
Unlocking multi-use synergies: Spanish industry perspectives on offshore 
wind and aquaculture integration

Carlos V.C. Weiss *, Bárbara Ondiviela *, Elvira Ramos , Lucía Meneses , Raúl Guanche ,  
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A B S T R A C T

The expansion of the blue economy requires sustainable solutions for optimizing marine resource use. The multi- 
use approach, increasingly integrated into Marine Spatial Planning (MSP), foster synergies between sectors such 
as wind energy and aquaculture. However, its implementation remains limited. This study develops a multi-use 
assessment framework for floating offshore wind energy and aquaculture, providing a national sectoral 
perspective to support MSP policy formulation through stakeholder-informed recommendations. The framework 
consists of three steps: i) technical suitability analysis; ii) evaluation of sectoral perceptions, and iii) SWOT 
analysis. By integrating technical suitability assessments—including energy production, energy evacuation, 
species requirements, structural survivability, and operation and maintenance—with stakeholder surveys and 
workshops, the framework provides a structured basis for advancing policy strategies. Technical analyses indi
cate significant multi-use potential within the Spanish Exclusive Economic Zone. Floating wind energy emerges 
as a driving activity in high-energy offshore areas, while aquaculture drives multi-use development in more 
sheltered zones. Stakeholders recognize economic and operational synergies, betting on the development of 
symbiotic multi-use in the short term. However, regulatory fragmentation, administrative barriers and envi
ronmental impact uncertainties are underscored challenges. The findings emphasize the need for coordinated 
regulatory frameworks and enhanced cross-sector collaboration to integrate multi-use into national maritime 
policies. The study provides a decision-support framework for policymakers and industry stakeholders to 
enhance governance and spatial planning strategies for offshore multi-use development.

1. Introduction

The development of the blue economy, which is inherently sustain
able by definition [118], requires alternative strategies to ensure the 
efficient use of marine resources [62,103]. In this sense, the rapid and 
diversified Blue Growth has fostered ocean multi-use approaches [60]. 
This is primarily driven by the rapid expansion of the wind energy in
dustry [125] and its competition for space with other uses, such as 
aquaculture, fishing, conservation and deep-sea mining [82]. Multi-use 
refers to the shared use of resources in close geographical proximity by 
one or multiple users [106]. This approach seeks to enhance resource 
efficiency and minimize the ecological footprint of the blue economy 
[122], while offering economic and technical benefits [2,4].

The combined exploitation of different activities has long been 
recognized as a prerequisite for future growth and development since its 

inception [27]. The Blue Growth strategy has promoted multi-use 
through its two main drivers: wind energy and aquaculture [32]. 
Additionally, Directive 2014/89/EU on Marine Spatial Planning (MSP, 
[41], the strategy for the development of marine renewable energies 
[33], and the new approach to a sustainable blue economy [34] have 
consistently promoted and encouraged multi-use. From an MSP 
perspective, multi-use can help mitigate conflicts arising from the 
increasing exploitation of ocean resources [11]. In this regard, MSP 
plans in different countries have been encouraging combined exploita
tion [99,105], tending to be not just a sustainable planning option but a 
key issue in MSP [16].

Offshore wind energy and aquaculture play key roles in the energy 
transition and food security, respectively [128]. In addition, both ac
tivities are driven by different political agendas, such as the Sustainable 
Development Goals of the 2030 Agenda [119] and climate change 

* Corresponding authors.
E-mail addresses: dacruzcv@unican.es (C.V.C. Weiss), barbara.ondiviela@unican.es (B. Ondiviela), ramose@unican.eslucia (E. Ramos), meneses@unican.es

(L. Meneses), guancher@unican.es (R. Guanche), juanesj@unican.es (J. Juanes). 

Contents lists available at ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol

https://doi.org/10.1016/j.marpol.2025.106786
Received 9 October 2024; Received in revised form 17 April 2025; Accepted 29 May 2025  

Marine Policy 180 (2025) 106786 

Available online 5 June 2025 
0308-597X/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:dacruzcv@unican.es
mailto:barbara.ondiviela@unican.es
mailto:ramose@unican.eslucia
mailto:meneses@unican.es
mailto:guancher@unican.es
mailto:juanesj@unican.es
www.sciencedirect.com/science/journal/0308597X
https://www.elsevier.com/locate/marpol
https://doi.org/10.1016/j.marpol.2025.106786
https://doi.org/10.1016/j.marpol.2025.106786
http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpol.2025.106786&domain=pdf
http://creativecommons.org/licenses/by/4.0/


mitigation policies [42]. In this context, several EU-funded projects 
(from the first MERMAID,1 H2OCEAN2 and TROPOS3 to the more recent 
UNITED4 and MULTI-FRAME5) have played a crucial role in exploring 
the technical, economic, and governance dimensions of multi-use 
development. These projects have contributed to analyzing the feasi
bility of multi-use, developed design concepts for multi-use platforms, 
and investigated policy and regulatory frameworks to facilitate their 
adoption. Furthermore, scientific research has provided methodological 
advancements that support multi-use. Studies have explored the legal 
constraints and co-management prospects of integrating offshore wind 
farms with aquaculture [13]; identified the main barriers and the po
tential contribution of multi-use platforms to Blue Growth [122]; eval
uated the ecological and economic benefits of combining low-trophic 
aquaculture with offshore wind farms [77], and proposed spatial plan
ning tools to optimize site selection for renewable energy and aquacul
ture facilities [128].

