

Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos UNIVERSIDAD DE CANTABRIA

TRAZADO DE LA VARIANTE DE PUENTE VIESGO

Trabajo realizado por: *Ignacio Lara Villanueva*

Dirigido:

María Antonia Pérez Hernando Ángel Vega Zamanillo

Titulación:

Grado en Ingeniería Civil

Santander, Julio de 2025

GRADC **FRABAJO FIN D**

RESUMEN DEL TRAZADO DE LA VARIANTE DE PUENTE VIESGO

Autor: Ignacio Iván Lara Villanueva

Directores: María Antonia Pérez Hernando / Ángel Vega Zamanillo

Convocatoria: Julio 2025

Palabras clave: Trazado / Carretera / Puente Viesgo / Variante

OBJETO Y DEFINICIÓN

El proyecto de trazado de la variante de Puente Viesgo tiene como objetivo principal garantizar la continuidad y funcionalidad de la carretera N-623, evitando el paso de vehículos de tránsito por el núcleo urbano. Con ello, se pretende mejorar la seguridad vial, reducir la congestión del tráfico local y minimizar el impacto ambiental y acústico sobre los habitantes del municipio. Asimismo, la variante permite optimizar los tiempos de desplazamiento para los vehículos que circulan por la N-623, especialmente en periodos de alta demanda como la temporada estival, favoreciendo un flujo más eficiente y seguro del tráfico interurbano.

DESCRIPCIÓN DE LAS OBRAS

Se propone una carretera con las siguientes características:

- Longitud de la carretera: 856 metros.
- Velocidad de proyecto: 60 km/h.
- Carretera convencional de calzada única con un carril por sentido de circulación.
- 2 carriles de 3.5 m cada uno.
- Arcenes de 1 m.
- Se define una zona de túnel, con el fin de preservar la naturaleza existente. Además, se define una zona de puente, con el fin de evitar la intersección con los caminos existentes. Estas secciones no serán objeto de estudio del proyecto.

El terreno de la zona de estudio se considera como suelo tolerable (0) y la explanada como una categoría (E2), con una categoría de tráfico T2.

El firme está compuesto de la siguiente manera:

- Capa de rodadura: 5 cm de mezcla bituminosa AC-22 SURF 50/70 S
- Riego de adherencia: C60B3 ADH.
- Capa intermedia: 10 cm de mezcla bituminosa AC-22 BIN 50/70 S
- Riego de adherencia: C60B3 ADH.
- Capa Base: 10 cm de mezcla bituminosa AC-32 BASE 50/70 G
- Riego de imprimación: C60BF4 IMP.
- 25 cm de zahorra artificial.

SUMMARY OF THE ROUTE OF THE PUENTE VIESGO BYPASS

Author: Ignacio Iván Lara Villanueva.

Director: María Antonia Pérez Hernando / Ángel Vega Zamanillo.

Call for proposals: July 2025.

Keywords: Layout / Road / Puente Viesgo / Variant.

OBJECT AND DEFINITION

The main objective of the Puente Viesgo bypass project is to ensure the continuity and functionality of the N-623 road, preventing through traffic from passing through the town centre. The aim is to improve road safety, reduce local traffic congestion and minimise the environmental and noise impact on the municipality's residents. Furthermore, the bypass will optimise travel times for vehicles travelling on the N-623, especially during periods of high demand such as the summer season, promoting a more efficient and safer flow of interurban traffic.

DESCRIPTION OF THE WORKS

A road with the following characteristics is proposed:

- Road length: 856 metres.
- Design speed: 60 km/h
- Conventional single carriageway road with one lane in each direction.
- Two lanes, each 3.5 metres wide.
- 1 m shoulders.
- A tunnel area is defined in order to preserve the existing natural environment. In addition, a bridge area is defined in order to avoid intersection with existing roads. These sections will not be included in the project study.

The terrain in the study area is considered tolerable soil (0) and the esplanade is classified as category (E2), with a traffic category of T2.

The pavement is composed as follows:

- Wearing course: 5 cm of AC-22 SURF 50/70 S bituminous mix.
- Adherence watering: C60B3 ADH.
- Intermediate course: 10 cm of AC-22 BIN 50/70 S bituminous mix.
- Adherence watering: C60B3 ADH.
- Base layer: 10 cm of AC-32 BASE 50/70 G bituminous mix.
- Priming spray: C60BF4 IMP.
- 25 cm of artificial gravel.

RELACIÓN ENTRE EL TRAZADO DE LA VARIANTE DE PUENTE VIESGO Y LA META 9 DE LOS OBJETIVOS DE DESARROLLO SOSTENIBLE

Meta ODS 9.1: Infraestructura fiable, sostenible y de calidad

El trazado de la variante de Puente Viesgo se alinea con el Objetivo de Desarrollo Sostenible 9.1 de Naciones Unidas, que promueve el desarrollo de infraestructuras fiables, sostenibles y de calidad para apoyar el desarrollo económico y el bienestar humano. Esta actuación contribuye a mejorar la seguridad vial y la eficiencia del transporte interurbano, al tiempo que reduce el impacto ambiental y social sobre el núcleo urbano. Al facilitar una movilidad más fluida y segura, especialmente en periodos de alta demanda, se refuerza la conectividad regional de forma equitativa y sostenible.

Meta ODS 9.2: Industrialización inclusiva y sostenible

Aunque no se trata de un proyecto industrial en sí mismo, la variante de Puente Viesgo contribuye al cumplimiento del ODS 9.2 al mejorar la infraestructura logística y de transporte necesaria para el desarrollo de una industrialización sostenible. El nuevo trazado de la carretera N-623 facilita el transporte de mercancías y personas de manera más eficiente, favoreciendo la competitividad de las actividades económicas de la región. Además, la ejecución del proyecto genera empleo en fases clave como la planificación, obra civil y mantenimiento, apoyando así el crecimiento económico local de forma sostenible.

Meta ODS 9.3: Acceso a servicios financieros y cadenas de valor

El proyecto también guarda relación con el ODS 9.3, en tanto que la mejora en la conectividad vial facilita el acceso de pequeñas empresas locales a los mercados regionales, fortaleciendo su integración en las cadenas de valor. La reducción de tiempos de viaje y la mejora de la accesibilidad física permiten a productores, comerciantes y prestadores de servicios locales operar en mejores condiciones logísticas, lo que a su vez puede incentivar el emprendimiento y la inversión en zonas rurales como Puente Viesgo. Si bien no se trata de una medida financiera directa, el trazado actúa como infraestructura habilitante para el desarrollo económico inclusivo del entorno.

Meta ODS 9.4: Modernización sostenible y eficiencia de recursos

El proyecto se enmarca en los principios del ODS 9.4, al promover la modernización de una infraestructura vial existente mediante un diseño más racional y sostenible. La variante de Puente Viesgo contribuye a la eficiencia del sistema de transporte interurbano, reduciendo el consumo de recursos y el impacto ambiental asociado al paso de vehículos por zonas residenciales. Esta actuación permite disminuir las emisiones, el ruido y el desgaste urbano, promoviendo así una solución técnica más limpia y ambientalmente responsable, acorde con la capacidad del entorno y con los principios de sostenibilidad aplicados a las infraestructuras de transporte.

Meta ODS 9.5: Innovación y capacidad tecnológica

Aunque no se trata directamente de un proyecto de investigación industrial, el trazado de la variante de Puente Viesgo se alinea con el ODS 9.5 en tanto que aplica conocimientos técnicos actualizados y promueve el desarrollo de soluciones de infraestructura más sostenibles y adaptadas al entorno. La realización del proyecto en el marco de un Trabajo de Fin de Grado también contribuye al fortalecimiento de las capacidades tecnológicas del sector, formando futuros profesionales que integran criterios de innovación, eficiencia y sostenibilidad en el diseño de infraestructuras públicas.

Meta ODS 9.a: Apoyo a infraestructuras sostenibles en países en desarrollo

Si bien el proyecto no se enmarca en un programa de cooperación internacional, sus principios técnicos y ambientales pueden alinearse con el espíritu del ODS 9.a, al promover infraestructuras sostenibles, resilientes y adaptadas al entorno. La experiencia adquirida en este tipo de intervenciones puede servir de referencia para el desarrollo de soluciones similares en contextos rurales o semiurbanos de países en desarrollo, contribuyendo al intercambio de buenas prácticas en planificación y ejecución de infraestructuras viales sostenibles.

Meta ODS 9.b: Desarrollo de tecnologías e innovación nacional

El proyecto, aunque de alcance local, contribuye al ODS 9.b al aplicar tecnologías y criterios técnicos desarrollados a nivel nacional para la mejora de infraestructuras viales. En el contexto formativo de un Trabajo de Fin de Grado, también apoya la generación de capacidades profesionales e investigadoras dentro del sector de la ingeniería civil, fomentando así un entorno técnico e institucional más robusto para el diseño de infraestructuras sostenibles y adaptadas al territorio.

Meta ODS 9.c: Acceso universal a internet

Esta meta se relaciona con el trazado de la nueva variante de Puente Viesgo al ofrecer la oportunidad de incorporar infraestructura para telecomunicaciones, como canalizaciones para fibra óptica. Esto permitiría mejorar la conectividad digital en zonas rurales, reducir la brecha tecnológica y facilitar el acceso a servicios esenciales. Así, el proyecto no solo mejora la movilidad, sino también el acceso a la información y las comunicaciones.

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

ÁREA DE PROYECTOS DE INGENIERÍA

UNIVERSIDAD DE CANTABRIA

TIPO	TRAZADO							
TÍTULO	TRAZADO DE LA VARIANTE DE PUENTE VIESGO							
PROVINCIA	CANTABRIA							
TÉRMINO MUNICIPAL	PUENTE VIESGO							
томо	I (Y UNICO)							
DOCUMENTOS	DOCUMENTO N° 1 – ANEJOS. DOCUMENTO N° 2 – PLANOS.							
GRUPO	CONSTRUC	CIONES CIVILES						
AUTOR	IGNACIO IVAN	LARA VILLANUEVA						
FECHA JULIO	O 2025	FIRMA						

ANEJOS

ANEJO N.º 1 - ANTECEDENTES Y OBJETO

ANEJO Nº1 – ANTECEDENTES Y OBJETO

ANEJO N.º 1 - ANTECEDENTES Y OBJETO

Índice

1	ANTECEDENTES	

Universidad de Cantabria

ANEJO N.º 1 - ANTECEDENTES Y OBJETO

1. ANTECEDENTES

El presente proyecto de trazado, titulado "Trazado de la variante de Puente Viesgo" consiste en la realización del Trabajo de Fin de Grado en Ingeniería Civil por la Universidad de Cantabria en la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Santander.

2. OBJETO

La finalidad de este proyecto de trazado consiste en mejorar las condiciones del tráfico en el municipio de Puente Viesgo, planteando un trayecto alternativo a la actual travesía N-623 que pasa por dicha población, el cual permitirá circular de manera rápida y fluida a aquellos vehículos que circulan por la N-623 sin tener como destino final la localidad de Puente Viesgo, de esta manera se reduce el trafico en el interior de la localidad, el cual tiene un aumento considerable principalmente en verano. Todo esto mejora la calidad de vida de la población, disminuyendo la contaminación acústica y ambiental y aumentando la seguridad vial.

Las principales características técnicas de la obra proyectada son las siguientes:

- Tipo: Proyecto de Trazado.
- Sección tipo: Carretera de calzada única con un carril por sentido de circulación.
- Velocidad de proyecto: 60 km/h.
- Calzada: 7 metros. Dos carriles de 3.5 metros de ancho.
- Arcenes: 2 arcenes de 1 metro.

ANEJO N.º 2 - DESCRIPCIÓN DE LA ZONA

ANEJO Nº2 – DESCRIPCIÓN DE LA ZONA

ANEJO N.º 2 - DESCRIPCIÓN DE LA ZONA

Índice

1.	INTE	RODUCCIÓN	. 2
2.	ESTU	UDIO DE LA ZONA	. 2
2	2.1.	Encuadre Regional	. 2
2	2.2.	Encuadre Comarcal	. 2
-) 2	Tármino Municipal de nuente viesgo	2

Universidad de Cantabria

1. INTRODUCCIÓN

En el presente anejo se describe la zona geográfica donde se ubicará la variante de la carretera N-623, la cual transcurre por la localidad de Puente Viesgo en dirección sur-norte. A continuación, se destacan aspectos asociados a los núcleos de población afectados por la nueva vía, la economía local y las infraestructuras de transporte existentes de la zona.

2. ESTUDIO DE LA ZONA

2.1. ENCUADRE REGIONAL

El trazado se desarrolla en su totalidad en Puente Viesgo, que pertenece a la comunidad autónoma de Cantabria, situada al norte de España. Limita al norte con el mar Cantábrico, al sur con las provincias de León, Burgos y Palencia (pertenecientes a la comunidad autónoma de Castilla y León), al oeste con la comunidad autónoma de Asturias y al este con la comunidad autónoma del País Vasco. La ciudad de Santander es la capital y ciudad más poblada de Cantabria. La comunidad autónoma de Cantabria tiene una población de 593.386 habitantes (datos de 2025, INE).

Figura 2.1. Localización de la Comunidad Autónoma de Cantabria.

2.2. ENCUADRE COMARCAL

La carretera proyectada discurre por el término municipal de Puente Viesgo, situado en la comarca del Pas-Miera, en la comunidad autónoma de Cantabria. Esta comarca limita al este con los municipios de Castañeda y Santiurde de Toranzo; al oeste con Torrelavega y San Felices de Buelna; al norte con Piélagos; y al sur con Corvera de Toranzo. A continuación, se indica la localización de la comarca de Pas-Miera:

Figura 2.2. Localización de la comarca de Pas-miera.

2.3. TÉRMINO MUNICIPAL DE PUENTE VIESGO

El término municipal de Puente Viesgo limita al norte con el municipio de Piélagos (y el rio Pas como frontera natural), al este con Castañeda, al oeste con Torrelavega y San Felices de Buelna, al sur con San Pedro del Romeral, Luena y Corvera de Toranzo. El municipio cuenta con una extensión de 36,14 km² y una población de 2877 habitantes (INE, 2024), distribuidos en las localidades de Vargas, Puente Viesgo, Aés, Hijas y Las Presillas.

Figura 2.3. Localización del municipio de Puente Viesgo.

En la localidad de Puente Viesgo las infraestructuras de transporte que discurren por el núcleo urbano son la carretera nacional N-623 (Burgos – Santander), la N-624 (Carretera de la Costa Cantábrica). Además, existe un puente entre Aés y Corrobarceno que conecta la N-623 con la CA-600 (donde comienza el trazado).

En cuanto al patrimonio histórico municipal cabe destacar la Cueva del Monte Castillo, Las Monedas, La Pasiega y las Chimeneas, todas ellas declaradas Patrimonio Mundial de la UNESCO. Además, se destaca la Casona de Fuentes-Pila, la Iglesia de San Miguel y el Castillo Medieval de Puente Viesgo.

ANEJO N.º 3 - CARTOGRAFÍA Y TOPOGRAFÍA

ANEJO Nº3 – CARTOGRAFÍA Y TOPOGRAFÍA

ANEJO N.º 3 - CARTOGRAFÍA Y TOPOGRAFÍA

Índice

1.	INTRODUCCIÓN	2
2.	TOPOGRAFÍA	2
3	ORTOFOTOGRAFÍA	2

l. INTRODUCCIÓN

El objetivo de este anejo es la descripción de las cartografías topográficas y ortofotografía de la zona del trazado. Dicha información se ha obtenido mediante el Visualizador de Información Geográfica de Mapas del Gobierno de Cantabria (https://mapas.cantabria.es/).

2. TOPOGRAFÍA

Para la realización del trazado se utilizará la cartografía básica BTA 2007 (Base Topográfica Armonizada), sobre vuelo de 2007 a escala 1:5000. Se necesitarán las hojas 0058-6-2 y 0058-6-3.

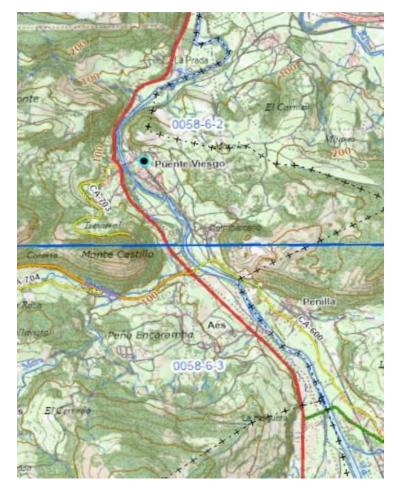


Figura 3.1. Hojas de BTA 2007 1:5000 sobre el municipio de Puente Viesgo.

3. ORTOFOTOGRAFÍA

Se utilizarán las hojas 0058-0602 y 0058-0603, representativas de la zona del proyecto y correspondientes a la serie de Ortofotografías de Cantabria del año 2007 PNOA 0,25 m.

Figura 3.2. Ortofotos 2007 PNOA 0,25 m sobre el municipio de Puente Viesgo.

ANEJO Nº 4 - GEOLOGÍA Y PROCEDENCIA DE MATERIALES

ANEJO Nº4 – GEOLOGÍA Y PROCEDENCIA DE MATERIALES

Índice

1.	INTR	ODUCCIÓN	2
2.	GEOL	.OGÍA	2
2	2.1	Marco Geológico General	2
2	2.2	CARACTERISTICAS GEOLÓGICAS en la zona del trazado	3
	2.2.1	CARBONIFERO SUPERIOR	3
	2.2.2	Cuaternario	3
2	2.3.	Tectónica	4
2	2.4.	Geomorfología	4
2	2.5.	Hidrogeología	5
2	2.6.	Mapa Geológico	6
2	2.7.	Mapa Geomorfológico	7
3.	PLAN	O DE GEOLOGÍA	8

I. INTRODUCCIÓN

En este anejo se analizarán las características geológicas de la zona de estudio para el nuevo trazado de la variante de Puente Viesgo, incluyendo también un análisis sobre la procedencia de los materiales presentes en el área. El objetivo principal será reconocer las distintas unidades geológicas, describir sus características fundamentales, localizar posibles zonas de riesgo y definir las condiciones del terreno a lo largo del trazado proyectado. Para ello, se utilizará información geológica obtenida del Instituto Geológico y Minero de España (IGME) y del visor de información geográfica del Gobierno de Cantabria.

2. GEOLOGÍA

2.1 MARCO GEOLÓGICO GENERAL

La zona de estudio del trazado se emplaza en la **Cuenca Vasco-Cantábrica**, una depresión geológica situada en el extremo norte de la Península Ibérica, en la Cordillera Cantábrica. Esta cuenca sedimentaria se formó principalmente durante el **Mesozoico y el Cenozoico**, en el contexto de la apertura del Golfo de Vizcaya, y está compuesta por una poderosa serie de **materiales marinos y continentales**, en los que predominan las facies del **Jurásico y Cretácico**, especialmente del **Cretácico Superior**. Su estructura, resultado de complejos procesos tectónicos alpinos, revela una evolución geodinámica marcada por subsidencias, basculamientos y reactivaciones, lo que convierte a la cuenca en un referente geológico de gran interés en la configuración del norte peninsular. El norte de dicha zona se encuentra delimitado por la Cobertera Mesozoica – Terciaria, y el Sur por el Entrante de Cabúerniga, la Franja Cabalgante del Besaya y la zona tectonizada del Toranzo y Puerto del Escudo.

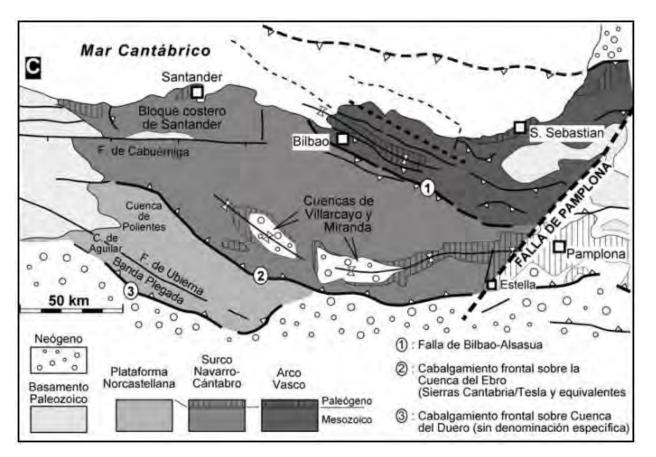


Figura 4.1. Situación Geológica de la zona de estudio.

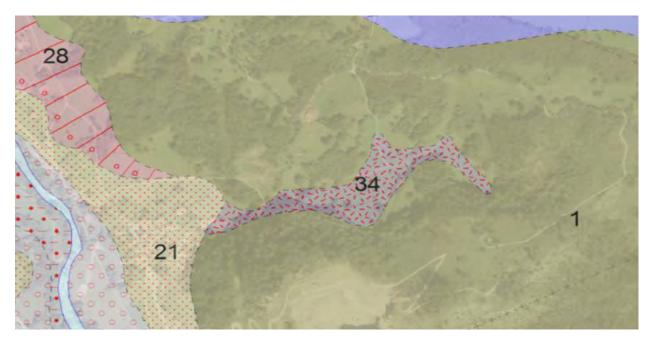


Figura 4.2. Mapa Geológico en la zona de estudio.

LEYENDA

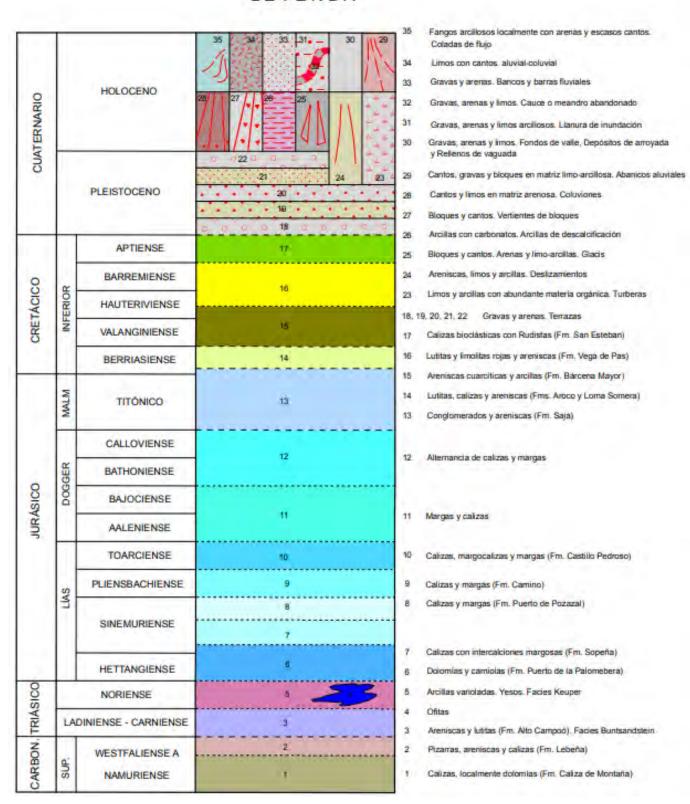


Figura 4.3. Leyenda Hoja 58 MAGNA50 IGME.

En el municipio de Puente Viesgo afloran fundamentalmente materiales del **Cretácico Inferior**, especialmente del **Aptiense y Albiense**, representados por calizas, margas y areniscas asociadas a ambientes marinos someros. Estos materiales forman parte del relleno sedimentario de la **Cuenca Vasco-Cantábrica**, afectado por estructuras tectónicas de dirección predominantemente E–O, como **pliegues anticlinales y sinclinales** que modelan el relieve actual. En el área del proyecto, se identifican depósitos del Cuaternario (tanto del Holoceno como del Pleistoceno) y del Carbonífero Pensilvaniense (Namuriense – Westfaliense A)

Cabe destacar que las carreteras N-623 y CA-600, en su tramo correspondiente al municipio de Puente Viesgo, se desarrollan mayoritariamente sobre materiales del Cretácico Inferior, concretamente del Aptiense y Albiense, caracterizados por la presencia de calizas margosas con rudistas, orbitolinas y facies carbonatadas de plataforma.

