the accuracy of the established model. For this purpose, Fig.3-14 (a) and 

(b) show the floating trajectories without any error in the moving coordinate of 

the sun gear in the 1st stage and the corresponding force analysis for and proposed 

model, respectively. In order to verify whether the calculation contact force value 

shown in Fig.3-14 (b) in this studied model is equal to the nominal ones, every 

contact force value of the three planets (blue line) shown in Fig.3-14 (b) is 
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calculated and its mean value equals to one-third of the contact force calculated 

from the input torque divide by the radius of base circle. Furthermore, although 

the transmission is complex, the torque assumed by each stage is in accordance 

with the transmission ratio. In this case, the input torque of the second stage is the 

torque assumed by the ring gear in 1st stage, i.e., the input torque of the second 

stage equals the input torque multiple of the transmission ratio ZR1/ZS1 from the 

sun in 1st stage to the ring gear in 1st stage, which is shown as follows:  

 2 1
inp inp

1

R
ut ut

S

Z
T T

Z

 
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 (3-19) 

Fig.3-14 (c) and (d) are the trajectories without any error under 10 mesh 

cycles in terms of the global coordinate and partial detailed drawing. It can be 

drawn from the Fig.3-14 (a) that the orbit of the sun gear in moving coordinate 

(MC) approximates a triangle and the three branches are the same, which well 

matches the results in a star planetary gear system. By analyzing the modelling 

method, one reason is that the reference coordinate of 1st stage is the moving 

coordinate that is attached to the carrier in 1st stage. Hence, the epicyclic 

planetary gear train becomes a star planetary gear system. Another reason is that 

the mesh phasing of 1st stage is the sequential phase, and the force wave from 

each planet is absolutely the same except for a forward or a backward phase . 

Therefore, three forces from each planet cannot form an equilateral triangle at the 

one time, and an additional resultant force always appears shown as a red arrow 

in Fig.3-14 (b). In addition, the planets are evenly distributed through the force 

diagram shown in Fig.3-14 (b), and the gear parameters shown in Tab.3-4. 

Moreover, it also can be concluded from Fig.3-14 (c) and (d) that the trajectory 

of the global coordinate rotates by an angle after one mesh cycle, and the orbit of 

the sun in global coordinate is predicted to a ring shape until the sun rotates a 

certain number of rounds so that the orbit of one mesh cycle coincides with the 

orbit of the first mesh cycle in accordance with this trend, as shown in Fig.3-14(e) 

and (f). 

Likewise, for the 2nd stage, the orbit in global coordinate (GC) and force 

analysis diagram are seen in Fig.3-15. It is clearly shown from Fig.3-15 (a) that 

the orbit of the sun in the 2nd stage is fixed due to the displacement response 

could be seen zero, and Fig.3-15 (b) presents an equilateral pentagon composed 

of five equal forces (Fsp1, Fsp2, Fsp3, Fsp4 and Fsp5 shown in the figure) from each 

planet appears because of equally spaced in phase. Compared to the mesh phasing, 

and planet gear distribution conditions of the two stages, as shown in Fig.3-14 (b) 

and Fig.3-15 (b), how is the orbit of the sun gear (which presents the central gears) 

formed with two kinds of common mesh phasing in this subsection is explained 

in detail. 
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Fig.3-14 Sun gear in the 1st stage without eccentricity error: (a) orbit in moving coordinate 

under one mesh cycle, (b) force analysis diagram, (c) orbit in global coordinate under ten 

mesh cycles, (d) partial enlarged drawing of figure (c), (e) orbit in global coo rdinate under 

sun rotates for N rounds, and (f) partial enlarged drawing of figure (e)  
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On the other hand, five contact forces of the sun-planet in the 2nd stage from 

this model (blue line in Fig.3-15 (b)) multiply by the base circle of sun in 2nd 

stage equal the input torque of second stage shown in the equation (3-19). 

Combining Fig.3-14 (b), Fig.3-15 (b) and equation (3-19), it is indicated that the 

calculation value from this model is equal to the nominal ones.  

 

Fig.3-15 Sun gear in the 2nd stage without eccentricity error: (a) orbit in global coordinate 

and (b) force analysis diagram 

Regarding to the orbits of the planet in two stages, Fig.3-16 (a) and Fig.3-17 

(a) show the response, respectively. Correspondingly, the force analysis diagrams 

can be also seen in Fig.3-16 (b) and Fig.3-17 (b), respectively.  

 

Fig.3-16 Planet gear in the 1st stage without eccentricity error: (a) orbit in moving 

coordinate and (b) force analysis diagram 
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Fig.3-17 Planet gear in the 2nd stage without eccentricity error: (a) orbit in moving 

coordinate and (b) force analysis diagram 

Taking Fig.3-16 (b) as an example, the reference coordinate of the planet is 

always the radial and tangential direction although its coordinate moves with the 

carrier (also see Fig.2-5 and Fig.2-6). Because the rotation direction of sun is 

counter clock wise, so the combined force (blue arrow) of the planet from the sun 

and ring is the same as that in the tangential positive direction as shown in 

Fig.3-16 (b). Therefore, the Y displacement for the orbit of each planet in the 1st 

stage (see Fig.3-16 (a)) is positive, and the X displacement is approximately 0. In 

the same way, because the combined force direction of the planets in the 2nd stage 

is opposite to the positive direction shown in Fig.3-17 (b), the Y displacement at 

the equilibrium position should be negative, which coincides with the results 

shown in Fig.3-17 (a). 

3.3.3.2   Orbit considering eccentricity error 

(1) Analysis of orbit of the sun considering eccentricity error 

Based on the parameters in Tab.3-4, when the error is only on the sun in the 

1st stage, the displacement response of the sun gear in MC is shown in Fig.3-18 

(a), the corresponding orbit in GC is shown in Fig.3-18 (b), and Fig.3-18 (c) is an 

enlarged version of Fig.3-18 (b). As shown in Fig.3-18 (a), IP is the initial point, 

No.1 presents the first loop, and No.40 presents the last loop, which returns the 

IP, thus, there are 40 loops in total and each loop shape is from the shape without 

error shown as Fig.3-14 (a). At the same time, one mesh cycle time is the time 

between two adjacent loops shown in the Fig.3-18 (a). The reason why there are 

40 loops in MC is that the number of sun gear is 40, and 40 teeth must fully 

complete contact because of eccentricity error. Compared to the orbit in the MC, 

the orbit in Fig.3-18 (b) and (c) is complex and it is drawn that the orbit in MC 
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could more simply explain the phenomenon (teeth number loop), however, the 

MC is a reference coordinate, and the orbit in the GC is  realistic and has a certain 

periodicity, as shown in Fig.3-18 (c). 

 

Fig.3-18 Orbit of the sun gear with eccentricity error in 1st stage: (a) moving coordinate, 

(b) global coordinate and, (c) enlarged version of (b)  

Correspondingly, the orbit of the planets in 1st stage which mesh to sun gear 

with an error is shown in Fig.3-19. Orbit in MC (Fig.3-19 (a)) is not very clear, 

so the orbit in GC (Fig.3-19 (b), (c) and (d)) is marked to study results of the 

planet, which is different from the results shown in Fig.3-18 (a). It is shown from 

Fig.3-19 (b) and (c) that orbit of planets are same, and there is only a delay and 

advance phase which is same to the mesh phasing. Hence it can be conclused from 

Fig.3-19 (b) and (c) that the eccentricity error does not affect the mesh phasing 

(ESSP), and there are also 40 loops in Fig.3-19 (d), which matches well with 

Fig.3-18 (a). 
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Fig.3-19 Orbit of planet meshes with the sun gear with eccentricity error: (a) MC, (b) GC, 

(c) enlarged version of (b), and (d) orbit of planet #1 when the sun rotates one round  

 

Fig.3-20 Orbit of the sun with eccentricity error in the 2nd stage: (a) orbit of sun in global 

coordinate, and (b) orbit of planets in global coordinate 
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It is concluded from this studied case that the orbit of the sun includes N loops, 

and these loops are related to the number of teeth of the sun despite whether the 

mesh phasing is sequential phase or in phase. 

(2) Analysis of orbit of the planet #1 considering eccentricity error 

In this subsection, the eccentricity error is only on planet #1 in each stage  is 

investigated. For the first stage, Fig.3-21 is the orbit of the planet #1. The 

fluctuation (blue line) of the orbit in the MC is much greater than that without 

error because of the large fluctuation of meshing stiffness. Fig.3-21 (b) shows 35 

rounds, and Fig.3-21 (c) shows 80 loops during 1 round, which is in good 

agreement with the calculation results. On the one hand, it verifies the model. 

 

Fig.3-21 Orbit of planet #1 gear in the 1st stage: (a) orbit in moving coordinate without 

and with eccentricity error, (b) orbit in global coordinate with eccentricity error and (c) 
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orbit in global coordinate with eccentricity error when the planet #1 rotates 1 round  

Correspondingly, Fig.3-22 is the orbit of the sun gear which meshes with 

planet #1 gear with the single eccentricity error in the 1st stage.  

 

Fig.3-22 Orbit of the corresponding sun gear which meshes with planet #1 gear with 

eccentricity error in the 1st stage:(a) orbit in moving coordinate, and (b) orbit in global 

coordinate 

For the 2nd stage, the condition of Fig.3-23 (a) is similar to those in Fig.3-21 

(a). Moreover, combining Fig.3-22 (a) and Fig.3-23 (b), the sharp angles formed 

by the trend line of the orbit and the horizontal coordinate (X axis) are 68.06 

degrees and 68.12 degrees, respectively. The force direction of Fsp1 (compression 

direction of the spring shown in Fig.2-5 and Fig.2-6) in two stages is theoretically 
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at an angle of 90- t  from the position direction of the X axis in global reference, 

which equals 68.1198 degrees. Therefore, the angles match well with the 

theoretical angle. On the other hand, the above result verifies the accuracy of the 

model. 

 

Fig.3-23 Orbit of planet #1 gear with eccentricity error in the 2nd stage: (a) orbit in 

moving coordinate, and (b) orbit in global coordinate 

(3) Analysis of orbit of the sun and planet #1 considering eccentricity error 

For the 1st stage with the mesh phasing of the ESSP, when there are 

eccentricities on both the sun and planet #1, the center trajectory results of the 

sun gear and planet #1 in MC and GC are shown in Fig.3-24 and Fig.3-25, 

respectively. 

It is observed from the orbit in MC that there are 80 loops  in total, and by 

combining the conditions of the single error shown in Fig.3-18 (a) and Fig.3-22 

(a), it also can be drawn that in both error cases, the part of the reason for orbit 

orbital shape in the MC is thatpartly affected by the direction of the force  Fsp1, 

which is also observed from Fig.3-19 (b), Fig.3-22 (a) and Fig.3-25 (b). Therfore, 

influenting factors for the orbit of sun gear shown in Fig.3-24 are the teeth number 

and the derection of the meshing force with planet #1.  Furthermore, the beautiful 

orbit in GC shown in Fig.3-24 (b) is a combination of the Fig.3-24 (a) rotate a 

certain small angle each time. According to Equation (3-18), the loop number is 

the product of the meshing period and the least common multiple of the tooth 

number of the two meshing gears. The least common multiple of the tooth number 

of sun and planet #1 is 80, so there are 80 loops for the orbit in the MC of the sun 

gear when the IP returns to itself for the first time, as shown in Fig.3-24 (a). 
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Fig.3-24 (b) shows a complex drawing, but there are 70 rounds when the IP returns 

to itself for the first time; that is, because the sun with respect to carrier needs 

rotates 70 rounds. Similarly, the planet with respect to carrier needs rotates 35 

rounds, as shown in Fig.3-25. 

 

 

Fig.3-24 Orbit of the sun gear with eccentricity error on both the sun and planet #1 gear in 

the 1st stage (a) orbit in moving coordinate, and (b) orbit in global coordinate  

 

In addition, comparing to Fig.3-19 (b) and (c), it is observed from Fig.3-25 

(b) that shape of the orbit is a little skewed, which corresponds the conclusion in 

Fig.3-24 (a), and it is again proved that the orbit is partly affected by the meshing 
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force. 

 

Fig.3-25 Orbit of the planet #1 gear with eccentricity error on both sun and planet #1 gear 

in the 1st stage (a) orbit in moving coordinate, and (b) orbit in global coordinate  

 

For the 2nd stage with the ESIP, when there are eccentricity errors on both 

the sun and the planet #1, the center trajectory of the sun is  shown in Fig.3-26. It 

is drawn from Fig.3-26 that the ornit of the sun is composed of 240 loops in total, 

counting clockwise from the IP to the number of rounds returned to the IP for the 

first time, and because the least common multiple of 80 (sun teeth number) and 

60 (planet #1 teeth number) is 240. Hence for the same reason, the conclusion in 

the 2nd stage is the same as that in the 1st stage. Furthermore, the shape of orbit 
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for sun in 2nd stage is both affected by the results in Fig.3-20(a) and Fig.3-23(b), 

this conclusion is also same as that in 1st stage.  

 

Fig.3-26 Orbit of the sun gear with eccentricity error on both the sun and planet #1 gea r in 

the 2nd stage 

3.4   Brief summary 

In this chapter, the transmission behavior of a two stages compound gear 

trains with double-helical gears has been studied in depth. As a fundamental 

novelty of the study, special attention has been paid to the meshing phase shift 

between each of the sun-planet and planet-ring contacts, which in the example 

transmission used presented two types: sequentially phased for the first stage and 

in phase for the second stage. These meshing phase conditions, as has been 

demonstrated, strongly determine the load sharing and vibration characteristics of 

the transmission, as they have a strong impact on the transmission error.  

Firstly, the static characteristics of the transmission, including the load 

sharing ratio and the transmission error, were analyzed. The influence of different 

errors on the load sharing ratio and transmission error was then studied. The main 

conclusions of the study are as follows: 

(1) It is shown that the load sharing ratio is strongly conditioned by the phase 

configuration of the gears, especially with sequentially out-of-phase transmission. 

The frequency domain results also show that the excitation frequency of the output 

component is the joint action of the excitation frequency of each stage.  

(2) The tangential error at different mesh phase shift conditions will produce 

different effects on the global TE: sequential phase shifts change the frequency 

content, while an in-phase configuration does not activate any new frequencies.  
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(3) For the stage with sequential phase shift, the eccentricity error generates 

new excitation frequencies. For the in-phase stage there is a relevant change that 

coincides with the error frequency, but the eccentricity error in the planetary gears 

does not generate new excitation frequencies.  

(4) Compared to the fixed sun configuration, the floating sun configuration 

improves the load sharing, more markedly in the case of sequentially phased 

configurations, but also absorbing the effect of possible errors when the 

transmission is in phase. 

Secondly, the influences of eccentricity error on the contact ratio, meshing 

stiffness, orbit, etc., are discussed and analyzed. The main conclusions are given 

as follows: 

(1) Parameters, including the center distance, working pressure angle, contact 

ratio and meshing stiffness wave, are strongly affected by the eccentricity error. 

The frequency of meshing stiffness considering eccentricity error is composed of 

the meshing frequency (short-term frequency) and rotating frequency (long-term 

frequency). 

(2) The orbit shape of one gear with eccentricity error is related to its tooth 

number, and each loop is based mainly on the orbit shape without error, especially 

for the case of the ESSP.  

(3) The orbit shape of two meshing gears with both eccentricities is greatly 

affected by the least common multiple (LCM) of two teeth number, regardless of 

the mesh phasing. Moreover, the orbits of two meshing pairs in MC or GC are 

also influenced partly by the direction of the meshing force.  
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Chapter 4   Study on the Dynamic Characteristics 

of the Double-helical Two-Stage Parallel 

Compound Marine Gear Transmission System 

4.1   Preface 

The previous chapter examined the static characteristics of the two-stage 

parallel compound gear system, validating the modeling strategy. In contrast to 

the static model, the dynamic model incorporates additional inertia terms, 

particularly concerning absolute acceleration. In order to address the time-varying 

characteristics of the overall stiffness matrix in the established dynamic model, 

this chapter introduces an improved Newmark-β numerical method suitable for 

solving time-varying stiffness matrices and large degree-of-freedom equations. 

The dynamic model is further validated through comparisons of dynamic and 

static vibration responses, investigating the effects of gravity, centrifugal forces, 

and providing theoretical explanations. Additionally, the coupling relationship 

between the two-stage gear systems is analyzed.  

4.2   Improved Newmark-β numerical solution method 

Regarding to the dynamic equation of the whole compound gear system 

shown in Equation (2-40), the key question is how to get the solution fast and 

accurately. Due to the meshing force in the dynamic model of this paper is a 

nonlinear force, the meshing stiffness matrix and the meshing damping matrix are 

also time-varying. Based on the above form of the meshing force, the Newmark-

β method is not suitable for directly adopting the Newmark-β solution method 

because it is appropriate to the dynamic equation of a fixed stiffness and less 

suitable for the nonlinear time-varying engagement stiffness. Therefore, for this 

reason, the method is improved to used to be suitable for solving the time-varying 

nonlinear meshing force dynamics equation. 

