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ABSTRACT. In this paper, we consider the hyperelliptic analogue of the Frobe-
nius endomorphism generator and show that it produces sequences with large
linear complexity on the Jacobian of genus 2 curves.
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1. Introduction

An important operation in elliptic curve based cryptosystems is to compute
scalar multiples of a given group element. The standard method for comput-
ing scalar multiples is the double-and-add-method, but faster methods have been
suggested by using the Frobenius endomorphism on special curves known as
Koblitz curves, see [8[T7,20,21]. The ideas for fast computation of scalar mul-
tiples on elliptic Koblitz curves have been generalized to hyperelliptic curves
of genus 2, see [3].

In [I2], Lange and Shparlinski investigated the problem of choosing random
elements from elliptic and hyperelliptic curves, see also [14L[16]. One can choose
such elements by computing random scalar multiples of an initial element fixed
in advance. However, Lange and Shparlinski [12], by taking advantage of fast
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computation of scalar multiplication on Koblitz curves, introduced a more effi-
cient and direct way to obtain random-looking elements, called Frobenius endo-
morphism generator.

In this paper, we study some properties of pseudorandomness of sequences
derived from hyperelliptic curves of genus 2 using the Frobenius endomorphism
generator. In particular, we investigate the level of randomness of such sequences
in terms of linear complexity. We recall, that the linear complexity of a sequence
(sn) of length N over the finite field F, is defined as the smallest non-negative
integer L such that the first N terms of the sequence (s,,) can be generated by a
linear recurrence relation over I, of order L, i.e., there exist

co,C1,...,C—1 € ]Fq
such that
Sn4L = C0Sn + C18nq1 +  + CL_15n4L—1, 0<n<N-L-1
The linear complexity measures the unpredictability of a sequence, hence for ap-
plications in cryptography, a large linear complexity is desired. However, a large
linear complexity is not a sufficient condition for the unpredictability of a se-
quence. For more details, see [15,[19,23].

In Section[2, we recall some properties of hyperelliptic curves and in Section[3]
we define the Frobenius endomorphism generator and state the main result.
In Section[] we collect auxiliary results which are used in the proof. In particular,
we recall the Grant representation [4] of the Jacobian of a hyperelliptic curve
of genus 2 and some results from [I]. Finally, in Section Bl we prove the main
result.

2. Hyperelliptic curves

Let IF, be a finite field with characteristic p > 3 and Fy» be an extension field
of F, with n > 1. Let F, be the algebraic closure of F.
2.1. Points on hyperelliptic curves
Let C be a hyperelliptic curve of genus g > 1 defined over the base field I, by
C:Y? = h(X), (1)
where h(X) € F,[X] is a polynomial of degree 2g+ 1. For details on hyperelliptic
curves, see [2,B,0]. We denote the Fyn-rational points of C' by C(Fgn), which

are the solutions over Fyn of the defining equation (Il together with a point O
at infinity. By the Hasse-Weil bound [22], Theorem 5.2.3], we have

[CFgn) = (" +1)| < 294", (2)
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2.2. Jacobian of hyperelliptic curves

For an affine point P = (z,y) € C, we write —P = (z,—y) and -0 = O
for the point at infinity. A divisor D of C' is an element of the free abelian group
over the points of C, e.g., D = > p . npP with np € Z and np = 0 for almost
all points P. A reduced divisor is given by

D:Pl+"'+Pr*TO7 (3)
where
1<r<g, P,....P.eC, P#0O for 1<i<r
and

The Jacobian Jo of the curve C' is the set of reduced divisors. One can define
an addition operation on the set of reduced divisors, denoted by +, with the
identity element O, which makes J& into a group. The elements of the curve
C(F,) are represented in the Jacobian by the set

O(F,) = {D € Jo(F,): D=P —O,P € C(F,)} U{O}. (4)

We also write © = O(F,).
The Frobenius endomorphism U:Fq %Fq, x— a9, extends naturally to points
on C, where
o((@.y) = @ty  and  o(0)=O.
For
D=3 P-rO€clJe, define o(D)=3"_,0(P)—r0.

An element D € Je as given in (@) is said to be defined over Fy if o(D) permutes
the set {P1,...,P.}. We use Jo(FF,) to denote the set of elements of Jo which
are defined over IF,.