2.2 CARACTERISTICAS GEOLÓGICAS EN LA ZONA DEL TRAZADO

El municipio de Puente Viesgo se enmarca en su totalidad en la hoja 58 del mapa IGME, en él se pueden encontrar materiales del Carbonífero, Triásico, Jurásico, Cretácico y Cuaternario. A continuación, se describen las características geológicas presentes específicamente en la zona del trazado:

2.2.1 CARBONIFERO SUPERIOR

2.2.1.1 NAMURIENSE (1)

Las formaciones carboníferas, comúnmente denominadas 'calizas de montaña', afloran cabalgando sobre los depósitos jurásicos y cretácicos en la zona tectonizada de Toranzo y Puerto del Escudo, como resultado de la tectónica compresiva alpina. Constituyen el substrato predominante en la zona de emplazamiento del nuevo trazado, estando formadas por calizas micríticas, masivas y de elevada compacidad, con muy baja porosidad y alta resistencia mecánica.

2.2.2 CUATERNARIO

2.2.2.1 HOLOCENO

Los depósitos holocenos presentes en el trazado están compuestos mayoritariamente por materiales no consolidados de origen fluvial, coluvial y antrópico. Entre ellos se identifican gravas, arenas, limos y arcillas,

acumulados en fondos de valle, llanuras de inundación y márgenes fluviales, como los del río Pas y el arroyo La Cortada.

En estas áreas, los sedimentos conforman suelos fértiles y de elevada permeabilidad, típicos de ambientes recientes.

La terraza inferior de la vega del Pas y del curso bajo del arroyo La Cortada se caracteriza por una granulometría más fina en comparación con las terrazas del Pleistoceno, aunque con marcado carácter heterométrico, al presentar mezclas de bolos y cantos rodados inmersos en una matriz más fina.

2.2.2.2 PLEISTOCENO

A lo largo del Rio Pas podemos encontrar algunas terrazas fluviales del Pleistoceno, que están formadas por gravas y bloques, principalmente silíceos (cuarzo y cuarcita) que se encuentran englobados en una matriz compuesta principalmente de arena.

2.3. TECTÓNICA

La Franja Cabalgante del Escudo de Cabuérniga constituye el principal elemento estructural del entorno geológico de Puente Viesgo. Este sistema tectónico es responsable de la elevación de las calizas carboníferas hacia el norte, generando una morfoestructura cabalgante que se proyecta hacia el sur. La unidad estructural se extiende desde el Macizo del Dobra hasta la Sierra de la Penilla, separando al norte la Cobertera Mesozoica-Terciaria y al sur la Zona Tectonizada de Toranzo y el Puerto del Escudo. El cabalgamiento genera un anticlinal volcado y fallado, con buzamientos dominantes hacia el noreste y planos de estratificación orientados NO-SE. Las calizas de montaña del Carbonífero, de carácter masivo y escasa estratificación visible, fueron afectadas por la Orogenia Hercínica. Sobre ellas se disponen, en discordancia, areniscas del Buntsandstein bien estratificadas, seguidas por arcillas del Keuper, que marcan el inicio de la cobertera mesozoica.

En contraste, zonas como Las Presillas y Vargas presentan morfología más suave, asociada a depósitos fluviales del Wealdiense. Esta compleja estructuración refleja una evolución tectónica activa desde el Paleozoico hasta el Cenozoico, evidenciada por la ausencia del Jurásico y la marcada variabilidad litológica. La disposición y resistencia de los materiales condicionan incluso el comportamiento del río Pas, que forma una garganta estrecha al atravesar el núcleo cabalgante y se ensancha al discurrir sobre litologías más blandas, como las areniscas triásicas.

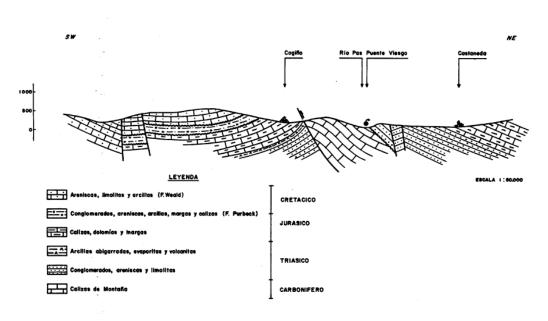


Figura 4.4. Perfil Geológico de Puente Viesgo.

2.4. GEOMORFOLOGÍA

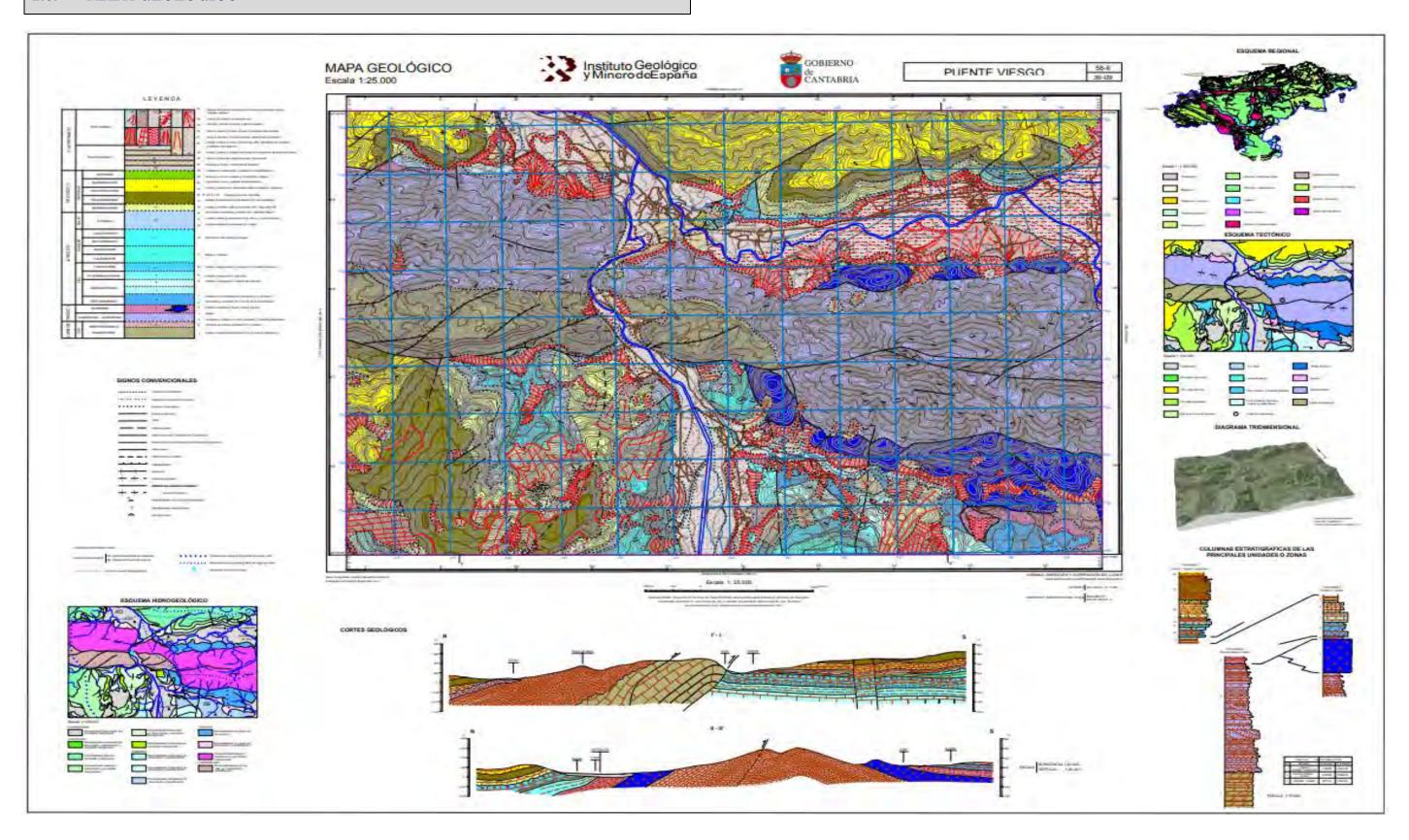
La región de Puente Viesgo presenta una destacada diversidad geomorfológica, caracterizada por la coexistencia de llanuras fluviales, relieves ondulados de media montaña y pendientes abruptas asociadas a estructuras tectónicas activas. Sobresale el Macizo del Dobra, que atraviesa el municipio de este a oeste, estructurado en dos alineaciones principales: una compuesta por las Calizas de Montaña del Carbonífero y otra por las areniscas del Buntsandstein.

Estas últimas configuran un relieve moderadamente elevado, intensamente fracturado por fallas de orientación NO-SE, lo que favorece los procesos de erosión diferencial. En cambio, el relieve desarrollado sobre las calizas presenta una clara asimetría, con una ladera sur abrupta —correspondiente al frente del cabalgamiento— y una ladera norte más suave, en transición hacia las areniscas subyacentes.

En las cotas más elevadas del macizo se identifican formas kársticas bien desarrolladas, como dolinas y lapiaz, resultado de la disolución de la roca carbonatada. La dinámica fluvial del río Pas ha sido un factor determinante en la configuración del valle, actuando como agente erosivo principal. En su tramo occidental, el encajamiento del cauce origina una garganta estrecha y profunda, mientras que hacia el este el relieve se suaviza, permitiendo el desarrollo de terrazas holocenas y la acumulación de depósitos recientes.

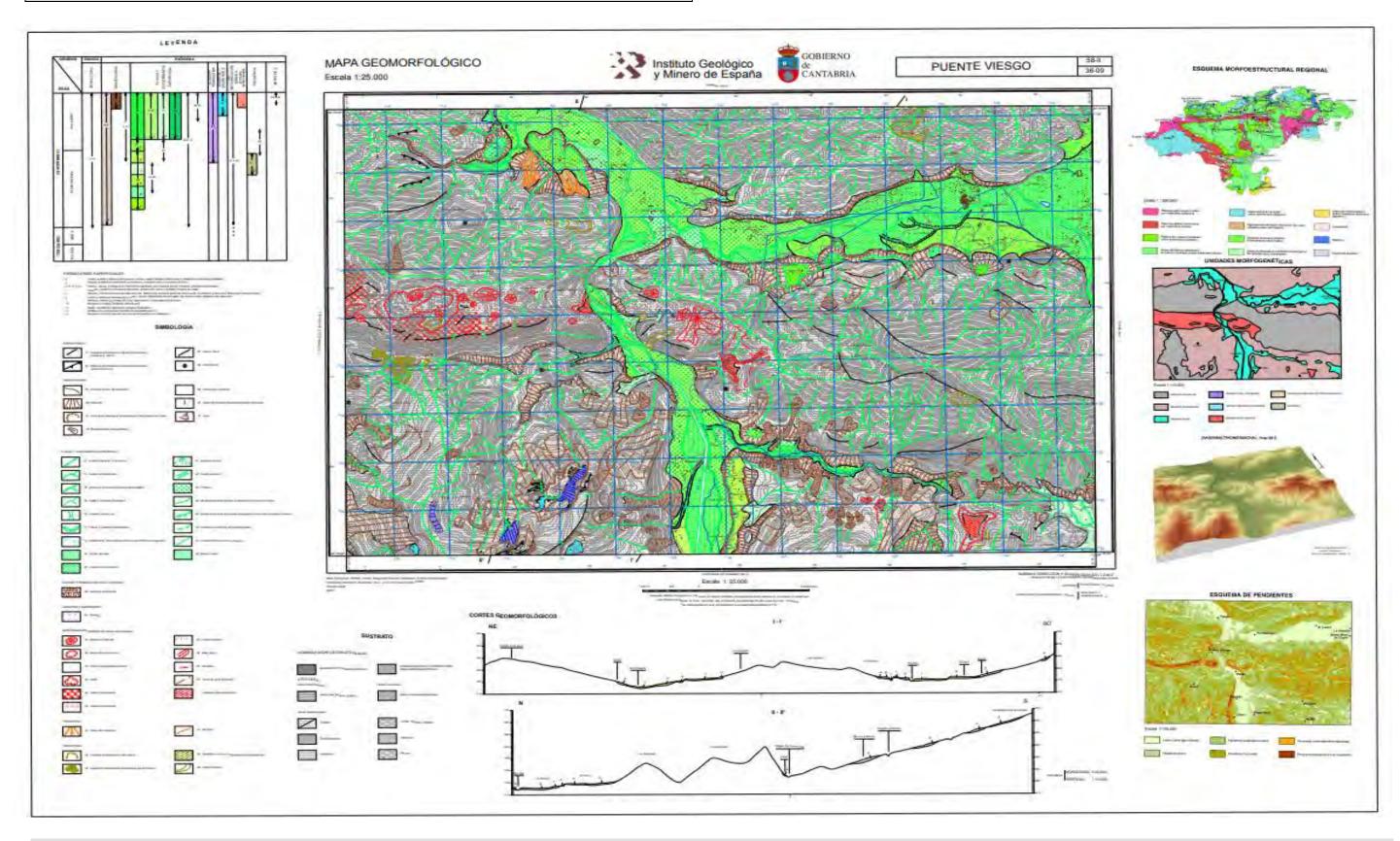
ANEJO Nº 4 - GEOLOGÍA Y PROCEDENCIA DE MATERIALES

TRAZADO DE LA VARIANTE DE PUENTE VIESGO.


2.5. HIDROGEOLOGÍA

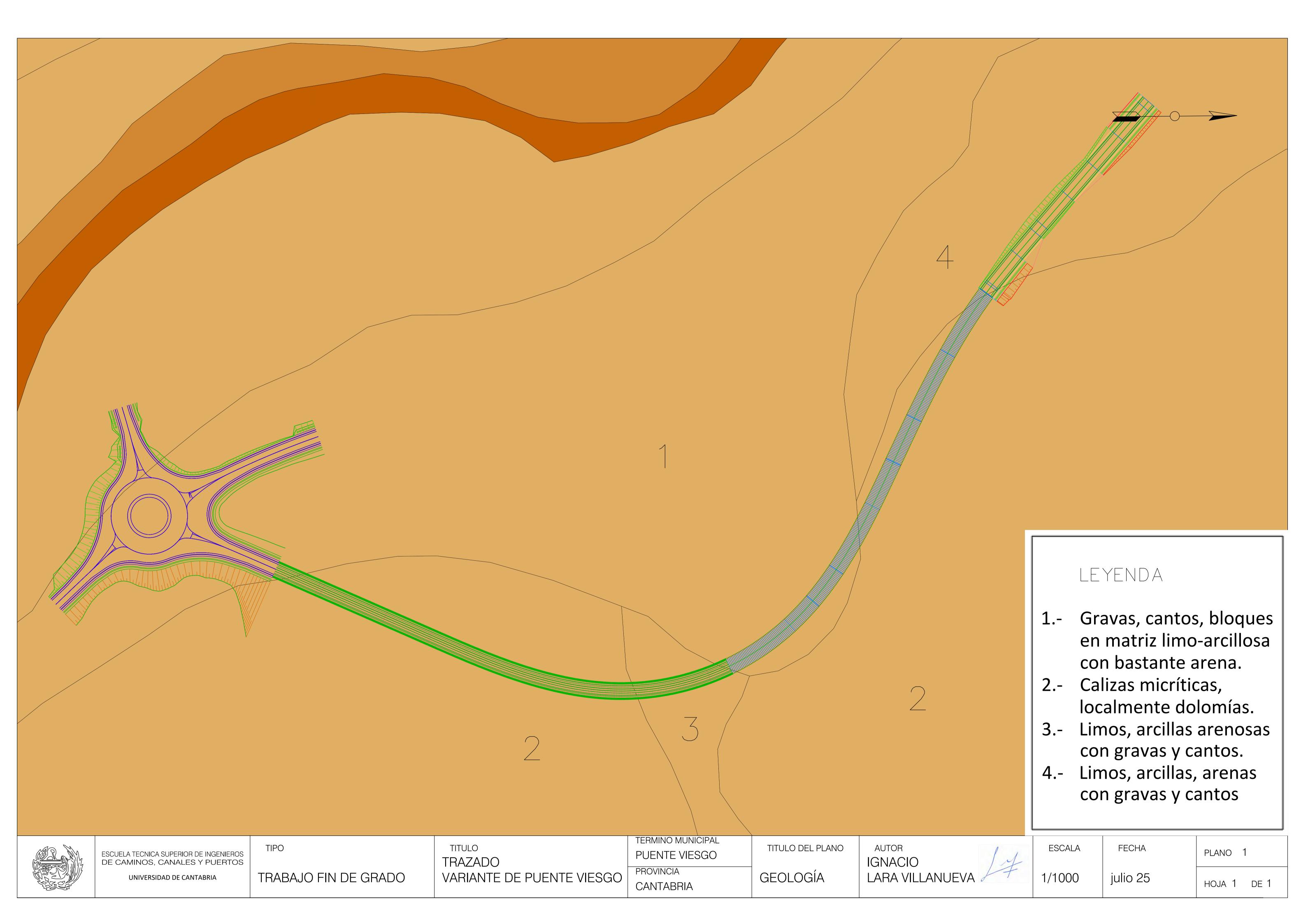
El municipio de Puente Viesgo se encuentra completamente integrado en la cuenca hidrográfica del río Pas, cuyo cauce principal atraviesa el núcleo urbano de norte a sur, ejerciendo en varios tramos como límite natural entre municipios vecinos. Esta cuenca, una de las más relevantes de Cantabria tanto por extensión como por caudal, tiene su origen en la vertiente meridional de la Cordillera Cantábrica y presenta un recorrido predominantemente perpendicular al eje costero, desembocando en el mar Cantábrico a la altura de Mogro (Miengo).

El río Pas y sus afluentes desempeñan un papel clave en la dinámica hidrogeológica de la región, alimentando acuíferos aluviales de escasa profundidad en los fondos de valle, especialmente en las zonas próximas a Puente Viesgo, donde se desarrollan depósitos cuaternarios de alta permeabilidad.



2.6. MAPA GEOLÓGICO

2.7. MAPA GEOMORFOLÓGICO



ANEJO Nº 4 - GEOLOGÍA Y PROCEDENCIA DE MATERIALES

3. PLANO DE GEOLOGÍA

Se adjunta a continuación un plano a escala 1:2.500 de la geología en la zona de estudio del proyecto.

Universidad de Cantabria

ANEJO N.º 5 - EFECTOS SÍSMICOS

ANEJO Nº5 – EFECTOS SÍSMICOS

ANEJO N.º 5 - EFECTOS SÍSMICOS

Índice

1.	INTRODUCCIÓN	. 2
2.	PELIGROSIDAD SÍSMICA EN LA ZONA DEL PROYECTO	. 2
3	CONCLUSIONES	2

ANEJO N.º 5 - EFECTOS SÍSMICOS

1. INTRODUCCIÓN

En el presente anejo se estudiará la peligrosidad sísmica de la zona en la que se sitúa el trazado en estudio, teniendo en cuenta las siguientes normativas:

- "Norma de Construcción Sismorresistente: Parte general y Edificación (NCSE-02)", aprobada por RD 997/2002 de 27 de septiembre y publicada en el BOE de 11 de octubre de 2002.
- Norma de Construcción Sismorresistente: Puentes (NCSP-07), aprobada por RD 637/2007 de 18 de mayo y publicada en el BOE de 2 de junio de 2007.

2. PELIGROSIDAD SÍSMICA EN LA ZONA DEL PROYECTO

La normativa indica que "no será necesario considerar los efectos sísmicos cuando el valor de la aceleración sísmica horizontal básica (a_b) no supere el valor de 0,04g, siendo g la aceleración de la gravedad."

Los valores de la aceleración sísmica de la zona se determinarán de acuerdo al Mapa de Peligrosidad Sísmica de España adjuntado a continuación:

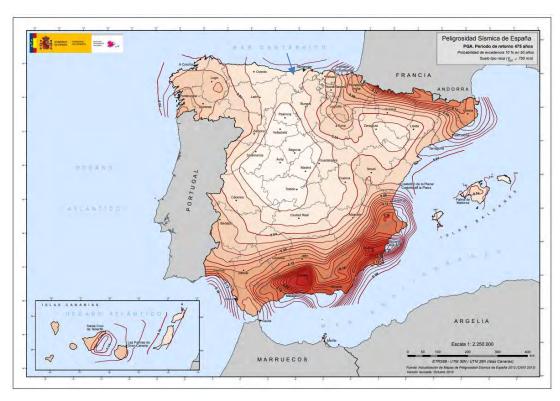


Figura 5.1. Mapa de Peligrosidad Sísmica de España (NSCE-02).

3. CONCLUSIONES

De acuerdo con el mapa de peligrosidad, para la zona del trazado se observa un valor de aceleración sísmica a_b de 0.03g. De hecho, Puente Viesgo se encuentra dentro de una de las zonas menos conflictivas del país en relación con efectos sísmicos, por lo que no será necesario considerar acciones sísmicas para el diseño del trazado de la nueva variante.

ANEJO N.º 6 - CLIMATOLOGÍA E HIDROLOGÍA

ANEJO Nº6 – CLIMATOLOGÍA E HIDROLOGÍA

Índice

1	. INTR	ODUCCIÓN	. 2
2	. CLIM	ATOLOGÍA	. 2
	2.1.	Cllma	. 2
	2.2.	Temperatura	. 2
	2.3.	Precipitación	. 3
	2.4.	Otros Datos Climatológicos	. 3
3	. HIDR	OLOGÍA	. 3
	3.1.	Cursos Fluviales	. 3
	3 2	Zonas Inundables	1

l. INTRODUCCIÓN

En este anejo se presentará un análisis de las condiciones climáticas de la zona donde se emplazará el trazado, a partir de datos relacionados con la temperatura, la precipitación y otros factores meteorológicos relevantes. En primer lugar, se llevará a cabo una aproximación general al clima mediante el uso de mapas climáticos y estimaciones de la pluviometría en el área de estudio. Posteriormente, se analizarán los registros de temperatura y precipitación obtenidos en estaciones meteorológicas cercanas, con el objetivo de evaluar el comportamiento hidrológico y la presencia de cursos de agua en el área de estudio, para tomar las medidas necesarias en el caso de existir zonas inhundables. La principal fuente de información utilizada será la Agencia Estatal de Meteorología (AEMET).

2. CLIMATOLOGÍA

2.1. CLIMA

Para analizar la meteorología de la zona, se opta por los datos climatológicos observados en la estación meteorológica de Santander Aeropuerto, registrados en el "Atlas Climático Ibérico" y proporcionado por la Agencia Estatal de Meteorología (AEMET). Estos mapas contienen información sobre las temperaturas y las precipitaciones en toda la Península Ibérica (1981 y 2010).

Figura 6.1. Mapa climático de Köppen-Geiger.

El estudio del clima en la zona de interés se realiza considerando la clasificación climática de Köppen-Geiger. El trazado se desarrolla en una región clasificada como Clima C_{fb} - Oceánico Templado. Este se distingue por tener un clima templado sin estación seca con veranos frescos y precipitaciones abundantes durante todo el año.

2.2. TEMPERATURA

El mar actúa como un termorregulador de la temperatura, lo que resulta en temperaturas suaves y cambios estacionales gradualmente variados. Se pueden estimar algunos valores de temperaturas en la zona del proyecto, obtenidos a partir de los mapas de temperaturas del "Atlas Climático Ibérico".