Despite the comprehensiveness of these initiatives, numerous con
cerns remain regarding the multi-use of wind energy and aquaculture 
[20]. An assessment framework focused on the regional scale of plan
ning is needed to identify specific advantages and hurdles of multi-use 
[111]. While a growing body of research has provided a holistic view of 
the technical, legislative and socio-economic dimensions, considering 
stakeholder perspectives on some occasions (e.g., [23]; [91], a critical 
step remains necessary to unlock the national development of multi-use: 
the engagement of both sectors to conciliate opinions in an analytical 
framework at decision-making scale (i.e., horizontal integration;[117]. 
As multi-use strategies gain traction in the development of blue econ
omy within MSP, both national sectors are planning their next steps. The 
engagement of key stakeholders in the transition to multi-use is funda
mental to the formulation of common solutions for a legal and technical 
development framework. Thus, it can be incorporated into a compre
hensive MSP with the vertical integration of different levels of govern
ment and other stakeholders [34].

The aim of this study is to develop a multi-use assessment framework 
for floating offshore wind energy and aquaculture, providing a national 
sectoral perspective to support MSP policy formulation through 
stakeholder-informed recommendations. This study assesses the tech
nical suitability, the perception of the energy and aquaculture in
dustries, and the main Strengths, Weaknesses, Opportunities and 
Threats (i.e., SWOT analysis) for multi-use in the Spanish Exclusive 
Economic Zone (EEZ).

2. Study area

Spain’s EEZ is divided into five maritime demarcations: North 
Atlantic, South Atlantic, Straigh and Alboran, Levantine-Balearic, and 
Canary Islands [35]. This study focuses on the peninsular demarcations 
(Fig. 1). The management of maritime space falls under the re
sponsibility of the Ministry for Ecological Transition and the De
mographic Challenge (MITECO), which approved the Maritime Spatial 
Plans (known as POEMs in Spanish) in February 2023 [86]. These plans 
establish guidelines for sustainable maritime use, defining priority and 
high-potential zones for offshore wind energy and high-potential zones 
for aquaculture. Although they do not designate specific areas for 
multi-use development, they emphasize the importance of ’facilitating 
the multiple use of maritime space’ (Royal Decree 150/2023; [85].

Currently, Spain has no floating wind farms or offshore aquaculture 
facilities in operation, nor any existing multi-use initiatives. The Spanish 
Roadmap for the Development of Offshore Wind and Marine Energy sets 

the goal of reaching between 1 and 3 gigawatts of installed capacity in 
floating offshore wind energy by 2030 [84], representing 40 % of the 
European target for floating wind [132]. The Spanish wind industry has 
become one of Europe’s knowledge and supply hubs for the interna
tional market EPO/IEA. [30] and is recognized for its advancements in 
floating prototypes development [28]. Meanwhile, although the aqua
culture sector remains coastal and lacks designated offshore develop
ment zones in the POEM, there is growing interest in transitioning to 
offshore operations. In this sense, the aquaculture sector could leverage 
the wind industry’s technological maturity to advance through the 
multi-use approach.

3. Methodology

This study proposes a multi-use assessment framework to guide the 
development of the floating offshore wind energy and aquaculture na
tional sectors through evidence-based recommendations. The frame
work comprises three steps (Fig. 2): i) Analysis of the technical 
suitability for their combined exploitation; ii) Evaluation of the national 
sector’s perception of the multi-use approach and iii) SWOT analysis to 
assess the feasibility of multi-use.

3.1. Technical suitability

A suitability index (SI) was applied to identify zones with favorable 
conditions for multi-use, considering energy exploitation alongside 
seaweed and fish farming (i.e., multi-use possibilities). The spatial an
alyses were based on a compilation of long-term time series data with 
high spatial and temporal resolution (cf., Supplementary Material, 
Table A1). The SI was based on the approach developed and applied at 
various temporal and spatial scales by [125,128,127,126,124]. This 
index represents: i) the probability of meeting the favorable conditions 
for energy production and evacuation in the wind industry; ii) the bio
logical requirements of aquaculture species; and iii) the operation and 
maintenance (O&M) activities, as well as the structural survivability, for 
both sectors:

3.1.1. Energy production
Wind speed at hub height (Ws) and Available potential (Ap) were 

considered to assess the quality and availability of the energy resource. 
The Ws was parametrized according to the power curve of the 10 MW 
turbine referenced by DTU [7], cf., Fig. 3a). Significant wave height (Hs) 
was used as a constraint in the operation of the turbines. Eq. 1 shows the 
SI for wind energy production (SIEP). 

SIEP = min
(

Wsp,
tAp

t
,

tHs

t

)
(1) 

where min is the minimum value found among the analyzed aspects. Wsp 
is the parametrization of the mean speed (Fig. 3a). tAp and tHs are the 
time, at the temporal resolution of the evaluated variable, that the 
variable (Ap and Hs) remained within the production thresholds 
(Table 1) throughout time series (t).

3.1.2. Energy evacuation
The suitability of a site for energy evacuation was estimated by 

calculating the Euclidean distance to the nearest electrical substations 
up to a radius of 80 km (Table 1). Substations with available access 
capacity for the Electric Park Module (i.e., generators connected "non- 
synchronously") were considered. The Energy Evacuation index (SIEE) 
was established by parameterizing the Euclidean distance according to 
Fig. 3b.

3.1.3. Species requirements
The species requirements assessment was based on growth predictor 

variables: sea surface temperature (sst) and salinity (sal), with 

1 https://cordis.europa.eu/project/id/288710
2 https://cordis.europa.eu/project/id/288145
3 https://cordis.europa.eu/project/id/288192
4 https://doi.org/10.3030/862915
5 https://www.submariner-network.eu/multi-frame
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photosynthetically active radiation (PAR) considered only for seaweeds. 
The suitability of the environmental conditions to the species re
quirements was established according to the percentage of time that sst, 
sal and PAR remained within the biological thresholds for each species 
(Table 2) in concomitance (con). The 20 species analyzed were selected 
according to their high commercial potential and farming background 
on the national and international market. The SI for the species re
quirements was generated according to Eq. 2 for fish (SISp Fish) and Eq. 3
for seaweed farming (SISp Seaweed). 

