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Rheumatoid Arthritis-associated Interstitial Lung Disease (RA-ILD) significantly reduces life quality 
and survival, necessitating improvements in its understanding and clinical management. We addressed 
these goals using DNA methylation analysis, which has not been done in RA-ILD samples, by 
comparing 32 RA patients with ILD diagnosed less than one year before (cases) and 32 matched RA 
patients without ILD (controls). This analysis identified 6679 differentially methylated positions (DMPs) 
with Δβ ≥ 2% and FDR < 0.05, and 576 differentially methylated regions in RA-ILD. Some DMPs were 
near mucin, collagen, and telomere maintenance genes. Also, the most notably enriched gene set (up 
to padj = 1.9 × 10–38) included genes overexpressed in fibrosis by monocytes and alveolar macrophages. 
Other significantly enriched gene sets, known to be dysregulated in fibrosis, included the mitotic 
spindle and the Rho GTPases. Additionally, analysis of transcription factor binding sites around DMPs 
showed unique enrichment near the liver X receptor element (LXRE), which is associated with fibrosis 
in multiple tissues. These results were consistent and unaffected by stricter significance thresholds. 
They indicated that differential DNA methylation may serve as blood biomarkers for RA-ILD including 
some related to lung fibrosis pathways.
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Approximately 10% of the patients with RA are affected by clinically relevant RA-associated Interstitial Lung 
Disease (RA-ILD)1. This fraction of patients has become a focus of interest for the identification of biomarkers 
since ILD can drastically reduce the quality of life and survival. Notwithstanding, the pathogenesis of RA-ILD 
is still incompletely understood. Current knowledge derives mostly from idiopathic pulmonary fibrosis (IPF) 
research given that the two diseases share important features2. The recognized risk factors are advanced age, 
male sex, smoking, and a genetic polymorphism in the MUC5B gene, which also are risk factors for IPF, whereas 
the other two risk factors, inflammatory activity and presence of autoantibodies are RA-ILD exclussive1,2. 
Additionally, the pathophysiology of the two diseases seems to involve alveolar epithelial cell (AEC) dysfunction 
and aberrant wound healing resulting in fibroblast activation, myofibroblast differentiation, and lung fibrosis2,3. 
Some of the pathogenic elements are reflected in biomarkers. Examples are the MUC5B polymorphism, which 
is associated with the overproduction of mucus and impaired mucociliary clearance; genetically determined 
telomere shortening, that contributes to AECs senescence4,5; the serum biomarkers Krebs von den Lungen-6 
(KL-6) and surfactant protein D (SP-D), that reflect AECs dysfunction, and metalloproteinase-7 (MMP-7), that 
is associated with increased matrix turnover2,3. However, this knowledge does not satisfy the clinical needs 
because the known risk factors and biomarkers have proven insufficient for RA-ILD prediction, early diagnosis, 
and management1,2. A promising approach to address these unmet needs is DNA methylation analysis.

This type of analysis is promising because DNA methylation includes a dynamic and reversible component 
that reflects genetic, environmental, and endogenous factors. In recent years, the assessment of DNA methylation 
and other epigenetic layers has contributed to the molecular characterization of multiple diseases6–9. The 
changes in methylation can be dramatic, as in cancer, or more subtle as observed in a wide range of complex 
diseases, including RA and other autoimmune and inflammatory diseases6,8–10. Most often the small (< 10%) 
methylation changes lack a biological interpretation6,8,9. This “subtle change” paradigm contrasts with the large 
differences in methylation associated with switching genes on or off observed during development, imprinting, 
and oncogenesis6–9. However, the subtle changes at specific positions (DMPs) and regions (DMRs) can be 
useful biomarkers reflecting a range of disease features, including onset, activity, and prognosis6,8–19. These 
associations are frequently discovered through epigenome-wide association studies (EWAS), which evaluate the 
relationship of disease phenotypes with modest DNA methylation changes at numerous CpG sites6,8,9. However, 
no such study has ever been done for RA-ILD. The published RA EWAS have already shown the potential of 
this technology. It has revealed fibroblast-like synoviocyte (FLS) DMPs that are specific to RA11,12, differentiate 
the RA phases13, and the joint from which the FLS originate11. Besides FLS, synovial and blood monocytes have 
also proven informative on the progression of early arthritis over time, in the work of the de la Calle-Fabregat 
and colleagues14, and of RA disease activity, in the Rodriguez-Ubreva and colleagues study15. Additional EWAS 
on whole blood DNA have identified a set of biomarkers able to predict the evolution from undifferentiated 
arthritis to RA16, and cell-type-specific biomarkers predicting the response of RA patients to treatment with 
methotrexate17. Other studies on whole blood DNA identified an interferon-inducible gene network involved in 
the RA pathogenesis18 and evidence suggesting that DNA methylation mediates the HLA genetic risk in patients 
presenting anti-cyclic citrullinated peptide (CCP) antibodies19. Notably, many of these studies were successful 
with total sample sizes ranging from 35 to 7211–18.