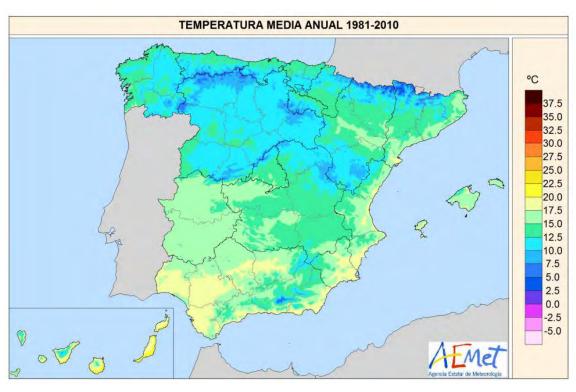


Figura 6.2. Mapa de temperaturas medias anuales.

Se tienen también los valores de la temperatura media anual, la temperatura media anual de las mínimas y la temperatura media de las máximas para todos los meses del año recogidos por la estación meteorológica más cercana a la zona del proyecto (Santander Aeropuerto).

• Temperatura media anual: 14,5 °C

Temperatura media anual de las máximas: 18,5°C

Temperatura media anual de las mínimas: 10,5°C

	E	F	М	Α	М	J	J	А	S	0	N	D	Anual
T° media anual	9,7	9,8	11,3	12,4	15,1	17,8	19,8	20,3	18,6	16,1	12,5	10,5	14,5
T° media anual máx.	13,6	13,8	15,7	16,6	19,1	21,6	23,6	24,2	22,8	20,3	16,3	14,2	18,5
T° media anual min.	5,8	5,7	7	8,3	11,1	13,9	16	16,4	14,4	11,8	8,7	6,7	10,5

Tabla 6.1. Temperaturas medias mensuales (°C) en Santander Aeropuerto.

2.3. PRECIPITACIÓN

Para la obtención de las precipitaciones, se utilizarán los datos obtenidos de la estación meteorológica de Santander Aeropuerto, situada a 3 m. de altitud, a una latitud de 43° 25' 26" N y una longitud de 1 3° 49' 32" O. Los datos expuestos han sido obtenidos durante los años 1981-2010. Como se mencionó anteriormente, las precipitaciones son relativamente uniformes a lo largo del año.

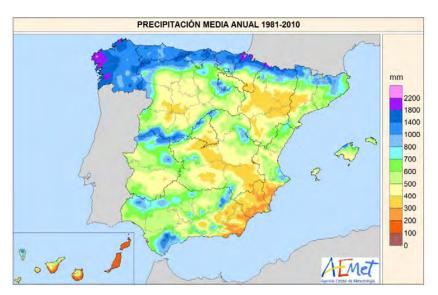


Figura 6.3. Mapa de precipitaciones medias anuales.

	Е	F	М	Α	М	J	J	Α	S	0	N	D	Anual
Precipitaciones													
medias mensuales	106	92	88	102	78	58	52	73	83	120	157	118	1129

Tabla 6.2. Precipitaciones medias mensuales (mm) en Santander Aeropuerto.

2.4. OTROS DATOS CLIMATOLÓGICOS

La AEMET también ofrece acceso a la información de valores climatológicos extremos. Los datos de estos valores han sido de nuevo recogidos por la estación Santander Aeropuerto.

Santander Aeropuerto

Latitud: 43.º 25.' 26.''.N - Longitud: 3.º 49.' 32.''.Q Altitud: 3 m - Posición: Ver localización Intervalos de validez por variables:

Precipitación: 1953-2025 Temperatura: 1954-2024 Viento: 1980-2024

Variable	Anual
Máx. núm. de días de lluvia en el mes	28 (may. 1984)
Máx. núm. de días de nieve en el mes	9 (feb. 1956)
Máx. núm. de días de tormenta en el mes	8 (ago. 1997)
Prec. máx. en un día (l/m2)	134.4 (27 ago. 1983)
Prec. mensual más alta (l/m2)	490.1 (nov. 1966)
Prec. mensual más baja (l/m2)	1.3 (abr. 1982)
Racha máx. viento: velocidad y dirección (Vel 167, Dir 300 (27 dic. 1999 16:00)
Tem. máx. absoluta (°C)	40.6 (23 ago. 2023)
Tem. media de las máx. más alta (°C)	27.1 (ago. 2003)
Tem. media de las mín. más baja (°C)	1.8 (feb. 1956)
Tem. media más alta (°C)	23.2 (ago. 2003)
Tem. media más baja (°C)	4.0 (feb. 1956)
Tem. mín. absoluta (°C)	-5.4 (21 ene. 1957)

Tabla 6.3. Valores climatológicos extremos.

3. HIDROLOGÍA

3.1. CURSOS FLUVIALES

La presencia de cursos fluviales en zonas cercanas del trazado está directamente relacionada con el comportamiento del terreno ante las condiciones climáticas previamente mencionadas, la composición del suelo y las características hidrográficas.

La carretera N-623 existente tiene una salida de glorieta que cruza el río Pas para conectar con la CA-600 (donde inicia el trazado), este curso fluvial actúa como eje vertebrador del valle y atraviesa puente Viesgo de sur a norte. El Rio Pas tiene confluencia con el Rio Pisueña, cerca de Vargas, esta confluencia da origen a un sistema fluvial de gran valor ecológico, protegido dentro de la Red Natura 2000 como ZEC Río Pas. En el entorno inmediato, confluyen también varios arroyos menores que descienden desde las laderas y montes del entorno.

El trazado propuesto no tiene cruce directo sobre el río Pas, manteniéndose en el margen oriental de su cauce principal. Sin embargo, intercepta arroyos menores y zonas de drenaje natural que convergen hacia el Pas, especialmente en su tramo central.

Figura 6.4. Hidrografía de la zona del proyecto.

3.2. ZONAS INUNDABLES

A continuación, se comprueba que el trazado del nuevo camino queda fuera de la zona de peligrosidad de inundación para periodos de 100 y 500 años. De esta manera, no será necesario tomar ninguna medida adicional ante el riesgo de inundación.

Figura 6.5. Zona inundable con T=100 años.

Figura 6.6. Zona inundable con T=500 años.

ANEJO N.º 7 - PLANEAMIENTO DEL TRÁFICO

ANEJO Nº7 – PLANEAMIENTO DEL TRÁFICO

ANEJO N.º 7 - PLANEAMIENTO DEL TRÁFICO

Índice

1.	INTR	RODUCCIÓN	. 2
2.	PRE\	VISIÓN DEL TRÁFICO	. 2
	2 1	Datos de Partida	2
	2.2.	Cálculo del Tráfico	. 2
,	NII\/E	EL DE SERVICIO	2

Universidad de Cantabria

ANEJO N.º 7 - PLANEAMIENTO DEL TRÁFICO

TRAZADO DE LA VARIANTE DE PUENTE VIESGO.

l. INTRODUCCIÓN

En el presente anejo se realizará un análisis del estado actual del tráfico de vehículos que circula por la carretera N-623, de esta manera, se podrá estimar el tráfico previsible en la nueva carretera en el año de su puesta en servicio (2025). Adicionalmente se calculará el tráfico previsible para el año horizonte (2045), dato necesario para el diseño de la estructura del firme.

2. PREVISIÓN DEL TRÁFICO

2.1. DATOS DE PARTIDA

Se dispone de los datos de tráfico en los Mapas de Trafico de la DGC. Se obtuvieron datos del año 2022 relacionados a la carretera N-623, la cual es la principal vía de paso de vehículos por la zona del trazado, con esto podremos estimar el tráfico de vehículos para el año de puesta en servicio.

Nombre	Tipo carretera	PK Inicio	PK Fln	Longitud	IMD total	IMD ligeros	IMD pesados	vh-km total	vh-km ligeros	vh-km pesados
N-623	Carretera convencional	124.4	125.7	1.26	5874	5466	408	2701453	2513813	187639

Tabla 7.1. Datos de tráfico en la carretera N-623.

% Vehículos Pesados: 7%

2.2. CÁLCULO DEL TRÁFICO

Para obtener el tráfico en el año de puesta en servicio se utiliza la siguiente fórmula:

$$IMD_T = IMD_{2022}(1+r)^n$$

Donde:

 $-IMD_T$ intensidad media diaria del año de puesta en servicio (2025)

 $-IMD_{2016}$ intensidad media diaria del año inicial (2022)

-r tasa de crecimiento anual: (1,44/100)

-n número de años transcurridos.

Se considera el valor numérico del parámetro *r* viene establecido en la Nota de Servicio 5/2014, prescripciones y recomendaciones técnicas para realización de estudios de tráfico de los Estudios informativos, Anteproyectos y Proyectos de Carreteras, del Ministerio de Fomento.

Al no disponer de los datos de distribución de los vehículos pesados por cada carril, se debe seguir lo indicado en la Instrucción 6.1.-IC. Secciones de firme: - "En calzadas de dos carriles y con doble sentido de circulación, incide sobre cada carril la mitad de los vehículos pesados que circulan por la calzada".

De esta forma se obtienen los valores de IMD e IMD de vehículos pesados en un carril para el año de puesta en servicio (2025) y el IMD del año horizonte (2045):

• IMD en el año de puesta en servicio:

$$IMD_{2025} = 5874 \cdot \left(1 + \frac{1,44}{100}\right)^3 = 6131 \frac{veh}{dia}$$

• IMD de vehículos pesados en el año de puesta en servicio:

$$IMD_{veh\ pesados_2025} = \frac{7}{100} \cdot 6131 = 429 \frac{veh\ pesados}{día}$$

• IMD de vehículos pesados por carril en el año de puesta en servicio:

$$IMD_{veh\ pesados_2025_carril} = \frac{1}{2} \cdot 429 = 215 \frac{veh\ pesados}{d(a \cdot carril)}$$

IMD en el año horizonte 2045:

$$IMD_{2045} = 6131 \cdot \left(1 + \frac{1,44}{100}\right)^{20} = 8160 \frac{veh}{dia}$$

3. NIVEL DE SERVICIO

El trazado de la carretera consistirá en una carretera rural interurbana de dos carriles, sin carril de adelantamiento. El objetivo será determinar el número de vehículos demorados y definir el nivel de servicio a partir de dicho valor.

La carretera tendrá una longitud total de 856,25 m, del cual se considerará un solo tramo (PK 0+000 – PK 0+120,62), ya que este es el caso más desfavorable con una inclinación de 3,99%. Luego, a partir de la longitud en millas (0,075) y la inclinación antes mencionada, se determina la clase vertical mediante el uso de la siguiente tabla:

Segment Length	Segment Percent Grade (%)											
(mi)	≤1	>1 52	>2 53	>3 54	>4 55	>5 ≤6	>6 57	>7 58	>8 ≤9	>9		
≤0.1	1(1)	1(1)	1 (1)	1 (1)	1(1)	1(1)	1(1)	2 (1)	2 (2)	2 (2)		
>0.1 ≤0.2	1(1)	1(1)	1(1)	1(1)	2(1)	2 (2)	2(2)	3 (2)	3 (3)	3 (3)		
>0.2 ≤0.3	1 (1)	1 (1)	1 (1)	2 (1)	2 (2)	3 (2)	3 (3)	4 (3)	4 (4)	5 (5)		
>0.3 ≤0.4	1 (1)	1 (1)	2(1)	2 (2)	3 (2)	3 (3)	4 (4)	5 (4)	5 (5)	5 (5)		
>0.4 ≤0.5	1 (1)	1(1)	2 (1)	2 (2)	3 (3)	4 (3)	5 (4)	5 (5)	5 (5)	5 (5)		
>0.5 ≤0.6	1 (1)	1 (1)	2 (1)	3 (2)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)		
>0.6 50.7	1 (1)	1 (1)	2(1)	3 (2)	4 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)		
>0.7 ≤0.B	1 (1)	1(1)	2 (1)	3 (3)	4 (4)	5 (4)	5 (5)	5 (5)	5 (5)	5 (5)		
>0.8 ≤0.9	1 (1)	1 (1)	2(1)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)		
>0.9 \$1.0	1 (1)	1(1)	2 (2)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)		
>1.0 ≤1.1	1 (1)	1 (1)	2 (2)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)		
>1.1	1(1)	1(1)	2 (2)	4 (4)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)		

() Los valores entre paréntesis corresponden a pendientes (inclinación negativa)

Tabla 7.2. Clasificación de la carretera en función de su trazado en alzado.

Una vez definida la clasificación (1) calcularemos los vehículos demorados utilizando las siguientes fórmulas:

$$v_d = \frac{V_d}{FHP}$$
 (Ecuación 1)

Donde:

- v_d intensidad en la dirección considerada.
- V_d volumen en una dirección (IMD* K_{30}).
- FHP factor de hora punta.

Se considera un valor de FHP = 0.94 y K_{30} = 0.105 según las características de la carretera mencionadas anteriormente y la tabla adjunta a continuación.

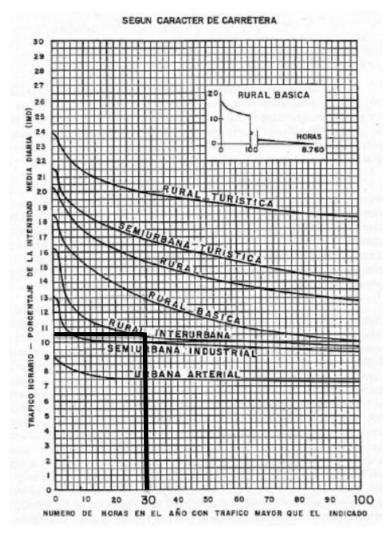


Tabla 7.3. Obtención K30.

$$BFFS = 1,14 * S_{pl}$$
 (Ecuación 2)

Donde:

- BFFS velocidad libre básica.
- S_{pl} límite de velocidad (60 km/h).

$$FFS = BFFS - a \cdot (HV\%) - f_{LS} - f_A$$
 (Ecuación 3)

Donde:

• FFS velocidad libre.

ANEJO N.º 7 - PLANEAMIENTO DEL TRÁFICO

- f_{LS} factor de ajuste por anchura de arcenes (¿).
- f_A factor de ajuste por puntos de acceso (?? Esta no esta resuelta).
- *HV* porcentaje de vehículos pesados.
- a valor obtenido a partir de la ecuación 4.

$$a = m \acute{a} x \left[\{0.0333\}, \left\{ a_0 + a_1 \cdot BFFS + a_2 \cdot L + m \acute{a} x (\{0\}, \{ \, a_3 + a_4 \cdot BFFS \cdot L \}) \cdot \frac{v_0}{1000} \right\} \right] \text{ (Ecuación 4)}$$

Vertical Class	abo .	a ₁	22	a ₁	24	as
→ 1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2	-0.45036	0.00814	0.01543	0.01358	0.00000	0.00000
3	-0.29591	0.00743	0.00000	0.01246	0.00000	0.00000
4	-0.40902	0.00975	0.00767	-0.18363	0.00423	0.00000
5	-0.38360	0.01074	0.01945	-0.69848	0.01069	0.12700

Tabla 7.4. Coeficientes de la Ecuación 4.

Por lo tanto, se obtiene un valor a=0,0333.

$$f_{LS} = 0.6 \cdot (12 - LW) + 0.7 \cdot (6 - SW)$$
 (Ecuación 5)

Donde:

- Fls Factor reductor ancho de carril
- LW anchura de carril.
- SW anchura de arcenes.

$$S = \begin{cases} FFS & Si \ v_d \le 100 \\ FFS - m \left(\frac{v_d}{1000} - 0.1\right)^p & Si \ v_d > 100 \ (Ecuación 7) \end{cases}$$

Donde:

- S velocidad en la dirección analizada.
- *m* coeficiente de la pendiente, a partir de la Ecuación 8.
- p coeficiente del exponente, a partir de la Ecuación 9.

$$m = \max \left[\{b_5\}, \left\{ b_0 + b_1 \cdot FFS + b_2 \cdot \sqrt{\frac{v_0}{1000}} + m\acute{a}x[\{0\}, \{b_3\}] \cdot \sqrt{L} + m\acute{a}x[\{0\}, \{b_4\}] \cdot \sqrt{HV\%} \right\} \right] \ (Ecuaci\'on\ 8)$$

Vertical Class	60	bı	bı	bs	bı	bs
1	0.0558	0.0542	0.3278	0.1029	0.0000	0.0000
→ 2	5.7280	-0.0809	0.7404	Ecuación 9	Ecuación 10	3.1155
3	9.3079	-0.1706	1.1292	Ecuación 9	Ecuación 10	3.1155
4	9.0115	-0.1994	1.8252	Ecuación 9	Ecuación 10	3.2685
5	23.9144	-0.6925	1.9473	Ecuación 9	Ecuación 10	3.5115

Tabla 7.5. Coeficientes de la Ecuación 8.

$$p = max \left[\{f_8\}, \left\{ f_0 + f_1 \cdot FFS + f_2 \cdot L + f_3 \cdot \frac{v_0}{1000} + f_4 \cdot \sqrt{\frac{v_0}{1000}} + f_5 \cdot HV\% + f_6 \cdot \sqrt{HV\%} + f_7 \cdot (L \cdot HV\%) \right\} \right]$$
(Ecuación 11)

Vertical Class	6	ń	6	6	6	6	6	6	6
1	0.67576	0.00000	0.00000	0.12060	-0.35919	0.00000	0.00000	0.00000	0.00000
2	0.34524	0.00591	0.02031			-0.00296	0.02956	0.00000	0.41622
3	0.17291	0.00917	0.05698			-0.00918	0.09184	0.00000	0.41622
4	0.67689	0.00534	-0.13037		1 - 1 - 2 - 2	-0.00709	0.07087	0.00000	0.33950
5	1.13262		-0.26367			-0.00867	0.08675	0.00000	0.30590

Tabla 7.6. Coeficientes de la Ecuación 10.

Una vez se ha calculado la velocidad, se obtiene el porcentaje de vehículos demorados a partir de las capacidades en el 25% y 100% de la intensidad total.

$$PF = 100 \cdot \left[1 - e^{\left(m \cdot \left\{ \frac{v_d}{1000} \right\}^p \right)} \right] \quad (Ecuación 17)$$

Donde:

- *PF* porcentaje de vehículos demorados.
- ullet v_d intensidad direccional.
- m coeficiente de ecuación.
- p coeficiente de exponente.

$$PF_{cap} = b_0 + b_1(L) + b_2 \cdot (\sqrt{L}) + b_3 \cdot (FFS) + b_4 \cdot (\sqrt{FFS}) + b_5 \cdot (HV\%) + b_6 \cdot (FFS \cdot \frac{v_0}{1000}) + b_7 \cdot (\sqrt{\frac{v_0}{1000}})$$
(Ecuación 18)

Vertical Class	bo	bı	<i>b</i> ₂	Ьз	64	bs	bs	Ь
1	37.68080	3.05089	-7.90866	-0.94321	13.64266	-0.00050	-0.05500	7.13758
2	58.21104	5.73387	-13.66293	-0.66126	9.08575	-0.00950	-0.03602	7.14619
3	113.20439		-18,90000	0.46542	-6.75338	-0.03000	-0.05800	10.03239
4	58.29978	-0.53611	7.35076	-0.27046	4.49850	-0.01100	-0.02968	8.89680
5	3.32968	-0.84377	7.08952	-1,32089	19.98477	-0.01250	-0.02960	9.99453

Tabla 7.7. Coeficientes de la Ecuación 18.

$$PF_{25cap} = c_0 + c_1(L) + c_2 \cdot (\sqrt{L}) + c_3 \cdot (FFS) + c_4 \cdot (\sqrt{FFS}) + c_5 \cdot (HV\%) + c_6 \left(FFS \cdot \frac{v_0}{1000}\right) + c_7 \cdot \sqrt{\frac{v_0}{1000}}$$
(Ecuación 20)

Vertical Class	0	a	9	9	a	9	a	9
→ 1	18.01780	10.00000	-21,60000	-0.97853	12.05214	-0.00750	-0.06700	11.60405
2	47.83887	12.80000	-28,20000	-0.61758	5.80000	-0.04550	-0.03344	11.35573
3	125,40000	19.50000		0.90672	-16.10000	-0.11000	-0.06200	14.71136
4	103.13534	14.68459	-23,72704	0.66444	-11.95763	-0.10000	0.00172	14.70067
5	89.00000	19.02642	-34.54240	0.29792	-6.62528	-0.16000	0.00480	17.56611

Tabla 7.8. Coeficientes de la Ecuación 20.

$$m = d_1 \left(\frac{0 - \ln\left[1 - \frac{PF_{25cap}}{100}\right]}{0.25 \cdot \left[\frac{cap}{1000}\right]} \right) + d_2 \left(\frac{0 - \ln\left[1 - \frac{PF_{cap}}{1000}\right]}{\left[\frac{cap}{1000}\right]} \right) \quad (Ecuación 22)$$

Segment Type	dı	dı
Passing Constrained and Passing Zone	-0.29764	-0.71917
Passing Lane	-0.15808	-0.83732

Tabla 7.9. Coeficientes de la Ecuación 22.

$$p = e_0 + e_1 \cdot \frac{0 - ln \left[1 - \frac{PF_{25cap}}{1000} \right]}{0.25 \cdot \left[\frac{cap}{1000} \right]} + e_2 \cdot \frac{0 - ln \left[1 - \frac{PF_{cap}}{1000} \right]}{\left[\frac{cap}{1000} \right]} + e_3 \cdot \sqrt{\frac{0 - ln \left[1 - \frac{PF_{25cap}}{1000} \right]}{0.25 \cdot \left[\frac{cap}{1000} \right]}} + e_4 \cdot \sqrt{\frac{0 - ln \left[1 - \frac{PF_{cap}}{1000} \right]}{\left[\frac{cap}{1000} \right]}} + e_4 \cdot \sqrt{\frac{0 - ln \left[1 - \frac{PF_{cap}}{1000} \right]}{\left[\frac{cap}{1000} \right]}}$$

Segment Type	80	eı	en	6)	61
Passing Constrained and Passing Zone	0.81165	0.37920	-0.49524	-2.11289	2.41146
Passing Lane	-1.63246	1.64960	-4.45823	-4.89119	10,33057

Tabla 7.10. Coeficientes de la Ecuación 23.

Por último, se define el nivel de servicio a partir de la densidad de vehículos demorados, a partir de la siguiente formula:

$$FD = \frac{PF}{100} \cdot \frac{v_d}{S} \qquad (Ecuación 35)$$

Finalmente, ingresamos a la tabla con un valor de FD = 5,796:

	Follower Density (Follower Density (followers/mi/ln)									
LOS	Higher-Speed Highways Posted Speed Limit ≥ 50 mi/h	Lower-Speed Highways Posted Speed Limit < 50 mi/h									
A	≤ 2.0	≤ 2.5									
В	> 2.0 - 4.0	> 2.5 - 5.0									
C	> 4.0 - 8.0	> 5.0 - 10.0									
D	> 8.0 - 12.0	> 10.0 - 15.0									
E	> 12.0	> 15.0									
F	Demand exce	Demand exceeds capacity									

Tabla 7.11. Niveles de servicio de carretera de dos carriles.

Por lo tanto, se define un nivel de servicio "C" de calidad "normal".

ANEJO N.º 7 - PLANEAMIENTO DEL TRÁFICO

• Tramo de mayor inclinación con adelantamiento prohibido (PK 0+000 – PK 0+120,62).