The characteristic polynomial, x(T') of the Frobenius endomorphism o is a
degree 2¢g polynomial with integer coefficients of the following form

xe(T) =T + 51T oo 8T+ + 51 ' T +q%, s, €Z.  (5)

It follows from the Hasse-Weil Theorem [22] Theorem 5.1.15 and 5.2.1], that the
complex roots 7; of y¢ have absolute value |r;| = ¢*/2,i = 1,...,2g. For any
extension degree n, the cardinality of Jo(Fgn) is given by

29

[Je(Fen)| = [T1 = 7). (6)

=1

< (@41, n>1. (7)

In particular, we have
(¢""* = 1)% < |Jc(Fygn)

3
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2.3. Mumford representation

A compact representation of elements of the Jacobian Jo is given by the
Mumford representation [I8] using a pair of polynomials [u,v] € Fq[X] x F,[X].
For a reduced divisor D = ' | P, — rO with P, = (x;,y;) the Mumford
representation is given by u = [[;_,(X — x;) and v such that v interpolates

the points P; respecting multiplicities. In particular,

(a) u is monic,

(b) u divides f — v?,

(c) deg(v) < deg(u) < g.
For genus g = 2, a generic element D = P, + P, — 20 is represented by the
polynomials

u = 2 +uyrtug, v =vi2+v0, Ui, v; € Fyn,i € {0,1} such that D = [u,v]. (8)

3. Koblitz curves and fast generation of elements
in Jacobian

By a hyperelliptic Koblitz curve, we refer to a hyperelliptic curve that is
defined over a small finite field and is considered over a large extension field.
In this work, we avoid fields with characteristic 2 for technical reasons.
For Koblitz curves, it is recommended to choose base fields ¢ < 7 for compu-
tational advantage, see [I1]. However, we do not impose this restriction for our
result.

For fast generation of elements in the Jacobian J¢ (F,» ), Lange and Shparlin-
ski in [I2] introduced the following method using the Frobenius endomorphism.
Here we restrict ourselves to the genus 2 case. Let

R={0,%1,...,%+(¢> —1)/2}

represent the set Z/q?Z. Let D € Jo(Fyn) be an element of order /. For fixed
k < n, consider the element of Jo defined as follows

k-1
Dm:ijaj(D), m = (mo,...,mp_1) € R*. 9)
7=0

It is natural to expect that the divisors D, defined by (@) are sufficiently uni-
formly distributed. Lange and Shparlinski [I2] showed that D,, do not take
the same value too often (which would otherwise have catastrophic implications
for their cryptographic applications).

4
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In this paper we further investigate the randomness properties of D,,,. Namely,
we show that different statistics of the divisors D,,,, like the Mumford coordinates
u;,v; as in (8)), possess large linear complexity if the divisors D,, are arranged
in a natural way, say in lexicographic ordering. More precisely, let f € Fy» (Jc) be
a rational function in the function field of the Jacobian. We arrange the elements
of R¥ with a lexicographic ordering and define the sequence (W, )mers With

{f(Dm) if Dy, is not a pole of f,
Wy, =

0, otherwise.

(10)

Throughout the paper, U < V is equivalent to the inequality |U| < ¢V with
some constant ¢ > 0. Our main result is the following bound on the linear
complexity of (W, )merk-

THEOREM 3.1. Let C' be a hyperelliptic curve of genus 2, defined over the
base field F, and let Jo(Fyn) be its Jacobian over the extension field Fyn. Let
the characteristic polynomial of the Frobenius endomorphism xc be irreducible.
Let f € Fyn(Jc) be a rational function with pole divisor of the form a®,
a€Z,a>1.If D € Jo(Fyn) is of prime order {,0 1 g% then for any k, where
1 <k <n with (Wm)merr as defined in ([I0), we have

min{¢**/2,¢/¢%}
gidegf

The result is non-trivial if k& > 2n/3 and £ > ¢"*8. In the ideal case, k = n,
degf = 1 and £ ~ ¢*", we obtain L(wyy,) > cq™? for some constant which
may depend on deg f. Examples for rational functions with deg f = 1 are the
Mumford coordinates (8.

We assume the characteristic polynomial of Frobenius endomorphism y¢ to
be irreducible, in particular, x¢ is irreducible over Z. Practically, this is the most
interesting case, since, by (@) any non-trivial factor of y¢ leads to a non-trivial
factor of the group order, which we want to avoid.

L(wm) >

(11)

We remark, that in (@), if we replace the Frobenius map o with the multipli-
cation map [2] : D — 2D, and if we use colexicographic ordering for arranging
sequence elements D,,, then we are in the linear congruential generator case,
for which we proved a stronger bound in [I].