Assuming that the time step in the solution process is dt, the basic principle 

of the Newmark-β method is to divide the effective load by the effective stiffness, 

so that the displacement at the time moment t+dt can be expressed as: 

 E t dt t dt+ +=K q F  (4-1) 

where EK   represents the equivalent stiffness matrix and t dt+F   represents the 

external force at the moment of t+dt. The acceleration and velocity at the moment 
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of t+dt can be calculated from the displacement at the moment of t+dt as well as 

the acceleration and velocity at the moment of t. The method can be used to 

calculate the acceleration and velocity at the moment of t+dt. However, in this 

method, there is not a relative error accuracy as in the Runge-Kutta method, which 

is not directly usable for the dynamic model of this paper due to the presence of 

nonlinear meshing forces. For this reason, the Newmark-β method is improved in 

this section, and the relative error  is set in order to eliminate the accumulation 

of errors in the original method as well as to improve the accuracy of the solution. 

Fig.4-1 shows the main computational flow of this improved numerical solution 

method. 

 

Fig.4-1 The flowchart of the improved Newmark-β method 
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As shown in Fig.4-1, the initial displacement q0 and initial velocity v0 are 

first given, and the initial acceleration a0 is calculated according to the equation. 

starting from the second time step, the displacement q calculated at each step is 

first compared with the displacement at the previous moment, and if the difference 

is less than or equal to the relative error , the calculation of the next time step is 

carried out; if it does not meet the relative error , the calculated displacement, 

velocity, and acceleration will be used as the initial values. Re-effective external 

force, re-calculate the iteration, get the new displacement, velocity, acceleration 

until it meets the relative error, end the iteration process or reach the maximum 

number of iterations. 

4.3   Analysis of dynamic vibration response results 

In this subsection, based on the dynamic equations and the improved 

Newmark-beta numerical method, the accuracy of the established dynamic model 

is validated by comparing dynamic vibration response results with static results. 

The fundamental parameters of the gears remain consistent with those in the static 

study, while other parameters, such as gear mass and moment of inertia, are 

presented in the following table. 

Tab. 4-1 Basic parameters of gear in the compound gear train 

Stage First stage Second stage 

Component Sun Planet Ring Sun Planet Ring 

Mass, m (kg) 127 421 333.4 501.5 293 393 

Mement of inertia, J (kg.m2) 23.798 25.8 225.0 40.687 8.398 224.5 

 

4.3.1   Comparison of sun orbit between dynamic model and quasi-

static model 

The transmission effect of a planet gear system can be expressed by the axial 

trajectory, and at the same time the axial trajectory influences the motion state 

between each meshing pair. Therefore, the orbit is firstly analyzed in this 

subsection to verify the accuracy of the dynamic modeling method of this two-

stage parallel compound planetary gear system. In the modeling process, the 

coordinate system of the planet gear in each planetary gear system is selected as 

radial-tangential coordinate system, so the axial trajectories of the sun 

(representing the central component) and the planet in each stage are selected for 

comparative analysis. Fig.4-2 shows the axial trajectory of the sun in the first 
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stage, where Fig.4-2 (a) and (b) correspond to the vibration response results of 

the quasi-static and dynamic models, respectively.  

From the modeling process of the dynamics, it can be seen that the first stage 

is modeled using a moving coordinate system, and the second stage is a global 

coordinate system. As a consequence, this means that the first stage becomes a 

fixed-axis planetary gear system, so that position of each planet with respect to 

the sun is fixed. Therefore, at the same time, the first stage is in a sequential phase 

so that at every moment of time, combined force of sun about the planets has an 

additional force, thus causing the trajectory of the sun not to be fixed but to have 

a trajectory radius. Meanwhile the orbit diagram of sun illustrated in Fig.4-2 (b) 

show that the result is in a fixed-axis gear system, although it is not as precise as 

the quasi-static result of a triangle as shown in Fig.4-2 (a), whose reason is the 

complexity of the dynamic model compared to the static model. However, it is 

still a good indication that the vibration response of the sun derived from the 

dynamic model is correct. 

 

Fig.4-2 Orbit of sun in first stage: (a) results of quasi-static model [154], (b) results of 

dynamic model 

Similarly, Fig.4-3 illustrates the comparison of vibration responses of the sun 

gear in second stage between the dynamic and static models. The results indicate 

that the sun gear in second stage remains fixed, primarily due to its in-phase 

engagement, resulting in zero resultant force at all times. Based on Fig.4-2 and 

Fig.4-3, the consistent results from both dynamic and static models provide 

preliminary evidence for the accuracy of the dynamic model. 
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Fig.4-3 Orbit of sun in second stage: (a) result of quasi-static model [154], (b) results of 

dynamic model 

4.3.2   Comparison of planets orbit between dynamic model and quasi-

static model 

Due to the direction of rotational speed input to the sun in first stage is anti -

clockwise, as well as based on the schematic shown in Fig.2-11, it can be seen 

that the tangential direction of the planet in the first stage is the same as the 

direction of the combined force coming from the sun and ring, and so the 

tangential displacement of the planet should be positive.  

Fig.4-4 (a) and (b) are the vibration response diagrams of the planets in the 

first stage calculated by the static and dynamic models, respectively. From Fig.4-4 

(a) and (b), it can be seen initially that the results of the tangential displacements 

of the individual planet are positive and consistent with direction of the combined 

force. The results of the vibration displacements of each planet are consistent in 

the moving coordinate system, which are consistent to the force analysis. 

Meanwhile the results calculated by the dynamic model in Fig.4-4 (b) show that 

the dynamic equilibrium point of the planets in the tangential direction is larger 

than the static equilibrium point in Fig.4-4 (a), which is because there are more 

forces to be taken into account in the dynamics (similar to inertial forces in the 

form of ma) than in the statics. 

Therefore, although the results of the tangential displacement vibration 

response calculated by the dynamics model are greater than those of the statics, 

the accuracy of the dynamics model calculations is illustrated by combining the 

axial trajectory plots in Fig.4-4 (a) and (b). Fig.4-4 (c) demonstrates the axial 

trajectory results of Fig.4-4 (b) transformed into the axial trajectory results in the 
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fixed coordinate system XOY. Since the meshing phases of the first -stage is 

sequential phases, which can be seen from Fig.4-4 (c), the vibration response of 

the planet conforms to the meshing phases. It is concluded that the axial trajectory 

results calculated by the dynamic model for the first -stage planets are relatively 

correct. 

 

Fig.4-4 Orbit of planet in first stage: (a) quasi-static model results [154], (b) dynamic 

model results in moving coordinate and (c) dynamic model results in global coordinate  

In the same way as the first stage, Fig.4-5 (a) and (b) shows the comparative 

results of the transverse vibration displacements in the radial -tangential 

coordinate system of the planet in the second stage. As shown in Fig.4-5 (a) and 

(b), it can be seen that the values of tangential displacements of the planets 

calculated by the dynamic and static model are all negative, the displacements 

magnitude of each planet is basically the same. The difference of the 

displacements is that the values of the dynamic tangential displacements are larger 
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than those of the static ones, which is same as that in first stage. Analyzing the 

cause, it can be seen that the input direction of the second stage is clockwise, as 

shown in Fig.4-5 (d). Furthermore, the combined direction of the meshing force 

from the sun and the ring is opposite to the positive direction of its tangential 

coordinate system. Hence, the results of the tangential displacements shown in 

Fig.4-5 (a) and (b) are consistent with the analysis of the forces. 

Therefore, according to the comparative analysis of the basic axial trajectory 

diagrams of the sun and planets in two-stage from Fig.4-2 to Fig.4-5, it can be 

seen that the results of the dynamic and static calculations show a consistent trend 

which demonstrates that the consideration of the various additional forces in the 

dynamic modeling process is adequate. In addition, the proposed modeling 

methodology on this studied two-stage parallel compound planetary gear system 

fits with the expected performance accurately.  

 

Fig.4-5 Orbit of planet in second stage: (a) quasi-static model results [154], (b) dynamic 

model results in radius-tangential coordinate, (b) dynamic model results in horizontal -

vertical coordinate, (d) force analysis diagram of planets in horizontal -vertical coordinate 
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4.3.3   Comparison of the load sharing ratio between dynamic model 

and quasi-static model 

In the previous subsection, the basic vibration response results in the 

dynamic model were analyzed and compared, and basic consistent conclusions 

were obtained. In the planet gear system, another important parameter is the 

meshing force. In the dynamic model studied in this paper, the dynamic meshing 

force is not only affected by the vibration displacement, but also by the vibration 

velocity. Therefore, the next step is to calculate the magnitude of the load sharing 

ratio (LSR) based on the meshing force, and to validate the dynamic model by 

looking at LSR of the dynamic model. 

Fig.4-6 shows the LSR of individual planet gear in first stage calculated by 

the quasi-static and dynamic models. By comparing Fig.4-6 (a) and (b), it is found 

that the LSR calculated by the two models are in accordance with the sequential 

phasing due to the existence of the sequential phasing in the first stage. Secondly, 

the magnitude of variation of LSR calculated by the dynamic model shown in 

Fig.4-6 (b) is larger than that in the static results. This is also due to the fact that 

there are more forces in the dynamic model than in the static one, and the dynamic 

results are more in line with the load conditions of the actual equipment operation. 

Thus, the accuracy of the dynamic model is once again demonstrated by the 

comparison of the meshing force results. 

 

Fig.4-6 Load sharing ratio of first stage: (a) quasi-static model results [155], and (b) 

dynamic model results 

4.3.4   Vibration angular displacement in dynamic model 

In this subsection, the axial torsional vibration angular displacements of the 
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two-stage were analyzed by stipulating that the counterclockwise direction is 

defined as positive (manifested as positive vibration angular displacement values), 

while the clockwise direction is defined as negative (manifested as negative 

vibration angular displacement values), and that the input direction of sun gear in 

first-stage is counterclockwise. 

Fig.4-7 shows the vibration angular displacements of the sun, planet  and ring 

in the first stage. As can be seen from the Fig.4-7, the directions of their vibration 

angular displacements are all in accordance with the direction of rotation, 

indicating the reliability of the results calculated by the dynamic model.   

Similarly, the results of the vibration angular displacements of each 

component of the second stage are shown in Fig.4-8. Due to the direction of sun 

of the second stage is clockwise, which is same as the ring in first stage, so it does 

not give. Correspondingly, the vibration angular displacements of the planet and 

ring exhibits a positive value. Fig.4-8 illustrates that the calculations for the 

second stage are also correct. 

 

Fig.4-7 Vibration angular displacement results in first stage: (a) sun, (b) planet, (c) ring  
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Fig.4-8 Vibration angular displacement results in second stage: (a) planet, (b) ring  

Through the analysis results of transverse vibration displacement and 

torsional vibration angular displacement, we conclude that the established 

dynamic model of the two-stage parallel compound planetary gear system 

accurately reflects the vibration behaviour of each component in the two stages, 

so the model can effectively capture the angular displacement characteristics of 

each component due to rotation. The successful construction of this accurate 

dynamic model provides a reliable model basis for further gear dynamic analysis.  

4.4   Influence of the gravity force and centrifugal force on 

dynamic vibration characteristics 

From the analysis of the modelling process in Chapter 2 , it can be seen that 

the external force terms of the whole two-stage parallel compound system mainly 

come from torque, gravity (which contains time-varying and time-invariant terms), 

centrifugal force (mainly for the first stage of the planet), etc. Different forces 

determine different vibration response results, and the influence on the vibration 

response can not be ignored, so the following is a comparative analysis of the 

contribution of the influence of the different forces on the vibration characteristics 

(orbit trajectory). The following comparative analysis investigates the influence 

law of different forces on the axial trajectory. Here the benchmark axis trajectory, 

is the external force term only exists in the case of torque.  

4.4.1   Influence of the gravity force on dynamic vibration 

characteristics 

Since the object of this study is a large marine transmission system, involving 
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a great mass and inertia, the gravity item can not  be ignored obtaining an 

appreciable value. For second stage, gravity item is a constant item. However, for 

the first stage, gravity needs to be projected onto the moving coordinate, thus 

turning the time-invariant gravity item G into a time-varying gravity item G(t). 

The gravity term can be expressed in two stages as:  
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where superscripts 1, 2 represent the first and second stage, respectively, j 

represents components other than planets, and np represents the number of planets. 

Based on the above equations, the orbits (axial trajectories) of the 

components in the second stage system are analyzed firstly. Fig.4-9 is a schematic 

diagram of the transverse vibration response of the planets in the second stage 

when gravity is considered.  

 

Fig.4-9 The planets in second stage under considering gravity: (a) orbit diagram, and (b) 

force analysis diagram 

Fig.4-9 (a) is the trajectory diagram in the radial tangential coordinate system, 
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where it can be seen from Fig.4-9 (a) that the black trajectory describes the 

movement of the five planets when gravity is not taken into account , and each of 

them exhibiting an analogous. The other five colors correspond to the trajectories 

of the five planets when gravity is taken into account, respectively. From Fig.4-9 

(a), it can initially be seen that the presence of gravity makes the axial trajectory 

of each planet change greatly. Taking the Planet #1 as an example, the trajectory 

of Planet #1 along the direction of gravity has decreased by half the distance of 

the original trajectory length. The decrease ratio reaches about 50%, which 

illustrates that gravity has a great influence on the trajectory of planets. In 

addition, the trajectories of the remaining four planets are distributed on both 

sides of Planet #1, showing a symmetrical trend. 

Fig.4-9 (b) corresponds to the force analysis diagram of each planet when 

gravity is considered, where the grey part is the sign of gravity. For the Planet #2 

and Planet #5 combinations, by analyzing the magnitude of the angle between the 

direction of gravity and their radial, the angle of their acute angle with the gravity 

is 18 . However, the component of gravity in their radial direction is that one along 

the positive direction, and the other one along the opposite direction. As a 

consequence, it is indicated that the component of gravity in magnitude are equal 

in their radial direction, but the directions are opposite. Similarly, for the 

combination of Planet #3 and Planet #4, the angle is 72 , the conclusion is same. 

Therefore, the orbits of Planet #2 and Planet #5, and Planet #3 and Planet #4 in 

Fig.4-9 (a) show a symmetric distribution (in the radial direction) on both sides 

of Planet #1. 

 
Fig.4-10 Orbit diagrams in second stage under considering gravity: (a) sun, and (b) ring  

Correspondingly, Fig.4-10 is the diagrams of the axial trajectories of the sun 

and ring when gravity is taken into account, and the change in the trajectories of 

the individual planets due to the presence of gravity causes the force for the 
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central gear at each moment to no longer be a force of equal magnitude, and 

therefore the central gear is no longer fixed. Therefore, the trajectories of the 

central gears are mainly affected by the direction of the trajectories of the five 

planets, with Fig.4-9 (b) and Fig.4-10 it can be seen that the sun is mainly affected 

by the trajectory of the planet #4, and the ring is mainly affected by the trajectory 

of the planet #3. But the presence of gravity all makes the displacement of each 

central gear in the Y-direction decreased, which matches well with the direction 

of gravity. For the components of the first stage, gravity becomes a time-varying 

excitation with the carrier rotation speed ωc as the variable. Accordingly, Fig.4-11 

shows the axial trajectories of the sun and the planets in the first stage when 

gravity is considered.  

Compared with Fig.4-2 (b), the radius of the axial trajectory of the sun in the 

moving coordinate system grows from about 0.3μm to 17μm, which is about more 

than 50 times larger. Moreover, based on the fact that the period of time-varying 

gravity is 2 / ( )cpi  , it is known that one period of the gravity cycle is 750 times 

the meshing period of the first-stage, therefore the axial trajectory in the gravity 

case should be obtained by rotating the axial trajectory along a certain central 

point in one meshing cycle shown in Fig.4-2 (b), which can be verified in the 

trajectory diagram of the sun shown in Fig.4-11 (a) as well as in the enlarge 

diagram shown in Fig.4-11 (a), whose trajectory consists precisely of 700 circles, 

indicating that from Fig.4-11 (a) it can be concluded that the results of the 

vibration response computed by this dynamical model are fully in accordance with 

those obtained from the kinematic theory. 

The axial trajectory of planets in first stage is shown in Fig.4-11 (b). In this 

graph, it can be observed that the trajectory radius exhibits a value around 40 μm. 

It is worth highlighting the difference in this value when the gravity is taken into 

account respect when it is not. the maximum trajectory radius when gravity is not 

taken into account just reaches 1 μm, as displayed in Fig.4-4 (b), reflecting the 

significant increase of this value. On the other hand, it can be seen from Fig.4-11 

(b) that the coordinates of the centre of the planet trajectory, which are (0,60.3), 

demonstrate the model accuracy as this value coincides with the centre of the 

trajectory when gravity is not taken into account (Fig.4-4 (b)). The gravity item 

is a periodic function in the moving coordinate system. Therefore, the effect of 

gravity is not directly visible from the axial trajectories in the dynamic coordinate 

system illustrated in Fig.4-11 (a) and (b). Furthermore, Fig.4-11 (c) and (d) show 

the results of the vibration response of the sun and planets on the global coordinate 

system (XOY), respectively. It can be seen from Fig.4-11 (c) and (d) that those 

trajectories are located in the negative Y-axis, asserting the validity of the gravity 
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effect on the vibration response in this model.  

 

Fig.4-11 The trajectories of the components in the first stage: (a) sun in moving coordinate 

system, (b) planet in moving coordinate system, (c) sun in global coordinate system, (d) 

planet in the global coordinate system 

Secondly, the presence of gravity has a significant effect on the vibration 

response displacement, which in turn affects the meshing displacement and hence 

the engagement force. Therefore, it is necessary to analyze the effect of the 

presence of gravity on the engagement force. The effect of gravity is illustrated 

using the load sharing ratio (LSR). The LSR of each planet in the first stage under 

the influence of gravity is shown in Fig.4-12 (a). Fig.4-12 (b) is a partial 

enlargement of Fig.4-12 (a), reflecting the effect of meshing phases. From 

Fig.4-12 (a) and (b), comparing to the case when the gravity force is not taken 

into account, it can be seen that the variation of LSR is very significant, and the 

variation of the load borne by each planet varies from 30.5%-36.5% to 23.9%-
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44.7%. The maximum LSR variation rate reaches 22.466%. As can be seen in 

Fig.4-12 (a) and (b), the LSR by the individual planet comprise two cycles, and 

excepting the short cycle with the meshing cycle, it exists a long cycle with 700 

times the meshing cycle, which corresponds to the 700 circles on in Fig.4-11 (a). 

