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In this research, the polar decomposition (PD) method is applied to experimental Mueller matrices
(MMs) measured on two-dimensional microstructured surfaces. Polarization information is expressed
through a set of parameters of easier physical interpretation. It is shown that evaluating the first deri-
vative of the retardation parameter, δ, a clear indication of the presence of defects either built on or dug in
the scattering flat surface (a silicon wafer in our case) can be obtained. Although the rule of thumb thus
obtained is established through PD, it can be easily implemented on conventional surface polarimetry.
These results constitute an example of the capabilities of the PD approach to MM analysis, and show a
direct application in surface characterization. © 2011 Optical Society of America
OCIS codes: 120.2130, 120.5410, 120.5820, 120.0120, 290.0290, 050.0050.

1. Introduction

For a scattering system illuminated by a given inci-
dent wavelength, the Mueller matrix (MM) is a com-
plete polarimetric result, in the sense that it contains
all information about the scattering properties of a
system, as far as intensity and polarization of the
scattered radiation are concerned. The measurement
of the MM is a way to characterize both the geometry
and optical properties of a scattering system, a non-
unique process and a part of the so-called inverse
problem. There has been much work trying to exploit
its capabilities, in the line of connecting MM proper-
ties to those, either optical or geometrical, of the scat-
tering system [1–3]. For most cases, however, the
elements of the MM contains encrypted information,
and are not easily related to the properties of the sys-
tem, unless some kind of transformation is intro-
duced. Pursuing this idea, MM decomposition, i.e.,
expressing it as a product—or sum—of several

matrices, has become popular in recent years. Polar
decomposition (PD) [4], in particular forward PD [5],
introduces three matrices in the following way:

M ¼ MΔMRMD; ð1Þ

representing independent physical actions of the sys-
tem on the polarimetric properties of the scattered
light, respectively:MΔ (depolarization),MR (retarda-
tion), and MD (diattenuation). If it is proved that a
particular feature of the system is related to any
of the parameters contained in such matrices, a more
direct way of analysis is then opened. Since the PD is
anMMalgebraic transformation, all results obtained
can be applied to conventional polarimetry through
an adequate manipulation of the elements mij. The
PD method has been used in medicine [6] to improve
results in tissue exploration [7], and in other appli-
cations, like imaging polarimetry [8] or grating
surfaces characterization [9]. Here, PD is applied
to a set of MMs experimentally obtained for a flat
surface system, a silicon wafer, containing similar
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square-profiled structures that are either built on or
dug in the surface (we shall refer to them as ribs or
grooves, respectively). Au sputtering is used to intro-
duce the metal character of the sample. The goal of
this research is to distinguish between both cases,
through PD analysis, in a systematic way for all
the sizes andmaterials analyzed, and following a sin-
gle check, or rule of thumb. Therefore, for a particu-
lar sample, there would be no need for individual
analysis of patterns, or comparisons with numerical
results, in order to know to which family of micro-
structures it belongs.

2. Experimental Setup

A. Dual Rotating Compensator Polarimeter (DRCP)

The DRCP developed in our labs consists of a He–Ne
laser, a polarization state generator (PSG), composed
of a polarizer and a rotating quarter-wave plate, a
sample holder, a polarization state analyzer (PSA),
composed of a rotating quarter-wave plate and an
analyzer, and a detector. A long focal-length lens is
placed after the laser to control the spot size (0:6mm
at the sample location) and beam divergence. Quar-
ter-wave plates rotate synchronously with a speed ra-
tio of 5∶2 [10], and the joint transmittance describes a
Fourier cycle [11],which is related to thepolarizer azi-
muth and the quarter-wave plates azimuthal origin
and true retardance. This Fourier cycle can be used
to obtain the complete MM of a scattering (or either
transmitting or reflecting) sample, located between
the PSG and the PSA, by means of a numerical in-
verse Fourier transform. The sample is on a rotating
stage in order to control the angle of incidence (normal
incidence), and the PSA–detector couple is mounted
on the arm of a rotor to select the scattering angle
(from θ ¼ �90° to θ ¼ �20°). Sample holder is on a tilt
rotating platformwith aXYZ nanopositioner in order
to allowanaccurate alignment [Fig. 1(a) showsa sche-
matic vision of the PDRC]. The angular step between
measurements is 1° for a calculated resolution
of 0:25°.

