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The major spliceosome includes five small nuclear RNA (snRNAs), U1, U2,
U4, U5 and U6, each of which is encoded by multiple genes. We recently
showed that mutations in RNU4-2, the gene that encodes the U4-2 snRNA,
cause one of the most prevalent monogenic neurodevelopmental

disorders. Here, we report that recurrent germline mutations in RNU2-2

(previously known as pseudogene RNU2-2P), a191-bp gene that encodes the
U2-2snRNA, are responsible for arelated disorder. By genetic association,
we identified recurrent de novo single-nucleotide mutations at nucleotide
positions 4 and 35 of RNU2-2in nine cases. We replicated this findingin

16 additional cases, bringing the total to 25. We estimate that RNU2-2
syndrome has a prevalence of ~20% that of RNU4-2 syndrome. The disorder
is characterized by intellectual disability, autistic behavior, microcephaly,

hypotonia, epilepsy and hyperventilation. All cases display a severe and
complex seizure phenotype. We found that U2-2 and canonical U2-1were
similarly expressed in blood. Despite mutant U2-2 being expressed in
patient blood samples, we found no evidence of missplicing. Our findings
cement the role of major spliceosomal snRNAs in the etiologies of
neurodevelopmental disorders.

More than 4,000 genes have been established as etiological for a
rare disease, of which only 69 are noncoding’. Three of these non-
coding genes—RNU4ATAC, RNUI2 and RNU4-2—encode snRNAs that
have crucial roles in pre-messenger RNA (mRNA) splicing. Variants
in RNU4ATAC are responsible for microcephalic osteodysplastic pri-
mordial dwarfism type (refs. 2,3), Roifman syndrome* and Lowry-
Wood syndrome’, whereas variants in RNUI2 cause early-onset
cerebellar ataxia® and CDAGS syndrome’. These pathologies are
inherited in an autosomal-recessive manner. Both RNU4ATAC and
RNUI12 encode components of the minor spliceosome, a molecu-
lar complex that catalyzes splicing for fewer than 1% of all introns
in humans®. However, more than 99% of introns are spliced by the
major spliceosome. Recently, we reported that de novo mutations
in RNU4-2, which is transcribed into the U4-2 snRNA component of
the major spliceosome, cause one of the most prevalent monogenic

neurodevelopmental disorders (NDDs)’. The discovery was published
independently by a separate group’®.

To explore whether other noncoding genes might also be causal
for NDDs, we performed a refined statistical analysis of the 100,000
Genomes Project (100KGP) data in the National Genomic Research
Library (NGRL)". Following a previously described approach®?, we
used the BeviMed genetic association method" to compare rare vari-
ant genotypes in the 41,132 canonical transcript entries in Ensembl
v.104 with a biotype other than ‘protein_coding’ (Supplementary
Data), which included 14,307 entries annotated as pseudogene tran-
scripts, between 7,452 unrelated, unexplained cases annotated with the
‘Neurodevelopmental abnormality’ (NDA) Human Phenotype Ontology
(HPO) term and 43,727 unrelated participants without the NDA term.
Notably, whereas our previous analyses filtered out single-nucleotide
variants with combined annotation-dependent depletion (CADD)"*
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Fig.1|Discovery and replication of RNU2-2 as an etiological gene for anew
NDD. a, BeviMed PPAs between each of RNU4-2 and RNU2-2 (previously known as
RNU2-2P) and NDA. All other noncoding genes and pseudogenes had PPA <0.5.
Only two RNU2-2 variants had conditional PPP > 0.5: n.4G>A and n.35A>G. Prob.,
probability. b, Distribution of phenotypic homogeneity scores for 100,000
randomly selected sets of nine participants chosen from 9,112 unrelated NDA-
coded participants. The score corresponding to the nine identified cases with
one of the two RNU2-2 variants with PPP > 0.5 is indicated with ared line. ¢, Scatter
plot of log,, expression of RNU2-1 against that of RNU2-2in whole-blood samples
from arandom subset of 500 participants in the NGRL and in four blood cell
types from 204 NBR participants. TPM, transcripts per million. d, Top, numbers
of participants with arare allele at each of the 191 bases of RNU2-2, stratified

by affection status and inheritance information of the carried allele. The two
variants with PPP > 0.5 are indicated with green arrows. The color-coded track
shows the aggregated (over distinct alleles at a position) minor allele count
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(aMAC) ingnomAD v.4.1.0 (gn.) at each position, and the black bars show the
numbers of distinct alternate alleles ingnomAD at each position (multiple
insertions and multiple deletions at a given position each count as one). Variants
failing quality control (QC) in gnomAD are not shown in this subpanel. Bottom,
data corresponding to nucleotide positions1to 41in greater detail, including
gnomAD-QC-failing variant n.35A>T. Above and below the RNU2-2 cDNA
sequence (Seq.), the alternate alleles in 100KGP participants and the distinct
allelesingnomAD are shown, respectively; ‘+ indicates insertions, and the
variant that failed QCin gnomAD is indicated. e, Pedigrees for participants with
ararealternateallele n.4 or n.35in RNU2-2. Pedigrees used for discovery have a
‘G’ prefix and are labeled in black. Pedigrees used for replication in the IMPaCT-
GENOMICA, URDCat and ENoD-CIBERER aggregate collection; the 100KGP; the
NBR; Erasmus MC UMC; the GMS; Radboud UMC; deCODE or the ZOEMBA study
havean‘l,'M’,‘N’,'R’, ‘S, ‘W', ‘Y’ or ‘Z’ prefix, respectively, and are labeled in blue.
Hom., homozygous; ref., reference.

score <10, our present analysis removed this threshold to expand the
variant search space.