Fig.4-12 (c) shows the force analysis diagram. It can be observed that the direction 

of gravity in the static coordinate system is always in the negative direction of the 

Y-axis. However, in the moving coordinate system, the gravity force has the same 

effect on each meshing force. Thus, for each planet, gravity becomes an excitation 

that affects the magnitude of the engagement force. The excitation period is the 

rotation period of the carrier, which corresponds exactly to the long period of 700 

times the engagement period in LSR. Therefore, this is the cause of cyclic 

variation of the LSR displayed in Fig.4-12 (a). 

 
Fig.4-12 The load sharing ratio characteristics in first stage under considering gravity: (a) 

LSR, and (b) enlarge drawing of (a), and (c) force analysis diagram.  

According to the results of this subsection, it can be concluded that the 

constant gravity in the static coordinate system has a non-negligible effect on the 

vibration response of the components in this parallel compound gear system. In 
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particular, it has a very interesting effect on the uniform load transmission 

characteristics of the first stage. 

4.4.2   Influence of the centrifugal force on dynamic vibration 

characteristics 

The centrifugal force exists only in the first stage, so it only has a direct 

effect on the axial trajectory of the planets, which may lead to affect the axial 

trajectory of the sun and ring. This subsection analyses the axial trajectory of the 

planet first in stage to verify the accuracy of the dynamics model. 

Fig.4-13 (a) shows the axial trajectory of the planet in the first stage at 2400 

rpm, 2700 rpm, 3000 rpm, 3300 rpm and 3600 rpm. It can be observed a trend 

between the rotational speed and radius displacement of the central point  for 

planet trajectory. An increment in the rotational speed supposes a gradual shift of 

the planet of the planet trajectory in the radius direction as a resul t of the gradual 

increase in the centrifugal force direction. Fig.4-13 (b) shows the change rule of 

trend of the midpoint of the trajectory in the radial direction wi th the increase of 

rotational speed, from which it can be seen that the rate of change of the central 

point shows an upward trend with the proportional increase of rotational speed.  

 
Fig.4-13 Planet in first stage: (a) trajectory at different speeds, (b) radial displacement 

centre versus speed 

Nextly, the influence of on the load sharing ratio is presented, and Fig.4-14 

is the results diagrams. Fig.4-14 (a) shows a schematic diagram of the LSR of the 

first-stage when the centrifugal force is considered, while Fig.4-14 (b) shows a 

schematic diagram considering the centrifugal force with respect to the direction 

of the meshing line. From Fig.4-14 (a), the LSR barely changed comparing to the 

case when the centrifugal force is not considered. As shown in Fig.4-14 (b), the 
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direction of the meshing force is constant with the positional direction angle with 

respect to the x-axis on the moving coordinate system. The centrifugal force 

always points outward along the radial direction, the angle    between the 

centrifugal force and the direction of the meshing line is always kept fixed, so the 

effect of the meshing force is the same for each S-Pi meshing force. Regarding 

LSR, centrifugal force has no effect on the LSR. Although, the centrifugal force 

has no effect on the LSR, it does have an effect on the meshing force shown in 

Fig.4-14 (b). Fig.4-14 (c) and (d) are meshing force of S-P meshing considering 

2400 rpm and 3600 rpm, respectively. It is concluded that the high speed causes 

a decrease of meshing force of S-P, which may cause an increase of meshing force 

of R-P, resulting in an unexpected working condition. 

 
Fig.4-14 Transmission characteristics of the first stage considering centrifugal force: (a) 

LSR, (b) force analysis diagram, (c) (d) meshing force under 2400rpm and 3600 rpm 

4.5   Analysis of coupling relationship between two stages 

Based on the transmission structure diagram of the two-stage parallel 

compound gear system, the transmission between the two stages is relatively 

complex, existing a coupling relationship. This subsection, therefore, focuses on 
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investigating the coupling between the two stages by analyzing the frequency 

components. Moreover, the transmission error is only taken into account in this 

study case, and so do the excitation of gravity and centrifugal force.  

Fig.4-15 shows the waterfall spectrum of the transverse vibration 

displacement of the planets in a two-stage. It can be seen that for the first stage 

the main excitation frequency is its own meshing frequency 1mf , but there are also 

meshing frequencies 2mf  of the second stage and their multiplicative frequencies, 

and their amplitudes are quite large, especially for 20.5 mf  , 2mf  , and 21.5 mf  . 

However, for the second stage, the meshing frequency 2mf  of the second stage 

and its harmonics are the main frequencies. Although the meshing frequency 1mf  

of the first stage is also present in the second stage, the amplitude of the vibration 

acceleration is very low compared to that of 1mf , but it also indicates the presence 

of the meshing frequency 1mf  of the first stage in the second stage. 

 
Fig.4-15 The spectrum waterfall of planets in both stage: (a) first stage, and (b) second 

stage 
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The coupling relationship between the two stages is illustrated by the 

Fig.4-15 diagram, in which a rich frequency content in the first stage (high speed 

stage) compared to the second stage is highlighted. In addition, the meshing 

frequency of the second stage has a greater influence on the vibration of the first 

stage. On the contrary the meshing frequency of the first stage has a relatively 

low influence on the vibration of the second stage. Therefore, in this study case, 

it is showed that the vibration of the differential stage (high-speed stage) should 

be focussed on in comparison to the second stage, even the second stage carries 

more torque. 

4.5.1   Influence of indexing error on the coupling relationship 

In order to study the ability of the established dynamic model to represent 

the error, in this subsection, the spectrum under a certain speed considering errors 

is analyzed in detail.  

 
Fig.4-16 Spectrum of planet in first stage under indexing error: (a) 0-3000Hz, (b) 0-50Hz, 

(c) 1550-1700Hz 
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Fig.4-16 and Fig.4-17 show the two-dimensional spectrum diagrams of the 

transverse vibration acceleration of the planet, when the pitch error is considered, 

in each stage within 0 to 3000 Hz at 3600 rpm operating condition, respectively. 

The local detailed diagram is also included. The error frequency of each 

component can be identified from both Fig.4-16 (b) and Fig.4-17 (b). 

Correspondingly, the obvious modulation phenomenon, even if the amplitude is 

very small, can be observed from both sides of the main excitation frequency of 

the examples of Fig.4-16 (c) and Fig.4-17 (c). 

 
Fig.4-17 The spectrum of planet in second stage under indexing error: (a) 0 -3000Hz, (b) 0-

50Hz, (c) 2550-2650Hz 

4.5.2   Influence of run-out error on the coupling relationship 

Another time-varying error (run out error) is considered in the dynamic 

model of the two-stage parallel compound gear train to study the influence of 

eccentricity error. With the consideration of eccentricity error, Fig.4-18 (a) and 
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Fig.4-19 (a) are the spectral plots of the planet in the two-stage, and Fig.4-18 (b)(c) 

and Fig.4-19 (b)(c) are the local detail plots, respectively. It can be seen from the 

spectral plots that among the excitation frequencies of the first -stage, the 

frequencies related to the meshing frequency of the second-stage, such as fm2/2, 

fm2，3fm2/2，2fm2 and etc., has a significant influence. On the other hand, 

compared with the case of the existence of the pitch error, the amplitude of the 

vibration acceleration at these frequencies in the presence of the eccentricity error 

is generally a little bit larger than that at the case of the indexing error.  

 

Fig.4-18 The spectrum of planet in first stage under run out error: (a) 0 -3000Hz, (b) 0-

60Hz, (c) 2540-2660Hz 
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Fig.4-19 The spectrum of planet in second stage under run out error: (a) 0 -3000Hz, (b) 0-

60Hz, (c) 2540-2660Hz 

In conclusion, the proposed dynamic model can easily capture the error 

frequency even if the error amplitude is relatively small according to the analysis 

from Fig.4-16 to Fig.4-19. 

4.6   Brief summary 

In this chapter, aiming to the dynamic characteristics of the two-stages 

parallel compound planetary gear system is studied based on the established 

dynamic model in Chapter 2. Firstly, an improved Newmark-β method is proposed 

to solve the time-varying nonlinear equation. Next, the dynamic model was 

verified by comparing the vibration results with that of quasi -static model, also 

torsional vibration displacement direction matched well to the direction of 
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components. The dynamic response and the influence of main excitation were 

discussed, and the main conclusion are shown as follow: 

(1) For second stage, the presence of constant gravity item causes the 

vibration displacement to move to the direction of gravity. For first stage, the 

time-varying gravity has an interesting influence on the load sharing ratio of the 

first stage, and the long cycle time of LSR has a good agreement with the rotation 

cycle of gravity. Furthermore, when gravity is considered, the orbi t of sun 

includes 700 circles, coinciding with the number of mesh cycle of LSR, which is 

also 700. Therefore, the study of gravity effects proved the accuracy of the 

established dynamic model. 

(2) For first stage, the study of centrifugal force shows that it does not have 

a significant impact to LSR due to the angle formed by direction of centrifugal 

force and the fact that meshing line direction is always same for each planet. In 

addition, the simulation results of LSR corresponds with theoretical analysis .  

(3) In this study case, the coupling relationship exists two stages, comparing 

to the second stage, the high-speed stage, i.e. first stage, has a abundant frequency 

component. The influence of meshing frequency and its harmonics frequencies, 

such as 20.5 mf , 2mf , and 21.5 mf , of second stage affect strongly the vibration the 

first stage. Furthermore, the established dynamic model can observe the 

modulation phenomenon when the error exists.  
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Chapter 5   Nonlinear Dynamic Model and Analysis 

of the Double-helical Two-stage Parallel Compound 

Marine Gear Transmission System 

5.1   Preface 

In this chapter, a pure torsional nonlinear model of a two-stage parallel 

conforming wheel system is firstly established by considering the time-varying 

meshing stiffness, damping and meshing error excitation, and the effects of the 

bifurcation parameters such as the damping ratio coefficient on the nonlinear 

characteristics are analysed, and the key conclusion that the stable response state 

of the system is related to the least common multiple of the excitation period of 

the two-stage wheel system is obtained. Then, based on the pure torsional model, 

the translational-torsional coupled nonlinear model is extended and the its 

nonlinear characteristics are investigated. The reason of motion state of 

translational-torsional and its relationship with pure torsional nonlinear model are 

revealed.   

5.2   Pure torsional nonlinear dynamic model 

In this subsection, a torsional dynamic model of a two-stage double-helical 

planetary gear train is developed, and the vibration characteristics and coupling 

relationship are studied. Firstly, a purely torsional model was established based 

on the structure diagram and different mesh phasing. Then, the runout error is 

taken into account. Finally, according to frequency spectrum analysis, the 

coupling relationship of two stages is studied. It is shown that the runout error of 

the planet in different stages has a different impact on the torsional vibration of 

transmission error. It also shows that the coupling relationship exists and affects 

each other between the two stages, and the excitation frequency for the output 

element of two stages can be composed of a series of the mesh frequencies of each 

stage, the meshing frequency of high stage (1st stage) is dominated in two stages.  

5.2.1   Pure torsional modeling 

The dynamic model schematic of the studied compound double-helical 

planetary gear system is shown in Fig.5-1. The model is obtained based on the 

following several assumptions: 
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1). Each gear body is assumed to be rigid, and the flexibilities of the teeth of 

each gear are replaced by a spring-damper unit along the meshing line. 

2). Each component is assumed to move in the torsional direction, i.e., they 

only have 1 degree of freedom. 

3). Each planet gear is absolutely same and assigned around the sun gear. 

 

Fig.5-1 Pure torsional model 

5.2.2   Relative displacements 

Here, defining angular displacement 
( )m

zi  (i = s, r, c and pn (n = 1, 2, ..., N), 

m=1 and 2) as the only motion of each component in each stage, which is obtained 

in a global coordinate system. It is noted that the upper right number 1 is stage 1, 

number 2 is stage 2 and it is assumed that counter clockwise direction is positive. 

Therefore, for the mesh between sun or ring and each planet i in the first stage, 

the equivalent meshing displacements in their contact direction are defined as 

shown in Equation (5-1). 

 

(1) (1) (1) (1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (1) (1) (1)

( )cos( ) ( )

( )cos( ) ( )

spi bs zs bpi zpi bc zc b spi

rpi br zr bpi zpi bc zc b rpi

R R R e t

R R R e t

    

    

= + − −

= − − −
 (5-1) 

where, Rbi (i = s, r, c and pn (n = 1, 2, ..., N)), βb and espi are the radius of base 

circle, helix angle of base circle and transmission error and, respectively.  

In same way, the equivalent meshing displacements in their contact direction 

of second stage are defined as shown in Equation (5-2). 

 

(2) (2) (2) (2) (2) (2) (2)

(2) (2) (2) (2) (2) (2) (2)

( )cos( ) ( )

( )cos( ) ( )

spi bs zs bpi zpi b spi

rpi br zr bpi zpi b rpi

R R e t

R R e t

   
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= − − −

= − + −
 (5-2) 
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Moreover, defining the relative angular displacements between connected 

members in two stages as 
(1,2)

rs  and 
(1,2)

cr , which are shown in Equation (5-3). It 

should be pointed out that a torsional spring is used to connect two members. 

 
(1,2) (1) (2) (1,2) (1) (2),       rs zr zs cr zc zr     = − = −  (5-3) 

5.2.3   Equations of motion 

According to Lagrange equation [156][157], the equations of motion of two 

stages can be derived, are shown in Equation (5-4). 
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 (5-4) 

in which, Ji is moment of inertia of each part except the carrier in 1st stage, and 

Jzce represents equivalent moment of inertia of the carrier in 1st stage, which is 

different with moment of inertia of the carrier, is shown as Jzce=Jc+n×mpi×Rc
2. 

kjpi and cjpi are the meshing stiffness and corresponding meshing damping. I t is 

assumed that each pair of gears (S-Pi and R-Pi) is meshing at the initial moment, 

but as the gear rotates, the mesh may separate, so the mesh displacement is a 

piecewise function as follows 

 

,      0 

0,          ,   

+ ,  

jpi jpi

jpi

jpi jpi

else j s or r

b b

 



 




= =
  −

 (5-5) 

5.2.4   Torsional results and discuss 

For the simulation study, the two-stage planetary gear train with the basic 

parameters is studied. Tab.5-1 lists the basic parameters of whole system. 
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Tab.5-1 Parameters of the two-stage double-helical planetary gear train studied 

Stage First Stage Second Stage 

Element Sun Planet Ring Sun Planet Ring 

Teeth number 38 76 190 80 55 190 

Normal module (mm) 6 

Normal pressure angle (°) 20 

Helix angle (°) 25 

Number of planets (N) 3 5 

Planets spacing angle (°) 120 72 

Mesh phasing ESSP ESIP 

 

The different stages have different mesh frequencies, but there is a 

relationship between two stages, which is f 
1 

m  =ψ f 
2 

m , and ψ=3.375 depends on teeth 

number. 

5.2.4.1   Stability time-domain response analysis 

The Newmark-β method is adapted to solve the dynamic equations, shown in 

Equation (5-4). In order to obtain a stable solution, the results of the first 8 

seconds are removed. 

In 1st stage, the time-domain stationary response curves of each element (sun, 

planet, ring) without any meshing error, are shown in Fig.5-2 - Fig.5-4 under a 

constant 1200 rpm input speed and a constant 72400 Nm load torque. Here, the 

result of the angular displacement is a linear curve with respect to time, the slope 

of the angular displacement is velocity, and the only difference is the positive or 

negative values. Therefore, taking the angular velocity (negative value) of the 

planet as an example, i.e., its rotation direction (clockwise) is opposite to the 

definition of the positive direction. Moreover, the angular displacement of the part 

rotating in the positive direction increases linearly and vice versa.  

As shown in Fig.5-2 - Fig.5-4, the angular speed of the sun is more stable 

and less fluctuating, the ideal angular speed is 125.66 rad/s and angular 

acceleration is between -40 rad/s2 and 40 rad/s2. Angular velocity of planet 

fluctuates between -52.2 rad/s and -52.4 rad/s, and the ideal angular speed is -

52.28 rad/s. Angular velocity of ring fluctuates between -16.75 rad/s and -16.66 

rad/s, and the ideal angular speed is -16.39 rad/s, therefore, the angular speed 

agrees well with ideal value. Moreover, the acceleration fluctuation of the planet 

gear is more severe than that of the sun and the ring gear.  
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Fig.5-2 Stationary response of sun in 1st stage: (a) angular velocity, (b) angular 

acceleration 

   

Fig.5-3 Stationary response of planet in 1st stage: (a) angular velocity, (b) angular 

acceleration 

   

Fig.5-4 Stationary response of ring gear in 1st stage: (a) angular velocity, (b) angular 

acceleration 

 

Similarly, in 2nd stage, the time-domain stationary response curves are 

shown in Fig.5-5 to Fig.5-7. As shown in Fig.5-5 to Fig.5-7, it can be known that 
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the direction of the angular displacement and magnitude of average angular 

velocity for each component corresponds to the theoretical rotation direction and 

theoretical value. 