					CÁLCULO N	IVEL DE SERVIC	CIO		
Parámetro		Unidad		Valor	Parámetro		Unidad	Resultado	Ecuación
Tramo de Análisis	PK			0+000 - 0+120,62	Intensidad en la dirección considerada	vd	veh/h/carril	456	1
CLASE VERTICAL	CVert			1	Intensidad total	v0	veh/h	456	
Longitud tramo	Lt	mi	120,62	0,075	Velocidad libre básica	BFFS	mi/h	42,502	2
Adelantamiento			Prohibido	Prohibido	Velocidad libre	FFS	mi/h	40,286	3
Factor Hora Punta	FHP		0,94	0,94	Coeficiente Ecuación 4	a		0,0333	4
Límite de velocidad	Spl	mi/h	60	37,28	Factor reductor ancho de carril	fls	mi/h	2,214	5
Porcentaje pesados	HV	%		7	Factor reductor por puntos de acceso	fa	mi/h	0	6
Inclinación	i	%	3,99	3,99	Velocidad en la dirección analizada	S	mi/h	38,634	7
Anchura de carriles (ft)	LW	ft	3,5	11,5	Coeficiente de la pendiente	m		2,73583	8
Anchura de arcenes (ft)	SW	ft	1	3,3	Coeficiente del exponente	р		0,48824	11
IMD2045		veh/día		8160	Capacidad 100%	PFcap100	%	88,143	18
Porcentaje de intensidad media K*30		%	10,5	0,105	Capacidad 25%	PFcap25	%	56,480	20
Volumen total punta horaria				856,8	Coeficiente de la pendiente	m		-1,48468	22
Reparto		%	50	0,5	Coeficiente del exponente	р		1,00121	23
Volumen en una dirección	Vd	veh/h/carril		428,4	Porcentaje de vehículos demorados	PF	%	49,13	17
Volumen en dirección opuesta	V0	veh/h/carril		428,4	Densidad de vehículos demorados	FD	veh/mi	5,796	35
					Nivel de servicio	NS		С	

Universidad de Cantabria

ANEJO Nº 8 - ESTUDIO GEOTÉCNICO DEL CORREDOR

ANEJO Nº8 – ESTUDIO GEOTÉCNICO DEL CORREDOR

Índice

1.	INTR	ODUCCIÓN	2
2.	GEO ⁻	ΓΕCNIA	2
2	2.1.	Caracterización Geotécnica de los Materiales	2
2	2.2.	Mapa Geotécnico Nacional	3
3.	CÁLC	CULO DE TALUDES	4
3	3.1.	Taludes de Desmonte	4
3	3.2.	Taludes de Terraplén	4
	3.2.1	Clasificación AASHTO	4
	3.2.2	Clasificación SUCS	5
4.	RECC	DMENDACIONES PARA LA EXPLANADA	5

1. INTRODUCCIÓN

En el presente anejo se definirá la geotecnia de la zona donde se proyecta el nuevo trazado. En base a esta, según las características del suelo, se especifican los taludes de desmonte y terraplén que se aplican a lo largo del trazado.

2. GEOTECNIA

2.1. CARACTERIZACIÓN GEOTÉCNICA DE LOS MATERIALES

Se ha analizado como referencia la hoja 11-Reinosa del Mapa Geotécnico General del IGME, a una escala de 1:200.000, para analizar las propiedades geotécnicas de la zona de estudio del nuevo trazado.

Figura 8.1. Geotecnia en la zona de estudio.

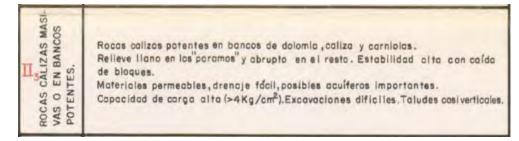


Figura 8.2. Criterios de división y características generales en la zona del trazado.

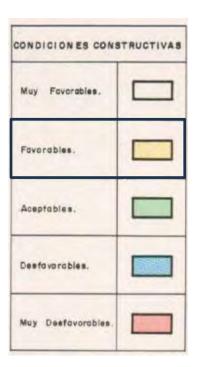
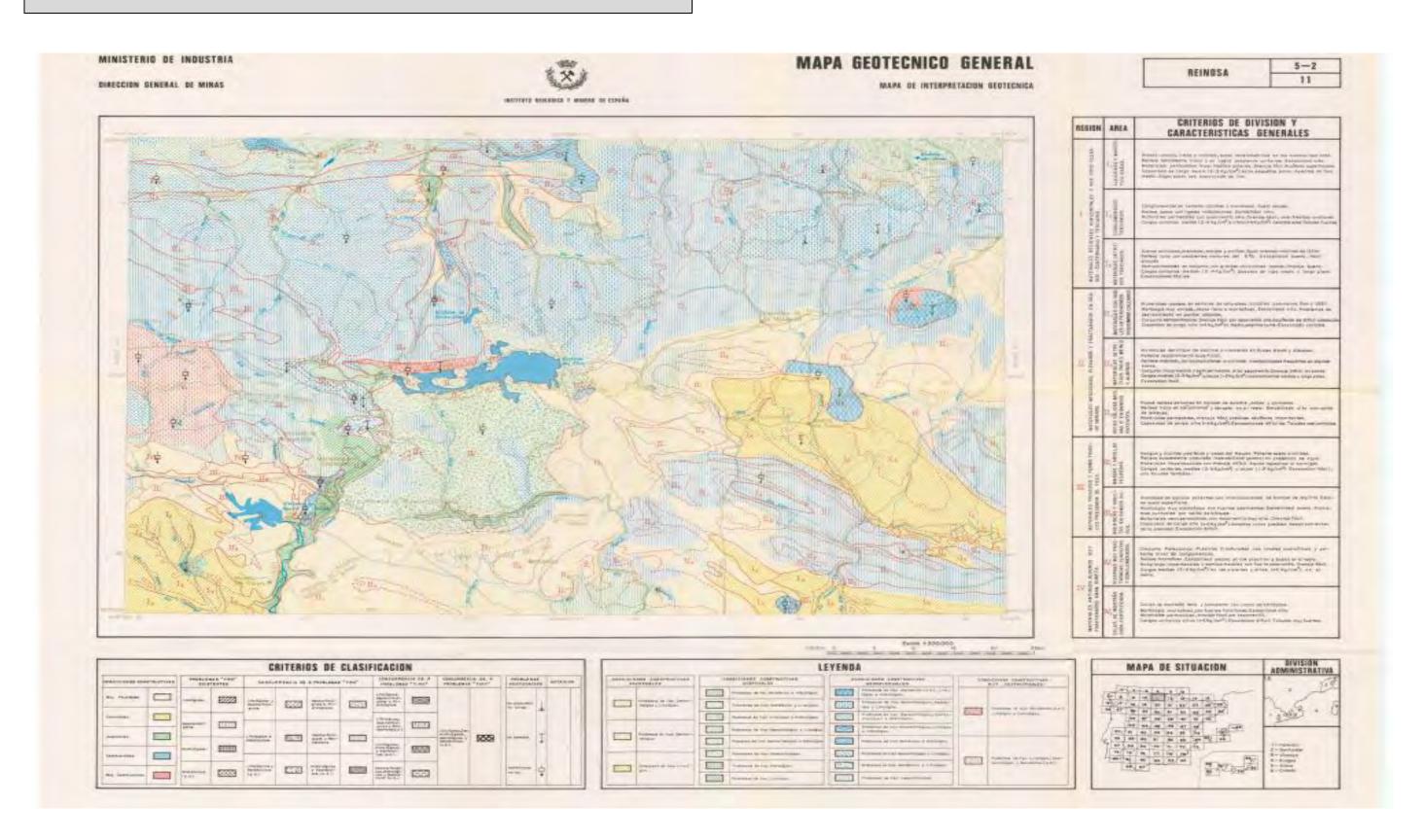



Figura 8.3. Condiciones constructivas en la zona de estudio.

De acuerdo con esta con este mapa, se observa un terreno de condiciones favorables en la zona de interés, existiendo riesgos localizados de tipo litológico o hidrológico. Se clasifica la zona en estudio como II3, compuesta principalmente por rocas calizas potentes en bancos de dolomía, caliza y carniolas, lo cual provoca un relieve llano en los "páramos" y abrupto en el resto, con una estabilidad alta, con caída de bloques. Se presentan materiales permeables con drenaje fácil y posibles acuíferos para tener en cuenta.

2.2. MAPA GEOTÉCNICO NACIONAL

B. CÁLCULO DE TALUDES

Debido a falta de datos de la geotecnia de la zona de proyecto, la definición de las propiedades del suelo se realizará en función únicamente de las características geológicas anteriormente detalladas.

3.1. TALUDES DE DESMONTE

Para el cálculo de los taludes de desmonte, se usarán los valores de ángulos aproximados, presentados a continuación:

	The second secon	ALTURA DEL DE	SMONTE en metros.
TIPO DE TERRENO		H < 3	3 ≤ H ≤ 6
Granular	Gravas y zahorras Arenas gruesas y medias, no limosas	1,5:1	1,5:1
Arenas	Arenas finas limosas uniformes	1,5:1	1,75:1
	Limos y limos arenosos	1,5:1	1,5:1
Coherente	Arcillas arenosas y limos arcillosos de IP de 10 a 20	1,25:1	1,25:1
	Arcillas de IP de 20 a 30	1,25:1	1,5:1
	Arcillas de IP > 30	1,25:1	1,25:1

Tabla 8.1. Valores de ángulos de talud de desmonte aproximados (H/V).

Como se observa en la tabla anterior, y teniendo en cuenta que los materiales del terreno son rocas calizas, se considerará un talud de desmonte de **3(H):2(V)** para cualquier altura.

3.2. TALUDES DE TERRAPLÉN

Para el cálculo de los taludes de terraplén, se usarán los valores de ángulos aproximados, presentados a continuación:

		CONDICIONES DE SITUACIÓN					
	LUCKO I	No sujeto a in	nundación	Sujeto a inundación			
AASHTO	SUCS	Altura terraplén en m.	Pendiente del talud (H/V)	Altura terraplén en m.	Pendiente del talud (H/V)		
A-1	GW, GP, SW	NO CRÍTICA	1,5:1	NO CRÍTICA	2:1		
A-3	SP	NO CRÍTICA	1,5:1	NO CRÍTICA	2:1		
A-2-4	GM, SM	GM, SM < 15	2:1	< 10	3:1		
A-2-5				3 < H < 10	3:1		
A-2-6, A-2-7	GC, SC	< 15	2:1	< 15	3:1		
A-4, A-5	ML, MH	< 15	2:1	< 15	3:1		
A-6, A-7	CL, CH	< 15	2:1	< 15	3:1		
A-8	Pt, OL, OH		NO CONVI	ENIENTES			

Tabla 8.2. Valores de ángulos de talud de terraplén aproximados (H/V).

Para poder determinar las dimensiones de los taludes de terraplén, se debe conocer el tipo de árido según la clasificación AASHTO o bien la clasificación SUCS, a continuación, analizaremos ambas:

3.2.1 CLASIFICACIÓN AASHTO

Debido a la falta de datos del suelo como el análisis granulométrico o el índice de grupo, no se puede hacer uso de la tabla de clasificación general AASHTO, por lo que usaremos la siguiente tabla, de valoración de los suelos AASHTO:

Clasifi- cación	Composición del material	Permea- bilidad	Capilaridad	Elasticidad	Cambios de volumen	Para capa de rodadura	Para base	Para subbase	Para terraplenes >de 15m	Para terraplenes <de 15m<="" th=""><th>Comportamiento después de compactado</th><th>Fallos que presenta el terreno</th></de>	Comportamiento después de compactado	Fallos que presenta el terreno
A-I	Mezcla de grava, arena, limo y arcilla, en cantida- des bien proporcionadas	Baja	Baja	Casi nula	Muy pequeños	Excelente	Bueno a excelente	Bueno a excelente	Bueno a exce- lente	Excelente	Excelente. Estable en tiempo seco y húmedo	Prácticamente ninguno
A-2	Mezcla mal proporciona- da de grava, arena, limo y arcilla. Tiene limo o arcilla en exceso	Baja a mediana	Baja a mediana. A veces perjudi- cial	Casi nula	A veces perjudi- ciales cuando son plásticos	Regular a bueno	Regular a excelente	Regular a excelente	Regular a bueno	Bueno	Bueno a excelente. Estable en tiempo seco. A veces polvoriento. Se reblandece en tiempo húmedo	Se reblandece cuando llueve En tiempo seco se vuelve sució y polvoriento
A-3	Arena o mezcla de grava y arena, con poco o nada de material fino	Mediana a elevada	Baja	Casi nula	Muy pequeños	Malo a regular	Regular a excelente	Regular a excelente	Regular a bueno	Bueno	Bueno a excelente. Es más estable en condiciones húmedas	Es inestable cuando se halla seco. Tiende a deslizarse cuando no está debidamente confinado. No tiene suficiente cohesión
Α-4	Material limoso sin grava, ni arena gruesa. Contiene algo de arena fina y mediana. Su contenido de arcilla no es elevado	Baja a mediana	Muy elevada perjudicial	Baja	Regulares a grandes. Perjudi- ciales en época de heladas	Malo a pésimo	Malo a regular	Malo a regular	Malo a bueno	Malo a bueno	Regular en tiempo seco. Inestable en tiempo húmedo	Absorbe agua rápidamente perdiendo estabilidad. Sus- ceptible de erosiones y lavados en época de lluvia. Posibilidad de hinchamientos de terreno
A-5	Material limoso seme- jante a A-4 pero con cierta cantidad de mica ó diatomáceas que le da elasticidad	Baja	Regular a elevada	Elevada perjudicial	Regulares a grandes. A veces perjudiciales cuando llueve	Pésimo	Malo	Malo	Pėsimo	Malo a pésimo	Semejante al A-4	Presenta además una elastici dad perjudicial que impide un buena compactación
A-6	Terreno arcilloso sin material grueso. Poca arena fina, Rico en material coloidal	Práctica- mente imper- meable	Regular a elevada	Baja	Grandes. Pueden ser perjudiciales en época de lluvia	Malo a pesimo	Regular a pėsimo	Pésimo a regular	Malo a pésimo	Regular a malo	Regular a bueno en tiempo seco. Malo en tiempo lluvioso	En épocas de lluvia se pone resbaladizo y los pavimentos fallan por falta de base firme.Cuando se humedece seca sufre hinchamientos y contracciones perjudiciales
A-7	Terreno arcilloso seme- jante a A-6, pero no tan- rico en material coloidal. Presenta propiedades elásticas	Baja	Regular a elevada	Elevada a perjudicial	Grandes. Pueden ser perjudiciales en época de lluvia	Malo a pesimo	Regular a pésimo	Regular a pésimo	Malo a pésimo	Malo a pesimo	Regular a bueno en tiempo seco. Malo en tiempo lluvioso	Los mismos inconvenientes que A-6.Presenta además um clasificación perjudicial que impide una buena compacta- ción
A-8	Terreno turboso, suave y esponjoso. Puede contener arena y mate- rial fino en cantidades variables	Muy permea- ble	Muy elevada perjudicial	Muy elevada perjudicial	Grandes perjudi- ciales	Pésimo	Pésimo	Pésimo	Pésimo	Pésimo	El material debe retirar- se.Compactándolo no se obtiene resultado satisfac- torio alguno	Pésimo material para em- plearlo en construcción. Su valor soporte es casi nulo

Tabla 8.3. Valoración de los suelos AASHTO.

Según la composición del material que constituye este terreno, se podría considerar el tramo como A-1, que serían mezclas de grava, arena, limo y arcilla en cantidades bien proporcionadas.

ANEJO Nº 8 - ESTUDIO GEOTÉCNICO DEL CORREDOR

TRAZADO DE LA VARIANTE DE PUENTE VIESGO.

3.2.2 CLASIFICACIÓN SUCS

SÍMBOLO	TIPO DE SUELO	CAPACIDAD DE CARGA	RIESGO DE ASIENTOS	MODIFICACIÓN DE RESISTENCIA POR CAMBIOS DE HUMEDAD	COMPACTABILIDAD	RIESGO DE DESLIZAMIENTO DE TALUDES
GW	Gravas limpias bien gra- duadas	Muy alta	Bajísimo	Muy baja	Muy buena	Muy bajo
GP	Gravas limpias mal gradua- das	Alta	Muy bajo	Muy baja	Buena	Bajo
SW	Arenas limpias bien gra- duadas	Muy alta	Bajísimo	Muy baja	Muy buena	Muy bajo
SP	Arenas limpias mal gradua- das	Alta	Muy bajo	Muy baja	Buena	Bajo
GC	Gravas arcillosas	Alta	Bajo	Baja a media	Buena a media	Muy bajo
SC	Arenas arcillosas	Alta o media	Bajo	Baja a media	Buena a media	Bajo
GM	Gravas limosas	Alta	Bajo	Baja	Media	Bajo
SM	Arenas limosas	Alta a media	Bajo	Baja	Media	Bajo a medio
ML	Limos de baja plasticidad	Media a baja	Medio	Media a alta	Mala	Medio
CL	Arcillas de baja plasticidad	Baja	Medio	Media a alta	Media a mala	Medio a alto
MH	Limos de alta plasticidad	Baja	Alto	Alta	Muy mala	Medio a alto
CH	Arcillas de alta plasticidad	Muy baja	Muy alto	Alta	Mala	Alto
0	Suelos orgánicos	Bajísima	Altísimo	Altísima	Muy mala	

Tabla 8.4. Valoración de los suelos SUCS.

Según la tabla anterior y el tipo de suelo, se le atribuirá una tipología GW (gravas limpias bien graduadas).

Por tanto, teniendo en cuenta que la zona de proyecto no es una zona inundable, se determina que el talud de los terraplenes, independientemente de su altura, será de 3(H):2(V).

4. RECOMENDACIONES PARA LA EXPLANADA

De acuerdo con la siguiente tabla, se obtendrán características de las rocas presentes y se determinará la categoría de explanada para así posteriormente poder determinar las dimensiones del firme.

El suelo en la zona de estudio se compone en gran parte de calizas y rocas estratificadas, es decir, rocas sedimentarias no granulares, que presentan una muy alta capacidad de carga, una alterabilidad baja en presencia de agua, una compactabilidad media/fácil y una alterabilidad potencial baja.

TIPOS DE ROCA	CAPACIDAD DE CARGA	MODIFICACIÓN DE RESISTENCIA EN PRESENCIA DE AGUA	COMPACTABILIDAD	ALTERABILIDAD POTENCIAL
Ígneas ácidas de grano grueso	Muy alta	Nula	Difícil	Muy baja
Ígneas básicas de grano grueso	Muy alta	Nula	Dificil	Muy baja
Ígneas ácidas de grano fino	Muy alta	Nula	Dificil	Muy baja
Ígneas básicas de grano fino	Muy alta	Nula	Dificil	Muy baja
Ígneas no granulares	Alta	Nula	Muy dificil	Baja
Sedimentarias de grano grueso	Alta	Muy baja	Media	Baja
Sedimentarias de grano fino	Alta	Media a baja	Media a fácil	Media
Sedimentarias no granu- lares	Muy alta	Baja	Media a fácil	Baja
Sedimentarias cristalinas	Baja	Muy alta	Irregular	Muy alta
Metamórficas de grano grueso	Alta	Nula	Difícil	Baja
Metamórficas de grano fino	Alta a media	Media a baja	Difícil a media	Alta
Metamórficas no granu- lares	Muy alta	Nula	Dificil	Muy baja

Tabla 8.5. Características de los principales tipos de rocas en cuanto a aptitud para cimientos.

Por lo tanto, considerando las características observadas de los suelos y las rocas presentes en la zona de estudio, además de la falta de datos geotécnicos específicos como el módulo de compresibilidad en segunda carga o el índice CBR, se asumirá que el terreno corresponde a un suelo tolerable. En base a ello, se busca alcanzar una explanada de tipo intermedio, clasificada como categoría E2.

ANEJO N.º 9 - FIRMES Y PAVIMENTOS

ANEJO Nº9 – FIRMES Y PAVIMENTOS

ANEJO N.º 9 - FIRMES Y PAVIMENTOS

Índice

1. INTRODUCCIÓN	2
2. PARÁMETROS DE DISEÑO	2
2.1. Categoría de Tráfico Pesado	2
2.2. Tipo de Explanda	2
2.2.1. Categoría de Explanada	2
2.2.2. Tipo de Suelo	2
3. DIMENSIONAMIENTO DE LA EXPLANADA	3
4. DIMENSIONAMIENTO DEL FIRME	3
4.1. Capa Bituminosa	3
5 CONCLUSIÓN	

ANEJO N.º 9 - FIRMES Y PAVIMENTOS

1. INTRODUCCIÓN

En el presente anejo se dimensiona la sección del firme de la carretera, empleando como parámetros de diseño la IMD de vehículos pesados por carril y la categoría de la explanada, definida por las características geotécnicas y geológicas de los materiales sobre los que se asienta. Estas dimensiones se determinarán de acuerdo con la siguiente normativa:

- Norma 6.1-IC "Secciones de firme", de la Instrucción de Carreteras (Orden FOM/3460/2003, de 28 de noviembre).
- Orden Circular OC 1/2023 sobre actualización de espesores de las capas y tipos de m.b.c. y semicaliente de la Norma 6.1 IC Secciones de firme.
- Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3).

2. PARÁMETROS DE DISEÑO

2.1. CATEGORÍA DE TRÁFICO PESADO

La IMD de vehículos pesados en el año de puesta en servicio (IMP_p), calculada en el Anejo 7 — Planeamiento del Tráfico es de 215 vehículos pesados por día y carril. Con este valor ingresamos a la tabla siguiente, obteniendo la categoría de tráfico pesado T2.

CATEGORÍA DE TRÁFICO PESADO	Too	ŢÜ	TI	T2
IMDp	≥ 4 000	< 4 000	< 2 000	< 800
(vehículos pesados/día)	≥ 4 000	≥ 2 000	≥ 800	≥ 200

Tabla 9.1. Categorías de tráfico pesado TOO a T2. Norma 6.1-IC "Secciones de firme".

2.2. TIPO DE EXPLANDA

2.2.1. CATEGORÍA DE EXPLANADA

Esta categoría se define a partir del módulo de compresibilidad en el segundo ciclo de carga E_{v2} , que se obtiene de acuerdo a la NLT-357 "Ensayo de carga con placa". Sin embargo, se carece de estos datos geotécnicos, por lo que, como se definió en el Anejo N^0 8 — Estudio Geotécnico del Corredor, se dispondrá de una explanada de

categoría E2, lo que correspondería para un valor $E_{v2} \ge 120~(MPa)$, según la tabla de categoría de la explanada de la Norma 6.1-IC, que aparece a continuación:

CATEGORÍA DE EXPLANADA	EI	E2	E3
E _{v2} (MPa)	≥ 60	≥ 120	≥ 300

Tabla 9.2. Categorías de explanada. Norma 6.1-IC "Secciones de firme".

2.2.2. TIPO DE SUELO

Los materiales empleados para la formación de la explanada se definen de acuerdo con las mismas suposiciones del Anejo Nº8 – Estudio Geotécnico del corredor, que considera que el suelo empleado en la explanada será un suelo tolerable (0).

SIMBOLO	DEFINICIÓN DEL MATERIAL	ARTÍCULO DEL PG-3	PRESCRIPCIONES COMPLEMENTARIAS	
IN	Suelo inadecuado o Marginal	330	 Su empleo sólo será posible si se estabiliza con cal o con cemento para conseguir S-EST1 o S-EST2. 	
0 Suelo tolerable		330	 CBR ≥ 3 (*). Contenido en materia orgánica < 1%. Contenido en sulfatos solubles (SO₃) < 1% Hinchamiento libre < 1%. 	
1	Suelo adecuado	330	- CBR ≥ 5 (*)(**).	
2	Suelo seleccionado	330	- CBR ≥ 10 (*) (**).	
3	Suelo seleccionado	330	- CBR ≥ 20 (*)	
S-EST1 S-EST2 S-EST3	Suelo estabilizado in situ con cemento o con cal	512	- Espesor mínimo: 25 cm. - Espesor máximo: 30 cm.	