Our analysis yielded only two genes with a posterior probability
of association (PPA) with NDA > 0.5. RNU4-2, which we have reported
previously’, had a PPA of -1, and RNU2-2P (now called RNU2-2) had a

PPA of 0.97. The association with RNU2-2 depended on inclusion of
variants with CADD scores <10 (Extended Data Fig.1). Conditional on
the association, two variants, at nucleotide positions 4 and 35, had a
BeviMed posterior probability of pathogenicity (PPP) > 0.5 (Fig. 1a).
The nine NDA cases with either of the variants had a significantly
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Fig.2|Prevalence in the 100KGP. Of the 9,112 unrelated NDA-coded casesin the
100KGP, the numbers solved through pathogenic or likely pathogenic variants
inagene are shown, provided at least nine cases were diagnosed. For RNU2-2,
the number of NDA-coded cases in the 100KGP with one of the recurring de novo
variantsis shown.

greater phenotypic homogeneity based on HPO terms than expected
under random selection of nine NDA cases from unexplained and
unrelated NDA study participants in the 100KGP (P=1.33 x 1073,
Fig. 1b), supporting causality for a distinct NDD. RNU2-2 has a191-bp
sequence thatisidentical to that of the canonical gene RNU2-1, except
for eight single-nucleotide substitutions (all within n.108-191).
Unlike RNU2-1, which has a variable copy number within a region
on chromosome 17, RNU2-2 has a unique sequence occurring in only
one location on chromosome 11. Although at the time of analysis,
RNU2-2was known as RNU2-2P and annotated as one of many U2 pseu-
dogenes in bioinformatics databases®, it has recently been shown
to be expressed in cell lines, and its transcripts, U2-2P (now U2-2),
have been shown to have the greatest abundance and stability of all
noncanonical U2 snRNAs'®. After aggregation over the 11 copies of
RNU2-1in the GRCh38 build of the reference genome, RNU2-1 and
RNU2-2 show comparable levels of expression in whole blood and
in blood cells (Fig. 1c). RNU2-2 resides in a 5’ untranslated exon of
WDR74 that had previously been identified as being enriched for
hotspot mutationsin cancer, although the existence of RNU2-2 at that
locus was not known at the time". A recent study showed that both
RNU2-1 and RNU2-2 carry recurrent somatic mutations (n.28C>T)
that drive B cell-derived tumors, prostate cancers and pancreatic
cancers'®. The same study showed that RNU2-2is afunctional gene that
is transcribed independently of WDR74—a finding that we recapitu-
lated in blood and blood cells (Extended Data Fig. 2)—and that both
the canonical U2-1and noncanonical U2-2 snRNAs are incorporated
into the spliceosome’®.

The two germline variants with a high PPP, n.4G>A and n.35A>G,
arelocated inagenomiclocus spanning aregion of approximately 40
nucleotides at the 5’ end of the 191-bp RNU2-2 gene. The locus has a
markedly reduced density of population genetic variation ingnomAD",
consistent with the effects of negative selection (Fig. 1d). Published
secondary structure data of the U2 snRNA show thatr.4 islocated within
the helix I1U2-Ué6 interaction domain, whereasr.35is part of the highly
conserved recognition domain GUAGUA that binds the branch sites of
introns*®~*? (Extended Data Fig. 3). Trio sequencing of four of the five
cases with n.4G>A and three of the four cases with n.35A>G showed

that the variants were de novo in each case. A variant with a different
alternateallele at nucleotide 35,n.35A>T, was called in eight unaffected
participants; it was also present in gnomAD but failed quality control
(QC) (Fig.1d). Analysis of whole-genome sequencing (WGS) and Sanger
sequencing data suggested that n.35A>G is a germline variant, but
n.35A>T is arecurring somatic mosaic variant. This somatic variant is
observed only in individuals over the age of 40 years, consistent with
clonal hematopoiesis (Extended Data Fig. 4).

Toreplicate our findings inthe nine NDD cases, we examined eight
additional rare disease collections: a component of the 100KGP not
included in the discovery dataset (10,373 participants, of whom 1,736
have an NDA); the NIHR BioResource-Rare Diseases (NBR) data* (7,388
participants, of whom 731 have an NDA); the UK Genomic Medicine
Service (GMS) data (32,030 participants, of whom 6,469 have an NDA);
datafromthe Erasmus MC UMC (1,527 participants, of whom approxi-
mately 400 have an NDA); an aggregate of the IMPaCT-GENOMICA,
URDCat and ENoD-CIBERER programs for undiagnosed rare diseases™
(1,707 probands with NDDs and WGS data); clinical datafrom Radboud
UMC Nijmegen (1,037 probands with an NDA); WGS data from deCODE
genetics (73,821 participants, of whom 4,416 have an NDA) and data
from the ZOEMBA study (127 participants, of whom 71 have an NDA).
Weidentified afurther16 casesinthese replication collections (Fig. 1e),
all but two of whom were confirmed to have a de novo variant. There
were no unaffected carriers of either variant. Eight replication cases
had n.4G>A, sevenreplication cases had n.35A>G, and onereplication
case had adifferentalternate allele at nucleotide 35, n.35A>C. Although
this case represented the only individual harboring n.35A>C, mod-
eling of the interactions between U2-2 snRNA and canonical branch
site sequences suggested that n.35A>C has a destabilizing effect on
binding that is greater than that of the n.35A>G variant and in many
cases similar in magnitude to that of the n.4G>A variant with respect
to its cognate partner U6 (Extended Data Fig. 5). All these variants
were called confidently by WGS (Extended Data Fig. 6). In the 100KGP,
RNU2-2 was a more prevalent etiological gene than all but 29 of the
~1,400 known etiological genes for intellectual disability, explaining
about one-fifth the number of cases as RNU4-2, the etiological gene for
RNU4-2syndrome, also known as ReNU syndrome (Fig. 2). This relative
prevalence was consistent with observationsin the IMPaCT-GENOMICA,
URDCat and ENoD-CIBERER aggregate collection, which identified
27 cases with RNU4-2 syndrome and six cases (that is, 4.5 times fewer)
with RNU2-2 syndrome.