The abundance of blood DNA methylation findings in RA has inspired the current exploratory study 
considering that methylation changes in the blood could identify biomarkers related to molecular processes 
involved in RA-ILD. Specifically, we hypothesized that an EWAS would be an efficient strategy to obtain new RA-
ILD biomarkers reflecting underlying pathogenic disturbances. In addition, we limited our analysis to patients 
with an early ILD diagnosis and performed a matched case–control study to increase our chances of genuine 
results. Finally, we accounted for multiple tests by applying the false discovery rate (FDR) method and verified 
the robustness of thresholds and the concordance of gene set enrichments to ensure the validity of our findings.

Results
RA-ILD-associated DMPs and DMRs are predominantly hypermethylated
Firstly, we matched patients with RA-ILD and RAcontrols for known potential confounders (Suppl. Fig. 1). The 
two groups showed an identical frequency in sex (23 women), smoking (14 ever smokers), anti-CCP status (29 
seropositive), and an identical median age (64.7 years). Additionally, they were similar in other demographic and 
clinical aspects: ethnicity, level of studies, rheumatoid factor (RF) positive or negative status, MUC5B promoter 
genotype, disease activity assessed with the Disease Activity Score 28 joints (DAS28), age at RA diagnosis, time 
since RA diagnosis, and drugs used at the time of sample extraction (Suppl. Table 2). Subsequently, we obtained 
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DNA methylation data and identified 814,043 CpGs that passed our QC pipeline, thus rendering them available 
for analysis.

The differential methylation analysis revealed that 6679 CpGs qualified as DMPs (Δβ ≥ 2% and FDR < 0.05) 
between RA-ILD and RAcontrols, most of them (91.5%) hypermethylated in the RA-ILD samples (Fig. 1A and 
Suppl. Table 4). The largest differences were ∆β = 0.18 among the hypermethylated DMPs and ∆β = -0.10 
among the hypomethylated DMPs. However, the ∆β of most DMPs was smaller, as is characteristic of complex 
diseases except cancer (median ∆β of hypermethylated DMPs = 0.039, IQR = 0.028 to 0.059; and median ∆β of 
hypomethylated DMPs = − 0.030, IQR = − 0.024 to − 0.037). The DMPs were annotated to numerous genes, 
many of which may be associated with RA-ILD pathogenesis. Some examples include DMPs present in mucins 
(MUC6, MUC13, MUC15, MUC22), collagen (COL9A3, COL2A1, COL3A1, COL6A3, and others), telomere 
maintenance genes (TERT, PARN, TERF1, POT1, WRAP53), and immune response-related genes (HLA-DRA, 
VCAM1, IL15, IL17, IL20, IL13RA). Several genes from the above groups that contain multiple DMPs with 
the same direction of change are presented in Fig. 1B. Many DMPs mapped to the same region (either gene 
body, gene promoter, or CGI), a circumstance that was reflected in the 576 DMRs with ≥ 5 leading CpGs, mean 
Δβ ≥ 0.02 and FDR ≤ 0.05 we identified (Fig. 1A, inner circos plot, and Suppl Table 5). They were predominantly 
hypermethylated in RA-ILD (551 of the 576), and some DMRs, especially in the gene bodies, included more 
than 20 CpGs with differential methylation (representative examples in Fig. 1C). In more detail, the median 
number of differential CpGs was 12 (IQR = 8–18) among a median of 21 CpGs (IQR = 14–36) annotated to 
the gene bodies reflecting that many DMRs include more than half of the annotated CpGs (median = 55.6%, 
IQR = 46.6–66.7%).