B. Samples

The samples analyzed in this work consist of a flat
surface system containing square-profiled structures
that are either built on or dug in the surface (ribs or
grooves, respectively). These two-dimensional (2D)
geometries were designed as a configuration with

strong, but well-characterized, interference and dif-
fraction, and with the presence of multiple scattering
effects in a variable degree. The set of structures ana-
lyzed includes one or two ribs/grooves with a depth/
height (h) of 1 or 2 μm, a width (w) ranging from 1
to 4 μm, and with distance between centers (d) ran-
ging from 4 to 8 μm. The target is a Silicon wafer,
structured by photolithographic techniques (micro-
etching) and its composition is either Si or Au sput-
tered. It is divided in sections, each one containing
a different sample. All these possibilities offer a
complete set of configurations with varying depth
sign, width, height, number, and optical properties.
Figures 1(b) and 2 show, respectively, the scattering
configuration and a scanning electron microscopy
(SEM) image with a dimensional scheme correspond-
ing to a two-rib sample.

3. PD Method

The experimental scattering matrices have been
postprocessed with an algorithm that performs the
PD. After testing the physical reliability of the ma-
trices by the Cloude’s coherency criterion [12], it was
found that, in all the cases analyzed, the MMs ob-
tained were reliable and the application of a PD al-
gorithm is justified. Forward PD [5] is a kind of PD
defined as a product of a depolarization matrix, MΔ,
a retardation matrix, MR, and a diattenuation
matrix, MD, as shown in Eq. (1). The first matrix,
MDðt1; t2; α; βÞ in order of operation, is the diattenua-
tion matrix [4]. Parameters α and β are the azimuth
and ellipticity of the diattenuator principal axis, re-
spectively, and ti is the transmittance through the i
principal axes, i.e., the intensity transmission for the
diattenuator i orthogonal polarization eigenstate. If
the diattenuation matrix is normalized to the total
transmittance for unpolarized light m00, both trans-
mittances along the diattenuator axes are related:
t ¼ t1 ¼ 1 − t2 [13]. Then,

MDðt1; t2; α; βÞ ¼ m00 ·M0
Dðt; α; βÞ: ð2Þ

The second matrix, MR, contains a retardation
parameter, δ (representing the ability of the system
to introduce some phase retardation between both
orthogonal components or retarder eigenstates), an
azimuthal parameter, ϕ (that represents the eigen-
states orientation origin), and the optical rotation,
ρ [7]. MR can be expressed as [14]

Fig. 1. (Color online) (a) Experimental setup: Positioning (incidence on sample and synchronous waveplates rotations) and measure-
ments are computer controlled. (b) Scattering configuration for a two-rib sample.
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MRðϕ; δ; ρÞ ¼ M0
Rðϕ; δÞ

·

0
BBBB@

1 0 0 0
0 cosð2ρÞ sinð2ρÞ 0
0 − sinð2ρÞ cosð2ρÞ 0
0 0 0 1

1
CCCCA:

ð3Þ

The retardation parameter, δ, also could be ob-
tained by using a typical polarimetric expression:

tanðδÞ ¼ m23 −m32

m22 þm33
: ð4Þ

The last operating matrix is MΔ. This matrix in-
forms about the depolarizing processes taking place
within the system, mostly produced by multiple scat-
tering or other incoherent processes [15]:

MΔðdi; ai; ziÞ ¼

0
BBB@

1 0 0 0
z1 d1 a1 a2

z2 a1 d2 a3

z3 a2 a3 d3

1
CCCA ¼

 
1 0T

PΔ mΔ

!
:

ð5Þ
Nine depolarization parameters appear in MΔ,

three of them (ai) closely associated with retardance,
another three (zi) related to diattenuation, and the
three diagonal parameters (di) referred to as princi-
pal depolarization parameters [14], which describe

the depolarization capabilities of this polarizer along
its principal axes [5]. Note that, in depolarizing sys-
tems with a3 ≃ 0 and d2 ≃ d3 → 0, uncertainty in δ
increases [Eq. (4)].

Other matrix operations are very convenient, prior
to PD. In order to know if the experimental MMs are
pure or show any depolarization traces, it is neces-
sary to apply the purity criterion [14], summarized
on Eq. (6). It reveals the kind of matrix under ana-
lysis: Eq. (6) is the equality if M is a pure MM and
the left side is equal to m2

00 if M is a completely de-
polarized MM:

trðMTMÞ ≤ 4m2
00: ð6Þ

Usually, a pure MM has a maximum of seven de-
grees of freedom, while a depolarizing MM could
have up to 16 degrees of freedom. We can use the PD
to determine the parameters in a quite straightfor-
ward way, approaching the number to the degrees
of freedom by solving the dependences of the MM ele-
ments. If an experimental matrix is not a pure MM,
the PD produces a new polarimetric description of
the system with more than seven independent
parameters.