Analysis of HPO terms for the nine uniformly phenotyped 100KGP
cases revealed that 100% were assigned ‘Intellectual disability’ and
‘Global developmental delay’, 89% were assigned ‘Delayed speech
and language development’, 78% were assigned ‘Motor delay’ and
56% were assigned ‘Autistic behavior’, in line with frequencies among
NDA cases generally (Fig. 3). However, certain terms were enriched in
RNU2-2 cases: ‘Seizure’ was annotated in 89% of RNU2-2 cases (versus
27% in other NDA cases, Bonferroni-adjusted (BA) P=2.44 x107®) but
later confirmed to be present in 100%, ‘Microcephaly’ in 78% of cases
(versus18%, BA P=1.62 x107%), ‘Generalized hypotonia’in 56% of cases
(versus13%,BA P=3.56 x107?), ‘Severe global developmental delay’in
44% (versus 2.7%, BA P=8.89 x10™*) and ‘Hyperventilation’ in 33% of
cases (versus 0.16%, BA P=7.56 x107®). No HPO terms were significantly
underrepresented inthe RNU2-2 cases. Of the terms that were enriched
among cases of RNU4-2syndrome, ‘Seizure’, ‘Microcephaly’ and ‘Gen-
eralized hypotonia’ were also enriched in RNU2-2 cases. However,
‘Severe global developmental delay’ and ‘Hyperventilation’ were only
enriched in RNU2-2 cases, suggesting that these may be differentiating
phenotypicfeatures. Strikingly, three RNU2-2 cases were coded with the
seldom-used ‘Hyperventilation’ term by threeindependent clinicians.

Detailed clinical vignettes for the 15 cases in pedigrees G1-2, G4,
11-6,M2,R1,S3, W1, Yland Z1are provided in Supplementary Note and
Supplementary Table 1. These indicate that the neurodevelopmental
phenotype caused by the RNU2-2 variants typically manifests from 3
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Fig. 3 | Phenotypic enrichment in the I00KGP. Graph showing the ‘is-a’
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themrelative to 9,112 unrelated NDA-coded participants of the 100KGP. The
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participants with the term and the proportion of NDA-coded RNU2-2 cases with
the term are represented as the horizontal coordinate of the base and the head of
anarrow, respectively. *, Only eight of the nine (89%) of the cases had the ‘Seizure’
HPO termin the NGRL, but epilepsy was confirmed in the case without the HPO
term by inspecting the individual’s electronic health record and the numbers
attached to ‘Seizure’ were updated accordingly.

to 6 months of age but is progressive, frequently severe and accom-
panied by characteristic dysmorphic features (Fig. 4). All the cases
displayed prominent epilepsy, usually from the first few months of
life, and seizures were severe and pharmacoresistant. Seizures were
characteristically complex and included spasms, tonic, tonic clonic,
myoclonic and absence types, classified in some probands as Len-
nox-Gastaut syndrome. These features distinguish the RNU2-2 cases
from previously reported cases of RNU4-2 syndrome, in which the
developmental phenotype was reported as less severe, some of the
dysmorphic features were different, and epilepsy was typically later
in onset, less severe and more commonly focal®'®%, Extraordinarily,
case M2 also harbored a de novo truncating variantin SPEN predicted
to cause Radio-Tartaglia syndrome®. However, the individual in this
case had short stature (<-2.65s.d.) and microcephaly (<-2.65s.d.),
which are not characteristic of Radio-Tartaglia syndrome, as well as
having a craniofacial morphology that more closely resembled that
of other RNU2-2 patients than Radio-Tartaglia syndrome patients
(Supplementary Note). This atypical presentation is consistent with
adual rare genetic diagnosis.

Using trio WGS data, which were available for 17 families, we were
able to determine the parental origin of the de novo mutations for ten
ofthose families. Echoing observationsin cases with RNU4-2syndrome,
the pathogenic RNU2-2 mutations were ubiquitously of maternal origin,
suggesting that they may affect spermatogenesis. Analysis of uniquely
aligned reads at heterozygous sites in whole-blood RNA sequencing
(RNA-seq) datarevealed that both alleles of RNU2-2 were expressed
robustly in cases (Extended Data Fig. 7). However, a genome-wide
comparison of the RNA-seq alignments between five cases and 495
unrelated unexplained NDA-coded participants did not reveal differ-
ential gene expression, differential splice junction usage or any pattern
ofaberrant splicingin the cases (Extended DataFig. 8), suggesting that
transcriptomic analysis of other tissue types will be required to uncover
the underlying molecular mediators of disease.