We estimated the frequencies of 12 immune cell types using deconvolution methods20, These frequencies 
are necessary to assess whether differences in blood cell subpopulations could affect the identification of DMPs. 
This possibility was excluded because all the subpopulations showed similar frequencies in the RA-ILD and 
RAcontrols (Suppl. Fig. 2 and Suppl Table 2). Nevertheless, we investigated the possibility of blood subpopulation-
specific DMPs with two algorithms (Suppl. Table 6A). The CellDMC algorithm identified a DMP that was 
hypermethylated in lymphocytes and hypomethylated in monocytes of the RA-ILD patients. The TCA algorithm 
found three other DMPs as specifically hypermethylated in the granulocytes of RA-ILD patients. Therefore, we 
considered negligible the impact of the blood cell subpopulations in our DMPs. Additionally, other potential 
sources of confounding were excluded because the DMPs were not significantly associated with any patient 
features, including RA disease activity and the time since ILD diagnosis (Suppl. Table 6B and Suppl. Fig. 3).

DMPs and DMRs highlight functions related to lung fibrosis
We used two types of enrichment analysis, overrepresentation analysis (ORA) and functional class scoring 
(FCS). We performed ORA of the differential results (DMPs on uncorrected and consistent data, and DMRs) 
considering their genome context (all, promoter, gene body or CGI) and direction of change (all, hypermethylated 
and hypomethylated) across several gene set libraries (Fig. 2 and Suppl. Table 7). The most notable enrichment 
was observed with overexpressed genes in the “late fibrosis 5” cluster from a lung fibrosis mouse model21. 
The enrichment was highly significant in multiple analyses: DMPs (up to padj = 1.9 × 10–38) and DMRs (up to 
padj = 1.1 × 10–29); all sequences and gene bodies; and all methylation differences and hypermethylated changes. 
Many genes (594 with DMPs and 144 with DMR) overlapped with the “late fibrosis 5” cluster, which contains 
overexpressed genes by blood monocytes 19 days after the induction of lung fibrosis with bleomycin21. Our DMPs 
were also significantly overrepresented in another cluster from the lung fibrosis model (up to padj = 7.8 × 10–4)21. 
However, this “infiltrating monocytes 2” cluster was not significantly enriched under stricter thresholds (Fig 
Suppl 4 and Suppl. Table 8).

No other ORA result was comparable to the “late fibrosis 5” cluster. The next enriched gene sets showed 
padj values in the 10–10 level. They included the mitotic spindle gene set and the Rho GTPase pathways. Many 
of the mitotic spindle genes showed DMPs (up to 75 of the 199 in the MSigDB_Hallmark gene set) and DMRs 
(18 of the 199) in our RA-ILD patients (Suppl. Table 7). The mitotic spindle mediates chromatid separation to 
daughter cells during cell division and is involved in IPF as revealed by four susceptibility loci22–25. The Rho 
GTPases appeared in our ORA enrichment analysis as multiple enriched pathways and gene sets at different 
levels of significance (Fig. 2 and Suppl. Table 7). The Rho GTPases are a critical component in the organization 
of the actin cytoskeleton and there is ample evidence of their participation in fibrosis26,27. Other Rho GTPases-
related gene sets were overrepresented at the level of padj of 10–5. Also, the Guanyl-Nucleotide Exchange Factor 
Activity is highly interconnected with Rho GTPases signaling. Therefore, all these gene sets could be interpreted 
as part of the larger Rho GTPase pathway. The mitotic spindle and Rho GTPase pathways were also significantly 
overrepresented under stricter thresholds (Suppl. Fig. 4 and Suppl. Table 8). It is worth noting that the enriched 
gene sets observed at lower levels of significance did not remain with the stricter thresholds (Suppl. Fig. 4 and 
Suppl. Table 8).