Tabla 9.3. Tipos de suelo. Norma 6.1-IC "Secciones de firme".

ANEJO N.º 9 - FIRMES Y PAVIMENTOS

TRAZADO DE LA VARIANTE DE PUENTE VIESGO.

B. DIMENSIONAMIENTO DE LA EXPLANADA

Considerando el tipo de suelo de suelo de la explanación (0) y de la categoría de explanada (E2), la Norma 6.1-IC establece el dimensionamiento de la explanada según la siguiente tabla, de la cual se elige la solución de 75 cm de espesor de suelo seleccionado (2).

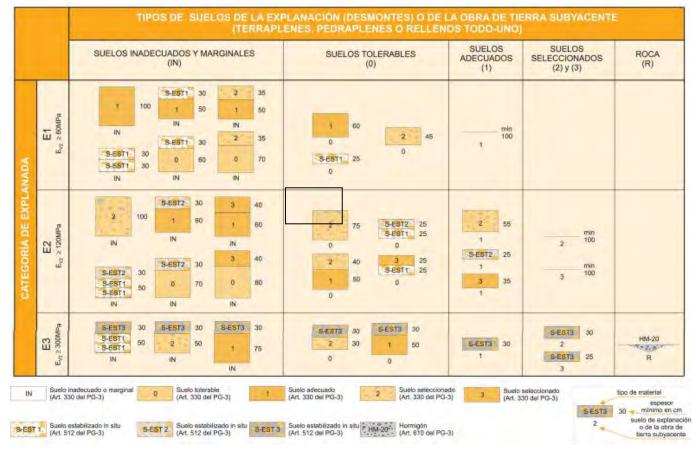


Tabla 9.4. Formación de la explanada. Norma 6.1-IC "Secciones de firme".

4. DIMENSIONAMIENTO DEL FIRME

Dadas la categoría de la explanada (E2) y la del tráfico pesado (T2), se determinan las secciones de acuerdo con la normativa vigente.

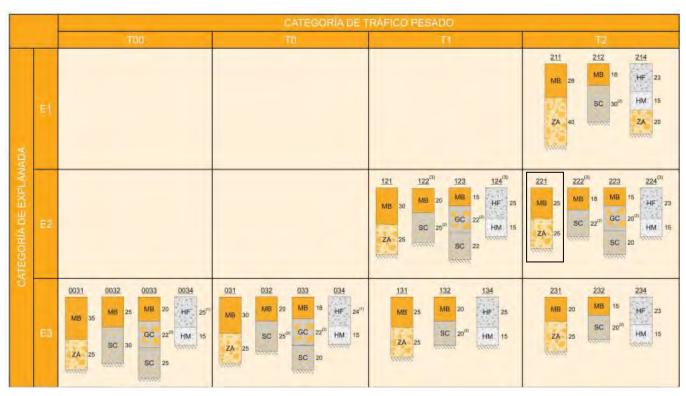


Tabla 9.5. Catálogo de secciones de firme. Norma 6.1-IC "Secciones de firme".

Se adopta la solución 221, que consta de 25 cm de mezcla bituminosa (MB) sobre una capa de 25 cm de zahorra artificial (ZA), ya que no requiere la instalación de una planta de fabricación de suelo cemento.

Para el caso del túnel, se adopta la solución 224, con una capa de 23 cm de hormigón firme y 15 cm de hormigón vibrado, por temas de seguridad. Por otro lado, para el caso del puente, se adopta una solución de 15 cm de mezcla bituminosa.

4.1. CAPA BITUMINOSA

La mezcla bituminosa se dispone en tres capas (rodadura, intermedia y base), Las cuales se dimensionarán como aparece en la tabla de la Orden Circular OC 1/2023 sobre "Actualización de espesores de las capas y tipos de mezclas bituminosas en caliente y semicaliente" mostrada a continuación:

TIPO DE	TIPO DE	TIPO SEGÚN TASA DE	TAMAÑO	CATEG	ORÍA DE TR PESADO	ÁFICO		
CAPA	CAPA MEZCLA 1 ASFALTO NOM RECUPERADO4	NOMINAL	T1 y superior	T2 y T31	T32 e inferior			
	AC	01	16		4	-5		
	tipos D y S	0 y 1	22		5-	-6		
	BBTM ²		8		2			
	tipos A y B	0	11		3			
	PA ²	0	11	4				
Rodadura	Rodadura		8	2-3				
	SMA	0	11	3-5				
	-		5		1-1,5			
	AUTL ²	AUTL ²	AUTL ²	Ninguno	8	1,5-2		
			11	2				
7	AC tipos D y S	Todos	22		5-10 ³			
Intermedia	MAM	0 y 1	22	6-10				
	SMA	0	16	5-9				
	AC No. C	Tudos	22	7-10				
Base AC, tipo S	Todos	32	10-13					
	MAM	0 y 1	22	7-13				

Tabla 9.6. Espesor de capas de mezcla bituminosa en caliente.

Una vez determinado el espesor de cada capa bituminosa, y de acuerdo con lo estipulado en el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3), el tipo de mezcla se puede determinar en función del tipo de capa y del espesor de esta, con las siguientes tablas:

	TIPO DE MEZCLA	ESPESOR (cm)	
TIPO DE CAPA	DENOMINACIÓN. NORMA UNE-EN 13108-1(*)		
	AC16 surf D		
DODADUDA	AC16 surf S	4 – 5	
RODADURA	AC22 surf D	0.4	
	AC22 surf S	> 5	
4-4	AC22 bin D		
INTERMEDIA	AC22 bin S	5-10	
INTERMEDIA	AC32 bin S	5-10	
	AC 22 bin S MAM (**)		
	AC32 base S		
BASE	AC22 base G	7-15	
	AC32 base G	7-15	
	AC 22 base S MAM (***)		

Tabla 9.7. Espesores de capa de mezclas bituminosas en caliente

Por lo tanto, las capas del firme estarán compuestas de los siguientes tipos de mezcla:

- En la capa de rodadura, se dispondrá una mezcla bituminosa en caliente tipo AC 16 de 5 cm de espesor.
- En la capa intermedia, se dispondrá una mezcla bituminosa en caliente tipo AC 22 de 10 cm de espesor.
- En la capa base, se dispondrá una mezcla bituminosa en caliente tipo AC 32 de 10 cm de espesor.

Para la elección de los riegos de adherencia y de imprimación se utilizará la siguiente tabla:

DENOMINACIÓN UNE-EN 13808	APLICACIÓN		
C60B3 ADH	Book and the same of the		
C60B2 ADH	Riegos de adherencia		
C60B3 TER	Riegos de adherencia		
C60B2 TER	(termoadherente)		
C60BF4 IMP	Discount de la contraction de		
C50BF4 IMP	Riegos de imprimación		
C60B3 CUR	Diagon de avende		
C60B2 CUR	Riegos de curado		
C60B4 MIC	100000000000000000000000000000000000000		
C60B5 MIC	Microaglomerados en frío		
C60B5 REC	Reciclados en frío		

Tabla 9.8. Emulsiones Catiónicas

5. CONCLUSIÓN

Finalmente, se define el espesor de las capas de firme y de la explanada:

	Сара	Espesor (cm)
	Mezcla bituminosa AC16 SURF 50/70 S	5
	Riego de adherencia C60B3 ADH	-
	Mezcla bituminosa AC22 BIN 50/70 S	10
Firme	Riego de adherencia C60B3 ADH	-
	Mezcla bituminosa AC32 BASE 50/70 G	10
	Riego de imprimación C60BF4 IMP	-
	Zahorra artificial	25
Explanada	Suelo seleccionado (2)	75

Tabla 9.9. Capas de explanada y firme.

Universidad de Cantabria

ANEJO N.º 10 - TRAZADO GEOMÉTRICO

ANEJO Nº10 – TRAZADO GEOMÉTRICO

ANEJO N.º 10 - TRAZADO GEOMÉTRICO

Índice

1.	INTR	ODUCCIÓN	. 2
2.	TRAZ	ADO EN PLANTA	. 2
2.	1.	Alineaciones Rectas	. 2
2.	2.	Alineaciones Curvas	. 2
2.	.3.	Curvas de ACUERDO	. 4
2.	4.	Informe de Trazado en Planta	. 5
3.	TRAZ	ADO EN ALZADO	. е
3.	1.	Inclinación de las Rasantes	. е
3.	.2.	Informe de Trazado en Alzado	. 6
1	SECC	IÓN TRANSVERSAL	-

1. INTRODUCCIÓN

En el presente anejo se detallan las características del trazado geométrico de la solución adoptada. El trazado se ha diseñado considerando la Norma 3.1-IC "Trazado", publicada en el año 2016 por el Ministerio de Fomento, para una velocidad de proyecto de 60 km/h. Se presentan los informes de trazado en planta y en alzado.

2. TRAZADO EN PLANTA

La nueva variante se trata de una carretera C-60 de calzada única y doble sentido de circulación, perteneciente al grupo 3. En el trazado en planta de la variante se distinguen tres tramos rectos, unidos por curvas circulares con sus correspondientes curvas de transición en forma de clotoide.

A lo largo de su recorrido, la variante comienza en la salida de una glorieta, luego se encuentra un tramo de estructura que contiene un túnel seguido de un puente, cuyo cálculo y ejecución no es objeto de este proyecto. Como último tramo, después del puente se tiene otro tramo de carretera.

2.1. ALINEACIONES RECTAS

Para procurar la comodidad en la conducción para los usuarios, las alineaciones rectas deben ajustarse a una serie de valores de longitud máximos y mínimos en función de la velocidad de proyecto de la carretera, de acuerdo con la norma antes mencionada. En el caso de este proyecto, estos valores son los siguientes:

$$L_{min,s} = 1.39 \cdot V_p$$

$$L_{min,o} = 2,78 \cdot V_p$$

$$L_{max} = 16.7 \cdot V_p$$

Siendo:

- $L_{min,s}$ longitud mínima (m) para trazados en "S".
- $L_{min,o}$ longitud mínima (m) para el resto de los casos.
- L_{max} longitud máxima (m).
- V_n velocidad de proyecto (km/h)

V _p (km/h)	L _{min,s} (m)	L _{min.o.} (m)	L _{max} (m)
140	195	389	2 338
130	181	361	2 171
120	167	333	2 004
110	153	306	1 837
100	139	278	1 670
90	125	250	1 503
80	111	222	1 336
70	97	194	1 169
60	83	167	1 002
50	69	139	835
40	56	111	668

Tabla 10.1. Longitudes máximas y mínimas en alineaciones rectas

En el trazado del proyecto no se han proyectado alineaciones rectas de longitud superior al máximo establecido en la tabla ni menores al valor de longitud mínima para el caso de curvas con forma de "S".

2.2. ALINEACIONES CURVAS

En función de la velocidad de proyecto definida de 60 km/h, las curvas circulares deben ajustarse a una serie de valores de radios mínimos, peraltes máximos, visibilidad de parada en toda su longitud o la coordinación del trazado en planta y alzado. Estos valores son los de la siguiente tabla:

V _e (km/h)	40	50	60	70	80	90	100	110	120	130	140
f _{t MAX}	0,180	0,166	0,151	0,137	0,122	0,113	0,104	0,096	0,087	0,078	0,069

Tabla 10.2. Coeficiente de rozamiento transversal máximo movilizado.

• El valor del coeficiente de rozamiento transversal máximo movilizado será de 0,151.

	GRU	PO 1	GRU	JPO 2	GRU	IPO 3
VELOCIDAD DE PROYECTO	A-140 Y A-130		A-120, A-110, A-100, A-90, A-80 Y C-100		C-90, C-80, C-70, C-60, C-50 Y C-40	
(V_p) (km/h)	RADIO MÍNIMO (m)	PERALTE MÁXIMO (%)	RADIO MÍNIMO (m)	PERALTE MÁXIMO (%)	RADIO MÍNIMO (m)	PERALTE MÁXIMO (%)
140	1 050	8,00	-	-	-	-
130	850	8,00	→		+	-
120	-	-	700	8,00	_	8
110	~	yaa	550	8,00	-	-
100	120	San.	450	8,00	-	-
90	-	<u></u>	350	8,00	350	7,00
80	22) line	250	8,00	265	7,00
70	~)us	-	Ψ.	190	7,00
60	(II)	Na.	-	144	130	7,00
50	4) to	-	#-	85	7,00
40	Δ.	-	ш.	φ.	50	7,00

Tabla 10.3. Relación velocidad de proyecto-radio mínimo-peralte máximo.

- El radio mínimo de la carretera según la tabla será de 130 metros, valor que cumplen ambas curvas proyectadas de 160 y 320 metros.
- Por otro lado, el peralte de ambas curvas será del 7%, según la siguiente tabla, de acuerdo con los radios de curva antes mencionados.

GRUPO	DENOMINACIÓN	RADIO (m)	PERALTE (%)
		850 ≤ R ≤ 1 050	8
1	Autopistas y autovias	1 050 ≤ R ≤ 5 000	8 - 7,96·(1 - 1 050/R) ^{1,2}
	A-140 y A-130	5 000 ≤ R < 7 500	2
		7 500 ≤ R	Bombeo
		250 ≤ R ≤ 700	8
	Autopistas y autovías A-120, A-110, A-100, A-90 y A-80,	700 ≤ R ≤ 5 000	8 - 7,3·(1 - 700/R) ^{1,3}
2	carreteras multicarril C-100 y carreteras convencionales C-100	5 000 ≤ R < 7 500	2
		7 500 ≤ R	Bombeo
		50 ≤ R ≤ 350	7
	Carreteras multicarril C-90, C-80, C-70, C-60, C-50 y C-40 y	350 ≤ R ≤ 2 500	7 - 6,65·(1 - 350/R) ^{1,8}
3	carreteras convencionales C-90, C-80, C-70, C-60, C-50 y C-40	2 500 ≤ R < 3 500	2
		3 500 ≤ R	Bombeo

Tabla 10.4. Inclinación del peralte según el radio de curvatura.

Una vez se hayan determinado estos valores, se podrá definir la velocidad máxima en dichas curvas utilizando la siguiente expresión.

$$V^2 = 127 \cdot R \left(f_t + \frac{p}{100} \right)$$

Donde:

- *V* velocidad de la curva (km/h).
- R radio de la curva (m).
- f_t coeficiente de rozamiento transversal movilizado.
- p peralte de la curva (%).

ANEJO N.º 10 - TRAZADO GEOMÉTRICO

De esta manera, se obtienen los siguientes valores:

CURVA	P.K. INICIAL	P.K. FINAL	RADIO	PERALTE	Ft	Va	Vlim
CUNVA	P.R. INICIAL	P.N. FIINAL	m	%		km/h	km/h
1	0+196,78	0+568,12	160	7	0,151	60	67,01
2	0+569,33	0+743,55	320	7	0,151	60	94,77

Tabla 10.5. Velocidades máximas en las curvas de la carretera.

Ambas curvas han sido diseñadas para una velocidad de proyecto de 60 km/h, con un radio de 160 m y 320 m respectivamente, y un peralte del 7%, cumpliendo con los requisitos establecidos por la Instrucción 3.1-IC Trazado del Ministerio de Fomento para carreteras del Grupo 3, que exige un radio mínimo de 130 m y un peralte máximo del 7%. Ambas velocidades límite obtenidas (67,01 km/h y 94,77 km/h) garantizan un margen de seguridad adecuado superior al 10% respecto a la velocidad de proyecto, lo que asegura confort y seguridad en la circulación de los usuarios.

2.3. CURVAS DE ACUERDO

Las curvas de acuerdo tienen por objeto evitar discontinuidades en la curvatura del trazado, por lo que, en su diseño deberán proporcionar las mismas condiciones de comodidad y seguridad que el resto de los elementos del trazado. La ecuación fundamental de dicha curva de acuerdo es la siguiente:

$$R \cdot L = A^2$$

Siendo:

- R radio de la curva de transición (m).
- L longitud de la curva de transición (m).
- *A* parámetro de la clotoide.

Las curvas de acuerdo deben ajustarse, utilizando el siguiente gráfico, a una serie de valores mínimos de su parámetro en función de:

- La limitación de la variación de la aceleración centrífuga en el plano horizontal.
- La limitación por transición del peralte.
- La limitación por condiciones de percepción visual.

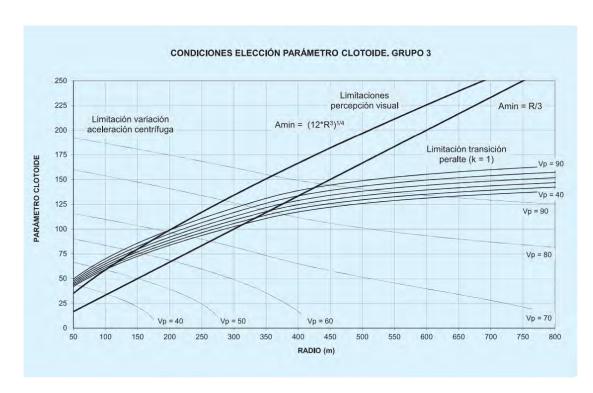


Gráfico 10.1. Condiciones de elección del parámetro de la clotoide para una carretera del grupo 3.

A continuación, se presenta una tabla resumen de los valores de Parámetro de Clotoide (A) obtenidos del gráfico y su respectiva longitud mínima calculada:

		ación por variación eración centrífuga		por transición de peralte	•	oor condiciones de epción visual
Curva	А	Lmin	А	Lmin	А	Lmin
1	75	35,15	110	75,62	137	117,3
2	45	6,32	80	20	85	22,57

Tabla 10.6. Longitudes mínimas de curvas de transición.

Por lo tanto, se definen los valores de la longitud de curva de transición para ambas curvas, cumpliendo con las condiciones antes mencionadas:

- Curva 1: 124 metros en ambas curvas de transición.
- Curva 2: 124 y 50 metros.

ANEJO N.º 10 - TRAZADO GEOMÉTRICO

2.4. INFORME DE TRAZADO EN PLANTA

A continuación, se muestran los valores de cada alineación del trazado en planta obtenidos en Civil 3D.

	Tangent Data		
Length:	196.780	Course:	N 24° 13' 19.1356" E
	Spiral Curve Data: clo	thoid	
Length:	124.000	L Tan:	83.326
Radius:	160.000	S Tan:	41.934
Theta:	22° 12' 07.6124"	P:	3.983
X:	122.151	K:	61.691
Y:	15.846	A:	140.855
Chord:	123.174	Course:	N 16° 49' 50.5889" E
	Circular Curve Dat	a	
Delta:	44° 10' 03.7259"	Type:	LEFT
Radius:	160.000		
Length:	123.339	Tangent:	64.917
Mid-Ord:	11.738	External:	12.668
Chord:	120.308	Course:	N 20° 03' 50.3398" W
	Spiral Curve Data: clo	thoid	
Length:	124.000	L Tan:	83.326
Radius:	160.000	S Tan:	41.934
Theta:	22° 12' 07.6124"	P:	3.983

X:	122.151	K:	61.691
Y:	15.846	A:	140.855
Chord:	123.174	Course:	N 56° 57' 31.2684" W
	Tangent Data		
Length:	1.211	Course:	N 64° 20' 59.8151" W
	Spiral Curve Data: clo	thoid	
Length:	124.000	L Tan:	82.830
Radius:	320.000	S Tan:	41.482
Theta:	11° 06' 03.8062"	P:	1.999
X:	123.535	K:	61.923
Y:	7.987	A:	199.198
Chord:	123.793	Course:	N 60° 39' 02.7836" W
	Circular Curve Dat	a	
Delta:	00° 02' 19.3456"	Type:	RIGHT
Radius:	320.000		
Length:	0.216	Tangent:	0.108
Mid-Ord:	0.000	External:	0.000
Chord:	0.216	Course:	N 53° 13' 46.3361" W
	Spiral Curve Data: clo	thoid	
Length:	50.000	L Tan:	33.344
Radius:	320.000	S Tan:	16.676
Theta:	04° 28' 34.4380"	P:	0.325
X:	49.969	K:	24.995
Y:	1.302	A:	126.491
Chord:	49.986	Course:	N 50° 13' 33.4271" W
	Tangent Data		
Length:	112.701	Course:	N 48° 44' 02.2253" W

3. TRAZADO EN ALZADO

El trazado en alzado de una carretera quedará determinado por la correcta combinación de acuerdos con inclinación uniforme (rectas) y curvas de acuerdo vertical (parábola).

3.1. INCLINACIÓN DE LAS RASANTES

La inclinación máxima de la rasante vendrá definida por la norma en función de la velocidad de proyecto.

VELOCIDAD DE PROYECTO (V _p) (km/h)	INCLINACIÓN MÁXIMA (%)	INCLINACIÓN EXCEPCIONAL (%)
100	4	5
90 y 80	5	7
70 y 60	6	8
50 y 40	7	10

Tabla 10.7. Pendiente máxima de la rasante para carreteras convencionales.

El valor mínimo de la inclinación de la rasante no será menor que 0,5 %. Excepcionalmente, la rasante podrá alcanzar un valor menor no inferior a 0,2%, para nuestro caso se tiene un valor de 0,24% en el tramo medio.

La inclinación de la línea de máxima pendiente en cualquier punto de la plataforma no será menor que 0,5 % y se procurará que no supere el 8 %. Para el caso del proyecto esta inclinación máxima es de 3,99%.

3.2. INFORME DE TRAZADO EN ALZADO

A continuación, se muestran los valores de cada alineación del trazado en alzado obtenidos en Civil 3D.