U2 is involved in all stages of pre-mRNA splicing and contains
distinct domains that interact with the catalytic U6, intronic branch
sites and scaffolding of several protein assemblies”. Notably, the U6

binding domain and the branch site recognition domain of U2-2 are
transcribed from a region in RNU2-2 exhibiting markedly reduced
population genetic variation (Fig. 1d). Studies in the 1990s of yeast
U2 snRNA showed that variants in branch site recognition sequence
GUAGUA inhibit splicing and even generate adominant lethal pheno-
type when the recognition sequence is changed entirely?®”. Position
r.35in the human U2 sequence corresponds to r.36 in the yeast U2
sequence, where n.36A>G and n.36A>T result in 0-10% and 10-20%
splicingactivity, respectively, compared with the wild-type sequence”.
Althoughthe U2-Ué6 recognition sequences are not conserved between
yeast and human, asimilar organizationis retained. The U2-U6 interac-
tioninyeastis not very sensitive to variationin U2 snRNA”, but genetic
suppression experiments that changed multiple residues within U2 or
U6 snRNAs, including positionr.4in U2 snRNA, have demonstrated that
the U2-U6 helix Il plays a partin the regulation of splicing in mamma-
lian cells®>*". Mice with variants in a direct ortholog of RNU2-2 do not
exist; however, mice with ahomozygous 5-bp deletionin U2 ortholog
Rnu2-8present with ataxia and neurodegeneration®. Transcriptomic
analysis of the mutant cerebellum detected aberrant splicing, par-
ticularly increased retention of short introns. Although it remains
unclear how this splicing defect might cause neuronal death, it hasbeen
hypothesized that premature translation termination codons within
theretainedintrons could trigger the nonsense-mediated decay (NMD)
pathway. We and others have shown that the recessive human disorders
caused by variantsin RNU4ATACand RNUI12resultin minor intronreten-
tion in blood cells and fibroblasts>******, By contrast, we have been
unable to detect any significant and reproducible large-scale splicing
defectinthe blood cells of patients withdominant germline variantsin
the major spliceosome gene RNU2-2. Although arecent study described
systematic disruption of 5’ splice site usage in the whole blood of some
patients with de novo RNU4-2 variants'’, RNA-seq of fibroblasts in a
separate case study could not detect any defectinsplicing®. Moreover,
transcriptomic analysis of primary hematological tumors and cell lines
transfected with vectors expressing the n.28C>T RNU2-2 mutation did
not reveal any significant differences in splicing’®. Therefore, further
studies are required to understand how RNU4-2 and RNU2-2 mutations
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Fig. 4| Clinical photographs. Clinical photographs of individuals from pedigrees
G1,G4,S3,R1and I1-6. The individuals in these cases show common features
oflong palpebral fissures with slight eversion of the lateral lower lids, long
eyelashes, broad nasal root, large low set ears, wide mouth and wide spaced teeth.
The approximate ages of the individuals when the photographs were taken are
shown. Photographs of individual M2, who has Radio-Tartaglia syndrome in
addition to RNU2-2syndrome, are included in the Supplementary Note. We have
obtained specific consent from the families to publish these clinical photographs.
m, months; yr, years.

affectsplicing. It might be that, in contrast to recessive splicing disor-
ders, it is challenging to detect widespread splicing defects in these
newly discovered dominant disorders because wild-type transcripts
are expressed in combination with misspliced transcripts from the
same gene that are subjected to NMD. In certain cell types, the effects
of NMD might be overcome such that the overall expression levels of
mRNAs remainunchanged, owing to rapid mRNA turnover and dosage
compensation®. However, certain cell types, such as stem cells, which
we have not yet been able to study, might be more sensitive to high
NMD dosage than terminally differentiated cells. Neuronal stem cells
and mouse models of RNU4-2 and RNU2-2 pathologies may be needed
toresolve these mechanistic questions.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Ethics

Participantsinthe 100KGP, the 100KGP Pilot Project and the GMS were
enrolled tothe NGRL under aprotocol approved by the East of England-
Cambridge Central Research Ethics Committee (ref: 20/EE/0035). We
obtained writteninformed consent to publish additional clinical data
from a subset of the affected cases in the NGRL following local best
practices. NBR participants were enrolled under a protocol approved by
the East of England-Cambridge South Research Ethics Committee (ref.
13/EE/0325). The investigations at Erasmus MC UMC were approved
by the center’s institutional review board (MEC-2012-387). Informed
consent at that institution was obtained for all diagnostics, and writ-
ten informed consent was obtained from the parents of participants
for publication of medical data including photographs, in line with
the Declaration of Helsinki. Participants in the IMPaCT-GENOMICA,
URDCat and ENoD-CIBERER programs were enrolled through clinical
services under a protocol approved by the Instituto de Salud Carlos
11l Research Ethics Committee (CEI-P1I01_2022) and endorsed by the
institutional review boards of the participating hospitals. The ZOEMBA
study was approved by the institutional review board of Amsterdam
UMC (registration number NL67721.018.19). Written informed consent
to publish clinical data and photographs of the affected individuals
were obtained following local best practices.

Enrollment

The enrollment criteria for participantsin the NGRL are available from
the Genomics England website*®. The available enrollment criteria for
replication cohorts are giveninrefs. 23,24.