   

Fig.5-5 Stationary response of sun in 2nd stage: (a) angular velocity, (b) angular 

acceleration 

   

Fig.5-6 Stationary response of planet in 2nd stage: (a) angular velocity, and (b) angular 

acceleration 

   

Fig.5-7 Stationary response of ring in 2nd stage: (a) angular velocity, (b) angular 

acceleration 
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According to the curves of the angular displacement and the calculated 

velocity value, as shown in the above Figures, it is noted that the mean calculated 

velocity values agree well with ideal angular velocity value. 

5.2.4.2   Frequency-domain Analysis 

It is critical to study coupling properties of the two-stage due to the structure 

diagram, shown in  

Fig.1-7. In order to study the coupling characteristics, the acceleration of the 

planet in each stage is chosen to study the coupling characteristics. The reason is 

that the planet meshes with both the sun and the ring simultaneously, which causes 

the excitation of the planet to be complicated and it could reflect the main 

excitation frequency of each stage. 

Without error 

Fig.5-8 is the acceleration in the frequency domain under input speed 

1200rpm. It is observed from Fig.5-8(a) that meshing frequency and its frequency 

multiplication, such as f 
1 

m  and 2f 
1 

m , is the main excitation frequency. Moreover, 

the meshing frequency of the 2nd stage also appears. Excepting that, the 

modulations of f 
1 

m  and f 
2 

m , also become the main excitation frequencies, 

particularly the peak at f 
1 

m + f 
2 

m. 

As shown in Fig.5-8(b), there is some different situation. Although main 

excitation frequencies include it own meshing frequency and harmonic 

frequencies, it is clear that frequencies related to meshing frequency of the 1st 

stage, not only appear but also are the dominant frequency such as 2 f 
1 

m, which is 

similar to Fig.5-8(a). Overall, influence of the other frequencies which is related 

to 2f 
1 

m, cannot be ignored. 

 

   

Fig.5-8 Angular acceleration frequency spectrum of planet in each stage: (a) 1st stage, (b) 

2nd stage 
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Run out error 

Next, the influence of run out error on the coupling is studied. As shown in 

Fig.5-9(a), sideband effects appear on either side of the location corresponding to 

the meshing frequency in angular acceleration frequency spectrum of the planet 

in 1st stage. Also, the same phenomenon occurs in the 2nd stage, shown in 

Fig.5-9(b), because the ring gear of the 1st stage is the input of the 2nd stage. The 

runout error of the planet in 1st stage excites some frequencies of 2nd stage, 

although its magnitude is small. 

 

 

 

Fig.5-9 Angular acceleration frequency spectrum of planet #1 in 1st stage with runout 

error: (a) 1st stage, (b) 2nd stage 

 

When the runout error is in planet of 2nd stage, the corresponding figure is 

given in Fig.5-10. The exciting frequency almost does not change. Comparing 

with the results of Fig.5-8, the runout error of the planet in the 2nd stage does not 

change coupling relationship. 
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Fig.5-10 Acceleration frequency spectrum of planet #1 in 2nd stage with runout error: (a) 

1st stage, (b) 2nd stage 

5.2.5   Dimensionless equations of motion 

Banse on the Equation (5-4), the general displacement is introduced in this 

subsection to study the nonlinear dynamic characteristics of the established model, 

and the general displacement is meshing displacement and relat ive displacement 

shown as follows: 
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Therefore, the new equation of motion is rewritten as follows bansed on the 

meshing displacement, relative displacement formulars and Equation  (5-4): 
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in which, Mje，Mje=Jzj/(Rbj)
2, (j=s,r,c,p). cspi and crpi are the meshing damping for 

the sun or ring mesh with the planet i, respectively. 

Normally, the Equations (5-7)-(5-12) could be simplified into dimensionless 

Equations (5-13)-(5-18) in order to eliminate the effect between different orders 

of magnitude in the process of solving through introducing the dimensionless time 
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parameter d t =  and dimensionless displacement parameter cb . The frequency 

shown in the dimensionless time parameter is given as / ( )d spm eqk m = , in which 

(1) (1) (1) (1) (1) (1) (1) (1) (1)/ ( )eq s p ce s p s ce p cem M M M M M M M M M= + + . 
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It should be noted that the dimensionless parameters including displacement, 

velocity, acceleration and other relative parameters such as stiffness, damping, 

frequency used in Equations (5-13)-(5-18) are defined as Equation (5-19). 
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5.3   Nonlinear dynamic characteristics analysis of the pure 

torsional model 

5.3.1   Contact separation specification 

Tooth contact separation is easily affected by the backlash and meshing 

displacement, causing multi-meshing states, which will result in the dynamic 

instability of the gear system. Therefore, the teeth contact separation specification 

is explained by using a time-domain diagram between the meshing displacement 

and backlash, as shown in the Fig.5-11. It is shown from Fig.5-11 that the meshing 

displacement   is horizontal axis, and two vertical dotted lines named as 0b =  

and 1b = −  divide the horizontal axis into three parts. Moreover, if the meshing 

displacement is greater than 0, the drive-contact exist. if the meshing 

displacement is less than 0, but greater than backlash value, the tooth doesn't 

contact. Then, if it is the rest of the case, causing the drive-contact. Therefore, 

there are in total three meshing states such as drive side contact, contact separation 

and the back side contact, which are shown in meshing state diagram and marked 

as DC region, CS region and BC region in Fig.5-11, respectively. In addition, the 

red circle, green circle and blue circle marked as 1, 2 and 3 presents that the 



Chapter 5  Nonlinear Dynamic Model and Analysis of the Double-helical Two-stage Parallel Compound Marine Gear 

Transmission System 

 - 119 - 

system undergoes one, two and three states,  respectively. 

 
Fig.5-11 The diagram of the tooth separation based on the meshing displacement and 

backlash 

Based on the comparison of the meshing displacement and backlash shown 

in Fig.5-11, the contact separation state of the meshing teeth under certain 

parameter value can be clearly judged. 

In the following study case, the ordinary differential equations, shown as 

Equations (5-13)-(5-18), were solved by the fourth-order Runge–Kutta method. 

The result data corresponding to the first 500 response periods are removed in 

order to move out the transient results influence and capture the data 

corresponding to the steady response. Moreover, the influence laws of parameters 

on the dynamic response were revealed by means of bifurcation diagrams, time-

history diagrams, Poincaré maps, and phase orbit diagrams in order to get an 

initial understanding of the non-linear dynamic behavior according to the basic 

equations.  

The gear basic parameters are listed in Tab.5-2, the other parameters such as 

normal module, normal pressure angle and et al are same as the parameters in 

Tab.5-1. The calculated mesh phasing values used in meshing stiffness and 

damping are shown in Table. Moreover, some stiffness values are given in Table.  

Fig.5-12 presents the meshing stiffness of external and internal meshing gear 
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pairs, it can be seen that stiffness value of internal meshing pairs is larger than 

that of external meshing in a meshing period, and reason is that the overall contact 

ratio   for internal gear pairs is large, which corresponds to the calculated results 

shown in Tab.5-2. It is shown from Fig.5-12(c) that the two meshing periods has 

a certain relationship, 2 1, 3.5m mT AT A= =  based on the transmission relationship, 

which corresponds to the teeth number given in Tab.5-2, in this study case. The 

relationship shown in Fig.5-12(c) will also be discussed in the following content.  

 

Tab.5-2 Basic design parameters of the compound planetary gear train  

Stage First stage Second stage 

Component S P R S P R 

Teeth, Z 40 80 200 80 60 200 

Radius of pitch circle，Ri (mm) 165.5 248.3 662.0 264.8 198.6 662.0 

Transverse contact ratio, εα (-) 1.4882-1.5884 1.4938-1.5282 

Overlap ratio, εβ (-) 1.3452-1.3452 1.5694-1.5694 

Overall contact ratio, εγ (-) 2.8335-2.9336 3.0632-3.1276 

Overall transmission ratio, i (-) 15 

Dimensionless displacement，bc (μm) 5 

 

 

Tab.5-3 The mesh phasing values of the two stages 

Stage First stage Second stage 

Sun-planet (φspi) 0 1/3 2/3 0 0 0 0 0 

Ring-planet (φrpi) 0 -2/3 -1/3 0 0 0 0 0 

Sun-planet i-ring (φsr) 0 0 

 

 

Tab.5-4 The values of some stiffness 

Parameter name Value Parameter name Value 

(1)

mspik ,（N/m） 92.28 10  
(1)

mrpik ,（N/m） 92.57 10  

(2)

mspik ,（N/m） 92.68 10  
(2)

mrpik ,（N/m） 92.93 10  

(1,2)

rsK ,（N.m/rad） 101.0 10  
(1,2)

crK ,（N.m/rad） 101.0 10  
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Fig.5-12 Meshing stiffness of (a) the external meshing gear pairs in first stage, (b) the 

internal meshing gear pairs in first stage, (c) the compared results for the meshing periods 

relationship in two stages 

5.3.2   Influence of the damping ratio coefficient on the dynamic 

response 

The bifurcation diagram is a diagram that allows researchers to visually view 

the vibration responses of a transmission system as the variation of the bifurcation 

factors such as speed, damping ratio coefficient. The damping ratio is a critical 

parameter to adjust the damping of the whole system, and it is crucial to analyze 

the impact of damping ratio on the dynamic response.  

Fig.5-13 is the bifurcation diagram of the dimensionless displacement 
(1)

rpi  

of the two-stage compound planetary gear system, and the damping ratio   is the 

bifurcation parameter under the dimensionless excitation frequency of 
(1) 3.96m = , 
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dimensionless backlash of 1b = , and the initial conditions of (1) (1)0, 0rpi rpi = = . It 

can be seen from the Fig.5-13 that different vibration response condition including 

different motions changes with the damping ratio changes. Moreover, it is also 

concluded that the studied compound planetary gear train has an abundant 

nonlinear dynamic behavior because of the exist of the nonlinear factors such as 

meshing stiffness, meshing damping, and backlash. The bifurcation characteristics 

of other dimensionless meshing displacements have been obtained in the same 

way, and they have same variation tendency as the 
(1)

rpi , and these plots are not 

presented for brevity. 

 

Fig.5-13 Bifurcation diagram for 
(1)

rpi  versus [0.026,0.175] =  under 350 steady state 

periods. (To clearly distinguish references to color in this figure, the reader is referred to 

the online version of this article) 

Generally speaking, it is drawn that the bifurcation diagram can be divided 

into two kinds of state motion, periodic and non-periodic motion. Fig.5-13 mainly 

includes three regions marked by A, B and C by means of the state motion, which 

are chaos, quasi-periodic and 7T-periodic motion, respectively. From the Fig.5-13, 

it is very clear that there are 7 routes that gradually transition from chaos to stable 

periodic motion, and various law of each route is same, the reason why 7 routes 

appear will be explained in the following content.  

Next, the specific vibration response and influence law of damping ratio 

coefficient on vibration response are analyzed and discussed based on the Fig.5-13. 
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The system presented a chaotic motion shown in Fig.5-13 when the damping 

coefficient at low values,i.e., 0.038  . Specifically, for instance, when 0.026 = , 

the whole system presented a chaos motion, marked as stage A in Fig.5-13, and 

the nonlinear characteristic diagrams such as Poincaré map, Phase trajectory and 

time history are shown in Fig.5-14. Fig.5-14(a) shows that the distribution of the 

points is haphazard, which illustrates a chaos motion. The phase trajectory in the 

phase trajectory shown in Fig.5-14(b) is disordered and fills the whole phase space, 

and it can be seen that the system experiences two meshing state shown as DC 

and CS region marked in Fig.5-14(b), including tooth contact separation, but the 

contact separation part is small. The phase trajectory in is disordered and fills the 

whole phase space. Correspondingly, Fig.5-14(c) shows that the curve is a very 

irregular fluctuation from one cycle to another cycle.  

 

Fig.5-14 The chaotic motion at 0.026 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 

The unstable quasi-periodic motion gradually changes to a stable quasi-

periodic motion as the ξ increase between 0.039 and 0.125, i.e., [0.039,0.125]  , 
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which is marked by B in Fig.5-13. The evolution of the entire process will be 

shown as the Fig.5-15 - Fig.5-17. It is seen from the Poincaré map shown in 

Fig.5-15(a) to Fig.5-17(a) that 7 relatively regular circles gradually form as the 

damping ratio coefficient ξ increases, and the dynamic behavior of the compound 

planetary gear system exhibits an obvious quasi-periodic motion. Moreover, 

although the vibration response results shown in Fig.5-15(c) to Fig.5-17(c) do not 

look exactly same, it can be drawn that them repeat themselves through every 14 

waveforms, which is associated with 7 circles in Poincaré map. It also showed 

from time history diagram that the vibration response is complex. 

Correspondingly, Fig.5-15 (b) to Fig.5-17 (b) show that the phase diagram is 

getting clearer, and the tooth contact separation part  (BC region showed as 

Fig.5-15 (b) to Fig.5-17 (b)) gradually become smaller and finally is zero, which 

shows that the meshing state of the system gradually becomes completely drive-

side contact as the damping ratio coefficient   further increases. 

 

Fig.5-15 The chaotic motion at 0.040 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 
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Fig.5-16 The chaotic motion at 0.051 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 
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Fig.5-17 The chaotic motion at 0.076 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 
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Sequentially, when the damping ratio coefficient ξ further continues to 

increase, the quasi-periodic motion becomes more and more obvious. For example, 

the numerical results are shown in Fig.5-18 when the damping ratio is 0.090, the 

time history diagram shown in Fig.5-18(c) showed that motion is an obvious 

quasi-periodic motion due to similar 7 times regular fluctuation but have 

differences between two adjacent repeat cycle. Comparing to the Fig.5-17(b), 

Fig.5-18(b) are similar to 7T-periodic motion, and every cycle is composed of 

many single circles. Moreover, it should be noted that the DC region only appears 

in Fig.5-17(b) and Figure Fig.5-18(b) proving that there is only one meshing state 

in the system, that is the drive-contact meshing state. It could be seen that 

Fig.5-18(a) includes seven sets of points, each set is composed of a finite number 

of points, as shown the detailed figure in Fig.5-18(a), which proved the quasi-

periodic motion. 

 

 

Fig.5-18 The chaotic motion at 0.090 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 
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Finally, for the damping ratio coefficient 0.125   , The system starts to 

experience a stable state, i.e., 7T-periodic motion, as marked by C in Fig.5-13 

until the damping ratio coefficient reaches 0.175. An exampled result is shown in 

Fig.5-19, in which the damping ratio coefficient is 0.151. As appeared in 

Fig.5-19(a) and Fig.5-19(b), there are 7 discrete points in the Poincaré map, and 

also 7 circles in the phase space. Moreover, the time history diagram indicates 

that the vibration response repeats itself every 7 periods, and the response result 

is almost same. 

 

Fig.5-19 The chaotic motion at 0.151 = : (a) the Poincaré map diagram, (b) the phase 

trajectory diagram, (c) the time history diagram. 

 

It is found from the above bifurcation and corresponding diagrams that the 

final stable state motion is 7T-periodic motion, which corresponds to the seven 

paths shown in Fig.5-13, and the single periodic motion or 2T-periodic motion 

doesn't appear. At the same time, the quasi-periodic motion also is related to the 

7T-periodic motion, in other word, the 7T-periodic motion is the most basic 
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motion state for the other motions. 

 

 

Fig.5-20 Poincaré map diagrams for (1)
rpi  versus ξ: (a) ξ=0.025, (b) ξ=0.039, (c) ξ=0.060, 

(d) ξ=0.081, (e) ξ=0.093, (f) ξ=0.130. 
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The reason can be explained by using the meshing stiffness of two stages 

shown in Fig.5-12(c), because the excitation of the studied compound planetary 

gear system has two, and the meshing cycle of 2nd stage is 3.5 times of that of 1st 

stage, which means these two excitations want to return the same phase for the 

first time, the system must round 7 mesh cycles of the 1st stage, i.e., t he lease 

common multiple(LCM) 7 = LCM(1,3.5). Therefore, the final basic stable motion 

is 7T-periodic motion, which is associated with the LCM(1,3.5). This 

understanding is important to the nonlinear behavior for the compound planetary 

gear system, and it could provide a basic understanding and guidance for the 

complex structural planetary gear system. Furthermore, by means of bifurcation, 

there are two main kinds of bifurcation ways, Doubling-Periodic and Hopf 

bifurcation. Fig.5-13 showed that the system experienced chaos, quasi-periodic 

and 7T-periodic motion, and Fig.5-20 presented the detailed Hopf bifurcation 

process from chaos to 7T-periodic motion through Poincaré map, and the Poincaré 

map of one path is only showed for brief. It is found from Fig.5-20 (a)-(c) that 

disorder unstable points became to a stable circle, which means that quasi -

periodic motion forms. As the ξ increases, the stable circle broken, and gradually 

diverges inward, but it is still quasi-periodic motion only the ring became smaller 

shown as in Fig.5-20(d)-(e) until finally all the points come together, and then 

single periodic motion (i.e., 7T-periodic motion) is obtained. 

Finally, it also could be drawn that the damping ratio coefficient ξ has an 

important influence on the nonlinear characteristics of the studied two stages 

compound planetary gear system. 