SISp Fish = con(
tsst
t
,
tsal

t
) (2) 

SISp Seaweed = con(
tsst
t
,
tsal

t
,
tPAR

t
) (3) 

where tsst, tsal and tPAR are the time, at the temporal resolution of the 
evaluated variable, that the variable (sst, sal and PAR) remained at the 
conditions defined in the thresholds throughout the time series (t).

3.1.4. Structural survivability
Aspects related to the integrity and durability of the offshore wind 

and aquaculture structures have been considered to assess the severity of 
the met-ocean conditions on the site. For slope, zones with less than 
25 % were excluded (SI=0). The bathymetry was parameterized ac
cording to Fig. 3c, considering depths between 40 and 200 m (Table 1). 

Fig. 1. Study area comprising the four Spanish maritime demarcations within the EEZ.

Fig. 2. Multi-use assessment framework outlining three steps to support the formulation of recommendations for the integrated development of the wind energy and 
aquaculture sectors.
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The calculation of the 50-year return period used the Peak Over 
Threshold method, assuming the frequency using a Poisson process, and 
the intensity using a Generalized Pareto Distribution [83]. The extreme 
conditions for Hs50wind, Hs50aqua, C50 and Ws50 were parameterized 
according to Fig. 3d, e, f, g, respectively. The structural survivability 
index was obtained according to Eq. 4 for wind energy (SISS Wind) and Eq. 
5 for aquaculture (SISS Aqua). 

SISS Wind = min
(
Batp, Hs50windp, Ws50p

)
− slope (4) 

SISS Aqua = min
(

Batp, Hs50aquap, C50p

)
− slope (5) 

3.1.5. O&M activities
For logistics activities, the possibility of carrying out O&M activities 

has been considered for both sectors, considering the weather windows 
available and the distance to the ports. The distance from ports was 
estimated by calculating the Euclidean distance to the nearest port 
within a 40 km radius, parameterized according to Fig. 3 h (i.e., Dpp). 
For Hs and Ws, the number of 8-hour weather windows of average 
annual duration in which these aspects were within the optimal 
thresholds for working is evaluated (cf., Table 1). The site was consid
ered to have full accessibility when it had 1095 access windows. The SI 
for the O&M activities of both sectors (SIO&M) is shown in Eq. 6. 

SIO&M =
3Hs + 2Ws + Dpp

6
(6) 

3.1.6. Multi-use possibilities
The technical suitability for each activity was established by inte

grating the SI of each evaluated aspect. Integration was carried out ac
cording to the main economic factors that determine the feasibility of 
developing these activities. Thus, a 70 % CAPEX (capital expenditures) 
and 30 % OPEX (operational expenditures) were considered for wind 
energy [18] and the critical value of the aspects evaluated for aqua
culture (i.e., minimum value, as it is considered a more susceptible ac
tivity; [53]. The integrations were performed according to Eqs. 7, 8, and 
9 for wind energy, fish farming, and seaweed farming, respectively. 

SIWind =
(0.2 ∗ SIEP + 0.3 ∗ SIEE + 0.4 ∗ SISS Wind + 0.1 ∗ SIO&M)

1
(7) 

SIFish = min(SISS Aqua, SIO&M, SISp Fish) (8) 

SISeaweed = min(SISS Aqua, SIO&M, SISp Seaweed) (9) 

Different combinations of SIWind, SIFish, and SISeaweed were carried out 
to determine the multi-use possibilities, considering the minimum value 
found at each point on the analysis grid (min). For instance, the multi- 
use possibilities for the three activities were obtained from Eq. 10. 
The discussion of the results was based on the zones with multi-use 
possibilities with SI values above 0.5.

SIMU = min (SIWind, SIFish, SISeaweed) (10)

3.2. Industry perception

The assessment of stakeholder perceptions of the combined use of 
aquaculture and floating offshore wind energy was carried out through 

Fig. 3. Parameterization (p) of the analyzed aspects on a normalized scale from 0 to 1 for: a) Wind speed (Wsp); b) Distance from substations (Dsp); c) Bathymetry 
(Batp); d) 50-year return period for significant wave height (Hs50windp); e) Hs50aquap; f) 50-year return period for current velocity (C50p); g) 50-year return period 
for wind speed (Ws50p); h) Distance from ports (Dpp).

Table 1 
Technical aspects, thresholds and source of information for wind energy and 
aquaculture exploitation.

Aspects Thresholds Sources of 
information

Wind Seaweed Fish

Energy production
Wind speed (120 m 

hub high) (Ws, 
m/s)

4 ≤Ws≤ 25 _ _
[6]; [7]; [66]; 
[67]

Available wind 
energy potential 
(120 m hub high) 
(Ap, W/m2)

≥ 400 _ _

Significant wave 
height 
(Hs, m)

≤ 5 _ _

Energy evacuation
Distance from 

substations (km)
≤ 80 _ _ [1]; [6]; [132]

Structural survivability
50-year return 

period for wind 
speed (Ws50, m/ 
s)

≤ 40 _ _ [1]; [19]; [24]; 
[112]; [114]; 
[132]

50-year return 
period for 
significant wave 
height (Hs50, m)

≤ 15 ≤ 5 ≤ 5

50-year return 
period for current 
velocity (C50, m/ 
s)

_ ≤ 1 ≤ 1

Bathymetry (m) 40 ≤ Bat 
≤ 200

40 ≤ Bat 
≤ 200

40 ≤ Bat 
≤ 200

Slope (%) ≤ 25 ≤ 25 ≤ 25
O&M activities
Wind Speed (Ws, 

m/s)
≤ 15 ≤ 15 ≤ 15 [1]; [5]; [19]; 

[79]; [112]; 
[132]Significant wave 

height (Hs, m)
≤ 2 ≤ 1 ≤ 1

Distance from ports 
(km)