Curve Length (m)	Grade Out (%)	Elevation (m)	Station	PVI
0.000	3.994 %	81.001	0+00.000	1
190.357	0.244 %	89.619	2+15.797	2
233.018	-2.012 %	90.511	5+82.054	3
		84.996	8+56.248	4

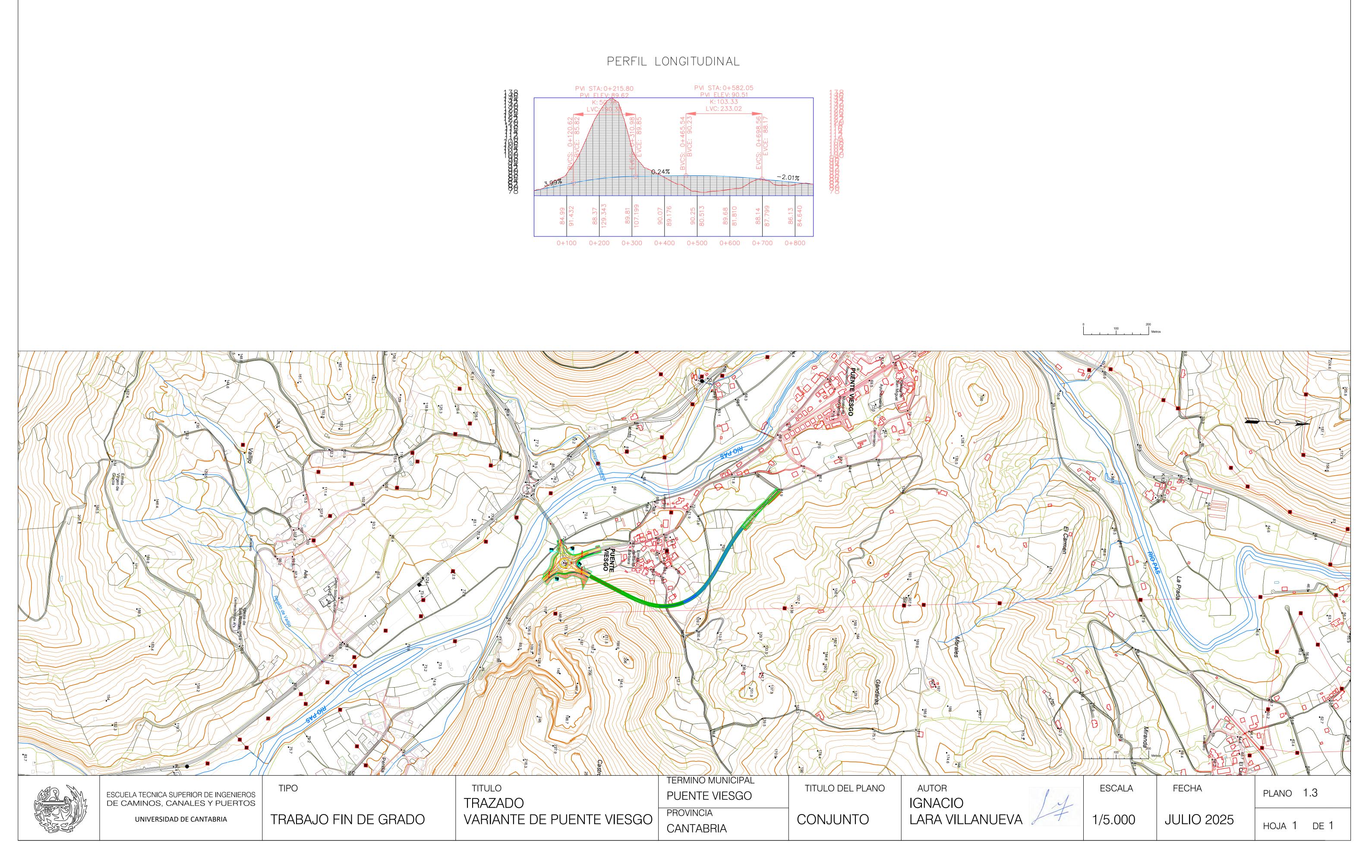
Tabla 10.8. Tabla Informe de Trazado en Alzado.

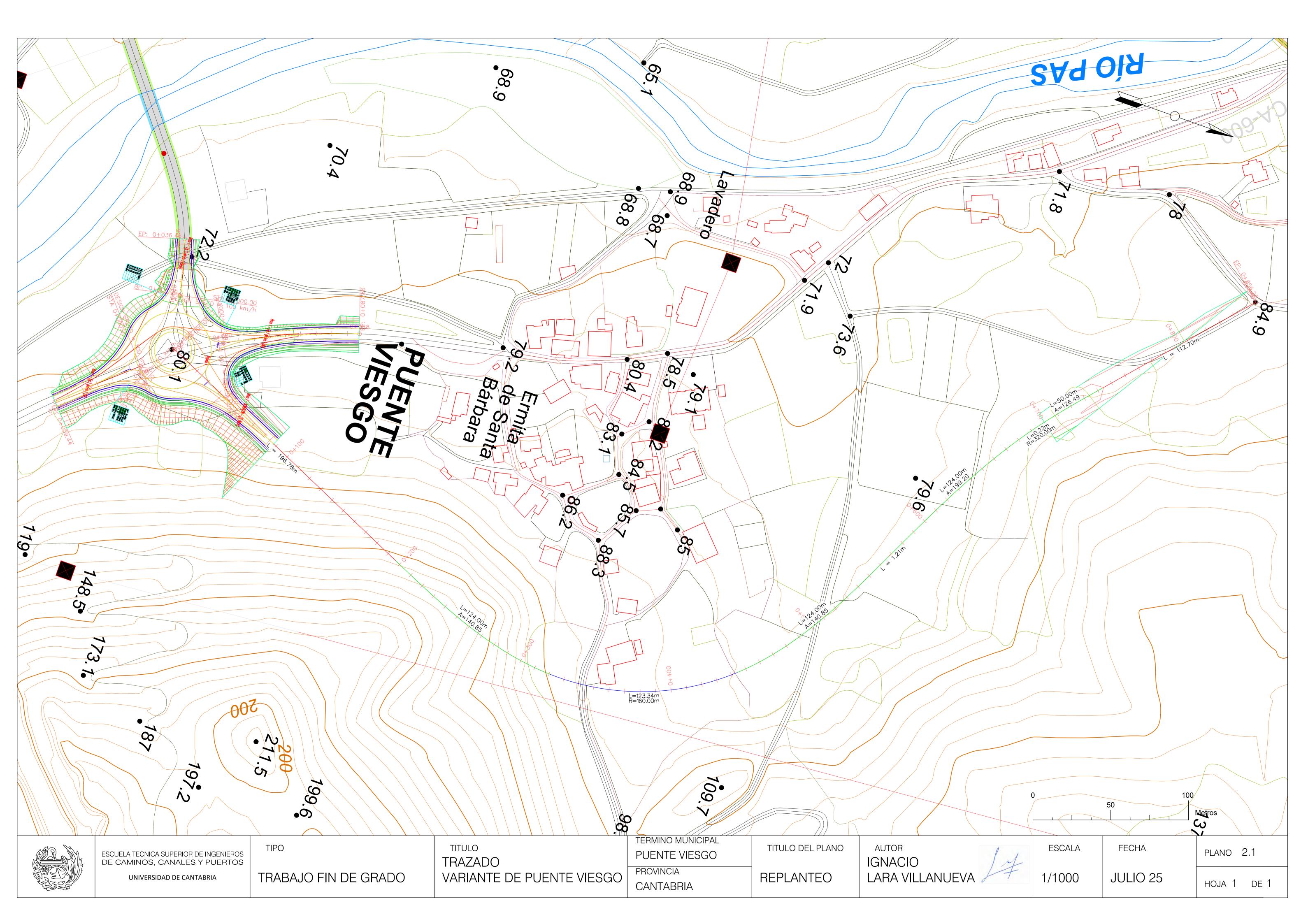
4. SECCIÓN TRANSVERSAL

Se determina la sección transversal de la carretera cumpliendo con los anchos definidos por la norma para una velocidad de proyecto de 60 km/h. En la siguiente tabla, se recogen los diferentes tipos de secciones tipo en función de la clase de carretera y la velocidad de proyecto:

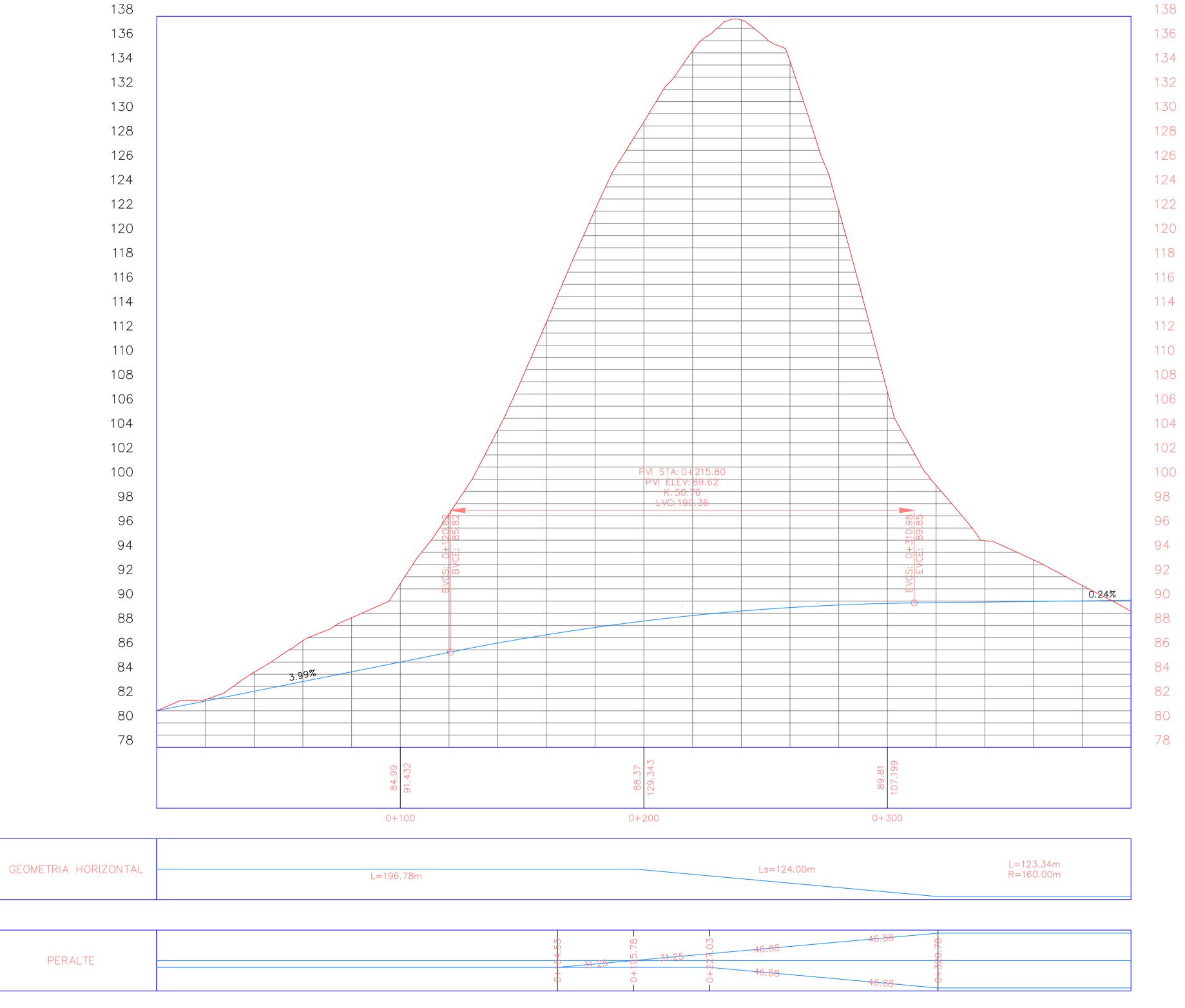
CLASE DE CARRETERA	VELOCIDAD DE PROYECTO (V _p) (km/h)	ANCHO (m)				NIVEL DE
			ARCENES			SERVICIO MÍNIMO EN
		CARRILES	INTERIOR / IZQUIERDO	EXTERIOR / DERECHO	BERMAS (MÍNIMO)	LA HORA DE PROYECTO DEL AÑO HORIZONTE
Autopista y autovia	140, 130 y 120	3,50	1,00 / 1,50	2,50	1,00	С
	110 y 100	3,50	1,00 / 1,50	2,50	1,00	D
	90 y 80	3,50	1,00	2,50	1,00	D
Carretera multicarril	100	3,50	1,00 / 1,50	2,50	1,00	D
	90 y 80	3,50	1,00	2,50	1,00	D
	70 y 60	3,50	0,50 / 1,00	1,50 / 2,50	1,00	E
	50 y 40	3,25 a 3,50	0,50 / 1,00	1,00 / 1,50	0,50	E
Carretera convencional	100	3,50	2,50		1,00	D
	90 y 80	3,50	1,50		1,00	D
	70 y 60	3,50	1,00 / 1,50		0,75	E
	50 y 40	3,00 a 3,50	0,50 / 1,00		0,50	E

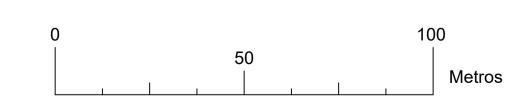
Tabla 10.9. Tabla Dimensiones de la sección transversal.


Por lo tanto, las dimensiones de la sección transversal se componen de carriles de 3,50 m de ancho, arcenes de 1 m de ancho y sin bermas, con un nivel de servicio "C" obtenido en el Anejo de Planeamiento del Tráfico, el cual se encuentra dentro del rango de nivel de servicio mínimo indicado en la tabla anteriormente.



PLANOS





PERFIL LONGITUDINAL

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS UNIVERSIDAD DE CANTABRIA

TIPO TRABAJO FIN DE GRADO

PERALTE

TITULO TRAZADO VARIANTE DE PUENTE VIESGO

TERMINO MUNICIPAL PUENTE VIESGO PROVINCIA CANTABRIA

AUTOR TITULO DEL PLANO IGNACIO PERFIL LONGITUDINAL

LARA VILLANUEVA

ESCALA 1/1000

FECHA PLANO 2.2

JULIO 25

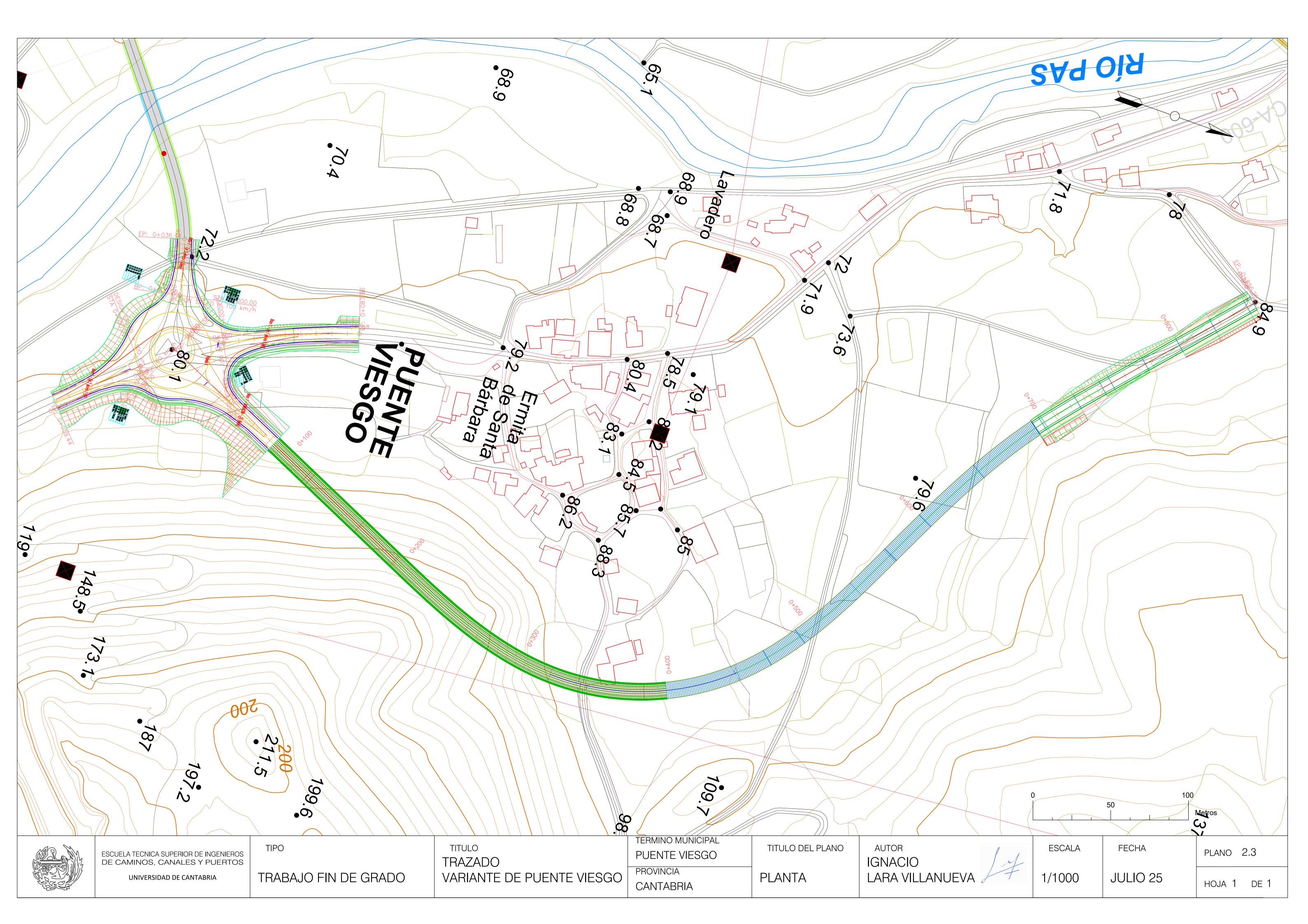
HOJA 1 DE 2

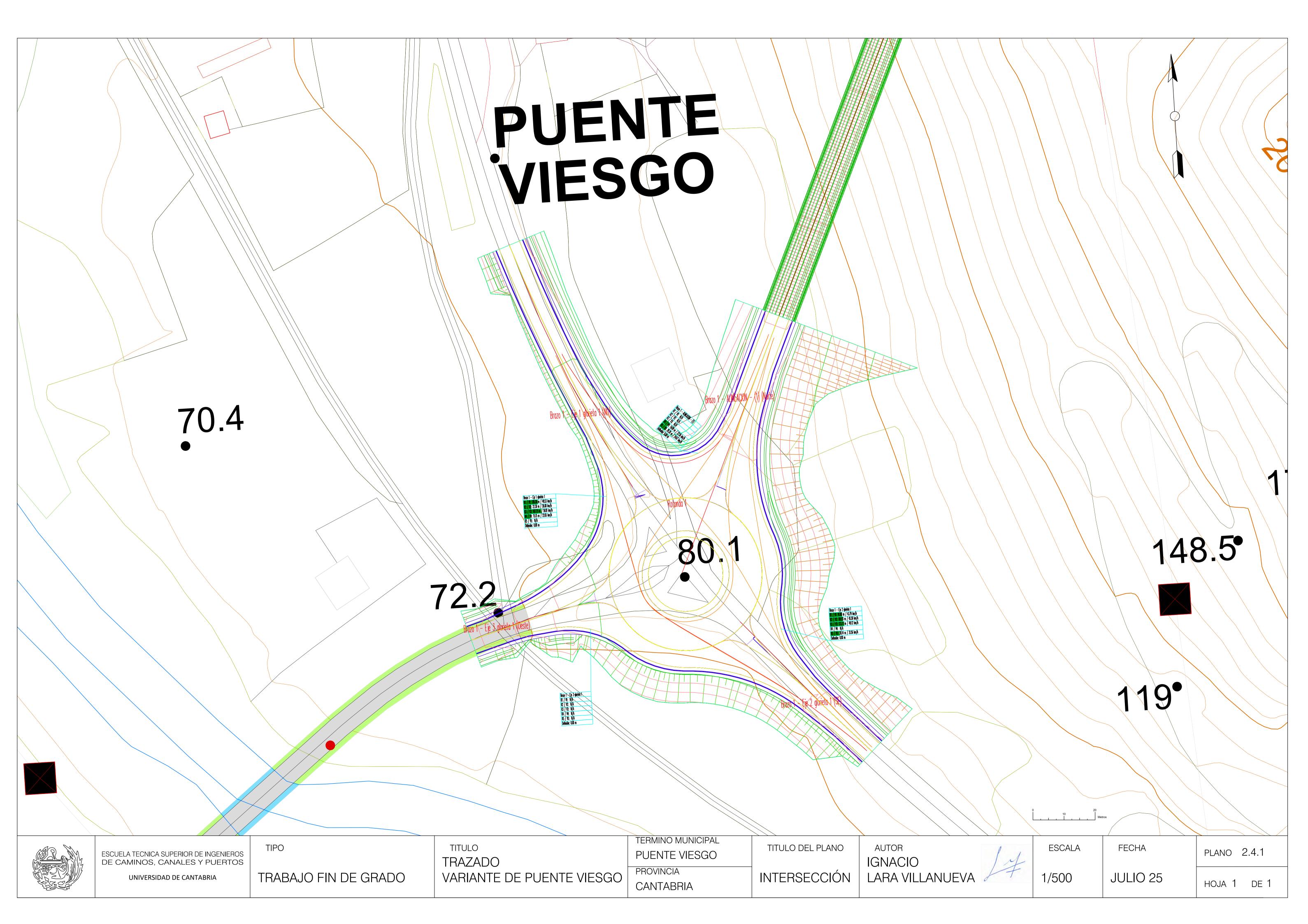
PERFIL LONGITUDINAL PVI STA: 0+582.05 PVI ELEV: 90.51 K: 103.33 LVC: 233.02 -2.01% 0+7000+5000+600 0+800 L=123.34m R=160.00m GEOMETRIA HORIZONTAL Ls=124.00m Ls=124.00m L=1.21m L=112.70m Peralte TERMINO MUNICIPAL TITULO TITULO DEL PLANO AUTOR ESCALA FECHA TIPO PLANO 2.2 ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS PUENTE VIESGO IGNACIO TRAZADO PROVINCIA JULIO 25