 

5.3.3   Influence of damping ratio coefficient and input speed on the 

dynamic response 

Compared to the common parameter, rotational speed, the value of the 

damping ratio coefficient ξ is fixed before designing a planetary gear system due 

to the gearbox structure. Combining the conclusion of damping ratio coefficient, 

and in order to choose the proper parameters of 
(1)

m  and ξ, the influence of speed 

(1)

m  and damping ratio coefficient ξ on the nonlinear dynamics is here jointly 

studied in this subsection. Fig.5-21 presents the corresponding three bifurcation 

diagrams with ξ=0.075, 0.100 and 0.125, respectively. 
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Fig.5-21 Bifurcation diagram for (1)
rpi  versus speed (1)

m  with different ξ: (a) ξ=0.075, (b) 

ξ=0.100, (c) ξ=0.125.  
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By comparing Fig.5-21 (a)–(c), the results present that the stability of the 

studied two-stage compound planetary gear train exhibits an increasingly stable 

motion trend as the ξ increases. Specifically, when ξ increase from 0.075 to 0.1, 

the non-periodic motion (chaos or quasi-periodic motion) shown in Fig.5-21 (a) 

transfers to quasi-periodic motion in Fig.5-21 (b), and the bifurcation point 

between 7T-periodic motion and quasi-periodic motion also move from 2276rpm 

to 2343rpm, which increases the periodic region. If the ξ continues to change to 

0.125, the whole dynamic response area completely becomes 7T-periodic motion 

(stable motion). In other words, unstable non-periodic motion disappears and 

more expected stable periodic motion appears. Moreover, Fig.5-21 also indicated 

that the maximum response amplitude ranges from [-3.86,6.6] to [-2.43,5.62] and 

finally to [-1.21,5] as ξ increases. Hence, it can be revealed that the nonlinear 

behavior of the studied compound planetary gear system is highly sensitive to the 

damping ratio coefficient ξ, and a higher value of damping ratio coefficient ξ on 

suppressing non-periodic motion and improving periodic motion is very useful. It 

is demonstrated that proper ξ can let the gear system have an expected narrow 

interval of the chaos motion, causing enhancing reliability and extending life time.  

 

5.3.4   Influence of the meshing error amplitude on the dynamic 

response 

Because the meshing error is composed of a series of errors, and the 

amplitude could be changed due to differences in manufacturing and assembly 

conditions. Fig.5-22 (a) is the bifurcation of the dimensionless displacement 

versus the meshing error amplitude, and Fig.5-22 (b) is the detailed drawing of 

the one path shown in Fig.5-22 (a). 

It is seen that there are three motion states marked as A, B and C as the 

variation of the E , which are 7T-periodic motion, 14T-periodic motion and quasi-

periodic motion, respectively. The bifurcation way between state A and B is the 

doubling-periodic bifurcation, which is different to Hopf bifurcation.  

It is also concluded from this study case that the motion start s to becomes 

non-periodic motion after E  reaches 2.5, the reason is that some teeth start to 

disengage as E  increases, causing the motion state to become complicated than 

steady periodic motion. Corresponding to Fig.5-22 (a), Poincaré map diagram and 

phase diagram representing the three motion states are shown in the Fig.5-23, 

respectively. 
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According to the results in Fig.5-22 and Fig.5-23, 7T-periodic, 14T-periodic 

and quasi-periodic motion are proved clearly. Furthermore, it is drawn from phase 

trajectory that the three meshing state shown as blue circle in Fig.5-11 when 

meshing error amplitude is greater than 1.2, and the DC region become smaller as 

the meshing error amplitude increases, indicating that the processing accuracy 

should be improved as far as possible to avoid tooth contact separation and so on.  

 

 

 

Fig.5-22 Bifurcation diagram for 
(1)

rpi  versus meshing error amplitude E  
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Fig.5-23 Poincaré map diagram and phase diagram for three states shown in Fig.5-22: 

(a)(b) 1.2E = , (c)(d) 1.9E = , (e)(f) 2.5E =  
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5.4   Translational-torsional nonlinear dynamic model 

Based on the schematic diagrams of the dynamics models in Fig.2-11, 

Fig.2-12 and the pure torsion model in the previous subsection, this subsection 

develops a translational-torsional coupled multi-degree-of-freedom nonlinear 

dynamics model for this compound planetary gear system and analyses its 

nonlinear dynamics properties. 

5.4.1   Relative displacement 

In this study, the choice of coordinate system in the two-stage planetary gear 

system is still referred to the moving coordinate of first stage and fixed coordinate 

of the second level. Each component is modelled by considering three degrees of 

freedom, i.e., two lateral and one rotational degrees of freedom. The relative 

displacements of the interconnected components are still presented by a torsional 

stiffness, and the meshing displacements for S-P and R-P of the two stages are 

calculated as follows: 

 

(1) (1) (1) (1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (1) (1)

( sin cos sin cos

+ )cos ( )

( cos sin sin cos

spi s spi s spi pi sp pi sp

bs zs bpi zpi bc zc b spi

rpi r rpi r rpi pi rp pi

x y

R R R e t

y x

      

   

      

= + − −

+ − −

= − + − (1)

(1) (1) (1) (1) (1) (1) (1) (1)

(2) (2) (2) (2) (2) (2) (2) (2) (2)

(2) (2) (2) (2) (2) (2)

(2) (2

) cos ( )

( sin cos sin cos

)cos ( )

(

rp

br zr bpi zpi bc zc b rpi

spi s spi s spi pi sp pi sp

bs zs bpi zpi b spi

rpi r

R R R e t

x y

R R e t

y

   

      

  



+ − − −

= − − +

− − −

= − ) (2) (2) (2) (2) (2) (2) (2)

(2) (2) (2) (2) (2) (2)

cos sin sin cos

)cos ( )

rpi r rpi pi rp pi rp

br zr bpi zpi b rpi

x

R R e t

     

  

− + +

− + −

 (5-20) 

where the formulae for the angles, etc. shown in Equation (5-20) are as defined in 

Chapter 2. 

The relative displacements of the carrier with its pin on the planet i in the 

radial and tangential directions of the planet gear are:  

 

(1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1)

cos sin

sin cos

cpix pi c pi c pi

cpiy pi c pi c pi

x y

x y

   

   

= − −

= + −
 (5-21) 

where Rc is the distance from the centre of the planet carrier pin to the centre of 

the planet carrier. 

Also, the relative angular displacements between the connecting parts in the 
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two stages system are shown below: 

 

(1,2) (1) (1) (2) (2)

(1,2) (1) (1) (2) (2)

/ /

/ / .

cr c bc r br

rs r br s bs

u R u R

u R u R





= −

= −
 (5-22) 

5.4.2   Equation of motion 

The translational-torsional coupled dynamics model of this studied gear 

system is established based on the force equilibrium relationship. The general 

displacement vectors of the system are shown below: 

 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

(2) (2) (2) (2) (2) (2) (2) (2) (2)

, , , , , , , , , , , ,

, , , , , , , ,

T

s s s r r r c c c pi pi pi

s s s r r r pi pi pi

x y u x y u x y u x y u

x y u x y u x y u

  
=  
  

q  (5-23) 

Finally, the set of dynamic equations for the whole system is shown below: 

(1) Sun gear in first stage: 

 

(1) (1) (1) (1) (1)2 (1) (1) (1)

11

(1) (1) (1) (1) (1)2 (1) (1) (1)

21

(1) (1) (1)

3 1

( 2 )

( 2 )

( / )

n

s s c s c s spi i bsx gsxi

n

s s c s c s spi i bsy gsyi

n

se s spi in bsi

m x y x F a F F

m y x y F a F F

M u a F T R

 

 

=

=

=

− − + + =

+ − + + =

+ =







 (5-24) 

(2) Ring gear in first stage: 

 

(1) (1) (1) (1) (1)2 (1) (1) (1) (1)

81

(1) (1) (1) (1) (1)2 (1) (1) (1) (1)

91

(1) (1) (1) (1) (1,2) (1,2)

3 1

( 2 )

( 2 )

(1/ ) 0

n

r r c r c r rpi i brx bgxi

n

r r c r c r rpi i bry bgyi

n

re r rpi br rs rsi

m x y x F a F F

m y x y F a F F

M u a F R K

 

 



=

=

=

− − − + =

+ − + + =

+ + =







 (5-25) 

(3) Planet gear in first stage: 

 

(1) (1) (1) (1) (1)2 (1) (1) (1) (1) (1) (1)

4 6

(1) (1) (1) (1) (1)2 (1) (1) (1) (1) (1)

5 7

(1) (1) (1)

3

( 2 ) ( )

( 2 ) ( )

(

pi pi c pi c pi spi rpi bpx gpix cpi

pi pi c pi c pi spi rpi bpy gpiy

pie pi spi

m a F a F F F F

m a F a F F F

M u a F

    

    

− − + − + + = +

+ − + − − + =

+ (1) ) 0rpiF− =

 (5-26) 

(4) Carrier in first stage: 

 

(1) (1) (1) (1) (1)2 (1) (1) (1) (1) (1) (1) (1)

1

(1) (1) (1) (1) (1)2 (1) (1) (1) (1) (1) (1) (1)

1

(1) (1)

( 2 ) ( c s )

( 2 ) ( s c )

n

c c c c c c bpx pi bpy pi bcx gcxi

n

c c c c c c bpx pi bpy pi bcy gcyi

ce c

m x y x F F F F

m y x y F F F F

M u

   

   

=

=

− − + − + + =

+ − + − − + =

−




(1) (1) (1) (1) (1,2) (1,2)

1
( / ) (1/ ) 0

n

c bc bpy bc cr cri
R R F R K 

=
+ =

 (5-27) 

(5) Sun gear in second stage: 
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(2) (2) (2) (2)

101

(2) (2) (2) (2) (2)

111

(2) (2) (2) (2) (1,2) (1,2)

12 1

0

(1/ ) 0

m

s s spi i bsxi

m

s s spi i bsy gsi

m

se s spi bs rs rsi

m x F a F

m y F a F F

M u a F R K 

=

=

=

+ + =

− + =

− − =







 (5-28) 

(6) Ring gear in second stage: 

 

(2) (2) (2) (2)

171

(2) (2) (2) (2) (2)

181

(2) (2) (2) (2) (1,2) (1,2) (2)

12 1

0

(1/ ) ( / )

m

r r rpi i brxi

m

r r rpi i bry gri

m

re r rpi br cr cr out bri

m x F a F

m y F a F F

M u a F R K T R

=

=

=

− + =

− + =

− − = −







 (5-29) 

(7) Planet gear in second stage: 

 

(2) (2) (2) (2) (2) (2)

13 15

(2) (2) (2) (2) (2) (2)

14 16

(2) (2) (2) (2)

12

( )

( )

( ) 0

pi pi spi rpi bpix gpix

pi pi spi rpi bpiy gpiy

pie pi rpi spi

m a F a F F F

m a F a F F F

M u a F F





+ − + + =

+ + + + =

+ − =

 (5-30) 

where, in the above equation, the expressions for the engagement force and other 

symbols are shown below: 

( ) ( ) ( ) ( ) ( )

(1) (1) (1) (1) (1)

( ) (1) ( ) ( ) ( )

(1) (1) (1)

(1) (1) (1)

(2) (2)

,  (    
sin( )

cos( )

k k k k k

jpi jpi jpi jpi jpi

bpn bp cpin bp cpin

k k k k

bjn bj j bj j

gjx j c

gjy j c

jg j

F k c

F k c

F k n c n
j s or r

F m g t

F m g t

F m g

 

 





 = +


= +


= +
=

= − 


= − 
 = −

(1) (1) (1)

(1) (1) (1)

(2) (2) (2) (2) (2) (2) (1) (1) (1) (1)2

(1)

 ,  1  2,    ),

sin( 2 ( 1) / ),

cos( 2 ( 1) / ),

sin( ), cos( ), ,

s

gpix j c p

gpiy j c p

gpix pi pi gpiy pi pi cpi pi c c

pi

or c k or n x or y

F m g t i n

F m g t i n

F m g F m g F m R

 

 

  



= =

= −  + −

= −  + −

= −  = −  =

= (1) (1) (1) (1) (1) (1) (1)

1 2

(1) (1) (1) (1) (1)

3 4 5

(1) (1) (1) (1) (1)

6 7 8

sin ,c cos , cos( )sin , cos( )cos ,

cos( ), cos( )sin , cos( )cos ,

cos( )sin , cos( )cos , cos( )sin

pi pi pi i b spi i b spi

b b sp b sp

b rp b rp i

a a

a a a

a a a

      

    

    

= = =

= = =

= = = (1)

(1) (1) (2) (2) (2) (2)

9 10 11

(2) (2) (2) (1) (2)

12 13 14

(2) (2) (1) (2)

15 16

17

,

cos( )cos , cos( )sin , cos( )cos ,

cos( ), cos( )sin , cos( )cos ,

cos( )sin , cos( )cos ,

rpi

i rpi i b spi i b spi

b b sp b sp

b rp b rp

i

a a a

a a a

a a

a



     

    

   

= = =

= = =

= =

= (2) (2) (2) (2)

18cos( )sin , cos( )cos .b rpi i b rpia   =
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5.4.3   Dimensionless equations of motion 

Due to the presence of relative displacements in the above modelling process, 

the equations of motion for each of the above components are semi-positive 

definite, so some torsional relative displacements are first defined based on the 

pure torsional dynamics model and these torsional displacement variables are 

defined as follows: 

 

(1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1)

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

(2) (2) (2) (2) (2)

(

( ) cos

( 2 )cos

( ) cos

spi s pi c b spi

rpi src spi spi rpi

src s r c b

spi s pi b spi

rpi sr spi spi rpi

sr

U u u u e

U U U e e

U u u u

U u u e

U U U e e

U







= + − −

= − − −

= + −

= − − −

= − − −

2) (2) (2) (2)

(1,2) (1) (1) (2) (2)

(1,2) (1) (1) (2) (2)

( ) cos

( / )

( / )

s r b

rs r br bs s

cr c bc br s

u u

U u R R u

U u R R u














= − −
 = −

 = −

 (5-31) 

Therefore, the above relative torsional displacements are introduced into the 

generalised coordinates of equation (5-23), along with the displacement scale 

parameter bc and the time parameter τ=ωdt, both of which are defined in the same 

way as in the purely torsional nonlinear model, thus transforming the generalised 

coordinates dimensionlessly, and hence the new generalised displacement vector 

obtained is shown below: 

 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

(2) (2) (2) (2) (2) (2) (2) (2) (1,2) (1,2)

, , , , , , , , , ,

, , , , , , , , ,

T

s s r r c c pi pi spi src

s s r r pi pi spi sr rs cr

x y x y x y U U

x y x y U U U U

 

 

  
=  
  

q  (5-32) 

Based on the new generalised coordinates and the set of kinetic equations for 

each component, the dimensionless form of the kinetic equations for the new 

translational-torsional model is shown below: 

(1) Dimensionless equations for the sun in first stage in the support direction: 

 

(1) (1) 2 (1) (1)

11

(1)

(1) (1) 2 (1) (1)

21

(1)

2

sin( )

2

cos( )

n

s cd s cd s i spi si

bs sx gs cd

n

s cd s cd s i spi si

bs sy gs cd

x y x a F

F F

y x y a F

F F





−=

−

−=

−

=  + −

− + 

= −  + −

− +  




 (5-33) 

(2) Dimensionless equations for the ring in first stage in the support direction: 
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(1) (1) 2 (1) (1) (1)

81

(1) (1) 2 (1) (1) (1)

91

2 sin( )

2 cos( )

n

r cd r cd r i rpi r br rx gr cdi

n

r cd r cd r i rpi r br ry gr cdi

x y x a F F F

y x y a F F F





− −=

− −=

=  + + − +  

= −  + − − +  




 (5-34) 

(3) Dimensionless equations for the planet in first stage in the support direction: 

 

(1) (1) 2 (1) (1) (1) (1)

4 6

(1) (1) (1)

(1) (1) 2 (1) (1) (1) (1)

5 7

(1) (1)

2

sin( )

2

cos( )
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gpi cd pi cpi

pi cd pi cd pi spi p rpi p bp py

gpi cd pi

a F a F F

F F

a F a F F

F

  

 

  

 

− − −

− − −

=  + + − −

+   + +

= −  + + + −

+   +

 (5-35) 

(4) Dimensionless equations for the carrier in first stage in the support direction: 

 

(1) (1) 2 (1) (1) (1) (1) (1)

1

(1) (1)

(1) (1) 2 (1) (1) (1) (1) (1)

1

(1) (1)

2 ( c s )
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n
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n
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bc cy gc cd

x y x F F

F F

y x y F s F c

F F

 



 



− −=

−

− −=

−

=  + + −

− +  

= −  + + +

− +  




 (5-36) 

(5) Dimensionless equations for relative torsional displacements in the first stage: 

 

(1) (1) (1) 2 (1) (1) 2 (1) (1) (1)

3 3 31

(1) (1) (1) (1) (1)2 (1) (1,2) (1,2)

3 31

(1)

(1) (1)

3

( / )( / ) ( / ) ( / )( )

( / )( / ) (1/ )( / )

( )

( / )(

n

spi se in bs se spi pie spi rpii

n
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src se

U a M T R a M F a M F F

a M R R F R a M K U

e t

U a M

=

=
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− +

−

=





(1) 2 (1) (1) 2 (1) (1)

3 31 1

(1)2 (1) (1,2) (1,2) (1) (1) (1) (1)

3 3 1

(1)2 (1) (1,2) (1,2)

3

/ ) ( / ) ( / )

(1/ )( / ) (2 / )( / )

(1/ )(2 / )

n n
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n
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T R a M F a M F

R a M K U a M R R F

R a M K U

= =

=
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+

 



 (5-37) 

(6) Dimensionless equations for the sun in second stage in the support direction: 

 

(2) (2) (2)

101

(2) (2) (2) (2)

111

n

s i spi s bs sxi

n

s i spi s bs sy gi

x a F F

y a F F F

− −=

− −=

= − −

= − +




 (5-38) 

(7) Dimensionless equations for the planet in second stage in the support direction: 

 

(2) (2) (2) (2) (2) (2)

13 15

(2) (2) (2) (2) (2) (2)

14 16

sin( )

cos( )

pi spi p rpi p bp px gpi pi

pi spi p rpi p bp py gpi pi

a F a F k F

a F a F k F

 

 

− − −

− − −

= − − +

= − − − +
 (5-39) 

(8) Dimensionless equations for the ring in second stage in the support direction: 
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(2) (2) (2)
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(2) (2) (2) (1)
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m

r i rpi r br rxi

m

r i rpi r br ry gri

x a F F

y a F F F

− −=

− −=

= −

= − +




 (5-40) 

(9) Dimensionless equations for relative torsional displacements in the second 

stage: 

 

(2) 2 (2) (2) (2) (1) (2) (1,2) (1,2)

12 121
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
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
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m
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(10) Dimensionless equations for the relative torsional displacements of the 

connected parts in the two stages: 
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Some of the simplified formulas in Eqs.(5-33)-(5-42) above and the 

dimensionless physical quantities used in this subsection are defined below:  
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where the parameters in the upper are labelled j=1,2. The remaining letters stand 

for , , , , ,l s r p c n x y= = . 