We also remark, that Lange and Shparlinski [I2][T4] defined and investigated
the randomness properties of similar, but not completely analogous point-set
for the elliptic curve case. Later, Mérai [16] studied the randomness properties
of a sequence of elements from this point set, by arranging elements in a sequence
using lexicographic ordering.
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The proof of Theorem B1]is based on the method of [16], the results of [12]
and taking advantage of the explicit addition formulas for genus 2 provided
by Grant [4].

4. Preparation

The aim of this section is to collect some technical results for the proof of the
main theorem. We use the Grant representation of a hyperelliptic curve of genus
2 since it provides explicit addition formulas. This allows us to prove the degree
estimate in Proposition 441

4.1. Arithmetic for genus 2 using Grant representation

In order to implement the group law (Q, R) — @ + R on the Jacobian, one
can use Cantor’s algorithm which uses the Mumford representation. However,
this algorithm is implicit. In this work, we use the explicit addition formulas
provided by Grant [4, Theorem 3.3].

Let C be the hyperelliptic curve of genus g = 2 defined by ({I) with
h(X) = X° 4 b1 X? 4+ 5 X3 4 b3 X% + by X + by € F[X],

for the finite field F, with characteristic p > 3. In [4], Grant provides an embed-
ding of J¢ into the projective space P5.
Let
F,[Z) =F,[Z11, Z12, Za2, Z111, Z112, Z122, Z222, Z] (12)

be a polynomial ring over [, in 8 variables. The following proposition gives us
a set of defining equations for the Jacobian, see [4, Corollary 2.15].

PROPOSITION 4.1. There are polynomials f1,..., fis € F4[Z] such that
Jo 2 V(fl,... fs) ={z€P®: f(2) =0,1<i <13},

where fih denotes the homogenized polynomial with respect to the variable Zy.
Moreover, an embedding v : Jo — P8 is given by

(1 DZ11 12121 292 1 2111 - R112 - 2122 | 29292 - Z) ZfDEJC\@,
t((D)=4(0:0:0:0:1:0:0:0:0) if D=0, (13)
(0:0:0:0: —a%: —2%: —x:1:—y) if D=P—-0€0\0,

where P = (x,y).

6
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See Appendix [A]] for the polynomial expressions of fi,..., fi3 in the same
notation as used in this work. For D = (21, y1) + (2, y2) —20 € Jo(F,) \ O(Fy),
the components zji, 2 of ¢(D) can be expressed as rational functions in the
coordinates (z1,y1) and (z2,y2).

We denote the affine part of Jo with respect to variable Zy under ¢ by U.
Then U = J¢ \ ©. Moreover, by [4, Theorem 2.5], we have

UV(fi,...,fs) (14)

Since J¢ is irreducible and has dimension 2, it follows that U is irreducible,
dense, and has dimension 2, see [6, Example 1.1.3 ]. As aresult, F,(U) = F,(Jc),
see [6l, Theorem 3.4].

For a rational function h € F (U), we define its degree by choosing a repre-
sentative element Z—; of the equivalence class h, such that deg h; is minimal and

set
deg h = max{deghy,deghs}.

We summarize the algebraic properties of the group law in the Grant repre-
sentation. For explicit expressions, see Appendix
LEMMA 4.2. Assume that Q,R,Q+ R,QQ — R € U. Let
A(Q; R) = 211(Q) — 211(R) + 212(Q)222(R) — 212(R) 222(Q). (15)
Then there are explicit formulas for
2@+ R), zju(Q+ R)
which are rational functions in
zin(Q),  zk(R),  zm(@Q),  zjm(R) and q(Q,R) for 1<j<k<1<2
We recall [I, Lemma 2.3] which will be used in Proposition .4l

LEMMA 4.3. Assume that Q,R,Q + R,QQ — R € U. Let q(Q,R) be defined
by (I3) and set qr(Q) = q(Q, R). Then for any firxed R € U, the zero set
{qr(Q) = q(Q, R) = 0} has dimension one and © £ R C {qr = 0}. Moreover if
R' € U with R # +R’, then

{ar =0} N {gr =0} NU| < 20. (16)
One can show that for D € U(Fym ), where m € Z, m > 1, we have
{OFqm) + D} NO(Fm)| < 2.
See [, Lemma 2.4]. Thus
{OFqm) + D} NU| = [O(Fgm)| — 2. (17)
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PROPOSITION 4.4. Let f € Fyn(U) be a rational function with a pole divisor
of the form a®,a € Z,a > 1. Let L be a positive integer and let Ry, ..., Ry €
Jco(Fgn) such that R; ¢ O(Fyn) and Ry, # +Rj for0 <i <L and0<j < L-—1.
Let cg....,cr € Fgn with cp, # 0. Then the rational function F' € Fgn (U), with