≤ 40 ≤ 40 ≤ 40
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an online survey and workshops. A 10-question online survey was 
divided into 6 sections: i) general information; ii) multi-use topics; iii) 
planning phase; iv) investment phase (CAPEX); v) O&M phase (OPEX); 
and vi) decommissioning phase (DECEX). The first five questions were 
about general information (e.g., field of expertise) and multiple-choice 
questions on general aspects of multi-use among the evaluated sectors. 
The other questions (sections ii to vi) sought to find the main advantages 
and hurdles in the different phases of implementing multi-use projects. 
The key stakeholders rated different aspects within each project phase 
using a seven-point Likert scale from -3 (most important hurdles) to + 3 
(most important advantages), with the option of not answering a certain 
aspect (i.e., Don’t Know/Don’t Answer option). Likert-type scales are 
often used to measure stakeholder perceptions in management, policy 
and conservation issues (e.g., [74]; [96]. The survey was distributed to 
key stakeholders (i.e., national energy and aquaculture sectors6), and 
was made available for contributions for one month. A total of 15 
stakeholders responded, with 60 % representing the aquaculture sector 
and 40 % the offshore wind energy sector. In the analysis of responses, 
the same weight of importance was given to both sectors to ensure a 
balanced interpretation of their perspectives.

The contributions of both sectors were also made in two virtual 
workshops. The first workshop (38 participants) was organized with a 
broader outreach strategy to gather input across sectors and aimed to 
discuss the methodology and results of the technical suitability analysis, 
as well as to validate the preliminary survey findings. The second 
workshop (9 participants) was more targeted and focused on validating 

the SWOT analysis (cf., Section 3.3), with the goal of identifying key 
aspects to be addressed in the development of these sectors through the 
multi-use approach and supporting the formulation of strategic recom
mendations. To ensure a focused discussion on strategic priorities, 
participation was limited to stakeholders with relevant experience in 
multi-use initiatives. Stakeholders for both the online survey and the 
workshops were selected through collaboration with national industry 
associations — APROMAR (aquaculture) and AEE (wind energy) — to 
ensure representation of the sectors directly involved in multi-use 
implementation. The participants included professionals from com
panies and organizations active in the national energy and aquaculture 
sectors. This approach helped ensure that stakeholder input was both 
inclusive in the exploratory phase and focused during the validation 
stage, thus strengthening the reliability of the findings.

3.3. SWOT analysis

Based on the technical suitability and the findings of the survey, a 
SWOT analysis regarding the multi-use feasibility was carried out: 

• Strengths: positive aspects of feasibility for multi-use.
• Weaknesses: negative aspects of feasibility for multi-use.
• Opportunities: elements that might benefit multi-use.
• Threats: elements that might be a barrier to multi-use.

The sectoral diagnosis made it possible to identify strengths and 
weaknesses that the sectors face in implementing multi-use (i.e., internal 
factors), as well as the main opportunities and threats that intervene in 
achieving combined exploitation in the Spanish context (i.e., external 
factors). Internal factors refer to the intrinsic part of the system, covering 
all the inherent aspects over which it has control (e.g., financial, 

Table 2 
Species requirements, thresholds and source of information for fish and seaweed farming.

Species requirements Temperature (sst, 
ºC)

Salinity (sal, 
PSU)

Photosynthetically Active Radiation (PAR, mol/m2 

day)
Sources of information

Fish
Gilthead seabream 

Sparus aurata
14 ≤ sst ≤ 28 30 ≤ sal ≤ 40 _ [3]; [43]; [69]; [107]

Atlantic Bluefin tuna 
Thunnus thynnus

15 ≤ sst ≤ 30 30 ≤ sal ≤ 38 _ [3]; [47]; [69]; [115]; [116]; [133]

Meagre 
Argyrosomus regius

14 ≤ sst ≤ 28 29,5 ≤ sal 
≤ 39,1

_ [3]; [26]; [44]; [78]; [88]; [104]

European seabass 
Dicentrarchus labrax

14 ≤ sst ≤ 26 30 ≤ sal ≤ 40 _ [3]; [45]; [65]; [69]; [71]; [101]

Greater amberjack 
Seriola dumerili

14 ≤ sst ≤ 28 30 ≤ sal ≤ 38 _ [3]; [17]; [48]; [68]; [116]

Red porgy 
Pagrus pagrus

15 ≤ sst ≤ 26 31,6 ≤ sal ≤ 38 _ [3]; [8]; [69]

Atlantic cod 
Gadus morhua

4 ≤ sst ≤ 15 6 ≤ sal ≤ 38 _ [3]; [49]

Blackspot seabream 
Pagellus bogaraveo

12 ≤ sst ≤ 21 34,5 ≤ sal 
≤ 37,8

_ [3]; [8]

Atlantic salmon Salmo salar 6 ≤ sst ≤ 18 10 ≤ sal ≤ 38 _ [3]; [52]; [57]; [69]; [89]
Rainbow trout Oncorhynchus mykiss 6 ≤ sst ≤ 18 10 ≤ sal ≤ 38 _ [3]; [50]; [92]
Wreckfish Polyprion americanus 12 ≤ sst ≤ 20 32,4 ≤ sal 

≤ 37,8
_ [3]

Common Dentex dentex dentex 15 ≤ sst ≤ 28 35,4 ≤ sal 
≤ 38,8

_ [3]; [8]; [69]

Dusky grouper Epinephelus marginatus 14 ≤ sst ≤ 23 33,2 ≤ sal 
≤ 37,2

_ [3]; [64]; [69]

Flathead grey mullet Mujil cephalus 15 ≤ sst ≤ 30 30 ≤ sal ≤ 38 _ [3]; [46]
Common dolphinfish Coryphaena 

hippurus
20 ≤ sst ≤ 30 16 ≤ sal ≤ 36,4 _ [3]; [93]