4. Results

A. Conventional Light-Scattering Analysis

Figure 3 represents the evolution of element m00
(scattered intensity) for a single and double struc-
tures. The inverse scattering problem involves a
clear distinction between those structures, and the
estimate of the main parameters involved, i.e., w,
h, and d. Basic diffraction optics offers a simple com-
parison with slit and double-slit diffraction patterns
(whose minima forw ¼ 3 μm and d ¼ 4 μm are shown
in the plots as a set of dashed lines), and this fit is
quite good for the case of grooves. As we can see,
the scattering pattern for a single groove corresponds
to the pattern for a smaller single rib. In the case of
two structures, there are differences only for high
scattering angles. This kind of agreement (the slit
comparison) is similar to those used in particle-sizing
techniques applied to spheres and fibers [16].
However, if parameter h had to be implemented

Fig. 2. SEM image of a two-rib structure with dimensions
h ¼ 1 μm, w ¼ 2 μm, and d ¼ 6 μm.

Fig. 3. (Color online) Scattering pattern (m00): Comparison with (a) diffraction minima (single structures: h ¼ 1 μm and w ¼ 3 μm) and
(b) interference minima (double structures: h ¼ 1 μm, w ¼ 3 μm, and d ¼ 4 μm).
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(to account for height and to distinguish ribs from
grooves), the diffraction approach is useless, and
we should resort to numerical solutions. In addition,
the correct fit of these solutions, for any sign of h, is
not guaranteed. In the best case, the process is com-
plex, and different for each sample.

B. General MM Analysis

The MM contains full polarimetric information and
must provide other possibilities to be exploited. The
angular evolution of the MM elements for two cases
of square-profiled single structures is shown in Fig. 4.
Both are all-silicon structures with h ¼ 1 μm, the first
with w ¼ 1 μm (rib) and the second with w ¼ 3 μm
(groove). There is a strong matrix symmetry due to
the geometry of the scattering system (identical at
both sides of the scattering plane) and the properties
of MMs for such systems [17], with a polarimetric re-
sponse close to a block-diagonal plane surface. There
is also an angular symmetry around 0° in each ele-
ment dependence. This, however, is not as good as ex-
pected, showing the presence of inhomogeneities in
the fabrication process. But, apart from these consid-
erations, if these matrices contain all information
available for our scattering geometry and operating
wavelength, its observation and consequent use is
not a straightforward issue. For instance, the shape
of the patterns corresponding to elements m00 and
m01 (directly related with the linear polarization de-
gree) has been used in the past to size spherical par-
ticles or cylindrical fibers [18]. There are, of course,
significant differences between these two patterns,
corresponding one to a rib, and the other correspond-
ing to a groove, but no systematic difference holds
significantly for other rib and groove cases.

C. PD Analysis

All the PD parameters corresponding to the two
cases shown in Fig. 4 are plotted separately in
Fig. 5(a) (rib, h ¼ 1 μm, w ¼ 1 μm) and 5(b) (groove,
h ¼ 1 μm, w ¼ 3 μm). Some preliminary comments
in these results include the following.

i. Depolarization effects (third-row parameters in
Fig. 5) are especially noticeable where the total scat-
tering intensity, m00, has a minimum. These effects
appear mainly as a strong departure from 1 in para-
meters di.

ii. Oscillations in parameter t, identical to those
ofm10, is the only important feature in the diattenua-
tion matrix parameters (first row of graph).

iii. Azimuth (ϕ) and rotational (ρ) parameters of
the retardation matrix (first and third in the second
row) are almost null.

In addition to these considerations, if we compare
the pure and depolarizing matrices obtained through
PD for a single Si rib (see Fig. 6), we can observe that
depolarizing effects are not the only cause of differ-
ences in the MM of this system with respect to a
block-diagonal matrix. It should be noted that results
presented in Fig. 5 show that the pure part of the PD
performed on the MM of these objects possesses
orthogonal eigenpolarizations. One of themost notor-
ious features in these plots is the behavior of δ (phase
retardation between orthogonal components, second
parameter in second row). This parameter, related to
mij (i; j ¼ 2; 3) through Eq. (4), shows a particular an-
gular evolution that is completely different for both
structures: each plot contains a dominant slope,
which sign is different in each case. For the rib and
for all measured ribs, the dominant slope is negative

Fig. 4. (Color online) MM elements versus scattering angle (−90° to 90°) for a single Si rib (h ¼ 1 μm and w ¼ 1 μm) and groove (h ¼ 1 μm
and w ¼ 3 μm).
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when approaching the specular direction, while for
the groove and for all analyzed grooves, the dominant
slope is positive. In both cases, the dominant slope is
compensated by short angular periods with either a
strong slope in the opposite direction or a discontinu-

ity. The first derivative of δ is plotted in Fig. 7 for the
cases shown in Figs. 4 and 5, and a black band under
the plots indicate the sign of δ slope. It suggests that
the presence of ribs or grooves in a sample can be es-
tablished by this sole consideration.