L
FQ) =Y af(Q+R)
i=0
s mon-constant and has degree
deg F < 6(L + 1) deg f. (18)

Proof. Defining the function fg, : Q — f(Q + R;) yields
L—1
F(Q) = cifr(Q)+cLfr,(Q)
i=0
To prove that F' is non-constant, we show that there exists Q € U such that it
is a pole of fr,, but not a pole of any other terms fr, for i < L.

Observe that fr, has a pole at Q when ) € © — Ry, in particular,
when @ € O(Fym) — Ry, for m > 1 independent of n. Define qr, = q(Q, R;).
From Lemma B3] we know that ©(F,m) — R; C {qgr, = 0}. Hence, by (6] we
obtain

((6E) ~ RL) NU) N {ar, = 0}] < Han, = 0} N {an, = 0} NU| < 20.

Thus, by (I7), we obtain

‘(<@(qu) —Rp)N U) \ (DI{CIRi = 0}) ‘ = (19)
Lﬁ <((@<qu) —Rp)N U) \{ar, = 0}) > |O(Fym)| — 2 — 20L.

We pick m such that |O(F,m )| —2—20L > 0. Hence, there exists a point ) which
is a pole of fr, but not a pole of any other term of F. Hence, F is non-constant.

To estimate the degree of F', we first estimate the degree of fg,. For arbitrary 4,
define R = R;. We define

Zﬁg(Q) = 2jx(Q + R), Zﬁ;z(@) = zju(Q + R), 2 =2(Q + R).
Then we can write fr(Q) as

frQ) = f(Q+R) = f(#11(Q),-.., 225(Q), 2"(Q)) .
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We can consider zﬁc(Q), zﬁcl(Q) to be rational functions in the variables z;1(Q),
zir(Q) and z(Q), see Appendix [A.2l Then it follows from the explicit formulas
of these functions that

degzﬁ’c <3, degzﬁcl <4 and degz® <.
Hence we obtain
deg fr < (deg f)(max{deg zﬁ’c, deg zﬁd,deg zR}) = 6deg f,

and thus
L

deg F' < deg (quzz) < 6(L + 1)(deg f).

=0

4.2. Bounds on the number of zeros of a system of polynomial
equations over a finite field.

Let f1,..., fx € Fgn[X1,..., X;n]. We denote the vanishing set of f1,..., fi
over [Fyn by

Voo (frs-o fr) = {x € Fi s fi(x) = -+ = fa(x) =0},
and the vanishing set over the algebraic closure F, by
V(fiy-o s fi) = VFq(fl,...,fk).
For each m € Z, m > 1, we define affine m-space over Fq to be
A™Fy) ={(z1,...,2p) 2 €Fg,1 <i<m}. (20)

The following result gives us bounds for the cardinality of algebraic sets over
finite fields, [10, Corollary 2.2].

LEMMA 4.5. Let f1,...,fr € Fpn[Xy,...,Xp] such that V(f1,..., fx) has
dimension d in A™(F,). Then

k
|VFqn<f17'~'afk?)’ = ’V<f177fkr)ﬁ]Fg7Ll S (qn)deegf’L
i=1

LEMMA 4.6. Let f1,..., fo be the defining equations of U as in (Idl), let F €
Fon (U) be a non-constant rational function and let G1/G2 be a representation
of F € Fyn(Z) as a rational function. Then

Ve (f1s- .- f6,G1)| < 216¢" deg F. (21)

9
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Proof. Since U has dimension 2 and F' is non-constant on U, V' (f1,..., fs, G1)
has dimension 1 in A% Applying Lemma (5], we obtain

6
Ve, (frs- - f6,G1)| < ¢" deg Gy [ [ deg fi < 2164 deg F.
i=1 (]
4.3. Linear complexity

We recall the following result on the linear complexity, see [13, Lemma 6].

LEMMA 4.7. Let (s,) be a linear recurrent sequence of order L over Fy defined
by a linear recursion

Sp+L = CoSp + -+ cr—15n41-1, 1 =>0.