Seaweed
Saccharina latissima 10 ≤ sst ≤ 15 30 ≤ sal ≤ 40 8,6 ≤ PAR≤ 43,2 [12]; [63]; [70]; [95]; [110]
Porphyra sp 10 ≤ sst ≤ 15 30 ≤ sal ≤ 40 6 ≤ PAR≤ 43,2 [63]; [70]; [95]
Himanthalia elongata 10 ≤ sst ≤ 17 30 ≤ sal ≤ 40 6 ≤ PAR≤ 43,2 [63]; [70]; [113]; [134]
Codium tomentosum 10 ≤ sst ≤ 16 30 ≤ sal ≤ 40 6 ≤ PAR≤ 17,3 [56]; [70]; [72]; [76,109]; [131]; 

[134]
Chondrus crispus 10 ≤ sst ≤ 15 28 ≤ sal ≤ 40 5,6 ≤ PAR≤ 34,5 [10]; [15]; [70]; [75]; [108]; [109]

6 Red Empresarial de Acuicultura de España (APROMAR), Asociación 
Empresarial Eólica (AEE) and, national wind energy and aquaculture 
companies.
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technical, human resources, competitive position). On the other hand, 
external factors constitute elements that might affect the internal sys
tem, i.e., the area of influence on multi-use between these sectors (e.g., 
sociocultural, economic, political and technological aspects). These as
pects were discussed based on an international literature review.

Based on a technical, participatory, consensus-driven, and priori
tized approach, strategic recommendations were formulated to support 
the development of multi-use in the national context.

4. Results and discussion

This section is divided into four parts. Section 4.1 addresses the 
technical suitability for multi-use between floating offshore wind energy 
and aquaculture in Spain’s EEZ. The SI for each aspect assessed for wind 
energy exploitation, fish and seaweed farming, as well as for multi-use 
possibilities, are available in the Supplementary Material (Fig. A1 to 
A8). Section 4.2 shows the results of the survey on the perception of 
national sectors. The SWOT for the feasibility of multi-use is discussed in 
Section 4.3. Key lessons and recommendations for multi-use develop
ment in Spain are presented in Section 4.4.

4.1. Technical suitability

Considering the maximum number of suitable fish and seaweed 
species, Fig. 4 shows the zones with multi-use possibilities between 
floating wind energy and aquaculture (SI > 0.5). The Mediterranean Sea 
shows great technical possibilities for energy and fish production. In this 
region, the determining factor for multi-use is the suitability for wind 
exploitation, since most of the species analyzed presented favorable 
conditions. The zones with multi-use possibilities are mainly in the 
Balearic Sea (total area of 23.053 km2). Zones with the highest SI (> 0.7, 
white polygons) are concentrated on the Alicante coast (303 km2) and 
the south-west of the Mallorca Island (508 km2). Possible multi-use 
combinations of wind energy would be with the farming of European 
seabass, Atlantic Bluefin tuna, Greater amberjack, Gilthead seabream, 
Meagre, Common dentex and Flathead grey mullet (the first five species 
were produced in Spain in 2021; [51]). Furthermore, the Catalan coast is 
also a hotspot for multi-use (> 0.7, white polygons), considering the 
farming of Greater amberjack, Gilthead seabream and Meagre 

(822 km2), Wreckfish (345 km2) and Blackspot seabream (58 km2) with 
wind energy production. Multi-use possibilities are also identified with 
Red porgy, Atlantic salmon and Rainbow trout in this region, but with 
lower SI and smaller areas for the last two species (maximum SI of 0.68).

In the North Atlantic region, the feasibility of multi-use is primarily 
determined by aquaculture suitability, given the severe met-ocean 
conditions and challenges related to structural survivability [19] and 
the susceptibility of farmed species [53]. Three zones in this region show 
multi-use possibilities: the coast of the Basque Country and Cantabria (SI 
of up to 0.68 in a total area of 978 km2); Asturias (SI of up to 0.58 in a 
total area of 462 km2); and a small zone in the Galician coast (SI of up to 
0.51 in a total area of 222 km2). In addition to the species mentioned for 
the Mediterranean Sea, Dusky grouper also presents possibilities for 
multi-use; as well as Atlantic cod and Himanthalia elongata farming 
emerging as possible combinations off the Galician coast (SI of 0.51). 
The Gulf of Cadiz also has zones with favorable conditions for multi-use 
between wind and farming of up to 13 different species (SI of up to 0.62 
in a total area of 1.542 km2). Possible combinations with floating wind 
energy are found with the same species as in the North Atlantic region, 
except for the last two mentioned in the case of the Galician coast.

4.2. Industry perception

Survey responses revealed stakeholders’ interest in fostering syn
ergies between the aquaculture and offshore wind sectors, particularly 
through symbiotic use (cf., Supplementary Material, Figs. A9, A10). In 
this type of multi-use, activities share provisioning services and basic 
functions, such as crew transportation, ports, and monitoring data 
[106].

Stakeholders emphasized the need to designate suitable zones in 
Spain’s MSP plans (Royal Decree 150/2023; [85] to promote multi-use 
(cf., Supplementary Material, Fig. A11). The offshore wind sector 
advocated for adjusting spatial restrictions in the national MSP to allow 
joint exploitation in high-potential areas (e.g., aquaculture zones with 
wind energy potential). Meanwhile, the aquaculture sector highlighted 
its offshore potential, particularly in synergy with floating wind, which 
is not reflected in the current MSP plan. Both sectors identified economic 
and technical advantages as primary drivers of multi-use development, 
while administrative and legal barriers were cited as major obstacles. 

Fig. 4. Zones with the multi-use possibilities (SI > 0.5) between floating wind energy and aquaculture, with the maximum number of fish and seaweed species 
suitable for farming. White polygons indicate zones with high SI (> 0.7). Image source: Esri, Maxar, Earthstar Geographics, IGN, and the GIS User Community.
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Environmental impact studies were deemed essential by the aquaculture 
sector, whereas pilot projects were prioritized by the wind sector (cf., 
Supplementary Material, Fig. A12).