5.5   Nonlinear dynamics characteristics analysis of the 

translational-torsional model 

The nonlinear dynamic behaviour of the model can be obtained by 

concentrating on the transverse and torsional displacements of the two-stage 

parallel compound gear system, and the dimensionless ordinary differential 

equations are solved by the numerical method, and the basic parameters of the 

gears as well as the other parameters in the case of the present study are still as 

shown in Tab.5-2 to Tab.5-4, again in order to eliminate the effect of transient 

response, the results within the first 300 response cycles were removed. By 

analysing the transverse response results, the meshing displacements on the 

meshing line and the meshing forces, the influence of various factors on the 

dynamic response of the system is investigated. 

5.5.1   Influence of the damping ratio coefficient on the dynamic 

response 

The analysis of Fig.5-13 in Section 5.3 reveals that the motion state of the 

entire two-stage parallel compound gear system changes with increasing damping 

ratio coefficient, transitioning from unstable chaotic motion to stable 7T periodic 

motion. Notably, the quasi-periodic motion is also based on the 7T periodic 

motion as its foundation. Furthermore, analysis indicates that the fundamental 

motion is the 7T periodic motion. In the case of the translational-torsional model, 

which incorporates equations in the lateral direction and additional excitations, 

the vibration state of the entire system is expected to differ. However, it is 

assumed that the motion state of system may still relate to that of the pure torsional 

model. 
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In this subsection, the damping ratio coefficient is selected as the bifurcation 

parameter, while the other parameters remain consistent with those of the pure 

torsional model. To differentiate from Fig.5-13 and for clarity, two ranges of the 

meshing damping ratio coefficient are chosen: 0.119-0.124 and 0.166-0.174, 

corresponding to portions of Stage B (quasi-periodic motion) and Stage C (7T 

periodic motion) in Fig.5-13. It is evident that the motion state in the 0.119-0.124 

range approaches 7T periodic motion, while the motion state in the 0.166-0.174 

range represents 7T periodic motion. Fig.5-24 depicts the bifurcation diagram of 

the dimensionless relative torsional displacement Uspi. The results indicate that, 

with increasing damping ratios, the motion state of the relative torsional 

displacement of system does not exhibit any significant changes, remaining in the 

quasi-periodic state, even when the meshing ratio spans a wide range. Compared 

to the results shown in Fig.5-13, the increase in meshing damping ratio coefficient 

does not lead to a more stable motion state, suggesting that in this study  case, the 

increase in meshing damping ratio has little effect on the motion state of the two-

stage compound gear system, indicating that the damping ratio does not improve 

the dynamic behavior of system. 

 

Fig.5-24 Bifurcation plots of dimensionless relative torsional displacements with different 

ranges of meshing damping ratios coefficient: (a) 0.119-0.124, (b) 0.166-0.174 

To validate the motion state depicted in Fig.5-24, the maximum damping 

ratio coefficient 0.170 is selected while keeping other parameters constant. The 

corresponding Poincaré map and phase trajectory are shown in Fig.5-25. In 

Fig.5-25 (a), the Poincaré map clearly indicates a dense distribution of points 

without any discernible pattern. Correspondingly, Fig.5-25 (b) illustrates the 

phase trajectory, which is characterized by complex lines in the phase space, 

further confirming that the motion state of the relative torsional displacement is 

indeed quasi-periodic motion. 
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Fig.5-25 Meshing damping ratio coefficient of 0.170 in the case of (a) Poincaré map 

diagram, (b) phase-trajectory diagram 

To verify whether the motion states of lateral vibration displacement xs
(1) and 

torsional vibration displacement differ, bifurcation diagrams for two ranges of 

meshing damping ratio coefficients are presented in Fig.5-26 (a) and (b). Similar 

to the results for relative torsional displacement, these bifurcation diagrams 

indicate that the motion state remains quasi-periodic, suggesting that both lateral 

vibration and relative torsion exhibit the same dynamic motion state. 

 

Fig.5-26 Bifurcation plots of dimensionless transverse vibration displacements with 

different ranges of meshing damping ratios coefficient: (a) 0.119 -0.124, (b) 0.166-0.174 

5.5.2   Influence of the speed on the dynamic response 

Similarly, when the dimensionless rotational speed ranges from 1.2 to 3.5, 

the corresponding bifurcation diagram is shown in Fig.5-27. At a meshing 
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damping ratio of 0.17, the diagram reveals that even at the maximum damping 

ratio coefficient, as the rotational speed increases, results of the dimensionless 

lateral vibration displacement and relative torsional displacement  does not change. 

Furthermore, there is no stable multi-periodic motion as observed. Therefore,  

similar to the meshing damping ratio coefficient, the rotational speed does not 

change the motion state of system. 

 

Fig.5-27 Bifurcation plots of dimensionless vibration displacements versus rotational 

speed: (a) transverse displacement, (b) relative torsional displacement  

5.5.3   Analysis of the motion states in the translational-torsional 

coupled nonlinear model. 

Based on the analyses in the previous two sections, it is evident that 

variations in the meshing damping ratio coefficient and rotational speed within 

reasonable limits do not significantly change the motion states of lateral and 

torsional vibrations displacement, which remain quasi-periodic, as demonstrated 

by bifurcation diagrams, Poincaré maps, and phase diagrams. This subsection 
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analyzes the underlying reasons for this phenomenon.  

Compared to pure torsion nonlinear dynamic, the translational -torsional 

nonlinear dynamic model encompasses a more comprehensive consideration, with 

the key difference in the external force being that the constant gravitational term 

in the first stage becomes a time-varying excitation. Furthermore, the nonlinear 

analysis of the pure torsional model indicates that the stable motion ultimately 

manifests as a 7T periodic motion. This is attributed to the least common multiple 

of the two internal meshing stiffnesses' periods being seven, meaning that after 

seven cycles of the first-stage meshing period, the excitation of system returns to 

its initial position, initiating the subsequent repeating cycle. Therefore, it is 

inferred that the fundamental motion state in the translational -torsional model is 

still related to the 7T periodic motion observed in the pure torsional model. 

To validate this hypothesis, the improved Newmark-beta method proposed in 

Chapter 4 is employed for re-solving the translational-torsional nonlinear model, 

as the built-in Runge-Kutta method in MATLAB is resource-intensive and slow, 

leading to computational limitations. In this analysis, factors such as gravity, gear 

backlash, and transmission errors are considered, with the primary parameters set 

to a rotational speed of 3000 rpm and a meshing damping ratio of 0.17 to compute 

the nonlinear dynamic response. 

Fig.5-28 illustrates the phase trajectory and Poincaré map for one repeating 

cycle under these conditions. The Poincaré map indicates a discernible pattern, 

with the points roughly segmented into seven regions, each containing around 100 

points, suggesting that the lateral vibration displacement of system exhibits 

approximately 700 periodic motion state. Additionally, while the trajectory lines 

in the phase plot are numerous, they display a recognizable periodic shape.  

 
Fig.5-28 Transverse vibration of sun at 3000 rpm during one repetition cycle: (a) phase 

trajectory, (b) Poincare map diagram 
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Additionally, the phase trajectory and Poincaré map of the planet gear 

meshing with the sun  are presented in Fig.5-29. Both the phase trajectory and 

Poincaré mapping clearly indicate that the motion state corresponds to a certain 

multiple time periodic motion, verifying the findings from Fig.5-28. 

 
Fig.5-29 Transverse vibration of planet at 3000 rpm during one repetition cycle: (a) phase 

trajectory, (b) Poincare map diagram 

Corresponding to Fig.5-28 and Fig.5-29, the time history of the lateral 

vibration of sun gear under the 3000rpm condition is shown in Fig.5-30. From the 

waveform in Fig.5-30 (a), it can be preliminarily inferred that the lateral vibration 

state exhibits a long-period behavior resembling a sine wave before repeating. 

Fig.5-30 (b) and (c) reveal that the displacement values at the beginning point and 

end point of one long period are 0.00649419mm and 0.0065035mm, respectively, 

yielding a discrepancy of only 0.1434%. This confirms the computational 

accuracy of the improved Newmark-beta method and validates that the selected 

results indeed represent one complete repeating cycle. Furthermore, the enlarged 

view in Fig.5-30 (a) reveals the presence of a small cycle within the time history, 

which comprises seven peaks, as indicated by the black numbers (0-6) in the 

enlarged graph. This indicates that within one small cycle, there are seven 

excitation frequencies. After completing a small cycle, the peak at point 7 resets 

to point 0, initiating the next small cycle. Starting from the marked point #1 in 

Fig.5-30 (a), it is observed that the time history contains a total of 100 small 

cycles. Therefore, it can be concluded that the lateral vibration response of the 

composite planetary gear system experiences 700 distinct motion states within 

one complete cyclic period. 

Moreover, it is known that the period of the first stage time-varying gravity 

is equal to the time taken for the carrier to complete one rotation, given by tc=1/fc. 

The meshing period of the first stage gear system is tm=1/fm=1/(fs-fc). Hence, the 

gravitational period is an integer multiple of the meshing period, which is given 
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tc/tm=i×Zs=18.5×40=700. The least common multiple of 700 and 7, as analyzed 

in the pure torsional nonlinear model, is still 700. This indicates that in the first 

stage gear system, the periods of the two meshing stiffnesses and the time-varying 

gravity item return to their initial positions simultaneously after 700 meshing 

cycles. This corresponds perfectly to the 700 peaks observed in the time history  

shown in Fig.5-30, elucidating that the fundamental motion in translational-

torsional nonlinear dynamics is a 700T periodic motion, with all other motion 

states based on this foundation. Consequently, the most fundamental motion state 

can be classified as quasi-periodic, providing an explanation for the quasi-

periodic or chaotic behaviors observed in the previous analyses. Thus, the analysis 

results in this subsection validate the relationship between the translational-

torsional model and the pure torsional model, confirming the correctness of the 

hypothesis. 

 
Fig.5-30 Transverse vibration displacements of the sun at 3000 rpm for one repetition 

cycle: (a) time history plot, (b) results at the initial point, and (c) results at the end point.  
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5.6   Brief summary 

This chapter establishes the nonlinear dynamic model for a two-stage parallel 

compound gear system applied in ships, incorporating both a pure torsional model 

and a translational-torsional coupling model. It explores the nonlinear 

characteristics of this compound gear system and investigates the effects of 

various key parameters (such as meshing damping ratio, rotational speed, and 

meshing error amplitude) on its nonlinear motion states, leading to significant 

conclusions related to the parallel structure of the system. The specific findings 

are as follows: 

(1) For the pure torsional nonlinear dynamic model, as the meshing damping 

ratio increases within a reasonable range (0.03-0.17), the entire compound gear 

system exhibits a rich variety of motion states, with the behavior  of system being 

highly sensitive to the damping ratio. Analysis of bifurcation diagrams indicates 

a transition from chaotic motion to quasi-periodic motion, and finally to stable 7-

fold periodic motion. Poincaré maps, phase trajectories, and time histories 

confirm each state, revealing that the ultimate stable motion state of 7T periodic 

motion is linked to the least common multiple of the meshing stiffness excitations 

in the two-stage gear system. 

(2) In a low rotational speed range, the system demonstrates stable 7T 

periodic motion. Conversely, in a high rotational speed range, the system exhibits 

quasi-periodic or chaotic motion, indicating that higher speeds can induce 

instability. Additionally, as the meshing damping ratio increases from 0.075 to 0.1 

to 0.125, chaotic motion in the high-speed range gradually transitions to quasi-

periodic motion and ultimately to 7T periodic motion. Simultaneously, the 

amplitude range of the vibration response of the system decreases, further 

emphasizing that a higher meshing damping ratio enhances the stability of the 

motion state of system. 

(3) When the damping ratio and input speed are considered as bifurcation 

parameters, Poincaré maps reveal that the transition from instability to stability 

occurs via Hopf bifurcation. Additionally, when meshing error amplitude is 

treated as a bifurcation parameter, both Hopf bifurcation and doubling periodic 

bifurcation are observed. The nonlinear dynamic response transfers to 

increasingly stable periodic motion with increasing damping ratio  coefficient and 

input speed. However, the opposite effect is noted for increasing meshing error 

amplitude, which leads to unstable motion states. 

(4) For the translational-torsional nonlinear model, changes in the damping 

ratio and rotational speed have minimal impact on the motion states of lateral 

vibration and relative torsional displacement, both of which exhibit quasi -periodic 
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motion. Compared to the stable 7T periodic motion of the pure torsional model, 

the fundamental motion state of the translational-torsional model is 700T periodic. 

This arises from the influence of time-varying gravity item, which introduces a 

gravitational term alongside the two meshing stiffnesses, with their least common 

multiple being 700. The analysis of the 7T periodic motion in the pure torsional 

model and the 700T periodic motion in the translational-torsional model 

illustrates the connection between the two models. It also demonstrates that the 

nonlinear study of the two-stage parallel compound gear system, starting from the 

pure torsional model and gradually exploring the translational-torsional model, 

validates the correctness of the approach. The comprehensive findings from both 

models effectively explain the complexity of the nonlinear dynamic behavior of 

the studied compound gear system. 
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Chapter 6   Analysis of the Dynamic Characteristics 

of the Double-helical Two-Stage Parallel Compound 

Marine Gear Transmission System Under 

Navigational Conditions 

6.1   Preface   

In the previous sections, this study employed a moving modeling approach, 

derived the absolute acceleration of the components in a two-stage parallel 

compound gear system within a fixed coordinate frame. Quasi-static and dynamic 

models were developed to analyze their mechanical characteristics. Additionally, 

both pure torsional and translational-torsional nonlinear models were established 

to investigate how key parameters influence the nonlinear characteristics of the 

compound gear system. However, when a ship moves on the sea surface, the gear 

transmission system undergoes spatial motion relative to the aforementioned fixed 

coordinate system. This results in the planetary gear transmission being affected 

by external non-inertial frames. Notably, previous literature on the dynamics of 

ship power systems under non-inertial frames is limited, highlighting the 

necessity for such research. Thus, in this chapter, considering that the sea surface 

is not always fixed during maritime operation, aiming to comprehensively analyze 

the dynamic characteristics of ships in wave environments by accounting for the 

motion of the marine itself. A dynamic model of the two-stage parallel compound 

gear system within an external non-inertial coordinate system is establish in this 

chapter. The dynamics of the power system of ship under these conditions are 

analyzed. The study of this chapter broadens the research scope of dynamic 

characteristics in operational states and enriches the content related to ship 

dynamics, ultimately providing guidance for the design of ship power systems . 

6.2   Special ship motions in navigational states 

6.2.1   Rocking motion 

Due to the influence of factors such as waves and wind, ships experience 

rocking motion while operating at sea. Mechanical equipment like gear system, 

fixed to the hull, also undergoes this rocking motion, generating dynamic forces 

that significantly impact ship systems. Such motion must be considered when 

designing and analyzing the dynamic behavior of these mechanical components 
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to ensure their performance and reliability. Therefore, this subsection will analyze 

the dynamic characteristics of the entire compound gear system during the rocking 

motion of ship. 

In this subsection, the rocking motion studied primarily refers to the lat eral 

rocking of ship about the forward axis (z-axis), which is shown as Fig.6-1. While 

examining the rocking of hull, the rocking postion of ship must be considered, 

with its angular displacement, angular velocity, and angular acceleration 

represented by harmonic motion functions. In general, rocking is defined as the 

periodic angular displacement motion of the ship around its longitudinal axis, with 

a specified roll angle of ±45 degrees and a period ranging from 3 to 14 seconds. 

Additionally, to describe the motion characteristics of a ship undergoing rocking 

motion, the following equations are given. 

 

2

sin( ),  

cos( ),  

sin( ).

zb zb zb

zb zb zb zb

zb zb zb zb

A t

A t

A t







= 

=  

= −  

 (6-1) 

where, , ,zb zb zb     are the angle displacement, velocity and acceleration, 

respectively. Azb is the max rocking angle. zb  is the angle velocity of the rocking 

motion, which is related to the period time of rocking motion, 2 /zb zbT = . 