Then for any T > L + 1 and pairwise distinct positive integers ji,. .., jr, there
exist A1, ..., A7 € Fy, not all equal to zero, such that

T
Z )‘isn-i-ji = 0, n Z 0.
=1

4.4. Number of torsion elements

We need the following result on the number of torsion elements in the Jacobian
of hyperelliptic curves over finite fields.

LEMMA 4.8. Let m be an integer coprime to the characteristic of F,. Then,
{D € Jc(F,) : mD = O} = m*.
For a proof, we refer to [7, Theorem A.7.2.7].

4.5. Collisions

We now turn our attention to the collisions which can occur in (). Let T%(Q)
be the number of k-tuples m = (mo,...,mp_1) € R* such that D,, = Q.
We recall the following result from [12], Theorem 2], which gives an upper bound
for Ty (Q). This upper bound implies that the elements generated by (@) do not
take the same value too often and are sufficiently uniformly distributed.

PROPOSITION 4.9. Let C be a hyperelliptic curve of genus 2 defined over I
such that the characteristic polynomial of the Frobenius endomorphism xc is
irreducible. Let D € Jo(Fgn) of prime order £. Then for any integers k and e
with 1 < e < k and ¢*¢ < (¢"/% — 1)*q8¢, and for every element Q € Jo(Fgn),
the bound Tj(Q) < ¢**~°) holds.

10
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The bound of Proposition shows that if k is small and
¢** < (¢"* = 1)*q75,

then all the elements D,, are distinct. We observe that if ¢*¢ < £/¢%, then
¢*¢ < (¢'/? — 1)*¢~8¢. For larger k, choosing e maximal such that ¢*¢ < ¢/¢®
yields

2k+8
Tr(Q) < max{1, q%_ze} < max {1, 1 7 } : (22)

5. Proof of the main theorem

Let xo(T) = T* + 5172 + 5572 + s1¢qT + ¢* be the characteristic polynomial
of the Frobenius endomorphism for genus 2. The following result is a crucial step
in the proof of the main theorem.

LemMmA 5.1. If D € Jo(Fyn) has prime order £, and ¢ does not divide the
constant term of xc, then o(D) # O.

Proof. If (D) = O, then by definition of ¢, we have that
¢*D = —0(D)* — 510(D)? — s50(D)? — 51q0(D) = O.
Thus, the order ¢ of D divides ¢?, which is the constant term of x¢. O
Proof. (Theorem 1) We fix » = max{ L%J ,1}. Let m € R¥, we can write
m=(u,v),peR ,veRT

Let N, and Nj_, be the number of distinct elements D,,,v € R" and v € RF™7,

respectively. We can assume that £ > q%”+8, since otherwise (Il holds trivially.
Therefore, max{¢®", ¢**~2"} < ¢/q¢®. Hence, by [22), we obtain

|Rk—7'| q2(k—r)

Ni—p > =min<{ @, = V. (23
hor = maxg Tx—r(Q) = max{1, g2(k—")+8 /¢} mm{q g8 (23)

Let L be the linear complexity of the sequence (wm,)merr as defined in (I0).
We can assume that

. |Jo(Fgn)| — |O(Fgn)|
L<m1n{N,«, C|@(Fqn) 16 }, (24)

since otherwise the theorem holds trivially.
Since by (24]), we assume that L < N, there exist L+1 vectors dg, ...,dr € R"
such that Dg,, ..., Dgq, are distinct.

11
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We fix these vectors and for each j =0, ..., L define the sequence
a;(s) = Wd;s), SE RE—T

where again the elements a;(s) are arranged in a sequence by using lexicographic
ordering for vectors s. The sequences (a;(s))scrr-r are parts of (Wm)merr,
that is, they are consecutive elements in (W, )merk, as 8 runs through RF".
By Lemma [£.7], these sequences are linearly dependent, i.e. there exist constants
€o, - . ..cr € Fgn, not all zero, such that

CoW(dy,s) + -+ CLW(dy,s) = 0, se Rk_r. (25)
Note that for
m = (dj,s), DmZD(dj“g) :de —|—O'T(DS) by (IQI)

We would like to avoid collision of elements Dg,, j € {0,..., L} with ©(Fgn).
We claim that there exists an element R € Jo(Fgn) such that

Da, + R¢ O(F,), for 0<i<L, (26)

Day + R# —(Dg, + R), for 0<j<L—1. (27)

We count the number of elements R € Jeo(Fgn ) such that R does not satisfy (20)
or [27). There are at most (L + 1)|©(F4»)| choices for R such that Dg, + R €

O(Fgn) for some 0 <14 < L.
Furthermore, if (27) was not satisfied, then we obtain that

—(Dg, + Dg;) =2R, forsome 0<j<L—1.