Fig. 5 illustrates the advantages and hurdles of multi-use at different 
project phases. In the planning phase, optimizing operational space and 
improving efficiency (i.e., production per area) were key advantages 
(Fig. 5a). Cooperation was also considered beneficial, although 40 % of 
energy sector participants viewed differing technological maturity as a 
challenge. In the investment phase (CAPEX), 80 % of stakeholders 
recognized energy autonomy for offshore installations as an advantage, 
especially in powering aquaculture plants (Fig. 5b). Shared infrastruc
ture and staff were seen as cost-saving measures.

The main hurdles identified in the O&M phase (Fig. 5c) involved 
potential negative impacts on farmed species and the socio-ecological 
environment, with 80 % of aquaculture stakeholders expressing 

concern. However, both sectors agreed that technological solutions and 
further research could mitigate these risks. Infrastructure collisions were 
another concern, particularly for the wind sector (60 %), given the po
tential for aquaculture equipment to damage wind devices [135,23]. In 
the decommissioning phase, stakeholders recognized the benefit of 
specialized technical resources (Fig. 5d). Repurposing decommissioned 
structures for future use was also discussed as a viable multi-use strategy 
[106].

4.3. Multi-use feasibility

Economic and technical synergies were the main drivers of multi-use 
feasibility (cf. Section 4.2), aligning with recent studies on technical 
viability [4,124] and economic benefits [22,2]. Conversely, the lack of a 
robust policy framework remains a key barrier [23,120]. Regulatory 

Fig. 5. Stakeholder perceptions of advantages, hurdles, or neutrality in different project phases: a) planning; b) investment (CAPEX); c) O&M (OPEX); d) 
decommissioning (DECEX).
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fragmentation exacerbates the administrative burden [20], with 
offshore wind farms governed nationally and aquaculture regionally in 
Spain. Although Spain’s MSP plan encourages multi-use, a structured 
regulatory framework is needed for effective licensing and coordination. 
The MSP Directive 2014/89/EU supports "multi-purpose uses" [41], 
highlighting the importance of recognizing overlapping operational 
limits for joint activities [122], as suggested by the sectors. In addition, a 
regulatory framework for multi-use development could facilitate 
public-private cooperation, for example in the repurposing of oil and gas 
platforms [23,106].

A SWOT analysis of multi-use feasibility in Spain’s EEZ is presented 
in Fig. 6. Stakeholder perceptions align with international research, 
emphasizing strengths such as space optimization [4] and improved 
hydrodynamic behavior [136]. Economic benefits include shared 
mooring systems [21], logistics and O&M cost reductions [22], and 
lower decommissioning expenses [16]. Additionally, multi-use facili
tates environmental monitoring by integrating impact assessments [97]
and enhancing data collection [102]. However, the need for standard
ized monitoring protocols remains a challenge [123].

Opportunities include increased social acceptance, especially for 
marine fish farming [9]. The national and sectorial commitment to 
meeting the objectives defined in the European agendas for blue growth 
and sustainable development (e.g., Sustainable Development Goals, 
European Green Deal, climate change mitigation) are highlighted by 
stakeholders as a “mandatory” opportunity.

The environmental impacts of the combined exploitation of these 
activities are still unknown and are therefore a weakness for the feasi
bility of multi-use. The existing information comes from theoretical 
scenarios of the individual projection of activities [2] and through 
methods for assessing cumulative effects (e.g., [129,130]. The sector’s 
concerns are addressed in different studies, for example, aquaculture 
could produce biofouling in wind devices, thus increasing the corrosion 
of the material [73]. According to Rezaei et al. [98], one of the main 
impacts of floating wind energy is the electromagnetic field and noise, 
which could affect farmed species. The release of substances used to 
contain corrosion and biofouling from wind turbines can, for example, 
contaminate seaweed farming [121]. Additionally, the different life
spans of offshore wind and aquaculture facilities complicate planning.

The primary threats to multi-use in Spain stem from limited sectoral 
cooperation. While collaboration was recognized as a potential advan
tage in planning (cf. Fig. 5a), stakeholders in the second workshop 
acknowledged that dialogue remains limited. This study is among the 
first to foster cross-sector interaction in Spain. Cooperation barriers arise 

from technological maturity gaps, investment differences, and regula
tory inconsistencies. Addressing these challenges requires policy inter
vention and enhanced industry collaboration.

4.4. Lessons learned and recommendations for multi-use development in 
Spain

Spain’s MSP plans outline a regulatory framework for maritime ac
tivities but currently lack specific provisions for multi-use projects. The 
absence of targeted incentives limits sectoral engagement, generating 
uncertainty for investors and reinforcing the need for clear imple
mentation guidelines. Building on the multi-use assessment framework 
proposed in this study — which systematically identifies suitable areas 
and captures stakeholder perceptions — this section presents key lessons 
learned and practical recommendations to support the future develop
ment of multi-use between floating wind energy and aquaculture in 
Spain. These insights, informed by national sectoral perspectives and 
relevant international experiences, aim to guide strategic decision- 
making and inform future updates to Spain’s MSP strategies.

4.4.1. Economic and financial aspects
The novelty of multi-use technologies results in limited funding op

portunities, as investors prioritize more established methods. Uncer
tainty regarding business cases and insurance contracting further 
complicates financing due to potential mutual impacts between eco
nomic activities. Financial incentives such as tax benefits or public- 
private funding mechanisms should be introduced to mitigate these 
risks.

There are currently no commercial multi-use facilities in Spain for 
these industries. However, wind farms with an installed capacity be
tween 200 and 500 MW are planned in the priority zones defined in the 
MSP plans (Royal Decree 150/2023; [85]. The lowest are planned for 
the Canary Islands and those with the highest installed capacity for the 
North Atlantic region. Regarding offshore aquaculture, planned in
vestments include farms with capacities of up to 15,000 tons/year and 
structures of approximately 150 m in diameter. The preferred zones for 
European seabass and Meagre farming are the Mediterranean Sea and 
the Canary Islands. In the Mediterranean Sea, a project with an invest
ment of around 250 million euros is currently undergoing environ
mental licensing, while a planned Canary Islands project was canceled 
due to bureaucratic barriers.