We then performed FCS as a further validation because differences in the number of CpGs per gene introduce 
biases in ORA28. FCS corrects for this source of bias but is only available for the GO and Reactome libraries 
among the four we examined with ORA. The FCS analysis provided detailed results with many significantly 
enriched gene sets (Suppl Tables 9–11). Given the abundance of results, we grouped similar gene sets and 
pathways using overlapping genes (Fig. 3 and Suppl Fig. 5) and GO terms semantic similarity (Suppl Fig. 6). The 
mitotic spindle and Rho GTPases gene sets were significantly enriched, validating the ORA results. The mitotic 
spindle appeared as part of the largest and most prominent cluster. This cluster contained many mitosis-related 
Reactome pathways and GO gene sets (Fig. 3 and Suppl Fig. 5, respectively). They included components of the 
mitotic spindle, like the kinetochore and separation of sister chromatids, but other aspects of mitosis were also 
represented, like the cell cycle checkpoints, and processes that overlap with the mitosis nuclear changes, like 
chromatin organization. The Rho GTPase pathways were also significantly enriched in the FCS analysis (Fig. 3), 
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Fig.1.  Differentially methylated features (DMPs and DMRs). (A) Circos plot representing the features as 
dots in their schematic position on chromosomes (alternating gray and black colors and numbered in the 
outermost circle) with the corresponding -log(p-value) in the y-axis toward the circle center (those over 
the red scattered lines are below FDR 0.05). The outer features are hypermethylated CpG, the middle circle 
represents hypomethylated CpG and the inner circle shows the DMR. (B) Violin plots of DNA methylation β 
values corresponding to DMP in selected genes. The x-axis shows the β values adjusted for sex, age, smoking, 
and anti-CCP in the logit scale. The right y-axis shows the CpG code and its localization in the promoter (P) 
or gene body (B) of the selected gene (indicated in the left y-axis). Red violin plots correspond to RA-ILD and 
gray plots to RAcontrols, respectively. (C) Line plots of DNA methylation β values (y-axis) in selected DMR. 
The blue bars over the lines represent CpG included in the EPIC array. The upper part shows the gene-specific 
tracks corresponding to different splice isoforms.
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together with multiple pathways and gene sets related to intracellular vesicle traffic and location (Fig. 3 and Suppl 
Fig. 5), which are linked to Rho GTPase regulation. In addition, the FCS analysis identified other gene sets that 
were not in the ORA results (Fig. 3).

Significant enrichment of liver X receptor element (LXRE) among the TFBS
We searched for enriched TFBS in 500 and 200 bp windows around the DMPs. The search included subanalyses 
focused on promoters and enhancers (Fig. 4 and Suppl. Table 12). We used the most restricted analyses to increase 
the specificity of the enrichment, but the reduction of sequences decreased the sensitivity of the tests. Despite 
this difficulty, three motifs showed consistent enrichment across the four subanalyses, LXRE, GLIS3, and GSC 
(Fig. 4). The most striking was the liver X response element (LXRE) motif that binds liver X receptor α (LXRα) 
and β (LXRβ) and have an established role in fibrosis29–31. It was highly significantly enriched (all subanalyses 

Fig. 2.  Enriched gene sets and pathways in differentially methylated features (DMPs and DMRs). This 
exploratory ORA was done with Enrichr. We show the most informative gene sets in increasing order of p 
values. The legend indicates with the circle color the library where the enriched gene set was found (none in 
the GO: Cellular Compartment library), with the line type the genome stratum (none in the promoters and 
CGI), and with the line color the DMP or DMR feature and the type of methylation change (none with the 
hypomethylated features). The complete results of the analysis are provided in Suppl. Table 7.
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p ≤ 10–8), and its relative abundance increased with the focus on the small windows and the promoters (fold 
enrichment from 1.99 in the 500 bp window on all sequences to 3.65 in the 200 bp window on promoters). 
Perhaps in relation to this finding, we observed hypermethylated DMPs in the gene bodies of ABCA1, ABCG1, 
and ABCG5, which are important targets of LXRE regulation of cholesterol in multiple tissues32,33. However, we 
did not find DMPs in the genes coding for the LXRβ and LXRα proteins and did not detect changes in any of 
these five genes in RNAseq analysis of the blood cells.

Discussion
Our exploratory study has uncovered blood DNA methylation biomarkers for RA-ILD. These included a 
considerable number of mostly hypermethylated DMPs and DMRs. These changes significantly overlapped with 
genes overexpressed by monocytes in a mouse model of lung fibrosis21. Additionally, DMPs and DMRs indicated 
dysfunction in processes of broad relevance, such as Rho GTPase regulation and mitosis. The DMPs were also 
specifically enriched near the LXRE motif. Each of these findings can be interpreted to reflect processes linked 
to fibrosis in past studies but taking care to avoid inferring causal relationships.