By Lemma 8 we obtain that there are at most 16 elements R € Jo(F,)
such that 2R = O. Therefore, there are at most 16L choices for R such that
2R = —(Dq, + Dg,) for some j € {0,...,L —1}. By ([24)), we know that

|Jo(Fgn)| — (L+1)|©(Fg)| —16L > 0,
hence there exists R € Jo(Fgn) such that (26) and [27) are satisfied.
Let R; = Dg, + R. Consider the function

L

F(Q) =) af(Q+Ri). (28)

=0

By Proposition 4] we know that F' is non-constant and has degree at most
6(L+ 1)(deg f).

12
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We observe that if F' has a pole at @, then Q must have a form
Q=0"(Ds)— R, seR'T,
with
Q S @(]Fqn) or Q c @(]Fqn) + Rf,, for 0 S ) S L.

Hence, defining set S as follows ensures that for @ € S, the sum in ([28) does
not contain any poles. Define

S={QeJo(Fpn): Q=0"(Ds) —R, seR"",
with
Q¢ O(F;) and Q=ER; ¢ O(F;m) for 0<i<L}.

Hence by (I0) and 23)), F(Q) =0 for Q € S.

Now we give a lower bound for |S|. We observe that if D has prime order ¢,
then o7 (D) also has order /, since o is an endomorphism and hence additive.
Combining this with (@), we see that if £D,, = O, then either D,,, = O or it
has order £, since £ is prime. Hence, by Lemma [5.1] we obtain that if D,,, # D,
then ‘ ‘

0/ (D) # 07 (Dn),m,n e R*,j € Z,j > 1.
Therefore, the number of distinct elements
0"(Dg) — R, s€RFT is Ny_,.

We observe that for
Q=0"(Ds)— R,s € RF",

{Q € Jo(Fgn) : Q € O(Fgn)}| < [O(Fqn)] (29)
and
Q€ Jo(Fgn) : @+ Ri € O(Fn )} < 2(L+1) |O(Fn)]. (30)
Hence, by ([2Z9) and ([B0) we obtain,
8] = Ni—p = 2(L + 1)[O(Fgn)| — |O(Fqn)]| - (31)

To give an upper bound for |S|, we use Lemma [£.6] and (I8) to obtain
S| < 216¢™ deg F < 1296(L + 1)¢" deg f. (32)
Combining equations ([BIl) and ([B2) gives us

Ni—r — 3|O(Fgn)| — 1296¢™ deg f
1296¢™ deg f + 2|0 (Fyn )|

L> (33)

13
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By (@), we can estimate the size of |©(Fyn)|. Substituting the lower bound
on Nj_, as given in (23) into ([B3]), we obtain
min{q**/?,¢/¢®}

grdegf O

L(wm) >
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Appendix A.

Let C be the hyperelliptic curve defined by () with
FX) = X° + b X+ b X3+ b3 X2+ bs X + bs € Fy[X],
for the finite field I, with characteristic p > 3.

A.1. Defining equations of the Jacobian

Let
S =420, Z11, Z12, Z22, Z111, Z112, Z1225 Z222, Z]

be a polynomial ring over field F,, with characteristic p > 3. Following [4],
in particular Theorem 2.5, Theorem 2.11 and Corollary 2.15, we define f; as
follows:

fo=2%+ 73, Z19 + b1 23 Zog + by 23 Z19 99 — b3 Z11 Z3s + baZ12 73,
— b5 Zy + 2b1Z 211 — 2622 Z15 + 2037 Zoag + (bg — biba) Z11Z12
+ (b3 — b1b3) Z11 Zas + (bibs — babs — bs) Z19 729 — bibs Z2,
+2(b1bs — b3)Z + (b1bs — bs) Z11 + ba (b3 — bibs) Z12
+ (bgbs — babs) Zay + bibsby — b3by — bsbs,