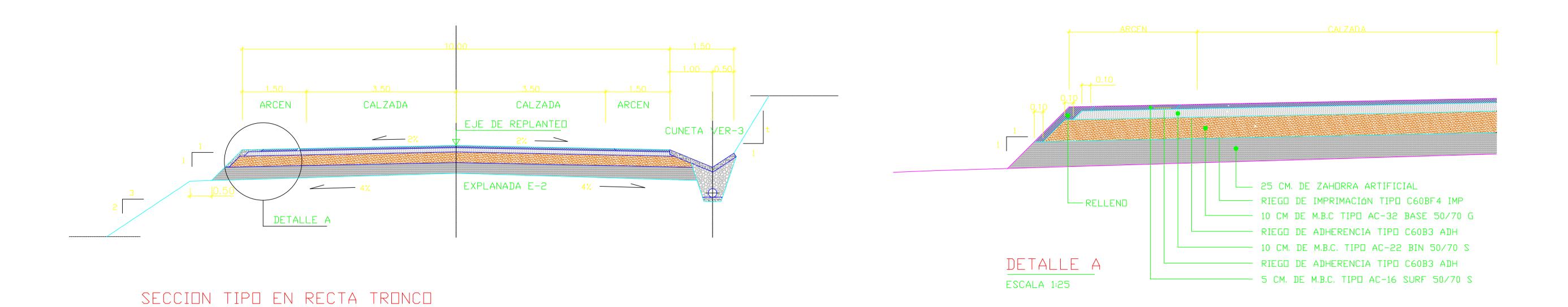
UNIVERSIDAD DE CANTABRIA

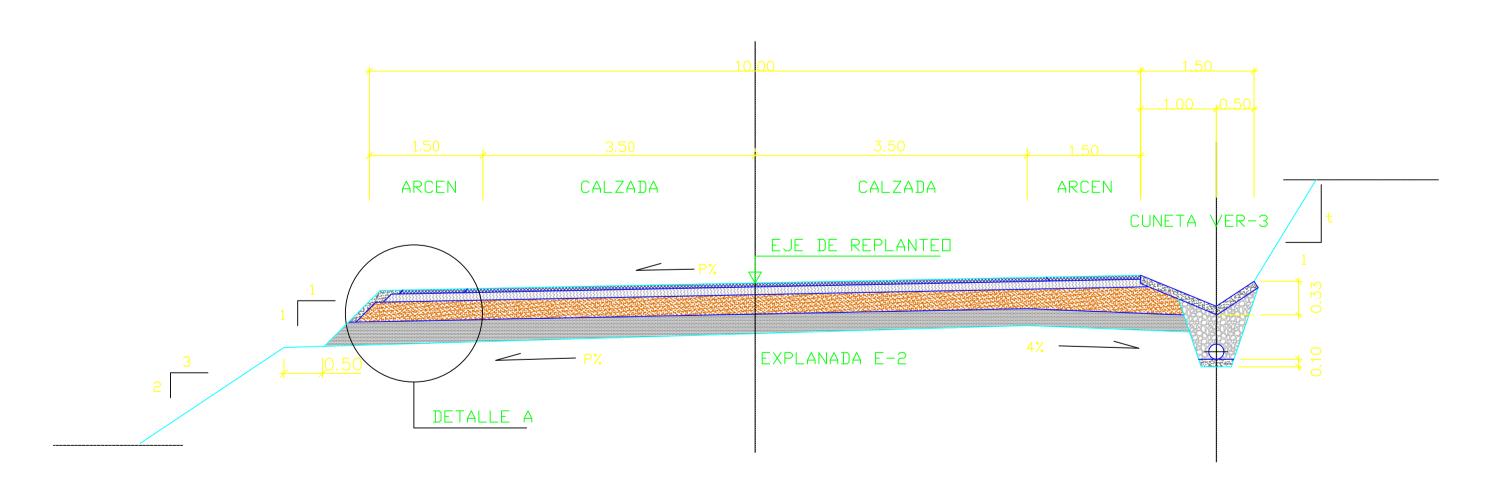
TRABAJO FIN DE GRADO

VARIANTE DE PUENTE VIESGO

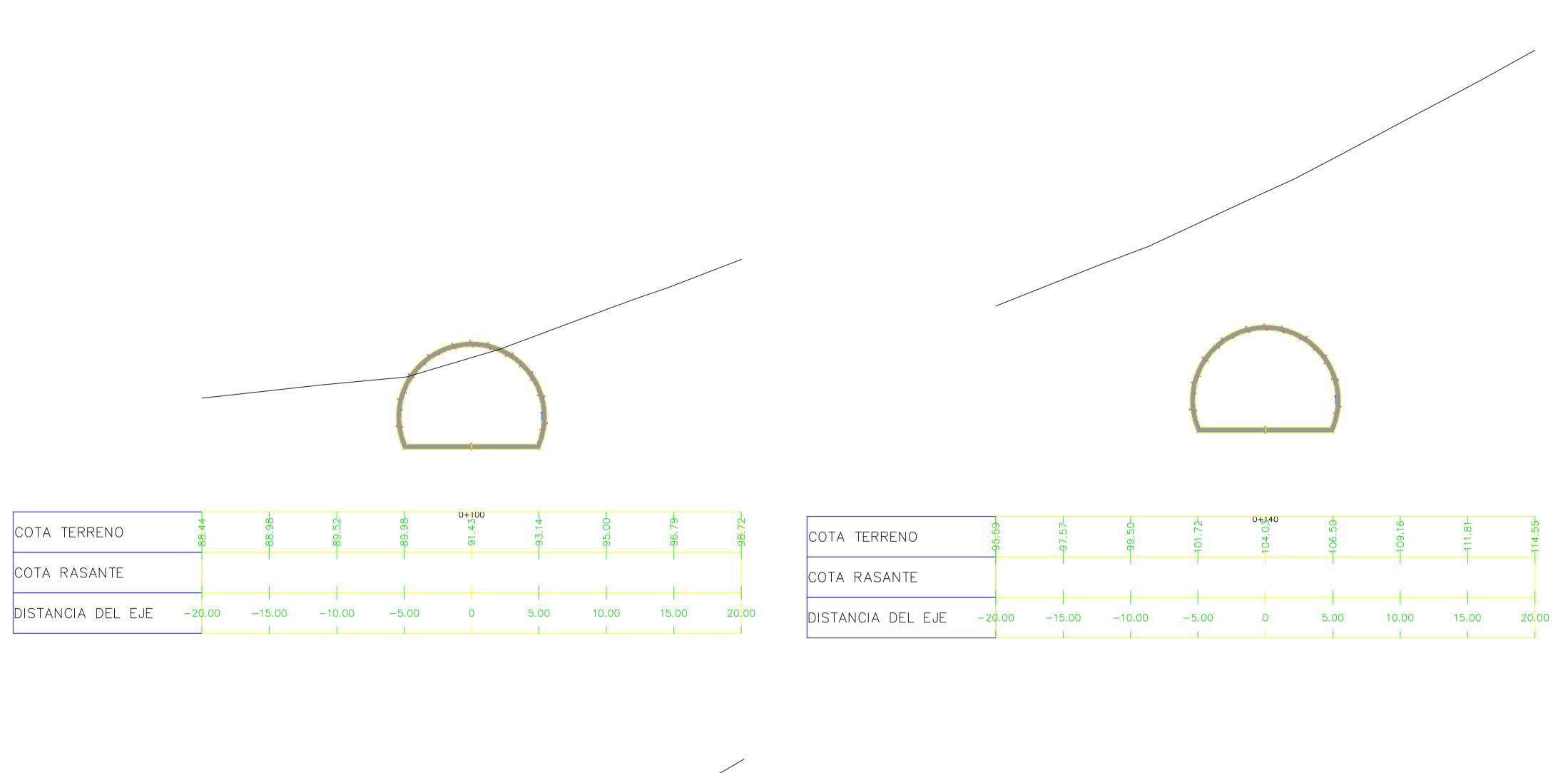

CANTABRIA

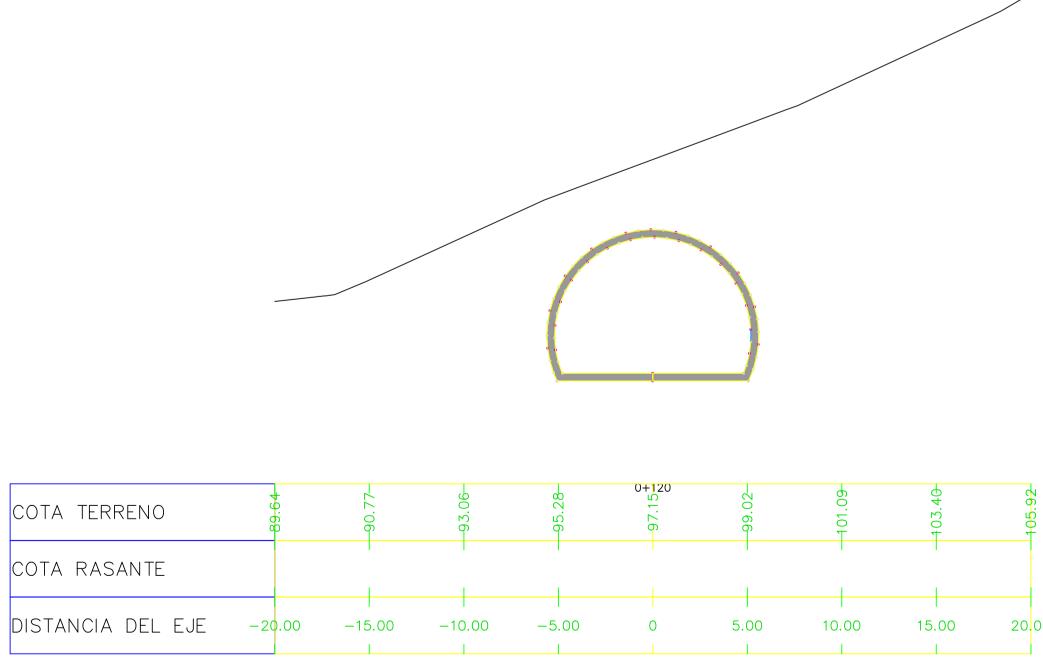

PERFIL LONGITUDINAL

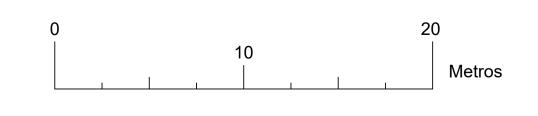

LARA VILLANUEVA


1/1000

HOJA 2 DE 2






SECCION TIPO EN CURVA TRONCO ESCALA 1:50

ESCALA 1:50

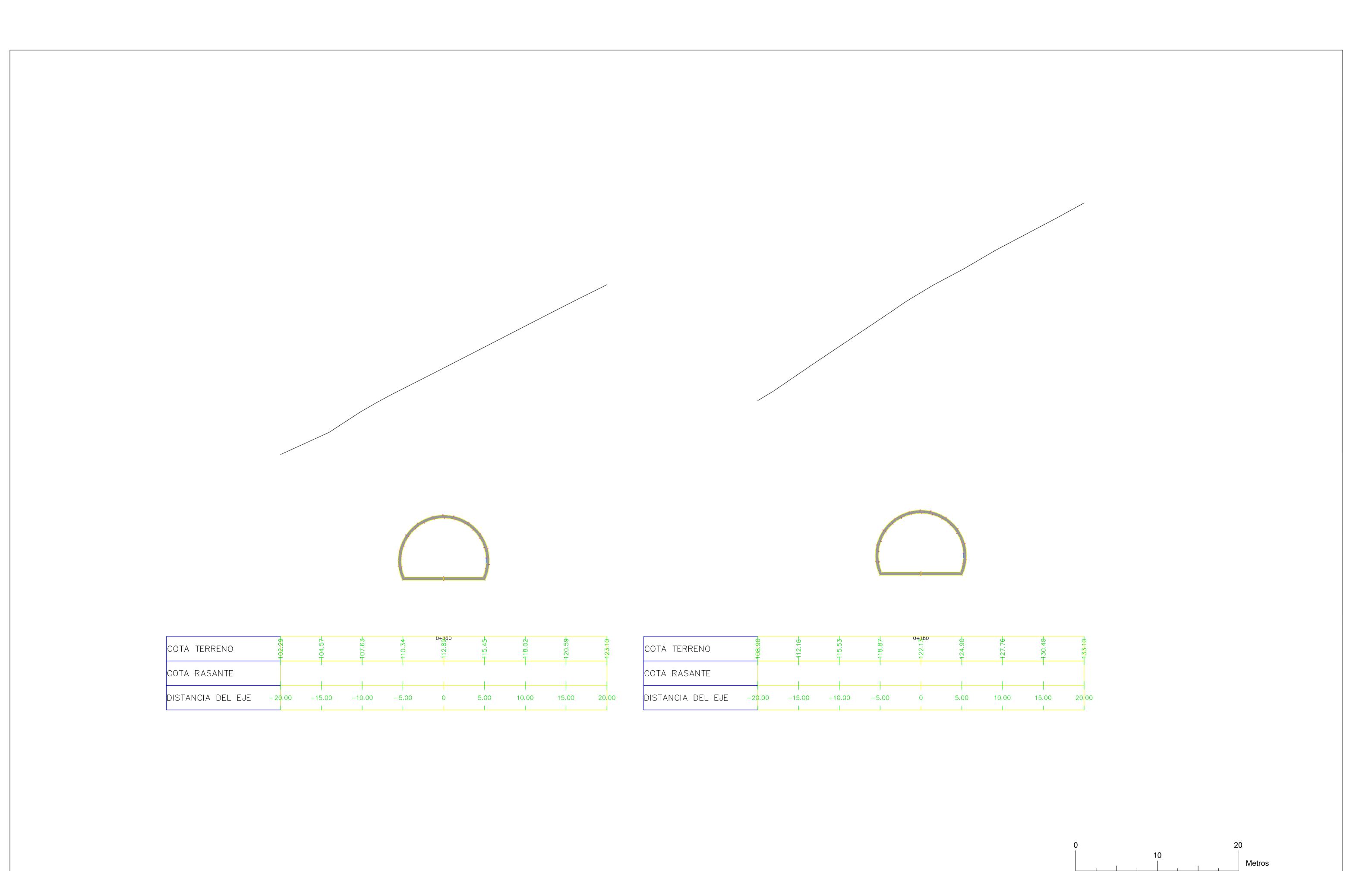
TIPO
TRABAJO FIN DE GRADO

TITULO
TRAZADO
VARIANTE DE PUENTE VIESGO

TERMINO MUNICIPAL
PUENTE VIESGO

PROVINCIA
CANTABRIA

TITULO DEL PLANO
PERFIL TRANSVERSAL


AUTOR
IGNACIO
LARA VILLANUEVA

ESCALA 1/200

FECHA
JULIO 25

plano 3.2

HOJA 1 DE 11

TIPO
TRABAJO FIN DE GRADO

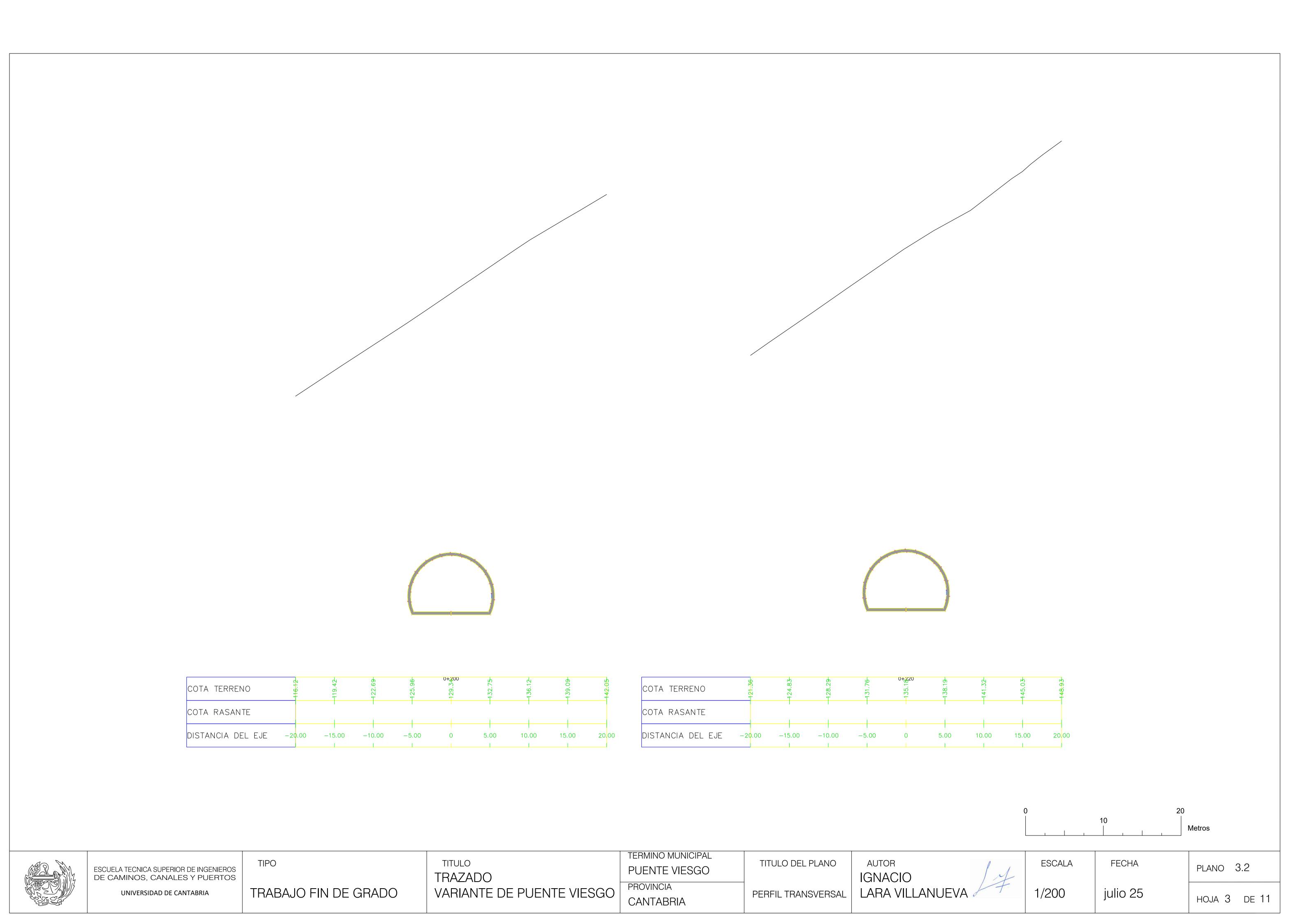
TITULO
TRAZADO
VARIANTE DE PUENTE VIESGO

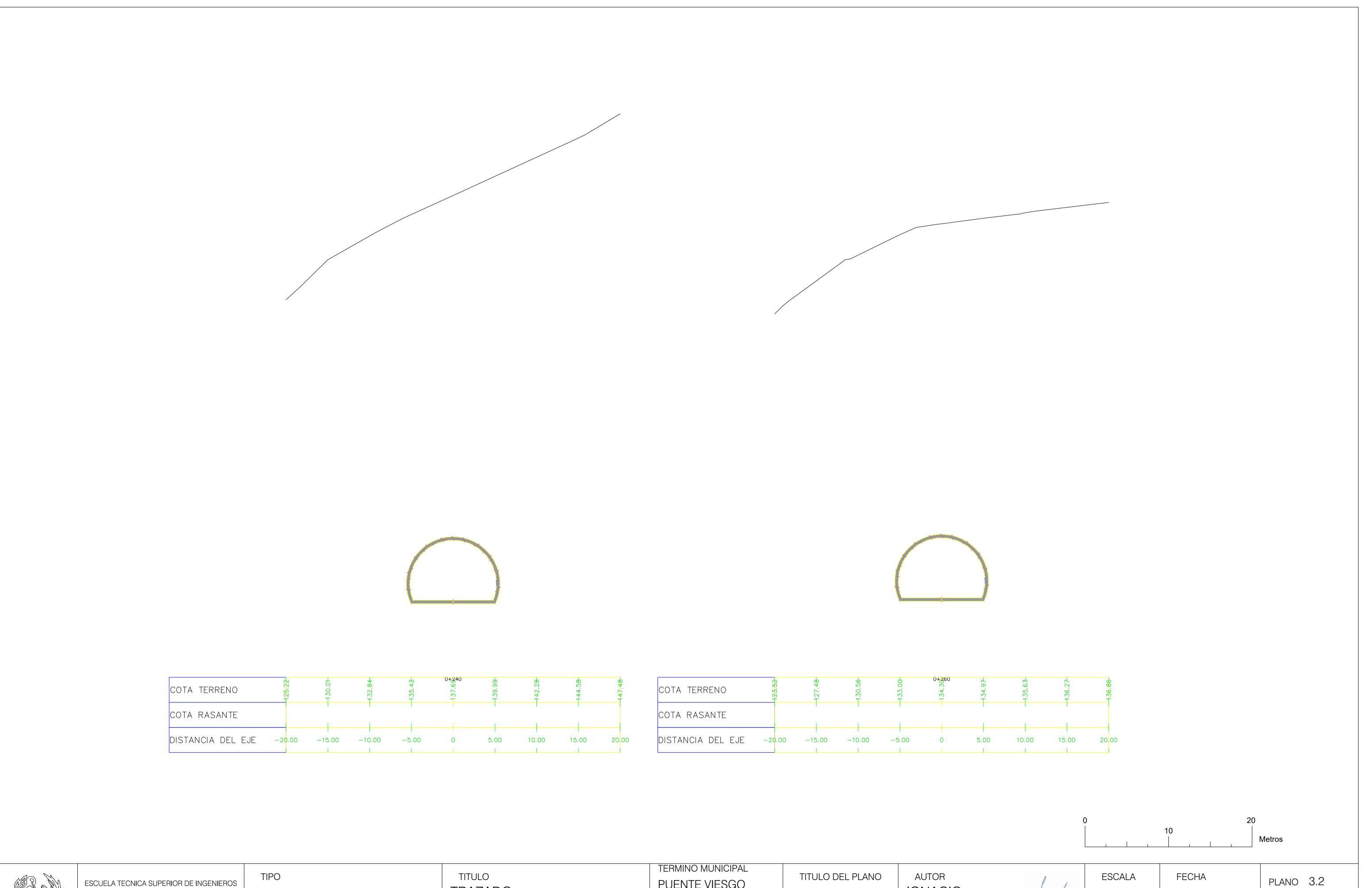
PUENTE VIESGO

PROVINCIA
CANTABRIA

TITULO DEL PLANO
PERFIL TRANSVERSAL

AUTOR
IGNACIO
LARA VILLANUEVA


AJJ


ESCALA FECHA

1/200 julio 25

plano 3.2

HOJA 2 DE 11

TRABAJO FIN DE GRADO

TRAZADO VARIANTE DE PUENTE VIESGO PUENTE VIESGO

PROVINCIA
CANTABRIA

TITULO DEL PLANO

PERFIL TRANSVERSAL

IGNACIO LARA VILLANUEVA

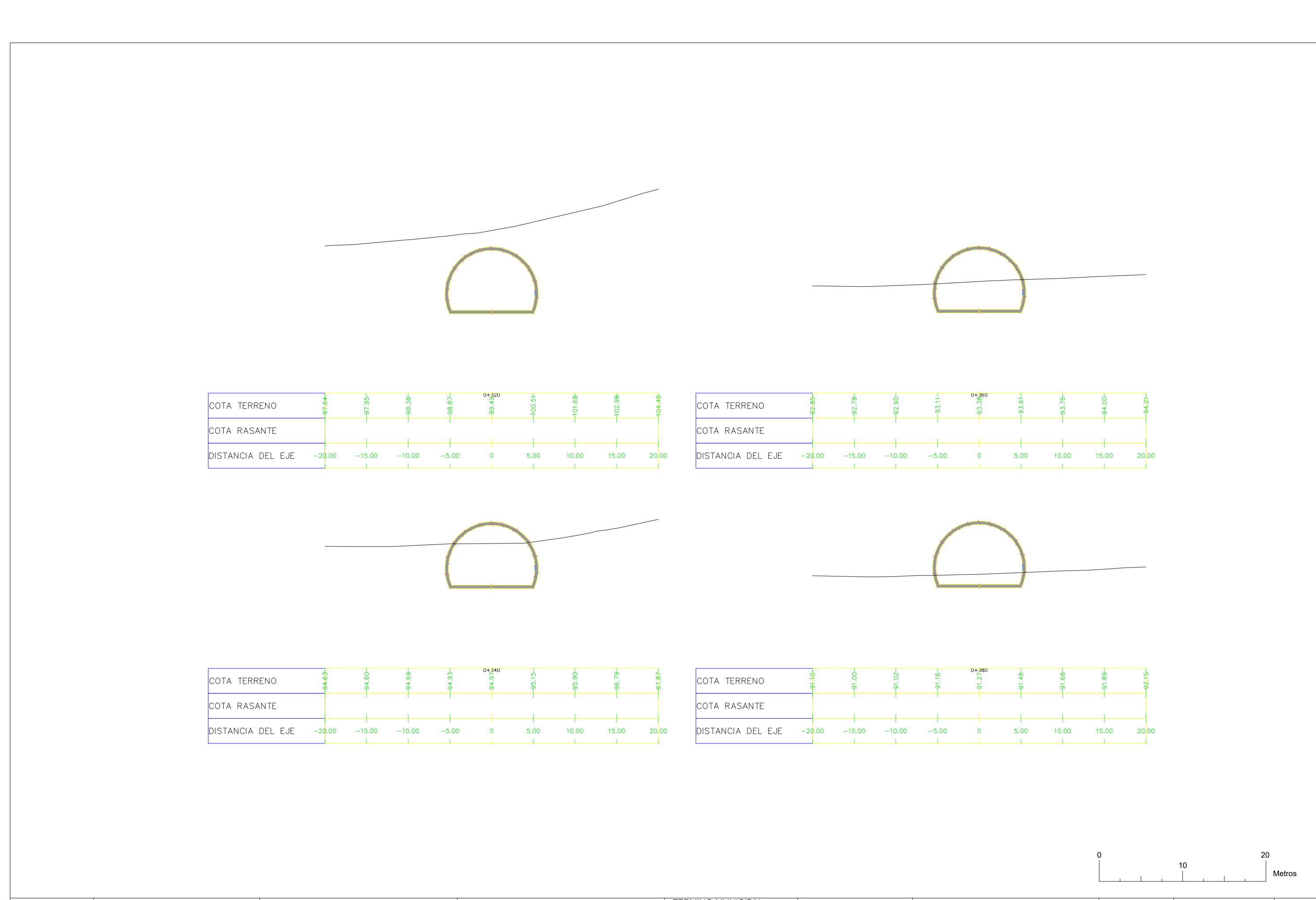
1/200

julio 25

HOJA 4 DE 11

TIPO TRABAJO FIN DE GRADO

TITULO TRAZADO VARIANTE DE PUENTE VIESGO TERMINO MUNICIPAL TITULO DEL PLANO PUENTE VIESGO PROVINCIA PERFIL TRANSVERSAL CANTABRIA