Fig. 5. (Color online) PD parameters for single equivalent structures on Si: (a) rib, h ¼ 1 μm and w ¼ 1 μm; (b) groove, h ¼ 1 μm and
w ¼ 3 μm. Top row (diattenuation parameters: α, β, and t), center row (retardance parameters: φ, δ, and ρ), bottom row (depolarization
parameters: di, ai and zi).
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Other examples of the angular evolution of δ, as
obtained from PD, together with the sign of its first
derivative, are shown in Fig. 8, including Au-
sputtered and double-structured cases (dimensions
are specified in the caption).

D. Rule of Thumb

In order to evaluate this interesting property, we
calculate, for each measured scattering region (for
normal incidence, and in 1° steps), the difference be-
tween the number of measurements with positive
and negative local derivative. A new parameter,
ϒR−G, is defined as

ϒR−G ¼

P
θ>0

Δδi
jΔδij −

P
θ<0

Δδi
jΔδij

N
; ð7Þ

where N is the total number of steps, and the first
(θ > 0) and second (θ < 0) summatory corresponds
respectively to the right and left scattering regions.

Defined in this way, ϒR−G ∈ ½−1; 1� and a positive
overall would indicate the presence of ribs, while a
negative value would be associated to the presence
of grooves. Values approaching zero would indicate
uncertainty. Table 1 has been constructed from all
available measurements corresponding to the set
of structures made on our wafer. The only case

Fig. 6. (Color online) MM elements versus scattering angle (−90° to 90°) for a single Si rib (h ¼ 1 μm andw ¼ 1 μm): pure and depolarizer
matrix.

Fig. 7. δ slope for a single rib/groove obtained through PD. The
dominant sign of the slope is shown in black bars (increment
Δδ corresponds to Δθ ¼ 1°).

Fig. 8. Values of δ and its slope sign for different geometries and
materials. Upper cases, Au-sputtered single rib (left) and groove
(right) of h ¼ 1 μm and w ¼ 3 μm. Bottom cases, two parallel Si
ribs/grooves of h ¼ 1 μm, w ¼ 3 μm, and d ¼ 7 μm.
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(h ¼ 1 μm and w ¼ 1 μm, groove) that does not fulfill
the sign criterion forϒR−G corresponds to the sample
for which the fabrication defects are more severe,
producing a shape with a strong departure from
the square profile. The importance of this result lies
in the fact that all samples follow the same rule in-
dependently of the width, number of elements, dis-
tance between them, height/depth, or material (Si
or Au sputtered). In most cases (>85%), ϒR−G pro-
duced correct predictions with jϒR−Gj ≥ 0:13 and in
two thirds of cases with jϒR−Gj ≥ 0:40.

If we consider the possibility of applying this rule
to a single MM element connected to δ, likem23, in all
cases analyzed m23 indicates uncertainty when the δ
slope analysis show conclusive values. Obviously the
rule of- thumb reached by handling PD parameter δ
can also be obtained by using elementsmij [i; j ¼ 2; 3,
see Eq. (4)], as will happen to any condition estab-
lished on PD parameters. The advantage of PD lies
in its potential for obtaining relevant conditions be-
cause of the physical meaning of each PD parameter;
in other words, the rule of thumb was found after the
PD process.

5. Summary and Conclusions

In this research, we used PD to interpret information
from MMs. Using a DRCP polarimeter, these ma-
trices were experimentally obtained for several flat
surface systems containing square-profiled struc-
tures that are either built on (ribs) or dug in (grooves)
the surface. As an application of PD, we have estab-
lished a polarimetric criterion that allows us to dis-
tinguish between both types of surface microdefects
(ribs or grooves) in a systematic way, regardless of
size or composition of the sample.

Consequently, PD applied to experimental MM has
proved to be a useful tool for analyzing and proces-
sing the polarimetric information by isolating the ef-
fects produced by variations in a particular feature of
the system. Specifically, direct application to surface
defect characterization by analyzing the angular de-
rivative of the retardation, δ, produces conclusive es-
timates of shape for a square-profiled 2D surface
structure. Furthermore, as PD is an algebraic tool,
the rule is applicable to conventional polarimetry
using the correct estimation of δ [Eq. (4)]. This result
is an excellent example of the potential of PD, be-
cause it is able not only to extract the depolarization
but also to analyze the remaining (pure) matrix.
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of Education of Spain under project FIS2010-21984.
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TEKNIKER (Eibar, Spain).
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