Genetic association analysis

The genetic association analysis was conducted as described
previously®?, except that variants were not thresholded on CADD
score. Cases comprised all the 9,112 unrelated cases in the 100KGP
includedin the merged variant call format file provided by the 100KGP
that were annotated with the NDA HPO term, whereas the controls
comprised allthe 40,937 unrelated participantsinthe merged variant
call format file who were not assigned the NDA HPO term. Of the 9,112
cases, 7,452 had been previously solved through pathogenic or likely
pathogenic variants. Cases explained by variantsin a given gene were
reassigned to the control group in the genetic association analyses for
genes other than that gene.

Phenotypic homogeneity analysis

To assess the phenotypic homogeneity of the nine participants in
the discovery collection with n.4G>A or n.35A>G in RNU2-2, we com-
puted a phenotype homogeneity score for that group with respect
to unexplained and unrelated NDA study participants. We calculated
this score using the get_sim_grid and get_sim_p functions from the
ontologySimilarity R package”, as previously described’. We then
obtained aMonte Carlo Pvalue asthe proportion of randomsets of nine
unexplained unrelated NDA cases with a homogeneity score greater
than or equal to the homogeneity score of the group carrying either
of the RNU2-2 variants.

Analysis of HPO terms

To identify enriched or depleted HPO terms among the nine
NDA-annotated cases with n.4G>A or n.35A>G in RNU2-2 in the dis-
covery collection, compared with unrelated NDA-coded participants
without either of these two variants, we computed Pvalues of associa-
tionusing Fisher’stwo-sided exact test. We only tested enrichment for
terms that were attached to atleast three of the nine cases and belonged
tothe setof nonredundant terms at each level of frequency amongthe
cases. To account for multiple comparisons, we adjusted the Pvalues
by multiplying them by the number of tests. An adjusted P < 0.05 was
deemedtoindicate statistical significance. To visualize bothcommon

and distinctive HPO terms for RNU2-2 cases, we selected terms that
were either statistically significant or present in at least 50% of the
cases, removed redundant terms at each level of frequency among
thenine cases, and arranged the terms along withanonredundant set
of ancestral terms as a directed acyclic graph of ‘is-a’ relations. These
analyses were conducted using the ontologyX R packages”.

Analysis of expression levels of U2-1and U2-2

The NBR Molecular Phenotyping Study is a multicenter multiomics
study of approximately 1,000 patients. It consists of RNA-seq and
proteomics datafor platelets, neutrophils, monocytes and CD4" T cells.
Approximately 5,000 study participants in the NGRL also underwent
whole-blood RNA-seq. We aligned the NBR blood cell RNA-seq data to
the GRCh38 reference genome using STAR to assess coverage in the
RNU2-2locus. We did the same for NGRL participants using RNA-seq
reads aligned by DRAGEN to the GRCh38 reference genome. Both the
NBR and the NGRL data were generated following a ribosomal RNA
depletion and fragment size selection protocol that enables sequenc-
ing of short RNAs. To quantify expression of U2-1and U2-2 in the NBR
and the NGRL participants, we used the kallisto v.0.51.1 pseudoaligner
to map reads against a GRCh38 reference transcriptome composed
of alltranscript sequences in Ensembl v.104 after removing duplicate
sequences using the rmdup function from seqkit v.2.9.0. As only one of
thell copies ofthe RNU2-1sequence wasincludedinthereference tran-
scriptome, this approach ensured that quantification of U2-1 expres-
sionwas not diluted over repeated entries of the RNU2-1 sequence.

Mosaicism analysis

To compute the proportions of WGS reads supporting alternate alleles,
we extracted the sequencing depth and the number of reads support-
ingeachalternate allele at n.4 and n.35 of RNU2-2 from BAM files using
‘samtools mpileup’ with default settings.

Sanger sequencing

We used the following primers to amplify genomic DNA con-
taining the RNU2-2 gene before Sanger sequencing: forward
primer, 5-CCAATCCCAGGATCCTAAAAA-3’; reverse primer,
5’-GAAGACCACATGGAGATACTACG-3'. The amplified fragments cor-
responded to chr. 11:62841419-62842071 in version GRCh38 of the
human reference genome.

Modeling free energies of association

We calculated the free energy of duplex formation AG* of duplex
formation with U6-1and with branch site sequences for wild-type and
mutant U2-2 using the RNA.fold_compound.eval_structure functionin
the ViennaRNA (v.2.6.4) Python package. This enabled us to calculate
the difference in stability change on mutation, AAG.

Parental origin of de novo mutations

For each proband for which trio WGS data were available, we selected
read pairs overlapping the position of the de novo variant in ques-
tion. For each inherited variant called in the mother but not in the
father that was supported by such read pairs, we constructed a2 x 2
contingency table indicating the number of read pairs supporting
eachallele across the inherited and the de novo variant. If across all of
these maternally inherited variants, the number of reads supporting
linkage between the reference allele for one variant and the alternate
allele for the other variant was equal to zero, and if at least one read
supported linkage between the de novo alternate allele and at least
one maternally inherited alternate allele, then the origin was deter-
mined to be maternal. If across all of the paternally inherited variants,
the number of reads supporting linkage between the two reference
alleles was equal to zero and the number of reads supporting linkage
betweenthetwoalternate alleles was equal to zero, and at least one read
supported linkage between the reference allele at the de novo variant
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positionand atleast one paternally inherited alternate allele, then the
origin was determined to be maternal. The same logic was applied to
determine a paternal origin. If none of the above conditions was met,
the origin was determined to be inconclusive.