These results have been possible because DNA methylation reflects cellular processes with high sensitivity6,8. 
Illustrative examples are the DMPs distinguishing synovial fibroblasts from different joints11,34 and the age-
sensitive CpG sites that are included in the epigenetic clocks35. We think that patient selection was another 
component contributing to the sensitivity of our study. It involved the recruiting of recently diagnosed RA-ILD 
patients to reduce the heterogeneity of disease evolutions; and the use of matched RAcontrols to avoid confounding. 
The abundance of DMPs and the lack of association of the DMPs with demographic and clinical features other 
than ILD indicate these patient selection criteria have been successful. We think this experience could serve to 
stimulate similar studies in other CTD-ILD where a need for prediction and early diagnosis biomarkers also 
exists.

The most significant enriched gene set corresponds to a cluster of overexpressed genes in a lung fibrosis 
model21. These genes were overexpressed in the blood monocytes, and less markedly in monocyte-derived 
alveolar macrophages and other lung macrophages. The genes were described as associated with epigenetic 
regulation late in fibrosis but without any detailed characterization except for the absence of fibrosis biosynthetic 
pathways21. The absence of pathways like the TGFβ, Wnt-β catenin, and PDGF pathways, was also a feature of 
our findings. Therefore, the enrichment in these genes indicates that many of our DMPs are associated with lung 
fibrosis irrespective of the trigger, bleomycin in the experimental model, and RA in our study. This interpretation 
is consistent with the generality of many fibrosis mechanisms that are shared across tissues and diseases3,36.

Fig. 3.  Network representation of the enriched Reactome pathways in DMPs mapping to gene bodies. Each 
pathway and gene set corresponds to a node with a size proportional to the enrichment significance (-log(padj)) 
and color for the cluster. The edges represent shared genes between gene sets. We shortened the labels (detailed 
correspondence in Suppl. Table 9).
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The other enriched gene sets also evidence the relationship of our findings with lung fibrosis. The processes 
that contribute to nuclear division in the M phase of mitosis and are related to the mitotic spindle are necessary 
for all dividing cells. However, they have a singular relevance for lung fibrosis because aberrant activation of 
the TP53 pathway contributes to the AEC senescence and abnormal phenotype in the fibrotic lung37,38. Also, 
common genetic variants in TP53 and CDKN1A, a cell cycle regulation gene, increase susceptibility to IPF3. 
Aside from the general involvement of mitosis, the particular role of the mitotic spindle is supported by four 
IPF susceptibility loci that reveal the special relevance of this process: KNL1 and SPDL1, two components of 
the kinetochore, MAD1L1, a member of the mitotic spindle assembly complex, and KIF15, a kinesin involved 
in spindle separation22–25. All these factors likely contribute to the dysregulated wound repair response and 
compromised regenerative capacity of lung epithelial cells3. Also, the enriched Rho GTPase pathways are related 
to aberrant wound healing and lung fibrosis26,27. These pathways have a particular impact on the regulation of 
the actin cytoskeleton, which is essential for fibroblast migration and lung contraction, but they contribute to 
the pathogenesis of lung fibrosis in other ways too. For example, the Rho GTPases are involved in fibroblast 
activation and extracellular matrix production, mediation of profibrotic signals, and activation of downstream 
effectors, most notably ROCK, to initiate profibrotic cellular responses26,27,39,40. Some of these pathways are 
targets of the antifibrotic drugs nintedanib and pirfenidone26,39.

Fig. 4.  Representation of the transcription factor binding sites (TFBS) enriched around the DMPs. We 
searched enriched motifs in the 500 bp (A,B) and 200 bp (C,D) centered on the DMPs and considering either 
all the DMPs (A,C) or only the DMPs annotated to gene promoters (B,D). The x-axis shows the -log(p) of 
enrichment, whereas the y-axis represents the fold enrichment of the motifs.
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Furthermore, the regulation of the actin cytoskeleton by Rho GTPases connects to mitosis and intracellular 
traffic and location. The interaction between Rho GTPases, mitosis, and the mitotic spindle is multifaceted and 
critical for the correct sequential order of mitotic stages41. For example, CDC42 promotes spindle assembly 
during early mitosis, while RhoA plays a crucial role during cytokinesis41. Rho GTPases are involved in various 
mitosis processes: cell cortex stiffening, mitotic spindle formation, attachment of the spindle microtubules to 
the kinetochore, formation of the division plane, the contractile ring, membrane ingression, and abscission41.