AUTOR IGNACIO LARA VILLANUEVA

ESCALA 1/200 julio 25

FECHA

PLANO 3.2

HOJA 5 DE 11

TIPO TRABAJO FIN DE GRADO

TITULO TRAZADO VARIANTE DE PUENTE VIESGO

TERMINO MUNICIPAL PUENTE VIESGO PROVINCIA CANTABRIA

TITULO DEL PLANO PERFIL TRANSVERSAL

AUTOR IGNACIO LARA VILLANUEVA

ESCALA

1/200

FECHA

julio 25

PLANO 3.2

HOJA 6 DE 11

TRABAJO FIN DE GRADO

TIPO

TITULO
TRAZADO
VARIANTE DE PUENTE VIESGO

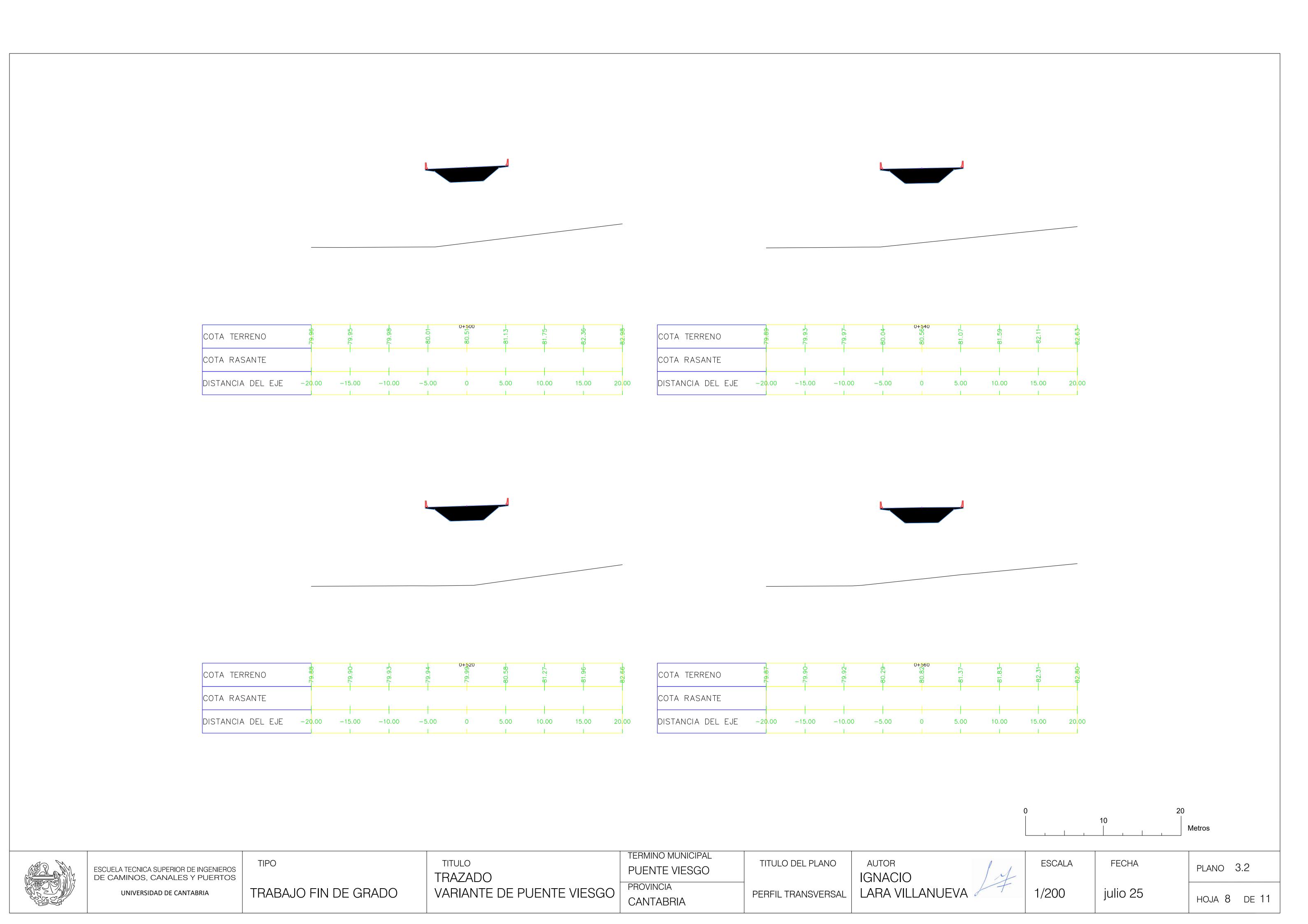
PUENTE VIESGO

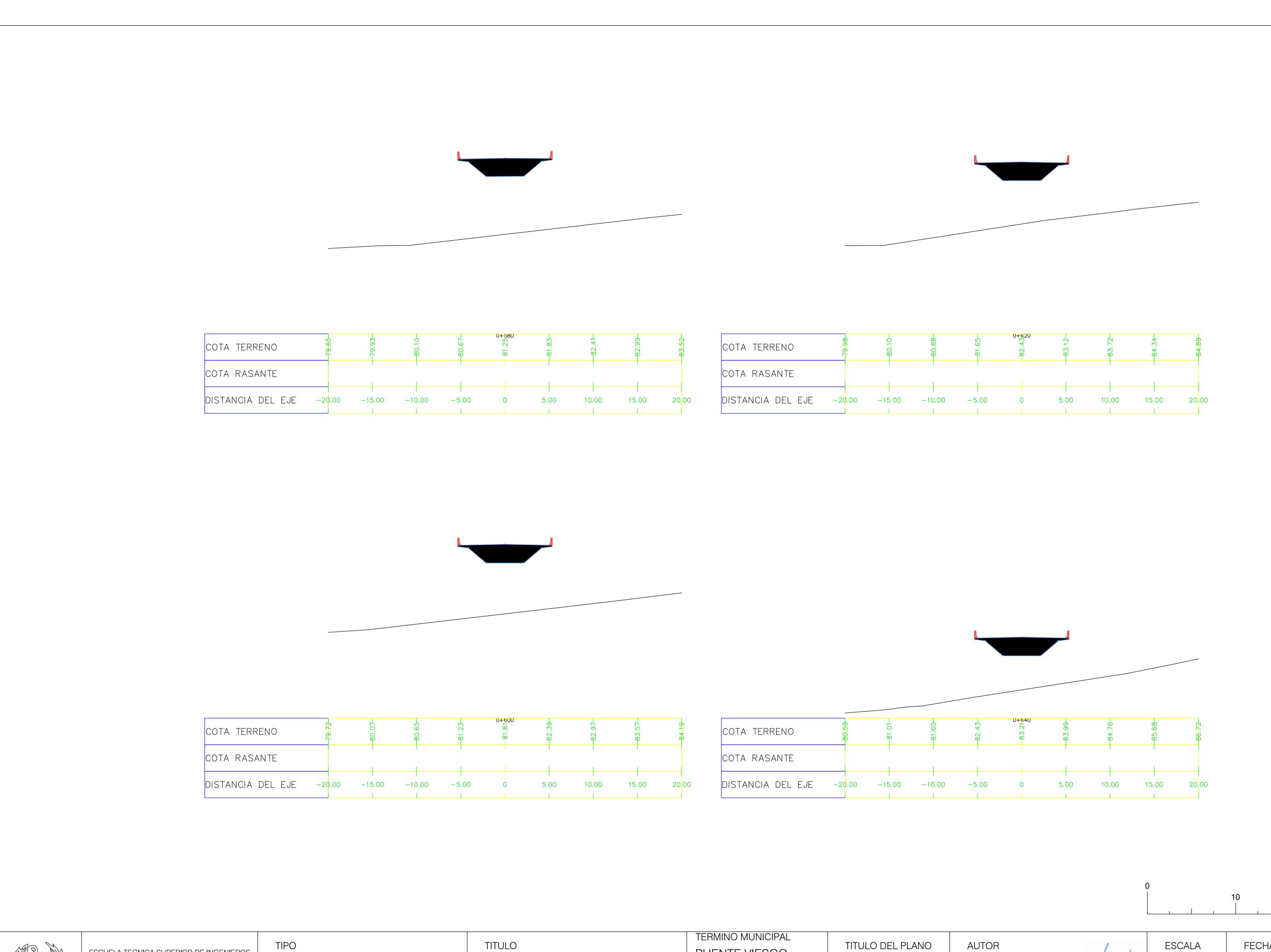
PROVINCIA

CANTABRIA

TITULO DEL PLANO
PERFIL TRANSVERSAL

AUTOR
IGNACIO
LARA VILLANUEVA


ESCALA 1/200


FECHA

julio 25

plano 3.2

HOJA 7 DE 11

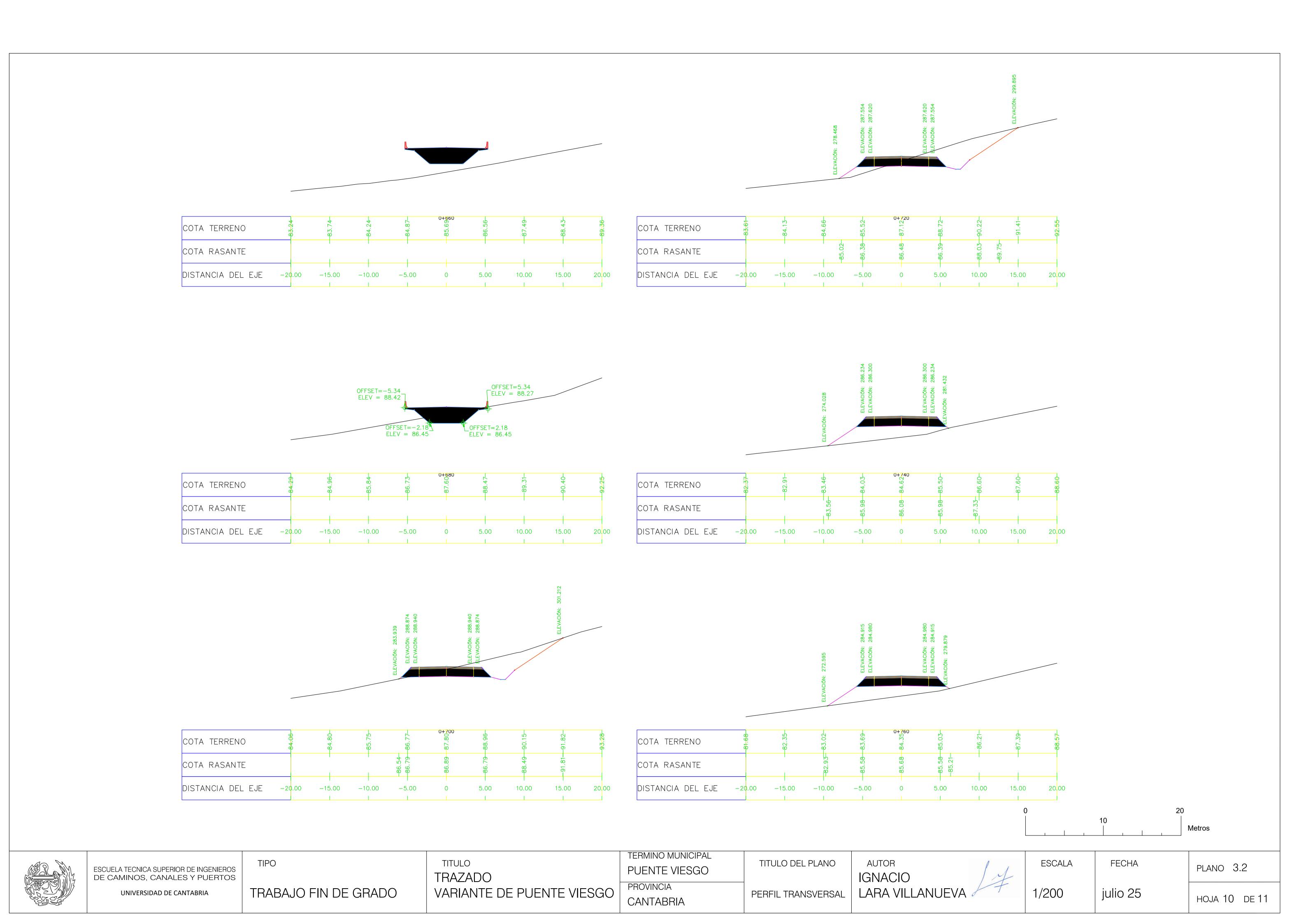
TRABAJO FIN DE GRADO

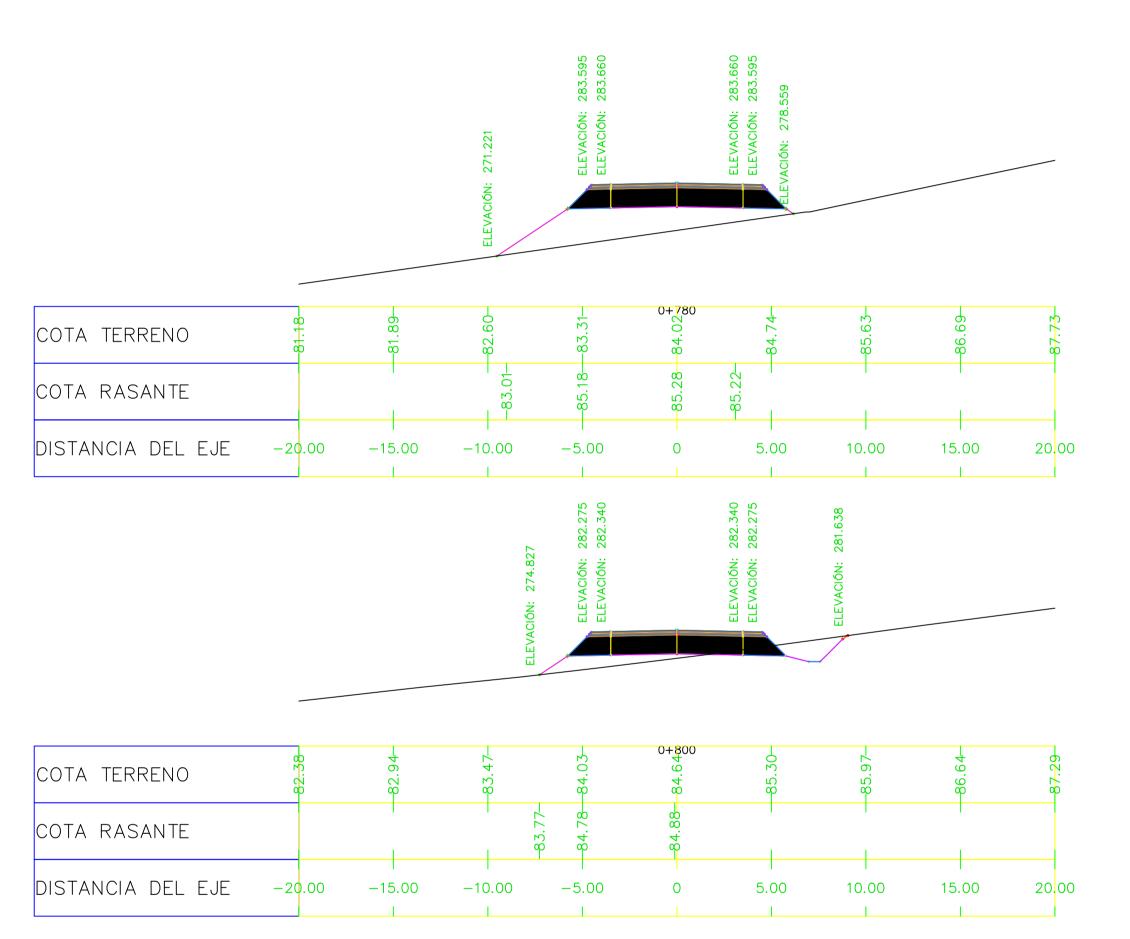
TRAZADO
VARIANTE DE PUENTE VIESGO

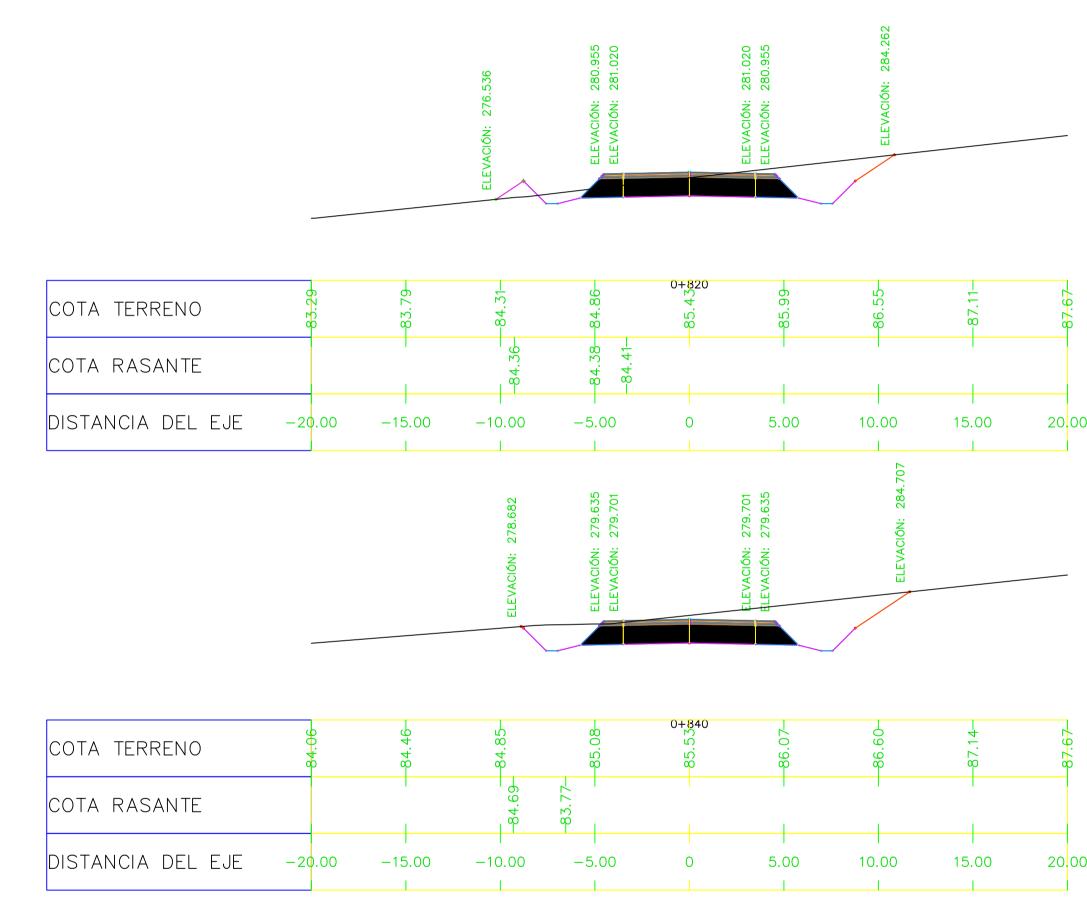
PUENTE VIESGO

PROVINCIA
CANTABRIA

TITULO DEL PLANO
PERFIL TRANSVERSAL


AUTOR
IGNACIO
LARA VILLANUEVA


1/200


o julio 25

PLANO 3.2

HOJA 9 DE 11

TIPO
TRABAJO FIN DE GRADO

TITULO
TRAZADO
VARIANTE DE PUENTE VIESGO

PUENTE VIESGO

PROVINCIA
CANTABRIA

TITULO DEL PLANO
PERFIL TRANSVERSAL

AUTOR
IGNACIO
LARA VILLANUEVA

1/200

ESCALA FECHA

julio 25

PLANO 3.2

HOJA 11 DE 11

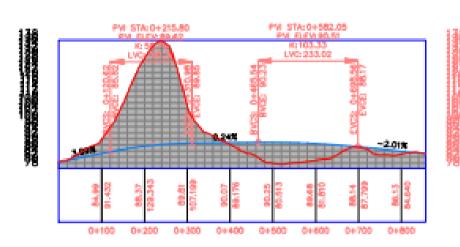
TRABAJO DE FIN DE GRADO TRAZADO DE LA VARIANTE DE PUENTE VIESGO

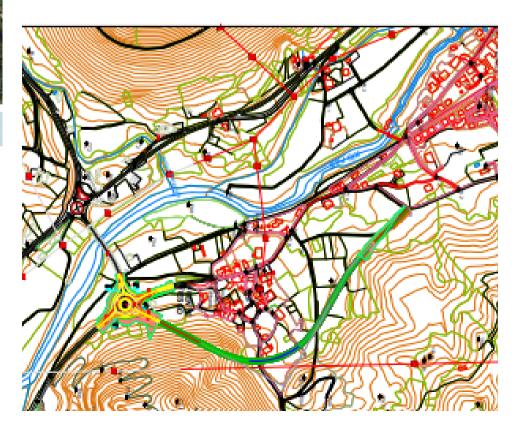
OBJETIVO

Garantizar la continuidad y funcionalidad de la carretera N-623, evitando el paso de vehículos de tránsito por el núcleo urbano, de esta manera:

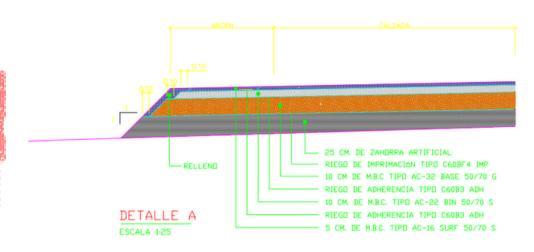
- Reduciremos la congestión del trafico local en epoca estival.
- Mejoraremos la seguridad vial.
- Optimizaremos tiempos de desplazamiento.

UBICACIÓN


DESCRIPCIÓN DE LAS OBRAS


Se propone una carretera con las siguientes caracteristicas:

- Longitud: 856 metros
- Velocidad de proyecto: 60 km/h.
- Carretera convencional de calzada unica con un carril por sentido de circulación.
- 2 carriles de 3,5 m cada uno.
- Arcenes de 1 metro a ambos lados.
- Se define una zona de túnel en el primer tramo, con el fin de preservar la naturaleza existente. Luego se define una zona de puente con el fin de no interceptar con los caminos existentes.


PLANO DE CONJUNTO

PERFIL LONGITUDINAL

SECCIÓN TIPO

La sección tipo se compone de las siguientes capas:

- Capa de rodadura: 5 cm de mezcla bituminosa en caliente tipo AC-16 surf 50/70 S
- Capa intermedia: 10 cm de mezcla bituminosa en caliente tipo AC-22 bin 50/70 S
- Capa base: 10 cm de mezcla bituminosa en caliente tipo AC-32 base 50/70 G
- Riego de adherencia: C60B3 ADH
- Riego de Imprimación: C60bf4 IMP

El terreno de la zona de estudio se considera como suelo tolerable (0) y la explanada como una categoría (E2), con una categoría de tráfico T2.