Gene expression and splicing analysis

We performed QC on RNA-seq data derived from the whole blood of
5,546 participantsin the NGRL as follows. Based on visual inspection of
QC parameter distributions, we filtered out samples with a percentage of
RNA fragmentslarger than 200 bases (asmeasured using an Agilent Tape-
Station4200) of <65%, atotal read count outside the range (108M, 592M),
a genome mapping rate <0.85 or a high-quality read rate <0.9 (where
reads were deemed to be of high quality if they aligned as proper pairs,
had fewer than seven mismatches and had a mapping quality >60). After
QC filtering, 5,165 samples remained for analysis, including five cases
with implicated variants in RNU2-2. We assessed allele-specific expres-
sion in cases by counting genome-aligned RNA-seq reads overlapping
heterozygous sites using ‘samtools mpileup’ with default settings. We
selected 500 samples for differential gene expression and splice junction
usage analysis by taking samples from the five cases and 495 samples
selected at random from those passing the QC criteria and belonging
to unrelated NDA-coded individuals presently unexplained. We used
DESeq_2 (ref.39) to conduct differential gene expression analysis, taking
the transcript quantifications generated by the Salmon software*° and
aggregated by gene with the tximport BioConductor package*. For the
differential splicing analysis, we used the 905,036 junctions observed
(that is, supported by at least one spliced read) in at least five of the
500 samples. We obtained one-sided P values by permutation of case
labels within the 500 NGRL samples for the lowness of the sum of ranks
of normalized numbers of reads supporting groups of splice junctions
ranked from high tolow and low to high, assigning the maximum rankin
the event of ties. We grouped the splice junctions by dinucleotide pairs
atthesplicesites, quantile of GC contentin the region encompassed by
thesplice junction and quantile of splice junctionlength. The numbers of
reads for each sample were normalized by dividing by the total number
ofuniquely aligned reads supporting splice junctions genome-wide. To
identify differentially spliced individual junctions, we also computed the
mean ranks from low to high (assigning the average rank in the event of
ties) of normalized splice junction usage across the five cases among the
500 samples for all the 905,036 selected junctions. The mean rank for
the splicejunction with the lowest mean rank (among the 87,067 splice
junctions observedinatleast 495 of the 500 samples) and highest mean
rank (among all 905,036 splice junctions) was recorded. These values
were then compared with equivalents for 500 randomly selected sets of
five samples fromamongall 500 samples to assess whether there was at
least one splicejunction with extreme usage among the five RNU2-2 cases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Genetic and phenotypic data for participants in the 100KGP study,
100KGP Pilot study and the GMS are available through the Genomics
England Research Environment via the application at https://www.
genomicsengland.co.uk/join-a-gecip-domain. WGS data from the
NGRL were obtained for 78,132 100KGP participants, 4,054 100KGP
Pilot participants and 32,030 GMS participants (v.3). RNA-seq data from
the NGRL and corresponding quality control metrics were obtained for
5,546 participants of the 1I00KGP from the ‘transcriptome_file_paths_
and_types’ and ‘rnaseq_qc_metrics’ tables (Main Programme v.18).
Access toblood cellRNA-seq datagenerated by the NIHR BioResource
can be requested by contacting the NIHR BioResource Data Access
Committee at dac@bioresource.nihr.ac.uk. HPO phenotype datainthe
NGRL were obtained from the ‘rare_diseases_participant_phenotype’

table (Main Programme v.14), ‘observation’ table (GMS v.3) and ‘hpo’
table (Rare Diseases Pilot v.3); specific disease class data from the
‘rare_diseases_participant_disease’table (Main Programmev.13); ICD-
10 codes from the ‘hes_apc’ table (Main Programme v.13); pedigree
information from the ‘rare_diseases_pedigree_member’ table (Main
Programmev.13), ‘referral_participant’ table (GMSv.3), and ‘pedigree’
table (Rare Diseases Pilot v.3); and explained and/or unexplained status
of cases from the ‘gmc_exit_questionnaire’ tables (Main Programme
v.18, GMS v.3). Ensembl v.104 (http://may2021.archive.ensembl.org/
index.html),gnomADv.3.0 (https://gnomad.broadinstitute.org/) and
CADDV.1.6 (https://cadd.gs.washington.edu/) were used for transcript
selectionand variant annotation against reference genome GRCh38. A
more recent version of gnomAD, v.4.1.0, was used to assign the variant
allele frequenciesin RNU2-2shownin Fig. 1. Data presented in this paper
were requested from the Genomics England Airlock on13 August 2024
at 03:39 BST. The manuscript was submitted to the Genomics England
Publication Committee on 21 August 2024 at 23:51 BST and approved
for submission on 27 August 2024 at 15:52 BST.