 

Fig.6-1 Rocking motion of ship 

 

6.2.2   Picthing motion 

Another form of motion closely related to ship navigation is pitch motion, 

caused by vertical wave profiles along the forward direction of ship, resulting in 

a fore-and-aft oscillation. As illustrated in Fig.6-2, the pitch motion (longitudinal 

oscillation) studied in this subsection primarily refers to the periodic angular 

displacement about the transverse axis (x-axis). In analyzing the pitch motion of 

ship, the harmonic motion functions are used to describe the angular displacement, 
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angular velocity, and angular acceleration. This approach effectively simplifies 

the analysis, enabling researchers to assess the impact of hull motion on 

mechanical equipment fixed to it more easily. 

 

Fig.6-2 Pitching motion of ship 

 

The pitch angle of the ship is ±10 degrees, with a pitch period ranging from 

4 to 10 seconds. Therefore, based on these standards, the motion characteristics 

of the ship during pitch motion can be expressed by the following equations.  
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cos( ),

sin( ).
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
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= 

=  
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 (6-2) 

where, , ,xb xb xb     are the angle displacement, velocity and acceleration, 

respectively. Axb is the max picthing angle. xb   is the angle velocity of the 

picthing motion, which is related to the period time of picthing motion , 

2 /xb xbT = . 

 

6.3   Dynamics model of the two-stage parallel compound marine 

gear transmission system in non-inertial reference frame 

When the planetary gear system is fixed to a stationary base, the planet gears 

not only rotate about their own axes but also revolve with the carrier. In this 

momemt, the planets exist within a non-inertial frame of reference frame 

associated with the carrier. To differentiate the non-inertial frame resulting from 

the motion of the ship (basic coordinate system), this study designates the moving 

coordinate system of the carrier as the internal non-inertial frame of the gear 

system, denoted by the subscript 'i'. Conversely, the coordinate system that 

accounts for the basic motion of the hull of ship is referred to as the external non-
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inertial frame of the gear system, denoted by the subscript 'e'.   

6.3.1   Kinematic analysis of components in two non-inertial frames 

As described in Section 2.4.1 of Chapter Two, the planetary gear system 

inherently operates within a non-inertial frame (internal non-inertial frame), 

specifically the moving coordinate system of the carrier. This section considers 

the motion of the ship hull, introducing an additional external non-inertial frame. 

To facilitate modeling, the author has derived formulas for the absolute 

acceleration of various components within the internal non-inertial frame in 

Chapter Two. Therefore, before establishing the dynamic equations in this section, 

it is essential to derive the absolute absolute acceleration formulas for different 

components in both non-inertial frames. 

Fig.6-3 illustrates the displacement vectors of the sun gear and planet gears 

in the two non-inertial frames. As shown in Fig.6-3, there are multi coordinate 

systems. Firstly, the coordinate system oc-xcyczc represents the moving coordinate 

system of the carrier (internal non-inertial frame), and the coordinate systems of 

sun and planets parallele to this coordinate system or at an angle with this 

coordinate system. While ob-xbybzb denotes the coordinate system of the base  

movement (external non-inertial frame). The fixed coordinate system O−XYZ 

corresponds to the ground (inertial frame of the Earth). Aparting from the angular 

velocity vector 
cω  of inernal non-inertial frame, the rotational angular velocity 

vector of the base coordinate system corresponding to the carrier moving 

coordinate system represented as Ω. 

 
Fig.6-3 Displacement vectors for components in two non-inertial coordinates: (a) sun and 

(b) planet 



Chapter 6  Analysis of the Dynamic Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear 

Transmission System Under Navigational Conditions 

 - 155 - 

In Fig.6-3 (a), the vector of the origin ob of the ship coordinate system in the 

fixed coordinate system is denoted as r0. The vector of the origin oc of the carrier 

moving coordinate system in the ship coordinate system is represented as rb. The 

vector of the sun gear node Ms in the carrier moving coordinate system is given 

by rc+rs, while the vector of the sun gear node Ms in the fixed coordinate system 

is indicated as rMs. The relationships between these displacement vectors are as 

follows: 
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where, In the equations, xb, yb, zb are constants, while x0, y0, z0, xs, ys, zs are time-

varying variables representing the displacement responses in their respective 

coordinate systems. i, j, k are constants unit vectors, and ib, jb, kb, ic, jc, kc are 

time-varying unit vectors. Meanwhile, the derivatives of the unit vectors in the 

external non-initial coordinate system and the internal non-initial coordinate 

system with respect to time are expressed as follows. 
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Following the same calculation process as in Chapter Two, taking the one 

time and two times derivatives of the displacement vector rMs with respect to time, 

respectively. The expressions for the absolute velocity and absolute acceleration 

of the node in the static coordinate system O−XYZ, presented as follows. 

 

[ ( )] [ ( )]

    

[ ( )

        2 ( ) ( ( ))

        ( ( )) ( ( ))]

        [ 2 ( ) ( ( ))]

 

= +  +  + + +  +

= +

= +  +  

+  +  + +   +

+   + +   +

+ +   + +   +

as 0 b c s s c c s

es is

as 0 b b

s c s c s

c c s c s c

s c s c c s c c c s

v v Ω r Ω r r v ω r r

v v

a a Ω r Ω Ω r

Ω v Ω r r Ω Ω r r

ω Ω r r Ω ω r r

a ω v +ω r r ω ω r r

   = +es isa a

 (6-5) 

in this equation, the subscript 'a' denotes absolute acceleration. The first eight 

terms represent the derived absolute acceleration components due to the external 
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non-inertial system, denoted as aes. The subsequent four terms reflect the absolute 

acceleration formula only present in the internal non-inertial system, denoted as 

ais. Thus, the absolute acceleration in both non-inertial coordinate systems can be 

viewed as the sum of the derived acceleration components aes asised from external 

non-inertial coordinate system and the derived acceleration components ais asised 

from external non-inertial coordinate system. 

Similarly, as illustrated in Fig.6-3 (b), the expressions for the absolute 

velocity and acceleration of the planets node in the fixed coordinate system 

O−XYZ are presented as follows: 
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 (6-6) 

It is noted that the cr 0  for planet. 

In summary, based on equations (6-5) and (6-6) from this section, it is 

evident that the composition of absolute acceleration in the fixed coordinate 

system is more complex in the presence of external non-inertial systems compared 

to the case where only internal non-inertial systems exist. Consequently, the 

absolute acceleration in these two non-inertial coordinate systems must exhibit 

significant differences. 

6.3.2   Dynamic model of the two-stage parallel compound marine gear 

transmission system in two non-inertial frames 

The entire two-stage parallel compound gear system, assembled through 

coupling in the generalized coordinate system, forms a complete set of dynamic 

equations for the gear transmission system. Therefore, the matrix form of the 

dynamic equations for this compound gear train under both internal and external 

non-inertial systems is presented as follows. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t +  +  = + +Ca meM A Q K Q T G F  (6-7) 

Based on Section 6.3.1, kinematic analysis indicates that the absolute 

acceleration vectors of the components of the compound planetary gear system 

differ significantly when the ship is moving at constant velocity, or performing 

basic spatial maneuvers. During these fundamental movements, the components 
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are influenced by both internal and external non-inertial systems. An example of 

the absolute acceleration vector Aa(t) in the equation (6-7) is presented as follows. 

 

( ) [ , , , , , ,...
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aA

  , , , , , ,...]T

ipx epx ipy epy ipz epz px py pza a a a a a   + + +

 (6-8) 

Here, the ,ijk ejka a  represent the components of the absolute acceleration of the 

j component node in the internal and external non-inertial systems along the k 

direction. 

Due to the composition of multiple terms in the absolute acceleration Aa(t) 

within the two non-inertial coordinate systems, dynamic analysis requires 

decomposing the absolute acceleration vector into fundamental acceleration terms 

Q(t) in local coordinate systems and additional terms A(t) from the non-inertial 

systems. Some components related to displacement or velocity from the additional 

terms are incorporated into the overall stiffness and damping matrices. The 

remaining excitation component A’(t) is then moved to the right side of the 

equation, reformulating the dynamic equations. Consequently, equation (6-7) can 

be derived into equation (6-9) as follows 

 
'( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t +  +  = + + − C meM Q Q K Q T G F M A  (6-9) 

6.4   Dynamic characteristics analysis of compound marine gear 

transmission system considering ship rocking motion 

6.4.1   Calculation of generalized acceleration considering ship 

rocking motion 

For the additional generalized vector during ship rocking motion, the 

rotational angular velocity Ω of the ship own coordinate system is first analyzed. 

According to Equation (6-1), the angular velocity vector Ω of the body-fixed 

coordinate system (ob-xbybzb) shown in Fig.6-3 can be expressed as follows 

 zb b Ω = k  (6-10) 

Based on the principles of rocking motion and motion analysis, the 

relationships between the unit vectors of the various coordinate systems are as 

follows. 
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Therefore, based on the analysis of absolute acceleration of components in 

both non-inertial reference frames outlined in section 5.3.1, the components of 

absolute velocity and absolute acceleration of each component in their respective 

local coordinate systems under the influence of both non-inertial frames are 

derived. The following formulas sequentially provide the calculations for the 

second-stage sun gear node and planet gear node. Notably, since the second-stage 

gear system does not have an internal non-inertial frame, it is only affected by the 

rocking motion of the ship, thus influenced solely by the external non-inertial 

frame 
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In contrast to the second stage, the sun, carrier, ring, and planes in first stage 

are influenced by both non-inertial reference frames, resulting in significantly 

different expressions, as shown below. 
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Additionally, due to the presence of multiple coordinate systems in the 

dynamics equations and the continuously varying rotation angle of the carrier, the 

expressions for the components of gravitational force in each component local 

coordinate system are represented as follows. 
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in while, the subscript p denotes the planets in the planetary gear system, while 

the subscript j represents other components within the system. Furthermore, the 

digits 1 and 2 correspond to the first stage and second stage for the compound 

gear system, respectively. 

6.4.2   Influence of ship rocking motion on the vibrational response of 

central components 

Under ship rocking motion, the entire compound planetary gear system is 

influenced by multiple non-inertial reference frames, in contrast to a single 

intrinsic non-inertial frame. In this study, the chosen rocking period is 4 seconds, 

with a maximum rocking angle of 45°. Fig.6-4 illustrates the corresponding 

angular displacement results for the selected sway parameters  

 
Fig.6-4 Sketch diagram of swinging motion 

Utilizing the improved Newmark-beta method proposed in Chapter 4 to solve 

the dynamic equations of the entire compound gear system under two non-inertial 

reference frames, the vibrational displacement, velocity, and acceleration for each 



Doctoral Dissertation 

 - 160 - 

node are obtained. Accordingly, Fig.6-5 presents the lateral dynamic response of 

the carrier (representing the central component) in the first stage over one rocking 

period (4 seconds). 

 

Fig.6-5 Orbit of carrier in the first stage 

The axis trajectory shown in Fig.6-5 indicates that the central component 

undergoes lateral rocking motion in the XOY plane, following the rocking of the 

ship hull, as indicated by the dashed arrows. This phenomenon preliminaril y 

suggests that the dynamic response of the derived equations aligns with the 

direction and trend of external forces on the ship. Further analysis of the data in 

Fig.6-5 reveals that the distance from the swing center to the midpoint of the 

vibrational response path (illustrated by the red dashed lines and annotations) 

indicates that the maximum lateral displacement of the carrier in first -stage during 

the rocking is 37.040 microns, while the maximum vertical displacement is 39.688 

microns. These two distances are approximately equal, and simulations based on 

these values yield a swing angle of approximately 46.977°. This closely aligns 

with the theoretical swing angle of 45°, confirming the accuracy of the dynamic 

models established in this chapter under multiple non-inertial coordinate frames. 

Fig.6-6 illustrates the lateral axis trajectory response of the sun in second 

stage over one sway cycle, along with a schematic analysis. Since the second stage 

lacks a moving coordinate system for the carrier, it is not affected by the non -

inertial frame of the carrier in that stage. Consequently, the vibrational response 

occurs directly within the coordinate system of the ship hull sway, eliminating the 

need for coordinate transformations as required for the first -stage components. 
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Fig.6-6 The transverse vibration displacement of sun in second stage  

Fig.6-6 (a) also clearly shows that the trajectory of the sun moves 

periodically around point O. Fig.6-6 (b) provides a magnified view of this 

trajectory for a more detailed analysis. Fig.6-6 (c) illustrates the axis trajectory of 

the sun under the influence of gravity, without considering the swing motion. The 

trajectory shown in Fig.6-6 (c) effectively explains the vibrational response 

depicted in Fig.6-6 (b) and indirectly validates the observations in Fig.6-6 (a). 

Based on the trajectory analysis in Fig.6-6 (a), (b), and (c), it can be accurately 

predicted that the trajectory of central components, such as the ring, in the second-

stage gear system under sway motion. 

Corresponding to the sun gear in Fig.6-6, Fig.6-7 illustrates the axis 

trajectory of the ring in the second stage, both considering and neglecting sway 
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motion. Similar to Fig.6-6 (a), Fig.6-7 (a) clearly depicts the sway motion and the 

sway center point O. Fig.6-7 (b) provides a magnified view of Figure 6-5(a), while 

Fig.6-7 (c) shows the axis trajectory of the ring without considering sway motion. 

The trajectory displayed in Fig.6-7 (b) indicates that the ring path is composed of 

multiple segments similar to those in Fig.6-7 (c). Therefore, Fig.6-7 (b) and (c) 

indirectly validate the observed axis trajectory of the ring under sway motion. 

 

Fig.6-7 The transverse vibration displacement of ring in second stage  

Moreover, an interesting phenomenon can be observed in Fig.6-6 (a) and 

Fig.6-7 (a), their axis trajectories are not symmetrically aligned about the vertical 

line X=0. This asymmetry can be explained by the trajectories illustrated in  

Fig.6-6 (c) and Fig.6-7 (c). 

Therefore, the analysis of the vibrational response of the central components 

reveals that their motion trends in the fixed coordinate system are consistent with 

sway motion, highlighting the influence of ship rocking motion.  
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6.4.3   Influence of ship rocking motion on the vibration response of 

planets  

Considering rocking motion, the first-stage planet gear not only follows the 

revolution of the carrier but also the motion of the ship hull. Consequently, under 

the influence of two angular velocities, the centrifugal force on the planet gear 

differs from that under a single angular velocity. In this study, the rocking motion 

angular velocity is 1.5708 rad/s, while the input speed of the compound gear 

system is 3300 rpm, resulting in a carrier angular velocity of 18.8496 rad/s. Based 

on equation (6-15), the centrifugal force formula for the first-stage planet gear 

can be expanded to mprc(Ωzb+ωc)
2, which includes the effects of rocking motion. 

Although the rocking angular velocity Ωzb
2 is relatively small compared to the 

carrier angular velocity ωc
2, an additional term 2Ωzbωc also exists. Therefore, it is 

essential to investigate the impact of rocking motion on the vibration response of 

the first-stage planet gear in the radial coordinate direction. Figure 6-6 illustrates 

a comparative schematic of the axis trajectory of the first -stage planet gear in the 

inertial reference frame, both with and without considering rocking motion.  

 

Fig.6-8 Comparison of the orbit of planets in first stage without and with consideration of 

the rocking motion 

The results show that, after accounting for ship rocking motion, the midpoint 

of the radial displacement of the first-stage planet gear increases from 29.2481 

microns to 34.9751 microns, resulting in a radial shift of 5.73 microns, 

approximately 19.58% greater than the original trajectory midpoint.  
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Rocking motion affects the components of the second stage system by 

transforming their movement into one influenced by an external non-inertial 

frame. As a result, the motion of the planets is described in a moving coordinate 

system, leading to the generation of an additional centrifugal force. Fig.6-9 

illustrates a comparative schematic of the axis trajectory of the planets in second 

stage in the radial-tangential moving coordinate system, both with and without 

considering rocking motion 

 

Fig.6-9 Comparison of the orbit of planets in second stage without and with consideration 

of the rocking motion 

Fig.6-9 indicates that, compared to the axis trajectory without considering 

rocking motion (blue part), the presence of rocking motion significantly increases 

the trajectory range of the planet gear of second-stage in the radial direction (red 

part) by approximately 2-3 times. However, with a rocking angular velocity of 

only 1.5708 rad/s, the impact of centrifugal force on the trajectory remains limited. 

Therefore, it can be inferred that the observed changes in the trajectory are 

primarily due to the effects of rocking motion itself. 

6.4.4   Influence of ship rocking motion on the motion state of the 

compound gear train 

Building on the research from Chapters 4 and 5, the nonlinear dynamic 

behavior of the compound gear system used in ship within a internial non-inertial 

conditions has been established, detailing the fundamental cause of the 700T 

periodic motion. This chapter also analyze the motion state of the entire compound 
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gear system under the influence of rocking motion, which significantly changes 

the form of the dynamic equations. Fig.6-10 presents the phase trajectory and 

Poincaré map of the sun gear in first stage, demonstrating that the entire gear 

system exhibits a chaotic motion state under the influence of rocking motion.  

 

 
Fig.6-10 Transverse vibration of sun in first stage during one rocking cycle: (a) phase 

trajectory, (b) Poincare map diagram 

Corresponding to the phase trajectory and Poincaré map, the variation of 

lateral displacement of the sun gear in first stage versus time is illustrated in 

Fig.6-11. Fig.6-11 (a) presents the complete time history over one rocking cycle, 

while Fig.6-11 (b) and (c) provide supplementary information. Based on Fig.6-10, 

Fig.6-11 (a), and Fig.6-11 (b), it is evident that the system is currently in a chaotic 

motion state. Furthermore, Fig.6-11 (c) highlights the numerous peaks within a 

repeating time, displaying no discernible pattern, thereby reinforcing the 

conclusion of chaotic behavior. 