fi =27 — 211 Zoy + Z2y — by Z15 + by,

Jo = Zi12 — Z222Z12 + Z122222,

J3 = Z111 + ZasaZ11 + Z122Z12 — 22112222 — 2012112 + baZ122,

14
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fa = Ziyy — Z11Z55 + 2Z Zog + Z11Z12 — b1 Z11 222 — b2 Z12 225
+ 20172 — b1ba Z12 + by Zos + bi1by — bs,
fo = Z3yy — 73y — Z12Z23 — b1 Z3y — Z11 — baZao — bs,
fo = Z192Z990 — Z19Z35 + Z — by Z12 — by Z12Z2,
fr=2%, — Z}) — b3 23, — baZ11Z12 + 3bs 211222 + 2052
+ (4b1bs — babs) Z11 — 3babs Z1a + (4bsbs — b3) Zao
+ 4b1b3bs + babs — bib] — b3bs,
Js = —Z111Z112 + b1 Z111Z122 — baZ112 2122 + b3 Z112 2222
— by Z192 7299 + b5 Zagy — Z2 — b1 ZZ11 + bo Z 219 — b3 Z Zoo
— b3 Z11 71 + bibs Z11 Zog — (bs + b1ba) Z12 Zos + 2b1b5.Z3,
— 2(bybg + bs) Z + (2b2by + bibobs + bibs — b3 — bibs) Z12
— 2b5Z11 + 2b5 (b — b2) Zaa + bibabs — bibsbs — 2bsbs,
fo = Ztes — Z111 2120 + Z11Z — b3 Z11 Zoz + 2bs 212229 — 3b5 23,
+ 2037 + (biby — babs — bs) Z12 — 2b1b5Z22 + bsby — babs,
f10 = Z111Z222 — Z112Z120 — 22 712 + 23y — 2017211712
+ 3by 211 Zag — 203719729 + bsZae — 5by Z + b3 Z11
+ (3b3 — 2b1b3) Z12 + (b1by — bs) Zag — 2baba,
fi1 = Z3yy — Z119 2090 + ZooZ + 2711219 — b1 Z11 Zon + 201 2
+ (bg — b1b2) Z12 + biby — b5,
J12 = Z111Z12 — Z112Z11 — baZi22 + 2b5 Z222,

f13 = 22192711 — Z112Z12 — Z111 %22 — baZ112 + 2b3 2120 — by Za2o.

One can show that fo € (f4, f5, f6) and the vanishing locus of these polynomials
homogenized with respect to the variable Z; forms a set of defining equations
for the Jacobian Jg, i.e.,

Jo=V(fl... . fly) = {z e PF,) : f(:) = 0,1 <i<13)

15



VISHNUPRIYA ANUPINDI

A.2. Addition formulas

For D = (z1,y1) + (z2,9y2) — 20 € Jo(Fy) \ O(F,), @3) gives us «(D),
where the components zji, 25 of ¢(D) can be expressed as rational functions
in the coordinates (z1,y1) and (x2,y2). For the sake of completeness, we collect
the addition formulas as given in [, Theorem 3.3] and as explicitly computed
in [I, Appendix A.3].

2 (Q 4 R) = —(Q) 7Zij(R)+i (%‘(QaR)) <QJ(Q’R)> 1 (qz‘j(Q,R))’

(Q,R) (Q,R) (Q,R)
1 1 3 (@, R)ai(Q, R) 1 ¢111(Q, R)
Z111(Q+R)——52111(Q)—§Z111(R)+1—6 Q. R)? 6 «(O. )
1 /(q(Q,R)\* 3 0(Q, R)
— g ( q(Q,R) > + 1(211<Q) +Z11(R)) q(Q,R) )
z2112(Q + R) = —%Zuz(Q) - %/2112(1%) + 1_16 72(Q, f)(hl)( ,R)
i 1qi1(Q, R)qi2(Q:R) 1 q112(Q,R)  1¢2(Q, R)(q1(Q, R))*
8 q(Q, R)? 16 ¢(Q,R) 8 q(Q, R)3
§ z z (Q R) 3 z z ( R
+ 8( 1(Q) + 11(R)) JO.R) + = ( 12(Q) + 12(R)) (OB
2122(Q + R) = *%lez(Q) - %hzz(R) + 1_16 ql(Q;J(Q;qj%(QQ’R)
i 1¢2(Q, R)q12(Q, R) 1 q122(Q, R)
8 q(Q, R)? 16 q(Q, R)
11 (Q,R)(q2(Q, R 2 3 2(Q, R
- gq @ q&éi]R()?) ) + 1(212(62) + 212(R)) 1 <(g R))a
(@ + R) = ~gm(Q) - oam(R) + 1 2 LE T L 30D
1 (0@ R\ 3 ©(Q,R)
5 (%) +16n@+mm) SEg.
AQ+R) = 5(=n(Q+ R)za(Q + R) — Zh(Q+ R) + booua(@ + B) — ba).