Code availability

Software packages rsvr v.1.0, bcftools v.1.16, samtools v.1.9/1.16.1 and
Perl v.5 were used to build the 100KGP Rareservoir. The Rareservoir
softwareisavailable from https://github.com/turrogroup/rsvr.Rv.3.6.2
and v.4.3.3 and all R packages that were used for data analysis and
visualization (Matrix v.1.2-18, dplyr v.0.8.5, bit64 v.0.9-7, bit v.1.1-14,
DBIv.1.1.0,RSQLite v.2.1.4, BeviMed v.5.7, ontologylndex v.2.12, ontolo-
gySimilarity v.2.7, ontologyPlot v.1.7, ggplot2v.3.5.0, tximport v.1.32.0
and DESeq2 v.1.44) are available via the Comprehensive R Archive
Network site (https://cran.r-project.org/) or Bioconductor (https://
bioconductor.org). The ViennaRNA v.2.6.4, salmon v.1.10.0, seqkit
v.2.9.0 and kallisto v0.51.1 packages can be installed via the conda pack-
age manager, available from https://anaconda.org/anaconda/conda.
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Extended Data Fig. 1| Effect on PPAs of relaxing the CADD score threshold.

Histograms of the posterior probability of association (PPA) between the 41,132

canonical Ensembl transcripts not annotated as being protein-coding and

No CADD restriction

witha CADD v1.6 score <10. The CADD v1.6 scores forn.4 G>A,n.35A>Gand
n.35A>Cwere7.7,9.4 and 9.1, respectively. The more recent CADD v1.7 gives
scores >10 for these variants.

neurodevelopmental abnormality (NDA), with and without filtering out variants
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inblood cells.
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Extended Data Fig. 3| Location of the pathogenic variants in U2-2 snRNA
within the major spliceosome. Assembly of the spliceosome A complex is
initiated by binding of the intronic 5’ splice site (5’SS) to the ULsnRNA and the
intronic branch site sequence to the U2-2 snRNA through Watson-Crick pairing
of cognate ribonucleotides. The branch site sequence is depicted as the human
YNYUNAY consensus motif (Y means C or T; N means any ribonucleotide), which
interacts with the GUAGUA sequence at positions 33 to 38 in the U2-2 snRNA
(depicted inred)®. The spliceosome pre-B complex is formed by incorporation
of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complex that
contains the U4, U5and U6 snRNAs. This requires interactions between U5 snRNA
and the 5’ and 3’ exons**and further interactions between nucleotides near

the 3’ end of the U6 snRNA and a cognate CGCUUCUCG sequence (nucleotides
3-11) close to the 5’ end of the U2-2 snRNA (depicted in blue)*. Tethering of
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U4/U6.US tri-snRNP to U2-2 within the spliceosome pre-B complex enables
displacement of Ul to enable a new interaction between U6 snRNA with the

5’SS and reconfiguration of U4/U6.U5 tri-snRNP to form the catalytically active
spliceosome B complex, whichis a prerequisite for the splicing reaction**. The
critical U6 snRNA region that interacts with the intronic 5'SS* is maintained in
correct orientation by conserved regions in the adjacent U4 snRNA (depicted in
orange), which are the sites of destabilizing variants responsible for the recently
described RNU4-2 syndrome’. The variants responsible for RNU2-2 syndrome
occur atcritical interaction sites between U2-2 snRNA near r.4 and U6 snRNA and
between U2-2 snRNA near r.35 and intronic branch sites. These interactions are
necessary for intron recognition and the correct assembly of the catalytically
active spliceosome B complex*.
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Extended DataFig. 8 | Aberrant splicing analysis. a, Histogram of the number
of differentially expressed genes controlling FDR at 0.05 with the Benjamini-
Hochberg procedure for randomly selected sets of five from 500 RNA-seq
samples (five cases with implicated variants in RNU2-2 and 495 unexplained
unrelated NDD cases). The number of such genes for the five cases is shown
witharedline. b, Histogram of the proportion of unique RNA-seq alignments
that containasplice junctionin the 500 RNA-seq samples. The proportions
corresponding to the samples from the five cases with implicated variants

in RNU2-2 are shown with red bars. ¢, Histogram of the mean (over randomly
selected sets of five samples) rank of normalized splice junction (S)) usage of
the splice junction with the lowest (left) and highest (right) mean rank. The red

lines correspond to the lowest and highest mean ranks for the five RNU2-2 cases.
d, One-sided Pvalues obtained by permutation of case labels within the 500
NGRL samples for the lowness of the sum of ranks of normalized numbers of
reads supporting groups of splice junctions ranked from high to low (the upward
facing blue triangles) and low to high (the downward facing red triangles),
assigning the maximum rank in the event of ties. The splice junctions were
grouped by: dinucleotide pairs at the splice sites (for N > 5), quantile of GC
content in the region encompassed by the splice junction, and quantile of splice
junctionlength. The dashed line at y = 0.05/102 indicates the P value significance
threshold to control the family-wise error rate at 0.05.
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Data collection  samtools 1.9; bcftools 1.16; perl 5.