Fig. 6. SWOT analysis for the multi-use feasibility of floating offshore wind energy and offshore aquaculture.
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4.4.2. Multi-use development zones
Due to Spain’s continental shelf characteristics, wind-aquaculture 

multi-use must rely on floating solutions, particularly for fish farming 
integration. Initial multi-use installations could be located at depths of 
80–120 m (based on stakeholder criteria and technical suitability anal
ysis, cf. Fig. 3c). Stakeholders propose pilot projects within 20 km of the 
coast. However, the priority zones for wind energy defined in Spain’s 
MSP are located far from the coast, while the aquaculture zones are 
restricted to nearshore areas.

Explicit inclusion of multi-use zones in MSP plans is essential for 
successful blue economy development. Lessons from the North Sea 
indicate that dedicated multi-use zones facilitate coordinated gover
nance and reduce administrative barriers. Countries such as the 
Netherlands (via "Area Passports" in the 2020 North Sea Agreement; 
[58]) as well as Germany and Denmark (through overlapping priority 
zones in their MSP 2021) provide successful examples [36,37].

While this study provides an initial site selection analysis (Section 
4.1), further research is required at an implementation scale, consid
ering specific technologies, species, and operational needs (e.g., O&M 
activities). The selection of multi-use zones should also address conflicts 
with other maritime activities [82] and environmental compatibility 
[90]. The lack of inland infrastructure, such as suitable electrical sub
stations, remains an obstacle.

4.4.3. Type of multi-use
Both sectors are betting on symbiotic use (e.g., [100] in the short 

term, other types of multi-use are, however, not ruled out in the long 
term, such as multi-purpose platforms (e.g., [136]. Indeed, 
multi-purpose platforms are also identified as a viable alternative by the 
aquaculture sector (40 % of participants) for their potential to integrate 
wind technology within a single structure.

Existing real-world projects offer insights into best practices. The 
floating wind sector has operational farms, such as Hywind Tampen 
(Norway, 140 km offshore, 260–300 m depth; [31]. As for aquaculture, 
different types of cages have been developed (cf., [19], some of which 
have been tested under real conditions (e.g., rigid semi-submerged cage 
- Ocean farm 1; [25]. For multi-use real projects, lessons can be learned 
from the combination of bottom-fix offshore wind with the farming of, 
for example, seaweed and bivalves [14]. Moreover, a wind, solar and 
fish multi-use farm was recently commissioned in China (Shanghai [29].

4.4.4. Multi-use driving activity
Pilot projects should consider aquaculture as a driving activity in 

sheltered zones (e.g., Mediterranean Sea) and wind energy in seas with 
severe met-ocean conditions (e.g., North Atlantic region). The farming 
of European seabass, Atlantic Bluefin tuna, Greater amberjack, Gilthead 
seabream and Meagre in offshore cages (e.g., [59]; [127] could be 
considered for the multi-use with wind exploitation in the Mediterra
nean Sea and/or Gulf of Cadiz. In this case, commercial turbines with 
lower installed capacity could be considered (e.g., 5-MW NREL, [66], or 
lower installed capacity to meet the energy needs of the aquaculture 
plant; [4].

For multi-use projects where wind energy is the driving activity, in 
addition to the species mentioned above, Atlantic salmon and Rainbow 
trout farming could be combined with projects utilizing larger wind 
turbines on the North Atlantic coast (e.g., 10-MW DTU, [7], and 15-MW 
IEA, [54]. In addition, the farming of Himanthalia elongata could be 
explored for a wind-driven multi-use pilot project along the Galician 
coast (cf., Section 4.1). With a better-established industrial value chain, 
wind energy as a driving activity could boost the development of 
offshore aquaculture.

4.4.5. Legislation for multi-use
As highlighted in Section 4.3, administrative and legal barriers are 

among the greatest challenges to multi-use development. The lack of a 
dedicated regulatory framework, complex licensing procedures, and 

insufficient sectoral coordination discourage investment. Streamlining 
regulatory processes is critical to providing legal certainty and fostering 
multi-use project development.

International examples demonstrate that regulatory clarity facili
tates investment and sectoral collaboration. The Netherlands’ “Area 
Passports” coordinate multi-use activities within offshore wind farms, 
promoting legal certainty and enabling public-private partnerships [58]. 
Belgium and Poland have integrated multi-use into their tendering 
procedures for offshore wind farms [38,39], providing valuable insights 
for Spain.

4.4.6. Environmental concerns
The cumulative impact of multi-use operations on marine biodiver

sity and ecosystem dynamics remains poorly understood. Lessons 
learned from the exploitation of fixed offshore wind structures [98] and 
coastal aquaculture [61] can help minimize environmental impacts. 
However, further empirical assessment is needed to evaluate the effects 
on marine ecosystems and species. Studies such as Maar et al. [77]
indicate that integrating offshore wind farms with low-trophic aqua
culture can support global sustainability goals by providing ecosystem 
services such as nutrient uptake, carbon sequestration, and biodiversity 
enhancement. Another study examined the potential environmental 
impacts of combining offshore wind energy and mussel farming in the 
Belgian Continental Shelf from a life-cycle perspective [94]. The authors 
concluded that, compared to equivalent land-based systems, offshore 
multi-use is more sustainable in preserving ecosystem quality. However, 
land-based activities may have advantages in terms of human health 
impacts and fossil fuel consumption during device manufacturing, as 
they are less dependent on heavy materials and transportation. There
fore, site-specific studies should be conducted to assess the potential 
environmental impacts and establish adaptive management strategies.