However, the enrichment of DMPs around LXRE does not have clear connections with mitosis or the Rho 
GTPases implying that its role is independent of the already considered pathways. In effect, the LXR ligands and 
LXRE activation are mainly involved in cholesterol regulation, although they also have well-known roles in the 
control of inflammation and fibrosis29–31. The mechanisms by which LXR prevents fibrosis depend on the tissue 
and cell type, with different targets in infiltrating macrophages, fibroblasts, and alveolar epithelial cells in the 
lung29–31. However, all tissues share the activation of LXR in response to the overproduction of oxysterols. These 
oxidation cholesterol metabolites are increased in RA as part of the associated lipid changes and cardiovascular 
risk42. Therefore, the enrichment around LXRE suggests a link between cholesterol metabolism and RA-ILD that 
will require future investigation.

Despite the interesting results, we acknowledge some limitations in our exploratory study. Perhaps, the most 
fundamental weakness is the retrospective design. However, this limitation is difficult to avoid due to the rare 
and unpredictable onset of RA-ILD1. Additionally, the nature of the study limits the potential utility of the 
biomarkers to RA-ILD prediction or early diagnosis, but not to prognosis or differential diagnosis with other 
ILD. A more general limitation of the EWAS is the complex relationship between differences in DNA methylation 
and gene expression6–9. This complexity is evidenced by the small number of DNA methylation quantitative trait 
loci showing a detectable causal relationship with the associated phenotypes43. In addition, the nature of the 
relationships is unclear as the DNA methylation changes can be mediators, modifiers, or consequences of the 
phenotypes6–9. Notable examples of the latter are the DMPs associated with obesity that are the consequence of 
adiposity, rather than its cause44 and the hypermethylation of CGI promoters that are a byproduct of the rapid 
cellular proliferation of malignant myeloid cells45. As such, the DMPs cannot be assumed to have an important 
effect on gene expression and should only be regarded as biomarkers of underlying processes until more 
evidence is obtained. Another shortcoming comes from the limited understanding of many DMPs, especially if 
they are located in genes with unknown functions or do not associate with genes. This incomplete knowledge is 
exemplified by Reactome, one of the largest pathway libraries but only contains information on about half of the 
human protein-coding genes (https://reactome.org/about/statistics). Therefore, we could have missed important 
biological processes for RA-ILD that are still poorly covered in the gene set and pathway libraries.

In conclusion, our exploratory study shows that biomarkers associated with RA-ILD can be obtained by 
studying blood DNA methylation. Many of these biomarkers point to molecular or cellular processes relevant 
to lung fibrosis. Further research is needed to replicate the findings and determine if the identified DNA 
methylation biomarkers have clinical value for prediction or early diagnosis.

Methods
Patient recruitment and ethical requirements
We studied patients with RA according to the 2010 ACR/EULAR classification criteria46 recruited in collaboration 
with 13 hospitals from Spain and Portugal (Suppl. Table 1). The recruitment process followed a pre-specified 
protocol to ensure criteria homogeneity. Accordingly, all patients were older than 18  years at inclusion, had 
undergone high-resolution computed tomography (HRCT) at their recruitment hospitals, and had provided 
informed consent to participate. Other rheumatic and respiratory diseases, as well as professional exposure to 
pro-fibrotic substances, were considered exclusion causes. The criteria for inclusion as RA-ILD comprise the 
presence of an interstitial pneumonia pattern in HRCT that is directly attributable to RA while excluding any 
other potential causes. Among the recruited patients, we selected RA-ILD patients diagnosed with ILD less than 
a year before sampling. In turn, the controls (RAcontrols) were patients with RA showing no ILD signs in HRCT 
and matched to the patients with RA-ILD. The matching variables were sex, smoking status (never or ever), anti-
cyclic citrullinated peptide antibodies (anti-CCP, also named ACPA) status, and age, which are known RA-ILD 
risk factors1. These variables were employed to make cases and controls identical in the qualitative factors and 
the closest possible in age. This was achieved with the coarsened exact matching technique incorporated in the 
MatchIt R package47.