16
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To evaluate the addition formulas above, we need the following rational func-

tions:

q(Q, R)
q1 (Q)R)

q2 (Q7 R)

q11 (Q7 R)

q12 (Q, R)

q22 (Q7 R)

Q111(Q7 R)

=211(Q) — 211(R) + 212(Q) 222(R) — 212(R) 222(Q),
=22111(Q) — 22111 (R) + 22112(Q) 222(R) — 22112(R) 222(Q)

+22122(R)212(Q) — 22122(Q)212(R),

=22112(Q) — 22112(R) + 22122(Q) 222(R) — 22122(R) 222(Q)

+ 22902 (R)212(Q) — 22222(Q)212(R),

= 4b3q(Q, R) +4b4 (212 (Q) *le(R)) +4((2Z*b2212+b4)(Q)212(R))

— 4((22—b2z12+04) (R)212(Q)) — 8b5(222(Q) — 222(R))
+ 2(22112(Q)22122(R) — 22112(R)22122(Q))

=4b3(212(Q) — z12(R)) + 2b2(212(Q)222(R))

— 2by (212(R)222(Q)) — 4(211(Q)z12(R) — 211 (R)212(Q))
+ 2((22—baz12+b4)(Q)222(R) — (22—baz12+b4)(R)222(Q))
— 2b4 (222(Q) — 222(R) ) +22292(R)22112(Q) — 22222(Q)22112(R),

=8b1 (212(Q)222(R) — z12(R)222(Q)) + 4b2212(Q)

— 4byz12(R) — 8(211(Q)222(R) — 211(R)222(Q))
— 4((22’—522’12+b4)(Q) — (2Z—b2212+b4)<R))

+ 2(22122(Q)22222(R) — 22122(R)22222(Q)),

=4b3q1(Q, R) + 4(22111(Q)222(Q) 212(R) — 22111 (R) 222(R) 212(Q))

+22100(R) (2212(@ (6211(Q) — 2211 (R) + 4bs) — 4b4222(Q))

— 22122(Q (2212 (6211 (R) —2211(Q) +4bs) — 4b4222(R)>

+22015(Q (212 R)(12215(R) — 8212(Q) + 4by) + 4b4>
(212 )(12212(Q) — 8212(R) + 4by) + 4b4>,

—2z112(R

17
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=22292(Q) (4211(Q) 212(R) — 4212(R) b3 — 8bs)

+ 22112(Q) (—42’11 (R) +4Z12(R)222 (Q) —|—2’12<R) (12222(R) +8b1)>

+ 22112<R) (42’11 (Q) +Z12(Q) (—12222 (Q) —42’22 (R) — 8b1) —4b3>

+ 22122(Q) (*8211(}3)222(3) — 8212(Q)z12(R) — 4219(R)?
+ 4222(R)b3 + 4by — 4212(R)b2)

+ 22122(R) (8211(62)222(@) +4212(Q)? +212(Q) (8212(R) +4bs)
— 429(Q)bs — 454) + 22112(Q)4bs

+ 22992(R) (212(Q) (—42z11(R) + 4b3) + 8b5),

q122(Q, R) = 22112(R) (—6222(62)2 + 222(Q) (—2222(R) — 4by) — 252)

18

G222 (Q7 R)

=22222(R)

+ 22122(R) (*4211(@) + ZQQ(Q) (4212(R) — 2b2) — 4b3>

+ 22092(Q) (2211(Q) 222(R) — 4211 (R)222(R) — 2212(R)?)
+ 22112(Q) (2222(Q) 222(R) + 6222(R)* + 4222 (R)b1 + 2b2)
4211(Q)222(Q) — 2211 (R)222(Q) 4 2212(Q)?)
R) — 4215(Q)z22(R) + 2222(R)ba + 4b3)
— 22999(Q) (2b4 + 4212(R)b2)

(@)
(@)
+ 22992(R)
(@)
(@)
+ 22999 (R) (2bs + 4212(Q)b2),

(
(
(
+ 22122(Q) (421
(
(

/N

—12211(Q) + 4211(R) + le(Q)(12222(Q) + 16b1))
+ 22122 8212 8212 12222(@)2—16222(Q)b1—8b2)

+ 22112(Q) (—4222(Q) —8222(R )

+ 22999 Q ( 4211 —|— 12211 R) + Zlg(R) (—12222(R)—16b1))
+ 22112 R (8222 —|— 42’22(R))
(8212 +8212(R)+12222(R)2+16222(R)b1 +8b2)

+ 22122(Q)
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