Uncertainty about potential environmental impacts concerns both 
investors and regulatory bodies. Compliance with environmental legis
lation and management regulations is required not only before instal
lation (e.g., environmental licenses) but also throughout operation and 
decommissioning (e.g., environmental monitoring). Studies related to 
environmental liability, including the prevention and remediation of 
prior environmental damage, are necessary to assess risks associated 
with multi-use development (Directive 2004/35/EC; [40]. Additionally, 
the possible impacts of offshore wind energy on farmed species and vice 
versa (e.g., biofouling, noise pollution, and electromagnetic effects) 
must be rigorously evaluated before large-scale deployment.

4.4.7. Social awareness
As multi-use is a relatively new concept, raising public awareness 

remains a challenge. Concerns about landscape impacts and conflicts 
with tourism activities are highlighted as key social challenges. Public 
acceptance is critical for the successful development of multi-use pro
jects. Resistance from local communities, as observed in offshore wind 
farm proposals in Spain (e.g., Mar de Trafalgar, which faced strong local 
opposition), underscores the importance of early stakeholder engage
ment. While multi-use could enhance public perception by linking wind 
energy to food production and economic benefits for coastal commu
nities [9], transparent communication and localized socio-economic 
assessments are essential to building trust.

Public awareness campaigns are recommended to clarify the real 
risks and benefits of combining these activities. These campaigns should 
be informed by pilot project studies, which can provide in-situ evalua
tions of associated challenges. Society could also express its opinion on 
the multi-use between these activities within the framework of a Social 
License to Operate (SLO, e.g., [9]. The SLO concept extends beyond 
passive acceptance of a development - it was initially developed in the 
mining sector to promote active community support and trust in project 
developers. In addition to fostering legitimacy, an SLO can facilitate 
community consent and reduce investment risks related to social op
position [87,80]). This framework could provide commercial developers 
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with valuable guidance to mitigate social risks associated with multi-use 
projects.

4.4.8. Research and technological innovation
Pilot projects will be crucial in testing site-specific feasibility, 

generating empirical data that can inform future MSP revisions and 
optimize spatial planning. Investment in research and technological 
innovation is necessary to evaluate operational feasibility, environ
mental compatibility, and stakeholder engagement strategies. These 
efforts will help minimize environmental risks, optimize economic 
benefits, and assess social perceptions.

Although multi-use has been the subject of several studies [2], 
research focused on site-specific sea conditions and exploitation tech
nologies is essential for its commercialization. The lack of knowledge 
about risks associated with combined offshore activities remains a major 
constraint on development (cf. weaknesses and threats in Section 4.3). 
As an initial step, multi-use potential assessments and impact evalua
tions (environmental, social, and economic) should be applied to 
determine feasibility (e.g., Multi-Use Assessment Approach, [81]; Ocean 
Multi-Use Assessment Framework, [55].

5. Conclusion

This study advances the discussion on multi-use integration within 
MSP by proposing a methodological framework adaptable to various 
policy contexts. The findings contribute to the ongoing debate on opti
mizing marine resource allocation while addressing socio- 
environmental concerns. While Spanish MSP acknowledges the poten
tial of multi-use, it lacks concrete mechanisms for implementation. This 
research underscores the need for clear regulatory pathways and high
lights key industry concerns – such as regulatory barriers, environmental 
uncertainties, and the lack of structured cross-sector collaboration – that 
must be addressed to improve policy effectiveness.

The proposed multi-use assessment framework provides a structured 
approach for evaluating the feasibility of integrating floating offshore 
wind energy and aquaculture within existing governance structures, 
primarily from a sectoral decision-making perspective. It highlights how 
multi-use can offer economic opportunities, improve spatial efficiency, 
and has the potential to enhance public perception of offshore projects, 
provided that regulatory, social, and environmental barriers are effec
tively addressed.

Although multi-use presents a promising strategy to maximize ma
rine resource efficiency and reduce environmental footprints, its 
implementation requires a holistic and adaptive approach. This align
ment must integrate technical feasibility with social, regulatory, and 
environmental considerations. This study provides insights into the 
sectoral dynamics of offshore multi-use, highlighting key recommen
dations and sectoral lessons, while recognizing critical barriers that must 
be addressed to facilitate its adoption. It lays the foundation for further 
research and policy development in this evolving field. Thus, it is 
essential to consider the broader marine spatial context. Spain’s MSP 
framework (Royal Decree 150/2023) acknowledges that offshore ac
tivities must be compatible with existing uses, such as fishing, naviga
tion, and marine protected areas. Future studies should integrate spatial 
compatibility assessments, social and environmental impact evalua
tions, and stakeholder engagement within a comprehensive MSP 
process.
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to marine aquaculture planning, integration and monitoring in Croatia, Proj. 
“Coast. zone Manag. Plan Croat. ” (2005) 78 (Zagreb).

[70] S. Katz, Z. Kizner, Z. Dubinsky, M. Friedlander, Responses of Porphyra linearis 
(Rhodophyta) to environmental factors under controlled culture conditions, 
J. Appl. Phycol. 12 (3-5) (2000) 535–542, https://doi.org/10.1023/A: 
1008138227520.

[71] S. Kavadias, J. Castritsi-Catharios, A. Dessypris, Annual cycles of growth rate, 
feeding rate, food conversion, plasma glucose and plasma lipids in a population of 
European sea bass (Dicentrarchus labrax) farmed in floating marine cages, J. Appl. 
Ichthyol. V. 19 (2003) 29–34, https://doi.org/10.1046/j.1439-0426.2003.00346. 
x.

[72] K.Y. Kim, D.J. Garbary, 2007. Photosynthesis in Codium fragile (Chlorophyta) 
from a Nova Scotia estuary: responses to desiccation and hyposalinity, Mar. Biol. 
151 (2007) 99107.

[73] J. Klijnstra, X. Zhang, S. van der Putten, C. Röckmann, Technical risks of offshore 
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