Data analysis Software packages rsvr v1.0, beftools v1.16, samtools v1.9/1.16.1 and perl v5 were used to build the 100KGP Rareservoir. The Rareservoir
software is available from https://github.com/turrogroup/rsvr. R v3.6.2 and v4.3.3 and all R packages that were used for data analysis and
visualization (Matrix v1.2-18, dplyr v0.8.5, bit64 v0.9-7, bit v1.1-14, DBl v1.1.0, RSQLite v2.1.4, BeviMed v5.7, ontologyIndex v2.12,
ontologySimilarity v2.7, ontologyPlot v1.7, ggplot2 v3.5.0, tximport v1.32.0 and DESeq2 v1.44) are available via the Comprehensive R Archive
Network site (https://cran.r-project.org/) or Bioconductor (https://bioconductor.org). ViennaRNA v2.6.4, salmon v1.10.0, segkit v2.9.0 and
kallisto v0.51.1 packages can be installed via the conda package manager, available from https://anaconda.org/anaconda/conda.
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Genetic and phenotypic data for the 100KGP study participants, the 100KGP Pilot study participants and the GMS participants are available through the Genomics
England Research Environment via the application at https://www.genomicsengland.co.uk/join-a-gecip-domain. WGS data in the NGRL were obtained for 78,132
100KGP participants, 4,054 100KGP Pilot participants and 32,030 GMS participants (v3) HPO phenotype data in the NGRL were obtained from the
'rare_diseases_participant_phenotype' table (Main Programme v14), 'observation' table (GMS v3) and 'hpo' table (Rare Diseases Pilot v3); Specific Disease class data
from the 'rare_diseases_participant_disease' table (Main Programme v13); ICD10 codes from the 'hes_apc' table (Main Programme v13); pedigree information from
the 'rare_diseases_pedigree_member' table (Main Programme v13), 'referral_participant' table (GMS v3), and 'pedigree' table (Rare Diseases Pilot v3); explained/
unexplained status of cases from the 'gmc_exit_questionnaire' tables (Main Programme v18, GMS v3). Ensembl v.104 (http://may2021.archive.ensembl.org/
index.html), gnomAD v.3.0 (https://gnomad.broadinstitute.org/) and CADD v.1.6 (https://cadd.gs.washington.edu/), were used for transcript selection and variant
annotation against the reference genome GRCh38. A more recent version of gnomAD, v4.1.0, was used to assign the variant allele frequencies in RNU2-2.
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Reporting on sex and gender Breakdown by genetically determined sex for the 100KGP discovery collection as provided in the Genomics England Research
Environment: 40,332 female; 35,511 male; 1,696 not available.

Reporting on race, ethnicity, or Collection of rare disease participants and relatives covering a wide range of pathologies. Breakdown by genetically

other socially relevant determined most probable ancestry for the 100KGP discovery collection as provided in the Genomics England Research
groupings Environment: African: 2,762, Admixed American: 3,006; East Asian: 573; European: 63,493; South Asian: 7,705.
Population characteristics Participants were identified by clinicians as eligible for recruitment to the 2100KGP or for clinical testing through the United

Kingdom's National Health Service Genomic Medicine Centres. The eligibility criteria are available from the Genomics
England web site (https://www.genomicsengland.co.uk). Ages of 100KGP participants ranged between 0 and 110, with a
lower quartile of 27, a median of 42 and an upper quartile of 58, with 18.4% under 18 overall.

Recruitment Participants were identified by clinicians as eligible for recruitment into the United Kingdom's National Genomic Research
Library. The eligibility criteria are available from the Genomics England web site (https://www.genomicsengland.co.uk). The
opportunity to participate in research was presented to eligible patients or their guardians by their clinicians widely across
the health system, minimising selection bias subject to the enrolment criteria.

Ethics oversight Participants of the 100KGP, the 100KGP Pilot Project and the GMS were enrolled to the NGRL under a protocol approved by
the East of England—Cambridge Central Research Ethics Committee (ref: 20/EE/0035). We obtained written informed consent
to publish additional clinical data from a subset of the affected cases in the NGRL following local best practices. NBR
participants were enrolled under a protocol approved by the East of England Cambridge South Research Ethics Committee
(ref. 13/EE/0325). The investigations at Erasmus MC UMC were approved by the center's institutional review board
(MEC-2012-387). Informed consent at that institution was obtained for all diagnostics, and written informed consent was
obtained from the parents for publication of medical data including photographs, in line with the Declaration of Helsinki.
Participants of ENoD, URDCat and IMPacT Programs were enrolled through clinical services under a protocol approved by the
ISCIII Research Ethics Committee (CEI-PI01_2022) endorsed by the institutional review boards of the participating hospitals.
The ZOEMBA study was approved by the IRB of Amsterdam UMC, registration number NL67721.018.19. Written informed
consent to publish clinical data and photographs of the affected cases were obtained following local best practices.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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However, the study was informed by previous smaller studies showing sufficient power (see references in Turro et al. (2020), Nature).

Data exclusions  None.

Replication To identify further RNU2-2 cases outside the discovery collection, we examined eight additional rare disease collections: a component of the
100KGP not included in the discovery dataset (10,373 participants, of whom 1,736 have an NDA); the NIHR BioResource-Rare Diseases (NBR)
data23 (7,388 participants, of whom 731 have an NDA); the UK's Genomic Medicine Service (GMS) data (32,030 participants, of whom 6,469
have an NDA); data from the Erasmus MC UMC (1,527 participants, of whom approximately 400 have an NDA); an aggregate of the IMPaCT-
GENOGMICA, URDCat and ENoD-CIBERER programs for undiagnosed rare diseases24 (1,707 probands with NDDs and WGS data); clinical data
from Radboud UMC Nijmegen (1,037 probands with an NDA); WGS data from deCODE genetics (73,821 participants, of whom 4,416 have an
NDA) and data from the ZOEMBA study (127 participants, of whom 71 have an NDA). We identified a further 16 cases in these replication
collections, including at least one case in each collection.

Randomization  Recruitment and genome sequencing were performed concurrently across rare disease categories, thus randomizing the order in which
individuals were sequenced with respect to phenotype.

Blinding This is an observational genetic study, not a clinical trial. As genome sequencing followed enrolment, participants and investigators were
unaware of the participant genotypes generated by the 100KGP at enrolment.
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