The study was approved by the ethics committee of Santiago-Lugo (code 2019/332) and by the ethics committee 
of each participating center (Suppl. Table 1). Besides, all research protocols followed current legislation (Spanish 
Laws 14/2007 of Biomedical Research and 3/2018 on the Protection of Personal Data and Guarantee of Digital 
Rights) and the ethical guidelines of the Declaration of Helsinki and the Belmont Report.

Analysis of differential DNA methylation
We kept blood collected in EDTA tubes at − 80  °C until we extracted DNA using the NucleoSpin® Blood L 
kit (Macherey–Nagel). Subsequently, we checked DNA in a NanoDrop One (ThermoScientific) and performed 
bisulfite DNA conversion using the EZ DNA Methylation kit (Zymo Research) and 300 ng of DNA. The samples 
were hybridized in Infinium Methylation EPIC v1.0 BeadChip (Illumina) arrays with cases and controls equally 
distributed to prevent biases caused by discrepancies between arrays. Consequently, we obtained the methylation 
of over 850,000 CpG on the BeadArray Reader (Illumina) as fluorescence signals. The preprocessing and analysis 
of these results were done with the R application ShinyÉPICO48 which implements minfi49,50, limma51, and 
mCSEA 52. The workflow involved the transformation of raw signals into β and M values (logit transformed 
β values), exclusion of CpGs with detection p-values > 0.1, overlapping with SNPs according to the Illumina 
annotation (MAF > 0), or in the X and Y chromosomes, and normalization. In more detail, normalization was 
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done with Noob, which consists of within-array background correction and dye-bias normalization. No batch 
effect correction was required as the data were generated in a single batch. However, we tested the possibility of 
batch effects associated with the slides within the single chip using the ComBat function of the sva R package. 
We ran ComBat with the default option involving parametric empirical Bayesian adjustments for mean and 
variance. Three different settings were assayed, including only the batch variable (-batch), batch and the group 
(RA-ILD or RA-control) variable (-group), and with the addition of the four covariates used for patient matching 
(-covariates). The three settings led to DMPs that were inconsistent overall but were consistent in the subgroup 
of DMPs that overlapped with those identified in the uncorrected data (Suppl. Table 3). Therefore, we used the 
uncorrected data for analysis except for labeling the DMPs regarding the ComBat corrections (Suppl. Table 4) 
and performing an ORA enrichment analysis using only the overlapping DMPs (Suppl. Table 8). Regarding the 
contrast analysis, we used M values for model construction, DMP, and DMR detection. The model incorporated 
the covariables utilized for group matching (sex, age, smoking status, and anti-CCP status). An empirical Bayes-
moderated t-test (limma)51 with a False Discovery Rate (FDR) ≤ 0.05 and an absolute β difference ≥ 0.02 was used 
to identify DMPs48. The three options, ArrayWeights, Trend, and Robust, were selected to enhance the accuracy 
and reproducibility of the findings51. We checked the number of beads per probe: 12,246 probes had less than 
3 beads in 3 or more samples, however, none were present in the detected DMPs. In turn, the DMRs were 
detected with the mCSEA method that employs set enrichment analysis in predefined regions and separately in 
promoters, gene bodies, and CpG islands52. We only report DMR with FDR ≤ 0.05, a mean ∆β of the leading-edge 
CpGs ≥ 0.02, and at least five leading-edge CpGs, although mCSEA default settings do not filter by ∆β and accept 
two leading-edge CpGs. We needed these restrictive thresholds to avoid DMRs without DMPs. Besides, we 
used other stricter thresholds to verify the results’ robustness. In these verifications, DMPs required an absolute 
Δβ ≥ 0.05 (FDR as above), and DMRs needed at least ten leading-edge CpGs (FDR and mean ∆β as above).