Therefore, this subsection concludes that the presence of rocking motion has 

transformed the fundamental 700T periodic motion of the compound gear system 

into a chaotic state. Although the motion is now chaotic, the range of displacement 

amplitude remains largely unchanged compared to the results in Chapter 4; it 

simply indicates that the motion has become more complex. 
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Fig.6-11 Transverse vibration displacements of the sun in first stage for one swinging 

cycle: (a) time history diagram, (b) local time history maps, (c) time history diagram over 

a short period of time 

6.5   Dynamic characteristics analysis of compound marine gear 

transmission system considering ship pitching motion 

6.5.1   Calculation of generalized acceleration considering ship 

pitching motion 

For the pitch motion, the angular velocity vector Ω of the hull coordinate 

system (ob-xbybzb) in Fig.6-2 can be expressed using the following formula. 

 xb  bΩ = i  (6-17) 

According to the principles of pitching motion, the relationships between the 

unit vectors of various coordinate systems are as follows:  
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Therefore, based on the analysis of the absolute acceleration of components 

in both internal and external non-inertial frames in section 6.3.1, expressions for 

the absolute velocity and acceleration of components within the compound gear 

system under the influence of both non-inertial frames have been derived. 

Utilizing the relationship equations between coordinate systems (6-18), the 

computational formulas for the second-stage and first-stage sun gear nodes 

(representing the central gear) and the planet gear nodes in their respective 

coordinate systems are presented as follows: 
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Additionally, given the presence of multiple coordinate systems in the 

dynamic equations and the continuously varying rotation angle of the planet frame, 



Chapter 6  Analysis of the Dynamic Characteristics of the Double-helical Two-Stage Parallel Compound Marine Gear 

Transmission System Under Navigational Conditions 

 - 169 - 

the expressions for the gravitational components of each component along the 

axes of its own coordinate system are represented as follows 
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6.5.2   Vibration response analysis of components considering ship 

pitching motion 

The rocking motion of ship is characterized by the alignment of the rocking 

plane parallel to the ship own XOY coordinate plane, with an angle of 0°. In 

contrast, during pitching motion, the pitching plane is perpendicular to the ship 

XOY coordinate plane, resulting in a 90° angle. Consequently, the pitching plane 

is also at a 90° angle to the XOY plane of the compound planetary gear system. 

Although the coordinate systems of the compound gear system and the ship are 

parallel, there is a specific distance along the Z-axis between them, as indicated 

by zb in the equations. Furthermore, a comparison of the absolute acceleration 

formulas for both motions reveals that the pitching motion has more influencing 

terms on the coordinate system of the planetary gear system. This section first 

analyzes the dynamic response of the model during pitching to validate the 

accuracy of the dynamic model. Fig.6-12 illustrates the lateral vibration response 

of sun gear and planet gear #1 in their own moving coordinate system (MC) for 

the first stage. Fig.6-12 (a) illustrates that the trajectory of the sun gear under 

pitching motion differs from that in Chapter 3, which did not consider pitching. 

The presence of pitching results in a triangular shape formed by three branches in 

the trajectory of the sun gear. Analysis indicates that in the moving coordinate 

system of the compound gear system, regardless of changes in the external non -

inertial frame, the first stage can always be viewed as a fixed-axis gear system. 

Since the first stage system comprises three planet gears with sequential phasing, 

the trajectory in the moving coordinate system displays a triangular shape. This 

further supports the accuracy of the dynamic model established under two non-

inertial frames, demonstrating that all terms related to pitching motion in 
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equations (6-19) to (6-22) were fully considered without omitting any terms from 

the absolute acceleration. Fig.6-12 (b) shows a similar triangular trajectory for 

the planet gears that mesh with the sun gear. 

 
Fig.6-12 The transverse vibration response of components in first stage considering 

pitching motion: (a) sun, (b) planet #1 

Additionally, the lateral vibration response of other components of the first-

stage gear system, such as the carrier and the ring, is depicted in Fig.6-13. The 

axial trajectory shapes presented in Fig.6-13 also corroborate the triangular 

conclusion. Together with the results from Fig.6-12 for the sun and planets, this 

indicates that although the plane of the pitching motion is not the same as that of 

the axial trajectory, unlike rocking motion, the pitching motion of the ship hull 

still significantly influences the axial trajectories of the components in the first 

stage. 

 
Fig.6-13 The transverse vibration response of components in first stage considering 

pitching motion: (a) carrier, (b) ring 
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6.5.3   Influence of picthing motion on the meshing characteristics 

According to Section 6.5.2, although the pitching plane is at a 90° angle to 

the cross-section (XOY) of the compound gear system, the system position behind 

the ship, which closes to the propeller, indicating that under pitching motion, the 

XOY plane of the compound gear system is not always vertical , it may also rock 

with hull. This can potentially affect the meshing between gears. Therefore, 

analyzing the meshing characteristics of the gear system under pitching motion is 

essential. This section primarily focuses on the variation of the meshing forces. 

As the load sharing ratio carried by each planet gear reflects the changes in 

meshing force, the load-sharing ratios (LSR) of each planet gear within the system 

is analyzed. 

Considering the pitching motion of ship and the reasonable eccentricity 

errors in the components of the compound gear system, Fig.6-14 presents the load 

sharing ratios (LSR) of the first stage. 

 

Fig.6-14 Sequential phase transmission of the first stage: LSR of planets  

It is seen that, for planet gear #1, there are periods where it fully carries the 

transmitted load, as indicated by LSR=1, while during other intervals, it transfers 

no load (LSR=0). Throughout the remaining periods, the LSR for planet gear #1 

varies between 0 and 1. This phenomenon is similarly observed in the other two 

planet gears, indicating that the load-bearing occurs in a rotating time among the 

three gears. Consequently, when one planet gear fully supports the load, the other 

two are disengaged, suggesting that the pitching motion negatively impacts the 
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meshing between the gears. The significant variation in load carried by the gears 

is detrimental to their lifespan, ultimately affecting the operational reliability of 

the entire compound gear system. 

 

Fig.6-15 In phase transmission of the second stage: LSR of planets  

Fig.6-15 illustrates the load sharing ratios (LSR) of the second stage. 

Although the LSR in the second stage exhibits less variation compared to the first 

stage, the meshing phase aligns with that of the first stage. The load sharing ratio 

of each planet gear deviates from the ideal value of 0.2, indicating changes in the 

loading conditions for each gear 

Based on the analysis of the load sharing ratios for each stage of the gear 

system, it can be concluded that the pitching motion significantly affects the 

meshing characteristics of the first stage gear system more than the second stage. 

Severe pitching motions can lead to disengagement of gears within the differential 

gear system. To enhance the lifespan of the entire compound gear system, it is 

recommended that ships sould avoid significant vertical pitching motions during 

missions. 

6.6   Brief summary 

In this chapter, the formulas for the absolute accelerations of various 

components in a two-stage parallel compound gear system are derived, taking into 

account the external non-inertial reference frame. A dynamic model for the marine 

two-stage parallel compound gear system during navigation is established, and its 

dynamic characteristics under marine rocking and pitching motions are analyzed. 
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The main conclusions are as follows: 

(1) The absolute acceleration formulas indicate that the components of the 

compound gear system are influenced not only by the speed (ωc) of carrier but 

also by the motion speed (Ω) of ship, including coupling terms between Ω and ωc. 

(2) The analysis of the lateral vibration response in the ship coordinate 

system shows that the motion trend of the central gear aligns with the rocking 

motion of ship. Because the angular velocities of the rocking motion and the 

carrier rotation being in the same plane, which verifies the validity of the 

established dynamic model of the entire compound gear system under rocking 

conditions. 

(3) During rocking motion, although the angular velocity of rocking (1.5708 

rad/s) is significantly lower than that of the carrier (18.8496 rad/s) under normal 

conditions, the midpoint of the planet gear in first stage increases by 19.58% 

radially, indicating a significant impact of rocking on the dynamic response of the 

compound gear train. 

(4) Following the consideration of pitching motion, despite the introduction 

of additional variables in the absolute acceleration expression, the axial trajectory 

results of the components in first stage still align with the characteristics of fixed-

axis gear systems, confirming the accuracy of the dynamic model under pitching 

motions. Furthermore, the analysis of load sharing ratios in both stages reveals 

that pitching motion can lead to disengagement of gears in the first stage at certain 

moments, negatively affecting the operational lifespan of the entire compound 

gear system. 
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Conclusions 

In this paper, a two-stage parallel compound gear transmission system for 

ships is taken as the research object, and the modelling methods of the two-stage 

parallel compound gear system in fixed and moving coordinate systems are 

proposed, respectively. The equations for absolute acceleration in the fixed 

coordinate system are derived. The dynamic and static models of the two-stage 

parallel compound marine gear transmission system considering the flexible 

deformation of double-helical gears are developed. Furthermore, an improved 

Newmark-beta numerical calculation method is proposed. The accuracy of the 

established modeling method is verified by comparative analysis of the dynamic 

and static models, and the vibration response behaviour of the two-stage parallel 

compound gear system is investigated using this method. The pure torsional and 

translational-torsional nonlinear dynamic model of the two-stage parallel 

compound marine gear transmission system are developed and its dynamic 

characteristics are revealed. Finally, the dynamic model of the compound marine 

gear system under the external non-inertial coordinate system of the ship hull is 

established, and the impact rule of the dynamic characteristics of the compoound 

gear system is analysed under the rocking and pitching motions of the ship. The 

conclusions obtained in this paper are as follows:  

(1) A dynamic and static modelling method for a two-stage parallel 

compound gear system for ships is proposed. Based on the combined use of fixed 

and moving coordinate systems, a projection vector about the vibration 

displacement of the carrier to the S-Pi and R-Pi meshing equations for the first-

stage is introduced in this method. Thus, the problem of inaccurate dynamical 

equations caused by the absence of key acceleration terms such as implicated 

acceleration and Koch acceleration due to the rotation of the carrier is avoided.  

The forms of absolute velocity and absolute acceleration of different components 

in the first-stage under the moving coordinate system are derived. The lumped 

mass model under the moving coordinate system of the carrier in first stage is 

established. At the same time, considering the flexibility of the shaft, the overall 

dynamic model of the whole two-stage parallel compound gear system is obtained. 

(2) The influence laws of different error types on the load sharing ratio and 

global transmission error of the two-stage parallel compound gear system are 

revealed. The results show that the load sharing ratio of the gear train is affected 

by the meshing phase configuration, especially the fluctuation range of the load 
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change of the sequential phase configuration is larger than that of the in-phase 

configuration. The excitation frequency of the output shaft of the two-stage 

parallel compound gear system shows the coupling effect of the meshing 

frequencies of each stage. The tangential error under different meshing phase 

conditions affects the global transmission error differently, i.e., the sequential 

phase introduces additional excitation frequencies generated by the eccentricity 

error, whereas the in-phase does not activate any new frequency components. The 

floating configuration of sun improves the load distribution of the system in both 

mesh phasing configurations compared to the fixed configuration, which is  more 

significant in the sequential phase configuration.  

(3) For the meshing time-varying stiffness matrix equation of the gear system, 

an improved Newmark-beta method suitable for this type of equation is proposed. 

The method adds a judgement on the relative error of the iteration results of 

adjacent time steps to avoid the influence of error accumulation on the process of 

solving the system dynamics equations. The vibration response of the system 

under the dynamics model was calculated using this method, and the dynamic and 

static results were compared to verify the accuracy of the modelling method 

proposed in this paper. The effects of gravity and centrifugal force on the 

transverse vibration response are further investigated. The results show that 

gravity and centrifugal force have important effects on the axial trajectory, in 

which the trajectory of the planets in first-stage changes significantly at high 

speed. The acceleration spectrograms of the planets in the two-stage show a strong 

coupling relationship. The rotational frequencies associated with time-varying 

errors (indexing error and eccentricity error) all appear on both sides of the 

meshing frequency, i.e., a frequency modulation phenomenon occurs.  

(4) Pure torsional and translational-torsional nonlinear dynamics models of 

the studied two-stage parallel compound gear system, which takes into account 

the segmental nonlinearity of the meshing displacements, are established. Based 

on the pure torsion model, the influence laws of each key parameter (meshing 

damping ratio, rotational speed, and magnitude of meshing error) on the nonlinear 

motion state of the compound gear system are investigated. The results show that 

under the condition of constant rotational speed, with the gradual increase of the 

meshing damping ratio in the range of 0.03-0.17, the compound gear system is 

first in the state of chaotic motion, and then enters into a longer period of quasi-

periodic motion, and finally the system falls into a stable motion of 7 times 

periodic motion, and the Poincaré map, phase trajectory map, and time history 

diagrams that are consistent with the motion state are all observed under different 
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meshing damping ratio. When the damping ratio coefficient, input speed and 

torque are used as bifurcation parameters, the bifurcation of the system from 

unsteady state to stable state is Hopf bifurcation. When the meshing error is used 

as the bifurcation parameter, the multiply-periodic bifurcation appears in addition 

to the Hopf bifurcation. Unlike the law of the influence of the magnitude of the 

meshing error on the nonlinear dynamic response of the system, the system 

gradually transforms into a stable multiply-periodic motion as the damping ratio 

coefficients, input speed and torque increase.  

(5) The nonlinear vibration characteristics of the translational -torsional 

model are further investigated, and the results show that the motion states of both 

transverse vibration and relative torsional displacement are quasi-periodic 

motions and do not change significantly with the changes of damping ratio 

coefficients and rotational speed. Compared with the 7T periodic steady motion 

of the pure torsion model, the basic motion state of the translation-torsion model 

system is 700T periodic motion, which is the least common multiple of the 

meshing stiffness period of the two-stage and the period of the gravity term. It 

also shows that for the nonlinear study of complex structures, the strategy of 

starting from a pure torsion model and gradually exploring to a translational -

torsion model is more detailed and perfect in explaining the arising complexity 

phenomena. 

(6) Considering the external non-inertial system, a dynamics model of the 

two-stage parallel compound marine gear transmission system is established. On 

the basis of the internal moving coordinate system of carrier, the model couples 

the overall motion of the ship, the dynamic behaviour of the two-stage compound 

marine gear transmission system during operation condition of ship is analyzed. 

when the ship is in the rocking and pitching motion, the dynamic characteristics 

of the whole compound gear system are obtained. The results of the study show 

that the form of absolute acceleration of the two-stage parallel compound gear 

system for ships under the non-inertial system shows obvious changes, and the 

acceleration terms under the influence of the extrinsic non-inertial system are 

significantly more than those under the internal non-inertial system. It indicates 

that the single external excitation applied to the compound gear system is not 

sufficient to establish an accurate dynamic model when the motion of the external 

non-inertial system is considered. The presence of the rocking motion of ship 

expands the radial vibration response range of the planets, leading to a change in 

the state of motion of this marine compound gear system from 700T periodic 

motion to chaotic motion. The study results of the pitching motion suggest that 
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ships should try to avoid severe waves in the forward direction to avoid 

disengagement of gears in high-speed stage. 
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Appendix 

A.1 Timoshenko Beam Element Matrices  

Considering Timoshenko beam with 12-DOF as a connecting structure due 

to shear deformation, as shown in Fig.A1, nodes j and j+1 make up an element, l 

is length of the element. Therefore, the displacement vector of the element is 

shown as follows.  

 

Fig.A1 A Timoshenko beam element 

 
1 1 1

( )

1 1 1=
j j j j j j

e

j j j x y z j j j x y zq x y z x y z     
+ + ++ + +

 
 

  

where, jx , jy , jz , 1jx + , 1jy + , 1jz +  are translation displacement of two nodes j and 

j+1 along the x, y, and z axes, separately. 
jx , 

jy , 
jz , 

1jx +
, 

1jy +
, 

1jz +
 are angular 

displacement of two nodes j and j+1 rotated about the x, y, and z axes, respectively.  

The free vibration equation of Timoshenko beam element is obtained.  

      ( ) ( ) ( )( )e (e) e (e) e (e)q q q+  + =M G K 0   

in which, Ω is the rotational speed, 
( ) ( ) ( ), ,e e e

M G K   are mass, stiffness and 

gyroscopic matrix, respectively. 

 

A.1.1 Element Mass Matrix 

Timoshenko beam element mass matrix is given as follows: 
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where, the letters in the matrix are defined as follows. 
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where, A is shaft cross sectional area, E is young’s modulus, G is shear modulus, 

I is the area moment of inertia, J is polar moment of inertia moment of inertia, l 

is length of element, rg is the radius of gyration, Ф is transverse shear parameter. 
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K  is shape factor, relating to shape of cross section, which is given as.  
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where, μ is Poisson’s Ratio, m=r/R, r and R are radius of section. 

 

A.1.2 Element Stiffness Matrix 

Timoshenko beam element stiffness matrix is obtained as sum of three 

matrices, which is given as follows: 
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in which, the letters are defined as  

3 2

12 6 (4 ) (2 )
, , ,

(1 ) (1 ) (1 ) (1 )

EI EI EI EI
a b c d

l l l l

+ −
= = = =

+ + + +
 

 

A.1.3 Element Gyroscopic Matrix 

Timoshenko beam element gyroscopic matrix is given as follows: 
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