Cell type deconvolution of DNA methylation
We estimated the frequency of blood cell subpopulations from CpG methylation data with the FlowSorted.
Blood.EPIC package53 using the reference matrix for 12 blood cell subpopulations20. This package implements 
a modified version of the constrained projection/quadratic programming algorithm that is used to estimate the 
frequency of T regulatory cells, natural killer cells, neutrophils, monocytes, eosinophils, CD8+ naïve cells, CD8+ 
memory cells, CD4+ naïve cells, CD4+ memory cells, B naïve cells, B memory cells, and basophils in each patient. 
We then compared the raw and centered log-ratio transformed frequencies between RA-ILD and RAcontrols using 
a Mann–Whitney U test per each cell type. The raw frequencies are common in the bibliography, but log-ratio 
transformations are required for correct compositional analysis54. An additional analysis examined whether the 
DMPs could be cell-type-specific using two methods: the CellDMC function of the EpiDISH R package55 and 
a tensor analysis tool, TCA56. We restricted this analysis to the three major blood cell lineages (lymphocytes, 
granulocytes, and monocytes) because of the low percentages represented by more detailed subpopulations.

Gene set enrichment analysis
We employed overrepresentation analysis (ORA) for DMRs and DMPs. Additionally, we used functional class 
scoring (FCS) for all the ranked CpGs. ORA was done with default settings on Enrichr, a tool that performs 
a uniform analysis across a wide range of gene set libraries57. The analysis was done separately for DMPs and 
DMRs and stratified by CpG islands (CGI), gene promoters, and gene bodies; and according to their hyper- 
or hypo-methylated change. All these factors reflect diverse DNA methylation processes. We report only the 
statistically significant gene sets (FDR ≤ 0.05) from the most informative libraries. Additionally, we used FCS 
with the methylglm tool of methylGSA28. This tool uses logistic regression to adjust for the different number 
of CpGs annotated to each gene. The gene sets were taken from Gene Ontology via org.Hs.eg.db annotation 
(Bioconductor v3.16, last accession on December 9th 2022) and Reactome via reactome.db annotation 
(Bioconductor v3.16, last accession on December 9th, 2022). These gene sets reflect the complexity of biology 
showing a hierarchical and overlapping structure. Therefore, we restricted the size of gene sets to the 5 to 500 
genes range and grouped the outcomes based on semantic similarity and shared genes. For semantic similarity, 
we used the binary cut method (cutoff at 0.7) implemented in simplifyEnrichment58. This tool provides a heatmap 
of the enriched GO gene sets, labeled with words appearing frequently in the GO definitions. In addition, we 
used GOMCL59 for the grouping based on shared genes (with overlap coefficients and a clustering threshold 
of 0.5). This tool identifies networks within the FCS results using the Markov Clustering algorithm. We added 
three gene sets larger than 500 genes to act as parents in cluster formation, but they are not shown. Finally, 
Cytoscape 3.10 was used to represent the networks (https://cytoscape.org/). Our focus was on the gene sets most 
significantly enriched, concordant across the diverse enrichment analyses, and including a larger number of 
DMRs or DMPs.

Enrichment of transcription factor binding sites
We investigated the enrichment of transcription factor binding sites (TFBS) around DMPs with HOMER 
(version homer2, v4.11)60 using the “known motifs”, which are derived from ChIP-Seq experiments. We 
verified the robustness of our results by doing the analysis six times with an increasingly strict selection of the 
windows around the DMPs. In this way, we considered two window sizes around DMPs (500 and 200 bp) and 
an unrestricted analysis for “any sequence” or restricted to DMPs in promoters or enhancers. The promoters 
were taken from the Illumina annotation, whereas the enhancers were taken from FANTOM5 ​(​​​h​t​t​p​s​:​/​/​f​a​n​t​o​m​
.​g​s​c​.​r​i​k​e​n​.​j​p​/​5​/​​​​​)​. However, we do not present the enhancer analysis because the sequences were too few to be 
meaningful. The background sequences for comparison were all QC-filtered and preprocessed regions of the 
same size around the remaining CpGs in the EPIC array. Only results with FDR ≤ 0.05 are reported.
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Data availability
The DNA methylation dataset supporting the conclusions of this article is deposited in the Gene Expression 
Omnibus database under accession number GSE275597 and is freely available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​n​c​b​​i​.​n​​l​m​.​n​​​i​h​.​​g​o​​
v​/​​g​e​o​​/​q​​u​e​r​y​​​/​a​c​​c​​.​c​g​​i​?​a​c​c​=​G​S​E​2​7​5​5​9​7. The datasets used and/or analysed during the current study are available 
from the corresponding author on reasonable request.
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